summaryrefslogtreecommitdiffstats
path: root/test/e_select.test
blob: e2e969dcf9d86a30d2eb9bf030c9bad6263fb980 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
# 2010 July 16
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests to verify that the "testable statements" in 
# the lang_select.html document are correct.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable !compound {
  finish_test
  return
}

do_execsql_test e_select-1.0 {
  CREATE TABLE t1(a, b);
  INSERT INTO t1 VALUES('a', 'one');
  INSERT INTO t1 VALUES('b', 'two');
  INSERT INTO t1 VALUES('c', 'three');

  CREATE TABLE t2(a, b);
  INSERT INTO t2 VALUES('a', 'I');
  INSERT INTO t2 VALUES('b', 'II');
  INSERT INTO t2 VALUES('c', 'III');

  CREATE TABLE t3(a, c);
  INSERT INTO t3 VALUES('a', 1);
  INSERT INTO t3 VALUES('b', 2);

  CREATE TABLE t4(a, c);
  INSERT INTO t4 VALUES('a', NULL);
  INSERT INTO t4 VALUES('b', 2);
} {}
set t1_cross_t2 [list                \
   a one   a I      a one   b II     \
   a one   c III    b two   a I      \
   b two   b II     b two   c III    \
   c three a I      c three b II     \
   c three c III                     \
]
set t1_cross_t1 [list                  \
   a one   a one      a one   b two    \
   a one   c three    b two   a one    \
   b two   b two      b two   c three  \
   c three a one      c three b two    \
   c three c three                     \
]


# This proc is a specialized version of [do_execsql_test].
#
# The second argument to this proc must be a SELECT statement that 
# features a cross join of some time. Instead of the usual ",", 
# "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 
# substituted.
#
# This test runs the SELECT three times - once with:
#
#   * s/%JOIN%/,/
#   * s/%JOIN%/JOIN/
#   * s/%JOIN%/INNER JOIN/
#   * s/%JOIN%/CROSS JOIN/
#
# and checks that each time the results of the SELECT are $res.
#
proc do_join_test {tn select res} {
  foreach {tn2 joinop} [list    1 ,    2 "CROSS JOIN"    3 "INNER JOIN"] {
    set S [string map [list %JOIN% $joinop] $select]
    uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
  }
}

#-------------------------------------------------------------------------
# The following tests check that all paths on the syntax diagrams on
# the lang_select.html page may be taken.
#
# -- syntax diagram join-constraint
#
do_join_test e_select-0.1.1 {
  SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
} {3}
do_join_test e_select-0.1.2 {
  SELECT count(*) FROM t1 %JOIN% t2 USING (a)
} {3}
do_join_test e_select-0.1.3 {
  SELECT count(*) FROM t1 %JOIN% t2
} {9}
do_catchsql_test e_select-0.1.4 {
  SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
} {1 {near "USING": syntax error}}
do_catchsql_test e_select-0.1.5 {
  SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
} {1 {near "ON": syntax error}}

# -- syntax diagram select-core
#
#   0: SELECT ...
#   1: SELECT DISTINCT ...
#   2: SELECT ALL ...
#
#   0: No FROM clause
#   1: Has FROM clause
#
#   0: No WHERE clause
#   1: Has WHERE clause
#
#   0: No GROUP BY clause
#   1: Has GROUP BY clause
#   2: Has GROUP BY and HAVING clauses
#
do_select_tests e_select-0.2 {
  0000.1  "SELECT 1, 2, 3 " {1 2 3}
  1000.1  "SELECT DISTINCT 1, 2, 3 " {1 2 3}
  2000.1  "SELECT ALL 1, 2, 3 " {1 2 3}
  
  0100.1  "SELECT a, b, a||b FROM t1 " {
    a one aone b two btwo c three cthree
  }
  1100.1  "SELECT DISTINCT a, b, a||b FROM t1 " {
    a one aone b two btwo c three cthree
  }
  1200.1  "SELECT ALL a, b, a||b FROM t1 " {
    a one aone b two btwo c three cthree
  }

  0010.1  "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
  0010.2  "SELECT 1, 2, 3 WHERE 0 " {}
  0010.3  "SELECT 1, 2, 3 WHERE NULL " {}

  1010.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}

  2010.1  "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}

  0110.1  "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
    a one aone b two btwo c three cthree
  }
  0110.2  "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}

  1110.1  "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
    a one aone b two btwo c three cthree
  }

  2110.0  "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}

  0001.1  "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
  0002.1  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
  0002.2  "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}

  1001.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
  1002.1  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
  1002.2  "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}

  2001.1  "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
  2002.1  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
  2002.2  "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}

  0101.1  "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
  0102.1  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
    1 a 1 c 1 b
  }
  0102.2  "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" {}

  1101.1  "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
  1102.1  "SELECT DISTINCT count(*), max(a) FROM t1 
           GROUP BY b HAVING count(*)=1" {
    1 a 1 c 1 b
  }
  1102.2  "SELECT DISTINCT count(*), max(a) FROM t1 
           GROUP BY b HAVING count(*)=2" {}

  2101.1  "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
  2102.1  "SELECT ALL count(*), max(a) FROM t1 
           GROUP BY b HAVING count(*)=1" {
    1 a 1 c 1 b
  }
  2102.2  "SELECT ALL count(*), max(a) FROM t1 
           GROUP BY b HAVING count(*)=2" {}

  0011.1  "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
  0012.1  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
  0012.2  "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}

  1011.1  "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
  1012.1  "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 
          {1 2 3}
  1012.2  "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}

  2011.1  "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
  2012.1  "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
  2012.2  "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}

  0111.1  "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
  0112.1  "SELECT count(*), max(a) FROM t1 
           WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
  0112.2  "SELECT count(*), max(a) FROM t1 
           WHERE 0 GROUP BY b HAVING count(*)=2" {}
  1111.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 
          {1 a 1 b}
  1112.1  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
           GROUP BY b HAVING count(*)=1" {
    1 c 1 b
  }
  1112.2  "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
           GROUP BY b HAVING count(*)=2" {}

  2111.1  "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 
          {1 c 1 b}
  2112.1  "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
           GROUP BY b HAVING count(*)=1" {
    1 a 1 c
  }
  2112.2  "SELECT ALL count(*), max(a) FROM t1 
           WHERE 0 GROUP BY b HAVING count(*)=2" {}
}


# -- syntax diagram result-column
#
do_select_tests e_select-0.3 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT t1.* FROM t1" {a one b two c three}
  3  "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
  4  "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
  5  "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
}

# -- syntax diagram join-source
#
# -- syntax diagram join-op
#
do_select_tests e_select-0.4 {
  1  "SELECT t1.rowid FROM t1" {1 2 3}
  2  "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
  3  "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}

  4  "SELECT t1.rowid FROM t1" {1 2 3}
  5  "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
  6  "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 
     {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}

  7  "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
  8  "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
  9  "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3}
  10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
  11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}

  12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
  13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
  14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3}
  15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
  16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
}

# -- syntax diagram compound-operator
#
do_select_tests e_select-0.5 {
  1  "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
  2  "SELECT rowid FROM t1 UNION     SELECT rowid+2 FROM t4" {1 2 3 4}
  3  "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
  4  "SELECT rowid FROM t1 EXCEPT    SELECT rowid+2 FROM t4" {1 2}
}

# -- syntax diagram ordering-term
#
do_select_tests e_select-0.6 {
  1  "SELECT b||a FROM t1 ORDER BY b||a"                  {onea threec twob}
  2  "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
  3  "SELECT b||a FROM t1 ORDER BY (b||a) ASC"            {onea threec twob}
  4  "SELECT b||a FROM t1 ORDER BY (b||a) DESC"           {twob threec onea}
}

# -- syntax diagram select-stmt
#
do_select_tests e_select-0.7 {
  1  "SELECT * FROM t1" {a one b two c three}
  2  "SELECT * FROM t1 ORDER BY b" {a one c three b two}
  3  "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}

  4  "SELECT * FROM t1 LIMIT 10" {a one b two c three}
  5  "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
  6  "SELECT * FROM t1 LIMIT 10, 5" {}

  7  "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
  8  "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
  9  "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}

  10  "SELECT * FROM t1 UNION SELECT b, a FROM t1" 
     {a one b two c three one a three c two b}
  11  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 
     {one a two b three c a one c three b two}
  12  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 
     {one a two b three c a one c three b two}
  13  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 
     {a one b two c three one a three c two b}
  14  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 
     {two b}
  15  "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 
     {}
  16  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 
     {a one b two c three one a three c two b}
  17  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 
     {b two}
  18  "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 
     {}
}

#-------------------------------------------------------------------------
# The following tests focus on FROM clause (join) processing.
#

# EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
# SELECT statement, then the input data is implicitly a single row zero
# columns wide
#
do_select_tests e_select-1.1 {
  1 "SELECT 'abc'"            {abc}
  2 "SELECT 'abc' WHERE NULL" {}
  3 "SELECT NULL"             {{}}
  4 "SELECT count(*)"         {1}
  5 "SELECT count(*) WHERE 0" {0}
  6 "SELECT count(*) WHERE 1" {1}
}

# EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery
# in the FROM clause, then the input data used by the SELECT statement
# is the contents of the named table.
#
#   The results of the SELECT queries suggest that they are operating on the
#   contents of the table 'xx'.
#
do_execsql_test e_select-1.2.0 {
  CREATE TABLE xx(x, y);
  INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
  INSERT INTO xx VALUES(NULL, -16.87);
  INSERT INTO xx VALUES(-17.89, 'linguistically');
} {}
do_select_tests e_select-1.2 {
  1  "SELECT quote(x), quote(y) FROM xx" {
     'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 
     NULL             -16.87                          
     -17.89           'linguistically'                
  }

  2  "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
  3  "SELECT sum(x), sum(y) FROM xx"               {-17.89 -16.87}
}

# EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery
# in FROM clause then the contents of all tables and/or subqueries are
# joined into a single dataset for the simple SELECT statement to
# operate on.
#
#   There are more detailed tests for subsequent requirements that add 
#   more detail to this idea. We just add a single test that shows that
#   data is coming from each of the three tables following the FROM clause
#   here to show that the statement, vague as it is, is not incorrect.
#
do_select_tests e_select-1.3 {
  1 "SELECT * FROM t1, t2, t3" {
      a one a I a 1 a one a I b 2 a one b II a 1 
      a one b II b 2 a one c III a 1 a one c III b 2 
      b two a I a 1 b two a I b 2 b two b II a 1 
      b two b II b 2 b two c III a 1 b two c III b 2 
      c three a I a 1 c three a I b 2 c three b II a 1 
      c three b II b 2 c three c III a 1 c three c III b 2
  }
}

#
# The following block of tests - e_select-1.4.* - test that the description
# of cartesian joins in the SELECT documentation is consistent with SQLite.
# In doing so, we test the following three requirements as a side-effect:
#
# EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN",
# "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING
# clause, then the result of the join is simply the cartesian product of
# the left and right-hand datasets.
#
#    The tests are built on this assertion. Really, they test that the output
#    of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
#    of calculating the cartesian product of the left and right-hand datasets. 
#
# EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
# JOIN", "JOIN" and "," join operators.
#
# EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the
# same result as the "INNER JOIN", "JOIN" and "," operators
#
#    All tests are run 4 times, with the only difference in each run being
#    which of the 4 equivalent cartesian product join operators are used.
#    Since the output data is the same in all cases, we consider that this
#    qualifies as testing the two statements above.
#
do_execsql_test e_select-1.4.0 {
  CREATE TABLE x1(a, b);
  CREATE TABLE x2(c, d, e);
  CREATE TABLE x3(f, g, h, i);

  -- x1: 3 rows, 2 columns
  INSERT INTO x1 VALUES(24, 'converging');
  INSERT INTO x1 VALUES(NULL, X'CB71');
  INSERT INTO x1 VALUES('blonds', 'proprietary');

  -- x2: 2 rows, 3 columns
  INSERT INTO x2 VALUES(-60.06, NULL, NULL);
  INSERT INTO x2 VALUES(-58, NULL, 1.21);

  -- x3: 5 rows, 4 columns
  INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
  INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
  INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
  INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
  INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
} {}

# EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
# dataset are, in order, all the columns of the left-hand dataset
# followed by all the columns of the right-hand dataset.
#
do_join_test e_select-1.4.1.1 {
  SELECT * FROM x1 %JOIN% x2 LIMIT 1
} [concat {24 converging} {-60.06 {} {}}]

do_join_test e_select-1.4.1.2 {
  SELECT * FROM x2 %JOIN% x1 LIMIT 1
} [concat {-60.06 {} {}} {24 converging}]

do_join_test e_select-1.4.1.3 {
  SELECT * FROM x3 %JOIN% x2 LIMIT 1
} [concat {-39.24 {} encompass -1} {-60.06 {} {}}]

do_join_test e_select-1.4.1.4 {
  SELECT * FROM x2 %JOIN% x3 LIMIT 1
} [concat {-60.06 {} {}} {-39.24 {} encompass -1}]

# EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
# dataset formed by combining each unique combination of a row from the
# left-hand and right-hand datasets.
#
do_join_test e_select-1.4.2.1 {
  SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f
} [list -60.06 {} {}      -39.24 {} encompass -1                 \
        -60.06 {} {}      alerting {} -93.79 {}                  \
        -60.06 {} {}      coldest -96 dramatists 82.3            \
        -60.06 {} {}      conducting -87.24 37.56 {}             \
        -60.06 {} {}      presenting 51 reformation dignified    \
        -58 {} 1.21       -39.24 {} encompass -1                 \
        -58 {} 1.21       alerting {} -93.79 {}                  \
        -58 {} 1.21       coldest -96 dramatists 82.3            \
        -58 {} 1.21       conducting -87.24 37.56 {}             \
        -58 {} 1.21       presenting 51 reformation dignified    \
]
# TODO: Come back and add a few more like the above.

# EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset
# consists of Nleft rows of Mleft columns, and the right-hand dataset of
# Nright rows of Mright columns, then the cartesian product is a dataset
# of Nleft&times;Nright rows, each containing Mleft+Mright columns.
#
# x1, x2    (Nlhs=3, Nrhs=2)   (Mlhs=2, Mrhs=3)
do_join_test e_select-1.4.3.1 { 
  SELECT count(*) FROM x1 %JOIN% x2 
} [expr 3*2]
do_test e_select-1.4.3.2 { 
  expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
} [expr 2+3]

# x2, x3    (Nlhs=2, Nrhs=5)   (Mlhs=3, Mrhs=4)
do_join_test e_select-1.4.3.3 { 
  SELECT count(*) FROM x2 %JOIN% x3 
} [expr 2*5]
do_test e_select-1.4.3.4 { 
  expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
} [expr 3+4]

# x3, x1    (Nlhs=5, Nrhs=3)   (Mlhs=4, Mrhs=2)
do_join_test e_select-1.4.3.5 { 
  SELECT count(*) FROM x3 %JOIN% x1 
} [expr 5*3]
do_test e_select-1.4.3.6 { 
  expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
} [expr 4+2]

# x3, x3    (Nlhs=5, Nrhs=5)   (Mlhs=4, Mrhs=4)
do_join_test e_select-1.4.3.7 { 
  SELECT count(*) FROM x3 %JOIN% x3 
} [expr 5*5]
do_test e_select-1.4.3.8 { 
  expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
} [expr 4+4]

# Some extra cartesian product tests using tables t1 and t2.
#
do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1

do_select_tests e_select-1.4.5 [list                                   \
    1 { SELECT * FROM t1 CROSS JOIN t2 }           $t1_cross_t2        \
    2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1        \
    3 { SELECT * FROM t1 INNER JOIN t2 }           $t1_cross_t2        \
    4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1        \
]

# EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON
# expression is evaluated for each row of the cartesian product as a
# boolean expression. Only rows for which the expression evaluates to
# true are included from the dataset.
#
foreach {tn select res} [list                                              \
    1 { SELECT * FROM t1 %JOIN% t2 ON (1) }       $t1_cross_t2             \
    2 { SELECT * FROM t1 %JOIN% t2 ON (0) }       [list]                   \
    3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) }    [list]                   \
    4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') }   [list]                   \
    5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') }   $t1_cross_t2             \
    6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) }     $t1_cross_t2             \
    7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') }   $t1_cross_t2             \
    8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) }     [list]                   \
                                                                           \
    9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) }             \
      {one I two II three III}                                             \
   10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') }              \
      {one I one II one III}                                               \
   11 { SELECT t1.b, t2.b 
        FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
      {two I two II two III three I three II three III}                    \
] {
  do_join_test e_select-1.3.$tn $select $res
}

# EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the
# column names specified must exist in the datasets to both the left and
# right of the join-operator.
#
do_select_tests e_select-1.4 -error {
  cannot join using column %s - column not present in both tables
} {
  1 { SELECT * FROM t1, t3 USING (b) }   "b"
  2 { SELECT * FROM t3, t1 USING (c) }   "c"
  3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) }   "a"
} 

# EVIDENCE-OF: R-22776-52830 For each pair of named columns, the
# expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
# product as a boolean expression. Only rows for which all such
# expressions evaluates to true are included from the result set.
#
do_select_tests e_select-1.5 {
  1 { SELECT * FROM t1, t3 USING (a)   }  {a one 1 b two 2}
  2 { SELECT * FROM t3, t4 USING (a,c) }  {b 2}
} 

# EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
# USING clause, the normal rules for handling affinities, collation
# sequences and NULL values in comparisons apply.
#
# EVIDENCE-OF: R-38422-04402 The column from the dataset on the
# left-hand side of the join-operator is considered to be on the
# left-hand side of the comparison operator (=) for the purposes of
# collation sequence and affinity precedence.
#
do_execsql_test e_select-1.6.0 {
  CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
  INSERT INTO t5 VALUES('AA', 'cc');
  INSERT INTO t5 VALUES('BB', 'dd');
  INSERT INTO t5 VALUES(NULL, NULL);
  CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
  INSERT INTO t6 VALUES('aa', 'cc');
  INSERT INTO t6 VALUES('bb', 'DD');
  INSERT INTO t6 VALUES(NULL, NULL);
} {}
foreach {tn select res} {
  1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
  2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
  3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 
    {aa cc cc bb DD dd}
  4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
  5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
} {
  do_join_test e_select-1.6.$tn $select $res
}

# EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
# USING clause, the column from the right-hand dataset is omitted from
# the joined dataset.
#
# EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
# clause and its equivalent ON constraint.
#
foreach {tn select res} {
  1a { SELECT * FROM t1 %JOIN% t2 USING (a)      } 
     {a one I b two II c three III}
  1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
     {a one a I b two b II c three c III}

  2a { SELECT * FROM t3 %JOIN% t4 USING (a)      }  
     {a 1 {} b 2 2}
  2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 
     {a 1 a {} b 2 b 2}

  3a { SELECT * FROM t3 %JOIN% t4 USING (a,c)                  } {b 2}
  3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}

  4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 
       %JOIN% t5 USING (a) } 
     {aa cc cc bb DD dd}
  4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
       %JOIN% t5 ON (x.a=t5.a) } 
     {aa cc AA cc bb DD BB dd}
} {
  do_join_test e_select-1.7.$tn $select $res
}

# EVIDENCE-OF: R-24610-05866 If the join-operator is a "LEFT JOIN" or
# "LEFT OUTER JOIN", then after the ON or USING filtering clauses have
# been applied, an extra row is added to the output for each row in the
# original left-hand input dataset that does not match any row in the
# right-hand dataset.
#
do_execsql_test e_select-1.8.0 {
  CREATE TABLE t7(a, b, c);
  CREATE TABLE t8(a, d, e);

  INSERT INTO t7 VALUES('x', 'ex',  24);
  INSERT INTO t7 VALUES('y', 'why', 25);

  INSERT INTO t8 VALUES('x', 'abc', 24);
  INSERT INTO t8 VALUES('z', 'ghi', 26);
} {}

do_select_tests e_select-1.8 {
  1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
  1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
  2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
  2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
}


# EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
# columns that would normally contain values copied from the right-hand
# input dataset.
#
do_select_tests e_select-1.9 {
  1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
  1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 
     {x ex 24 x abc 24 y why 25 {} {} {}}
  2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
  2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
}

# EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the
# join-operator then an implicit USING clause is added to the
# join-constraints. The implicit USING clause contains each of the
# column names that appear in both the left and right-hand input
# datasets.
#
do_select_tests e_select-1-10 {
  1a "SELECT * FROM t7 JOIN t8 USING (a)"        {x ex 24 abc 24}
  1b "SELECT * FROM t7 NATURAL JOIN t8"          {x ex 24 abc 24}

  2a "SELECT * FROM t8 JOIN t7 USING (a)"        {x abc 24 ex 24}
  2b "SELECT * FROM t8 NATURAL JOIN t7"          {x abc 24 ex 24}

  3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)"   {x ex 24 abc 24 y why 25 {} {}}
  3b "SELECT * FROM t7 NATURAL LEFT JOIN t8"     {x ex 24 abc 24 y why 25 {} {}}

  4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)"   {x abc 24 ex 24 z ghi 26 {} {}}
  4b "SELECT * FROM t8 NATURAL LEFT JOIN t7"     {x abc 24 ex 24 z ghi 26 {} {}}

  5a "SELECT * FROM t3 JOIN t4 USING (a,c)"      {b 2}
  5b "SELECT * FROM t3 NATURAL JOIN t4"          {b 2}

  6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
  6b "SELECT * FROM t3 NATURAL LEFT JOIN t4"     {a 1 b 2}
} 

# EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
# feature no common column names, then the NATURAL keyword has no effect
# on the results of the join.
#
do_execsql_test e_select-1.11.0 {
  CREATE TABLE t10(x, y);
  INSERT INTO t10 VALUES(1, 'true');
  INSERT INTO t10 VALUES(0, 'false');
} {}
do_select_tests e_select-1-11 {
  1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
  1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
}

# EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
# join that specifies the NATURAL keyword.
#
foreach {tn sql} {
  1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
  2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
  3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
} {
  do_catchsql_test e_select-1.12.$tn "
    $sql
  " {1 {a NATURAL join may not have an ON or USING clause}}
}

#-------------------------------------------------------------------------
# The next block of tests - e_select-3.* - concentrate on verifying 
# statements made regarding WHERE clause processing.
#
drop_all_tables
do_execsql_test e_select-3.0 {
  CREATE TABLE x1(k, x, y, z);
  INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
  INSERT INTO x1 VALUES(2, X'A8E8D66F',    X'07CF',   -81);
  INSERT INTO x1 VALUES(3, -22,            -27.57,    NULL);
  INSERT INTO x1 VALUES(4, NULL,           'bygone',  'picky');
  INSERT INTO x1 VALUES(5, NULL,           96.28,     NULL);
  INSERT INTO x1 VALUES(6, 0,              1,         2);

  CREATE TABLE x2(k, x, y2);
  INSERT INTO x2 VALUES(1, 50, X'B82838');
  INSERT INTO x2 VALUES(5, 84.79, 65.88);
  INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
  INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
} {}

# EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE
# expression is evaluated for each row in the input data as a boolean
# expression. Only rows for which the WHERE clause expression evaluates
# to true are included from the dataset before continuing.
#
do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x }         {3}
do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y }         {3 5 6}
do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z }         {1 2 6}
do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z    } {1 2 4 6}
do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}

do_execsql_test e_select-3.2.1a {
  SELECT k FROM x1 LEFT JOIN x2 USING(k)
} {1 2 3 4 5 6}
do_execsql_test e_select-3.2.1b {
  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k ORDER BY +k
} {1 3 5}
do_execsql_test e_select-3.2.2 {
  SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
} {2 4 6}

do_execsql_test e_select-3.2.3 {
  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
} {3}
do_execsql_test e_select-3.2.4 {
  SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
} {}

#-------------------------------------------------------------------------
# Tests below this point are focused on verifying the testable statements
# related to caculating the result rows of a simple SELECT statement.
#

drop_all_tables
do_execsql_test e_select-4.0 {
  CREATE TABLE z1(a, b, c);
  CREATE TABLE z2(d, e);
  CREATE TABLE z3(a, b);

  INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
  INSERT INTO z1 VALUES(-5, NULL, 75);
  INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
  INSERT INTO z1 VALUES(NULL, 67, 'quartets');
  INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
  INSERT INTO z1 VALUES(63, 'born', -26);

  INSERT INTO z2 VALUES(NULL, 21);
  INSERT INTO z2 VALUES(36, 6);

  INSERT INTO z3 VALUES('subsistence', 'gauze');
  INSERT INTO z3 VALUES(49.17, -67);
} {}

# EVIDENCE-OF: R-36327-17224 If a result expression is the special
# expression "*" then all columns in the input data are substituted for
# that one expression.
#
# EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
# or subquery in the FROM clause followed by ".*" then all columns from
# the named table or subquery are substituted for the single expression.
#
do_select_tests e_select-4.1 {
  1  "SELECT * FROM z1 LIMIT 1"             {51.65 -59.58 belfries}
  2  "SELECT * FROM z1,z2 LIMIT 1"          {51.65 -59.58 belfries {} 21}
  3  "SELECT z1.* FROM z1,z2 LIMIT 1"       {51.65 -59.58 belfries}
  4  "SELECT z2.* FROM z1,z2 LIMIT 1"       {{} 21}
  5  "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}

  6  "SELECT count(*), * FROM z1"           {6 51.65 -59.58 belfries}
  7  "SELECT max(a), * FROM z1"             {63 63 born -26}
  8  "SELECT *, min(a) FROM z1"             {-5 {} 75 -5}

  9  "SELECT *,* FROM z1,z2 LIMIT 1" {        
     51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
  }
  10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {        
     51.65 -59.58 belfries 51.65 -59.58 belfries
  }
}

# EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*"
# expression in any context other than a result expression list.
#
# EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
# "alias.*" expression in a simple SELECT query that does not have a
# FROM clause.
#
foreach {tn select err} {
  1.1  "SELECT a, b, c FROM z1 WHERE *"    {near "*": syntax error}
  1.2  "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
  1.3  "SELECT 1 + * FROM z1"              {near "*": syntax error}
  1.4  "SELECT * + 1 FROM z1"              {near "+": syntax error}

  2.1 "SELECT *" {no tables specified}
  2.2 "SELECT * WHERE 1" {no tables specified}
  2.3 "SELECT * WHERE 0" {no tables specified}
  2.4 "SELECT count(*), *" {no tables specified}
} {
  do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
}

# EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
# by a simple SELECT statement is equal to the number of expressions in
# the result expression list after substitution of * and alias.*
# expressions.
#
foreach {tn select nCol} {
  1   "SELECT * FROM z1"   3
  2   "SELECT * FROM z1 NATURAL JOIN z3"            3
  3   "SELECT z1.* FROM z1 NATURAL JOIN z3"         3
  4   "SELECT z3.* FROM z1 NATURAL JOIN z3"         2
  5   "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3"   5
  6   "SELECT 1, 2, z1.* FROM z1"                   5
  7   "SELECT a, *, b, c FROM z1"                   6
} {
  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
  do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
  sqlite3_finalize $::stmt
}



# In lang_select.html, a non-aggregate query is defined as any simple SELECT
# that has no GROUP BY clause and no aggregate expressions in the result
# expression list. Other queries are aggregate queries. Test cases
# e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
# simple SELECT that is different for aggregate and non-aggregate queries
# verify (in a way) that these definitions are consistent:
#
# EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
# query if it contains either a GROUP BY clause or one or more aggregate
# functions in the result-set.
#
# EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
# aggregate functions or a GROUP BY clause, it is a non-aggregate query.
#

# EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
# query, then each expression in the result expression list is evaluated
# for each row in the dataset filtered by the WHERE clause.
#
do_select_tests e_select-4.4 {
  1 "SELECT a, b FROM z1"
    {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}

  2 "SELECT a IS NULL, b+1, * FROM z1" {
        0 -58.58   51.65 -59.58 belfries
        0 {}       -5 {} 75            
        0 -22.18   -2.2 -23.18 suiters
        1 68       {} 67 quartets    
        0 -31.3    -1.04 -32.3 aspen
        0 1        63 born -26
  }

  3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
}


# Test cases e_select-4.5.* and e_select-4.6.* together show that:
#
# EVIDENCE-OF: R-51988-01124 The single row of result-set data created
# by evaluating the aggregate and non-aggregate expressions in the
# result-set forms the result of an aggregate query without a GROUP BY
# clause.
#

# EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
# query without a GROUP BY clause, then each aggregate expression in the
# result-set is evaluated once across the entire dataset.
#
do_select_tests e_select-4.5 {
  1 "SELECT count(a), max(a), count(b), max(b) FROM z1"      {5 63 5 born}
  2 "SELECT count(*), max(1)"                                {1 1}

  3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3"           {-43.06}
  4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3"           {-38.06}
  5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
}

# EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
# result-set is evaluated once for an arbitrarily selected row of the
# dataset.
#
# EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
# for each non-aggregate expression.
#
#   Note: The results of many of the queries in this block of tests are
#   technically undefined, as the documentation does not specify which row
#   SQLite will arbitrarily select to use for the evaluation of the
#   non-aggregate expressions.
#
drop_all_tables
do_execsql_test e_select-4.6.0 {
  CREATE TABLE a1(one PRIMARY KEY, two);
  INSERT INTO a1 VALUES(1, 1);
  INSERT INTO a1 VALUES(2, 3);
  INSERT INTO a1 VALUES(3, 6);
  INSERT INTO a1 VALUES(4, 10);

  CREATE TABLE a2(one PRIMARY KEY, three);
  INSERT INTO a2 VALUES(1, 1);
  INSERT INTO a2 VALUES(3, 2);
  INSERT INTO a2 VALUES(6, 3);
  INSERT INTO a2 VALUES(10, 4);
} {}
do_select_tests e_select-4.6 {
  1 "SELECT one, two, count(*) FROM a1"                        {1 1 4}
  2 "SELECT one, two, count(*) FROM a1 WHERE one<3"            {1 1 2}
  3 "SELECT one, two, count(*) FROM a1 WHERE one>3"            {4 10 1} 
  4 "SELECT *, count(*) FROM a1 JOIN a2"                       {1 1 1 1 16}
  5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
  6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2"             {1 1 1 3}
  7 "SELECT string_agg(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 1 1}
}

# EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
# each non-aggregate expression is evaluated against a row consisting
# entirely of NULL values.
#
do_select_tests e_select-4.7 {
  1  "SELECT one, two, count(*) FROM a1 WHERE 0"           {{} {} 0}
  2  "SELECT sum(two), * FROM a1, a2 WHERE three>5"        {{} {} {} {} {}}
  3  "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
    1 1 1
  }
} 

# EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
# clause always returns exactly one row of data, even if there are zero
# rows of input data.
#
foreach {tn select} {
  8.1  "SELECT count(*) FROM a1"
  8.2  "SELECT count(*) FROM a1 WHERE 0"
  8.3  "SELECT count(*) FROM a1 WHERE 1"
  8.4  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
  8.5  "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
} {
  # Set $nRow to the number of rows returned by $select:
  set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
  set nRow 0
  while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
  set rc [sqlite3_finalize $::stmt]

  # Test that $nRow==1 and that statement execution was successful 
  # (rc==SQLITE_OK).
  do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
}

drop_all_tables
do_execsql_test e_select-4.9.0 {
  CREATE TABLE b1(one PRIMARY KEY, two);
  INSERT INTO b1 VALUES(1, 'o');
  INSERT INTO b1 VALUES(4, 'f');
  INSERT INTO b1 VALUES(3, 't');
  INSERT INTO b1 VALUES(2, 't');
  INSERT INTO b1 VALUES(5, 'f');
  INSERT INTO b1 VALUES(7, 's');
  INSERT INTO b1 VALUES(6, 's');

  CREATE TABLE b2(x, y);
  INSERT INTO b2 VALUES(NULL, 0);
  INSERT INTO b2 VALUES(NULL, 1);
  INSERT INTO b2 VALUES('xyz', 2);
  INSERT INTO b2 VALUES('abc', 3);
  INSERT INTO b2 VALUES('xyz', 4);

  CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
  INSERT INTO b3 VALUES('abc', 'abc');
  INSERT INTO b3 VALUES('aBC', 'aBC');
  INSERT INTO b3 VALUES('Def', 'Def');
  INSERT INTO b3 VALUES('dEF', 'dEF');
} {}

# EVIDENCE-OF: R-40855-36147 If the SELECT statement is an aggregate
# query with a GROUP BY clause, then each of the expressions specified
# as part of the GROUP BY clause is evaluated for each row of the
# dataset according to the processing rules stated below for ORDER BY
# expressions. Each row is then assigned to a "group" based on the
# results; rows for which the results of evaluating the GROUP BY
# expressions are the same get assigned to the same group.
#
#   These tests also show that the following is not untrue:
#
# EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
# not have to be expressions that appear in the result.
#
do_select_tests e_select-4.9 {
  1  "SELECT group_concat(one), two FROM b1 GROUP BY two" {
    /#,# f   1 o   #,#   s #,# t/
  }
  2  "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
    1,2,3,4 10    5,6,7 18
  }
  3  "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
    4  1,5    2,6   3,7
  }
  4  "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
    4,3,5,7,6    1,2
  }
}

# EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
# values are considered equal.
#
do_select_tests e_select-4.10 {
  1  "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,#   3   #,#/}
  2  "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
} 

# EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
# sequence with which to compare text values apply when evaluating
# expressions in a GROUP BY clause.
#
do_select_tests e_select-4.11 {
  1  "SELECT count(*) FROM b3 GROUP BY b"      {1 1 1 1}
  2  "SELECT count(*) FROM b3 GROUP BY a"      {2 2}
  3  "SELECT count(*) FROM b3 GROUP BY +b"     {1 1 1 1}
  4  "SELECT count(*) FROM b3 GROUP BY +a"     {2 2}
  5  "SELECT count(*) FROM b3 GROUP BY b||''"  {1 1 1 1}
  6  "SELECT count(*) FROM b3 GROUP BY a||''"  {1 1 1 1}
}

# EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
# not be aggregate expressions.
#
foreach {tn select} {
  12.1  "SELECT * FROM b3 GROUP BY count(*)"
  12.2  "SELECT max(a) FROM b3 GROUP BY max(b)"
  12.3  "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
} {
  set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
  do_catchsql_test e_select-4.$tn $select $res
}

# EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
# evaluated once for each group of rows as a boolean expression. If the
# result of evaluating the HAVING clause is false, the group is
# discarded.
#
#   This requirement is tested by all e_select-4.13.* tests.
#
# EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
# expression, it is evaluated across all rows in the group.
#
#   Tested by e_select-4.13.1.*
#
# EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
# expression, it is evaluated with respect to an arbitrarily selected
# row from the group.
#
#   Tested by e_select-4.13.2.*
#
#   Tests in this block also show that this is not untrue:
#
# EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
# even aggregate functions, that are not in the result.
#
do_execsql_test e_select-4.13.0 {
  CREATE TABLE c1(up, down);
  INSERT INTO c1 VALUES('x', 1);
  INSERT INTO c1 VALUES('x', 2);
  INSERT INTO c1 VALUES('x', 4);
  INSERT INTO c1 VALUES('x', 8);
  INSERT INTO c1 VALUES('y', 16);
  INSERT INTO c1 VALUES('y', 32);

  CREATE TABLE c2(i, j);
  INSERT INTO c2 VALUES(1, 0);
  INSERT INTO c2 VALUES(2, 1);
  INSERT INTO c2 VALUES(3, 3);
  INSERT INTO c2 VALUES(4, 6);
  INSERT INTO c2 VALUES(5, 10);
  INSERT INTO c2 VALUES(6, 15);
  INSERT INTO c2 VALUES(7, 21);
  INSERT INTO c2 VALUES(8, 28);
  INSERT INTO c2 VALUES(9, 36);

  CREATE TABLE c3(i PRIMARY KEY, k TEXT);
  INSERT INTO c3 VALUES(1,  'hydrogen');
  INSERT INTO c3 VALUES(2,  'helium');
  INSERT INTO c3 VALUES(3,  'lithium');
  INSERT INTO c3 VALUES(4,  'beryllium');
  INSERT INTO c3 VALUES(5,  'boron');
  INSERT INTO c3 VALUES(94, 'plutonium');
} {}

do_select_tests e_select-4.13 {
  1.1  "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
  1.2  "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
  1.3  "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
  1.4  "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}

  2.1  "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
  2.2  "SELECT up FROM c1 GROUP BY up HAVING up='y'"  {y}

  2.3  "SELECT i, j FROM c2 GROUP BY i>4 HAVING j>6"  {5 10}
}

# EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
# evaluated once for each group of rows.
#
# EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
# expression, it is evaluated across all rows in the group.
#
do_select_tests e_select-4.15 {
  1  "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
  2  "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)"     {54 36 27 21 39 28}
  3  "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)"     {80 36 40 21}
  4  "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
  5  "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
        {3 4.33 1 2.0}
} 

# EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
# arbitrarily chosen row from within the group.
#
# EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
# expression in the result-set, then all such expressions are evaluated
# for the same row.
#
do_select_tests e_select-4.15 {
  1  "SELECT i, j FROM c2 GROUP BY i%2"             {2 1 1 0}
  2  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {2 1 1 0}
  3  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
  4  "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {}
  5  "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
        {2 4 beryllium 2 1 hydrogen 1 3 lithium}
} 

# EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
# contributes a single row to the set of result rows.
#
# EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
# DISTINCT keyword, the number of rows returned by an aggregate query
# with a GROUP BY clause is the same as the number of groups of rows
# produced by applying the GROUP BY and HAVING clauses to the filtered
# input dataset.
#
do_select_tests e_select.4.16 -count {
  1  "SELECT i, j FROM c2 GROUP BY i%2"          2
  2  "SELECT i, j FROM c2 GROUP BY i"            9
  3  "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
} 

#-------------------------------------------------------------------------
# The following tests attempt to verify statements made regarding the ALL
# and DISTINCT keywords.
#
drop_all_tables
do_execsql_test e_select-5.1.0 {
  CREATE TABLE h1(a, b);
  INSERT INTO h1 VALUES(1, 'one');
  INSERT INTO h1 VALUES(1, 'I');
  INSERT INTO h1 VALUES(1, 'i');
  INSERT INTO h1 VALUES(4, 'four');
  INSERT INTO h1 VALUES(4, 'IV');
  INSERT INTO h1 VALUES(4, 'iv');

  CREATE TABLE h2(x COLLATE nocase);
  INSERT INTO h2 VALUES('One');
  INSERT INTO h2 VALUES('Two');
  INSERT INTO h2 VALUES('Three');
  INSERT INTO h2 VALUES('Four');
  INSERT INTO h2 VALUES('one');
  INSERT INTO h2 VALUES('two');
  INSERT INTO h2 VALUES('three');
  INSERT INTO h2 VALUES('four');

  CREATE TABLE h3(c, d);
  INSERT INTO h3 VALUES(1, NULL);
  INSERT INTO h3 VALUES(2, NULL);
  INSERT INTO h3 VALUES(3, NULL);
  INSERT INTO h3 VALUES(4, '2');
  INSERT INTO h3 VALUES(5, NULL);
  INSERT INTO h3 VALUES(6, '2,3');
  INSERT INTO h3 VALUES(7, NULL);
  INSERT INTO h3 VALUES(8, '2,4');
  INSERT INTO h3 VALUES(9, '3');
} {}

# EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
# follow the SELECT keyword in a simple SELECT statement.
#
do_select_tests e_select-5.1 {
  1   "SELECT ALL a FROM h1"      {1 1 1 4 4 4}
  2   "SELECT DISTINCT a FROM h1" {1 4}
}

# EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
# the entire set of result rows are returned by the SELECT.
#
# EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present,
# then the behavior is as if ALL were specified.
#
# EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
# then duplicate rows are removed from the set of result rows before it
# is returned.
#
#   The three testable statements above are tested by e_select-5.2.*,
#   5.3.* and 5.4.* respectively.
#
do_select_tests e_select-5 {
  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}

  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}

  4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
} 

# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
# rows, two NULL values are considered to be equal.
#
do_select_tests e_select-5.5 {
  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
}

# EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a
# collation sequence to compare text values.
#
do_select_tests e_select-5.6 {
  1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
  3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
    One Two Three Four one two three four
  }
}

#-------------------------------------------------------------------------
# The following tests - e_select-7.* - test that statements made to do
# with compound SELECT statements are correct.
#

# EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
# SELECTs must return the same number of result columns.
#
#   All the other tests in this section use compound SELECTs created
#   using component SELECTs that do return the same number of columns.
#   So the tests here just show that it is an error to attempt otherwise.
#
drop_all_tables
do_execsql_test e_select-7.1.0 {
  CREATE TABLE j1(a, b, c);
  CREATE TABLE j2(e, f);
  CREATE TABLE j3(g);
} {}
do_select_tests e_select-7.1 -error {
  SELECTs to the left and right of %s do not have the same number of result columns
} {
  1   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  2   "SELECT *    FROM j1    UNION ALL SELECT * FROM j3"    {{UNION ALL}}
  3   "SELECT a, b FROM j1    UNION ALL SELECT g FROM j3"    {{UNION ALL}}
  4   "SELECT a, b FROM j1    UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
  5   "SELECT *    FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}

  6   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  7   "SELECT *    FROM j1    UNION SELECT * FROM j3"        {UNION}
  8   "SELECT a, b FROM j1    UNION SELECT g FROM j3"        {UNION}
  9   "SELECT a, b FROM j1    UNION SELECT * FROM j3,j2"     {UNION}
  10  "SELECT *    FROM j3,j2 UNION SELECT a, b FROM j1"     {UNION}

  11  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  12  "SELECT *    FROM j1    INTERSECT SELECT * FROM j3"    {INTERSECT}
  13  "SELECT a, b FROM j1    INTERSECT SELECT g FROM j3"    {INTERSECT}
  14  "SELECT a, b FROM j1    INTERSECT SELECT * FROM j3,j2" {INTERSECT}
  15  "SELECT *    FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}

  16  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  17  "SELECT *    FROM j1    EXCEPT SELECT * FROM j3"       {EXCEPT}
  18  "SELECT a, b FROM j1    EXCEPT SELECT g FROM j3"       {EXCEPT}
  19  "SELECT a, b FROM j1    EXCEPT SELECT * FROM j3,j2"    {EXCEPT}
  20  "SELECT *    FROM j3,j2 EXCEPT SELECT a, b FROM j1"    {EXCEPT}
} 

# EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
# be simple SELECT statements, they may not contain ORDER BY or LIMIT
# clauses.
# 
foreach {tn select op1 op2} {
  1   "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 
      {ORDER BY} {UNION ALL}
  2   "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
      {ORDER BY} {UNION ALL}
  3   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
      {ORDER BY} {UNION ALL}
  4   "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 
      LIMIT {UNION ALL}
  5   "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 
      LIMIT {UNION ALL}
  6   "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 
      LIMIT {UNION ALL}

  7   "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 
      {ORDER BY} {UNION}
  8   "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
      {ORDER BY} {UNION}
  9   "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
      {ORDER BY} {UNION}
  10  "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 
      LIMIT {UNION}
  11  "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 
      LIMIT {UNION}
  12  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 
      LIMIT {UNION}

  13  "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 
      {ORDER BY} {EXCEPT}
  14  "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
      {ORDER BY} {EXCEPT}
  15  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
      {ORDER BY} {EXCEPT}
  16  "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 
      LIMIT {EXCEPT}
  17  "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 
      LIMIT {EXCEPT}
  18  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 
      LIMIT {EXCEPT}

  19  "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 
      {ORDER BY} {INTERSECT}
  20  "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
      {ORDER BY} {INTERSECT}
  21  "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
      {ORDER BY} {INTERSECT}
  22  "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 
      LIMIT {INTERSECT}
  23  "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 
      LIMIT {INTERSECT}
  24  "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 
      LIMIT {INTERSECT}
} {
  set err "$op1 clause should come after $op2 not before"
  do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
}

# EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur
# at the end of the entire compound SELECT, and then only if the final
# element of the compound is not a VALUES clause.
#
foreach {tn select} {
  1   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
  2   "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
  3   "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
  4   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 
  5   "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  6   "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 

  7   "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
  8   "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
  8b  "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1"
  9   "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
  10  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 
  11  "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  12  "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 

  13  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
  14  "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
  15  "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
  16  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 
  17  "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  18  "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 

  19  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
  20  "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
  21  "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
  22  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 
  23  "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 
  24  "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 
} {
  do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
}
foreach {tn select} {
  50   "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3"
  51   "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3"
  52   "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1"
  53   "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1"
} {
  do_test e_select-7.3.$tn { catch {execsql $select} msg } 1
}

# EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
# operator returns all the rows from the SELECT to the left of the UNION
# ALL operator, and all the rows from the SELECT to the right of it.
#
drop_all_tables
do_execsql_test e_select-7.4.0 {
  CREATE TABLE q1(a TEXT, b INTEGER, c);
  CREATE TABLE q2(d NUMBER, e BLOB);
  CREATE TABLE q3(f REAL, g);

  INSERT INTO q1 VALUES(16, -87.66, NULL);
  INSERT INTO q1 VALUES('legible', 94, -42.47);
  INSERT INTO q1 VALUES('beauty', 36, NULL);

  INSERT INTO q2 VALUES('legible', 1);
  INSERT INTO q2 VALUES('beauty', 2);
  INSERT INTO q2 VALUES(-65.91, 4);
  INSERT INTO q2 VALUES('emanating', -16.56);

  INSERT INTO q3 VALUES('beauty', 2);
  INSERT INTO q3 VALUES('beauty', 2);
} {}
do_select_tests e_select-7.4 {
  1   {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
      {16 legible beauty legible beauty -65.91 emanating}

  2   {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
      {16 -87.66 {} x legible 1}

  3   {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 
      {3 -16.56}

  4   {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 
      {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
} 

# EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
# UNION ALL, except that duplicate rows are removed from the final
# result set.
#
do_select_tests e_select-7.5 {
  1   {SELECT a FROM q1 UNION SELECT d FROM q2}
      {-65.91 16 beauty emanating legible}

  2   {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
      {16 -87.66 {} x legible 1}

  3   {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 
      {-16.56 3}

  4   {SELECT * FROM q2 UNION SELECT * FROM q3} 
      {-65.91 4 beauty 2 emanating -16.56 legible 1}
} 

# EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
# intersection of the results of the left and right SELECTs.
#
do_select_tests e_select-7.6 {
  1   {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
  2   {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
}

# EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
# rows returned by the left SELECT that are not also returned by the
# right-hand SELECT.
#
do_select_tests e_select-7.7 {
  1   {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}

  2   {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 
      {-65.91 4 emanating -16.56 legible 1}
}

# EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
# of INTERSECT and EXCEPT operators before the result set is returned.
#
do_select_tests e_select-7.8 {
  0   {SELECT * FROM q3} {beauty 2 beauty 2}

  1   {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
  2   {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1}  {beauty 2}
}

# EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
# rows for the results of compound SELECT operators, NULL values are
# considered equal to other NULL values and distinct from all non-NULL
# values.
#
db nullvalue null
do_select_tests e_select-7.9 {
  1   {SELECT NULL UNION ALL SELECT NULL} {null null}
  2   {SELECT NULL UNION     SELECT NULL} {null}
  3   {SELECT NULL INTERSECT SELECT NULL} {null}
  4   {SELECT NULL EXCEPT    SELECT NULL} {}

  5   {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
  6   {SELECT NULL UNION     SELECT 'ab'} {null ab}
  7   {SELECT NULL INTERSECT SELECT 'ab'} {}
  8   {SELECT NULL EXCEPT    SELECT 'ab'} {null}

  9   {SELECT NULL UNION ALL SELECT 0} {null 0}
  10  {SELECT NULL UNION     SELECT 0} {null 0}
  11  {SELECT NULL INTERSECT SELECT 0} {}
  12  {SELECT NULL EXCEPT    SELECT 0} {null}

  13  {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
  14  {SELECT c FROM q1 UNION     SELECT g FROM q3} {null -42.47 2}
  15  {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
  16  {SELECT c FROM q1 EXCEPT    SELECT g FROM q3} {null -42.47}
}
db nullvalue {} 

# EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
# text values is determined as if the columns of the left and right-hand
# SELECT statements were the left and right-hand operands of the equals
# (=) operator, except that greater precedence is not assigned to a
# collation sequence specified with the postfix COLLATE operator.
#
drop_all_tables
do_execsql_test e_select-7.10.0 {
  CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
  INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
} {}
do_select_tests e_select-7.10 {
  1   {SELECT 'abc'                UNION SELECT 'ABC'} {ABC abc}
  2   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
  3   {SELECT 'abc'                UNION SELECT 'ABC' COLLATE nocase} {ABC}
  4   {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
  5   {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}

  6   {SELECT a FROM y1 UNION SELECT b FROM y1}                {abc}
  7   {SELECT b FROM y1 UNION SELECT a FROM y1}                {Abc abc}
  8   {SELECT a FROM y1 UNION SELECT c FROM y1}                {aBC}

  9   {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
}

# EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
# any values when comparing rows as part of a compound SELECT.
#
drop_all_tables
do_execsql_test e_select-7.10.0 {
  CREATE TABLE w1(a TEXT, b NUMBER);
  CREATE TABLE w2(a, b TEXT);

  INSERT INTO w1 VALUES('1', 4.1);
  INSERT INTO w2 VALUES(1, 4.1);
} {}

do_select_tests e_select-7.11 {
  1  { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
  2  { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
  3  { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
  4  { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}

  5  { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
  6  { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
  7  { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
  8  { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}

  9  { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
  10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
  11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
  12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
}


# EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
# connected into a compound SELECT, they group from left to right. In
# other words, if "A", "B" and "C" are all simple SELECT statements, (A
# op B op C) is processed as ((A op B) op C).
#
#   e_select-7.12.1: Precedence of UNION vs. INTERSECT 
#   e_select-7.12.2: Precedence of UNION vs. UNION ALL 
#   e_select-7.12.3: Precedence of UNION vs. EXCEPT
#   e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 
#   e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
#   e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
#   e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 
#                   "(a EXCEPT b) EXCEPT c".
#
# The INTERSECT and EXCEPT operations are mutually commutative. So
# the e_select-7.12.5 test cases do not prove very much.
#
drop_all_tables
do_execsql_test e_select-7.12.0 {
  CREATE TABLE t1(x);
  INSERT INTO t1 VALUES(1);
  INSERT INTO t1 VALUES(2);
  INSERT INTO t1 VALUES(3);
} {}
foreach {tn select res} {
  1a "(1,2) INTERSECT (1)   UNION     (3)"   {1 3}
  1b "(3)   UNION     (1,2) INTERSECT (1)"   {1}

  2a "(1,2) UNION     (3)   UNION ALL (1)"   {1 2 3 1}
  2b "(1)   UNION ALL (3)   UNION     (1,2)" {1 2 3}

  3a "(1,2) UNION     (3)   EXCEPT    (1)"   {2 3}
  3b "(1,2) EXCEPT    (3)   UNION     (1)"   {1 2}

  4a "(1,2) INTERSECT (1)   UNION ALL (3)"   {1 3}
  4b "(3)   UNION     (1,2) INTERSECT (1)"   {1}

  5a "(1,2) INTERSECT (2)   EXCEPT    (2)"   {}
  5b "(2,3) EXCEPT    (2)   INTERSECT (2)"   {}

  6a "(2)   UNION ALL (2)   EXCEPT    (2)"   {}
  6b "(2)   EXCEPT    (2)   UNION ALL (2)"   {2}

  7  "(2,3) EXCEPT    (2)   EXCEPT    (3)"   {}
} {
  set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
  do_execsql_test e_select-7.12.$tn $select [list {*}$res]
}


#-------------------------------------------------------------------------
# ORDER BY clauses
#

drop_all_tables
do_execsql_test e_select-8.1.0 {
  CREATE TABLE d1(x, y, z);

  INSERT INTO d1 VALUES(1, 2, 3);
  INSERT INTO d1 VALUES(2, 5, -1);
  INSERT INTO d1 VALUES(1, 2, 8);
  INSERT INTO d1 VALUES(1, 2, 7);
  INSERT INTO d1 VALUES(2, 4, 93);
  INSERT INTO d1 VALUES(1, 2, -20);
  INSERT INTO d1 VALUES(1, 4, 93);
  INSERT INTO d1 VALUES(1, 5, -1);

  CREATE TABLE d2(a, b);
  INSERT INTO d2 VALUES('gently', 'failings');
  INSERT INTO d2 VALUES('commercials', 'bathrobe');
  INSERT INTO d2 VALUES('iterate', 'sexton');
  INSERT INTO d2 VALUES('babied', 'charitableness');
  INSERT INTO d2 VALUES('solemnness', 'annexed');
  INSERT INTO d2 VALUES('rejoicing', 'liabilities');
  INSERT INTO d2 VALUES('pragmatist', 'guarded');
  INSERT INTO d2 VALUES('barked', 'interrupted');
  INSERT INTO d2 VALUES('reemphasizes', 'reply');
  INSERT INTO d2 VALUES('lad', 'relenting');
} {}

# EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
# of evaluating the left-most expression in the ORDER BY list, then ties
# are broken by evaluating the second left-most expression and so on.
#
do_select_tests e_select-8.1 {
  1  "SELECT * FROM d1 ORDER BY x, y, z" {
     1 2 -20    1 2 3    1 2 7    1 2 8    
     1 4  93    1 5 -1   2 4 93   2 5 -1
  }
}

# EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
# followed by one of the keywords ASC (smaller values are returned
# first) or DESC (larger values are returned first).
#
#   Test cases e_select-8.2.* test the above.
#
# EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
# are sorted in ascending (smaller values first) order by default.
#
#   Test cases e_select-8.3.* test the above. All 8.3 test cases are
#   copies of 8.2 test cases with the explicit "ASC" removed.
#
do_select_tests e_select-8 {
  2.1  "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
     1 2 -20    1 2 3    1 2 7    1 2 8    
     1 4  93    1 5 -1   2 4 93   2 5 -1
  }
  2.2  "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
     2 5 -1     2 4 93   1 5 -1   1 4  93    
     1 2 8      1 2 7    1 2 3    1 2 -20    
  }
  2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
     2 4 93   2 5 -1     1 2 8      1 2 7    
     1 2 3    1 2 -20    1 4  93    1 5 -1   
  }
  2.4  "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
     2 4 93   2 5 -1     1 2 -20    1 2 3    
     1 2 7    1 2 8      1 4  93    1 5 -1   
  }

  3.1  "SELECT * FROM d1 ORDER BY x, y, z" {
     1 2 -20    1 2 3    1 2 7    1 2 8    
     1 4  93    1 5 -1   2 4 93   2 5 -1
  }
  3.3  "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
     2 4 93   2 5 -1     1 2 8      1 2 7    
     1 2 3    1 2 -20    1 4  93    1 5 -1   
  }
  3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
     2 4 93   2 5 -1     1 2 -20    1 2 3    
     1 2 7    1 2 8      1 4  93    1 5 -1   
  }
}

# EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
# integer K then the expression is considered an alias for the K-th
# column of the result set (columns are numbered from left to right
# starting with 1).
#
do_select_tests e_select-8.4 {
  1  "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
     1 2 -20    1 2 3    1 2 7    1 2 8    
     1 4  93    1 5 -1   2 4 93   2 5 -1
  }
  2  "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
     2 5 -1     2 4 93   1 5 -1   1 4  93    
     1 2 8      1 2 7    1 2 3    1 2 -20    
  }
  3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
     2 4 93   2 5 -1     1 2 8      1 2 7    
     1 2 3    1 2 -20    1 4  93    1 5 -1   
  }
  4  "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
     2 4 93   2 5 -1     1 2 -20    1 2 3    
     1 2 7    1 2 8      1 4  93    1 5 -1   
  }
  5  "SELECT * FROM d1 ORDER BY 1, 2, 3" {
     1 2 -20    1 2 3    1 2 7    1 2 8    
     1 4  93    1 5 -1   2 4 93   2 5 -1
  }
  6  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
     2 4 93   2 5 -1     1 2 8      1 2 7    
     1 2 3    1 2 -20    1 4  93    1 5 -1   
  }
  7  "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
     2 4 93   2 5 -1     1 2 -20    1 2 3    
     1 2 7    1 2 8      1 4  93    1 5 -1   
  }
  8  "SELECT z, x FROM d1 ORDER BY 2" {
     /# 1    # 1    # 1   # 1 
      # 1    # 1    # 2   # 2/
  }
  9  "SELECT z, x FROM d1 ORDER BY 1" {
     /-20 1  -1 #   -1 #   3 1
     7 1     8 1   93 #   93 #/   
  }
}

# EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
# that corresponds to the alias of one of the output columns, then the
# expression is considered an alias for that column.
#
do_select_tests e_select-8.5 {
  1   "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
    -19 0 0 4 8 9 94 94
  }
  2   "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
    94 94 9 8 4 0 0 -19
  }
  3  "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
    /# 1    # 1    # 1    # 1    # 1    # 1    # 2    # 2/
  }
  4  "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
    /-20 1    -1 #    -1 #    3 1    7 1    8 1    93 #    93 #/
  }
}

# EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is
# any other expression, it is evaluated and the returned value used to
# order the output rows.
#
# EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
# then an ORDER BY may contain any arbitrary expressions.
#
do_select_tests e_select-8.6 {
  1   "SELECT * FROM d1 ORDER BY x+y+z" {
    1 2 -20    1 5 -1    1 2 3    2 5 -1 
    1 2 7      1 2 8     1 4 93   2 4 93
  }
  2   "SELECT * FROM d1 ORDER BY x*z" {
    1 2 -20    2 5 -1    1 5 -1    1 2 3 
    1 2 7      1 2 8     1 4 93    2 4 93
  }
  3   "SELECT * FROM d1 ORDER BY y*z" {
    1 2 -20    2 5 -1    1 5 -1    1 2 3 
    1 2 7      1 2 8     2 4 93    1 4 93
  }
}

# EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
# SELECT, then ORDER BY expressions that are not aliases to output
# columns must be exactly the same as an expression used as an output
# column.
#
do_select_tests e_select-8.7.1 -error {
  %s ORDER BY term does not match any column in the result set
} {
  1   "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z"        1st
  2   "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
} 

do_select_tests e_select-8.7.2 {
  1   "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
    -20 -2 -1 3 7 8 93 186 babied barked commercials gently 
    iterate lad pragmatist reemphasizes rejoicing solemnness
  }
  2   "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
    1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 
    babied charitableness barked interrupted commercials bathrobe gently
    failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
    rejoicing liabilities solemnness annexed
  }
} 

do_execsql_test e_select-8.8.0 {
  CREATE TABLE d3(a);
  INSERT INTO d3 VALUES('text');
  INSERT INTO d3 VALUES(14.1);
  INSERT INTO d3 VALUES(13);
  INSERT INTO d3 VALUES(X'78787878');
  INSERT INTO d3 VALUES(15);
  INSERT INTO d3 VALUES(12.9);
  INSERT INTO d3 VALUES(null);

  CREATE TABLE d4(x COLLATE nocase);
  INSERT INTO d4 VALUES('abc');
  INSERT INTO d4 VALUES('ghi');
  INSERT INTO d4 VALUES('DEF');
  INSERT INTO d4 VALUES('JKL');
} {}

# EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
# are compared in the same way as for comparison expressions.
#
#   The following tests verify that values of different types are sorted
#   correctly, and that mixed real and integer values are compared properly.
#
do_execsql_test e_select-8.8.1 {
  SELECT a FROM d3 ORDER BY a
} {{} 12.9 13 14.1 15 text xxxx}
do_execsql_test e_select-8.8.2 {
  SELECT a FROM d3 ORDER BY a DESC
} {xxxx text 15 14.1 13 12.9 {}}


# EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
# collation sequence using the postfix COLLATE operator, then the
# specified collation sequence is used.
#
do_execsql_test e_select-8.9.1 {
  SELECT x FROM d4 ORDER BY 1 COLLATE binary
} {DEF JKL abc ghi}
do_execsql_test e_select-8.9.2 {
  SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
} {abc DEF ghi JKL}

# EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 
# an alias to an expression that has been assigned a collation sequence 
# using the postfix COLLATE operator, then the collation sequence 
# assigned to the aliased expression is used.
#
#   In the test 8.10.2, the only result-column expression has no alias. So the
#   ORDER BY expression is not a reference to it and therefore does not inherit
#   the collation sequence. In test 8.10.3, "x" is the alias (as well as the
#   column name), so the ORDER BY expression is interpreted as an alias and the
#   collation sequence attached to the result column is used for sorting.
#
do_execsql_test e_select-8.10.1 {
  SELECT x COLLATE binary FROM d4 ORDER BY 1
} {DEF JKL abc ghi}
do_execsql_test e_select-8.10.2 {
  SELECT x COLLATE binary FROM d4 ORDER BY x
} {abc DEF ghi JKL}
do_execsql_test e_select-8.10.3 {
  SELECT x COLLATE binary AS x FROM d4 ORDER BY x
} {DEF JKL abc ghi}

# EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
# column or an alias of an expression that is a column, then the default
# collation sequence for the column is used.
#
do_execsql_test e_select-8.11.1 {
  SELECT x AS y FROM d4 ORDER BY y
} {abc DEF ghi JKL}
do_execsql_test e_select-8.11.2 {
  SELECT x||'' FROM d4 ORDER BY x
} {abc DEF ghi JKL}

# EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
# used.
#
do_execsql_test e_select-8.12.1 {
  SELECT x FROM d4 ORDER BY x||''
} {DEF JKL abc ghi}

# EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
# alias, then SQLite searches the left-most SELECT in the compound for a
# result column that matches either the second or third rules above. If
# a match is found, the search stops and the expression is handled as an
# alias for the result column that it has been matched against.
# Otherwise, the next SELECT to the right is tried, and so on.
#
do_execsql_test e_select-8.13.0 {
  CREATE TABLE d5(a, b);
  CREATE TABLE d6(c, d);
  CREATE TABLE d7(e, f);
 
  INSERT INTO d5 VALUES(1, 'f');
  INSERT INTO d6 VALUES(2, 'e');
  INSERT INTO d7 VALUES(3, 'd');
  INSERT INTO d5 VALUES(4, 'c');
  INSERT INTO d6 VALUES(5, 'b');
  INSERT INTO d7 VALUES(6, 'a');

  CREATE TABLE d8(x COLLATE nocase);
  CREATE TABLE d9(y COLLATE nocase);

  INSERT INTO d8 VALUES('a');
  INSERT INTO d9 VALUES('B');
  INSERT INTO d8 VALUES('c');
  INSERT INTO d9 VALUES('D');
} {}
do_select_tests e_select-8.13 {
  1   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
         ORDER BY a
      } {1 2 3 4 5 6}
  2   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
         ORDER BY c
      } {1 2 3 4 5 6}
  3   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
         ORDER BY e
      } {1 2 3 4 5 6}
  4   { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
         ORDER BY 1
      } {1 2 3 4 5 6}

  5   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 
      {f 1   c 4   4 c   1 f}
  6   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 
      {f 1   c 4   4 c   1 f}

  7   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 
      {1 f   4 c   c 4   f 1}
  8   { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 
      {1 f   4 c   c 4   f 1}

  9   { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
      {f 2   c 5   4 c   1 f}
  10  { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 
      {f 2   c 5   4 c   1 f}

  11  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 
      {2 f   5 c   c 5   f 2}
  12  { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 
      {2 f   5 c   c 5   f 2}
} 

# EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
# the result columns of any constituent SELECT, it is an error.
#
do_select_tests e_select-8.14 -error {
  %s ORDER BY term does not match any column in the result set
} {
  1   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 }          1st
  2   { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 }       2nd
  3   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' }  1st
  4   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah    }  1st
  5   { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d }  3rd
  6   { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b  }  4th
} 

# EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
# processed separately and may be matched against result columns from
# different SELECT statements in the compound.
# 
do_select_tests e_select-8.15 {
  1  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
     {1 e   1 f   4 b   4 c}
  2  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
     {1 e   1 f   4 b   4 c}
  3  { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
     {1 e   1 f   4 b   4 c}
} 


#-------------------------------------------------------------------------
# Tests related to statements made about the LIMIT/OFFSET clause.
#
do_execsql_test e_select-9.0 {
  CREATE TABLE f1(a, b);
  INSERT INTO f1 VALUES(26, 'z');
  INSERT INTO f1 VALUES(25, 'y');
  INSERT INTO f1 VALUES(24, 'x');
  INSERT INTO f1 VALUES(23, 'w');
  INSERT INTO f1 VALUES(22, 'v');
  INSERT INTO f1 VALUES(21, 'u');
  INSERT INTO f1 VALUES(20, 't');
  INSERT INTO f1 VALUES(19, 's');
  INSERT INTO f1 VALUES(18, 'r');
  INSERT INTO f1 VALUES(17, 'q');
  INSERT INTO f1 VALUES(16, 'p');
  INSERT INTO f1 VALUES(15, 'o');
  INSERT INTO f1 VALUES(14, 'n');
  INSERT INTO f1 VALUES(13, 'm');
  INSERT INTO f1 VALUES(12, 'l');
  INSERT INTO f1 VALUES(11, 'k');
  INSERT INTO f1 VALUES(10, 'j');
  INSERT INTO f1 VALUES(9, 'i');
  INSERT INTO f1 VALUES(8, 'h');
  INSERT INTO f1 VALUES(7, 'g');
  INSERT INTO f1 VALUES(6, 'f');
  INSERT INTO f1 VALUES(5, 'e');
  INSERT INTO f1 VALUES(4, 'd');
  INSERT INTO f1 VALUES(3, 'c');
  INSERT INTO f1 VALUES(2, 'b');
  INSERT INTO f1 VALUES(1, 'a');
} {}

# EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
# LIMIT clause, so long as it evaluates to an integer or a value that
# can be losslessly converted to an integer.
#
do_select_tests e_select-9.1 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 
     {a b c d e}
  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
}

# EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
# or any other value that cannot be losslessly converted to an integer,
# an error is returned.
#

do_select_tests e_select-9.2 -error "datatype mismatch" {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
  2  { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
  3  { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
  4  { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
  5  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
} 

# EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
# negative value, then there is no upper bound on the number of rows
# returned.
#
do_select_tests e_select-9.4 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT -1 } 
     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  2  { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 
     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
  3  { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
     {a b c d e f g h i j k l m n o p q r s t u v w x y z}
}

# EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
# rows of its result set only, where N is the value that the LIMIT
# expression evaluates to.
#
do_select_tests e_select-9.5 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
  2  { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
  3  { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
  4  { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
}

# EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
# less than N rows without a LIMIT clause, then the entire result set is
# returned.
#
do_select_tests e_select-9.6 {
  1  { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
  2  { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
} 


# EVIDENCE-OF: R-24188-24349 The expression attached to the optional
# OFFSET clause that may follow a LIMIT clause must also evaluate to an
# integer, or a value that can be losslessly converted to an integer.
#
foreach {tn select} {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 
  2  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 
  3  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 
  4  { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 
  5  { SELECT b FROM f1 ORDER BY a 
       LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 
  } 
} {
  do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
}

# EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
# the first M rows are omitted from the result set returned by the
# SELECT statement and the next N rows are returned, where M and N are
# the values that the OFFSET and LIMIT clauses evaluate to,
# respectively.
#
do_select_tests e_select-9.8 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
  2  { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
  3  { SELECT b FROM f1 ORDER BY a 
       LIMIT  (SELECT a FROM f1 WHERE b='j') 
       OFFSET (SELECT a FROM f1 WHERE b='b') 
     } {c d e f g h i j k l}
  4  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
  5  { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
  6  { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
  7  { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
}

# EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
# M+N rows if it did not have a LIMIT clause, then the first M rows are
# skipped and the remaining rows (if any) are returned.
#
do_select_tests e_select-9.9 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
  2  { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
}


# EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
# negative value, the results are the same as if it had evaluated to
# zero.
#
do_select_tests e_select-9.10 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
  2  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
  3  { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0  } {a b c d e}
} 

# EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
# LIMIT clause may specify two scalar expressions separated by a comma.
#
# EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
# as the OFFSET expression and the second as the LIMIT expression.
#
do_select_tests e_select-9.11 {
  1  { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
  2  { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
  3  { SELECT b FROM f1 ORDER BY a 
       LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 
     } {c d e f g h i j k l}
  4  { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
  5  { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
  6  { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
  7  { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}

  8  { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
  9  { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}

  10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
  11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
  12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
}

finish_test