1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
# 2009 December 03
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Brute force (random data) tests for FTS3.
#
#-------------------------------------------------------------------------
#
# The FTS3 tests implemented in this file focus on testing that FTS3
# returns the correct set of documents for various types of full-text
# query. This is done using pseudo-randomly generated data and queries.
# The expected result of each query is calculated using Tcl code.
#
# 1. The database is initialized to contain a single table with three
# columns. 100 rows are inserted into the table. Each of the three
# values in each row is a document consisting of between 0 and 100
# terms. Terms are selected from a vocabulary of $G(nVocab) terms.
#
# 2. The following is performed 100 times:
#
# a. A row is inserted into the database. The row contents are
# generated as in step 1. The docid is a pseudo-randomly selected
# value between 0 and 1000000.
#
# b. A psuedo-randomly selected row is updated. One of its columns is
# set to contain a new document generated in the same way as the
# documents in step 1.
#
# c. A psuedo-randomly selected row is deleted.
#
# d. For each of several types of fts3 queries, 10 SELECT queries
# of the form:
#
# SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
#
# are evaluated. The results are compared to those calculated by
# Tcl code in this file. The patterns used for the different query
# types are:
#
# 1. query = <term>
# 2. query = <prefix>
# 3. query = "<term> <term>"
# 4. query = "<term> <term> <term>"
# 5. query = "<prefix> <prefix> <prefix>"
# 6. query = <term> NEAR <term>
# 7. query = <term> NEAR/11 <term> NEAR/11 <term>
# 8. query = <term> OR <term>
# 9. query = <term> NOT <term>
# 10. query = <term> AND <term>
# 11. query = <term> NEAR <term> OR <term> NEAR <term>
# 12. query = <term> NEAR <term> NOT <term> NEAR <term>
# 13. query = <term> NEAR <term> AND <term> NEAR <term>
#
# where <term> is a term psuedo-randomly selected from the vocabulary
# and prefix is the first 2 characters of such a term followed by
# a "*" character.
#
# Every second iteration, steps (a) through (d) above are performed
# within a single transaction. This forces the queries in (d) to
# read data from both the database and the in-memory hash table
# that caches the full-text index entries created by steps (a), (b)
# and (c) until the transaction is committed.
#
# The procedure above is run 5 times, using advisory fts3 node sizes of 50,
# 500, 1000 and 2000 bytes.
#
# After the test using an advisory node-size of 50, an OOM test is run using
# the database. This test is similar to step (d) above, except that it tests
# the effects of transient and persistent OOM conditions encountered while
# executing each query.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl
source $testdir/malloc_common.tcl
set G(nVocab) 100
set nVocab 100
set lVocab [list]
expr srand(0)
# Generate a vocabulary of nVocab words. Each word is 3 characters long.
#
set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
for {set i 0} {$i < $nVocab} {incr i} {
set len [expr int(rand()*3)+2]
set word [lindex $lChar [expr int(rand()*26)]]
append word [lindex $lChar [expr int(rand()*26)]]
if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
lappend lVocab $word
}
proc random_term {} {
lindex $::lVocab [expr {int(rand()*$::nVocab)}]
}
# Return a document consisting of $nWord arbitrarily selected terms
# from the $::lVocab list.
#
proc generate_doc {nWord} {
set doc [list]
for {set i 0} {$i < $nWord} {incr i} {
lappend doc [random_term]
}
return $doc
}
# Primitives to update the table.
#
unset -nocomplain t1
proc insert_row {rowid} {
set a [generate_doc [expr int((rand()*100))]]
set b [generate_doc [expr int((rand()*100))]]
set c [generate_doc [expr int((rand()*100))]]
execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
set ::t1($rowid) [list $a $b $c]
}
proc delete_row {rowid} {
execsql { DELETE FROM t1 WHERE rowid = $rowid }
catch {unset ::t1($rowid)}
}
proc update_row {rowid} {
set cols {a b c}
set iCol [expr int(rand()*3)]
set doc [generate_doc [expr int((rand()*100))]]
lset ::t1($rowid) $iCol $doc
execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
}
proc simple_phrase {zPrefix} {
set ret [list]
set reg [string map {* {[^ ]*}} $zPrefix]
set reg " $reg "
foreach key [lsort -integer [array names ::t1]] {
set value $::t1($key)
set cnt [list]
foreach col $value {
if {[regexp $reg " $col "]} { lappend ret $key ; break }
}
}
#lsort -uniq -integer $ret
set ret
}
# This [proc] is used to test the FTS3 matchinfo() function.
#
proc simple_token_matchinfo {zToken bDesc} {
set nDoc(0) 0
set nDoc(1) 0
set nDoc(2) 0
set nHit(0) 0
set nHit(1) 0
set nHit(2) 0
set dir -inc
if {$bDesc} { set dir -dec }
foreach key [array names ::t1] {
set value $::t1($key)
set a($key) [list]
foreach i {0 1 2} col $value {
set hit [llength [lsearch -all $col $zToken]]
lappend a($key) $hit
incr nHit($i) $hit
if {$hit>0} { incr nDoc($i) }
}
}
set ret [list]
foreach docid [lsort -integer $dir [array names a]] {
if { [lindex [lsort -integer $a($docid)] end] } {
set matchinfo [list 1 3]
foreach i {0 1 2} hit $a($docid) {
lappend matchinfo $hit $nHit($i) $nDoc($i)
}
lappend ret $docid $matchinfo
}
}
set ret
}
proc simple_near {termlist nNear} {
set ret [list]
foreach {key value} [array get ::t1] {
foreach v $value {
set l [lsearch -exact -all $v [lindex $termlist 0]]
foreach T [lrange $termlist 1 end] {
set l2 [list]
foreach i $l {
set iStart [expr $i - $nNear - 1]
set iEnd [expr $i + $nNear + 1]
if {$iStart < 0} {set iStart 0}
foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] {
incr i2 $iStart
if {$i2 != $i} { lappend l2 $i2 }
}
}
set l [lsort -uniq -integer $l2]
}
if {[llength $l]} {
#puts "MATCH($key): $v"
lappend ret $key
}
}
}
lsort -unique -integer $ret
}
# The following three procs:
#
# setup_not A B
# setup_or A B
# setup_and A B
#
# each take two arguments. Both arguments must be lists of integer values
# sorted by value. The return value is the list produced by evaluating
# the equivalent of "A op B", where op is the FTS3 operator NOT, OR or
# AND.
#
proc setop_not {A B} {
foreach b $B { set n($b) {} }
set ret [list]
foreach a $A { if {![info exists n($a)]} {lappend ret $a} }
return $ret
}
proc setop_or {A B} {
lsort -integer -uniq [concat $A $B]
}
proc setop_and {A B} {
foreach b $B { set n($b) {} }
set ret [list]
foreach a $A { if {[info exists n($a)]} {lappend ret $a} }
return $ret
}
proc mit {blob} {
set scan(littleEndian) i*
set scan(bigEndian) I*
binary scan $blob $scan($::tcl_platform(byteOrder)) r
return $r
}
db func mit mit
set sqlite_fts3_enable_parentheses 1
proc do_orderbydocid_test {tn sql res} {
uplevel [list do_select_test $tn.asc "$sql ORDER BY docid ASC" $res]
uplevel [list do_select_test $tn.desc "$sql ORDER BY docid DESC" \
[lsort -int -dec $res]
]
}
set NUM_TRIALS 100
foreach {nodesize order} {
50 DESC
50 ASC
500 ASC
1000 DESC
2000 ASC
} {
catch { array unset ::t1 }
set testname "$nodesize/$order"
# Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
#
db transaction {
catchsql { DROP TABLE t1 }
execsql "CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, order=$order)"
execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
for {set i 0} {$i < 100} {incr i} { insert_row $i }
}
for {set iTest 1} {$iTest <= $NUM_TRIALS} {incr iTest} {
catchsql COMMIT
set DO_MALLOC_TEST 0
set nRep 10
if {$iTest==100 && $nodesize==50} {
set DO_MALLOC_TEST 1
set nRep 2
}
set ::testprefix fts3rnd-1.$testname.$iTest
# Delete one row, update one row and insert one row.
#
set rows [array names ::t1]
set nRow [llength $rows]
set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
set iDelete $iUpdate
while {$iDelete == $iUpdate} {
set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
}
set iInsert $iUpdate
while {[info exists ::t1($iInsert)]} {
set iInsert [expr {int(rand()*1000000)}]
}
execsql BEGIN
insert_row $iInsert
update_row $iUpdate
delete_row $iDelete
if {0==($iTest%2)} { execsql COMMIT }
if {0==($iTest%2)} {
#do_test 0 { fts3_integrity_check t1 } ok
}
# Pick 10 terms from the vocabulary. Check that the results of querying
# the database for the set of documents containing each of these terms
# is the same as the result obtained by scanning the contents of the Tcl
# array for each term.
#
for {set i 0} {$i < 10} {incr i} {
set term [random_term]
do_select_test 1.$i.asc {
SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
ORDER BY docid ASC
} [simple_token_matchinfo $term 0]
do_select_test 1.$i.desc {
SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
ORDER BY docid DESC
} [simple_token_matchinfo $term 1]
}
# This time, use the first two characters of each term as a term prefix
# to query for. Test that querying the Tcl array produces the same results
# as querying the FTS3 table for the prefix.
#
for {set i 0} {$i < $nRep} {incr i} {
set prefix [string range [random_term] 0 end-1]
set match "${prefix}*"
do_orderbydocid_test 2.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_phrase $match]
}
# Similar to the above, except for phrase queries.
#
for {set i 0} {$i < $nRep} {incr i} {
set term [list [random_term] [random_term]]
set match "\"$term\""
do_orderbydocid_test 3.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_phrase $term]
}
# Three word phrases.
#
for {set i 0} {$i < $nRep} {incr i} {
set term [list [random_term] [random_term] [random_term]]
set match "\"$term\""
do_orderbydocid_test 4.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_phrase $term]
}
# Three word phrases made up of term-prefixes.
#
for {set i 0} {$i < $nRep} {incr i} {
set query "[string range [random_term] 0 end-1]* "
append query "[string range [random_term] 0 end-1]* "
append query "[string range [random_term] 0 end-1]*"
set match "\"$query\""
do_orderbydocid_test 5.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_phrase $query]
}
# A NEAR query with terms as the arguments:
#
# ... MATCH '$term1 NEAR $term2' ...
#
for {set i 0} {$i < $nRep} {incr i} {
set terms [list [random_term] [random_term]]
set match [join $terms " NEAR "]
do_orderbydocid_test 6.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_near $terms 10]
}
# A 3-way NEAR query with terms as the arguments.
#
for {set i 0} {$i < $nRep} {incr i} {
set terms [list [random_term] [random_term] [random_term]]
set nNear 11
set match [join $terms " NEAR/$nNear "]
do_orderbydocid_test 7.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [simple_near $terms $nNear]
}
# Set operations on simple term queries.
#
foreach {tn op proc} {
8 OR setop_or
9 NOT setop_not
10 AND setop_and
} {
for {set i 0} {$i < $nRep} {incr i} {
set term1 [random_term]
set term2 [random_term]
set match "$term1 $op $term2"
do_orderbydocid_test $tn.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [$proc [simple_phrase $term1] [simple_phrase $term2]]
}
}
# Set operations on NEAR queries.
#
foreach {tn op proc} {
11 OR setop_or
12 NOT setop_not
13 AND setop_and
} {
for {set i 0} {$i < $nRep} {incr i} {
set term1 [random_term]
set term2 [random_term]
set term3 [random_term]
set term4 [random_term]
set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
do_orderbydocid_test $tn.$i {
SELECT docid FROM t1 WHERE t1 MATCH $match
} [$proc \
[simple_near [list $term1 $term2] 10] \
[simple_near [list $term3 $term4] 10]
]
}
}
catchsql COMMIT
}
}
finish_test
|