1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
|
<!DOCTYPE html>
<html><head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<link href="sqlite.css" rel="stylesheet">
<title>The Virtual Table Mechanism Of SQLite</title>
<!-- path= -->
</head>
<body>
<div class=nosearch>
<a href="index.html">
<img class="logo" src="images/sqlite370_banner.gif" alt="SQLite" border="0">
</a>
<div><!-- IE hack to prevent disappearing logo --></div>
<div class="tagline desktoponly">
Small. Fast. Reliable.<br>Choose any three.
</div>
<div class="menu mainmenu">
<ul>
<li><a href="index.html">Home</a>
<li class='mobileonly'><a href="javascript:void(0)" onclick='toggle_div("submenu")'>Menu</a>
<li class='wideonly'><a href='about.html'>About</a>
<li class='desktoponly'><a href="docs.html">Documentation</a>
<li class='desktoponly'><a href="download.html">Download</a>
<li class='wideonly'><a href='copyright.html'>License</a>
<li class='desktoponly'><a href="support.html">Support</a>
<li class='desktoponly'><a href="prosupport.html">Purchase</a>
<li class='search' id='search_menubutton'>
<a href="javascript:void(0)" onclick='toggle_search()'>Search</a>
</ul>
</div>
<div class="menu submenu" id="submenu">
<ul>
<li><a href='about.html'>About</a>
<li><a href='docs.html'>Documentation</a>
<li><a href='download.html'>Download</a>
<li><a href='support.html'>Support</a>
<li><a href='prosupport.html'>Purchase</a>
</ul>
</div>
<div class="searchmenu" id="searchmenu">
<form method="GET" action="search">
<select name="s" id="searchtype">
<option value="d">Search Documentation</option>
<option value="c">Search Changelog</option>
</select>
<input type="text" name="q" id="searchbox" value="">
<input type="submit" value="Go">
</form>
</div>
</div>
<script>
function toggle_div(nm) {
var w = document.getElementById(nm);
if( w.style.display=="block" ){
w.style.display = "none";
}else{
w.style.display = "block";
}
}
function toggle_search() {
var w = document.getElementById("searchmenu");
if( w.style.display=="block" ){
w.style.display = "none";
} else {
w.style.display = "block";
setTimeout(function(){
document.getElementById("searchbox").focus()
}, 30);
}
}
function div_off(nm){document.getElementById(nm).style.display="none";}
window.onbeforeunload = function(e){div_off("submenu");}
/* Disable the Search feature if we are not operating from CGI, since */
/* Search is accomplished using CGI and will not work without it. */
if( !location.origin || !location.origin.match || !location.origin.match(/http/) ){
document.getElementById("search_menubutton").style.display = "none";
}
/* Used by the Hide/Show button beside syntax diagrams, to toggle the */
function hideorshow(btn,obj){
var x = document.getElementById(obj);
var b = document.getElementById(btn);
if( x.style.display!='none' ){
x.style.display = 'none';
b.innerHTML='show';
}else{
x.style.display = '';
b.innerHTML='hide';
}
return false;
}
var antiRobot = 0;
function antiRobotGo(){
if( antiRobot!=3 ) return;
antiRobot = 7;
var j = document.getElementById("mtimelink");
if(j && j.hasAttribute("data-href")) j.href=j.getAttribute("data-href");
}
function antiRobotDefense(){
document.body.onmousedown=function(){
antiRobot |= 2;
antiRobotGo();
document.body.onmousedown=null;
}
document.body.onmousemove=function(){
antiRobot |= 2;
antiRobotGo();
document.body.onmousemove=null;
}
setTimeout(function(){
antiRobot |= 1;
antiRobotGo();
}, 100)
antiRobotGo();
}
antiRobotDefense();
</script>
<div class=fancy>
<div class=nosearch>
<div class="fancy_title">
The Virtual Table Mechanism Of SQLite
</div>
<div class="fancy_toc">
<a onclick="toggle_toc()">
<span class="fancy_toc_mark" id="toc_mk">►</span>
Table Of Contents
</a>
<div id="toc_sub"><div class="fancy-toc1"><a href="#introduction">1. Introduction</a></div>
<div class="fancy-toc2"><a href="#usage">1.1. Usage</a></div>
<div class="fancy-toc3"><a href="#temporary_virtual_tables">1.1.1. Temporary virtual tables</a></div>
<div class="fancy-toc3"><a href="#eponymous_virtual_tables">1.1.2. Eponymous virtual tables</a></div>
<div class="fancy-toc3"><a href="#eponymous_only_virtual_tables">1.1.3. Eponymous-only virtual tables</a></div>
<div class="fancy-toc2"><a href="#implementation">1.2. Implementation</a></div>
<div class="fancy-toc2"><a href="#virtual_tables_and_shared_cache">1.3. Virtual Tables And Shared Cache</a></div>
<div class="fancy-toc2"><a href="#creating_new_virtual_table_implementations">1.4. Creating New Virtual Table Implementations</a></div>
<div class="fancy-toc1"><a href="#virtual_table_methods">2. Virtual Table Methods</a></div>
<div class="fancy-toc2"><a href="#the_xcreate_method">2.1. The xCreate Method</a></div>
<div class="fancy-toc3"><a href="#hidden_columns_in_virtual_tables">2.1.1. Hidden columns in virtual tables</a></div>
<div class="fancy-toc3"><a href="#table_valued_functions">2.1.2. Table-valued functions</a></div>
<div class="fancy-toc3"><a href="#_without_rowid_virtual_tables_">2.1.3. WITHOUT ROWID Virtual Tables </a></div>
<div class="fancy-toc2"><a href="#the_xconnect_method">2.2. The xConnect Method</a></div>
<div class="fancy-toc2"><a href="#the_xbestindex_method">2.3. The xBestIndex Method</a></div>
<div class="fancy-toc3"><a href="#inputs">2.3.1. Inputs</a></div>
<div class="fancy-toc4"><a href="#like_glob_regexp_and_match_functions">2.3.1.1. LIKE, GLOB, REGEXP, and MATCH functions</a></div>
<div class="fancy-toc4"><a href="#limit_and_offset">2.3.1.2. LIMIT and OFFSET</a></div>
<div class="fancy-toc4"><a href="#right_hand_side_values_of_constraints">2.3.1.3. Right-hand side values of constraints</a></div>
<div class="fancy-toc3"><a href="#outputs">2.3.2. Outputs</a></div>
<div class="fancy-toc4"><a href="#omit_constraint_checking_in_bytecode">2.3.2.1. Omit constraint checking in bytecode</a></div>
<div class="fancy-toc4"><a href="#order_by_and_orderbyconsumed">2.3.2.2. ORDER BY and orderByConsumed</a></div>
<div class="fancy-toc3"><a href="#return_value">2.3.3. Return Value</a></div>
<div class="fancy-toc3"><a href="#enforcing_required_parameters_on_table_valued_functions">2.3.4. Enforcing Required Parameters On Table-Valued Functions</a></div>
<div class="fancy-toc2"><a href="#the_xdisconnect_method">2.4. The xDisconnect Method</a></div>
<div class="fancy-toc2"><a href="#the_xdestroy_method">2.5. The xDestroy Method</a></div>
<div class="fancy-toc2"><a href="#the_xopen_method">2.6. The xOpen Method</a></div>
<div class="fancy-toc2"><a href="#the_xclose_method">2.7. The xClose Method</a></div>
<div class="fancy-toc2"><a href="#the_xeof_method">2.8. The xEof Method</a></div>
<div class="fancy-toc2"><a href="#the_xfilter_method">2.9. The xFilter Method</a></div>
<div class="fancy-toc2"><a href="#the_xnext_method">2.10. The xNext Method</a></div>
<div class="fancy-toc2"><a href="#the_xcolumn_method">2.11. The xColumn Method</a></div>
<div class="fancy-toc2"><a href="#the_xrowid_method">2.12. The xRowid Method</a></div>
<div class="fancy-toc2"><a href="#the_xupdate_method">2.13. The xUpdate Method</a></div>
<div class="fancy-toc2"><a href="#the_xfindfunction_method">2.14. The xFindFunction Method</a></div>
<div class="fancy-toc2"><a href="#the_xbegin_method">2.15. The xBegin Method</a></div>
<div class="fancy-toc2"><a href="#the_xsync_method">2.16. The xSync Method</a></div>
<div class="fancy-toc2"><a href="#the_xcommit_method">2.17. The xCommit Method</a></div>
<div class="fancy-toc2"><a href="#the_xrollback_method">2.18. The xRollback Method</a></div>
<div class="fancy-toc2"><a href="#the_xrename_method">2.19. The xRename Method</a></div>
<div class="fancy-toc2"><a href="#the_xsavepoint_xrelease_and_xrollbackto_methods">2.20. The xSavepoint, xRelease, and xRollbackTo Methods</a></div>
<div class="fancy-toc2"><a href="#the_xshadowname_method">2.21. The xShadowName Method</a></div>
<div class="fancy-toc2"><a href="#the_xintegrity_method">2.22. The xIntegrity Method</a></div>
</div>
</div>
<script>
function toggle_toc(){
var sub = document.getElementById("toc_sub")
var mk = document.getElementById("toc_mk")
if( sub.style.display!="block" ){
sub.style.display = "block";
mk.innerHTML = "▼";
} else {
sub.style.display = "none";
mk.innerHTML = "►";
}
}
</script>
</div>
<h1 id="introduction"><span>1. </span>Introduction</h1>
<p>A virtual table is an object that is registered with an open SQLite
<a href="c3ref/sqlite3.html">database connection</a>. From the perspective of an SQL statement,
the virtual table object looks like any other table or view.
But behind the scenes, queries and updates on a virtual table
invoke callback methods of the virtual table object instead of
reading and writing on the database file.
</p><p>The virtual table mechanism allows an application to publish
interfaces that are accessible from SQL statements as if they were
tables. SQL statements can do almost anything to a
virtual table that they can do to a real table, with the following
exceptions:
</p><p>
</p><ul>
<li> One cannot create a trigger on a virtual table.
</li><li> One cannot create additional indices on a virtual table.
(Virtual tables can have indices but that must be built into
the virtual table implementation. Indices cannot be added
separately using <a href="lang_createindex.html">CREATE INDEX</a> statements.)
</li><li> One cannot run <a href="lang_altertable.html">ALTER TABLE ... ADD COLUMN</a>
commands against a virtual table.
</li></ul>
<p>Individual virtual table implementations might impose additional
constraints. For example, some virtual implementations might provide
read-only tables. Or some virtual table implementations might allow
<a href="lang_insert.html">INSERT</a> or <a href="lang_delete.html">DELETE</a> but not <a href="lang_update.html">UPDATE</a>. Or some virtual table implementations
might limit the kinds of UPDATEs that can be made.
</p><p>A virtual table might represent an in-memory data structures.
Or it might represent a view of data on disk that is not in the
SQLite format. Or the application might compute the content of the
virtual table on demand.
</p><p>Here are some existing and postulated uses for virtual tables:
</p><ul>
<li> A <a href="fts3.html">full-text search</a> interface
</li><li> Spatial indices using <a href="rtree.html">R-Trees</a>
</li><li> Introspect the disk content of an SQLite database file
(the <a href="dbstat.html">dbstat virtual table</a>)
</li><li> Read and/or write the content of a comma-separated value (CSV)
file
</li><li> Access the filesystem of the host computer as if it were a database table
</li><li> Enabling SQL manipulation of data in statistics packages like R
</li></ul>
<p>See the <a href="vtablist.html">list of virtual tables</a> page for a longer list of actual
virtual table implementations.
</p><h2 id="usage"><span>1.1. </span>Usage</h2>
<p>A virtual table is created using a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
<p><b><a href="syntax/create-virtual-table-stmt.html">create-virtual-table-stmt:</a></b>
<button id='xddd34e8a' onclick='hideorshow("xddd34e8a","xd826c93c")'>hide</button></p>
<div id='xd826c93c' class='imgcontainer'>
<div style="max-width:624px"><svg xmlns='http://www.w3.org/2000/svg' class="pikchr" viewBox="0 0 624.096 259.848">
<circle cx="5" cy="17" r="3.6" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="32,17 20,21 20,12" style="fill:rgb(0,0,0)"/>
<path d="M9,17L26,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M47,32L100,32A15 15 0 0 0 116 17A15 15 0 0 0 100 2L47,2A15 15 0 0 0 32 17A15 15 0 0 0 47 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="74" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">CREATE</text>
<polygon points="139,17 127,21 127,12" style="fill:rgb(0,0,0)"/>
<path d="M116,17L133,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M154,32L213,32A15 15 0 0 0 228 17A15 15 0 0 0 213 2L154,2A15 15 0 0 0 139 17A15 15 0 0 0 154 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="183" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">VIRTUAL</text>
<polygon points="251,17 240,21 240,12" style="fill:rgb(0,0,0)"/>
<path d="M228,17L246,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M266,32L306,32A15 15 0 0 0 321 17A15 15 0 0 0 306 2L266,2A15 15 0 0 0 251 17A15 15 0 0 0 266 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="286" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">TABLE</text>
<polygon points="357,17 345,21 345,12" style="fill:rgb(0,0,0)"/>
<path d="M321,17L351,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M372,32A15 15 0 0 0 387 17A15 15 0 0 0 372 2A15 15 0 0 0 357 17A15 15 0 0 0 372 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="372" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">IF</text>
<polygon points="410,17 399,21 399,12" style="fill:rgb(0,0,0)"/>
<path d="M387,17L404,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M425,32L445,32A15 15 0 0 0 461 17A15 15 0 0 0 445 2L425,2A15 15 0 0 0 410 17A15 15 0 0 0 425 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="435" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">NOT</text>
<polygon points="484,17 472,21 472,12" style="fill:rgb(0,0,0)"/>
<path d="M461,17L478,17" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M499,32L543,32A15 15 0 0 0 558 17A15 15 0 0 0 543 2L499,2A15 15 0 0 0 484 17A15 15 0 0 0 499 32Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="521" y="17" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">EXISTS</text>
<path d="M47,108L143,108A15 15 0 0 0 159 92A15 15 0 0 0 143 77L47,77A15 15 0 0 0 32 92A15 15 0 0 0 47 108Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="95" y="92" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">schema-name</text>
<polygon points="182,92 170,97 170,88" style="fill:rgb(0,0,0)"/>
<path d="M159,92L176,92" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M197,108A15 15 0 0 0 212 92A15 15 0 0 0 197 77A15 15 0 0 0 182 92A15 15 0 0 0 197 108Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="197" y="92" text-anchor="middle" font-weight="bold" fill="rgb(0,0,0)" dominant-baseline="central">.</text>
<polygon points="248,92 236,97 236,88" style="fill:rgb(0,0,0)"/>
<path d="M212,92L242,92" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M263,108L338,108A15 15 0 0 0 353 92A15 15 0 0 0 338 77L263,77A15 15 0 0 0 248 92A15 15 0 0 0 263 108Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="300" y="92" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">table-name</text>
<path d="M47,219L86,219A15 15 0 0 0 101 204A15 15 0 0 0 86 189L47,189A15 15 0 0 0 32 204A15 15 0 0 0 47 219Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="67" y="204" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">USING</text>
<polygon points="124,204 113,209 113,200" style="fill:rgb(0,0,0)"/>
<path d="M101,204L118,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M139,219L234,219A15 15 0 0 0 249 204A15 15 0 0 0 234 189L139,189A15 15 0 0 0 124 204A15 15 0 0 0 139 219Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="187" y="204" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">module-name</text>
<polygon points="285,204 274,209 274,200" style="fill:rgb(0,0,0)"/>
<path d="M249,204L279,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M300,219A15 15 0 0 0 315 204A15 15 0 0 0 300 189A15 15 0 0 0 285 204A15 15 0 0 0 300 219Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="300" y="204" text-anchor="middle" font-weight="bold" fill="rgb(0,0,0)" dominant-baseline="central">(</text>
<polygon points="351,204 340,209 340,200" style="fill:rgb(0,0,0)"/>
<path d="M315,204L346,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M366,219L497,219A15 15 0 0 0 512 204A15 15 0 0 0 497 189L366,189A15 15 0 0 0 351 204A15 15 0 0 0 366 219Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="432" y="204" text-anchor="middle" fill="rgb(0,0,0)" dominant-baseline="central">module-argument</text>
<polygon points="548,204 536,209 536,200" style="fill:rgb(0,0,0)"/>
<path d="M512,204L542,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M563,219A15 15 0 0 0 578 204A15 15 0 0 0 563 189A15 15 0 0 0 548 204A15 15 0 0 0 563 219Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="563" y="204" text-anchor="middle" font-weight="bold" fill="rgb(0,0,0)" dominant-baseline="central">)</text>
<polygon points="614,204 603,209 603,200" style="fill:rgb(0,0,0)"/>
<path d="M578,204L608,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<circle cx="618" cy="204" r="3.6" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M432,257A15 15 0 0 0 447 242A15 15 0 0 0 432 227A15 15 0 0 0 417 242A15 15 0 0 0 432 257Z" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<text x="432" y="242" text-anchor="middle" font-weight="bold" fill="rgb(0,0,0)" dominant-baseline="central">,</text>
<polygon points="447,242 458,238 458,246" style="fill:rgb(0,0,0)"/>
<path d="M512,204 L 519,204 Q 527,204 527,219 L 527,227 Q 527,242 512,242 L 468,242 L 453,242" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M417,242 L 343,242 Q 328,242 328,227 L 328,219 Q 328,204 336,204 L 343,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="432,180 420,184 420,176" style="fill:rgb(0,0,0)"/>
<path d="M249,204 L 257,204 Q 264,204 264,192 Q 264,180 279,180 L 411,180 L 426,180" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M432,180 L 576,180 Q 591,180 591,192 Q 591,204 599,204 L 606,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="187,153 198,149 198,157" style="fill:rgb(0,0,0)"/>
<path d="M353,92 L 361,92 Q 368,92 368,107 L 368,138 Q 368,153 353,153 L 207,153 L 192,153" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="32,204 20,209 20,200" style="fill:rgb(0,0,0)"/>
<path d="M187,153 L 20,153 Q 5,153 5,168 L 5,189 Q 5,204 16,204 L 26,204" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="429,62 441,58 441,66" style="fill:rgb(0,0,0)"/>
<path d="M558,17 L 566,17 Q 573,17 573,32 L 573,47 Q 573,62 558,62 L 450,62 L 435,62" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="32,92 20,97 20,88" style="fill:rgb(0,0,0)"/>
<path d="M429,62 L 20,62 Q 5,62 5,77 L 5,77 Q 5,92 16,92 L 26,92" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="336,47 332,35 340,35" style="fill:rgb(0,0,0)"/>
<path d="M321,17 L 328,17 Q 336,17 336,29 L 336,41" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M336,47 L 336,54 Q 336,62 328,62 L 321,62" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<polygon points="95,123 84,127 84,118" style="fill:rgb(0,0,0)"/>
<path d="M5,77 L 5,108 Q 5,123 20,123 L 74,123 L 89,123" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
<path d="M95,123 L 210,123 Q 225,123 225,108 L 225,107 Q 225,92 231,92 L 236,92" style="fill:none;stroke-width:2.16;stroke:rgb(0,0,0);" />
</svg>
</div>
</div>
</p><p>The CREATE VIRTUAL TABLE statement creates a new table
called <span class='yyterm'>table-name</span> derived from the class
<span class='yyterm'>module-name</span>. The <span class='yyterm'>module-name</span>
is the name that is registered for the virtual table by
the <a href="c3ref/create_module.html">sqlite3_create_module()</a> interface.
</p><div class="codeblock"><pre>CREATE VIRTUAL TABLE tablename USING modulename;
</pre></div>
<p>One can also provide comma-separated arguments to the module following
the module name:
</p><div class="codeblock"><pre>CREATE VIRTUAL TABLE tablename USING modulename(arg1, arg2, ...);
</pre></div>
<p>The format of the arguments to the module is very general. Each
<span class='yyterm'>module-argument</span>
may contain keywords, string literals, identifiers, numbers, and
punctuation. Each <span class='yyterm'>module-argument</span> is passed as
written (as text) into the
<a href="vtab.html#xcreate">constructor method</a> of the virtual table implementation
when the virtual
table is created and that constructor is responsible for parsing and
interpreting the arguments. The argument syntax is sufficiently general
that a virtual table implementation can, if it wants to, interpret its
arguments as <a href="lang_createtable.html#tablecoldef">column definitions</a> in an ordinary <a href="lang_createtable.html">CREATE TABLE</a> statement.
The implementation could also impose some other interpretation on the
arguments.
</p><p>Once a virtual table has been created, it can be used like any other
table with the exceptions noted above and imposed by specific virtual
table implementations. A virtual table is destroyed using the ordinary
<a href="lang_droptable.html">DROP TABLE</a> syntax.
</p><h3 id="temporary_virtual_tables"><span>1.1.1. </span>Temporary virtual tables</h3>
<p>There is no "CREATE TEMP VIRTUAL TABLE" statement. To create a
temporary virtual table, add the "temp" schema
before the virtual table name.
</p><div class="codeblock"><pre>CREATE VIRTUAL TABLE <b>temp.</b>tablename USING module(arg1, ...);
</pre></div>
<a name="epovtab"></a>
<h3 id="eponymous_virtual_tables"><span>1.1.2. </span>Eponymous virtual tables</h3>
<p>Some virtual tables exist automatically in the "main" schema of
every database connection in which their
module is registered, even without a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
Such virtual tables are called "eponymous virtual tables".
To use an eponymous virtual table, simply use the
module name as if it were a table.
Eponymous virtual tables exist in the "main" schema only, so they will
not work if prefixed with a different schema name.
</p><p>An example of an eponymous virtual table is the <a href="dbstat.html">dbstat virtual table</a>.
To use the dbstat virtual table as an eponymous virtual table,
simply query against the "dbstat"
module name, as if it were an ordinary table. (Note that SQLite
must be compiled with the <a href="compile.html#enable_dbstat_vtab">SQLITE_ENABLE_DBSTAT_VTAB</a> option to include
the dbstat virtual table in the build.)
</p><div class="codeblock"><pre>SELECT * FROM dbstat;
</pre></div>
<p>A virtual table is eponymous if its <a href="vtab.html#xcreate">xCreate</a> method is the exact same
function as the <a href="vtab.html#xconnect">xConnect</a> method, or if the <a href="vtab.html#xcreate">xCreate</a> method is NULL.
The <a href="vtab.html#xcreate">xCreate</a> method is called when a virtual table is first created
using the <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement. The <a href="vtab.html#xconnect">xConnect</a> method
is invoked whenever
a database connection attaches to or reparses a schema. When these two methods
are the same, that indicates that the virtual table has no persistent
state that needs to be created and destroyed.
<a name="epoonlyvtab"></a>
</p><h3 id="eponymous_only_virtual_tables"><span>1.1.3. </span>Eponymous-only virtual tables</h3>
<p>If the <a href="vtab.html#xcreate">xCreate</a> method is NULL, then
<a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statements are prohibited for that virtual table,
and the virtual table is an "eponymous-only virtual table".
Eponymous-only virtual tables are useful as
<a href="vtab.html#tabfunc2">table-valued functions</a>.
</p><p>
Note that prior to <a href="releaselog/3_9_0.html">version 3.9.0</a> (2015-10-14),
SQLite did not check the xCreate method
for NULL before invoking it. So if an eponymous-only virtual table is
registered with SQLite <a href="releaselog/3_8_11_1.html">version 3.8.11.1</a> (2015-07-29)
or earlier and a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a>
command is attempted against that virtual table module, a jump to a NULL
pointer will occur, resulting in a crash.
</p><h2 id="implementation"><span>1.2. </span>Implementation</h2>
<p>Several new C-level objects are used by the virtual table implementation:
</p><div class="codeblock"><pre>typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;
</pre></div>
<p>The <a href="c3ref/module.html">sqlite3_module</a> structure defines a module object used to implement
a virtual table. Think of a module as a class from which one can
construct multiple virtual tables having similar properties. For example,
one might have a module that provides read-only access to
comma-separated-value (CSV) files on disk. That one module can then be
used to create several virtual tables where each virtual table refers
to a different CSV file.
</p><p>The module structure contains methods that are invoked by SQLite to
perform various actions on the virtual table such as creating new
instances of a virtual table or destroying old ones, reading and
writing data, searching for and deleting, updating, or inserting rows.
The module structure is explained in more detail below.
</p><p>Each virtual table instance is represented by an <a href="c3ref/vtab.html">sqlite3_vtab</a> structure.
The sqlite3_vtab structure looks like this:
</p><div class="codeblock"><pre>struct sqlite3_vtab {
const sqlite3_module *pModule;
int nRef;
char *zErrMsg;
};
</pre></div>
<p>Virtual table implementations will normally subclass this structure
to add additional private and implementation-specific fields.
The nRef field is used internally by the SQLite core and should not
be altered by the virtual table implementation. The virtual table
implementation may pass error message text to the core by putting
an error message string in zErrMsg.
Space to hold this error message string must be obtained from an
SQLite memory allocation function such as <a href="c3ref/mprintf.html">sqlite3_mprintf()</a> or
<a href="c3ref/free.html">sqlite3_malloc()</a>.
Prior to assigning a new value to zErrMsg, the virtual table
implementation must free any preexisting content of zErrMsg using
<a href="c3ref/free.html">sqlite3_free()</a>. Failure to do this will result in a memory leak.
The SQLite core will free and zero the content of zErrMsg when it
delivers the error message text to the client application or when
it destroys the virtual table. The virtual table implementation only
needs to worry about freeing the zErrMsg content when it overwrites
the content with a new, different error message.
</p><p>The <a href="c3ref/vtab_cursor.html">sqlite3_vtab_cursor</a> structure represents a pointer to a specific
row of a virtual table. This is what an sqlite3_vtab_cursor looks like:
</p><div class="codeblock"><pre>struct sqlite3_vtab_cursor {
sqlite3_vtab *pVtab;
};
</pre></div>
<p>Once again, practical implementations will likely subclass this
structure to add additional private fields.
</p><p>The <a href="c3ref/index_info.html">sqlite3_index_info</a> structure is used to pass information into
and out of the xBestIndex method of the module that implements a
virtual table.
</p><p>Before a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement can be run, the module
specified in that statement must be registered with the database
connection. This is accomplished using either of the <a href="c3ref/create_module.html">sqlite3_create_module()</a>
or <a href="c3ref/create_module.html">sqlite3_create_module_v2()</a> interfaces:
</p><div class="codeblock"><pre>int sqlite3_create_module(
sqlite3 *db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
const sqlite3_module *, /* Methods for the module */
void * /* Client data for xCreate/xConnect */
);
int sqlite3_create_module_v2(
sqlite3 *db, /* SQLite connection to register module with */
const char *zName, /* Name of the module */
const sqlite3_module *, /* Methods for the module */
void *, /* Client data for xCreate/xConnect */
void(*xDestroy)(void*) /* Client data destructor function */
);
</pre></div>
<p>The <a href="c3ref/create_module.html">sqlite3_create_module()</a> and <a href="c3ref/create_module.html">sqlite3_create_module_v2()</a>
routines associates a module name with
an <a href="c3ref/module.html">sqlite3_module</a> structure and a separate client data that is specific
to each module. The only difference between the two create_module methods
is that the _v2 method includes an extra parameter that specifies a
destructor for client data pointer. The module structure is what defines
the behavior of a virtual table. The module structure looks like this:
</p><div class="codeblock"><pre>
struct sqlite3_module {
int iVersion;
int (*xCreate)(sqlite3*, void *pAux,
int argc, char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr);
int (*xConnect)(sqlite3*, void *pAux,
int argc, char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr);
int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
int (*xDisconnect)(sqlite3_vtab *pVTab);
int (*xDestroy)(sqlite3_vtab *pVTab);
int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
int (*xClose)(sqlite3_vtab_cursor*);
int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
int argc, sqlite3_value **argv);
int (*xNext)(sqlite3_vtab_cursor*);
int (*xEof)(sqlite3_vtab_cursor*);
int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
int (*xRowid)(sqlite3_vtab_cursor*, sqlite_int64 *pRowid);
int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite_int64 *);
int (*xBegin)(sqlite3_vtab *pVTab);
int (*xSync)(sqlite3_vtab *pVTab);
int (*xCommit)(sqlite3_vtab *pVTab);
int (*xRollback)(sqlite3_vtab *pVTab);
int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg);
int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
/* The methods above are in version 1 of the sqlite_module object. Those
** below are for version 2 and greater. */
int (*xSavepoint)(sqlite3_vtab *pVTab, int);
int (*xRelease)(sqlite3_vtab *pVTab, int);
int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
/* The methods above are in versions 1 and 2 of the sqlite_module object.
** Those below are for version 3 and greater. */
int (*xShadowName)(const char*);
/* The methods above are in versions 1 through 3 of the sqlite_module object.
** Those below are for version 4 and greater. */
int (*xIntegrity)(sqlite3_vtab *pVTab, const char *zSchema,
const char *zTabName, int mFlags, char **pzErr);
};
</pre></div>
<p>The module structure defines all of the methods for each virtual
table object. The module structure also contains the iVersion field which
defines the particular edition of the module table structure. Currently,
iVersion is always 4 or less, but in future releases of SQLite the module
structure definition might be extended with additional methods and in
that case the maximum iVersion value will be increased.
</p><p>The rest of the module structure consists of methods used to implement
various features of the virtual table. Details on what each of these
methods do are provided in the sequel.
</p><h2 id="virtual_tables_and_shared_cache"><span>1.3. </span>Virtual Tables And Shared Cache</h2>
<p>Prior to SQLite <a href="releaselog/3_6_17.html">version 3.6.17</a> (2009-08-10),
the virtual table mechanism assumes
that each <a href="c3ref/sqlite3.html">database connection</a> kept
its own copy of the database schema. Hence, the virtual table mechanism
could not be used in a database that has <a href="sharedcache.html">shared cache mode</a> enabled.
The <a href="c3ref/create_module.html">sqlite3_create_module()</a> interface would return an error if
<a href="sharedcache.html">shared cache mode</a> is enabled. That restriction was relaxed
beginning with SQLite <a href="releaselog/3_6_17.html">version 3.6.17</a>.
<a name="customvtab"></a>
</p><h2 id="creating_new_virtual_table_implementations"><span>1.4. </span>Creating New Virtual Table Implementations</h2>
<p>Follow these steps to create your own virtual table:
</p><p>
</p><ol>
<li> Write all necessary methods.
</li><li> Create an instance of the <a href="c3ref/module.html">sqlite3_module</a> structure containing pointers
to all the methods from step 1.
</li><li> Register your <a href="c3ref/module.html">sqlite3_module</a> structure using one of the
<a href="c3ref/create_module.html">sqlite3_create_module()</a> or <a href="c3ref/create_module.html">sqlite3_create_module_v2()</a> interfaces.
</li><li> Run a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> command that specifies the new module in
the USING clause.
</li></ol>
<p>The only really hard part is step 1. You might want to start with an
existing virtual table implementation and modify it to suit your needs.
The <a href="https://sqlite.org/src/dir?ci=trunk&type=tree">SQLite source tree</a>
contains many virtual table implementations that are suitable for copying,
including:
</p><p>
</p><ul>
<li> <b><a href="https://sqlite.org/src/file/ext/misc/templatevtab.c">templatevtab.c</a></b>
→ A virtual table created specifically to serve as a template for
other custom virtual tables.
</li><li> <b><a href="https://sqlite.org/src/file/ext/misc/series.c">series.c</a></b>
→ Implementation of the generate_series() table-valued function.
</li><li> <b><a href="https://sqlite.org/src/file/src/json.c">json.c</a></b> →
Contains the sources for the <a href="json1.html#jeach">json_each()</a> and <a href="json1.html#jtree">json_tree()</a> table-valued
functions.
</li><li> <b><a href="https://sqlite.org/src/file/ext/misc/csv.c">csv.c</a></b> →
A virtual table that reads CSV files.
</li></ul>
<p>There are <a href="vtablist.html">many other virtual table implementations</a>
in the SQLite source tree that can be used as examples. Locate
these other virtual table implementations by searching
for "sqlite3_create_module".
</p><p>You might also want to implement your new virtual table as a
<a href="loadext.html">loadable extension</a>.
</p><h1 id="virtual_table_methods"><span>2. </span>Virtual Table Methods</h1>
<a name="xcreate"></a>
<h2 id="the_xcreate_method"><span>2.1. </span>The xCreate Method</h2>
<div class="codeblock"><pre>int (*xCreate)(sqlite3 *db, void *pAux,
int argc, char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr);
</pre></div>
<p>The xCreate method is called to create a new instance of a virtual table
in response to a <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
If the xCreate method is the same pointer as the <a href="vtab.html#xconnect">xConnect</a> method, then the
virtual table is an <a href="vtab.html#epovtab">eponymous virtual table</a>.
If the xCreate method is omitted (if it is a NULL pointer) then the virtual
table is an <a href="vtab.html#epoonlyvtab">eponymous-only virtual table</a>.
</p><p>The db parameter is a pointer to the SQLite <a href="c3ref/sqlite3.html">database connection</a> that
is executing the <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
The pAux argument is the copy of the client data pointer that was the
fourth argument to the <a href="c3ref/create_module.html">sqlite3_create_module()</a> or
<a href="c3ref/create_module.html">sqlite3_create_module_v2()</a> call that registered the
<a href="c3ref/module.html">virtual table module</a>.
The argv parameter is an array of argc pointers to null terminated strings.
The first string, argv[0], is the name of the module being invoked. The
module name is the name provided as the second argument to
<a href="c3ref/create_module.html">sqlite3_create_module()</a> and as the argument to the USING clause of the
<a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement that is running.
The second, argv[1], is the name of the database in which the new virtual
table is being created. The database name is "main" for the primary database, or
"temp" for TEMP database, or the name given at the end of the <a href="lang_attach.html">ATTACH</a>
statement for attached databases. The third element of the array, argv[2],
is the name of the new virtual table, as specified following the TABLE
keyword in the <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
If present, the fourth and subsequent strings in the argv[] array report
the arguments to the module name in the <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> statement.
</p><p>The job of this method is to construct the new virtual table object
(an <a href="c3ref/vtab.html">sqlite3_vtab</a> object) and return a pointer to it in *ppVTab.
</p><p>As part of the task of creating a new <a href="c3ref/vtab.html">sqlite3_vtab</a> structure, this
method <u>must</u> invoke <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> to tell the SQLite
core about the columns and datatypes in the virtual table.
The <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> API has the following prototype:
</p><div class="codeblock"><pre>int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable)
</pre></div>
<p>The first argument to <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> must be the same
<a href="c3ref/sqlite3.html">database connection</a> pointer as the first parameter to this method.
The second argument to <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> must a zero-terminated
UTF-8 string that contains a well-formed <a href="lang_createtable.html">CREATE TABLE</a> statement that
defines the columns in the virtual table and their data types.
The name of the table in this CREATE TABLE statement is ignored,
as are all constraints. Only the column names and datatypes matter.
The CREATE TABLE statement string need not to be
held in persistent memory. The string can be
deallocated and/or reused as soon as the <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a>
routine returns.
</p><p>The xConnect method can also optionally request special features
for the virtual table by making one or more calls to
the <a href="c3ref/vtab_config.html">sqlite3_vtab_config()</a> interface:
</p><div class="codeblock"><pre>int sqlite3_vtab_config(sqlite3 *db, int op, ...);
</pre></div>
<p>Calls to sqlite3_vtab_config() are optional. But for maximum
security, it is recommended that virtual table implementations
invoke "<a href="c3ref/vtab_config.html">sqlite3_vtab_config</a>(db, <a href="c3ref/c_vtab_constraint_support.html#sqlitevtabdirectonly">SQLITE_VTAB_DIRECTONLY</a>)" if the
virtual table will not be used from inside of triggers or views.
</p><p>The xCreate method need not initialize the pModule, nRef, and zErrMsg
fields of the <a href="c3ref/vtab.html">sqlite3_vtab</a> object. The SQLite core will take care of
that chore.
</p><p>The xCreate should return <a href="rescode.html#ok">SQLITE_OK</a> if it is successful in
creating the new virtual table, or <a href="rescode.html#error">SQLITE_ERROR</a> if it is not successful.
If not successful, the <a href="c3ref/vtab.html">sqlite3_vtab</a> structure must not be allocated.
An error message may optionally be returned in *pzErr if unsuccessful.
Space to hold the error message string must be allocated using
an SQLite memory allocation function like
<a href="c3ref/free.html">sqlite3_malloc()</a> or <a href="c3ref/mprintf.html">sqlite3_mprintf()</a> as the SQLite core will
attempt to free the space using <a href="c3ref/free.html">sqlite3_free()</a> after the error has
been reported up to the application.
</p><p>
If the xCreate method is omitted (left as a NULL pointer) then the
virtual table is an <a href="vtab.html#epoonlyvtab">eponymous-only virtual table</a>. New instances of
the virtual table cannot be created using <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> and the
virtual table can only be used via its module name.
Note that SQLite versions prior to 3.9.0 (2015-10-14) do not understand
eponymous-only virtual tables and will segfault if an attempt is made
to <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> on an eponymous-only virtual table because
the xCreate method was not checked for null.
</p><p>
If the xCreate method is the exact same pointer as the <a href="vtab.html#xconnect">xConnect</a> method,
that indicates that the virtual table does not need to initialize backing
store. Such a virtual table can be used as an <a href="vtab.html#epovtab">eponymous virtual table</a>
or as a named virtual table using <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a> or both.
<a name="hiddencol"></a>
</p><h3 id="hidden_columns_in_virtual_tables"><span>2.1.1. </span>Hidden columns in virtual tables</h3>
<p>If a column datatype contains the special keyword "HIDDEN"
(in any combination of upper and lower case letters) then that keyword
it is omitted from the column datatype name and the column is marked
as a hidden column internally.
A hidden column differs from a normal column in three respects:
</p><p>
</p><ul>
<li> Hidden columns are not listed in the dataset returned by
"<a href="pragma.html#pragma_table_info">PRAGMA table_info</a>",
</li><li> Hidden columns are not included in the expansion of a "*"
expression in the result set of a <a href="lang_select.html">SELECT</a>, and
</li><li> Hidden columns are not included in the implicit column-list
used by an <a href="lang_insert.html">INSERT</a> statement that lacks an explicit column-list.
</li></ul>
<p>For example, if the following SQL is passed to <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a>:
</p><div class="codeblock"><pre>CREATE TABLE x(a HIDDEN VARCHAR(12), b INTEGER, c INTEGER Hidden);
</pre></div>
<p>Then the virtual table would be created with two hidden columns,
and with datatypes of "VARCHAR(12)" and "INTEGER".
</p><p>An example use of hidden columns can be seen in the <a href="fts3.html">FTS3</a> virtual
table implementation, where every FTS virtual table
contains an <a href="fts3.html#hiddencol">FTS hidden column</a> that is used to pass information from the
virtual table into <a href="fts3.html#snippet">FTS auxiliary functions</a> and to the <a href="fts3.html#full_text_index_queries">FTS MATCH</a> operator.
<a name="tabfunc2"></a>
</p><h3 id="table_valued_functions"><span>2.1.2. </span>Table-valued functions</h3>
<p>A <a href="vtab.html">virtual table</a> that contains <a href="vtab.html#hiddencol">hidden columns</a> can be used like
a table-valued function in the FROM clause of a <a href="lang_select.html">SELECT</a> statement.
The arguments to the table-valued function become constraints on
the HIDDEN columns of the virtual table.
</p><p>For example, the "generate_series" extension (located in the
<a href="https://www.sqlite.org/src/artifact?ci=trunk&filename=ext/misc/series.c">ext/misc/series.c</a>
file in the <a href="https://www.sqlite.org/src/tree?ci=trunk">source tree</a>)
implements an <a href="vtab.html#epovtab">eponymous virtual table</a> with the following schema:
</p><div class="codeblock"><pre>CREATE TABLE generate_series(
value,
start HIDDEN,
stop HIDDEN,
step HIDDEN
);
</pre></div>
<p>The <a href="vtab.html#xbestindex">sqlite3_module.xBestIndex</a> method in the implementation of this
table checks for equality constraints against the HIDDEN columns, and uses
those as input parameters to determine the range of integer "value" outputs
to generate. Reasonable defaults are used for any unconstrained columns.
For example, to list all integers between 5 and 50:
</p><div class="codeblock"><pre>SELECT value FROM generate_series(5,50);
</pre></div>
<p>The previous query is equivalent to the following:
</p><div class="codeblock"><pre>SELECT value FROM generate_series WHERE start=5 AND stop=50;
</pre></div>
<p>Arguments on the virtual table name are matched to <a href="vtab.html#hiddencol">hidden columns</a>
in order. The number of arguments can be less than the
number of hidden columns, in which case the latter hidden columns are
unconstrained. However, an error results if there are more arguments
than there are hidden columns in the virtual table.
<a name="worid"></a>
</p><h3 id="_without_rowid_virtual_tables_"><span>2.1.3. </span> WITHOUT ROWID Virtual Tables </h3>
<p>Beginning with SQLite <a href="releaselog/3_14.html">version 3.14.0</a> (2016-08-08),
the CREATE TABLE statement that
is passed into <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> may contain a <a href="withoutrowid.html">WITHOUT ROWID</a> clause.
This is useful for cases where the virtual table rows
cannot easily be mapped into unique integers. A CREATE TABLE
statement that includes WITHOUT ROWID must define one or more columns as
the PRIMARY KEY. Every column of the PRIMARY KEY must individually be
NOT NULL and all columns for each row must be collectively unique.
</p><p>Note that SQLite does not enforce the PRIMARY KEY for a WITHOUT ROWID
virtual table. Enforcement is the responsibility of the underlying
virtual table implementation. But SQLite does assume that the PRIMARY KEY
constraint is valid - that the identified columns really are UNIQUE and
NOT NULL - and it uses that assumption to optimize queries against the
virtual table.
</p><p>The rowid column is not accessible on a
WITHOUT ROWID virtual table (of course).
</p><p>The <a href="vtab.html#xupdate">xUpdate</a> method was originally designed around having a
<a href="lang_createtable.html#rowid">ROWID</a> as a single value. The <a href="vtab.html#xupdate">xUpdate</a> method has been expanded to
accommodate an arbitrary PRIMARY KEY in place of the ROWID, but the
PRIMARY KEY must still be only one column. For this reason, SQLite
will reject any WITHOUT ROWID virtual table that has more than one
PRIMARY KEY column and a non-NULL xUpdate method.
<a name="xconnect"></a>
</p><h2 id="the_xconnect_method"><span>2.2. </span>The xConnect Method</h2>
<div class="codeblock"><pre>int (*xConnect)(sqlite3*, void *pAux,
int argc, char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr);
</pre></div>
<p>The xConnect method is very similar to <a href="vtab.html#xcreate">xCreate</a>.
It has the same parameters and constructs a new <a href="c3ref/vtab.html">sqlite3_vtab</a> structure
just like xCreate.
And it must also call <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> like xCreate. It
should also make all of the same <a href="c3ref/vtab_config.html">sqlite3_vtab_config()</a> calls as
xCreate.
</p><p>The difference is that xConnect is called to establish a new
connection to an existing virtual table whereas xCreate is called
to create a new virtual table from scratch.
</p><p>The xCreate and xConnect methods are only different when the
virtual table has some kind of backing store that must be initialized
the first time the virtual table is created. The xCreate method creates
and initializes the backing store. The xConnect method just connects
to an existing backing store. When xCreate and xConnect are the same,
the table is an <a href="vtab.html#epovtab">eponymous virtual table</a>.
</p><p>As an example, consider a virtual table implementation that
provides read-only access to existing comma-separated-value (CSV)
files on disk. There is no backing store that needs to be created
or initialized for such a virtual table (since the CSV files already
exist on disk) so the xCreate and xConnect methods will be identical
for that module.
</p><p>Another example is a virtual table that implements a full-text index.
The xCreate method must create and initialize data structures to hold
the dictionary and posting lists for that index. The xConnect method,
on the other hand, only has to locate and use an existing dictionary
and posting lists that were created by a prior xCreate call.
</p><p>The xConnect method must return <a href="rescode.html#ok">SQLITE_OK</a> if it is successful
in creating the new virtual table, or <a href="rescode.html#error">SQLITE_ERROR</a> if it is not
successful. If not successful, the <a href="c3ref/vtab.html">sqlite3_vtab</a> structure must not be
allocated. An error message may optionally be returned in *pzErr if
unsuccessful.
Space to hold the error message string must be allocated using
an SQLite memory allocation function like
<a href="c3ref/free.html">sqlite3_malloc()</a> or <a href="c3ref/mprintf.html">sqlite3_mprintf()</a> as the SQLite core will
attempt to free the space using <a href="c3ref/free.html">sqlite3_free()</a> after the error has
been reported up to the application.
</p><p>The xConnect method is required for every virtual table implementation,
though the <a href="vtab.html#xcreate">xCreate</a> and xConnect pointers of the <a href="c3ref/module.html">sqlite3_module</a> object
may point to the same function if the virtual table does not need to
initialize backing store.
<a name="xbestindex"></a>
</p><h2 id="the_xbestindex_method"><span>2.3. </span>The xBestIndex Method</h2>
<p>SQLite uses the xBestIndex method of a virtual table module to determine
the best way to access the virtual table.
The xBestIndex method has a prototype like this:
</p><div class="codeblock"><pre>int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
</pre></div>
<p>The SQLite core communicates with the xBestIndex method by filling
in certain fields of the <a href="c3ref/index_info.html">sqlite3_index_info</a> structure and passing a
pointer to that structure into xBestIndex as the second parameter.
The xBestIndex method fills out other fields of this structure which
forms the reply. The <a href="c3ref/index_info.html">sqlite3_index_info</a> structure looks like this:
</p><div class="codeblock"><pre>struct sqlite3_index_info {
/* Inputs */
const int nConstraint; /* Number of entries in aConstraint */
const struct sqlite3_index_constraint {
int iColumn; /* Column constrained. -1 for ROWID */
unsigned char op; /* Constraint operator */
unsigned char usable; /* True if this constraint is usable */
int iTermOffset; /* Used internally - xBestIndex should ignore */
} *const aConstraint; /* Table of WHERE clause constraints */
const int nOrderBy; /* Number of terms in the ORDER BY clause */
const struct sqlite3_index_orderby {
int iColumn; /* Column number */
unsigned char desc; /* True for DESC. False for ASC. */
} *const aOrderBy; /* The ORDER BY clause */
/* Outputs */
struct sqlite3_index_constraint_usage {
int argvIndex; /* if >0, constraint is part of argv to xFilter */
unsigned char omit; /* Do not code a test for this constraint */
} *const aConstraintUsage;
int idxNum; /* Number used to identify the index */
char *idxStr; /* String, possibly obtained from sqlite3_malloc */
int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
int orderByConsumed; /* True if output is already ordered */
double estimatedCost; /* Estimated cost of using this index */
<b>/* Fields below are only available in SQLite 3.8.2 and later */</b>
sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
<b>/* Fields below are only available in SQLite 3.9.0 and later */</b>
int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */
<b>/* Fields below are only available in SQLite 3.10.0 and later */</b>
sqlite3_uint64 colUsed; /* Input: Mask of columns used by statement */
};
</pre></div>
<p>Note the warnings on the "estimatedRows", "idxFlags", and colUsed fields.
These fields were added with SQLite versions 3.8.2, 3.9.0, and 3.10.0, respectively.
Any extension that reads or writes these fields must first check that the
version of the SQLite library in use is greater than or equal to appropriate
version - perhaps comparing the value returned from <a href="c3ref/libversion.html">sqlite3_libversion_number()</a>
against constants 3008002, 3009000, and/or 3010000. The result of attempting
to access these fields in an sqlite3_index_info structure created by an
older version of SQLite are undefined.
</p><p>In addition, there are some defined constants:
</p><div class="codeblock"><pre>#define SQLITE_INDEX_CONSTRAINT_EQ 2
#define SQLITE_INDEX_CONSTRAINT_GT 4
#define SQLITE_INDEX_CONSTRAINT_LE 8
#define SQLITE_INDEX_CONSTRAINT_LT 16
#define SQLITE_INDEX_CONSTRAINT_GE 32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64
#define SQLITE_INDEX_CONSTRAINT_LIKE 65 /* 3.10.0 and later */
#define SQLITE_INDEX_CONSTRAINT_GLOB 66 /* 3.10.0 and later */
#define SQLITE_INDEX_CONSTRAINT_REGEXP 67 /* 3.10.0 and later */
#define SQLITE_INDEX_CONSTRAINT_NE 68 /* 3.21.0 and later */
#define SQLITE_INDEX_CONSTRAINT_ISNOT 69 /* 3.21.0 and later */
#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70 /* 3.21.0 and later */
#define SQLITE_INDEX_CONSTRAINT_ISNULL 71 /* 3.21.0 and later */
#define SQLITE_INDEX_CONSTRAINT_IS 72 /* 3.21.0 and later */
#define SQLITE_INDEX_CONSTRAINT_LIMIT 73 /* 3.38.0 and later */
#define SQLITE_INDEX_CONSTRAINT_OFFSET 74 /* 3.38.0 and later */
#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150 /* 3.25.0 and later */
#define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */
</pre></div>
<p>Use the <a href="c3ref/vtab_collation.html">sqlite3_vtab_collation()</a> interface to find the name of
the <a href="datatype3.html#collation">collating sequence</a> that should be used when evaluating the i-th
constraint:
</p><div class="codeblock"><pre>const char *sqlite3_vtab_collation(sqlite3_index_info*, int i);
</pre></div>
<p>The SQLite core calls the xBestIndex method when it is compiling a query
that involves a virtual table. In other words, SQLite calls this method
when it is running <a href="c3ref/prepare.html">sqlite3_prepare()</a> or the equivalent.
By calling this method, the
SQLite core is saying to the virtual table that it needs to access
some subset of the rows in the virtual table and it wants to know the
most efficient way to do that access. The xBestIndex method replies
with information that the SQLite core can then use to conduct an
efficient search of the virtual table.
</p><p>While compiling a single SQL query, the SQLite core might call
xBestIndex multiple times with different settings in <a href="c3ref/index_info.html">sqlite3_index_info</a>.
The SQLite core will then select the combination that appears to
give the best performance.
</p><p>Before calling this method, the SQLite core initializes an instance
of the <a href="c3ref/index_info.html">sqlite3_index_info</a> structure with information about the
query that it is currently trying to process. This information
derives mainly from the WHERE clause and ORDER BY or GROUP BY clauses
of the query, but also from any ON or USING clauses if the query is a
join. The information that the SQLite core provides to the xBestIndex
method is held in the part of the structure that is marked as "Inputs".
The "Outputs" section is initialized to zero.
</p><p>The information in the <a href="c3ref/index_info.html">sqlite3_index_info</a> structure is ephemeral
and may be overwritten or deallocated as soon as the xBestIndex method
returns. If the xBestIndex method needs to remember any part of the
<a href="c3ref/index_info.html">sqlite3_index_info</a> structure, it should make a copy. Care must be
take to store the copy in a place where it will be deallocated, such
as in the idxStr field with needToFreeIdxStr set to 1.
</p><p>Note that xBestIndex will always be called before <a href="vtab.html#xfilter">xFilter</a>, since
the idxNum and idxStr outputs from xBestIndex are required inputs to
xFilter. However, there is no guarantee that xFilter will be called
following a successful xBestIndex.
</p><p>The xBestIndex method is required for every virtual table implementation.
</p><h3 id="inputs"><span>2.3.1. </span>Inputs</h3>
<p>The main thing that the SQLite core is trying to communicate to
the virtual table is the constraints that are available to limit
the number of rows that need to be searched. The aConstraint[] array
contains one entry for each constraint. There will be exactly
nConstraint entries in that array.
</p><p>Each constraint will usually correspond to a term in the WHERE clause
or in a USING or ON clause that is of the form
</p><blockquote>
column OP EXPR
</blockquote>
<p>Where "column" is a column in the virtual table, OP is an operator
like "=" or "<", and EXPR is an arbitrary expression. So, for example,
if the WHERE clause contained a term like this:
</p><div class="codeblock"><pre>a = 5
</pre></div>
<p>Then one of the constraints would be on the "a" column with
operator "=" and an expression of "5". Constraints need not have a
literal representation of the WHERE clause. The query optimizer might
make transformations to the
WHERE clause in order to extract as many constraints
as it can. So, for example, if the WHERE clause contained something
like this:
</p><div class="codeblock"><pre>x BETWEEN 10 AND 100 AND 999>y
</pre></div>
<p>The query optimizer might translate this into three separate constraints:
</p><div class="codeblock"><pre>x >= 10
x <= 100
y < 999
</pre></div>
<p>For each such constraint, the aConstraint[].iColumn field indicates which
column appears on the left-hand side of the constraint.
The first column of the virtual table is column 0.
The rowid of the virtual table is column -1.
The aConstraint[].op field indicates which operator is used.
The SQLITE_INDEX_CONSTRAINT_* constants map integer constants
into operator values.
Columns occur in the order they were defined by the call to
<a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> in the <a href="vtab.html#xcreate">xCreate</a> or <a href="vtab.html#xconnect">xConnect</a> method.
Hidden columns are counted when determining the column index.
</p><p>If the <a href="vtab.html#xfindfunction">xFindFunction()</a> method for the virtual table is defined, and
if xFindFunction() sometimes returns <a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> or
larger, then the constraints might also be of the form:
</p><blockquote>
FUNCTION( column, EXPR)
</blockquote>
<p>In this case the aConstraint[].op value is the same as the value
returned by <a href="vtab.html#xfindfunction">xFindFunction()</a> for FUNCTION.
</p><p>The aConstraint[] array contains information about all constraints
that apply to the virtual table. But some of the constraints might
not be usable because of the way tables are ordered in a join.
The xBestIndex method must therefore only consider constraints
that have an aConstraint[].usable flag which is true.
</p><p>In addition to WHERE clause constraints, the SQLite core also
tells the xBestIndex method about the ORDER BY clause.
(In an aggregate query, the SQLite core might put in GROUP BY clause
information in place of the ORDER BY clause information, but this fact
should not make any difference to the xBestIndex method.)
If all terms of the ORDER BY clause are columns in the virtual table,
then nOrderBy will be the number of terms in the ORDER BY clause
and the aOrderBy[] array will identify the column for each term
in the order by clause and whether or not that column is ASC or DESC.
<a name="colUsed"></a>
</p><p>In SQLite <a href="releaselog/3_10_0.html">version 3.10.0</a> (2016-01-06) and later,
the colUsed field is available
to indicate which fields of the virtual table are actually used by the
statement being prepared. If the lowest bit of colUsed is set, that
means that the first column is used. The second lowest bit corresponds
to the second column. And so forth. If the most significant bit of
colUsed is set, that means that one or more columns other than the
first 63 columns are used. If column usage information is needed by the
<a href="vtab.html#xfilter">xFilter</a> method, then the required bits must be encoded into either
the output idxNum field or idxStr content.
</p><h4 id="like_glob_regexp_and_match_functions"><span>2.3.1.1. </span>LIKE, GLOB, REGEXP, and MATCH functions</h4>
<p>For the LIKE, GLOB, REGEXP, and MATCH operators, the
aConstraint[].iColumn value is the virtual table column that
is the left operand of the operator. However, if these operators
are expressed as function calls instead of operators, then
the aConstraint[].iColumn value references the virtual table
column that is the second argument to that function:
</p><blockquote>
LIKE(<i>EXPR</i>, <i>column</i>)<br>
GLOB(<i>EXPR</i>, <i>column</i>)<br>
REGEXP(<i>EXPR</i>, <i>column</i>)<br>
MATCH(<i>EXPR</i>, <i>column</i>)<br>
</blockquote>
<p>Hence, as far as the xBestIndex() method is concerned, the following
two forms are equivalent:
</p><blockquote>
<i>column</i> LIKE <i>EXPR</i><br>
LIKE(<i>EXPR</i>,<i>column</i>)
</blockquote>
<p>This special behavior of looking at the second argument of a function
only occurs for the LIKE, GLOB, REGEXP, and MATCH functions. For all
other functions, the aConstraint[].iColumn value references the first
argument of the function.
</p><p>This special feature of LIKE, GLOB, REGEXP, and MATCH does not
apply to the <a href="vtab.html#xfindfunction">xFindFunction()</a> method, however. The
<a href="vtab.html#xfindfunction">xFindFunction()</a> method always keys off of the left operand of an
LIKE, GLOB, REGEXP, or MATCH operator but off of the first argument
to function-call equivalents of those operators.
</p><h4 id="limit_and_offset"><span>2.3.1.2. </span>LIMIT and OFFSET</h4>
<p>When aConstraint[].op is one of SQLITE_INDEX_CONSTRAINT_LIMIT or
SQLITE_INDEX_CONSTRAINT_OFFSET, that indicates that there is a
LIMIT or OFFSET clause on the SQL query statement that is using
the virtual table. The LIMIT and OFFSET operators have no
left operand, and so when aConstraint[].op is one of
SQLITE_INDEX_CONSTRAINT_LIMIT or SQLITE_INDEX_CONSTRAINT_OFFSET
then the aConstraint[].iColumn value is meaningless and should
not be used.
</p><h4 id="right_hand_side_values_of_constraints"><span>2.3.1.3. </span>Right-hand side values of constraints</h4>
<p>The <a href="c3ref/vtab_rhs_value.html">sqlite3_vtab_rhs_value()</a> interface can be used to try to
access the right-hand operand of a constraint. However, the value
of a right-hand operator might not be known at the time that
the xBestIndex method is run, so the sqlite3_vtab_rhs_value()
call might not be successful. Usually the right operand of a
constraint is only available to xBestIndex if it is coded as
a literal value in the input SQL. If the right operand is
coded as an expression or a <a href="c3ref/bind_blob.html">host parameter</a>, it probably will
not be accessible to xBestIndex. Some operators, such as
<a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_ISNULL</a> and
<a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_ISNOTNULL</a> have no right-hand operand.
The sqlite3_vtab_rhs_value() interface always returns
<a href="rescode.html#notfound">SQLITE_NOTFOUND</a> for such operators.
</p><h3 id="outputs"><span>2.3.2. </span>Outputs</h3>
<p>Given all of the information above, the job of the xBestIndex
method it to figure out the best way to search the virtual table.
</p><p>The xBestIndex method conveys an indexing strategy to the <a href="vtab.html#xfilter">xFilter</a>
method through the idxNum and idxStr fields. The idxNum value and
idxStr string content are arbitrary as far as the SQLite core is
concerned and can have any meaning as long as xBestIndex and xFilter
agree on what that meaning is. The SQLite core just copies the
information from xBestIndex through to the <a href="vtab.html#xfilter">xFilter</a> method, assuming
only that the char sequence referenced via idxStr is NUL terminated.
</p><p>The idxStr value may be a string obtained from an SQLite
memory allocation function such as <a href="c3ref/mprintf.html">sqlite3_mprintf()</a>.
If this is the case, then the needToFreeIdxStr flag must be set to
true so that the SQLite core will know to call <a href="c3ref/free.html">sqlite3_free()</a> on
that string when it has finished with it, and thus avoid a memory leak.
The idxStr value may also be a static constant string, in which case
the needToFreeIdxStr boolean should remain false.
</p><p>The estimatedCost field should be set to the estimated number
of disk access operations required to execute this query against
the virtual table. The SQLite core will often call xBestIndex
multiple times with different constraints, obtain multiple cost
estimates, then choose the query plan that gives the lowest estimate.
The SQLite core initializes estimatedCost to a very large value
prior to invoking xBestIndex, so if xBestIndex determines that the
current combination of parameters is undesirable, it can leave the
estimatedCost field unchanged to discourage its use.
</p><p>If the current version of SQLite is 3.8.2 or greater, the estimatedRows
field may be set to an estimate of the number of rows returned by the
proposed query plan. If this value is not explicitly set, the default
estimate of 25 rows is used.
</p><p>If the current version of SQLite is 3.9.0 or greater, the idxFlags field
may be set to SQLITE_INDEX_SCAN_UNIQUE to indicate that the virtual table
will return only zero or one rows given the input constraints. Additional
bits of the idxFlags field might be understood in later versions of SQLite.
</p><p>The aConstraintUsage[] array contains one element for each of
the nConstraint constraints in the inputs section of the
<a href="c3ref/index_info.html">sqlite3_index_info</a> structure.
The aConstraintUsage[] array is used by xBestIndex to tell the
core how it is using the constraints.
</p><p>The xBestIndex method may set aConstraintUsage[].argvIndex
entries to values greater than zero.
Exactly one entry should be set to 1, another to 2, another to 3,
and so forth up to as many or as few as the xBestIndex method wants.
The EXPR of the corresponding constraints will then be passed
in as the argv[] parameters to xFilter.
</p><p>For example, if the aConstraint[3].argvIndex is set to 1, then
when xFilter is called, the argv[0] passed to xFilter will have
the EXPR value of the aConstraint[3] constraint.
</p><h4 id="omit_constraint_checking_in_bytecode"><span>2.3.2.1. </span>Omit constraint checking in bytecode</h4>
<p>By default, the SQLite generates <a href="opcode.html">bytecode</a> that will double
checks all constraints on each row of the virtual table to verify
that they are satisfied. If the virtual table can guarantee
that a constraint will always be satisfied, it can try to
suppress that double-check by setting aConstraintUsage[].omit.
However, with some exceptions, this is only a hint and
there is no guarantee that the redundant check of the constraint
will be suppressed. Key points:
</p><ul>
<li><p>
The omit flag is only honored if the argvIndex value for the
constraint is greater than 0 and less than or equal to 16.
Constraint checking is never suppressed for constraints
that do not pass their right operand into the xFilter method.
The current implementation is only able to suppress redundant
constraint checking for the first 16 values passed to xFilter,
though that limitation might be increased in future releases.
</p></li><li><p>
The omit flag is always honored for <a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_OFFSET</a>
constraints as long as argvIndex is greater than 0. Setting the
omit flag on an SQLITE_INDEX_CONSTRAINT_OFFSET constraint indicates
to SQLite that the virtual table will itself suppress the first N
rows of output, where N is the right operand of the OFFSET operator.
If the virtual table implementation sets omit on an
SQLITE_INDEX_CONSTRAINT_OFFSET constraint but then fails to suppress
the first N rows of output, an incorrect answer will result from
the overall query.
</p></li></ul>
<a name="obc"></a>
<h4 id="order_by_and_orderbyconsumed"><span>2.3.2.2. </span>ORDER BY and orderByConsumed</h4>
<p>If the virtual table will output rows in the order specified by
the ORDER BY clause, then the orderByConsumed flag may be set to
true. If the output is not automatically in the correct order
then orderByConsumed must be left in its default false setting.
This will indicate to the SQLite core that it will need to do a
separate sorting pass over the data after it comes out of the virtual table.
Setting orderByConsumed is an optimization. A query will always
get the correct answer if orderByConsumed is left at its default
value (0). Unnecessary sort operations might be avoided resulting
in a faster query if orderByConsumed is set, but setting
orderByConsumed incorrectly can result in an incorrect answer.
It is suggested that new virtual table implementations leave
the orderByConsumed value unset initially, and then after everything
else is known to be working correctly, go back and attempt to
optimize by setting orderByConsumed where appropriate.
</p><p>Sometimes the orderByConsumed flag can be safely set even if
the outputs from the virtual table are not strictly in the order
specified by nOrderBy and aOrderBy. If the
<a href="c3ref/vtab_distinct.html">sqlite3_vtab_distinct()</a> interface returns 1 or 2, that indicates
that the ordering can be relaxed. See the documentation on
<a href="c3ref/vtab_distinct.html">sqlite3_vtab_distinct()</a> for further information.
</p><h3 id="return_value"><span>2.3.3. </span>Return Value</h3>
<p>The xBestIndex method should return SQLITE_OK on success. If any
kind of fatal error occurs, an appropriate error code (ex: <a href="rescode.html#nomem">SQLITE_NOMEM</a>)
should be returned instead.
</p><p>If xBestIndex returns <a href="rescode.html#constraint">SQLITE_CONSTRAINT</a>, that does not indicate an
error. Rather, SQLITE_CONSTRAINT indicates that the particular combination
of input parameters specified is insufficient for the virtual table
to do its job.
This is logically the same as setting the estimatedCost to infinity.
If every call to xBestIndex for a particular query plan returns
SQLITE_CONSTRAINT, that means there is no way for the virtual table
to be safely used, and the <a href="c3ref/prepare.html">sqlite3_prepare()</a> call will fail with
a "no query solution" error.
<a name="erpotvf"></a>
</p><h3 id="enforcing_required_parameters_on_table_valued_functions"><span>2.3.4. </span>Enforcing Required Parameters On Table-Valued Functions</h3>
<p>The SQLITE_CONSTRAINT return from xBestIndex
is useful for <a href="vtab.html#tabfunc2">table-valued functions</a> that
have required parameters. If the aConstraint[].usable field is false
for one of the required parameter, then the xBestIndex method should
return SQLITE_CONSTRAINT. If a required field does not appear in
the aConstraint[] array at all, that means that the corresponding
parameter is omitted from the input SQL. In that case, xBestIndex
should set an error message in pVTab->zErrMsg and return
SQLITE_ERROR. To summarize:
</p><ol>
<li><p>
The aConstraint[].usable value for a required parameter is
false <big>→</big> return SQLITE_CONSTRAINT.
</p></li><li><p>
A required parameter does not appears anywhere in
the aConstraint[] array <big>→</big>
Set an error message in pVTab->zErrMsg and return
SQLITE_ERROR
</p></li></ol>
<p>The following example will better illustrate the use of SQLITE_CONSTRAINT
as a return value from xBestIndex:
</p><div class="codeblock"><pre>SELECT * FROM realtab, tablevaluedfunc(realtab.x);
</pre></div>
<p>Assuming that the first hidden column of "tablevaluedfunc" is "param1",
the query above is semantically equivalent to this:
</p><div class="codeblock"><pre>SELECT * FROM realtab, tablevaluedfunc
WHERE tablevaluedfunc.param1 = realtab.x;
</pre></div>
<p>The query planner must decide between many possible implementations
of this query, but two plans in particular are of note:
</p><ol>
<li><p>Scan all
rows of realtab and for each row, find rows in tablevaluedfunc where
param1 is equal to realtab.x
</p></li><li><p>Scan all rows of tablevalued func and for each row find rows
in realtab where x is equal to tablevaluedfunc.param1.
</p></li></ol>
<p>The xBestIndex method will be invoked once for each of the potential
plans above. For plan 1, the aConstraint[].usable flag for the
SQLITE_CONSTRAINT_EQ constraint on the param1 column will be true because
the right-hand side value for the "param1 = ?" constraint will be known,
since it is determined by the outer realtab loop.
But for plan 2, the aConstraint[].usable flag for "param1 = ?" will be false
because the right-hand side value is determined by an inner loop and is thus
an unknown quantity. Because param1 is a required input to the table-valued
functions, the xBestIndex method should return SQLITE_CONSTRAINT when presented
with plan 2, indicating that a required input is missing. This forces the
query planner to select plan 1.
<a name="xdisconnect"></a>
</p><h2 id="the_xdisconnect_method"><span>2.4. </span>The xDisconnect Method</h2>
<div class="codeblock"><pre>int (*xDisconnect)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method releases a connection to a virtual table.
Only the <a href="c3ref/vtab.html">sqlite3_vtab</a> object is destroyed.
The virtual table is not destroyed and any backing store
associated with the virtual table persists.
This method undoes the work of <a href="vtab.html#xconnect">xConnect</a>.
</p><p>This method is a destructor for a connection to the virtual table.
Contrast this method with <a href="vtab.html#sqlite3_module.xDestroy">xDestroy</a>. The xDestroy is a destructor
for the entire virtual table.
</p><p>The xDisconnect method is required for every virtual table implementation,
though it is acceptable for the xDisconnect and <a href="vtab.html#sqlite3_module.xDestroy">xDestroy</a> methods to be
the same function if that makes sense for the particular virtual table.
<a name="sqlite3_module.xDestroy"></a>
</p><h2 id="the_xdestroy_method"><span>2.5. </span>The xDestroy Method</h2>
<div class="codeblock"><pre>int (*xDestroy)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method releases a connection to a virtual table, just like
the <a href="vtab.html#xdisconnect">xDisconnect</a> method, and it also destroys the underlying
table implementation. This method undoes the work of <a href="vtab.html#xcreate">xCreate</a>.
</p><p>The <a href="vtab.html#xdisconnect">xDisconnect</a> method is called whenever a database connection
that uses a virtual table is closed. The xDestroy method is only
called when a <a href="lang_droptable.html">DROP TABLE</a> statement is executed against the virtual table.
</p><p>The xDestroy method is required for every virtual table implementation,
though it is acceptable for the <a href="vtab.html#xdisconnect">xDisconnect</a> and xDestroy methods to be
the same function if that makes sense for the particular virtual table.
<a name="xopen"></a>
</p><h2 id="the_xopen_method"><span>2.6. </span>The xOpen Method</h2>
<div class="codeblock"><pre>int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
</pre></div>
<p>The xOpen method creates a new cursor used for accessing (read and/or
writing) a virtual table. A successful invocation of this method
will allocate the memory for the <a href="c3ref/vtab_cursor.html">sqlite3_vtab_cursor</a> (or a subclass),
initialize the new object, and make *ppCursor point to the new object.
The successful call then returns <a href="rescode.html#ok">SQLITE_OK</a>.
</p><p>For every successful call to this method, the SQLite core will
later invoke the <a href="vtab.html#xclose">xClose</a> method to destroy
the allocated cursor.
</p><p>The xOpen method need not initialize the pVtab field of the
<a href="c3ref/vtab_cursor.html">sqlite3_vtab_cursor</a> structure. The SQLite core will take care
of that chore automatically.
</p><p>A virtual table implementation must be able to support an arbitrary
number of simultaneously open cursors.
</p><p>When initially opened, the cursor is in an undefined state.
The SQLite core will invoke the <a href="vtab.html#xfilter">xFilter</a> method
on the cursor prior to any attempt to position or read from the cursor.
</p><p>The xOpen method is required for every virtual table implementation.
<a name="xclose"></a>
</p><h2 id="the_xclose_method"><span>2.7. </span>The xClose Method</h2>
<div class="codeblock"><pre>int (*xClose)(sqlite3_vtab_cursor*);
</pre></div>
<p>The xClose method closes a cursor previously opened by
<a href="vtab.html#xopen">xOpen</a>.
The SQLite core will always call xClose once for each cursor opened
using xOpen.
</p><p>This method must release all resources allocated by the
corresponding xOpen call. The routine will not be called again even if it
returns an error. The SQLite core will not use the
<a href="c3ref/vtab_cursor.html">sqlite3_vtab_cursor</a> again after it has been closed.
</p><p>The xClose method is required for every virtual table implementation.
<a name="xeof"></a>
</p><h2 id="the_xeof_method"><span>2.8. </span>The xEof Method</h2>
<div class="codeblock"><pre>int (*xEof)(sqlite3_vtab_cursor*);
</pre></div>
<p>The xEof method must return false (zero) if the specified cursor
currently points to a valid row of data, or true (non-zero) otherwise.
This method is called by the SQL engine immediately after each
<a href="vtab.html#xfilter">xFilter</a> and <a href="vtab.html#xnext">xNext</a> invocation.
</p><p>The xEof method is required for every virtual table implementation.
<a name="xfilter"></a>
</p><h2 id="the_xfilter_method"><span>2.9. </span>The xFilter Method</h2>
<div class="codeblock"><pre>int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
int argc, sqlite3_value **argv);
</pre></div>
<p>This method begins a search of a virtual table.
The first argument is a cursor opened by <a href="vtab.html#xopen">xOpen</a>.
The next two arguments define a particular search index previously
chosen by <a href="vtab.html#xbestindex">xBestIndex</a>. The specific meanings of idxNum and idxStr
are unimportant as long as xFilter and xBestIndex agree on what
that meaning is.
</p><p>The xBestIndex function may have requested the values of
certain expressions using the aConstraintUsage[].argvIndex values
of the <a href="c3ref/index_info.html">sqlite3_index_info</a> structure.
Those values are passed to xFilter using the argc and argv parameters.
</p><p>If the virtual table contains one or more rows that match the
search criteria, then the cursor must be left point at the first row.
Subsequent calls to <a href="vtab.html#xeof">xEof</a> must return false (zero).
If there are no rows match, then the cursor must be left in a state
that will cause the <a href="vtab.html#xeof">xEof</a> to return true (non-zero).
The SQLite engine will use
the <a href="vtab.html#xcolumn">xColumn</a> and <a href="vtab.html#xrowid">xRowid</a> methods to access that row content.
The <a href="vtab.html#xnext">xNext</a> method will be used to advance to the next row.
</p><p>This method must return <a href="rescode.html#ok">SQLITE_OK</a> if successful, or an sqlite
<a href="rescode.html">error code</a> if an error occurs.
</p><p>The xFilter method is required for every virtual table implementation.
<a name="xnext"></a>
</p><h2 id="the_xnext_method"><span>2.10. </span>The xNext Method</h2>
<div class="codeblock"><pre>int (*xNext)(sqlite3_vtab_cursor*);
</pre></div>
<p>The xNext method advances a <a href="c3ref/vtab_cursor.html">virtual table cursor</a>
to the next row of a result set initiated by <a href="vtab.html#xfilter">xFilter</a>.
If the cursor is already pointing at the last row when this
routine is called, then the cursor no longer points to valid
data and a subsequent call to the <a href="vtab.html#xeof">xEof</a> method must return true (non-zero).
If the cursor is successfully advanced to another row of content, then
subsequent calls to <a href="vtab.html#xeof">xEof</a> must return false (zero).
</p><p>This method must return <a href="rescode.html#ok">SQLITE_OK</a> if successful, or an sqlite
<a href="rescode.html">error code</a> if an error occurs.
</p><p>The xNext method is required for every virtual table implementation.
<a name="xcolumn"></a>
</p><h2 id="the_xcolumn_method"><span>2.11. </span>The xColumn Method</h2>
<div class="codeblock"><pre>int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int N);
</pre></div>
<p>The SQLite core invokes this method in order to find the value for
the N-th column of the current row. N is zero-based so the first column
is numbered 0.
The xColumn method may return its result back to SQLite using one of the
following interface:
</p><p>
</p><ul>
<li> <a href="c3ref/result_blob.html">sqlite3_result_blob()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_double()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_int()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_int64()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_null()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_text()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_text16()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_text16le()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_text16be()</a>
</li><li> <a href="c3ref/result_blob.html">sqlite3_result_zeroblob()</a>
</li></ul>
<p>If the xColumn method implementation calls none of the functions above,
then the value of the column defaults to an SQL NULL.
</p><p>To raise an error, the xColumn method should use one of the result_text()
methods to set the error message text, then return an appropriate
<a href="rescode.html">error code</a>. The xColumn method must return <a href="rescode.html#ok">SQLITE_OK</a> on success.
</p><p>The xColumn method is required for every virtual table implementation.
<a name="xrowid"></a>
</p><h2 id="the_xrowid_method"><span>2.12. </span>The xRowid Method</h2>
<div class="codeblock"><pre>int (*xRowid)(sqlite3_vtab_cursor *pCur, sqlite_int64 *pRowid);
</pre></div>
<p>A successful invocation of this method will cause *pRowid to be
filled with the <a href="lang_createtable.html#rowid">rowid</a> of row that the
<a href="c3ref/vtab_cursor.html">virtual table cursor</a> pCur is currently pointing at.
This method returns <a href="rescode.html#ok">SQLITE_OK</a> on success.
It returns an appropriate <a href="rescode.html">error code</a> on failure.</p>
<p>The xRowid method is required for every virtual table implementation.
<a name="xupdate"></a>
</p><h2 id="the_xupdate_method"><span>2.13. </span>The xUpdate Method</h2>
<div class="codeblock"><pre>int (*xUpdate)(
sqlite3_vtab *pVTab,
int argc,
sqlite3_value **argv,
sqlite_int64 *pRowid
);
</pre></div>
<p>All changes to a virtual table are made using the xUpdate method.
This one method can be used to insert, delete, or update.
</p><p>The argc parameter specifies the number of entries in the argv array.
The value of argc will be 1 for a pure delete operation or N+2 for an insert
or replace or update where N is the number of columns in the table.
In the previous sentence, N includes any hidden columns.
</p><p>Every argv entry will have a non-NULL value in C but may contain the
SQL value NULL. In other words, it is always true that
<tt>argv[i]!=0</tt> for <b>i</b> between 0 and <tt>argc-1</tt>.
However, it might be the case that
<tt>sqlite3_value_type(argv[i])==SQLITE_NULL</tt>.
</p><p>The argv[0] parameter is the <a href="lang_createtable.html#rowid">rowid</a> of a row in the virtual table
to be deleted. If argv[0] is an SQL NULL, then no deletion occurs.
</p><p>The argv[1] parameter is the rowid of a new row to be inserted
into the virtual table. If argv[1] is an SQL NULL, then the implementation
must choose a rowid for the newly inserted row. Subsequent argv[]
entries contain values of the columns of the virtual table, in the
order that the columns were declared. The number of columns will
match the table declaration that the <a href="vtab.html#xconnect">xConnect</a> or <a href="vtab.html#xcreate">xCreate</a> method made
using the <a href="c3ref/declare_vtab.html">sqlite3_declare_vtab()</a> call. All hidden columns are included.
</p><p>When doing an insert without a rowid (argc>1, argv[1] is an SQL NULL),
on a virtual table that uses ROWID (but not on a <a href="vtab.html#worid">WITHOUT ROWID virtual table</a>),
the implementation must set *pRowid to the rowid of the newly inserted row;
this will become the value returned by the <a href="c3ref/last_insert_rowid.html">sqlite3_last_insert_rowid()</a>
function. Setting this value in all the other cases is a harmless no-op;
the SQLite engine ignores the *pRowid return value if argc==1 or
argv[1] is not an SQL NULL.
</p><p>Each call to xUpdate will fall into one of cases shown below.
Not that references to <b>argv[i]</b> mean the SQL value
held within the argv[i] object, not the argv[i]
object itself.
</p><blockquote>
<dl>
<dt><b>argc = 1 <br> argv[0] ≠ NULL</b>
</dt><dd><p>
DELETE: The single row with rowid or PRIMARY KEY equal to argv[0] is deleted.
No insert occurs.
</p></dd><dt><b>argc > 1 <br> argv[0] = NULL</b>
</dt><dd><p>
INSERT: A new row is inserted with column values taken from
argv[2] and following. In a rowid virtual table, if argv[1] is an SQL NULL,
then a new unique rowid is generated automatically. The argv[1] will be NULL
for a <a href="vtab.html#worid">WITHOUT ROWID virtual table</a>, in which case the implementation should
take the PRIMARY KEY value from the appropriate column in argv[2] and following.
</p></dd><dt><b>argc > 1 <br> argv[0] ≠ NULL <br> argv[0] = argv[1]</b>
</dt><dd><p>
UPDATE:
The row with rowid or PRIMARY KEY argv[0] is updated with new values
in argv[2] and following parameters.
</p></dd><dt><b>argc > 1 <br> argv[0] ≠ NULL <br> argv[0] ≠ argv[1]</b>
</dt><dd><p>
UPDATE with rowid or PRIMARY KEY change:
The row with rowid or PRIMARY KEY argv[0] is updated with
the rowid or PRIMARY KEY in argv[1]
and new values in argv[2] and following parameters. This will occur
when an SQL statement updates a rowid, as in the statement:
</p><blockquote>
<a href="lang_update.html">UPDATE</a> table SET rowid=rowid+1 WHERE ...;
</blockquote>
</dd></dl>
</blockquote>
<p>The xUpdate method must return <a href="rescode.html#ok">SQLITE_OK</a> if and only if it is
successful. If a failure occurs, the xUpdate must return an appropriate
<a href="rescode.html">error code</a>. On a failure, the pVTab->zErrMsg element may optionally
be replaced with error message text stored in memory allocated from SQLite
using functions such as <a href="c3ref/mprintf.html">sqlite3_mprintf()</a> or <a href="c3ref/free.html">sqlite3_malloc()</a>.
</p><p>If the xUpdate method violates some constraint of the virtual table
(including, but not limited to, attempting to store a value of the wrong
datatype, attempting to store a value that is too
large or too small, or attempting to change a read-only value) then the
xUpdate must fail with an appropriate <a href="rescode.html">error code</a>.
</p><p>If the xUpdate method is performing an UPDATE, then
<a href="c3ref/value_blob.html">sqlite3_value_nochange(X)</a> can be used to discover which columns
of the virtual table were actually modified by the UPDATE
statement. The <a href="c3ref/value_blob.html">sqlite3_value_nochange(X)</a> interface returns
true for columns that do not change.
On every UPDATE, SQLite will first invoke
<a href="vtab.html#xcolumn">xColumn</a> separately for each unchanging column in the table to
obtain the value for that column. The <a href="vtab.html#xcolumn">xColumn</a> method can
check to see if the column is unchanged at the SQL level
by invoking <a href="c3ref/vtab_nochange.html">sqlite3_vtab_nochange()</a>. If <a href="vtab.html#xcolumn">xColumn</a> sees that
the column is not being modified, it should return without setting
a result using one of the <a href="c3ref/result_blob.html">sqlite3_result_xxxxx()</a>
interfaces. Only in that case <a href="c3ref/value_blob.html">sqlite3_value_nochange()</a> will be
true within the xUpdate method. If <a href="vtab.html#xcolumn">xColumn</a> does
invoke one or more <a href="c3ref/result_blob.html">sqlite3_result_xxxxx()</a>
interfaces, then SQLite understands that as a change in the value
of the column and the <a href="c3ref/value_blob.html">sqlite3_value_nochange()</a> call for that
column within xUpdate will return false.
</p><p>There might be one or more <a href="c3ref/vtab_cursor.html">sqlite3_vtab_cursor</a> objects open and in use
on the virtual table instance and perhaps even on the row of the virtual
table when the xUpdate method is invoked. The implementation of
xUpdate must be prepared for attempts to delete or modify rows of the table
out from other existing cursors. If the virtual table cannot accommodate
such changes, the xUpdate method must return an <a href="rescode.html">error code</a>.
</p><p>The xUpdate method is optional.
If the xUpdate pointer in the <a href="c3ref/module.html">sqlite3_module</a> for a virtual table
is a NULL pointer, then the virtual table is read-only.
<a name="xfindfunction"></a>
</p><h2 id="the_xfindfunction_method"><span>2.14. </span>The xFindFunction Method</h2>
<div class="codeblock"><pre>int (*xFindFunction)(
sqlite3_vtab *pVtab,
int nArg,
const char *zName,
void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
void **ppArg
);
</pre></div>
<p>This method is called during <a href="c3ref/prepare.html">sqlite3_prepare()</a> to give the virtual
table implementation an opportunity to overload functions.
This method may be set to NULL in which case no overloading occurs.
</p><p>When a function uses a column from a virtual table as its first
argument, this method is called to see if the virtual table would
like to overload the function. The first three parameters are inputs:
the virtual table, the number of arguments to the function, and the
name of the function. If no overloading is desired, this method
returns 0. To overload the function, this method writes the new
function implementation into *pxFunc and writes user data into *ppArg
and returns either 1 or a number between
<a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> and 255.
</p><p>Historically, the return value from xFindFunction() was either zero
or one. Zero means that the function is not overloaded and one means that
it is overload. The ability to return values of
<a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> or greater was added in
version 3.25.0 (2018-09-15). If xFindFunction returns
<a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> or greater, than means that the function
takes two arguments and the function
can be used as a boolean in the WHERE clause of a query and that
the virtual table is able to exploit that function to speed up the query
result. When xFindFunction returns <a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> or
larger, the value returned becomes the <a href="c3ref/index_info.html">sqlite3_index_info</a>.aConstraint.op
value for one of the constraints passed into <a href="vtab.html#xbestindex">xBestIndex()</a>. The first
argument to the function is the column identified by
aConstraint[].iColumn field of the constraint and the second argument to the
function is the value that will be passed into <a href="vtab.html#xfilter">xFilter()</a> (if the
aConstraintUsage[].argvIndex value is set) or the value returned from
<a href="c3ref/vtab_rhs_value.html">sqlite3_vtab_rhs_value()</a>.
</p><p>The <a href="geopoly.html">Geopoly module</a> is an example of a virtual table that makes use
of <a href="c3ref/c_index_constraint_eq.html">SQLITE_INDEX_CONSTRAINT_FUNCTION</a> to improve performance.
The xFindFunction() method for Geopoly returns
SQLITE_INDEX_CONSTRAINT_FUNCTION for the <a href="geopoly.html#goverlap">geopoly_overlap()</a> SQL function
and it returns
SQLITE_INDEX_CONSTRAINT_FUNCTION+1 for the <a href="geopoly.html#gwithin">geopoly_within()</a> SQL function.
This permits search optimizations for queries such as:
</p><div class="codeblock"><pre>SELECT * FROM geopolytab WHERE geopoly_overlap(_shape, $query_polygon);
SELECT * FROM geopolytab WHERE geopoly_within(_shape, $query_polygon);
</pre></div>
<p>Note that infix functions (<a href="lang_expr.html#like">LIKE</a>, <a href="lang_expr.html#glob">GLOB</a>, <a href="lang_expr.html#regexp">REGEXP</a>, and <a href="lang_expr.html#match">MATCH</a>) reverse
the order of their arguments. So "like(A,B)" would normally work the same
as "B like A".
However, xFindFunction() always looks a the left-most argument, not
the first logical argument.
Hence, for the form "B like A", SQLite looks at the
left operand "B" and if that operand is a virtual table column
it invokes the xFindFunction() method on that virtual table.
But if the form "like(A,B)" is used instead, then SQLite checks
the A term to see if it is column of a virtual table and if so
it invokes the xFindFunction() method for the virtual table of
column A.
</p><p>The function pointer returned by this routine must be valid for
the lifetime of the <a href="c3ref/vtab.html">sqlite3_vtab</a> object given in the first parameter.
<a name="xBegin"></a>
</p><h2 id="the_xbegin_method"><span>2.15. </span>The xBegin Method</h2>
<div class="codeblock"><pre>int (*xBegin)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method begins a transaction on a virtual table.
This is method is optional. The xBegin pointer of <a href="c3ref/module.html">sqlite3_module</a>
may be NULL.
</p><p>This method is always followed by one call to either the
<a href="vtab.html#xcommit">xCommit</a> or <a href="vtab.html#xrollback">xRollback</a> method. Virtual table transactions do
not nest, so the xBegin method will not be invoked more than once
on a single virtual table
without an intervening call to either <a href="vtab.html#xcommit">xCommit</a> or <a href="vtab.html#xrollback">xRollback</a>.
Multiple calls to other methods can and likely will occur in between
the xBegin and the corresponding <a href="vtab.html#xcommit">xCommit</a> or <a href="vtab.html#xrollback">xRollback</a>.
<a name="xsync"></a>
</p><h2 id="the_xsync_method"><span>2.16. </span>The xSync Method</h2>
<div class="codeblock"><pre>int (*xSync)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method signals the start of a two-phase commit on a virtual
table.
This is method is optional. The xSync pointer of <a href="c3ref/module.html">sqlite3_module</a>
may be NULL.
</p><p>This method is only invoked after call to the <a href="vtab.html#xBegin">xBegin</a> method and
prior to an <a href="vtab.html#xcommit">xCommit</a> or <a href="vtab.html#xrollback">xRollback</a>. In order to implement two-phase
commit, the xSync method on all virtual tables is invoked prior to
invoking the <a href="vtab.html#xcommit">xCommit</a> method on any virtual table. If any of the
xSync methods fail, the entire transaction is rolled back.
<a name="xcommit"></a>
</p><h2 id="the_xcommit_method"><span>2.17. </span>The xCommit Method</h2>
<div class="codeblock"><pre>int (*xCommit)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method causes a virtual table transaction to commit.
This is method is optional. The xCommit pointer of <a href="c3ref/module.html">sqlite3_module</a>
may be NULL.
</p><p>A call to this method always follows a prior call to <a href="vtab.html#xBegin">xBegin</a> and
<a href="vtab.html#xsync">xSync</a>.
<a name="xrollback"></a>
</p><h2 id="the_xrollback_method"><span>2.18. </span>The xRollback Method</h2>
<div class="codeblock"><pre>int (*xRollback)(sqlite3_vtab *pVTab);
</pre></div>
<p>This method causes a virtual table transaction to rollback.
This is method is optional. The xRollback pointer of <a href="c3ref/module.html">sqlite3_module</a>
may be NULL.
</p><p>A call to this method always follows a prior call to <a href="vtab.html#xBegin">xBegin</a>.
<a name="xrename"></a>
</p><h2 id="the_xrename_method"><span>2.19. </span>The xRename Method</h2>
<div class="codeblock"><pre>int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
</pre></div>
<p>This method provides notification that the virtual table implementation
that the virtual table will be given a new name.
If this method returns <a href="rescode.html#ok">SQLITE_OK</a> then SQLite renames the table.
If this method returns an <a href="rescode.html">error code</a> then the renaming is prevented.
</p><p>The xRename method is optional. If omitted, then the virtual
table may not be renamed using the ALTER TABLE RENAME command.
</p><p>The <a href="pragma.html#pragma_legacy_alter_table">PRAGMA legacy_alter_table</a> setting is enabled prior to invoking this
method, and the value for legacy_alter_table is restored after this
method finishes. This is necessary for the correct operation of virtual
tables that make use of <a href="vtab.html#xshadowname">shadow tables</a> where the shadow tables must be
renamed to match the new virtual table name. If the legacy_alter_format is
off, then the xConnect method will be invoked for the virtual table every
time the xRename method tries to change the name of the shadow table.
<a name="xsavepoint"></a>
</p><h2 id="the_xsavepoint_xrelease_and_xrollbackto_methods"><span>2.20. </span>The xSavepoint, xRelease, and xRollbackTo Methods</h2>
<div class="codeblock"><pre>int (*xSavepoint)(sqlite3_vtab *pVtab, int);
int (*xRelease)(sqlite3_vtab *pVtab, int);
int (*xRollbackTo)(sqlite3_vtab *pVtab, int);
</pre></div>
<p>
These methods provide the virtual table implementation an opportunity to
implement nested transactions. They are always optional and will only be
called in SQLite <a href="releaselog/3_7_7.html">version 3.7.7</a> (2011-06-23) and later.
</p>
<p>
When xSavepoint(X,N) is invoked, that is a signal to the virtual table X
that it should save its current state as savepoint N.
A subsequent call
to xRollbackTo(X,R) means that the state of the virtual table should return
to what it was when xSavepoint(X,R) was last called.
The call
to xRollbackTo(X,R) will invalidate all savepoints with N>R; none of the
invalided savepoints will be rolled back or released without first
being reinitialized by a call to xSavepoint().
A call to xRelease(X,M) invalidates all savepoints where N>=M.
</p>
<p>
None of the xSavepoint(), xRelease(), or xRollbackTo() methods will ever
be called except in between calls to xBegin() and
either xCommit() or xRollback().
</p>
<a name="xshadowname"></a>
<h2 id="the_xshadowname_method"><span>2.21. </span>The xShadowName Method</h2>
<p>Some virtual table implementations (ex: <a href="fts3.html">FTS3</a>, <a href="fts5.html">FTS5</a>, and <a href="rtree.html">RTREE</a>) make
use of real (non-virtual) database tables to store content. For example,
when content is inserted into the FTS3 virtual table, the data is ultimately
stored in real tables named "%_content", "%_segdir", "%_segments", "%_stat",
and "%_docsize" where "%" is the name of the original virtual table. This
auxiliary real tables that store content for a virtual table are called
"shadow tables". See
(<a href="fts3.html#*shadowtab">1</a>),
(<a href="fts5.html#fts5shadowtables">2</a>), and
(<a href="rtree.html#xshadow">3</a>) for additional information.
</p><p>The xShadowName method exists to allow SQLite to determine whether a
certain real table is in fact a shadow table for a virtual table.
</p><p>SQLite understands a real table to be a shadow table if all of
the following are true:
</p><p>
</p><ul>
<li> The name of the table contains one or more "_" characters.
</li><li> The part of the name prior to the last "_" exactly matches
the name of a virtual table that was created using <a href="lang_createvtab.html">CREATE VIRTUAL TABLE</a>.
(Shadow tables are not recognized for <a href="vtab.html#epovtab">eponymous virtual tables</a>
and <a href="vtab.html#tabfunc2">table-valued functions</a>.)
</li><li> The virtual table contains an xShadowName method.
</li><li> The xShadowName method returns true when its input is the part
of the table name past the last "_" character.
</li></ul>
<p>
If SQLite recognizes a table as a shadow table, and if the
<a href="c3ref/c_dbconfig_defensive.html#sqlitedbconfigdefensive">SQLITE_DBCONFIG_DEFENSIVE</a> flag is set, then the shadow table is read-only
for ordinary SQL statements. The shadow table can still be written, but
only by SQL that is invoked from within one of the methods of
some virtual table implementation.
</p><p>
The whole point of the xShadowName method is to protect the content of
shadow tables from being corrupted by hostile SQL. Every virtual table
implementation that uses shadow tables should be able to detect and cope
with corrupted shadow table content. However, bugs in particular virtual
table implementation might allow a deliberately corrupted shadow table to
cause a crash or other malfunction. The xShadowName mechanism seeks to
avoid zero-day exploits by preventing ordinary SQL statements from
deliberately corrupting shadow tables.
</p><p>
Shadow tables are read/write by default.
Shadow tables only become read-only when the <a href="c3ref/c_dbconfig_defensive.html#sqlitedbconfigdefensive">SQLITE_DBCONFIG_DEFENSIVE</a>
flag is set using <a href="c3ref/db_config.html">sqlite3_db_config()</a>.
Shadow tables need to be read/write by default in order to maintain
backwards compatibility.
For example, the SQL text generated by the <a href="cli.html#dump">.dump</a> command of the <a href="cli.html">CLI</a>
writes directly into shadow tables.
<a name="xintegrity"></a>
</p><h2 id="the_xintegrity_method"><span>2.22. </span>The xIntegrity Method</h2>
<p>
If the iVersion for an sqlite3_module is 4 or more and the xIntegrity
method is not NULL, then the <a href="pragma.html#pragma_integrity_check">PRAGMA integrity_check</a> and
<a href="pragma.html#pragma_quick_check">PRAGMA quick_check</a> commands will invoke
xIntegrity as part of its processing. If the xIntegrity method writes
an error message string into the fifth parameter, then PRAGMA integrity_check
will report that error as part of its output. So, in other words, the
xIntegrity method allows the <a href="pragma.html#pragma_integrity_check">PRAGMA integrity_check</a> command to verify
the integrity of content stored in a virtual table.
</p><p>
The xIntegrity method is called with five parameters:
</p><ul>
<li><b>pVTab</b> → A pointer to the <a href="c3ref/vtab.html">sqlite3_vtab</a> object that is the
virtual table being checked.
</li><li><b>zSchema</b> → The name of the schema ("main", "temp", etc.) in which
the virtual table is defined.
</li><li><b>zTabName</b> → The name of the virtual table.
</li><li><b>mFlags</b> → A flag to indicate whether this is an "integrity_check"
or a "quick_check". Currently, this parameter will always be either 0 or 1,
though future versions of SQLite might use other bits of the integer to
indicate additional processing options.
</li><li><b>pzErr</b> → This parameter points to a "char*" that is initialized
to NULL. The xIntegrity() implementation should make *pzErr point to
an error string obtained from sqlite3_malloc() or equivalent if it finds
any problems.
</li></ul>
<p>
The xIntegrity method should normally return SQLITE_OK - even if it finds
problems in the content of the virtual table. Any other error code
means that the xIntegrity method itself encountered problems while trying
to evaluate the virtual table content. So, for example, if the inverted
index for <a href="fts5.html">FTS5</a> is found to be internally inconsistent, then the xIntegrity
method should write an appropriate error message into the pzErr parameter
and return SQLITE_OK. But if the xIntegrity method is unable to complete its
evaluation of the virtual table content due to running out of memory, then
it should return SQLITE_NOMEM.
</p><p>
If an error message is generated,
space to hold the error message string should be obtained from <a href="c3ref/free.html">sqlite3_malloc64()</a>
or the equivalent. Ownership of the error message string will pass to the
SQLite core when xIntegrity returns. The core will make sure that
<a href="c3ref/free.html">sqlite3_free()</a> is invoked to reclaim the memory which it has finished
with the error message. The PRAGMA integrity_check command that invokes the
xIntegrity method does not change the returned error message. The xIntegrity
method itself should include the name of the virtual table as part of the
message. The zSchema and zName parameters are provided to make that easier.
</p><p>
The mFlags parameter is currently a boolean value (either 0 or 1) that indicates
if the xIntegrity method was called due to <a href="pragma.html#pragma_integrity_check">PRAGMA integrity_check</a> (mFlags==0)
or due to <a href="pragma.html#pragma_quick_check">PRAGMA quick_check</a> (mFlags==1). Generally speaking, the xIntegrity
method should do whatever validity checking it can accomplish in linear time
regardless, but only do checking that requires superlinear time if
<tt>(mFlags&1)==0</tt>. Future versions of SQLite might
use higher-order bits of the mFlags parameter to indicate additional
processing options.
</p><p>
Support for the
xIntegrity method was added in SQLite version 3.44.0 (2023-11-01).
In that same release, the xIntegrity method was added to many built-in
virtual tables, such as <a href="fts3.html">FTS3</a>, <a href="fts5.html">FTS5</a>, and <a href="rtree.html">RTREE</a> so that the content
of those tables will henceforth be automatically checked for consistency
when <a href="pragma.html#pragma_integrity_check">PRAGMA integrity_check</a> is run.
</p>
|