diff options
Diffstat (limited to 'rust/vendor/num-bigint-0.2.6/src/biguint.rs')
-rw-r--r-- | rust/vendor/num-bigint-0.2.6/src/biguint.rs | 3106 |
1 files changed, 3106 insertions, 0 deletions
diff --git a/rust/vendor/num-bigint-0.2.6/src/biguint.rs b/rust/vendor/num-bigint-0.2.6/src/biguint.rs new file mode 100644 index 0000000..6836342 --- /dev/null +++ b/rust/vendor/num-bigint-0.2.6/src/biguint.rs @@ -0,0 +1,3106 @@ +#[allow(deprecated, unused_imports)] +use std::ascii::AsciiExt; +use std::borrow::Cow; +use std::cmp; +use std::cmp::Ordering::{self, Equal, Greater, Less}; +use std::default::Default; +use std::fmt; +use std::iter::{Product, Sum}; +use std::mem; +use std::ops::{ + Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign, + Mul, MulAssign, Neg, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign, +}; +use std::str::{self, FromStr}; +use std::{f32, f64}; +use std::{u64, u8}; + +#[cfg(feature = "serde")] +use serde; + +use integer::{Integer, Roots}; +use traits::{ + CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, Float, FromPrimitive, Num, One, Pow, + ToPrimitive, Unsigned, Zero, +}; + +use big_digit::{self, BigDigit}; + +#[path = "algorithms.rs"] +mod algorithms; +#[path = "monty.rs"] +mod monty; + +use self::algorithms::{__add2, __sub2rev, add2, sub2, sub2rev}; +use self::algorithms::{biguint_shl, biguint_shr}; +use self::algorithms::{cmp_slice, fls, ilog2}; +use self::algorithms::{div_rem, div_rem_digit, div_rem_ref, rem_digit}; +use self::algorithms::{mac_with_carry, mul3, scalar_mul}; +use self::monty::monty_modpow; + +use UsizePromotion; + +use ParseBigIntError; + +#[cfg(feature = "quickcheck")] +use quickcheck::{Arbitrary, Gen}; + +/// A big unsigned integer type. +#[derive(Clone, Debug, Hash)] +pub struct BigUint { + data: Vec<BigDigit>, +} + +#[cfg(feature = "quickcheck")] +impl Arbitrary for BigUint { + fn arbitrary<G: Gen>(g: &mut G) -> Self { + // Use arbitrary from Vec + Self::new(Vec::<u32>::arbitrary(g)) + } + + #[allow(bare_trait_objects)] // `dyn` needs Rust 1.27 to parse, even when cfg-disabled + fn shrink(&self) -> Box<Iterator<Item = Self>> { + // Use shrinker from Vec + Box::new(self.data.shrink().map(BigUint::new)) + } +} + +impl PartialEq for BigUint { + #[inline] + fn eq(&self, other: &BigUint) -> bool { + match self.cmp(other) { + Equal => true, + _ => false, + } + } +} +impl Eq for BigUint {} + +impl PartialOrd for BigUint { + #[inline] + fn partial_cmp(&self, other: &BigUint) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +impl Ord for BigUint { + #[inline] + fn cmp(&self, other: &BigUint) -> Ordering { + cmp_slice(&self.data[..], &other.data[..]) + } +} + +impl Default for BigUint { + #[inline] + fn default() -> BigUint { + Zero::zero() + } +} + +impl fmt::Display for BigUint { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(true, "", &self.to_str_radix(10)) + } +} + +impl fmt::LowerHex for BigUint { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(true, "0x", &self.to_str_radix(16)) + } +} + +impl fmt::UpperHex for BigUint { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let mut s = self.to_str_radix(16); + s.make_ascii_uppercase(); + f.pad_integral(true, "0x", &s) + } +} + +impl fmt::Binary for BigUint { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(true, "0b", &self.to_str_radix(2)) + } +} + +impl fmt::Octal for BigUint { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.pad_integral(true, "0o", &self.to_str_radix(8)) + } +} + +impl FromStr for BigUint { + type Err = ParseBigIntError; + + #[inline] + fn from_str(s: &str) -> Result<BigUint, ParseBigIntError> { + BigUint::from_str_radix(s, 10) + } +} + +// Convert from a power of two radix (bits == ilog2(radix)) where bits evenly divides +// BigDigit::BITS +fn from_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint { + debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits == 0); + debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits))); + + let digits_per_big_digit = big_digit::BITS / bits; + + let data = v + .chunks(digits_per_big_digit) + .map(|chunk| { + chunk + .iter() + .rev() + .fold(0, |acc, &c| (acc << bits) | BigDigit::from(c)) + }) + .collect(); + + BigUint::new(data) +} + +// Convert from a power of two radix (bits == ilog2(radix)) where bits doesn't evenly divide +// BigDigit::BITS +fn from_inexact_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint { + debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits != 0); + debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits))); + + let big_digits = (v.len() * bits + big_digit::BITS - 1) / big_digit::BITS; + let mut data = Vec::with_capacity(big_digits); + + let mut d = 0; + let mut dbits = 0; // number of bits we currently have in d + + // walk v accumululating bits in d; whenever we accumulate big_digit::BITS in d, spit out a + // big_digit: + for &c in v { + d |= BigDigit::from(c) << dbits; + dbits += bits; + + if dbits >= big_digit::BITS { + data.push(d); + dbits -= big_digit::BITS; + // if dbits was > big_digit::BITS, we dropped some of the bits in c (they couldn't fit + // in d) - grab the bits we lost here: + d = BigDigit::from(c) >> (bits - dbits); + } + } + + if dbits > 0 { + debug_assert!(dbits < big_digit::BITS); + data.push(d as BigDigit); + } + + BigUint::new(data) +} + +// Read little-endian radix digits +fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint { + debug_assert!(!v.is_empty() && !radix.is_power_of_two()); + debug_assert!(v.iter().all(|&c| u32::from(c) < radix)); + + // Estimate how big the result will be, so we can pre-allocate it. + let bits = f64::from(radix).log2() * v.len() as f64; + let big_digits = (bits / big_digit::BITS as f64).ceil(); + let mut data = Vec::with_capacity(big_digits as usize); + + let (base, power) = get_radix_base(radix); + let radix = radix as BigDigit; + + let r = v.len() % power; + let i = if r == 0 { power } else { r }; + let (head, tail) = v.split_at(i); + + let first = head + .iter() + .fold(0, |acc, &d| acc * radix + BigDigit::from(d)); + data.push(first); + + debug_assert!(tail.len() % power == 0); + for chunk in tail.chunks(power) { + if data.last() != Some(&0) { + data.push(0); + } + + let mut carry = 0; + for d in data.iter_mut() { + *d = mac_with_carry(0, *d, base, &mut carry); + } + debug_assert!(carry == 0); + + let n = chunk + .iter() + .fold(0, |acc, &d| acc * radix + BigDigit::from(d)); + add2(&mut data, &[n]); + } + + BigUint::new(data) +} + +impl Num for BigUint { + type FromStrRadixErr = ParseBigIntError; + + /// Creates and initializes a `BigUint`. + fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> { + assert!(2 <= radix && radix <= 36, "The radix must be within 2...36"); + let mut s = s; + if s.starts_with('+') { + let tail = &s[1..]; + if !tail.starts_with('+') { + s = tail + } + } + + if s.is_empty() { + return Err(ParseBigIntError::empty()); + } + + if s.starts_with('_') { + // Must lead with a real digit! + return Err(ParseBigIntError::invalid()); + } + + // First normalize all characters to plain digit values + let mut v = Vec::with_capacity(s.len()); + for b in s.bytes() { + #[allow(unknown_lints, ellipsis_inclusive_range_patterns)] + let d = match b { + b'0'...b'9' => b - b'0', + b'a'...b'z' => b - b'a' + 10, + b'A'...b'Z' => b - b'A' + 10, + b'_' => continue, + _ => u8::MAX, + }; + if d < radix as u8 { + v.push(d); + } else { + return Err(ParseBigIntError::invalid()); + } + } + + let res = if radix.is_power_of_two() { + // Powers of two can use bitwise masks and shifting instead of multiplication + let bits = ilog2(radix); + v.reverse(); + if big_digit::BITS % bits == 0 { + from_bitwise_digits_le(&v, bits) + } else { + from_inexact_bitwise_digits_le(&v, bits) + } + } else { + from_radix_digits_be(&v, radix) + }; + Ok(res) + } +} + +forward_val_val_binop!(impl BitAnd for BigUint, bitand); +forward_ref_val_binop!(impl BitAnd for BigUint, bitand); + +// do not use forward_ref_ref_binop_commutative! for bitand so that we can +// clone the smaller value rather than the larger, avoiding over-allocation +impl<'a, 'b> BitAnd<&'b BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn bitand(self, other: &BigUint) -> BigUint { + // forward to val-ref, choosing the smaller to clone + if self.data.len() <= other.data.len() { + self.clone() & other + } else { + other.clone() & self + } + } +} + +forward_val_assign!(impl BitAndAssign for BigUint, bitand_assign); + +impl<'a> BitAnd<&'a BigUint> for BigUint { + type Output = BigUint; + + #[inline] + fn bitand(mut self, other: &BigUint) -> BigUint { + self &= other; + self + } +} +impl<'a> BitAndAssign<&'a BigUint> for BigUint { + #[inline] + fn bitand_assign(&mut self, other: &BigUint) { + for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) { + *ai &= bi; + } + self.data.truncate(other.data.len()); + self.normalize(); + } +} + +forward_all_binop_to_val_ref_commutative!(impl BitOr for BigUint, bitor); +forward_val_assign!(impl BitOrAssign for BigUint, bitor_assign); + +impl<'a> BitOr<&'a BigUint> for BigUint { + type Output = BigUint; + + fn bitor(mut self, other: &BigUint) -> BigUint { + self |= other; + self + } +} +impl<'a> BitOrAssign<&'a BigUint> for BigUint { + #[inline] + fn bitor_assign(&mut self, other: &BigUint) { + for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) { + *ai |= bi; + } + if other.data.len() > self.data.len() { + let extra = &other.data[self.data.len()..]; + self.data.extend(extra.iter().cloned()); + } + } +} + +forward_all_binop_to_val_ref_commutative!(impl BitXor for BigUint, bitxor); +forward_val_assign!(impl BitXorAssign for BigUint, bitxor_assign); + +impl<'a> BitXor<&'a BigUint> for BigUint { + type Output = BigUint; + + fn bitxor(mut self, other: &BigUint) -> BigUint { + self ^= other; + self + } +} +impl<'a> BitXorAssign<&'a BigUint> for BigUint { + #[inline] + fn bitxor_assign(&mut self, other: &BigUint) { + for (ai, &bi) in self.data.iter_mut().zip(other.data.iter()) { + *ai ^= bi; + } + if other.data.len() > self.data.len() { + let extra = &other.data[self.data.len()..]; + self.data.extend(extra.iter().cloned()); + } + self.normalize(); + } +} + +impl Shl<usize> for BigUint { + type Output = BigUint; + + #[inline] + fn shl(self, rhs: usize) -> BigUint { + biguint_shl(Cow::Owned(self), rhs) + } +} +impl<'a> Shl<usize> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn shl(self, rhs: usize) -> BigUint { + biguint_shl(Cow::Borrowed(self), rhs) + } +} + +impl ShlAssign<usize> for BigUint { + #[inline] + fn shl_assign(&mut self, rhs: usize) { + let n = mem::replace(self, BigUint::zero()); + *self = n << rhs; + } +} + +impl Shr<usize> for BigUint { + type Output = BigUint; + + #[inline] + fn shr(self, rhs: usize) -> BigUint { + biguint_shr(Cow::Owned(self), rhs) + } +} +impl<'a> Shr<usize> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn shr(self, rhs: usize) -> BigUint { + biguint_shr(Cow::Borrowed(self), rhs) + } +} + +impl ShrAssign<usize> for BigUint { + #[inline] + fn shr_assign(&mut self, rhs: usize) { + let n = mem::replace(self, BigUint::zero()); + *self = n >> rhs; + } +} + +impl Zero for BigUint { + #[inline] + fn zero() -> BigUint { + BigUint::new(Vec::new()) + } + + #[inline] + fn set_zero(&mut self) { + self.data.clear(); + } + + #[inline] + fn is_zero(&self) -> bool { + self.data.is_empty() + } +} + +impl One for BigUint { + #[inline] + fn one() -> BigUint { + BigUint::new(vec![1]) + } + + #[inline] + fn set_one(&mut self) { + self.data.clear(); + self.data.push(1); + } + + #[inline] + fn is_one(&self) -> bool { + self.data[..] == [1] + } +} + +impl Unsigned for BigUint {} + +impl<'a> Pow<BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn pow(self, exp: BigUint) -> Self::Output { + self.pow(&exp) + } +} + +impl<'a, 'b> Pow<&'b BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn pow(self, exp: &BigUint) -> Self::Output { + if self.is_one() || exp.is_zero() { + BigUint::one() + } else if self.is_zero() { + BigUint::zero() + } else if let Some(exp) = exp.to_u64() { + self.pow(exp) + } else { + // At this point, `self >= 2` and `exp >= 2⁶⁴`. The smallest possible result + // given `2.pow(2⁶⁴)` would take 2.3 exabytes of memory! + panic!("memory overflow") + } + } +} + +macro_rules! pow_impl { + ($T:ty) => { + impl<'a> Pow<$T> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn pow(self, mut exp: $T) -> Self::Output { + if exp == 0 { + return BigUint::one(); + } + let mut base = self.clone(); + + while exp & 1 == 0 { + base = &base * &base; + exp >>= 1; + } + + if exp == 1 { + return base; + } + + let mut acc = base.clone(); + while exp > 1 { + exp >>= 1; + base = &base * &base; + if exp & 1 == 1 { + acc = &acc * &base; + } + } + acc + } + } + + impl<'a, 'b> Pow<&'b $T> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn pow(self, exp: &$T) -> Self::Output { + self.pow(*exp) + } + } + }; +} + +pow_impl!(u8); +pow_impl!(u16); +pow_impl!(u32); +pow_impl!(u64); +pow_impl!(usize); +#[cfg(has_i128)] +pow_impl!(u128); + +forward_all_binop_to_val_ref_commutative!(impl Add for BigUint, add); +forward_val_assign!(impl AddAssign for BigUint, add_assign); + +impl<'a> Add<&'a BigUint> for BigUint { + type Output = BigUint; + + fn add(mut self, other: &BigUint) -> BigUint { + self += other; + self + } +} +impl<'a> AddAssign<&'a BigUint> for BigUint { + #[inline] + fn add_assign(&mut self, other: &BigUint) { + let self_len = self.data.len(); + let carry = if self_len < other.data.len() { + let lo_carry = __add2(&mut self.data[..], &other.data[..self_len]); + self.data.extend_from_slice(&other.data[self_len..]); + __add2(&mut self.data[self_len..], &[lo_carry]) + } else { + __add2(&mut self.data[..], &other.data[..]) + }; + if carry != 0 { + self.data.push(carry); + } + } +} + +promote_unsigned_scalars!(impl Add for BigUint, add); +promote_unsigned_scalars_assign!(impl AddAssign for BigUint, add_assign); +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u32> for BigUint, add); +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u64> for BigUint, add); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Add<u128> for BigUint, add); + +impl Add<u32> for BigUint { + type Output = BigUint; + + #[inline] + fn add(mut self, other: u32) -> BigUint { + self += other; + self + } +} + +impl AddAssign<u32> for BigUint { + #[inline] + fn add_assign(&mut self, other: u32) { + if other != 0 { + if self.data.is_empty() { + self.data.push(0); + } + + let carry = __add2(&mut self.data, &[other as BigDigit]); + if carry != 0 { + self.data.push(carry); + } + } + } +} + +impl Add<u64> for BigUint { + type Output = BigUint; + + #[inline] + fn add(mut self, other: u64) -> BigUint { + self += other; + self + } +} + +impl AddAssign<u64> for BigUint { + #[inline] + fn add_assign(&mut self, other: u64) { + let (hi, lo) = big_digit::from_doublebigdigit(other); + if hi == 0 { + *self += lo; + } else { + while self.data.len() < 2 { + self.data.push(0); + } + + let carry = __add2(&mut self.data, &[lo, hi]); + if carry != 0 { + self.data.push(carry); + } + } + } +} + +#[cfg(has_i128)] +impl Add<u128> for BigUint { + type Output = BigUint; + + #[inline] + fn add(mut self, other: u128) -> BigUint { + self += other; + self + } +} + +#[cfg(has_i128)] +impl AddAssign<u128> for BigUint { + #[inline] + fn add_assign(&mut self, other: u128) { + if other <= u128::from(u64::max_value()) { + *self += other as u64 + } else { + let (a, b, c, d) = u32_from_u128(other); + let carry = if a > 0 { + while self.data.len() < 4 { + self.data.push(0); + } + __add2(&mut self.data, &[d, c, b, a]) + } else { + debug_assert!(b > 0); + while self.data.len() < 3 { + self.data.push(0); + } + __add2(&mut self.data, &[d, c, b]) + }; + + if carry != 0 { + self.data.push(carry); + } + } + } +} + +forward_val_val_binop!(impl Sub for BigUint, sub); +forward_ref_ref_binop!(impl Sub for BigUint, sub); +forward_val_assign!(impl SubAssign for BigUint, sub_assign); + +impl<'a> Sub<&'a BigUint> for BigUint { + type Output = BigUint; + + fn sub(mut self, other: &BigUint) -> BigUint { + self -= other; + self + } +} +impl<'a> SubAssign<&'a BigUint> for BigUint { + fn sub_assign(&mut self, other: &'a BigUint) { + sub2(&mut self.data[..], &other.data[..]); + self.normalize(); + } +} + +impl<'a> Sub<BigUint> for &'a BigUint { + type Output = BigUint; + + fn sub(self, mut other: BigUint) -> BigUint { + let other_len = other.data.len(); + if other_len < self.data.len() { + let lo_borrow = __sub2rev(&self.data[..other_len], &mut other.data); + other.data.extend_from_slice(&self.data[other_len..]); + if lo_borrow != 0 { + sub2(&mut other.data[other_len..], &[1]) + } + } else { + sub2rev(&self.data[..], &mut other.data[..]); + } + other.normalized() + } +} + +promote_unsigned_scalars!(impl Sub for BigUint, sub); +promote_unsigned_scalars_assign!(impl SubAssign for BigUint, sub_assign); +forward_all_scalar_binop_to_val_val!(impl Sub<u32> for BigUint, sub); +forward_all_scalar_binop_to_val_val!(impl Sub<u64> for BigUint, sub); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Sub<u128> for BigUint, sub); + +impl Sub<u32> for BigUint { + type Output = BigUint; + + #[inline] + fn sub(mut self, other: u32) -> BigUint { + self -= other; + self + } +} +impl SubAssign<u32> for BigUint { + fn sub_assign(&mut self, other: u32) { + sub2(&mut self.data[..], &[other as BigDigit]); + self.normalize(); + } +} + +impl Sub<BigUint> for u32 { + type Output = BigUint; + + #[inline] + fn sub(self, mut other: BigUint) -> BigUint { + if other.data.is_empty() { + other.data.push(self as BigDigit); + } else { + sub2rev(&[self as BigDigit], &mut other.data[..]); + } + other.normalized() + } +} + +impl Sub<u64> for BigUint { + type Output = BigUint; + + #[inline] + fn sub(mut self, other: u64) -> BigUint { + self -= other; + self + } +} + +impl SubAssign<u64> for BigUint { + #[inline] + fn sub_assign(&mut self, other: u64) { + let (hi, lo) = big_digit::from_doublebigdigit(other); + sub2(&mut self.data[..], &[lo, hi]); + self.normalize(); + } +} + +impl Sub<BigUint> for u64 { + type Output = BigUint; + + #[inline] + fn sub(self, mut other: BigUint) -> BigUint { + while other.data.len() < 2 { + other.data.push(0); + } + + let (hi, lo) = big_digit::from_doublebigdigit(self); + sub2rev(&[lo, hi], &mut other.data[..]); + other.normalized() + } +} + +#[cfg(has_i128)] +impl Sub<u128> for BigUint { + type Output = BigUint; + + #[inline] + fn sub(mut self, other: u128) -> BigUint { + self -= other; + self + } +} +#[cfg(has_i128)] +impl SubAssign<u128> for BigUint { + fn sub_assign(&mut self, other: u128) { + let (a, b, c, d) = u32_from_u128(other); + sub2(&mut self.data[..], &[d, c, b, a]); + self.normalize(); + } +} + +#[cfg(has_i128)] +impl Sub<BigUint> for u128 { + type Output = BigUint; + + #[inline] + fn sub(self, mut other: BigUint) -> BigUint { + while other.data.len() < 4 { + other.data.push(0); + } + + let (a, b, c, d) = u32_from_u128(self); + sub2rev(&[d, c, b, a], &mut other.data[..]); + other.normalized() + } +} + +forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul); +forward_val_assign!(impl MulAssign for BigUint, mul_assign); + +impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn mul(self, other: &BigUint) -> BigUint { + mul3(&self.data[..], &other.data[..]) + } +} +impl<'a> MulAssign<&'a BigUint> for BigUint { + #[inline] + fn mul_assign(&mut self, other: &'a BigUint) { + *self = &*self * other + } +} + +promote_unsigned_scalars!(impl Mul for BigUint, mul); +promote_unsigned_scalars_assign!(impl MulAssign for BigUint, mul_assign); +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigUint, mul); +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigUint, mul); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigUint, mul); + +impl Mul<u32> for BigUint { + type Output = BigUint; + + #[inline] + fn mul(mut self, other: u32) -> BigUint { + self *= other; + self + } +} +impl MulAssign<u32> for BigUint { + #[inline] + fn mul_assign(&mut self, other: u32) { + if other == 0 { + self.data.clear(); + } else { + let carry = scalar_mul(&mut self.data[..], other as BigDigit); + if carry != 0 { + self.data.push(carry); + } + } + } +} + +impl Mul<u64> for BigUint { + type Output = BigUint; + + #[inline] + fn mul(mut self, other: u64) -> BigUint { + self *= other; + self + } +} +impl MulAssign<u64> for BigUint { + #[inline] + fn mul_assign(&mut self, other: u64) { + if other == 0 { + self.data.clear(); + } else if other <= u64::from(BigDigit::max_value()) { + *self *= other as BigDigit + } else { + let (hi, lo) = big_digit::from_doublebigdigit(other); + *self = mul3(&self.data[..], &[lo, hi]) + } + } +} + +#[cfg(has_i128)] +impl Mul<u128> for BigUint { + type Output = BigUint; + + #[inline] + fn mul(mut self, other: u128) -> BigUint { + self *= other; + self + } +} +#[cfg(has_i128)] +impl MulAssign<u128> for BigUint { + #[inline] + fn mul_assign(&mut self, other: u128) { + if other == 0 { + self.data.clear(); + } else if other <= u128::from(BigDigit::max_value()) { + *self *= other as BigDigit + } else { + let (a, b, c, d) = u32_from_u128(other); + *self = mul3(&self.data[..], &[d, c, b, a]) + } + } +} + +forward_val_ref_binop!(impl Div for BigUint, div); +forward_ref_val_binop!(impl Div for BigUint, div); +forward_val_assign!(impl DivAssign for BigUint, div_assign); + +impl Div<BigUint> for BigUint { + type Output = BigUint; + + #[inline] + fn div(self, other: BigUint) -> BigUint { + let (q, _) = div_rem(self, other); + q + } +} + +impl<'a, 'b> Div<&'b BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn div(self, other: &BigUint) -> BigUint { + let (q, _) = self.div_rem(other); + q + } +} +impl<'a> DivAssign<&'a BigUint> for BigUint { + #[inline] + fn div_assign(&mut self, other: &'a BigUint) { + *self = &*self / other; + } +} + +promote_unsigned_scalars!(impl Div for BigUint, div); +promote_unsigned_scalars_assign!(impl DivAssign for BigUint, div_assign); +forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigUint, div); +forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigUint, div); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigUint, div); + +impl Div<u32> for BigUint { + type Output = BigUint; + + #[inline] + fn div(self, other: u32) -> BigUint { + let (q, _) = div_rem_digit(self, other as BigDigit); + q + } +} +impl DivAssign<u32> for BigUint { + #[inline] + fn div_assign(&mut self, other: u32) { + *self = &*self / other; + } +} + +impl Div<BigUint> for u32 { + type Output = BigUint; + + #[inline] + fn div(self, other: BigUint) -> BigUint { + match other.data.len() { + 0 => panic!(), + 1 => From::from(self as BigDigit / other.data[0]), + _ => Zero::zero(), + } + } +} + +impl Div<u64> for BigUint { + type Output = BigUint; + + #[inline] + fn div(self, other: u64) -> BigUint { + let (q, _) = div_rem(self, From::from(other)); + q + } +} +impl DivAssign<u64> for BigUint { + #[inline] + fn div_assign(&mut self, other: u64) { + // a vec of size 0 does not allocate, so this is fairly cheap + let temp = mem::replace(self, Zero::zero()); + *self = temp / other; + } +} + +impl Div<BigUint> for u64 { + type Output = BigUint; + + #[inline] + fn div(self, other: BigUint) -> BigUint { + match other.data.len() { + 0 => panic!(), + 1 => From::from(self / u64::from(other.data[0])), + 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])), + _ => Zero::zero(), + } + } +} + +#[cfg(has_i128)] +impl Div<u128> for BigUint { + type Output = BigUint; + + #[inline] + fn div(self, other: u128) -> BigUint { + let (q, _) = div_rem(self, From::from(other)); + q + } +} +#[cfg(has_i128)] +impl DivAssign<u128> for BigUint { + #[inline] + fn div_assign(&mut self, other: u128) { + *self = &*self / other; + } +} + +#[cfg(has_i128)] +impl Div<BigUint> for u128 { + type Output = BigUint; + + #[inline] + fn div(self, other: BigUint) -> BigUint { + match other.data.len() { + 0 => panic!(), + 1 => From::from(self / u128::from(other.data[0])), + 2 => From::from( + self / u128::from(big_digit::to_doublebigdigit(other.data[1], other.data[0])), + ), + 3 => From::from(self / u32_to_u128(0, other.data[2], other.data[1], other.data[0])), + 4 => From::from( + self / u32_to_u128(other.data[3], other.data[2], other.data[1], other.data[0]), + ), + _ => Zero::zero(), + } + } +} + +forward_val_ref_binop!(impl Rem for BigUint, rem); +forward_ref_val_binop!(impl Rem for BigUint, rem); +forward_val_assign!(impl RemAssign for BigUint, rem_assign); + +impl Rem<BigUint> for BigUint { + type Output = BigUint; + + #[inline] + fn rem(self, other: BigUint) -> BigUint { + let (_, r) = div_rem(self, other); + r + } +} + +impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn rem(self, other: &BigUint) -> BigUint { + let (_, r) = self.div_rem(other); + r + } +} +impl<'a> RemAssign<&'a BigUint> for BigUint { + #[inline] + fn rem_assign(&mut self, other: &BigUint) { + *self = &*self % other; + } +} + +promote_unsigned_scalars!(impl Rem for BigUint, rem); +promote_unsigned_scalars_assign!(impl RemAssign for BigUint, rem_assign); +forward_all_scalar_binop_to_ref_val!(impl Rem<u32> for BigUint, rem); +forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigUint, rem); +#[cfg(has_i128)] +forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigUint, rem); + +impl<'a> Rem<u32> for &'a BigUint { + type Output = BigUint; + + #[inline] + fn rem(self, other: u32) -> BigUint { + From::from(rem_digit(self, other as BigDigit)) + } +} +impl RemAssign<u32> for BigUint { + #[inline] + fn rem_assign(&mut self, other: u32) { + *self = &*self % other; + } +} + +impl<'a> Rem<&'a BigUint> for u32 { + type Output = BigUint; + + #[inline] + fn rem(mut self, other: &'a BigUint) -> BigUint { + self %= other; + From::from(self) + } +} + +macro_rules! impl_rem_assign_scalar { + ($scalar:ty, $to_scalar:ident) => { + forward_val_assign_scalar!(impl RemAssign for BigUint, $scalar, rem_assign); + impl<'a> RemAssign<&'a BigUint> for $scalar { + #[inline] + fn rem_assign(&mut self, other: &BigUint) { + *self = match other.$to_scalar() { + None => *self, + Some(0) => panic!(), + Some(v) => *self % v + }; + } + } + } +} +// we can scalar %= BigUint for any scalar, including signed types +#[cfg(has_i128)] +impl_rem_assign_scalar!(u128, to_u128); +impl_rem_assign_scalar!(usize, to_usize); +impl_rem_assign_scalar!(u64, to_u64); +impl_rem_assign_scalar!(u32, to_u32); +impl_rem_assign_scalar!(u16, to_u16); +impl_rem_assign_scalar!(u8, to_u8); +#[cfg(has_i128)] +impl_rem_assign_scalar!(i128, to_i128); +impl_rem_assign_scalar!(isize, to_isize); +impl_rem_assign_scalar!(i64, to_i64); +impl_rem_assign_scalar!(i32, to_i32); +impl_rem_assign_scalar!(i16, to_i16); +impl_rem_assign_scalar!(i8, to_i8); + +impl Rem<u64> for BigUint { + type Output = BigUint; + + #[inline] + fn rem(self, other: u64) -> BigUint { + let (_, r) = div_rem(self, From::from(other)); + r + } +} +impl RemAssign<u64> for BigUint { + #[inline] + fn rem_assign(&mut self, other: u64) { + *self = &*self % other; + } +} + +impl Rem<BigUint> for u64 { + type Output = BigUint; + + #[inline] + fn rem(mut self, other: BigUint) -> BigUint { + self %= other; + From::from(self) + } +} + +#[cfg(has_i128)] +impl Rem<u128> for BigUint { + type Output = BigUint; + + #[inline] + fn rem(self, other: u128) -> BigUint { + let (_, r) = div_rem(self, From::from(other)); + r + } +} +#[cfg(has_i128)] +impl RemAssign<u128> for BigUint { + #[inline] + fn rem_assign(&mut self, other: u128) { + *self = &*self % other; + } +} + +#[cfg(has_i128)] +impl Rem<BigUint> for u128 { + type Output = BigUint; + + #[inline] + fn rem(mut self, other: BigUint) -> BigUint { + self %= other; + From::from(self) + } +} + +impl Neg for BigUint { + type Output = BigUint; + + #[inline] + fn neg(self) -> BigUint { + panic!() + } +} + +impl<'a> Neg for &'a BigUint { + type Output = BigUint; + + #[inline] + fn neg(self) -> BigUint { + panic!() + } +} + +impl CheckedAdd for BigUint { + #[inline] + fn checked_add(&self, v: &BigUint) -> Option<BigUint> { + Some(self.add(v)) + } +} + +impl CheckedSub for BigUint { + #[inline] + fn checked_sub(&self, v: &BigUint) -> Option<BigUint> { + match self.cmp(v) { + Less => None, + Equal => Some(Zero::zero()), + Greater => Some(self.sub(v)), + } + } +} + +impl CheckedMul for BigUint { + #[inline] + fn checked_mul(&self, v: &BigUint) -> Option<BigUint> { + Some(self.mul(v)) + } +} + +impl CheckedDiv for BigUint { + #[inline] + fn checked_div(&self, v: &BigUint) -> Option<BigUint> { + if v.is_zero() { + return None; + } + Some(self.div(v)) + } +} + +impl Integer for BigUint { + #[inline] + fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) { + div_rem_ref(self, other) + } + + #[inline] + fn div_floor(&self, other: &BigUint) -> BigUint { + let (d, _) = div_rem_ref(self, other); + d + } + + #[inline] + fn mod_floor(&self, other: &BigUint) -> BigUint { + let (_, m) = div_rem_ref(self, other); + m + } + + #[inline] + fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) { + div_rem_ref(self, other) + } + + /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. + /// + /// The result is always positive. + #[inline] + fn gcd(&self, other: &Self) -> Self { + #[inline] + fn twos(x: &BigUint) -> usize { + trailing_zeros(x).unwrap_or(0) + } + + // Stein's algorithm + if self.is_zero() { + return other.clone(); + } + if other.is_zero() { + return self.clone(); + } + let mut m = self.clone(); + let mut n = other.clone(); + + // find common factors of 2 + let shift = cmp::min(twos(&n), twos(&m)); + + // divide m and n by 2 until odd + // m inside loop + n >>= twos(&n); + + while !m.is_zero() { + m >>= twos(&m); + if n > m { + mem::swap(&mut n, &mut m) + } + m -= &n; + } + + n << shift + } + + /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. + #[inline] + fn lcm(&self, other: &BigUint) -> BigUint { + if self.is_zero() && other.is_zero() { + Self::zero() + } else { + self / self.gcd(other) * other + } + } + + /// Deprecated, use `is_multiple_of` instead. + #[inline] + fn divides(&self, other: &BigUint) -> bool { + self.is_multiple_of(other) + } + + /// Returns `true` if the number is a multiple of `other`. + #[inline] + fn is_multiple_of(&self, other: &BigUint) -> bool { + (self % other).is_zero() + } + + /// Returns `true` if the number is divisible by `2`. + #[inline] + fn is_even(&self) -> bool { + // Considering only the last digit. + match self.data.first() { + Some(x) => x.is_even(), + None => true, + } + } + + /// Returns `true` if the number is not divisible by `2`. + #[inline] + fn is_odd(&self) -> bool { + !self.is_even() + } +} + +#[inline] +fn fixpoint<F>(mut x: BigUint, max_bits: usize, f: F) -> BigUint +where + F: Fn(&BigUint) -> BigUint, +{ + let mut xn = f(&x); + + // If the value increased, then the initial guess must have been low. + // Repeat until we reverse course. + while x < xn { + // Sometimes an increase will go way too far, especially with large + // powers, and then take a long time to walk back. We know an upper + // bound based on bit size, so saturate on that. + x = if xn.bits() > max_bits { + BigUint::one() << max_bits + } else { + xn + }; + xn = f(&x); + } + + // Now keep repeating while the estimate is decreasing. + while x > xn { + x = xn; + xn = f(&x); + } + x +} + +impl Roots for BigUint { + // nth_root, sqrt and cbrt use Newton's method to compute + // principal root of a given degree for a given integer. + + // Reference: + // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.14 + fn nth_root(&self, n: u32) -> Self { + assert!(n > 0, "root degree n must be at least 1"); + + if self.is_zero() || self.is_one() { + return self.clone(); + } + + match n { + // Optimize for small n + 1 => return self.clone(), + 2 => return self.sqrt(), + 3 => return self.cbrt(), + _ => (), + } + + // The root of non-zero values less than 2ⁿ can only be 1. + let bits = self.bits(); + if bits <= n as usize { + return BigUint::one(); + } + + // If we fit in `u64`, compute the root that way. + if let Some(x) = self.to_u64() { + return x.nth_root(n).into(); + } + + let max_bits = bits / n as usize + 1; + + let guess = if let Some(f) = self.to_f64() { + // We fit in `f64` (lossy), so get a better initial guess from that. + BigUint::from_f64((f.ln() / f64::from(n)).exp()).unwrap() + } else { + // Try to guess by scaling down such that it does fit in `f64`. + // With some (x * 2ⁿᵏ), its nth root ≈ (ⁿ√x * 2ᵏ) + let nsz = n as usize; + let extra_bits = bits - (f64::MAX_EXP as usize - 1); + let root_scale = (extra_bits + (nsz - 1)) / nsz; + let scale = root_scale * nsz; + if scale < bits && bits - scale > nsz { + (self >> scale).nth_root(n) << root_scale + } else { + BigUint::one() << max_bits + } + }; + + let n_min_1 = n - 1; + fixpoint(guess, max_bits, move |s| { + let q = self / s.pow(n_min_1); + let t = n_min_1 * s + q; + t / n + }) + } + + // Reference: + // Brent & Zimmermann, Modern Computer Arithmetic, v0.5.9, Algorithm 1.13 + fn sqrt(&self) -> Self { + if self.is_zero() || self.is_one() { + return self.clone(); + } + + // If we fit in `u64`, compute the root that way. + if let Some(x) = self.to_u64() { + return x.sqrt().into(); + } + + let bits = self.bits(); + let max_bits = bits / 2 as usize + 1; + + let guess = if let Some(f) = self.to_f64() { + // We fit in `f64` (lossy), so get a better initial guess from that. + BigUint::from_f64(f.sqrt()).unwrap() + } else { + // Try to guess by scaling down such that it does fit in `f64`. + // With some (x * 2²ᵏ), its sqrt ≈ (√x * 2ᵏ) + let extra_bits = bits - (f64::MAX_EXP as usize - 1); + let root_scale = (extra_bits + 1) / 2; + let scale = root_scale * 2; + (self >> scale).sqrt() << root_scale + }; + + fixpoint(guess, max_bits, move |s| { + let q = self / s; + let t = s + q; + t >> 1 + }) + } + + fn cbrt(&self) -> Self { + if self.is_zero() || self.is_one() { + return self.clone(); + } + + // If we fit in `u64`, compute the root that way. + if let Some(x) = self.to_u64() { + return x.cbrt().into(); + } + + let bits = self.bits(); + let max_bits = bits / 3 as usize + 1; + + let guess = if let Some(f) = self.to_f64() { + // We fit in `f64` (lossy), so get a better initial guess from that. + BigUint::from_f64(f.cbrt()).unwrap() + } else { + // Try to guess by scaling down such that it does fit in `f64`. + // With some (x * 2³ᵏ), its cbrt ≈ (∛x * 2ᵏ) + let extra_bits = bits - (f64::MAX_EXP as usize - 1); + let root_scale = (extra_bits + 2) / 3; + let scale = root_scale * 3; + (self >> scale).cbrt() << root_scale + }; + + fixpoint(guess, max_bits, move |s| { + let q = self / (s * s); + let t = (s << 1) + q; + t / 3u32 + }) + } +} + +fn high_bits_to_u64(v: &BigUint) -> u64 { + match v.data.len() { + 0 => 0, + 1 => u64::from(v.data[0]), + _ => { + let mut bits = v.bits(); + let mut ret = 0u64; + let mut ret_bits = 0; + + for d in v.data.iter().rev() { + let digit_bits = (bits - 1) % big_digit::BITS + 1; + let bits_want = cmp::min(64 - ret_bits, digit_bits); + + if bits_want != 64 { + ret <<= bits_want; + } + ret |= u64::from(*d) >> (digit_bits - bits_want); + ret_bits += bits_want; + bits -= bits_want; + + if ret_bits == 64 { + break; + } + } + + ret + } + } +} + +impl ToPrimitive for BigUint { + #[inline] + fn to_i64(&self) -> Option<i64> { + self.to_u64().as_ref().and_then(u64::to_i64) + } + + #[inline] + #[cfg(has_i128)] + fn to_i128(&self) -> Option<i128> { + self.to_u128().as_ref().and_then(u128::to_i128) + } + + #[inline] + fn to_u64(&self) -> Option<u64> { + let mut ret: u64 = 0; + let mut bits = 0; + + for i in self.data.iter() { + if bits >= 64 { + return None; + } + + ret += u64::from(*i) << bits; + bits += big_digit::BITS; + } + + Some(ret) + } + + #[inline] + #[cfg(has_i128)] + fn to_u128(&self) -> Option<u128> { + let mut ret: u128 = 0; + let mut bits = 0; + + for i in self.data.iter() { + if bits >= 128 { + return None; + } + + ret |= u128::from(*i) << bits; + bits += big_digit::BITS; + } + + Some(ret) + } + + #[inline] + fn to_f32(&self) -> Option<f32> { + let mantissa = high_bits_to_u64(self); + let exponent = self.bits() - fls(mantissa); + + if exponent > f32::MAX_EXP as usize { + None + } else { + let ret = (mantissa as f32) * 2.0f32.powi(exponent as i32); + if ret.is_infinite() { + None + } else { + Some(ret) + } + } + } + + #[inline] + fn to_f64(&self) -> Option<f64> { + let mantissa = high_bits_to_u64(self); + let exponent = self.bits() - fls(mantissa); + + if exponent > f64::MAX_EXP as usize { + None + } else { + let ret = (mantissa as f64) * 2.0f64.powi(exponent as i32); + if ret.is_infinite() { + None + } else { + Some(ret) + } + } + } +} + +impl FromPrimitive for BigUint { + #[inline] + fn from_i64(n: i64) -> Option<BigUint> { + if n >= 0 { + Some(BigUint::from(n as u64)) + } else { + None + } + } + + #[inline] + #[cfg(has_i128)] + fn from_i128(n: i128) -> Option<BigUint> { + if n >= 0 { + Some(BigUint::from(n as u128)) + } else { + None + } + } + + #[inline] + fn from_u64(n: u64) -> Option<BigUint> { + Some(BigUint::from(n)) + } + + #[inline] + #[cfg(has_i128)] + fn from_u128(n: u128) -> Option<BigUint> { + Some(BigUint::from(n)) + } + + #[inline] + fn from_f64(mut n: f64) -> Option<BigUint> { + // handle NAN, INFINITY, NEG_INFINITY + if !n.is_finite() { + return None; + } + + // match the rounding of casting from float to int + n = n.trunc(); + + // handle 0.x, -0.x + if n.is_zero() { + return Some(BigUint::zero()); + } + + let (mantissa, exponent, sign) = Float::integer_decode(n); + + if sign == -1 { + return None; + } + + let mut ret = BigUint::from(mantissa); + if exponent > 0 { + ret <<= exponent as usize; + } else if exponent < 0 { + ret >>= (-exponent) as usize; + } + Some(ret) + } +} + +impl From<u64> for BigUint { + #[inline] + fn from(mut n: u64) -> Self { + let mut ret: BigUint = Zero::zero(); + + while n != 0 { + ret.data.push(n as BigDigit); + // don't overflow if BITS is 64: + n = (n >> 1) >> (big_digit::BITS - 1); + } + + ret + } +} + +#[cfg(has_i128)] +impl From<u128> for BigUint { + #[inline] + fn from(mut n: u128) -> Self { + let mut ret: BigUint = Zero::zero(); + + while n != 0 { + ret.data.push(n as BigDigit); + n >>= big_digit::BITS; + } + + ret + } +} + +macro_rules! impl_biguint_from_uint { + ($T:ty) => { + impl From<$T> for BigUint { + #[inline] + fn from(n: $T) -> Self { + BigUint::from(n as u64) + } + } + }; +} + +impl_biguint_from_uint!(u8); +impl_biguint_from_uint!(u16); +impl_biguint_from_uint!(u32); +impl_biguint_from_uint!(usize); + +/// A generic trait for converting a value to a `BigUint`. +pub trait ToBigUint { + /// Converts the value of `self` to a `BigUint`. + fn to_biguint(&self) -> Option<BigUint>; +} + +impl ToBigUint for BigUint { + #[inline] + fn to_biguint(&self) -> Option<BigUint> { + Some(self.clone()) + } +} + +macro_rules! impl_to_biguint { + ($T:ty, $from_ty:path) => { + impl ToBigUint for $T { + #[inline] + fn to_biguint(&self) -> Option<BigUint> { + $from_ty(*self) + } + } + }; +} + +impl_to_biguint!(isize, FromPrimitive::from_isize); +impl_to_biguint!(i8, FromPrimitive::from_i8); +impl_to_biguint!(i16, FromPrimitive::from_i16); +impl_to_biguint!(i32, FromPrimitive::from_i32); +impl_to_biguint!(i64, FromPrimitive::from_i64); +#[cfg(has_i128)] +impl_to_biguint!(i128, FromPrimitive::from_i128); + +impl_to_biguint!(usize, FromPrimitive::from_usize); +impl_to_biguint!(u8, FromPrimitive::from_u8); +impl_to_biguint!(u16, FromPrimitive::from_u16); +impl_to_biguint!(u32, FromPrimitive::from_u32); +impl_to_biguint!(u64, FromPrimitive::from_u64); +#[cfg(has_i128)] +impl_to_biguint!(u128, FromPrimitive::from_u128); + +impl_to_biguint!(f32, FromPrimitive::from_f32); +impl_to_biguint!(f64, FromPrimitive::from_f64); + +// Extract bitwise digits that evenly divide BigDigit +fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> { + debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0); + + let last_i = u.data.len() - 1; + let mask: BigDigit = (1 << bits) - 1; + let digits_per_big_digit = big_digit::BITS / bits; + let digits = (u.bits() + bits - 1) / bits; + let mut res = Vec::with_capacity(digits); + + for mut r in u.data[..last_i].iter().cloned() { + for _ in 0..digits_per_big_digit { + res.push((r & mask) as u8); + r >>= bits; + } + } + + let mut r = u.data[last_i]; + while r != 0 { + res.push((r & mask) as u8); + r >>= bits; + } + + res +} + +// Extract bitwise digits that don't evenly divide BigDigit +fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> { + debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0); + + let mask: BigDigit = (1 << bits) - 1; + let digits = (u.bits() + bits - 1) / bits; + let mut res = Vec::with_capacity(digits); + + let mut r = 0; + let mut rbits = 0; + + for c in &u.data { + r |= *c << rbits; + rbits += big_digit::BITS; + + while rbits >= bits { + res.push((r & mask) as u8); + r >>= bits; + + // r had more bits than it could fit - grab the bits we lost + if rbits > big_digit::BITS { + r = *c >> (big_digit::BITS - (rbits - bits)); + } + + rbits -= bits; + } + } + + if rbits != 0 { + res.push(r as u8); + } + + while let Some(&0) = res.last() { + res.pop(); + } + + res +} + +// Extract little-endian radix digits +#[inline(always)] // forced inline to get const-prop for radix=10 +fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> { + debug_assert!(!u.is_zero() && !radix.is_power_of_two()); + + // Estimate how big the result will be, so we can pre-allocate it. + let radix_digits = ((u.bits() as f64) / f64::from(radix).log2()).ceil(); + let mut res = Vec::with_capacity(radix_digits as usize); + let mut digits = u.clone(); + + let (base, power) = get_radix_base(radix); + let radix = radix as BigDigit; + + while digits.data.len() > 1 { + let (q, mut r) = div_rem_digit(digits, base); + for _ in 0..power { + res.push((r % radix) as u8); + r /= radix; + } + digits = q; + } + + let mut r = digits.data[0]; + while r != 0 { + res.push((r % radix) as u8); + r /= radix; + } + + res +} + +pub fn to_radix_le(u: &BigUint, radix: u32) -> Vec<u8> { + if u.is_zero() { + vec![0] + } else if radix.is_power_of_two() { + // Powers of two can use bitwise masks and shifting instead of division + let bits = ilog2(radix); + if big_digit::BITS % bits == 0 { + to_bitwise_digits_le(u, bits) + } else { + to_inexact_bitwise_digits_le(u, bits) + } + } else if radix == 10 { + // 10 is so common that it's worth separating out for const-propagation. + // Optimizers can often turn constant division into a faster multiplication. + to_radix_digits_le(u, 10) + } else { + to_radix_digits_le(u, radix) + } +} + +pub fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> { + assert!(2 <= radix && radix <= 36, "The radix must be within 2...36"); + + if u.is_zero() { + return vec![b'0']; + } + + let mut res = to_radix_le(u, radix); + + // Now convert everything to ASCII digits. + for r in &mut res { + debug_assert!(u32::from(*r) < radix); + if *r < 10 { + *r += b'0'; + } else { + *r += b'a' - 10; + } + } + res +} + +impl BigUint { + /// Creates and initializes a `BigUint`. + /// + /// The base 2<sup>32</sup> digits are ordered least significant digit first. + #[inline] + pub fn new(digits: Vec<u32>) -> BigUint { + BigUint { data: digits }.normalized() + } + + /// Creates and initializes a `BigUint`. + /// + /// The base 2<sup>32</sup> digits are ordered least significant digit first. + #[inline] + pub fn from_slice(slice: &[u32]) -> BigUint { + BigUint::new(slice.to_vec()) + } + + /// Assign a value to a `BigUint`. + /// + /// The base 2<sup>32</sup> digits are ordered least significant digit first. + #[inline] + pub fn assign_from_slice(&mut self, slice: &[u32]) { + self.data.resize(slice.len(), 0); + self.data.clone_from_slice(slice); + self.normalize(); + } + + /// Creates and initializes a `BigUint`. + /// + /// The bytes are in big-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// assert_eq!(BigUint::from_bytes_be(b"A"), + /// BigUint::parse_bytes(b"65", 10).unwrap()); + /// assert_eq!(BigUint::from_bytes_be(b"AA"), + /// BigUint::parse_bytes(b"16705", 10).unwrap()); + /// assert_eq!(BigUint::from_bytes_be(b"AB"), + /// BigUint::parse_bytes(b"16706", 10).unwrap()); + /// assert_eq!(BigUint::from_bytes_be(b"Hello world!"), + /// BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap()); + /// ``` + #[inline] + pub fn from_bytes_be(bytes: &[u8]) -> BigUint { + if bytes.is_empty() { + Zero::zero() + } else { + let mut v = bytes.to_vec(); + v.reverse(); + BigUint::from_bytes_le(&*v) + } + } + + /// Creates and initializes a `BigUint`. + /// + /// The bytes are in little-endian byte order. + #[inline] + pub fn from_bytes_le(bytes: &[u8]) -> BigUint { + if bytes.is_empty() { + Zero::zero() + } else { + from_bitwise_digits_le(bytes, 8) + } + } + + /// Creates and initializes a `BigUint`. The input slice must contain + /// ascii/utf8 characters in [0-9a-zA-Z]. + /// `radix` must be in the range `2...36`. + /// + /// The function `from_str_radix` from the `Num` trait provides the same logic + /// for `&str` buffers. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigUint, ToBigUint}; + /// + /// assert_eq!(BigUint::parse_bytes(b"1234", 10), ToBigUint::to_biguint(&1234)); + /// assert_eq!(BigUint::parse_bytes(b"ABCD", 16), ToBigUint::to_biguint(&0xABCD)); + /// assert_eq!(BigUint::parse_bytes(b"G", 16), None); + /// ``` + #[inline] + pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigUint> { + str::from_utf8(buf) + .ok() + .and_then(|s| BigUint::from_str_radix(s, radix).ok()) + } + + /// Creates and initializes a `BigUint`. Each u8 of the input slice is + /// interpreted as one digit of the number + /// and must therefore be less than `radix`. + /// + /// The bytes are in big-endian byte order. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigUint}; + /// + /// let inbase190 = &[15, 33, 125, 12, 14]; + /// let a = BigUint::from_radix_be(inbase190, 190).unwrap(); + /// assert_eq!(a.to_radix_be(190), inbase190); + /// ``` + pub fn from_radix_be(buf: &[u8], radix: u32) -> Option<BigUint> { + assert!( + 2 <= radix && radix <= 256, + "The radix must be within 2...256" + ); + + if radix != 256 && buf.iter().any(|&b| b >= radix as u8) { + return None; + } + + let res = if radix.is_power_of_two() { + // Powers of two can use bitwise masks and shifting instead of multiplication + let bits = ilog2(radix); + let mut v = Vec::from(buf); + v.reverse(); + if big_digit::BITS % bits == 0 { + from_bitwise_digits_le(&v, bits) + } else { + from_inexact_bitwise_digits_le(&v, bits) + } + } else { + from_radix_digits_be(buf, radix) + }; + + Some(res) + } + + /// Creates and initializes a `BigUint`. Each u8 of the input slice is + /// interpreted as one digit of the number + /// and must therefore be less than `radix`. + /// + /// The bytes are in little-endian byte order. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::{BigUint}; + /// + /// let inbase190 = &[14, 12, 125, 33, 15]; + /// let a = BigUint::from_radix_be(inbase190, 190).unwrap(); + /// assert_eq!(a.to_radix_be(190), inbase190); + /// ``` + pub fn from_radix_le(buf: &[u8], radix: u32) -> Option<BigUint> { + assert!( + 2 <= radix && radix <= 256, + "The radix must be within 2...256" + ); + + if radix != 256 && buf.iter().any(|&b| b >= radix as u8) { + return None; + } + + let res = if radix.is_power_of_two() { + // Powers of two can use bitwise masks and shifting instead of multiplication + let bits = ilog2(radix); + if big_digit::BITS % bits == 0 { + from_bitwise_digits_le(buf, bits) + } else { + from_inexact_bitwise_digits_le(buf, bits) + } + } else { + let mut v = Vec::from(buf); + v.reverse(); + from_radix_digits_be(&v, radix) + }; + + Some(res) + } + + /// Returns the byte representation of the `BigUint` in big-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// let i = BigUint::parse_bytes(b"1125", 10).unwrap(); + /// assert_eq!(i.to_bytes_be(), vec![4, 101]); + /// ``` + #[inline] + pub fn to_bytes_be(&self) -> Vec<u8> { + let mut v = self.to_bytes_le(); + v.reverse(); + v + } + + /// Returns the byte representation of the `BigUint` in little-endian byte order. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// let i = BigUint::parse_bytes(b"1125", 10).unwrap(); + /// assert_eq!(i.to_bytes_le(), vec![101, 4]); + /// ``` + #[inline] + pub fn to_bytes_le(&self) -> Vec<u8> { + if self.is_zero() { + vec![0] + } else { + to_bitwise_digits_le(self, 8) + } + } + + /// Returns the `u32` digits representation of the `BigUint` ordered least significant digit + /// first. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// assert_eq!(BigUint::from(1125u32).to_u32_digits(), vec![1125]); + /// assert_eq!(BigUint::from(4294967295u32).to_u32_digits(), vec![4294967295]); + /// assert_eq!(BigUint::from(4294967296u64).to_u32_digits(), vec![0, 1]); + /// assert_eq!(BigUint::from(112500000000u64).to_u32_digits(), vec![830850304, 26]); + /// ``` + #[inline] + pub fn to_u32_digits(&self) -> Vec<u32> { + self.data.clone() + } + + /// Returns the integer formatted as a string in the given radix. + /// `radix` must be in the range `2...36`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// let i = BigUint::parse_bytes(b"ff", 16).unwrap(); + /// assert_eq!(i.to_str_radix(16), "ff"); + /// ``` + #[inline] + pub fn to_str_radix(&self, radix: u32) -> String { + let mut v = to_str_radix_reversed(self, radix); + v.reverse(); + unsafe { String::from_utf8_unchecked(v) } + } + + /// Returns the integer in the requested base in big-endian digit order. + /// The output is not given in a human readable alphabet but as a zero + /// based u8 number. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_be(159), + /// vec![2, 94, 27]); + /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27 + /// ``` + #[inline] + pub fn to_radix_be(&self, radix: u32) -> Vec<u8> { + let mut v = to_radix_le(self, radix); + v.reverse(); + v + } + + /// Returns the integer in the requested base in little-endian digit order. + /// The output is not given in a human readable alphabet but as a zero + /// based u8 number. + /// `radix` must be in the range `2...256`. + /// + /// # Examples + /// + /// ``` + /// use num_bigint::BigUint; + /// + /// assert_eq!(BigUint::from(0xFFFFu64).to_radix_le(159), + /// vec![27, 94, 2]); + /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2) + /// ``` + #[inline] + pub fn to_radix_le(&self, radix: u32) -> Vec<u8> { + to_radix_le(self, radix) + } + + /// Determines the fewest bits necessary to express the `BigUint`. + #[inline] + pub fn bits(&self) -> usize { + if self.is_zero() { + return 0; + } + let zeros = self.data.last().unwrap().leading_zeros(); + self.data.len() * big_digit::BITS - zeros as usize + } + + /// Strips off trailing zero bigdigits - comparisons require the last element in the vector to + /// be nonzero. + #[inline] + fn normalize(&mut self) { + while let Some(&0) = self.data.last() { + self.data.pop(); + } + } + + /// Returns a normalized `BigUint`. + #[inline] + fn normalized(mut self) -> BigUint { + self.normalize(); + self + } + + /// Returns `(self ^ exponent) % modulus`. + /// + /// Panics if the modulus is zero. + pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self { + assert!(!modulus.is_zero(), "divide by zero!"); + + if modulus.is_odd() { + // For an odd modulus, we can use Montgomery multiplication in base 2^32. + monty_modpow(self, exponent, modulus) + } else { + // Otherwise do basically the same as `num::pow`, but with a modulus. + plain_modpow(self, &exponent.data, modulus) + } + } + + /// Returns the truncated principal square root of `self` -- + /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt) + pub fn sqrt(&self) -> Self { + Roots::sqrt(self) + } + + /// Returns the truncated principal cube root of `self` -- + /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt). + pub fn cbrt(&self) -> Self { + Roots::cbrt(self) + } + + /// Returns the truncated principal `n`th root of `self` -- + /// see [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root). + pub fn nth_root(&self, n: u32) -> Self { + Roots::nth_root(self, n) + } +} + +fn plain_modpow(base: &BigUint, exp_data: &[BigDigit], modulus: &BigUint) -> BigUint { + assert!(!modulus.is_zero(), "divide by zero!"); + + let i = match exp_data.iter().position(|&r| r != 0) { + None => return BigUint::one(), + Some(i) => i, + }; + + let mut base = base % modulus; + for _ in 0..i { + for _ in 0..big_digit::BITS { + base = &base * &base % modulus; + } + } + + let mut r = exp_data[i]; + let mut b = 0usize; + while r.is_even() { + base = &base * &base % modulus; + r >>= 1; + b += 1; + } + + let mut exp_iter = exp_data[i + 1..].iter(); + if exp_iter.len() == 0 && r.is_one() { + return base; + } + + let mut acc = base.clone(); + r >>= 1; + b += 1; + + { + let mut unit = |exp_is_odd| { + base = &base * &base % modulus; + if exp_is_odd { + acc = &acc * &base % modulus; + } + }; + + if let Some(&last) = exp_iter.next_back() { + // consume exp_data[i] + for _ in b..big_digit::BITS { + unit(r.is_odd()); + r >>= 1; + } + + // consume all other digits before the last + for &r in exp_iter { + let mut r = r; + for _ in 0..big_digit::BITS { + unit(r.is_odd()); + r >>= 1; + } + } + r = last; + } + + debug_assert_ne!(r, 0); + while !r.is_zero() { + unit(r.is_odd()); + r >>= 1; + } + } + acc +} + +#[test] +fn test_plain_modpow() { + let two = BigUint::from(2u32); + let modulus = BigUint::from(0x1100u32); + + let exp = vec![0, 0b1]; + assert_eq!( + two.pow(0b1_00000000_u32) % &modulus, + plain_modpow(&two, &exp, &modulus) + ); + let exp = vec![0, 0b10]; + assert_eq!( + two.pow(0b10_00000000_u32) % &modulus, + plain_modpow(&two, &exp, &modulus) + ); + let exp = vec![0, 0b110010]; + assert_eq!( + two.pow(0b110010_00000000_u32) % &modulus, + plain_modpow(&two, &exp, &modulus) + ); + let exp = vec![0b1, 0b1]; + assert_eq!( + two.pow(0b1_00000001_u32) % &modulus, + plain_modpow(&two, &exp, &modulus) + ); + let exp = vec![0b1100, 0, 0b1]; + assert_eq!( + two.pow(0b1_00000000_00001100_u32) % &modulus, + plain_modpow(&two, &exp, &modulus) + ); +} + +/// Returns the number of least-significant bits that are zero, +/// or `None` if the entire number is zero. +pub fn trailing_zeros(u: &BigUint) -> Option<usize> { + u.data + .iter() + .enumerate() + .find(|&(_, &digit)| digit != 0) + .map(|(i, digit)| i * big_digit::BITS + digit.trailing_zeros() as usize) +} + +impl_sum_iter_type!(BigUint); +impl_product_iter_type!(BigUint); + +pub trait IntDigits { + fn digits(&self) -> &[BigDigit]; + fn digits_mut(&mut self) -> &mut Vec<BigDigit>; + fn normalize(&mut self); + fn capacity(&self) -> usize; + fn len(&self) -> usize; +} + +impl IntDigits for BigUint { + #[inline] + fn digits(&self) -> &[BigDigit] { + &self.data + } + #[inline] + fn digits_mut(&mut self) -> &mut Vec<BigDigit> { + &mut self.data + } + #[inline] + fn normalize(&mut self) { + self.normalize(); + } + #[inline] + fn capacity(&self) -> usize { + self.data.capacity() + } + #[inline] + fn len(&self) -> usize { + self.data.len() + } +} + +/// Combine four `u32`s into a single `u128`. +#[cfg(has_i128)] +#[inline] +fn u32_to_u128(a: u32, b: u32, c: u32, d: u32) -> u128 { + u128::from(d) | (u128::from(c) << 32) | (u128::from(b) << 64) | (u128::from(a) << 96) +} + +/// Split a single `u128` into four `u32`. +#[cfg(has_i128)] +#[inline] +fn u32_from_u128(n: u128) -> (u32, u32, u32, u32) { + ( + (n >> 96) as u32, + (n >> 64) as u32, + (n >> 32) as u32, + n as u32, + ) +} + +#[cfg(feature = "serde")] +impl serde::Serialize for BigUint { + fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> + where + S: serde::Serializer, + { + // Note: do not change the serialization format, or it may break forward + // and backward compatibility of serialized data! If we ever change the + // internal representation, we should still serialize in base-`u32`. + let data: &Vec<u32> = &self.data; + data.serialize(serializer) + } +} + +#[cfg(feature = "serde")] +impl<'de> serde::Deserialize<'de> for BigUint { + fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> + where + D: serde::Deserializer<'de>, + { + let data: Vec<u32> = Vec::deserialize(deserializer)?; + Ok(BigUint::new(data)) + } +} + +/// Returns the greatest power of the radix <= big_digit::BASE +#[inline] +fn get_radix_base(radix: u32) -> (BigDigit, usize) { + debug_assert!( + 2 <= radix && radix <= 256, + "The radix must be within 2...256" + ); + debug_assert!(!radix.is_power_of_two()); + + // To generate this table: + // for radix in 2u64..257 { + // let mut power = big_digit::BITS / fls(radix as u64); + // let mut base = radix.pow(power as u32); + // + // while let Some(b) = base.checked_mul(radix) { + // if b > big_digit::MAX { + // break; + // } + // base = b; + // power += 1; + // } + // + // println!("({:10}, {:2}), // {:2}", base, power, radix); + // } + // and + // for radix in 2u64..257 { + // let mut power = 64 / fls(radix as u64); + // let mut base = radix.pow(power as u32); + // + // while let Some(b) = base.checked_mul(radix) { + // base = b; + // power += 1; + // } + // + // println!("({:20}, {:2}), // {:2}", base, power, radix); + // } + match big_digit::BITS { + 32 => { + const BASES: [(u32, usize); 257] = [ + (0, 0), + (0, 0), + (0, 0), // 2 + (3486784401, 20), // 3 + (0, 0), // 4 + (1220703125, 13), // 5 + (2176782336, 12), // 6 + (1977326743, 11), // 7 + (0, 0), // 8 + (3486784401, 10), // 9 + (1000000000, 9), // 10 + (2357947691, 9), // 11 + (429981696, 8), // 12 + (815730721, 8), // 13 + (1475789056, 8), // 14 + (2562890625, 8), // 15 + (0, 0), // 16 + (410338673, 7), // 17 + (612220032, 7), // 18 + (893871739, 7), // 19 + (1280000000, 7), // 20 + (1801088541, 7), // 21 + (2494357888, 7), // 22 + (3404825447, 7), // 23 + (191102976, 6), // 24 + (244140625, 6), // 25 + (308915776, 6), // 26 + (387420489, 6), // 27 + (481890304, 6), // 28 + (594823321, 6), // 29 + (729000000, 6), // 30 + (887503681, 6), // 31 + (0, 0), // 32 + (1291467969, 6), // 33 + (1544804416, 6), // 34 + (1838265625, 6), // 35 + (2176782336, 6), // 36 + (2565726409, 6), // 37 + (3010936384, 6), // 38 + (3518743761, 6), // 39 + (4096000000, 6), // 40 + (115856201, 5), // 41 + (130691232, 5), // 42 + (147008443, 5), // 43 + (164916224, 5), // 44 + (184528125, 5), // 45 + (205962976, 5), // 46 + (229345007, 5), // 47 + (254803968, 5), // 48 + (282475249, 5), // 49 + (312500000, 5), // 50 + (345025251, 5), // 51 + (380204032, 5), // 52 + (418195493, 5), // 53 + (459165024, 5), // 54 + (503284375, 5), // 55 + (550731776, 5), // 56 + (601692057, 5), // 57 + (656356768, 5), // 58 + (714924299, 5), // 59 + (777600000, 5), // 60 + (844596301, 5), // 61 + (916132832, 5), // 62 + (992436543, 5), // 63 + (0, 0), // 64 + (1160290625, 5), // 65 + (1252332576, 5), // 66 + (1350125107, 5), // 67 + (1453933568, 5), // 68 + (1564031349, 5), // 69 + (1680700000, 5), // 70 + (1804229351, 5), // 71 + (1934917632, 5), // 72 + (2073071593, 5), // 73 + (2219006624, 5), // 74 + (2373046875, 5), // 75 + (2535525376, 5), // 76 + (2706784157, 5), // 77 + (2887174368, 5), // 78 + (3077056399, 5), // 79 + (3276800000, 5), // 80 + (3486784401, 5), // 81 + (3707398432, 5), // 82 + (3939040643, 5), // 83 + (4182119424, 5), // 84 + (52200625, 4), // 85 + (54700816, 4), // 86 + (57289761, 4), // 87 + (59969536, 4), // 88 + (62742241, 4), // 89 + (65610000, 4), // 90 + (68574961, 4), // 91 + (71639296, 4), // 92 + (74805201, 4), // 93 + (78074896, 4), // 94 + (81450625, 4), // 95 + (84934656, 4), // 96 + (88529281, 4), // 97 + (92236816, 4), // 98 + (96059601, 4), // 99 + (100000000, 4), // 100 + (104060401, 4), // 101 + (108243216, 4), // 102 + (112550881, 4), // 103 + (116985856, 4), // 104 + (121550625, 4), // 105 + (126247696, 4), // 106 + (131079601, 4), // 107 + (136048896, 4), // 108 + (141158161, 4), // 109 + (146410000, 4), // 110 + (151807041, 4), // 111 + (157351936, 4), // 112 + (163047361, 4), // 113 + (168896016, 4), // 114 + (174900625, 4), // 115 + (181063936, 4), // 116 + (187388721, 4), // 117 + (193877776, 4), // 118 + (200533921, 4), // 119 + (207360000, 4), // 120 + (214358881, 4), // 121 + (221533456, 4), // 122 + (228886641, 4), // 123 + (236421376, 4), // 124 + (244140625, 4), // 125 + (252047376, 4), // 126 + (260144641, 4), // 127 + (0, 0), // 128 + (276922881, 4), // 129 + (285610000, 4), // 130 + (294499921, 4), // 131 + (303595776, 4), // 132 + (312900721, 4), // 133 + (322417936, 4), // 134 + (332150625, 4), // 135 + (342102016, 4), // 136 + (352275361, 4), // 137 + (362673936, 4), // 138 + (373301041, 4), // 139 + (384160000, 4), // 140 + (395254161, 4), // 141 + (406586896, 4), // 142 + (418161601, 4), // 143 + (429981696, 4), // 144 + (442050625, 4), // 145 + (454371856, 4), // 146 + (466948881, 4), // 147 + (479785216, 4), // 148 + (492884401, 4), // 149 + (506250000, 4), // 150 + (519885601, 4), // 151 + (533794816, 4), // 152 + (547981281, 4), // 153 + (562448656, 4), // 154 + (577200625, 4), // 155 + (592240896, 4), // 156 + (607573201, 4), // 157 + (623201296, 4), // 158 + (639128961, 4), // 159 + (655360000, 4), // 160 + (671898241, 4), // 161 + (688747536, 4), // 162 + (705911761, 4), // 163 + (723394816, 4), // 164 + (741200625, 4), // 165 + (759333136, 4), // 166 + (777796321, 4), // 167 + (796594176, 4), // 168 + (815730721, 4), // 169 + (835210000, 4), // 170 + (855036081, 4), // 171 + (875213056, 4), // 172 + (895745041, 4), // 173 + (916636176, 4), // 174 + (937890625, 4), // 175 + (959512576, 4), // 176 + (981506241, 4), // 177 + (1003875856, 4), // 178 + (1026625681, 4), // 179 + (1049760000, 4), // 180 + (1073283121, 4), // 181 + (1097199376, 4), // 182 + (1121513121, 4), // 183 + (1146228736, 4), // 184 + (1171350625, 4), // 185 + (1196883216, 4), // 186 + (1222830961, 4), // 187 + (1249198336, 4), // 188 + (1275989841, 4), // 189 + (1303210000, 4), // 190 + (1330863361, 4), // 191 + (1358954496, 4), // 192 + (1387488001, 4), // 193 + (1416468496, 4), // 194 + (1445900625, 4), // 195 + (1475789056, 4), // 196 + (1506138481, 4), // 197 + (1536953616, 4), // 198 + (1568239201, 4), // 199 + (1600000000, 4), // 200 + (1632240801, 4), // 201 + (1664966416, 4), // 202 + (1698181681, 4), // 203 + (1731891456, 4), // 204 + (1766100625, 4), // 205 + (1800814096, 4), // 206 + (1836036801, 4), // 207 + (1871773696, 4), // 208 + (1908029761, 4), // 209 + (1944810000, 4), // 210 + (1982119441, 4), // 211 + (2019963136, 4), // 212 + (2058346161, 4), // 213 + (2097273616, 4), // 214 + (2136750625, 4), // 215 + (2176782336, 4), // 216 + (2217373921, 4), // 217 + (2258530576, 4), // 218 + (2300257521, 4), // 219 + (2342560000, 4), // 220 + (2385443281, 4), // 221 + (2428912656, 4), // 222 + (2472973441, 4), // 223 + (2517630976, 4), // 224 + (2562890625, 4), // 225 + (2608757776, 4), // 226 + (2655237841, 4), // 227 + (2702336256, 4), // 228 + (2750058481, 4), // 229 + (2798410000, 4), // 230 + (2847396321, 4), // 231 + (2897022976, 4), // 232 + (2947295521, 4), // 233 + (2998219536, 4), // 234 + (3049800625, 4), // 235 + (3102044416, 4), // 236 + (3154956561, 4), // 237 + (3208542736, 4), // 238 + (3262808641, 4), // 239 + (3317760000, 4), // 240 + (3373402561, 4), // 241 + (3429742096, 4), // 242 + (3486784401, 4), // 243 + (3544535296, 4), // 244 + (3603000625, 4), // 245 + (3662186256, 4), // 246 + (3722098081, 4), // 247 + (3782742016, 4), // 248 + (3844124001, 4), // 249 + (3906250000, 4), // 250 + (3969126001, 4), // 251 + (4032758016, 4), // 252 + (4097152081, 4), // 253 + (4162314256, 4), // 254 + (4228250625, 4), // 255 + (0, 0), // 256 + ]; + + let (base, power) = BASES[radix as usize]; + (base as BigDigit, power) + } + 64 => { + const BASES: [(u64, usize); 257] = [ + (0, 0), + (0, 0), + (9223372036854775808, 63), // 2 + (12157665459056928801, 40), // 3 + (4611686018427387904, 31), // 4 + (7450580596923828125, 27), // 5 + (4738381338321616896, 24), // 6 + (3909821048582988049, 22), // 7 + (9223372036854775808, 21), // 8 + (12157665459056928801, 20), // 9 + (10000000000000000000, 19), // 10 + (5559917313492231481, 18), // 11 + (2218611106740436992, 17), // 12 + (8650415919381337933, 17), // 13 + (2177953337809371136, 16), // 14 + (6568408355712890625, 16), // 15 + (1152921504606846976, 15), // 16 + (2862423051509815793, 15), // 17 + (6746640616477458432, 15), // 18 + (15181127029874798299, 15), // 19 + (1638400000000000000, 14), // 20 + (3243919932521508681, 14), // 21 + (6221821273427820544, 14), // 22 + (11592836324538749809, 14), // 23 + (876488338465357824, 13), // 24 + (1490116119384765625, 13), // 25 + (2481152873203736576, 13), // 26 + (4052555153018976267, 13), // 27 + (6502111422497947648, 13), // 28 + (10260628712958602189, 13), // 29 + (15943230000000000000, 13), // 30 + (787662783788549761, 12), // 31 + (1152921504606846976, 12), // 32 + (1667889514952984961, 12), // 33 + (2386420683693101056, 12), // 34 + (3379220508056640625, 12), // 35 + (4738381338321616896, 12), // 36 + (6582952005840035281, 12), // 37 + (9065737908494995456, 12), // 38 + (12381557655576425121, 12), // 39 + (16777216000000000000, 12), // 40 + (550329031716248441, 11), // 41 + (717368321110468608, 11), // 42 + (929293739471222707, 11), // 43 + (1196683881290399744, 11), // 44 + (1532278301220703125, 11), // 45 + (1951354384207722496, 11), // 46 + (2472159215084012303, 11), // 47 + (3116402981210161152, 11), // 48 + (3909821048582988049, 11), // 49 + (4882812500000000000, 11), // 50 + (6071163615208263051, 11), // 51 + (7516865509350965248, 11), // 52 + (9269035929372191597, 11), // 53 + (11384956040305711104, 11), // 54 + (13931233916552734375, 11), // 55 + (16985107389382393856, 11), // 56 + (362033331456891249, 10), // 57 + (430804206899405824, 10), // 58 + (511116753300641401, 10), // 59 + (604661760000000000, 10), // 60 + (713342911662882601, 10), // 61 + (839299365868340224, 10), // 62 + (984930291881790849, 10), // 63 + (1152921504606846976, 10), // 64 + (1346274334462890625, 10), // 65 + (1568336880910795776, 10), // 66 + (1822837804551761449, 10), // 67 + (2113922820157210624, 10), // 68 + (2446194060654759801, 10), // 69 + (2824752490000000000, 10), // 70 + (3255243551009881201, 10), // 71 + (3743906242624487424, 10), // 72 + (4297625829703557649, 10), // 73 + (4923990397355877376, 10), // 74 + (5631351470947265625, 10), // 75 + (6428888932339941376, 10), // 76 + (7326680472586200649, 10), // 77 + (8335775831236199424, 10), // 78 + (9468276082626847201, 10), // 79 + (10737418240000000000, 10), // 80 + (12157665459056928801, 10), // 81 + (13744803133596058624, 10), // 82 + (15516041187205853449, 10), // 83 + (17490122876598091776, 10), // 84 + (231616946283203125, 9), // 85 + (257327417311663616, 9), // 86 + (285544154243029527, 9), // 87 + (316478381828866048, 9), // 88 + (350356403707485209, 9), // 89 + (387420489000000000, 9), // 90 + (427929800129788411, 9), // 91 + (472161363286556672, 9), // 92 + (520411082988487293, 9), // 93 + (572994802228616704, 9), // 94 + (630249409724609375, 9), // 95 + (692533995824480256, 9), // 96 + (760231058654565217, 9), // 97 + (833747762130149888, 9), // 98 + (913517247483640899, 9), // 99 + (1000000000000000000, 9), // 100 + (1093685272684360901, 9), // 101 + (1195092568622310912, 9), // 102 + (1304773183829244583, 9), // 103 + (1423311812421484544, 9), // 104 + (1551328215978515625, 9), // 105 + (1689478959002692096, 9), // 106 + (1838459212420154507, 9), // 107 + (1999004627104432128, 9), // 108 + (2171893279442309389, 9), // 109 + (2357947691000000000, 9), // 110 + (2558036924386500591, 9), // 111 + (2773078757450186752, 9), // 112 + (3004041937984268273, 9), // 113 + (3251948521156637184, 9), // 114 + (3517876291919921875, 9), // 115 + (3802961274698203136, 9), // 116 + (4108400332687853397, 9), // 117 + (4435453859151328768, 9), // 118 + (4785448563124474679, 9), // 119 + (5159780352000000000, 9), // 120 + (5559917313492231481, 9), // 121 + (5987402799531080192, 9), // 122 + (6443858614676334363, 9), // 123 + (6930988311686938624, 9), // 124 + (7450580596923828125, 9), // 125 + (8004512848309157376, 9), // 126 + (8594754748609397887, 9), // 127 + (9223372036854775808, 9), // 128 + (9892530380752880769, 9), // 129 + (10604499373000000000, 9), // 130 + (11361656654439817571, 9), // 131 + (12166492167065567232, 9), // 132 + (13021612539908538853, 9), // 133 + (13929745610903012864, 9), // 134 + (14893745087865234375, 9), // 135 + (15916595351771938816, 9), // 136 + (17001416405572203977, 9), // 137 + (18151468971815029248, 9), // 138 + (139353667211683681, 8), // 139 + (147578905600000000, 8), // 140 + (156225851787813921, 8), // 141 + (165312903998914816, 8), // 142 + (174859124550883201, 8), // 143 + (184884258895036416, 8), // 144 + (195408755062890625, 8), // 145 + (206453783524884736, 8), // 146 + (218041257467152161, 8), // 147 + (230193853492166656, 8), // 148 + (242935032749128801, 8), // 149 + (256289062500000000, 8), // 150 + (270281038127131201, 8), // 151 + (284936905588473856, 8), // 152 + (300283484326400961, 8), // 153 + (316348490636206336, 8), // 154 + (333160561500390625, 8), // 155 + (350749278894882816, 8), // 156 + (369145194573386401, 8), // 157 + (388379855336079616, 8), // 158 + (408485828788939521, 8), // 159 + (429496729600000000, 8), // 160 + (451447246258894081, 8), // 161 + (474373168346071296, 8), // 162 + (498311414318121121, 8), // 163 + (523300059815673856, 8), // 164 + (549378366500390625, 8), // 165 + (576586811427594496, 8), // 166 + (604967116961135041, 8), // 167 + (634562281237118976, 8), // 168 + (665416609183179841, 8), // 169 + (697575744100000000, 8), // 170 + (731086699811838561, 8), // 171 + (765997893392859136, 8), // 172 + (802359178476091681, 8), // 173 + (840221879151902976, 8), // 174 + (879638824462890625, 8), // 175 + (920664383502155776, 8), // 176 + (963354501121950081, 8), // 177 + (1007766734259732736, 8), // 178 + (1053960288888713761, 8), // 179 + (1101996057600000000, 8), // 180 + (1151936657823500641, 8), // 181 + (1203846470694789376, 8), // 182 + (1257791680575160641, 8), // 183 + (1313840315232157696, 8), // 184 + (1372062286687890625, 8), // 185 + (1432529432742502656, 8), // 186 + (1495315559180183521, 8), // 187 + (1560496482665168896, 8), // 188 + (1628150074335205281, 8), // 189 + (1698356304100000000, 8), // 190 + (1771197285652216321, 8), // 191 + (1846757322198614016, 8), // 192 + (1925122952918976001, 8), // 193 + (2006383000160502016, 8), // 194 + (2090628617375390625, 8), // 195 + (2177953337809371136, 8), // 196 + (2268453123948987361, 8), // 197 + (2362226417735475456, 8), // 198 + (2459374191553118401, 8), // 199 + (2560000000000000000, 8), // 200 + (2664210032449121601, 8), // 201 + (2772113166407885056, 8), // 202 + (2883821021683985761, 8), // 203 + (2999448015365799936, 8), // 204 + (3119111417625390625, 8), // 205 + (3242931408352297216, 8), // 206 + (3371031134626313601, 8), // 207 + (3503536769037500416, 8), // 208 + (3640577568861717121, 8), // 209 + (3782285936100000000, 8), // 210 + (3928797478390152481, 8), // 211 + (4080251070798954496, 8), // 212 + (4236788918503437921, 8), // 213 + (4398556620369715456, 8), // 214 + (4565703233437890625, 8), // 215 + (4738381338321616896, 8), // 216 + (4916747105530914241, 8), // 217 + (5100960362726891776, 8), // 218 + (5291184662917065441, 8), // 219 + (5487587353600000000, 8), // 220 + (5690339646868044961, 8), // 221 + (5899616690476974336, 8), // 222 + (6115597639891380481, 8), // 223 + (6338465731314712576, 8), // 224 + (6568408355712890625, 8), // 225 + (6805617133840466176, 8), // 226 + (7050287992278341281, 8), // 227 + (7302621240492097536, 8), // 228 + (7562821648920027361, 8), // 229 + (7831098528100000000, 8), // 230 + (8107665808844335041, 8), // 231 + (8392742123471896576, 8), // 232 + (8686550888106661441, 8), // 233 + (8989320386052055296, 8), // 234 + (9301283852250390625, 8), // 235 + (9622679558836781056, 8), // 236 + (9953750901796946721, 8), // 237 + (10294746488738365696, 8), // 238 + (10645920227784266881, 8), // 239 + (11007531417600000000, 8), // 240 + (11379844838561358721, 8), // 241 + (11763130845074473216, 8), // 242 + (12157665459056928801, 8), // 243 + (12563730464589807616, 8), // 244 + (12981613503750390625, 8), // 245 + (13411608173635297536, 8), // 246 + (13854014124583882561, 8), // 247 + (14309137159611744256, 8), // 248 + (14777289335064248001, 8), // 249 + (15258789062500000000, 8), // 250 + (15753961211814252001, 8), // 251 + (16263137215612256256, 8), // 252 + (16786655174842630561, 8), // 253 + (17324859965700833536, 8), // 254 + (17878103347812890625, 8), // 255 + (72057594037927936, 7), // 256 + ]; + + let (base, power) = BASES[radix as usize]; + (base as BigDigit, power) + } + _ => panic!("Invalid bigdigit size"), + } +} + +#[test] +fn test_from_slice() { + fn check(slice: &[BigDigit], data: &[BigDigit]) { + assert!(BigUint::from_slice(slice).data == data); + } + check(&[1], &[1]); + check(&[0, 0, 0], &[]); + check(&[1, 2, 0, 0], &[1, 2]); + check(&[0, 0, 1, 2], &[0, 0, 1, 2]); + check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]); + check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]); +} + +#[test] +fn test_assign_from_slice() { + fn check(slice: &[BigDigit], data: &[BigDigit]) { + let mut p = BigUint::from_slice(&[2627_u32, 0_u32, 9182_u32, 42_u32]); + p.assign_from_slice(slice); + assert!(p.data == data); + } + check(&[1], &[1]); + check(&[0, 0, 0], &[]); + check(&[1, 2, 0, 0], &[1, 2]); + check(&[0, 0, 1, 2], &[0, 0, 1, 2]); + check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]); + check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]); +} + +#[cfg(has_i128)] +#[test] +fn test_u32_u128() { + assert_eq!(u32_from_u128(0u128), (0, 0, 0, 0)); + assert_eq!( + u32_from_u128(u128::max_value()), + ( + u32::max_value(), + u32::max_value(), + u32::max_value(), + u32::max_value() + ) + ); + + assert_eq!( + u32_from_u128(u32::max_value() as u128), + (0, 0, 0, u32::max_value()) + ); + + assert_eq!( + u32_from_u128(u64::max_value() as u128), + (0, 0, u32::max_value(), u32::max_value()) + ); + + assert_eq!( + u32_from_u128((u64::max_value() as u128) + u32::max_value() as u128), + (0, 1, 0, u32::max_value() - 1) + ); + + assert_eq!(u32_from_u128(36_893_488_151_714_070_528), (0, 2, 1, 0)); +} + +#[cfg(has_i128)] +#[test] +fn test_u128_u32_roundtrip() { + // roundtrips + let values = vec![ + 0u128, + 1u128, + u64::max_value() as u128 * 3, + u32::max_value() as u128, + u64::max_value() as u128, + (u64::max_value() as u128) + u32::max_value() as u128, + u128::max_value(), + ]; + + for val in &values { + let (a, b, c, d) = u32_from_u128(*val); + assert_eq!(u32_to_u128(a, b, c, d), *val); + } +} + +#[test] +fn test_pow_biguint() { + let base = BigUint::from(5u8); + let exponent = BigUint::from(3u8); + + assert_eq!(BigUint::from(125u8), base.pow(exponent)); +} |