summaryrefslogtreecommitdiffstats
path: root/rust/vendor/num-bigint/src/biguint/division.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/vendor/num-bigint/src/biguint/division.rs')
-rw-r--r--rust/vendor/num-bigint/src/biguint/division.rs652
1 files changed, 652 insertions, 0 deletions
diff --git a/rust/vendor/num-bigint/src/biguint/division.rs b/rust/vendor/num-bigint/src/biguint/division.rs
new file mode 100644
index 0000000..2999838
--- /dev/null
+++ b/rust/vendor/num-bigint/src/biguint/division.rs
@@ -0,0 +1,652 @@
+use super::addition::__add2;
+#[cfg(not(u64_digit))]
+use super::u32_to_u128;
+use super::{cmp_slice, BigUint};
+
+use crate::big_digit::{self, BigDigit, DoubleBigDigit};
+use crate::UsizePromotion;
+
+use core::cmp::Ordering::{Equal, Greater, Less};
+use core::mem;
+use core::ops::{Div, DivAssign, Rem, RemAssign};
+use num_integer::Integer;
+use num_traits::{CheckedDiv, CheckedEuclid, Euclid, One, ToPrimitive, Zero};
+
+/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
+///
+/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
+/// This is _not_ true for an arbitrary numerator/denominator.
+///
+/// (This function also matches what the x86 divide instruction does).
+#[inline]
+fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
+ debug_assert!(hi < divisor);
+
+ let lhs = big_digit::to_doublebigdigit(hi, lo);
+ let rhs = DoubleBigDigit::from(divisor);
+ ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
+}
+
+/// For small divisors, we can divide without promoting to `DoubleBigDigit` by
+/// using half-size pieces of digit, like long-division.
+#[inline]
+fn div_half(rem: BigDigit, digit: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
+ use crate::big_digit::{HALF, HALF_BITS};
+
+ debug_assert!(rem < divisor && divisor <= HALF);
+ let (hi, rem) = ((rem << HALF_BITS) | (digit >> HALF_BITS)).div_rem(&divisor);
+ let (lo, rem) = ((rem << HALF_BITS) | (digit & HALF)).div_rem(&divisor);
+ ((hi << HALF_BITS) | lo, rem)
+}
+
+#[inline]
+pub(super) fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
+ if b == 0 {
+ panic!("attempt to divide by zero")
+ }
+
+ let mut rem = 0;
+
+ if b <= big_digit::HALF {
+ for d in a.data.iter_mut().rev() {
+ let (q, r) = div_half(rem, *d, b);
+ *d = q;
+ rem = r;
+ }
+ } else {
+ for d in a.data.iter_mut().rev() {
+ let (q, r) = div_wide(rem, *d, b);
+ *d = q;
+ rem = r;
+ }
+ }
+
+ (a.normalized(), rem)
+}
+
+#[inline]
+fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit {
+ if b == 0 {
+ panic!("attempt to divide by zero")
+ }
+
+ let mut rem = 0;
+
+ if b <= big_digit::HALF {
+ for &digit in a.data.iter().rev() {
+ let (_, r) = div_half(rem, digit, b);
+ rem = r;
+ }
+ } else {
+ for &digit in a.data.iter().rev() {
+ let (_, r) = div_wide(rem, digit, b);
+ rem = r;
+ }
+ }
+
+ rem
+}
+
+/// Subtract a multiple.
+/// a -= b * c
+/// Returns a borrow (if a < b then borrow > 0).
+fn sub_mul_digit_same_len(a: &mut [BigDigit], b: &[BigDigit], c: BigDigit) -> BigDigit {
+ debug_assert!(a.len() == b.len());
+
+ // carry is between -big_digit::MAX and 0, so to avoid overflow we store
+ // offset_carry = carry + big_digit::MAX
+ let mut offset_carry = big_digit::MAX;
+
+ for (x, y) in a.iter_mut().zip(b) {
+ // We want to calculate sum = x - y * c + carry.
+ // sum >= -(big_digit::MAX * big_digit::MAX) - big_digit::MAX
+ // sum <= big_digit::MAX
+ // Offsetting sum by (big_digit::MAX << big_digit::BITS) puts it in DoubleBigDigit range.
+ let offset_sum = big_digit::to_doublebigdigit(big_digit::MAX, *x)
+ - big_digit::MAX as DoubleBigDigit
+ + offset_carry as DoubleBigDigit
+ - *y as DoubleBigDigit * c as DoubleBigDigit;
+
+ let (new_offset_carry, new_x) = big_digit::from_doublebigdigit(offset_sum);
+ offset_carry = new_offset_carry;
+ *x = new_x;
+ }
+
+ // Return the borrow.
+ big_digit::MAX - offset_carry
+}
+
+fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) {
+ if d.is_zero() {
+ panic!("attempt to divide by zero")
+ }
+ if u.is_zero() {
+ return (Zero::zero(), Zero::zero());
+ }
+
+ if d.data.len() == 1 {
+ if d.data == [1] {
+ return (u, Zero::zero());
+ }
+ let (div, rem) = div_rem_digit(u, d.data[0]);
+ // reuse d
+ d.data.clear();
+ d += rem;
+ return (div, d);
+ }
+
+ // Required or the q_len calculation below can underflow:
+ match u.cmp(&d) {
+ Less => return (Zero::zero(), u),
+ Equal => {
+ u.set_one();
+ return (u, Zero::zero());
+ }
+ Greater => {} // Do nothing
+ }
+
+ // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
+ //
+ // First, normalize the arguments so the highest bit in the highest digit of the divisor is
+ // set: the main loop uses the highest digit of the divisor for generating guesses, so we
+ // want it to be the largest number we can efficiently divide by.
+ //
+ let shift = d.data.last().unwrap().leading_zeros() as usize;
+
+ if shift == 0 {
+ // no need to clone d
+ div_rem_core(u, &d.data)
+ } else {
+ let (q, r) = div_rem_core(u << shift, &(d << shift).data);
+ // renormalize the remainder
+ (q, r >> shift)
+ }
+}
+
+pub(super) fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
+ if d.is_zero() {
+ panic!("attempt to divide by zero")
+ }
+ if u.is_zero() {
+ return (Zero::zero(), Zero::zero());
+ }
+
+ if d.data.len() == 1 {
+ if d.data == [1] {
+ return (u.clone(), Zero::zero());
+ }
+
+ let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
+ return (div, rem.into());
+ }
+
+ // Required or the q_len calculation below can underflow:
+ match u.cmp(d) {
+ Less => return (Zero::zero(), u.clone()),
+ Equal => return (One::one(), Zero::zero()),
+ Greater => {} // Do nothing
+ }
+
+ // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
+ //
+ // First, normalize the arguments so the highest bit in the highest digit of the divisor is
+ // set: the main loop uses the highest digit of the divisor for generating guesses, so we
+ // want it to be the largest number we can efficiently divide by.
+ //
+ let shift = d.data.last().unwrap().leading_zeros() as usize;
+
+ if shift == 0 {
+ // no need to clone d
+ div_rem_core(u.clone(), &d.data)
+ } else {
+ let (q, r) = div_rem_core(u << shift, &(d << shift).data);
+ // renormalize the remainder
+ (q, r >> shift)
+ }
+}
+
+/// An implementation of the base division algorithm.
+/// Knuth, TAOCP vol 2 section 4.3.1, algorithm D, with an improvement from exercises 19-21.
+fn div_rem_core(mut a: BigUint, b: &[BigDigit]) -> (BigUint, BigUint) {
+ debug_assert!(a.data.len() >= b.len() && b.len() > 1);
+ debug_assert!(b.last().unwrap().leading_zeros() == 0);
+
+ // The algorithm works by incrementally calculating "guesses", q0, for the next digit of the
+ // quotient. Once we have any number q0 such that (q0 << j) * b <= a, we can set
+ //
+ // q += q0 << j
+ // a -= (q0 << j) * b
+ //
+ // and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
+ //
+ // q0, our guess, is calculated by dividing the last three digits of a by the last two digits of
+ // b - this will give us a guess that is close to the actual quotient, but is possibly greater.
+ // It can only be greater by 1 and only in rare cases, with probability at most
+ // 2^-(big_digit::BITS-1) for random a, see TAOCP 4.3.1 exercise 21.
+ //
+ // If the quotient turns out to be too large, we adjust it by 1:
+ // q -= 1 << j
+ // a += b << j
+
+ // a0 stores an additional extra most significant digit of the dividend, not stored in a.
+ let mut a0 = 0;
+
+ // [b1, b0] are the two most significant digits of the divisor. They never change.
+ let b0 = *b.last().unwrap();
+ let b1 = b[b.len() - 2];
+
+ let q_len = a.data.len() - b.len() + 1;
+ let mut q = BigUint {
+ data: vec![0; q_len],
+ };
+
+ for j in (0..q_len).rev() {
+ debug_assert!(a.data.len() == b.len() + j);
+
+ let a1 = *a.data.last().unwrap();
+ let a2 = a.data[a.data.len() - 2];
+
+ // The first q0 estimate is [a1,a0] / b0. It will never be too small, it may be too large
+ // by at most 2.
+ let (mut q0, mut r) = if a0 < b0 {
+ let (q0, r) = div_wide(a0, a1, b0);
+ (q0, r as DoubleBigDigit)
+ } else {
+ debug_assert!(a0 == b0);
+ // Avoid overflowing q0, we know the quotient fits in BigDigit.
+ // [a1,a0] = b0 * (1<<BITS - 1) + (a0 + a1)
+ (big_digit::MAX, a0 as DoubleBigDigit + a1 as DoubleBigDigit)
+ };
+
+ // r = [a1,a0] - q0 * b0
+ //
+ // Now we want to compute a more precise estimate [a2,a1,a0] / [b1,b0] which can only be
+ // less or equal to the current q0.
+ //
+ // q0 is too large if:
+ // [a2,a1,a0] < q0 * [b1,b0]
+ // (r << BITS) + a2 < q0 * b1
+ while r <= big_digit::MAX as DoubleBigDigit
+ && big_digit::to_doublebigdigit(r as BigDigit, a2)
+ < q0 as DoubleBigDigit * b1 as DoubleBigDigit
+ {
+ q0 -= 1;
+ r += b0 as DoubleBigDigit;
+ }
+
+ // q0 is now either the correct quotient digit, or in rare cases 1 too large.
+ // Subtract (q0 << j) from a. This may overflow, in which case we will have to correct.
+
+ let mut borrow = sub_mul_digit_same_len(&mut a.data[j..], b, q0);
+ if borrow > a0 {
+ // q0 is too large. We need to add back one multiple of b.
+ q0 -= 1;
+ borrow -= __add2(&mut a.data[j..], b);
+ }
+ // The top digit of a, stored in a0, has now been zeroed.
+ debug_assert!(borrow == a0);
+
+ q.data[j] = q0;
+
+ // Pop off the next top digit of a.
+ a0 = a.data.pop().unwrap();
+ }
+
+ a.data.push(a0);
+ a.normalize();
+
+ debug_assert_eq!(cmp_slice(&a.data, b), Less);
+
+ (q.normalized(), a)
+}
+
+forward_val_ref_binop!(impl Div for BigUint, div);
+forward_ref_val_binop!(impl Div for BigUint, div);
+forward_val_assign!(impl DivAssign for BigUint, div_assign);
+
+impl Div<BigUint> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ let (q, _) = div_rem(self, other);
+ q
+ }
+}
+
+impl Div<&BigUint> for &BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: &BigUint) -> BigUint {
+ let (q, _) = self.div_rem(other);
+ q
+ }
+}
+impl DivAssign<&BigUint> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: &BigUint) {
+ *self = &*self / other;
+ }
+}
+
+promote_unsigned_scalars!(impl Div for BigUint, div);
+promote_unsigned_scalars_assign!(impl DivAssign for BigUint, div_assign);
+forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigUint, div);
+forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigUint, div);
+forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigUint, div);
+
+impl Div<u32> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u32) -> BigUint {
+ let (q, _) = div_rem_digit(self, other as BigDigit);
+ q
+ }
+}
+impl DivAssign<u32> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u32) {
+ *self = &*self / other;
+ }
+}
+
+impl Div<BigUint> for u32 {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!("attempt to divide by zero"),
+ 1 => From::from(self as BigDigit / other.data[0]),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+impl Div<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u64) -> BigUint {
+ let (q, _) = div_rem(self, From::from(other));
+ q
+ }
+}
+impl DivAssign<u64> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u64) {
+ // a vec of size 0 does not allocate, so this is fairly cheap
+ let temp = mem::replace(self, Zero::zero());
+ *self = temp / other;
+ }
+}
+
+impl Div<BigUint> for u64 {
+ type Output = BigUint;
+
+ #[cfg(not(u64_digit))]
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!("attempt to divide by zero"),
+ 1 => From::from(self / u64::from(other.data[0])),
+ 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])),
+ _ => Zero::zero(),
+ }
+ }
+
+ #[cfg(u64_digit)]
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!("attempt to divide by zero"),
+ 1 => From::from(self / other.data[0]),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+impl Div<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn div(self, other: u128) -> BigUint {
+ let (q, _) = div_rem(self, From::from(other));
+ q
+ }
+}
+
+impl DivAssign<u128> for BigUint {
+ #[inline]
+ fn div_assign(&mut self, other: u128) {
+ *self = &*self / other;
+ }
+}
+
+impl Div<BigUint> for u128 {
+ type Output = BigUint;
+
+ #[cfg(not(u64_digit))]
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!("attempt to divide by zero"),
+ 1 => From::from(self / u128::from(other.data[0])),
+ 2 => From::from(
+ self / u128::from(big_digit::to_doublebigdigit(other.data[1], other.data[0])),
+ ),
+ 3 => From::from(self / u32_to_u128(0, other.data[2], other.data[1], other.data[0])),
+ 4 => From::from(
+ self / u32_to_u128(other.data[3], other.data[2], other.data[1], other.data[0]),
+ ),
+ _ => Zero::zero(),
+ }
+ }
+
+ #[cfg(u64_digit)]
+ #[inline]
+ fn div(self, other: BigUint) -> BigUint {
+ match other.data.len() {
+ 0 => panic!("attempt to divide by zero"),
+ 1 => From::from(self / other.data[0] as u128),
+ 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])),
+ _ => Zero::zero(),
+ }
+ }
+}
+
+forward_val_ref_binop!(impl Rem for BigUint, rem);
+forward_ref_val_binop!(impl Rem for BigUint, rem);
+forward_val_assign!(impl RemAssign for BigUint, rem_assign);
+
+impl Rem<BigUint> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: BigUint) -> BigUint {
+ if let Some(other) = other.to_u32() {
+ &self % other
+ } else {
+ let (_, r) = div_rem(self, other);
+ r
+ }
+ }
+}
+
+impl Rem<&BigUint> for &BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: &BigUint) -> BigUint {
+ if let Some(other) = other.to_u32() {
+ self % other
+ } else {
+ let (_, r) = self.div_rem(other);
+ r
+ }
+ }
+}
+impl RemAssign<&BigUint> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: &BigUint) {
+ *self = &*self % other;
+ }
+}
+
+promote_unsigned_scalars!(impl Rem for BigUint, rem);
+promote_unsigned_scalars_assign!(impl RemAssign for BigUint, rem_assign);
+forward_all_scalar_binop_to_ref_val!(impl Rem<u32> for BigUint, rem);
+forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigUint, rem);
+forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigUint, rem);
+
+impl Rem<u32> for &BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u32) -> BigUint {
+ rem_digit(self, other as BigDigit).into()
+ }
+}
+impl RemAssign<u32> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u32) {
+ *self = &*self % other;
+ }
+}
+
+impl Rem<&BigUint> for u32 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: &BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+macro_rules! impl_rem_assign_scalar {
+ ($scalar:ty, $to_scalar:ident) => {
+ forward_val_assign_scalar!(impl RemAssign for BigUint, $scalar, rem_assign);
+ impl RemAssign<&BigUint> for $scalar {
+ #[inline]
+ fn rem_assign(&mut self, other: &BigUint) {
+ *self = match other.$to_scalar() {
+ None => *self,
+ Some(0) => panic!("attempt to divide by zero"),
+ Some(v) => *self % v
+ };
+ }
+ }
+ }
+}
+
+// we can scalar %= BigUint for any scalar, including signed types
+impl_rem_assign_scalar!(u128, to_u128);
+impl_rem_assign_scalar!(usize, to_usize);
+impl_rem_assign_scalar!(u64, to_u64);
+impl_rem_assign_scalar!(u32, to_u32);
+impl_rem_assign_scalar!(u16, to_u16);
+impl_rem_assign_scalar!(u8, to_u8);
+impl_rem_assign_scalar!(i128, to_i128);
+impl_rem_assign_scalar!(isize, to_isize);
+impl_rem_assign_scalar!(i64, to_i64);
+impl_rem_assign_scalar!(i32, to_i32);
+impl_rem_assign_scalar!(i16, to_i16);
+impl_rem_assign_scalar!(i8, to_i8);
+
+impl Rem<u64> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u64) -> BigUint {
+ let (_, r) = div_rem(self, From::from(other));
+ r
+ }
+}
+impl RemAssign<u64> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u64) {
+ *self = &*self % other;
+ }
+}
+
+impl Rem<BigUint> for u64 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+impl Rem<u128> for BigUint {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(self, other: u128) -> BigUint {
+ let (_, r) = div_rem(self, From::from(other));
+ r
+ }
+}
+
+impl RemAssign<u128> for BigUint {
+ #[inline]
+ fn rem_assign(&mut self, other: u128) {
+ *self = &*self % other;
+ }
+}
+
+impl Rem<BigUint> for u128 {
+ type Output = BigUint;
+
+ #[inline]
+ fn rem(mut self, other: BigUint) -> BigUint {
+ self %= other;
+ From::from(self)
+ }
+}
+
+impl CheckedDiv for BigUint {
+ #[inline]
+ fn checked_div(&self, v: &BigUint) -> Option<BigUint> {
+ if v.is_zero() {
+ return None;
+ }
+ Some(self.div(v))
+ }
+}
+
+impl CheckedEuclid for BigUint {
+ #[inline]
+ fn checked_div_euclid(&self, v: &BigUint) -> Option<BigUint> {
+ if v.is_zero() {
+ return None;
+ }
+ Some(self.div_euclid(v))
+ }
+
+ #[inline]
+ fn checked_rem_euclid(&self, v: &BigUint) -> Option<BigUint> {
+ if v.is_zero() {
+ return None;
+ }
+ Some(self.rem_euclid(v))
+ }
+}
+
+impl Euclid for BigUint {
+ #[inline]
+ fn div_euclid(&self, v: &BigUint) -> BigUint {
+ // trivially same as regular division
+ self / v
+ }
+
+ #[inline]
+ fn rem_euclid(&self, v: &BigUint) -> BigUint {
+ // trivially same as regular remainder
+ self % v
+ }
+}