summaryrefslogtreecommitdiffstats
path: root/rust/vendor/num-complex
diff options
context:
space:
mode:
Diffstat (limited to 'rust/vendor/num-complex')
-rw-r--r--rust/vendor/num-complex/.cargo-checksum.json1
-rw-r--r--rust/vendor/num-complex/Cargo.toml48
-rw-r--r--rust/vendor/num-complex/LICENSE-APACHE201
-rw-r--r--rust/vendor/num-complex/LICENSE-MIT25
-rw-r--r--rust/vendor/num-complex/README.md50
-rw-r--r--rust/vendor/num-complex/RELEASES.md103
-rw-r--r--rust/vendor/num-complex/build.rs20
-rw-r--r--rust/vendor/num-complex/src/cast.rs119
-rw-r--r--rust/vendor/num-complex/src/crand.rs115
-rw-r--r--rust/vendor/num-complex/src/lib.rs2663
-rw-r--r--rust/vendor/num-complex/src/pow.rs187
11 files changed, 3532 insertions, 0 deletions
diff --git a/rust/vendor/num-complex/.cargo-checksum.json b/rust/vendor/num-complex/.cargo-checksum.json
new file mode 100644
index 0000000..b570343
--- /dev/null
+++ b/rust/vendor/num-complex/.cargo-checksum.json
@@ -0,0 +1 @@
+{"files":{"Cargo.toml":"8cf6fb85b2079ec956d3f68462408742e73b936addeec8e41d9b74751f78762d","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"6485b8ed310d3f0340bf1ad1f47645069ce4069dcc6bb46c7d5c6faf41de1fdb","README.md":"f0b140084775e2375b360eb112879be8e4af84219de2418ea192dac0a44e496d","RELEASES.md":"de3b50aa25c31813e4c8f6d26a98927ea8ebca37cfd750b702e4f53f25a2e56a","build.rs":"aba9dbc29eff865d95ce39cfe7cb20fde6137c7b7fae441d1b52ebb5087e402f","src/cast.rs":"dc674642a5a5cd74370dc8f400a5db1698bcb655796d4d5267dfd3582ad20023","src/crand.rs":"07c6dbb07e0d93200c43a75c8ce0ebd22e99b6a4d728ec8e00441414be7e2321","src/lib.rs":"8ab88e7253b6fccdb6717b7d2fb4fce21d02ca9d68b6c6841ac55b763bff906d","src/pow.rs":"c74f6cb40fe05c41fcdda0d684ead945f5799d1a94a7d13c645a003b76710d97"},"package":"b6b19411a9719e753aff12e5187b74d60d3dc449ec3f4dc21e3989c3f554bc95"} \ No newline at end of file
diff --git a/rust/vendor/num-complex/Cargo.toml b/rust/vendor/num-complex/Cargo.toml
new file mode 100644
index 0000000..595ef47
--- /dev/null
+++ b/rust/vendor/num-complex/Cargo.toml
@@ -0,0 +1,48 @@
+# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
+#
+# When uploading crates to the registry Cargo will automatically
+# "normalize" Cargo.toml files for maximal compatibility
+# with all versions of Cargo and also rewrite `path` dependencies
+# to registry (e.g., crates.io) dependencies
+#
+# If you believe there's an error in this file please file an
+# issue against the rust-lang/cargo repository. If you're
+# editing this file be aware that the upstream Cargo.toml
+# will likely look very different (and much more reasonable)
+
+[package]
+name = "num-complex"
+version = "0.2.4"
+authors = ["The Rust Project Developers"]
+build = "build.rs"
+exclude = ["/ci/*", "/.travis.yml", "/bors.toml"]
+description = "Complex numbers implementation for Rust"
+homepage = "https://github.com/rust-num/num-complex"
+documentation = "https://docs.rs/num-complex"
+readme = "README.md"
+keywords = ["mathematics", "numerics"]
+categories = ["algorithms", "data-structures", "science", "no-std"]
+license = "MIT/Apache-2.0"
+repository = "https://github.com/rust-num/num-complex"
+[package.metadata.docs.rs]
+features = ["std", "serde", "rand"]
+[dependencies.num-traits]
+version = "0.2.11"
+default-features = false
+
+[dependencies.rand]
+version = "0.5"
+optional = true
+default-features = false
+
+[dependencies.serde]
+version = "1.0"
+optional = true
+default-features = false
+[build-dependencies.autocfg]
+version = "1"
+
+[features]
+default = ["std"]
+i128 = ["num-traits/i128"]
+std = ["num-traits/std"]
diff --git a/rust/vendor/num-complex/LICENSE-APACHE b/rust/vendor/num-complex/LICENSE-APACHE
new file mode 100644
index 0000000..16fe87b
--- /dev/null
+++ b/rust/vendor/num-complex/LICENSE-APACHE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+END OF TERMS AND CONDITIONS
+
+APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+Copyright [yyyy] [name of copyright owner]
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
diff --git a/rust/vendor/num-complex/LICENSE-MIT b/rust/vendor/num-complex/LICENSE-MIT
new file mode 100644
index 0000000..39d4bdb
--- /dev/null
+++ b/rust/vendor/num-complex/LICENSE-MIT
@@ -0,0 +1,25 @@
+Copyright (c) 2014 The Rust Project Developers
+
+Permission is hereby granted, free of charge, to any
+person obtaining a copy of this software and associated
+documentation files (the "Software"), to deal in the
+Software without restriction, including without
+limitation the rights to use, copy, modify, merge,
+publish, distribute, sublicense, and/or sell copies of
+the Software, and to permit persons to whom the Software
+is furnished to do so, subject to the following
+conditions:
+
+The above copyright notice and this permission notice
+shall be included in all copies or substantial portions
+of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
+ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
+TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
+PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
+SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
+CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
+IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+DEALINGS IN THE SOFTWARE.
diff --git a/rust/vendor/num-complex/README.md b/rust/vendor/num-complex/README.md
new file mode 100644
index 0000000..0536a2b
--- /dev/null
+++ b/rust/vendor/num-complex/README.md
@@ -0,0 +1,50 @@
+# num-complex
+
+[![crate](https://img.shields.io/crates/v/num-complex.svg)](https://crates.io/crates/num-complex)
+[![documentation](https://docs.rs/num-complex/badge.svg)](https://docs.rs/num-complex)
+![minimum rustc 1.15](https://img.shields.io/badge/rustc-1.15+-red.svg)
+[![Travis status](https://travis-ci.org/rust-num/num-complex.svg?branch=master)](https://travis-ci.org/rust-num/num-complex)
+
+`Complex` numbers for Rust.
+
+## Usage
+
+Add this to your `Cargo.toml`:
+
+```toml
+[dependencies]
+num-complex = "0.2"
+```
+
+and this to your crate root:
+
+```rust
+extern crate num_complex;
+```
+
+## Features
+
+This crate can be used without the standard library (`#![no_std]`) by disabling
+the default `std` feature. Use this in `Cargo.toml`:
+
+```toml
+[dependencies.num-complex]
+version = "0.2"
+default-features = false
+```
+
+Features based on `Float` types are only available when `std` is enabled. Where
+possible, `FloatCore` is used instead. Formatting complex numbers only supports
+format width when `std` is enabled.
+
+Implementations for `i128` and `u128` are only available with Rust 1.26 and
+later. The build script automatically detects this, but you can make it
+mandatory by enabling the `i128` crate feature.
+
+## Releases
+
+Release notes are available in [RELEASES.md](RELEASES.md).
+
+## Compatibility
+
+The `num-complex` crate is tested for rustc 1.15 and greater.
diff --git a/rust/vendor/num-complex/RELEASES.md b/rust/vendor/num-complex/RELEASES.md
new file mode 100644
index 0000000..5163276
--- /dev/null
+++ b/rust/vendor/num-complex/RELEASES.md
@@ -0,0 +1,103 @@
+# Release 0.2.4 (2020-01-09)
+
+- [`Complex::new` is now a `const fn` for Rust 1.31 and later][63].
+- [Updated the `autocfg` build dependency to 1.0][68].
+
+**Contributors**: @burrbull, @cuviper, @dingelish
+
+[63]: https://github.com/rust-num/num-complex/pull/63
+[68]: https://github.com/rust-num/num-complex/pull/68
+
+# Release 0.2.3 (2019-06-11)
+
+- [`Complex::sqrt()` is now more accurate for negative reals][60].
+- [`Complex::cbrt()` computes the principal cube root][61].
+
+**Contributors**: @cuviper
+
+[60]: https://github.com/rust-num/num-complex/pull/60
+[61]: https://github.com/rust-num/num-complex/pull/61
+
+# Release 0.2.2 (2019-06-10)
+
+- [`Complex::l1_norm()` computes the Manhattan distance from the origin][43].
+- [`Complex::fdiv()` and `finv()` use floating-point for inversion][41], which
+ may avoid overflows for some inputs, at the cost of trigonometric rounding.
+- [`Complex` now implements `num_traits::MulAdd` and `MulAddAssign`][44].
+- [`Complex` now implements `Zero::set_zero` and `One::set_one`][57].
+- [`Complex` now implements `num_traits::Pow` and adds `powi` and `powu`][56].
+
+**Contributors**: @adamnemecek, @cuviper, @ignatenkobrain, @Schultzer
+
+[41]: https://github.com/rust-num/num-complex/pull/41
+[43]: https://github.com/rust-num/num-complex/pull/43
+[44]: https://github.com/rust-num/num-complex/pull/44
+[56]: https://github.com/rust-num/num-complex/pull/56
+[57]: https://github.com/rust-num/num-complex/pull/57
+
+# Release 0.2.1 (2018-10-08)
+
+- [`Complex` now implements `ToPrimitive`, `FromPrimitive`, `AsPrimitive`, and `NumCast`][33].
+
+**Contributors**: @cuviper, @termoshtt
+
+[33]: https://github.com/rust-num/num-complex/pull/33
+
+# Release 0.2.0 (2018-05-24)
+
+### Enhancements
+
+- [`Complex` now implements `num_traits::Inv` and `One::is_one`][17].
+- [`Complex` now implements `Sum` and `Product`][11].
+- [`Complex` now supports `i128` and `u128` components][27] with Rust 1.26+.
+- [`Complex` now optionally supports `rand` 0.5][28], implementing the
+ `Standard` distribution and [a generic `ComplexDistribution`][30].
+- [`Rem` with a scalar divisor now avoids `norm_sqr` overflow][25].
+
+### Breaking Changes
+
+- [`num-complex` now requires rustc 1.15 or greater][16].
+- [There is now a `std` feature][22], enabled by default, along with the
+ implication that building *without* this feature makes this a `#![no_std]`
+ crate. A few methods now require `FloatCore`, and the remaining methods
+ based on `Float` are only supported with `std`.
+- [The `serde` dependency has been updated to 1.0][7], and `rustc-serialize`
+ is no longer supported by `num-complex`.
+
+**Contributors**: @clarcharr, @cuviper, @shingtaklam1324, @termoshtt
+
+[7]: https://github.com/rust-num/num-complex/pull/7
+[11]: https://github.com/rust-num/num-complex/pull/11
+[16]: https://github.com/rust-num/num-complex/pull/16
+[17]: https://github.com/rust-num/num-complex/pull/17
+[22]: https://github.com/rust-num/num-complex/pull/22
+[25]: https://github.com/rust-num/num-complex/pull/25
+[27]: https://github.com/rust-num/num-complex/pull/27
+[28]: https://github.com/rust-num/num-complex/pull/28
+[30]: https://github.com/rust-num/num-complex/pull/30
+
+
+# Release 0.1.43 (2018-03-08)
+
+- [Fix a usage typo in README.md][20].
+
+**Contributors**: @shingtaklam1324
+
+[20]: https://github.com/rust-num/num-complex/pull/20
+
+
+# Release 0.1.42 (2018-02-07)
+
+- [num-complex now has its own source repository][num-356] at [rust-num/num-complex][home].
+
+**Contributors**: @cuviper
+
+[home]: https://github.com/rust-num/num-complex
+[num-356]: https://github.com/rust-num/num/pull/356
+
+
+# Prior releases
+
+No prior release notes were kept. Thanks all the same to the many
+contributors that have made this crate what it is!
+
diff --git a/rust/vendor/num-complex/build.rs b/rust/vendor/num-complex/build.rs
new file mode 100644
index 0000000..85e88b7
--- /dev/null
+++ b/rust/vendor/num-complex/build.rs
@@ -0,0 +1,20 @@
+extern crate autocfg;
+
+use std::env;
+
+fn main() {
+ let ac = autocfg::new();
+
+ if ac.probe_type("i128") {
+ println!("cargo:rustc-cfg=has_i128");
+ } else if env::var_os("CARGO_FEATURE_I128").is_some() {
+ panic!("i128 support was not detected!");
+ }
+
+ // autocfg doesn't have a direct way to probe for `const fn` yet.
+ if ac.probe_rustc_version(1, 31) {
+ autocfg::emit("has_const_fn");
+ }
+
+ autocfg::rerun_path("build.rs");
+}
diff --git a/rust/vendor/num-complex/src/cast.rs b/rust/vendor/num-complex/src/cast.rs
new file mode 100644
index 0000000..ace981d
--- /dev/null
+++ b/rust/vendor/num-complex/src/cast.rs
@@ -0,0 +1,119 @@
+use super::Complex;
+use traits::{AsPrimitive, FromPrimitive, Num, NumCast, ToPrimitive};
+
+macro_rules! impl_to_primitive {
+ ($ty:ty, $to:ident) => {
+ #[inline]
+ fn $to(&self) -> Option<$ty> {
+ if self.im.is_zero() { self.re.$to() } else { None }
+ }
+ }
+} // impl_to_primitive
+
+// Returns None if Complex part is non-zero
+impl<T: ToPrimitive + Num> ToPrimitive for Complex<T> {
+ impl_to_primitive!(usize, to_usize);
+ impl_to_primitive!(isize, to_isize);
+ impl_to_primitive!(u8, to_u8);
+ impl_to_primitive!(u16, to_u16);
+ impl_to_primitive!(u32, to_u32);
+ impl_to_primitive!(u64, to_u64);
+ impl_to_primitive!(i8, to_i8);
+ impl_to_primitive!(i16, to_i16);
+ impl_to_primitive!(i32, to_i32);
+ impl_to_primitive!(i64, to_i64);
+ #[cfg(has_i128)]
+ impl_to_primitive!(u128, to_u128);
+ #[cfg(has_i128)]
+ impl_to_primitive!(i128, to_i128);
+ impl_to_primitive!(f32, to_f32);
+ impl_to_primitive!(f64, to_f64);
+}
+
+macro_rules! impl_from_primitive {
+ ($ty:ty, $from_xx:ident) => {
+ #[inline]
+ fn $from_xx(n: $ty) -> Option<Self> {
+ T::$from_xx(n).map(|re| Complex {
+ re: re,
+ im: T::zero(),
+ })
+ }
+ };
+} // impl_from_primitive
+
+impl<T: FromPrimitive + Num> FromPrimitive for Complex<T> {
+ impl_from_primitive!(usize, from_usize);
+ impl_from_primitive!(isize, from_isize);
+ impl_from_primitive!(u8, from_u8);
+ impl_from_primitive!(u16, from_u16);
+ impl_from_primitive!(u32, from_u32);
+ impl_from_primitive!(u64, from_u64);
+ impl_from_primitive!(i8, from_i8);
+ impl_from_primitive!(i16, from_i16);
+ impl_from_primitive!(i32, from_i32);
+ impl_from_primitive!(i64, from_i64);
+ #[cfg(has_i128)]
+ impl_from_primitive!(u128, from_u128);
+ #[cfg(has_i128)]
+ impl_from_primitive!(i128, from_i128);
+ impl_from_primitive!(f32, from_f32);
+ impl_from_primitive!(f64, from_f64);
+}
+
+impl<T: NumCast + Num> NumCast for Complex<T> {
+ fn from<U: ToPrimitive>(n: U) -> Option<Self> {
+ T::from(n).map(|re| Complex {
+ re: re,
+ im: T::zero(),
+ })
+ }
+}
+
+impl<T, U> AsPrimitive<U> for Complex<T>
+where
+ T: AsPrimitive<U>,
+ U: 'static + Copy,
+{
+ fn as_(self) -> U {
+ self.re.as_()
+ }
+}
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_to_primitive() {
+ let a: Complex<u32> = Complex { re: 3, im: 0 };
+ assert_eq!(a.to_i32(), Some(3_i32));
+ let b: Complex<u32> = Complex { re: 3, im: 1 };
+ assert_eq!(b.to_i32(), None);
+ let x: Complex<f32> = Complex { re: 1.0, im: 0.1 };
+ assert_eq!(x.to_f32(), None);
+ let y: Complex<f32> = Complex { re: 1.0, im: 0.0 };
+ assert_eq!(y.to_f32(), Some(1.0));
+ let z: Complex<f32> = Complex { re: 1.0, im: 0.0 };
+ assert_eq!(z.to_i32(), Some(1));
+ }
+
+ #[test]
+ fn test_from_primitive() {
+ let a: Complex<f32> = FromPrimitive::from_i32(2).unwrap();
+ assert_eq!(a, Complex { re: 2.0, im: 0.0 });
+ }
+
+ #[test]
+ fn test_num_cast() {
+ let a: Complex<f32> = NumCast::from(2_i32).unwrap();
+ assert_eq!(a, Complex { re: 2.0, im: 0.0 });
+ }
+
+ #[test]
+ fn test_as_primitive() {
+ let a: Complex<f32> = Complex { re: 2.0, im: 0.2 };
+ let a_: i32 = a.as_();
+ assert_eq!(a_, 2_i32);
+ }
+}
diff --git a/rust/vendor/num-complex/src/crand.rs b/rust/vendor/num-complex/src/crand.rs
new file mode 100644
index 0000000..9e43974
--- /dev/null
+++ b/rust/vendor/num-complex/src/crand.rs
@@ -0,0 +1,115 @@
+//! Rand implementations for complex numbers
+
+use rand::distributions::Standard;
+use rand::prelude::*;
+use traits::Num;
+use Complex;
+
+impl<T> Distribution<Complex<T>> for Standard
+where
+ T: Num + Clone,
+ Standard: Distribution<T>,
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
+ Complex::new(self.sample(rng), self.sample(rng))
+ }
+}
+
+/// A generic random value distribution for complex numbers.
+#[derive(Clone, Copy, Debug)]
+pub struct ComplexDistribution<Re, Im = Re> {
+ re: Re,
+ im: Im,
+}
+
+impl<Re, Im> ComplexDistribution<Re, Im> {
+ /// Creates a complex distribution from independent
+ /// distributions of the real and imaginary parts.
+ pub fn new(re: Re, im: Im) -> Self {
+ ComplexDistribution { re, im }
+ }
+}
+
+impl<T, Re, Im> Distribution<Complex<T>> for ComplexDistribution<Re, Im>
+where
+ T: Num + Clone,
+ Re: Distribution<T>,
+ Im: Distribution<T>,
+{
+ fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Complex<T> {
+ Complex::new(self.re.sample(rng), self.im.sample(rng))
+ }
+}
+
+#[cfg(test)]
+fn test_rng() -> SmallRng {
+ SmallRng::from_seed([42; 16])
+}
+
+#[test]
+fn standard_f64() {
+ let mut rng = test_rng();
+ for _ in 0..100 {
+ let c: Complex<f64> = rng.gen();
+ assert!(c.re >= 0.0 && c.re < 1.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_standard_f64() {
+ let mut rng = test_rng();
+ let dist = ComplexDistribution::new(Standard, Standard);
+ for _ in 0..100 {
+ let c: Complex<f64> = rng.sample(&dist);
+ assert!(c.re >= 0.0 && c.re < 1.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_uniform_f64() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100.0, 0.0);
+ let im = Uniform::new(0.0, 100.0);
+ let dist = ComplexDistribution::new(re, im);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100.0 && c.re < 0.0);
+ assert!(c.im >= 0.0 && c.im < 100.0);
+ }
+}
+
+#[test]
+fn generic_mixed_f64() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100.0, 0.0);
+ let dist = ComplexDistribution::new(re, Standard);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100.0 && c.re < 0.0);
+ assert!(c.im >= 0.0 && c.im < 1.0);
+ }
+}
+
+#[test]
+fn generic_uniform_i32() {
+ use rand::distributions::Uniform;
+
+ let mut rng = test_rng();
+ let re = Uniform::new(-100, 0);
+ let im = Uniform::new(0, 100);
+ let dist = ComplexDistribution::new(re, im);
+ for _ in 0..100 {
+ // no type annotation required, since `Uniform` only produces one type.
+ let c = rng.sample(&dist);
+ assert!(c.re >= -100 && c.re < 0);
+ assert!(c.im >= 0 && c.im < 100);
+ }
+}
diff --git a/rust/vendor/num-complex/src/lib.rs b/rust/vendor/num-complex/src/lib.rs
new file mode 100644
index 0000000..46dc2e8
--- /dev/null
+++ b/rust/vendor/num-complex/src/lib.rs
@@ -0,0 +1,2663 @@
+// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
+// file at the top-level directory of this distribution and at
+// http://rust-lang.org/COPYRIGHT.
+//
+// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
+// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
+// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
+// option. This file may not be copied, modified, or distributed
+// except according to those terms.
+
+//! Complex numbers.
+//!
+//! ## Compatibility
+//!
+//! The `num-complex` crate is tested for rustc 1.15 and greater.
+
+#![doc(html_root_url = "https://docs.rs/num-complex/0.2")]
+#![no_std]
+
+#[cfg(any(test, feature = "std"))]
+#[cfg_attr(test, macro_use)]
+extern crate std;
+
+extern crate num_traits as traits;
+
+#[cfg(feature = "serde")]
+extern crate serde;
+
+#[cfg(feature = "rand")]
+extern crate rand;
+
+use core::fmt;
+#[cfg(test)]
+use core::hash;
+use core::iter::{Product, Sum};
+use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
+use core::str::FromStr;
+#[cfg(feature = "std")]
+use std::error::Error;
+
+use traits::{Inv, MulAdd, Num, One, Pow, Signed, Zero};
+
+#[cfg(feature = "std")]
+use traits::float::Float;
+use traits::float::FloatCore;
+
+mod cast;
+mod pow;
+
+#[cfg(feature = "rand")]
+mod crand;
+#[cfg(feature = "rand")]
+pub use crand::ComplexDistribution;
+
+// FIXME #1284: handle complex NaN & infinity etc. This
+// probably doesn't map to C's _Complex correctly.
+
+/// A complex number in Cartesian form.
+///
+/// ## Representation and Foreign Function Interface Compatibility
+///
+/// `Complex<T>` is memory layout compatible with an array `[T; 2]`.
+///
+/// Note that `Complex<F>` where F is a floating point type is **only** memory
+/// layout compatible with C's complex types, **not** necessarily calling
+/// convention compatible. This means that for FFI you can only pass
+/// `Complex<F>` behind a pointer, not as a value.
+///
+/// ## Examples
+///
+/// Example of extern function declaration.
+///
+/// ```
+/// use num_complex::Complex;
+/// use std::os::raw::c_int;
+///
+/// extern "C" {
+/// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
+/// x: *const Complex<f64>, incx: *const c_int,
+/// y: *mut Complex<f64>, incy: *const c_int);
+/// }
+/// ```
+#[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)]
+#[repr(C)]
+pub struct Complex<T> {
+ /// Real portion of the complex number
+ pub re: T,
+ /// Imaginary portion of the complex number
+ pub im: T,
+}
+
+pub type Complex32 = Complex<f32>;
+pub type Complex64 = Complex<f64>;
+
+impl<T> Complex<T> {
+ #[cfg(has_const_fn)]
+ /// Create a new Complex
+ #[inline]
+ pub const fn new(re: T, im: T) -> Self {
+ Complex { re: re, im: im }
+ }
+
+ #[cfg(not(has_const_fn))]
+ /// Create a new Complex
+ #[inline]
+ pub fn new(re: T, im: T) -> Self {
+ Complex { re: re, im: im }
+ }
+}
+
+impl<T: Clone + Num> Complex<T> {
+ /// Returns imaginary unit
+ #[inline]
+ pub fn i() -> Self {
+ Self::new(T::zero(), T::one())
+ }
+
+ /// Returns the square of the norm (since `T` doesn't necessarily
+ /// have a sqrt function), i.e. `re^2 + im^2`.
+ #[inline]
+ pub fn norm_sqr(&self) -> T {
+ self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
+ }
+
+ /// Multiplies `self` by the scalar `t`.
+ #[inline]
+ pub fn scale(&self, t: T) -> Self {
+ Self::new(self.re.clone() * t.clone(), self.im.clone() * t)
+ }
+
+ /// Divides `self` by the scalar `t`.
+ #[inline]
+ pub fn unscale(&self, t: T) -> Self {
+ Self::new(self.re.clone() / t.clone(), self.im.clone() / t)
+ }
+
+ /// Raises `self` to an unsigned integer power.
+ #[inline]
+ pub fn powu(&self, exp: u32) -> Self {
+ Pow::pow(self, exp)
+ }
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
+ /// Returns the complex conjugate. i.e. `re - i im`
+ #[inline]
+ pub fn conj(&self) -> Self {
+ Self::new(self.re.clone(), -self.im.clone())
+ }
+
+ /// Returns `1/self`
+ #[inline]
+ pub fn inv(&self) -> Self {
+ let norm_sqr = self.norm_sqr();
+ Self::new(
+ self.re.clone() / norm_sqr.clone(),
+ -self.im.clone() / norm_sqr,
+ )
+ }
+
+ /// Raises `self` to a signed integer power.
+ #[inline]
+ pub fn powi(&self, exp: i32) -> Self {
+ Pow::pow(self, exp)
+ }
+}
+
+impl<T: Clone + Signed> Complex<T> {
+ /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin.
+ ///
+ /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry
+ #[inline]
+ pub fn l1_norm(&self) -> T {
+ self.re.abs() + self.im.abs()
+ }
+}
+
+#[cfg(feature = "std")]
+impl<T: Clone + Float> Complex<T> {
+ /// Calculate |self|
+ #[inline]
+ pub fn norm(&self) -> T {
+ self.re.hypot(self.im)
+ }
+ /// Calculate the principal Arg of self.
+ #[inline]
+ pub fn arg(&self) -> T {
+ self.im.atan2(self.re)
+ }
+ /// Convert to polar form (r, theta), such that
+ /// `self = r * exp(i * theta)`
+ #[inline]
+ pub fn to_polar(&self) -> (T, T) {
+ (self.norm(), self.arg())
+ }
+ /// Convert a polar representation into a complex number.
+ #[inline]
+ pub fn from_polar(r: &T, theta: &T) -> Self {
+ Self::new(*r * theta.cos(), *r * theta.sin())
+ }
+
+ /// Computes `e^(self)`, where `e` is the base of the natural logarithm.
+ #[inline]
+ pub fn exp(&self) -> Self {
+ // formula: e^(a + bi) = e^a (cos(b) + i*sin(b))
+ // = from_polar(e^a, b)
+ Self::from_polar(&self.re.exp(), &self.im)
+ }
+
+ /// Computes the principal value of natural logarithm of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0]`, continuous from above.
+ ///
+ /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`.
+ #[inline]
+ pub fn ln(&self) -> Self {
+ // formula: ln(z) = ln|z| + i*arg(z)
+ let (r, theta) = self.to_polar();
+ Self::new(r.ln(), theta)
+ }
+
+ /// Computes the principal value of the square root of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0)`, continuous from above.
+ ///
+ /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`.
+ #[inline]
+ pub fn sqrt(&self) -> Self {
+ if self.im.is_zero() {
+ if self.re.is_sign_positive() {
+ // simple positive real √r, and copy `im` for its sign
+ Self::new(self.re.sqrt(), self.im)
+ } else {
+ // √(r e^(iπ)) = √r e^(iπ/2) = i√r
+ // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r
+ let re = T::zero();
+ let im = (-self.re).sqrt();
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ }
+ } else if self.re.is_zero() {
+ // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2)
+ // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2)
+ let one = T::one();
+ let two = one + one;
+ let x = (self.im.abs() / two).sqrt();
+ if self.im.is_sign_positive() {
+ Self::new(x, x)
+ } else {
+ Self::new(x, -x)
+ }
+ } else {
+ // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2)
+ let one = T::one();
+ let two = one + one;
+ let (r, theta) = self.to_polar();
+ Self::from_polar(&(r.sqrt()), &(theta / two))
+ }
+ }
+
+ /// Computes the principal value of the cube root of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 0)`, continuous from above.
+ ///
+ /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`.
+ ///
+ /// Note that this does not match the usual result for the cube root of
+ /// negative real numbers. For example, the real cube root of `-8` is `-2`,
+ /// but the principal complex cube root of `-8` is `1 + i√3`.
+ #[inline]
+ pub fn cbrt(&self) -> Self {
+ if self.im.is_zero() {
+ if self.re.is_sign_positive() {
+ // simple positive real ∛r, and copy `im` for its sign
+ Self::new(self.re.cbrt(), self.im)
+ } else {
+ // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2
+ // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2
+ let one = T::one();
+ let two = one + one;
+ let three = two + one;
+ let re = (-self.re).cbrt() / two;
+ let im = three.sqrt() * re;
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ }
+ } else if self.re.is_zero() {
+ // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2
+ // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2
+ let one = T::one();
+ let two = one + one;
+ let three = two + one;
+ let im = self.im.abs().cbrt() / two;
+ let re = three.sqrt() * im;
+ if self.im.is_sign_positive() {
+ Self::new(re, im)
+ } else {
+ Self::new(re, -im)
+ }
+ } else {
+ // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3)
+ let one = T::one();
+ let three = one + one + one;
+ let (r, theta) = self.to_polar();
+ Self::from_polar(&(r.cbrt()), &(theta / three))
+ }
+ }
+
+ /// Raises `self` to a floating point power.
+ #[inline]
+ pub fn powf(&self, exp: T) -> Self {
+ // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y)
+ // = from_polar(ρ^y, θ y)
+ let (r, theta) = self.to_polar();
+ Self::from_polar(&r.powf(exp), &(theta * exp))
+ }
+
+ /// Returns the logarithm of `self` with respect to an arbitrary base.
+ #[inline]
+ pub fn log(&self, base: T) -> Self {
+ // formula: log_y(x) = log_y(ρ e^(i θ))
+ // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y)
+ // = log_y(ρ) + i θ / ln(y)
+ let (r, theta) = self.to_polar();
+ Self::new(r.log(base), theta / base.ln())
+ }
+
+ /// Raises `self` to a complex power.
+ #[inline]
+ pub fn powc(&self, exp: Self) -> Self {
+ // formula: x^y = (a + i b)^(c + i d)
+ // = (ρ e^(i θ))^c (ρ e^(i θ))^(i d)
+ // where ρ=|x| and θ=arg(x)
+ // = ρ^c e^(−d θ) e^(i c θ) ρ^(i d)
+ // = p^c e^(−d θ) (cos(c θ)
+ // + i sin(c θ)) (cos(d ln(ρ)) + i sin(d ln(ρ)))
+ // = p^c e^(−d θ) (
+ // cos(c θ) cos(d ln(ρ)) − sin(c θ) sin(d ln(ρ))
+ // + i(cos(c θ) sin(d ln(ρ)) + sin(c θ) cos(d ln(ρ))))
+ // = p^c e^(−d θ) (cos(c θ + d ln(ρ)) + i sin(c θ + d ln(ρ)))
+ // = from_polar(p^c e^(−d θ), c θ + d ln(ρ))
+ let (r, theta) = self.to_polar();
+ Self::from_polar(
+ &(r.powf(exp.re) * (-exp.im * theta).exp()),
+ &(exp.re * theta + exp.im * r.ln()),
+ )
+ }
+
+ /// Raises a floating point number to the complex power `self`.
+ #[inline]
+ pub fn expf(&self, base: T) -> Self {
+ // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i)
+ // = from_polar(x^a, b ln(x))
+ Self::from_polar(&base.powf(self.re), &(self.im * base.ln()))
+ }
+
+ /// Computes the sine of `self`.
+ #[inline]
+ pub fn sin(&self) -> Self {
+ // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b)
+ Self::new(
+ self.re.sin() * self.im.cosh(),
+ self.re.cos() * self.im.sinh(),
+ )
+ }
+
+ /// Computes the cosine of `self`.
+ #[inline]
+ pub fn cos(&self) -> Self {
+ // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b)
+ Self::new(
+ self.re.cos() * self.im.cosh(),
+ -self.re.sin() * self.im.sinh(),
+ )
+ }
+
+ /// Computes the tangent of `self`.
+ #[inline]
+ pub fn tan(&self) -> Self {
+ // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b))
+ let (two_re, two_im) = (self.re + self.re, self.im + self.im);
+ Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh())
+ }
+
+ /// Computes the principal value of the inverse sine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1)`, continuous from above.
+ /// * `(1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`.
+ #[inline]
+ pub fn asin(&self) -> Self {
+ // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz)
+ let i = Self::i();
+ -i * ((Self::one() - self * self).sqrt() + i * self).ln()
+ }
+
+ /// Computes the principal value of the inverse cosine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1)`, continuous from above.
+ /// * `(1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`.
+ #[inline]
+ pub fn acos(&self) -> Self {
+ // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z)
+ let i = Self::i();
+ -i * (i * (Self::one() - self * self).sqrt() + self).ln()
+ }
+
+ /// Computes the principal value of the inverse tangent of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞i, -i]`, continuous from the left.
+ /// * `[i, ∞i)`, continuous from the right.
+ ///
+ /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`.
+ #[inline]
+ pub fn atan(&self) -> Self {
+ // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i)
+ let i = Self::i();
+ let one = Self::one();
+ let two = one + one;
+ if *self == i {
+ return Self::new(T::zero(), T::infinity());
+ } else if *self == -i {
+ return Self::new(T::zero(), -T::infinity());
+ }
+ ((one + i * self).ln() - (one - i * self).ln()) / (two * i)
+ }
+
+ /// Computes the hyperbolic sine of `self`.
+ #[inline]
+ pub fn sinh(&self) -> Self {
+ // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b)
+ Self::new(
+ self.re.sinh() * self.im.cos(),
+ self.re.cosh() * self.im.sin(),
+ )
+ }
+
+ /// Computes the hyperbolic cosine of `self`.
+ #[inline]
+ pub fn cosh(&self) -> Self {
+ // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b)
+ Self::new(
+ self.re.cosh() * self.im.cos(),
+ self.re.sinh() * self.im.sin(),
+ )
+ }
+
+ /// Computes the hyperbolic tangent of `self`.
+ #[inline]
+ pub fn tanh(&self) -> Self {
+ // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b))
+ let (two_re, two_im) = (self.re + self.re, self.im + self.im);
+ Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos())
+ }
+
+ /// Computes the principal value of inverse hyperbolic sine of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞i, -i)`, continuous from the left.
+ /// * `(i, ∞i)`, continuous from the right.
+ ///
+ /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`.
+ #[inline]
+ pub fn asinh(&self) -> Self {
+ // formula: arcsinh(z) = ln(z + sqrt(1+z^2))
+ let one = Self::one();
+ (self + (one + self * self).sqrt()).ln()
+ }
+
+ /// Computes the principal value of inverse hyperbolic cosine of `self`.
+ ///
+ /// This function has one branch cut:
+ ///
+ /// * `(-∞, 1)`, continuous from above.
+ ///
+ /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`.
+ #[inline]
+ pub fn acosh(&self) -> Self {
+ // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2))
+ let one = Self::one();
+ let two = one + one;
+ two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln()
+ }
+
+ /// Computes the principal value of inverse hyperbolic tangent of `self`.
+ ///
+ /// This function has two branch cuts:
+ ///
+ /// * `(-∞, -1]`, continuous from above.
+ /// * `[1, ∞)`, continuous from below.
+ ///
+ /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`.
+ #[inline]
+ pub fn atanh(&self) -> Self {
+ // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2
+ let one = Self::one();
+ let two = one + one;
+ if *self == one {
+ return Self::new(T::infinity(), T::zero());
+ } else if *self == -one {
+ return Self::new(-T::infinity(), T::zero());
+ }
+ ((one + self).ln() - (one - self).ln()) / two
+ }
+
+ /// Returns `1/self` using floating-point operations.
+ ///
+ /// This may be more accurate than the generic `self.inv()` in cases
+ /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_complex::Complex64;
+ /// let c = Complex64::new(1e300, 1e300);
+ ///
+ /// // The generic `inv()` will overflow.
+ /// assert!(!c.inv().is_normal());
+ ///
+ /// // But we can do better for `Float` types.
+ /// let inv = c.finv();
+ /// assert!(inv.is_normal());
+ /// println!("{:e}", inv);
+ ///
+ /// let expected = Complex64::new(5e-301, -5e-301);
+ /// assert!((inv - expected).norm() < 1e-315);
+ /// ```
+ #[inline]
+ pub fn finv(&self) -> Complex<T> {
+ let norm = self.norm();
+ self.conj() / norm / norm
+ }
+
+ /// Returns `self/other` using floating-point operations.
+ ///
+ /// This may be more accurate than the generic `Div` implementation in cases
+ /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0.
+ ///
+ /// # Examples
+ ///
+ /// ```
+ /// use num_complex::Complex64;
+ /// let a = Complex64::new(2.0, 3.0);
+ /// let b = Complex64::new(1e300, 1e300);
+ ///
+ /// // Generic division will overflow.
+ /// assert!(!(a / b).is_normal());
+ ///
+ /// // But we can do better for `Float` types.
+ /// let quotient = a.fdiv(b);
+ /// assert!(quotient.is_normal());
+ /// println!("{:e}", quotient);
+ ///
+ /// let expected = Complex64::new(2.5e-300, 5e-301);
+ /// assert!((quotient - expected).norm() < 1e-315);
+ /// ```
+ #[inline]
+ pub fn fdiv(&self, other: Complex<T>) -> Complex<T> {
+ self * other.finv()
+ }
+}
+
+impl<T: Clone + FloatCore> Complex<T> {
+ /// Checks if the given complex number is NaN
+ #[inline]
+ pub fn is_nan(self) -> bool {
+ self.re.is_nan() || self.im.is_nan()
+ }
+
+ /// Checks if the given complex number is infinite
+ #[inline]
+ pub fn is_infinite(self) -> bool {
+ !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite())
+ }
+
+ /// Checks if the given complex number is finite
+ #[inline]
+ pub fn is_finite(self) -> bool {
+ self.re.is_finite() && self.im.is_finite()
+ }
+
+ /// Checks if the given complex number is normal
+ #[inline]
+ pub fn is_normal(self) -> bool {
+ self.re.is_normal() && self.im.is_normal()
+ }
+}
+
+impl<T: Clone + Num> From<T> for Complex<T> {
+ #[inline]
+ fn from(re: T) -> Self {
+ Self::new(re, T::zero())
+ }
+}
+
+impl<'a, T: Clone + Num> From<&'a T> for Complex<T> {
+ #[inline]
+ fn from(re: &T) -> Self {
+ From::from(re.clone())
+ }
+}
+
+macro_rules! forward_ref_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &Complex<T>) -> Self::Output {
+ self.clone().$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_ref_val_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: Complex<T>) -> Self::Output {
+ self.clone().$method(other)
+ }
+ }
+ };
+}
+
+macro_rules! forward_val_ref_binop {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &Complex<T>) -> Self::Output {
+ self.$method(other.clone())
+ }
+ }
+ };
+}
+
+macro_rules! forward_all_binop {
+ (impl $imp:ident, $method:ident) => {
+ forward_ref_ref_binop!(impl $imp, $method);
+ forward_ref_val_binop!(impl $imp, $method);
+ forward_val_ref_binop!(impl $imp, $method);
+ };
+}
+
+/* arithmetic */
+forward_all_binop!(impl Add, add);
+
+// (a + i b) + (c + i d) == (a + c) + i (b + d)
+impl<T: Clone + Num> Add<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn add(self, other: Self) -> Self::Output {
+ Self::Output::new(self.re + other.re, self.im + other.im)
+ }
+}
+
+forward_all_binop!(impl Sub, sub);
+
+// (a + i b) - (c + i d) == (a - c) + i (b - d)
+impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn sub(self, other: Self) -> Self::Output {
+ Self::Output::new(self.re - other.re, self.im - other.im)
+ }
+}
+
+forward_all_binop!(impl Mul, mul);
+
+// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
+impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn mul(self, other: Self) -> Self::Output {
+ let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone();
+ let im = self.re * other.im + self.im * other.re;
+ Self::Output::new(re, im)
+ }
+}
+
+// (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f))
+impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> {
+ let re = self.re.clone().mul_add(other.re.clone(), add.re)
+ - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust
+ let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im));
+ Complex::new(re, im)
+ }
+}
+impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> {
+ self.clone().mul_add(other.clone(), add.clone())
+ }
+}
+
+forward_all_binop!(impl Div, div);
+
+// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
+// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
+impl<T: Clone + Num> Div<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn div(self, other: Self) -> Self::Output {
+ let norm_sqr = other.norm_sqr();
+ let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone();
+ let im = self.im * other.re - self.re * other.im;
+ Self::Output::new(re / norm_sqr.clone(), im / norm_sqr)
+ }
+}
+
+forward_all_binop!(impl Rem, rem);
+
+// Attempts to identify the gaussian integer whose product with `modulus`
+// is closest to `self`.
+impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn rem(self, modulus: Self) -> Self::Output {
+ let Complex { re, im } = self.clone() / modulus.clone();
+ // This is the gaussian integer corresponding to the true ratio
+ // rounded towards zero.
+ let (re0, im0) = (re.clone() - re % T::one(), im.clone() - im % T::one());
+ self - modulus * Self::Output::new(re0, im0)
+ }
+}
+
+// Op Assign
+
+mod opassign {
+ use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
+
+ use traits::{MulAddAssign, NumAssign};
+
+ use Complex;
+
+ impl<T: Clone + NumAssign> AddAssign for Complex<T> {
+ fn add_assign(&mut self, other: Self) {
+ self.re += other.re;
+ self.im += other.im;
+ }
+ }
+
+ impl<T: Clone + NumAssign> SubAssign for Complex<T> {
+ fn sub_assign(&mut self, other: Self) {
+ self.re -= other.re;
+ self.im -= other.im;
+ }
+ }
+
+ impl<T: Clone + NumAssign> MulAssign for Complex<T> {
+ fn mul_assign(&mut self, other: Self) {
+ *self = self.clone() * other;
+ }
+ }
+
+ // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f))
+ impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> {
+ fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) {
+ let a = self.re.clone();
+
+ self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e)
+ self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d)
+
+ let mut adf = a;
+ adf.mul_add_assign(other.im, add.im); // (a*d + f)
+ self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f))
+ }
+ }
+
+ impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>>
+ for Complex<T>
+ {
+ fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) {
+ self.mul_add_assign(other.clone(), add.clone());
+ }
+ }
+
+ impl<T: Clone + NumAssign> DivAssign for Complex<T> {
+ fn div_assign(&mut self, other: Self) {
+ *self = self.clone() / other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> RemAssign for Complex<T> {
+ fn rem_assign(&mut self, other: Self) {
+ *self = self.clone() % other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> {
+ fn add_assign(&mut self, other: T) {
+ self.re += other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> {
+ fn sub_assign(&mut self, other: T) {
+ self.re -= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> {
+ fn mul_assign(&mut self, other: T) {
+ self.re *= other.clone();
+ self.im *= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> {
+ fn div_assign(&mut self, other: T) {
+ self.re /= other.clone();
+ self.im /= other;
+ }
+ }
+
+ impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> {
+ fn rem_assign(&mut self, other: T) {
+ *self = self.clone() % other;
+ }
+ }
+
+ macro_rules! forward_op_assign {
+ (impl $imp:ident, $method:ident) => {
+ impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> {
+ #[inline]
+ fn $method(&mut self, other: &Self) {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> {
+ #[inline]
+ fn $method(&mut self, other: &T) {
+ self.$method(other.clone())
+ }
+ }
+ };
+ }
+
+ forward_op_assign!(impl AddAssign, add_assign);
+ forward_op_assign!(impl SubAssign, sub_assign);
+ forward_op_assign!(impl MulAssign, mul_assign);
+ forward_op_assign!(impl DivAssign, div_assign);
+
+ impl<'a, T: Clone + NumAssign> RemAssign<&'a Complex<T>> for Complex<T> {
+ #[inline]
+ fn rem_assign(&mut self, other: &Self) {
+ self.rem_assign(other.clone())
+ }
+ }
+ impl<'a, T: Clone + NumAssign> RemAssign<&'a T> for Complex<T> {
+ #[inline]
+ fn rem_assign(&mut self, other: &T) {
+ self.rem_assign(other.clone())
+ }
+ }
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn neg(self) -> Self::Output {
+ Self::Output::new(-self.re, -self.im)
+ }
+}
+
+impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn neg(self) -> Self::Output {
+ -self.clone()
+ }
+}
+
+impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn inv(self) -> Self::Output {
+ (&self).inv()
+ }
+}
+
+impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn inv(self) -> Self::Output {
+ self.inv()
+ }
+}
+
+macro_rules! real_arithmetic {
+ (@forward $imp:ident::$method:ident for $($real:ident),*) => (
+ impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &T) -> Self::Output {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: T) -> Self::Output {
+ self.clone().$method(other)
+ }
+ }
+ impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn $method(self, other: &T) -> Self::Output {
+ self.clone().$method(other.clone())
+ }
+ }
+ $(
+ impl<'a> $imp<&'a Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: &Complex<$real>) -> Complex<$real> {
+ self.$method(other.clone())
+ }
+ }
+ impl<'a> $imp<Complex<$real>> for &'a $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: Complex<$real>) -> Complex<$real> {
+ self.clone().$method(other)
+ }
+ }
+ impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn $method(self, other: &Complex<$real>) -> Complex<$real> {
+ self.clone().$method(other.clone())
+ }
+ }
+ )*
+ );
+ ($($real:ident),*) => (
+ real_arithmetic!(@forward Add::add for $($real),*);
+ real_arithmetic!(@forward Sub::sub for $($real),*);
+ real_arithmetic!(@forward Mul::mul for $($real),*);
+ real_arithmetic!(@forward Div::div for $($real),*);
+ real_arithmetic!(@forward Rem::rem for $($real),*);
+
+ $(
+ impl Add<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn add(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self + other.re, other.im)
+ }
+ }
+
+ impl Sub<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn sub(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self - other.re, $real::zero() - other.im)
+ }
+ }
+
+ impl Mul<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn mul(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self * other.re, self * other.im)
+ }
+ }
+
+ impl Div<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn div(self, other: Complex<$real>) -> Self::Output {
+ // a / (c + i d) == [a * (c - i d)] / (c*c + d*d)
+ let norm_sqr = other.norm_sqr();
+ Self::Output::new(self * other.re / norm_sqr.clone(),
+ $real::zero() - self * other.im / norm_sqr)
+ }
+ }
+
+ impl Rem<Complex<$real>> for $real {
+ type Output = Complex<$real>;
+
+ #[inline]
+ fn rem(self, other: Complex<$real>) -> Self::Output {
+ Self::Output::new(self, Self::zero()) % other
+ }
+ }
+ )*
+ );
+}
+
+impl<T: Clone + Num> Add<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn add(self, other: T) -> Self::Output {
+ Self::Output::new(self.re + other, self.im)
+ }
+}
+
+impl<T: Clone + Num> Sub<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn sub(self, other: T) -> Self::Output {
+ Self::Output::new(self.re - other, self.im)
+ }
+}
+
+impl<T: Clone + Num> Mul<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn mul(self, other: T) -> Self::Output {
+ Self::Output::new(self.re * other.clone(), self.im * other)
+ }
+}
+
+impl<T: Clone + Num> Div<T> for Complex<T> {
+ type Output = Self;
+
+ #[inline]
+ fn div(self, other: T) -> Self::Output {
+ Self::Output::new(self.re / other.clone(), self.im / other)
+ }
+}
+
+impl<T: Clone + Num> Rem<T> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn rem(self, other: T) -> Self::Output {
+ Self::Output::new(self.re % other.clone(), self.im % other)
+ }
+}
+
+#[cfg(not(has_i128))]
+real_arithmetic!(usize, u8, u16, u32, u64, isize, i8, i16, i32, i64, f32, f64);
+#[cfg(has_i128)]
+real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64);
+
+/* constants */
+impl<T: Clone + Num> Zero for Complex<T> {
+ #[inline]
+ fn zero() -> Self {
+ Self::new(Zero::zero(), Zero::zero())
+ }
+
+ #[inline]
+ fn is_zero(&self) -> bool {
+ self.re.is_zero() && self.im.is_zero()
+ }
+
+ #[inline]
+ fn set_zero(&mut self) {
+ self.re.set_zero();
+ self.im.set_zero();
+ }
+}
+
+impl<T: Clone + Num> One for Complex<T> {
+ #[inline]
+ fn one() -> Self {
+ Self::new(One::one(), Zero::zero())
+ }
+
+ #[inline]
+ fn is_one(&self) -> bool {
+ self.re.is_one() && self.im.is_zero()
+ }
+
+ #[inline]
+ fn set_one(&mut self) {
+ self.re.set_one();
+ self.im.set_zero();
+ }
+}
+
+macro_rules! write_complex {
+ ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{
+ let abs_re = if $re < Zero::zero() {
+ $T::zero() - $re.clone()
+ } else {
+ $re.clone()
+ };
+ let abs_im = if $im < Zero::zero() {
+ $T::zero() - $im.clone()
+ } else {
+ $im.clone()
+ };
+
+ return if let Some(prec) = $f.precision() {
+ fmt_re_im(
+ $f,
+ $re < $T::zero(),
+ $im < $T::zero(),
+ format_args!(concat!("{:.1$", $t, "}"), abs_re, prec),
+ format_args!(concat!("{:.1$", $t, "}"), abs_im, prec),
+ )
+ } else {
+ fmt_re_im(
+ $f,
+ $re < $T::zero(),
+ $im < $T::zero(),
+ format_args!(concat!("{:", $t, "}"), abs_re),
+ format_args!(concat!("{:", $t, "}"), abs_im),
+ )
+ };
+
+ fn fmt_re_im(
+ f: &mut fmt::Formatter,
+ re_neg: bool,
+ im_neg: bool,
+ real: fmt::Arguments,
+ imag: fmt::Arguments,
+ ) -> fmt::Result {
+ let prefix = if f.alternate() { $prefix } else { "" };
+ let sign = if re_neg {
+ "-"
+ } else if f.sign_plus() {
+ "+"
+ } else {
+ ""
+ };
+
+ if im_neg {
+ fmt_complex(
+ f,
+ format_args!(
+ "{}{pre}{re}-{pre}{im}i",
+ sign,
+ re = real,
+ im = imag,
+ pre = prefix
+ ),
+ )
+ } else {
+ fmt_complex(
+ f,
+ format_args!(
+ "{}{pre}{re}+{pre}{im}i",
+ sign,
+ re = real,
+ im = imag,
+ pre = prefix
+ ),
+ )
+ }
+ }
+
+ #[cfg(feature = "std")]
+ // Currently, we can only apply width using an intermediate `String` (and thus `std`)
+ fn fmt_complex(f: &mut fmt::Formatter, complex: fmt::Arguments) -> fmt::Result {
+ use std::string::ToString;
+ if let Some(width) = f.width() {
+ write!(f, "{0: >1$}", complex.to_string(), width)
+ } else {
+ write!(f, "{}", complex)
+ }
+ }
+
+ #[cfg(not(feature = "std"))]
+ fn fmt_complex(f: &mut fmt::Formatter, complex: fmt::Arguments) -> fmt::Result {
+ write!(f, "{}", complex)
+ }
+ }};
+}
+
+/* string conversions */
+impl<T> fmt::Display for Complex<T>
+where
+ T: fmt::Display + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::LowerExp for Complex<T>
+where
+ T: fmt::LowerExp + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "e", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::UpperExp for Complex<T>
+where
+ T: fmt::UpperExp + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "E", "", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::LowerHex for Complex<T>
+where
+ T: fmt::LowerHex + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "x", "0x", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::UpperHex for Complex<T>
+where
+ T: fmt::UpperHex + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "X", "0x", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::Octal for Complex<T>
+where
+ T: fmt::Octal + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "o", "0o", self.re, self.im, T)
+ }
+}
+
+impl<T> fmt::Binary for Complex<T>
+where
+ T: fmt::Binary + Num + PartialOrd + Clone,
+{
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write_complex!(f, "b", "0b", self.re, self.im, T)
+ }
+}
+
+#[allow(deprecated)] // `trim_left_matches` and `trim_right_matches` since 1.33
+fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>>
+where
+ F: Fn(&str) -> Result<T, E>,
+ T: Clone + Num,
+{
+ #[cfg(not(feature = "std"))]
+ #[inline]
+ fn is_whitespace(c: char) -> bool {
+ match c {
+ ' ' | '\x09'...'\x0d' => true,
+ _ if c > '\x7f' => match c {
+ '\u{0085}' | '\u{00a0}' | '\u{1680}' => true,
+ '\u{2000}'...'\u{200a}' => true,
+ '\u{2028}' | '\u{2029}' | '\u{202f}' | '\u{205f}' => true,
+ '\u{3000}' => true,
+ _ => false,
+ },
+ _ => false,
+ }
+ }
+
+ #[cfg(feature = "std")]
+ let is_whitespace = char::is_whitespace;
+
+ let imag = match s.rfind('j') {
+ None => 'i',
+ _ => 'j',
+ };
+
+ let mut neg_b = false;
+ let mut a = s;
+ let mut b = "";
+
+ for (i, w) in s.as_bytes().windows(2).enumerate() {
+ let p = w[0];
+ let c = w[1];
+
+ // ignore '+'/'-' if part of an exponent
+ if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') {
+ // trim whitespace around the separator
+ a = &s[..i + 1].trim_right_matches(is_whitespace);
+ b = &s[i + 2..].trim_left_matches(is_whitespace);
+ neg_b = c == b'-';
+
+ if b.is_empty() || (neg_b && b.starts_with('-')) {
+ return Err(ParseComplexError::new());
+ }
+ break;
+ }
+ }
+
+ // split off real and imaginary parts
+ if b.is_empty() {
+ // input was either pure real or pure imaginary
+ b = match a.ends_with(imag) {
+ false => "0i",
+ true => "0",
+ };
+ }
+
+ let re;
+ let neg_re;
+ let im;
+ let neg_im;
+ if a.ends_with(imag) {
+ im = a;
+ neg_im = false;
+ re = b;
+ neg_re = neg_b;
+ } else if b.ends_with(imag) {
+ re = a;
+ neg_re = false;
+ im = b;
+ neg_im = neg_b;
+ } else {
+ return Err(ParseComplexError::new());
+ }
+
+ // parse re
+ let re = try!(from(re).map_err(ParseComplexError::from_error));
+ let re = if neg_re { T::zero() - re } else { re };
+
+ // pop imaginary unit off
+ let mut im = &im[..im.len() - 1];
+ // handle im == "i" or im == "-i"
+ if im.is_empty() || im == "+" {
+ im = "1";
+ } else if im == "-" {
+ im = "-1";
+ }
+
+ // parse im
+ let im = try!(from(im).map_err(ParseComplexError::from_error));
+ let im = if neg_im { T::zero() - im } else { im };
+
+ Ok(Complex::new(re, im))
+}
+
+impl<T> FromStr for Complex<T>
+where
+ T: FromStr + Num + Clone,
+{
+ type Err = ParseComplexError<T::Err>;
+
+ /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
+ fn from_str(s: &str) -> Result<Self, Self::Err> {
+ from_str_generic(s, T::from_str)
+ }
+}
+
+impl<T: Num + Clone> Num for Complex<T> {
+ type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>;
+
+ /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T`
+ fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
+ from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> {
+ T::from_str_radix(x, radix)
+ })
+ }
+}
+
+impl<T: Num + Clone> Sum for Complex<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Self>,
+ {
+ iter.fold(Self::zero(), |acc, c| acc + c)
+ }
+}
+
+impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> {
+ fn sum<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Complex<T>>,
+ {
+ iter.fold(Self::zero(), |acc, c| acc + c)
+ }
+}
+
+impl<T: Num + Clone> Product for Complex<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = Self>,
+ {
+ iter.fold(Self::one(), |acc, c| acc * c)
+ }
+}
+
+impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> {
+ fn product<I>(iter: I) -> Self
+ where
+ I: Iterator<Item = &'a Complex<T>>,
+ {
+ iter.fold(Self::one(), |acc, c| acc * c)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<T> serde::Serialize for Complex<T>
+where
+ T: serde::Serialize,
+{
+ fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+ where
+ S: serde::Serializer,
+ {
+ (&self.re, &self.im).serialize(serializer)
+ }
+}
+
+#[cfg(feature = "serde")]
+impl<'de, T> serde::Deserialize<'de> for Complex<T>
+where
+ T: serde::Deserialize<'de> + Num + Clone,
+{
+ fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+ where
+ D: serde::Deserializer<'de>,
+ {
+ let (re, im) = try!(serde::Deserialize::deserialize(deserializer));
+ Ok(Self::new(re, im))
+ }
+}
+
+#[derive(Debug, PartialEq)]
+pub struct ParseComplexError<E> {
+ kind: ComplexErrorKind<E>,
+}
+
+#[derive(Debug, PartialEq)]
+enum ComplexErrorKind<E> {
+ ParseError(E),
+ ExprError,
+}
+
+impl<E> ParseComplexError<E> {
+ fn new() -> Self {
+ ParseComplexError {
+ kind: ComplexErrorKind::ExprError,
+ }
+ }
+
+ fn from_error(error: E) -> Self {
+ ParseComplexError {
+ kind: ComplexErrorKind::ParseError(error),
+ }
+ }
+}
+
+#[cfg(feature = "std")]
+impl<E: Error> Error for ParseComplexError<E> {
+ fn description(&self) -> &str {
+ match self.kind {
+ ComplexErrorKind::ParseError(ref e) => e.description(),
+ ComplexErrorKind::ExprError => "invalid or unsupported complex expression",
+ }
+ }
+}
+
+impl<E: fmt::Display> fmt::Display for ParseComplexError<E> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ match self.kind {
+ ComplexErrorKind::ParseError(ref e) => e.fmt(f),
+ ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f),
+ }
+ }
+}
+
+#[cfg(test)]
+fn hash<T: hash::Hash>(x: &T) -> u64 {
+ use std::collections::hash_map::RandomState;
+ use std::hash::{BuildHasher, Hasher};
+ let mut hasher = <RandomState as BuildHasher>::Hasher::new();
+ x.hash(&mut hasher);
+ hasher.finish()
+}
+
+#[cfg(test)]
+mod test {
+ #![allow(non_upper_case_globals)]
+
+ use super::{Complex, Complex64};
+ use core::f64;
+ use core::str::FromStr;
+
+ use std::string::{String, ToString};
+
+ use traits::{Num, One, Zero};
+
+ pub const _0_0i: Complex64 = Complex { re: 0.0, im: 0.0 };
+ pub const _1_0i: Complex64 = Complex { re: 1.0, im: 0.0 };
+ pub const _1_1i: Complex64 = Complex { re: 1.0, im: 1.0 };
+ pub const _0_1i: Complex64 = Complex { re: 0.0, im: 1.0 };
+ pub const _neg1_1i: Complex64 = Complex { re: -1.0, im: 1.0 };
+ pub const _05_05i: Complex64 = Complex { re: 0.5, im: 0.5 };
+ pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
+ pub const _4_2i: Complex64 = Complex { re: 4.0, im: 2.0 };
+
+ #[test]
+ fn test_consts() {
+ // check our constants are what Complex::new creates
+ fn test(c: Complex64, r: f64, i: f64) {
+ assert_eq!(c, Complex::new(r, i));
+ }
+ test(_0_0i, 0.0, 0.0);
+ test(_1_0i, 1.0, 0.0);
+ test(_1_1i, 1.0, 1.0);
+ test(_neg1_1i, -1.0, 1.0);
+ test(_05_05i, 0.5, 0.5);
+
+ assert_eq!(_0_0i, Zero::zero());
+ assert_eq!(_1_0i, One::one());
+ }
+
+ #[test]
+ fn test_scale_unscale() {
+ assert_eq!(_05_05i.scale(2.0), _1_1i);
+ assert_eq!(_1_1i.unscale(2.0), _05_05i);
+ for &c in all_consts.iter() {
+ assert_eq!(c.scale(2.0).unscale(2.0), c);
+ }
+ }
+
+ #[test]
+ fn test_conj() {
+ for &c in all_consts.iter() {
+ assert_eq!(c.conj(), Complex::new(c.re, -c.im));
+ assert_eq!(c.conj().conj(), c);
+ }
+ }
+
+ #[test]
+ fn test_inv() {
+ assert_eq!(_1_1i.inv(), _05_05i.conj());
+ assert_eq!(_1_0i.inv(), _1_0i.inv());
+ }
+
+ #[test]
+ #[should_panic]
+ fn test_divide_by_zero_natural() {
+ let n = Complex::new(2, 3);
+ let d = Complex::new(0, 0);
+ let _x = n / d;
+ }
+
+ #[test]
+ fn test_inv_zero() {
+ // FIXME #20: should this really fail, or just NaN?
+ assert!(_0_0i.inv().is_nan());
+ }
+
+ #[test]
+ fn test_l1_norm() {
+ assert_eq!(_0_0i.l1_norm(), 0.0);
+ assert_eq!(_1_0i.l1_norm(), 1.0);
+ assert_eq!(_1_1i.l1_norm(), 2.0);
+ assert_eq!(_0_1i.l1_norm(), 1.0);
+ assert_eq!(_neg1_1i.l1_norm(), 2.0);
+ assert_eq!(_05_05i.l1_norm(), 1.0);
+ assert_eq!(_4_2i.l1_norm(), 6.0);
+ }
+
+ #[test]
+ fn test_pow() {
+ for c in all_consts.iter() {
+ assert_eq!(c.powi(0), _1_0i);
+ let mut pos = _1_0i;
+ let mut neg = _1_0i;
+ for i in 1i32..20 {
+ pos *= c;
+ assert_eq!(pos, c.powi(i));
+ if c.is_zero() {
+ assert!(c.powi(-i).is_nan());
+ } else {
+ neg /= c;
+ assert_eq!(neg, c.powi(-i));
+ }
+ }
+ }
+ }
+
+ #[cfg(feature = "std")]
+ mod float {
+ use super::*;
+ use traits::{Float, Pow};
+
+ #[test]
+ #[cfg_attr(target_arch = "x86", ignore)]
+ // FIXME #7158: (maybe?) currently failing on x86.
+ fn test_norm() {
+ fn test(c: Complex64, ns: f64) {
+ assert_eq!(c.norm_sqr(), ns);
+ assert_eq!(c.norm(), ns.sqrt())
+ }
+ test(_0_0i, 0.0);
+ test(_1_0i, 1.0);
+ test(_1_1i, 2.0);
+ test(_neg1_1i, 2.0);
+ test(_05_05i, 0.5);
+ }
+
+ #[test]
+ fn test_arg() {
+ fn test(c: Complex64, arg: f64) {
+ assert!((c.arg() - arg).abs() < 1.0e-6)
+ }
+ test(_1_0i, 0.0);
+ test(_1_1i, 0.25 * f64::consts::PI);
+ test(_neg1_1i, 0.75 * f64::consts::PI);
+ test(_05_05i, 0.25 * f64::consts::PI);
+ }
+
+ #[test]
+ fn test_polar_conv() {
+ fn test(c: Complex64) {
+ let (r, theta) = c.to_polar();
+ assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
+ }
+ for &c in all_consts.iter() {
+ test(c);
+ }
+ }
+
+ fn close(a: Complex64, b: Complex64) -> bool {
+ close_to_tol(a, b, 1e-10)
+ }
+
+ fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool {
+ // returns true if a and b are reasonably close
+ let close = (a == b) || (a - b).norm() < tol;
+ if !close {
+ println!("{:?} != {:?}", a, b);
+ }
+ close
+ }
+
+ #[test]
+ fn test_exp() {
+ assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E)));
+ assert!(close(_0_0i.exp(), _1_0i));
+ assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin())));
+ assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp()));
+ assert!(close(
+ _0_1i.scale(-f64::consts::PI).exp(),
+ _1_0i.scale(-1.0)
+ ));
+ for &c in all_consts.iter() {
+ // e^conj(z) = conj(e^z)
+ assert!(close(c.conj().exp(), c.exp().conj()));
+ // e^(z + 2 pi i) = e^z
+ assert!(close(
+ c.exp(),
+ (c + _0_1i.scale(f64::consts::PI * 2.0)).exp()
+ ));
+ }
+ }
+
+ #[test]
+ fn test_ln() {
+ assert!(close(_1_0i.ln(), _0_0i));
+ assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0)));
+ assert!(close(
+ (_neg1_1i * _05_05i).ln(),
+ _neg1_1i.ln() + _05_05i.ln()
+ ));
+ for &c in all_consts.iter() {
+ // ln(conj(z() = conj(ln(z))
+ assert!(close(c.conj().ln(), c.ln().conj()));
+ // for this branch, -pi <= arg(ln(z)) <= pi
+ assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI);
+ }
+ }
+
+ #[test]
+ fn test_powc() {
+ let a = Complex::new(2.0, -3.0);
+ let b = Complex::new(3.0, 0.0);
+ assert!(close(a.powc(b), a.powf(b.re)));
+ assert!(close(b.powc(a), a.expf(b.re)));
+ let c = Complex::new(1.0 / 3.0, 0.1);
+ assert!(close_to_tol(
+ a.powc(c),
+ Complex::new(1.65826, -0.33502),
+ 1e-5
+ ));
+ }
+
+ #[test]
+ fn test_powf() {
+ let c = Complex64::new(2.0, -1.0);
+ let expected = Complex64::new(-0.8684746, -16.695934);
+ assert!(close_to_tol(c.powf(3.5), expected, 1e-5));
+ assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5));
+ assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5));
+ }
+
+ #[test]
+ fn test_log() {
+ let c = Complex::new(2.0, -1.0);
+ let r = c.log(10.0);
+ assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5));
+ }
+
+ #[test]
+ fn test_some_expf_cases() {
+ let c = Complex::new(2.0, -1.0);
+ let r = c.expf(10.0);
+ assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5));
+
+ let c = Complex::new(5.0, -2.0);
+ let r = c.expf(3.4);
+ assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2));
+
+ let c = Complex::new(-1.5, 2.0 / 3.0);
+ let r = c.expf(1.0 / 3.0);
+ assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2));
+ }
+
+ #[test]
+ fn test_sqrt() {
+ assert!(close(_0_0i.sqrt(), _0_0i));
+ assert!(close(_1_0i.sqrt(), _1_0i));
+ assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i));
+ assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0)));
+ assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt())));
+ for &c in all_consts.iter() {
+ // sqrt(conj(z() = conj(sqrt(z))
+ assert!(close(c.conj().sqrt(), c.sqrt().conj()));
+ // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2
+ assert!(
+ -f64::consts::FRAC_PI_2 <= c.sqrt().arg()
+ && c.sqrt().arg() <= f64::consts::FRAC_PI_2
+ );
+ // sqrt(z) * sqrt(z) = z
+ assert!(close(c.sqrt() * c.sqrt(), c));
+ }
+ }
+
+ #[test]
+ fn test_sqrt_real() {
+ for n in (0..100).map(f64::from) {
+ // √(n² + 0i) = n + 0i
+ let n2 = n * n;
+ assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0));
+ // √(-n² + 0i) = 0 + ni
+ assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n));
+ // √(-n² - 0i) = 0 - ni
+ assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n));
+ }
+ }
+
+ #[test]
+ fn test_sqrt_imag() {
+ for n in (0..100).map(f64::from) {
+ // √(0 + n²i) = n e^(iπ/4)
+ let n2 = n * n;
+ assert!(close(
+ Complex64::new(0.0, n2).sqrt(),
+ Complex64::from_polar(&n, &(f64::consts::FRAC_PI_4))
+ ));
+ // √(0 - n²i) = n e^(-iπ/4)
+ assert!(close(
+ Complex64::new(0.0, -n2).sqrt(),
+ Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_4))
+ ));
+ }
+ }
+
+ #[test]
+ fn test_cbrt() {
+ assert!(close(_0_0i.cbrt(), _0_0i));
+ assert!(close(_1_0i.cbrt(), _1_0i));
+ assert!(close(
+ Complex::new(-1.0, 0.0).cbrt(),
+ Complex::new(0.5, 0.75.sqrt())
+ ));
+ assert!(close(
+ Complex::new(-1.0, -0.0).cbrt(),
+ Complex::new(0.5, -0.75.sqrt())
+ ));
+ assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5)));
+ assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5)));
+ for &c in all_consts.iter() {
+ // cbrt(conj(z() = conj(cbrt(z))
+ assert!(close(c.conj().cbrt(), c.cbrt().conj()));
+ // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3
+ assert!(
+ -f64::consts::FRAC_PI_3 <= c.cbrt().arg()
+ && c.cbrt().arg() <= f64::consts::FRAC_PI_3
+ );
+ // cbrt(z) * cbrt(z) cbrt(z) = z
+ assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c));
+ }
+ }
+
+ #[test]
+ fn test_cbrt_real() {
+ for n in (0..100).map(f64::from) {
+ // ∛(n³ + 0i) = n + 0i
+ let n3 = n * n * n;
+ assert!(close(
+ Complex64::new(n3, 0.0).cbrt(),
+ Complex64::new(n, 0.0)
+ ));
+ // ∛(-n³ + 0i) = n e^(iπ/3)
+ assert!(close(
+ Complex64::new(-n3, 0.0).cbrt(),
+ Complex64::from_polar(&n, &(f64::consts::FRAC_PI_3))
+ ));
+ // ∛(-n³ - 0i) = n e^(-iπ/3)
+ assert!(close(
+ Complex64::new(-n3, -0.0).cbrt(),
+ Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_3))
+ ));
+ }
+ }
+
+ #[test]
+ fn test_cbrt_imag() {
+ for n in (0..100).map(f64::from) {
+ // ∛(0 + n³i) = n e^(iπ/6)
+ let n3 = n * n * n;
+ assert!(close(
+ Complex64::new(0.0, n3).cbrt(),
+ Complex64::from_polar(&n, &(f64::consts::FRAC_PI_6))
+ ));
+ // ∛(0 - n³i) = n e^(-iπ/6)
+ assert!(close(
+ Complex64::new(0.0, -n3).cbrt(),
+ Complex64::from_polar(&n, &(-f64::consts::FRAC_PI_6))
+ ));
+ }
+ }
+
+ #[test]
+ fn test_sin() {
+ assert!(close(_0_0i.sin(), _0_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i));
+ assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh())));
+ for &c in all_consts.iter() {
+ // sin(conj(z)) = conj(sin(z))
+ assert!(close(c.conj().sin(), c.sin().conj()));
+ // sin(-z) = -sin(z)
+ assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_cos() {
+ assert!(close(_0_0i.cos(), _1_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i));
+ assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh())));
+ for &c in all_consts.iter() {
+ // cos(conj(z)) = conj(cos(z))
+ assert!(close(c.conj().cos(), c.cos().conj()));
+ // cos(-z) = cos(z)
+ assert!(close(c.scale(-1.0).cos(), c.cos()));
+ }
+ }
+
+ #[test]
+ fn test_tan() {
+ assert!(close(_0_0i.tan(), _0_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i));
+ assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
+ for &c in all_consts.iter() {
+ // tan(conj(z)) = conj(tan(z))
+ assert!(close(c.conj().tan(), c.tan().conj()));
+ // tan(-z) = -tan(z)
+ assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_asin() {
+ assert!(close(_0_0i.asin(), _0_0i));
+ assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0)));
+ assert!(close(
+ _1_0i.scale(-1.0).asin(),
+ _1_0i.scale(-f64::consts::PI / 2.0)
+ ));
+ assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln())));
+ for &c in all_consts.iter() {
+ // asin(conj(z)) = conj(asin(z))
+ assert!(close(c.conj().asin(), c.asin().conj()));
+ // asin(-z) = -asin(z)
+ assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0)));
+ // for this branch, -pi/2 <= asin(z).re <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_acos() {
+ assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_1_0i.acos(), _0_0i));
+ assert!(close(
+ _1_0i.scale(-1.0).acos(),
+ _1_0i.scale(f64::consts::PI)
+ ));
+ assert!(close(
+ _0_1i.acos(),
+ Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln())
+ ));
+ for &c in all_consts.iter() {
+ // acos(conj(z)) = conj(acos(z))
+ assert!(close(c.conj().acos(), c.acos().conj()));
+ // for this branch, 0 <= acos(z).re <= pi
+ assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI);
+ }
+ }
+
+ #[test]
+ fn test_atan() {
+ assert!(close(_0_0i.atan(), _0_0i));
+ assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0)));
+ assert!(close(
+ _1_0i.scale(-1.0).atan(),
+ _1_0i.scale(-f64::consts::PI / 4.0)
+ ));
+ assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity())));
+ for &c in all_consts.iter() {
+ // atan(conj(z)) = conj(atan(z))
+ assert!(close(c.conj().atan(), c.atan().conj()));
+ // atan(-z) = -atan(z)
+ assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0)));
+ // for this branch, -pi/2 <= atan(z).re <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_sinh() {
+ assert!(close(_0_0i.sinh(), _0_0i));
+ assert!(close(
+ _1_0i.sinh(),
+ _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0)
+ ));
+ assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin())));
+ for &c in all_consts.iter() {
+ // sinh(conj(z)) = conj(sinh(z))
+ assert!(close(c.conj().sinh(), c.sinh().conj()));
+ // sinh(-z) = -sinh(z)
+ assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_cosh() {
+ assert!(close(_0_0i.cosh(), _1_0i));
+ assert!(close(
+ _1_0i.cosh(),
+ _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0)
+ ));
+ assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos())));
+ for &c in all_consts.iter() {
+ // cosh(conj(z)) = conj(cosh(z))
+ assert!(close(c.conj().cosh(), c.cosh().conj()));
+ // cosh(-z) = cosh(z)
+ assert!(close(c.scale(-1.0).cosh(), c.cosh()));
+ }
+ }
+
+ #[test]
+ fn test_tanh() {
+ assert!(close(_0_0i.tanh(), _0_0i));
+ assert!(close(
+ _1_0i.tanh(),
+ _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0))
+ ));
+ assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
+ for &c in all_consts.iter() {
+ // tanh(conj(z)) = conj(tanh(z))
+ assert!(close(c.conj().tanh(), c.conj().tanh()));
+ // tanh(-z) = -tanh(z)
+ assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
+ }
+ }
+
+ #[test]
+ fn test_asinh() {
+ assert!(close(_0_0i.asinh(), _0_0i));
+ assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln()));
+ assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(
+ _0_1i.asinh().scale(-1.0),
+ _0_1i.scale(-f64::consts::PI / 2.0)
+ ));
+ for &c in all_consts.iter() {
+ // asinh(conj(z)) = conj(asinh(z))
+ assert!(close(c.conj().asinh(), c.conj().asinh()));
+ // asinh(-z) = -asinh(z)
+ assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0)));
+ // for this branch, -pi/2 <= asinh(z).im <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_acosh() {
+ assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0)));
+ assert!(close(_1_0i.acosh(), _0_0i));
+ assert!(close(
+ _1_0i.scale(-1.0).acosh(),
+ _0_1i.scale(f64::consts::PI)
+ ));
+ for &c in all_consts.iter() {
+ // acosh(conj(z)) = conj(acosh(z))
+ assert!(close(c.conj().acosh(), c.conj().acosh()));
+ // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re
+ assert!(
+ -f64::consts::PI <= c.acosh().im
+ && c.acosh().im <= f64::consts::PI
+ && 0.0 <= c.cosh().re
+ );
+ }
+ }
+
+ #[test]
+ fn test_atanh() {
+ assert!(close(_0_0i.atanh(), _0_0i));
+ assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0)));
+ assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0)));
+ for &c in all_consts.iter() {
+ // atanh(conj(z)) = conj(atanh(z))
+ assert!(close(c.conj().atanh(), c.conj().atanh()));
+ // atanh(-z) = -atanh(z)
+ assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0)));
+ // for this branch, -pi/2 <= atanh(z).im <= pi/2
+ assert!(
+ -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0
+ );
+ }
+ }
+
+ #[test]
+ fn test_exp_ln() {
+ for &c in all_consts.iter() {
+ // e^ln(z) = z
+ assert!(close(c.ln().exp(), c));
+ }
+ }
+
+ #[test]
+ fn test_trig_to_hyperbolic() {
+ for &c in all_consts.iter() {
+ // sin(iz) = i sinh(z)
+ assert!(close((_0_1i * c).sin(), _0_1i * c.sinh()));
+ // cos(iz) = cosh(z)
+ assert!(close((_0_1i * c).cos(), c.cosh()));
+ // tan(iz) = i tanh(z)
+ assert!(close((_0_1i * c).tan(), _0_1i * c.tanh()));
+ }
+ }
+
+ #[test]
+ fn test_trig_identities() {
+ for &c in all_consts.iter() {
+ // tan(z) = sin(z)/cos(z)
+ assert!(close(c.tan(), c.sin() / c.cos()));
+ // sin(z)^2 + cos(z)^2 = 1
+ assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i));
+
+ // sin(asin(z)) = z
+ assert!(close(c.asin().sin(), c));
+ // cos(acos(z)) = z
+ assert!(close(c.acos().cos(), c));
+ // tan(atan(z)) = z
+ // i and -i are branch points
+ if c != _0_1i && c != _0_1i.scale(-1.0) {
+ assert!(close(c.atan().tan(), c));
+ }
+
+ // sin(z) = (e^(iz) - e^(-iz))/(2i)
+ assert!(close(
+ ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0),
+ c.sin()
+ ));
+ // cos(z) = (e^(iz) + e^(-iz))/2
+ assert!(close(
+ ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0),
+ c.cos()
+ ));
+ // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz))
+ assert!(close(
+ _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp())
+ / (_1_0i + (_0_1i * c).scale(2.0).exp()),
+ c.tan()
+ ));
+ }
+ }
+
+ #[test]
+ fn test_hyperbolic_identites() {
+ for &c in all_consts.iter() {
+ // tanh(z) = sinh(z)/cosh(z)
+ assert!(close(c.tanh(), c.sinh() / c.cosh()));
+ // cosh(z)^2 - sinh(z)^2 = 1
+ assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i));
+
+ // sinh(asinh(z)) = z
+ assert!(close(c.asinh().sinh(), c));
+ // cosh(acosh(z)) = z
+ assert!(close(c.acosh().cosh(), c));
+ // tanh(atanh(z)) = z
+ // 1 and -1 are branch points
+ if c != _1_0i && c != _1_0i.scale(-1.0) {
+ assert!(close(c.atanh().tanh(), c));
+ }
+
+ // sinh(z) = (e^z - e^(-z))/2
+ assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh()));
+ // cosh(z) = (e^z + e^(-z))/2
+ assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh()));
+ // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1)
+ assert!(close(
+ (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i),
+ c.tanh()
+ ));
+ }
+ }
+ }
+
+ // Test both a + b and a += b
+ macro_rules! test_a_op_b {
+ ($a:ident + $b:expr, $answer:expr) => {
+ assert_eq!($a + $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x += $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident - $b:expr, $answer:expr) => {
+ assert_eq!($a - $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x -= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident * $b:expr, $answer:expr) => {
+ assert_eq!($a * $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x *= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident / $b:expr, $answer:expr) => {
+ assert_eq!($a / $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x /= $b;
+ x
+ },
+ $answer
+ );
+ };
+ ($a:ident % $b:expr, $answer:expr) => {
+ assert_eq!($a % $b, $answer);
+ assert_eq!(
+ {
+ let mut x = $a;
+ x %= $b;
+ x
+ },
+ $answer
+ );
+ };
+ }
+
+ // Test both a + b and a + &b
+ macro_rules! test_op {
+ ($a:ident $op:tt $b:expr, $answer:expr) => {
+ test_a_op_b!($a $op $b, $answer);
+ test_a_op_b!($a $op &$b, $answer);
+ };
+ }
+
+ mod complex_arithmetic {
+ use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts};
+ use traits::{MulAdd, MulAddAssign, Zero};
+
+ #[test]
+ fn test_add() {
+ test_op!(_05_05i + _05_05i, _1_1i);
+ test_op!(_0_1i + _1_0i, _1_1i);
+ test_op!(_1_0i + _neg1_1i, _0_1i);
+
+ for &c in all_consts.iter() {
+ test_op!(_0_0i + c, c);
+ test_op!(c + _0_0i, c);
+ }
+ }
+
+ #[test]
+ fn test_sub() {
+ test_op!(_05_05i - _05_05i, _0_0i);
+ test_op!(_0_1i - _1_0i, _neg1_1i);
+ test_op!(_0_1i - _neg1_1i, _1_0i);
+
+ for &c in all_consts.iter() {
+ test_op!(c - _0_0i, c);
+ test_op!(c - c, _0_0i);
+ }
+ }
+
+ #[test]
+ fn test_mul() {
+ test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0));
+ test_op!(_1_1i * _0_1i, _neg1_1i);
+
+ // i^2 & i^4
+ test_op!(_0_1i * _0_1i, -_1_0i);
+ assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
+
+ for &c in all_consts.iter() {
+ test_op!(c * _1_0i, c);
+ test_op!(_1_0i * c, c);
+ }
+ }
+
+ #[test]
+ #[cfg(feature = "std")]
+ fn test_mul_add_float() {
+ assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i);
+ assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i));
+ assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
+ assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
+ assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
+
+ let mut x = _1_0i;
+ x.mul_add_assign(_1_0i, _1_0i);
+ assert_eq!(x, _1_0i * _1_0i + _1_0i);
+
+ for &a in &all_consts {
+ for &b in &all_consts {
+ for &c in &all_consts {
+ let abc = a * b + c;
+ assert_eq!(a.mul_add(b, c), abc);
+ let mut x = a;
+ x.mul_add_assign(b, c);
+ assert_eq!(x, abc);
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_mul_add() {
+ use super::Complex;
+ const _0_0i: Complex<i32> = Complex { re: 0, im: 0 };
+ const _1_0i: Complex<i32> = Complex { re: 1, im: 0 };
+ const _1_1i: Complex<i32> = Complex { re: 1, im: 1 };
+ const _0_1i: Complex<i32> = Complex { re: 0, im: 1 };
+ const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 };
+ const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i];
+
+ assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i);
+ assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i));
+ assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i);
+ assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i);
+ assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i));
+
+ let mut x = _1_0i;
+ x.mul_add_assign(_1_0i, _1_0i);
+ assert_eq!(x, _1_0i * _1_0i + _1_0i);
+
+ for &a in &all_consts {
+ for &b in &all_consts {
+ for &c in &all_consts {
+ let abc = a * b + c;
+ assert_eq!(a.mul_add(b, c), abc);
+ let mut x = a;
+ x.mul_add_assign(b, c);
+ assert_eq!(x, abc);
+ }
+ }
+ }
+ }
+
+ #[test]
+ fn test_div() {
+ test_op!(_neg1_1i / _0_1i, _1_1i);
+ for &c in all_consts.iter() {
+ if c != Zero::zero() {
+ test_op!(c / c, _1_0i);
+ }
+ }
+ }
+
+ #[test]
+ fn test_rem() {
+ test_op!(_neg1_1i % _0_1i, _0_0i);
+ test_op!(_4_2i % _0_1i, _0_0i);
+ test_op!(_05_05i % _0_1i, _05_05i);
+ test_op!(_05_05i % _1_1i, _05_05i);
+ assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i);
+ assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i);
+ }
+
+ #[test]
+ fn test_neg() {
+ assert_eq!(-_1_0i + _0_1i, _neg1_1i);
+ assert_eq!((-_0_1i) * _0_1i, _1_0i);
+ for &c in all_consts.iter() {
+ assert_eq!(-(-c), c);
+ }
+ }
+ }
+
+ mod real_arithmetic {
+ use super::super::Complex;
+ use super::{_4_2i, _neg1_1i};
+
+ #[test]
+ fn test_add() {
+ test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0));
+ assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0));
+ }
+
+ #[test]
+ fn test_sub() {
+ test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0));
+ assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0));
+ }
+
+ #[test]
+ fn test_mul() {
+ assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0));
+ assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0));
+ }
+
+ #[test]
+ fn test_div() {
+ assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0));
+ assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05));
+ }
+
+ #[test]
+ fn test_rem() {
+ assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0));
+ assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0));
+ assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0));
+ assert_eq!(_neg1_1i % 2.0, _neg1_1i);
+ assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0));
+ }
+
+ #[test]
+ fn test_div_rem_gaussian() {
+ // These would overflow with `norm_sqr` division.
+ let max = Complex::new(255u8, 255u8);
+ assert_eq!(max / 200, Complex::new(1, 1));
+ assert_eq!(max % 200, Complex::new(55, 55));
+ }
+ }
+
+ #[test]
+ fn test_to_string() {
+ fn test(c: Complex64, s: String) {
+ assert_eq!(c.to_string(), s);
+ }
+ test(_0_0i, "0+0i".to_string());
+ test(_1_0i, "1+0i".to_string());
+ test(_0_1i, "0+1i".to_string());
+ test(_1_1i, "1+1i".to_string());
+ test(_neg1_1i, "-1+1i".to_string());
+ test(-_neg1_1i, "1-1i".to_string());
+ test(_05_05i, "0.5+0.5i".to_string());
+ }
+
+ #[test]
+ fn test_string_formatting() {
+ let a = Complex::new(1.23456, 123.456);
+ assert_eq!(format!("{}", a), "1.23456+123.456i");
+ assert_eq!(format!("{:.2}", a), "1.23+123.46i");
+ assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i");
+ assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i");
+
+ let b = Complex::new(0x80, 0xff);
+ assert_eq!(format!("{:X}", b), "80+FFi");
+ assert_eq!(format!("{:#x}", b), "0x80+0xffi");
+ assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i");
+ assert_eq!(format!("{:+#o}", b), "+0o200+0o377i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i");
+
+ let c = Complex::new(-10, -10000);
+ assert_eq!(format!("{}", c), "-10-10000i");
+ #[cfg(feature = "std")]
+ assert_eq!(format!("{:16}", c), " -10-10000i");
+ }
+
+ #[test]
+ fn test_hash() {
+ let a = Complex::new(0i32, 0i32);
+ let b = Complex::new(1i32, 0i32);
+ let c = Complex::new(0i32, 1i32);
+ assert!(::hash(&a) != ::hash(&b));
+ assert!(::hash(&b) != ::hash(&c));
+ assert!(::hash(&c) != ::hash(&a));
+ }
+
+ #[test]
+ fn test_hashset() {
+ use std::collections::HashSet;
+ let a = Complex::new(0i32, 0i32);
+ let b = Complex::new(1i32, 0i32);
+ let c = Complex::new(0i32, 1i32);
+
+ let set: HashSet<_> = [a, b, c].iter().cloned().collect();
+ assert!(set.contains(&a));
+ assert!(set.contains(&b));
+ assert!(set.contains(&c));
+ assert!(!set.contains(&(a + b + c)));
+ }
+
+ #[test]
+ fn test_is_nan() {
+ assert!(!_1_1i.is_nan());
+ let a = Complex::new(f64::NAN, f64::NAN);
+ assert!(a.is_nan());
+ }
+
+ #[test]
+ fn test_is_nan_special_cases() {
+ let a = Complex::new(0f64, f64::NAN);
+ let b = Complex::new(f64::NAN, 0f64);
+ assert!(a.is_nan());
+ assert!(b.is_nan());
+ }
+
+ #[test]
+ fn test_is_infinite() {
+ let a = Complex::new(2f64, f64::INFINITY);
+ assert!(a.is_infinite());
+ }
+
+ #[test]
+ fn test_is_finite() {
+ assert!(_1_1i.is_finite())
+ }
+
+ #[test]
+ fn test_is_normal() {
+ let a = Complex::new(0f64, f64::NAN);
+ let b = Complex::new(2f64, f64::INFINITY);
+ assert!(!a.is_normal());
+ assert!(!b.is_normal());
+ assert!(_1_1i.is_normal());
+ }
+
+ #[test]
+ fn test_from_str() {
+ fn test(z: Complex64, s: &str) {
+ assert_eq!(FromStr::from_str(s), Ok(z));
+ }
+ test(_0_0i, "0 + 0i");
+ test(_0_0i, "0+0j");
+ test(_0_0i, "0 - 0j");
+ test(_0_0i, "0-0i");
+ test(_0_0i, "0i + 0");
+ test(_0_0i, "0");
+ test(_0_0i, "-0");
+ test(_0_0i, "0i");
+ test(_0_0i, "0j");
+ test(_0_0i, "+0j");
+ test(_0_0i, "-0i");
+
+ test(_1_0i, "1 + 0i");
+ test(_1_0i, "1+0j");
+ test(_1_0i, "1 - 0j");
+ test(_1_0i, "+1-0i");
+ test(_1_0i, "-0j+1");
+ test(_1_0i, "1");
+
+ test(_1_1i, "1 + i");
+ test(_1_1i, "1+j");
+ test(_1_1i, "1 + 1j");
+ test(_1_1i, "1+1i");
+ test(_1_1i, "i + 1");
+ test(_1_1i, "1i+1");
+ test(_1_1i, "+j+1");
+
+ test(_0_1i, "0 + i");
+ test(_0_1i, "0+j");
+ test(_0_1i, "-0 + j");
+ test(_0_1i, "-0+i");
+ test(_0_1i, "0 + 1i");
+ test(_0_1i, "0+1j");
+ test(_0_1i, "-0 + 1j");
+ test(_0_1i, "-0+1i");
+ test(_0_1i, "j + 0");
+ test(_0_1i, "i");
+ test(_0_1i, "j");
+ test(_0_1i, "1j");
+
+ test(_neg1_1i, "-1 + i");
+ test(_neg1_1i, "-1+j");
+ test(_neg1_1i, "-1 + 1j");
+ test(_neg1_1i, "-1+1i");
+ test(_neg1_1i, "1i-1");
+ test(_neg1_1i, "j + -1");
+
+ test(_05_05i, "0.5 + 0.5i");
+ test(_05_05i, "0.5+0.5j");
+ test(_05_05i, "5e-1+0.5j");
+ test(_05_05i, "5E-1 + 0.5j");
+ test(_05_05i, "5E-1i + 0.5");
+ test(_05_05i, "0.05e+1j + 50E-2");
+ }
+
+ #[test]
+ fn test_from_str_radix() {
+ fn test(z: Complex64, s: &str, radix: u32) {
+ let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> =
+ Num::from_str_radix(s, radix);
+ assert_eq!(res.unwrap(), z)
+ }
+ test(_4_2i, "4+2i", 10);
+ test(Complex::new(15.0, 32.0), "F+20i", 16);
+ test(Complex::new(15.0, 32.0), "1111+100000i", 2);
+ test(Complex::new(-15.0, -32.0), "-F-20i", 16);
+ test(Complex::new(-15.0, -32.0), "-1111-100000i", 2);
+ }
+
+ #[test]
+ fn test_from_str_fail() {
+ fn test(s: &str) {
+ let complex: Result<Complex64, _> = FromStr::from_str(s);
+ assert!(
+ complex.is_err(),
+ "complex {:?} -> {:?} should be an error",
+ s,
+ complex
+ );
+ }
+ test("foo");
+ test("6E");
+ test("0 + 2.718");
+ test("1 - -2i");
+ test("314e-2ij");
+ test("4.3j - i");
+ test("1i - 2i");
+ test("+ 1 - 3.0i");
+ }
+
+ #[test]
+ fn test_sum() {
+ let v = vec![_0_1i, _1_0i];
+ assert_eq!(v.iter().sum::<Complex64>(), _1_1i);
+ assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i);
+ }
+
+ #[test]
+ fn test_prod() {
+ let v = vec![_0_1i, _1_0i];
+ assert_eq!(v.iter().product::<Complex64>(), _0_1i);
+ assert_eq!(v.into_iter().product::<Complex64>(), _0_1i);
+ }
+
+ #[test]
+ fn test_zero() {
+ let zero = Complex64::zero();
+ assert!(zero.is_zero());
+
+ let mut c = Complex::new(1.23, 4.56);
+ assert!(!c.is_zero());
+ assert_eq!(&c + &zero, c);
+
+ c.set_zero();
+ assert!(c.is_zero());
+ }
+
+ #[test]
+ fn test_one() {
+ let one = Complex64::one();
+ assert!(one.is_one());
+
+ let mut c = Complex::new(1.23, 4.56);
+ assert!(!c.is_one());
+ assert_eq!(&c * &one, c);
+
+ c.set_one();
+ assert!(c.is_one());
+ }
+
+ #[cfg(has_const_fn)]
+ #[test]
+ fn test_const() {
+ const R: f64 = 12.3;
+ const I: f64 = -4.5;
+ const C: Complex64 = Complex::new(R, I);
+
+ assert_eq!(C.re, 12.3);
+ assert_eq!(C.im, -4.5);
+ }
+}
diff --git a/rust/vendor/num-complex/src/pow.rs b/rust/vendor/num-complex/src/pow.rs
new file mode 100644
index 0000000..2f6b5ba
--- /dev/null
+++ b/rust/vendor/num-complex/src/pow.rs
@@ -0,0 +1,187 @@
+use super::Complex;
+
+use core::ops::Neg;
+#[cfg(feature = "std")]
+use traits::Float;
+use traits::{Num, One, Pow};
+
+macro_rules! pow_impl {
+ ($U:ty, $S:ty) => {
+ impl<'a, T: Clone + Num> Pow<$U> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, mut exp: $U) -> Self::Output {
+ if exp == 0 {
+ return Complex::one();
+ }
+ let mut base = self.clone();
+
+ while exp & 1 == 0 {
+ base = base.clone() * base;
+ exp >>= 1;
+ }
+
+ if exp == 1 {
+ return base;
+ }
+
+ let mut acc = base.clone();
+ while exp > 1 {
+ exp >>= 1;
+ base = base.clone() * base;
+ if exp & 1 == 1 {
+ acc = acc * base.clone();
+ }
+ }
+ acc
+ }
+ }
+
+ impl<'a, 'b, T: Clone + Num> Pow<&'b $U> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: &$U) -> Self::Output {
+ self.pow(*exp)
+ }
+ }
+
+ impl<'a, T: Clone + Num + Neg<Output = T>> Pow<$S> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $S) -> Self::Output {
+ if exp < 0 {
+ Pow::pow(&self.inv(), exp.wrapping_neg() as $U)
+ } else {
+ Pow::pow(self, exp as $U)
+ }
+ }
+ }
+
+ impl<'a, 'b, T: Clone + Num + Neg<Output = T>> Pow<&'b $S> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: &$S) -> Self::Output {
+ self.pow(*exp)
+ }
+ }
+ };
+}
+
+pow_impl!(u8, i8);
+pow_impl!(u16, i16);
+pow_impl!(u32, i32);
+pow_impl!(u64, i64);
+pow_impl!(usize, isize);
+#[cfg(has_i128)]
+pow_impl!(u128, i128);
+
+// Note: we can't add `impl<T: Float> Pow<T> for Complex<T>` because new blanket impls are a
+// breaking change. Someone could already have their own `F` and `impl Pow<F> for Complex<F>`
+// which would conflict. We can't even do this in a new semantic version, because we have to
+// gate it on the "std" feature, and features can't add breaking changes either.
+
+macro_rules! powf_impl {
+ ($F:ty) => {
+ #[cfg(feature = "std")]
+ impl<'a, T: Float> Pow<$F> for &'a Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(feature = "std")]
+ impl<'a, 'b, T: Float> Pow<&'b $F> for &'a Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &$F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(feature = "std")]
+ impl<T: Float> Pow<$F> for Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: $F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+
+ #[cfg(feature = "std")]
+ impl<'b, T: Float> Pow<&'b $F> for Complex<T>
+ where
+ $F: Into<T>,
+ {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &$F) -> Self::Output {
+ self.powf(exp.into())
+ }
+ }
+ };
+}
+
+powf_impl!(f32);
+powf_impl!(f64);
+
+// These blanket impls are OK, because both the target type and the trait parameter would be
+// foreign to anyone else trying to implement something that would overlap, raising E0117.
+
+#[cfg(feature = "std")]
+impl<'a, T: Float> Pow<Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'a, 'b, T: Float> Pow<&'b Complex<T>> for &'a Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(feature = "std")]
+impl<T: Float> Pow<Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, exp: Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}
+
+#[cfg(feature = "std")]
+impl<'b, T: Float> Pow<&'b Complex<T>> for Complex<T> {
+ type Output = Complex<T>;
+
+ #[inline]
+ fn pow(self, &exp: &'b Complex<T>) -> Self::Output {
+ self.powc(exp)
+ }
+}