diff options
Diffstat (limited to 'rust/vendor/rusticata-macros/src/macros.rs')
-rw-r--r-- | rust/vendor/rusticata-macros/src/macros.rs | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/rust/vendor/rusticata-macros/src/macros.rs b/rust/vendor/rusticata-macros/src/macros.rs new file mode 100644 index 0000000..9ff2f69 --- /dev/null +++ b/rust/vendor/rusticata-macros/src/macros.rs @@ -0,0 +1,300 @@ +//! Helper macros + +use nom::bytes::complete::take; +use nom::combinator::map_res; +use nom::IResult; + +#[doc(hidden)] +pub mod export { + pub use core::{fmt, mem, ptr}; +} + +/// Helper macro for newtypes: declare associated constants and implement Display trait +#[macro_export] +macro_rules! newtype_enum ( + (@collect_impl, $name:ident, $($key:ident = $val:expr),* $(,)*) => { + $( pub const $key : $name = $name($val); )* + }; + + (@collect_disp, $name:ident, $f:ident, $m:expr, $($key:ident = $val:expr),* $(,)*) => { + match $m { + $( $val => write!($f, stringify!{$key}), )* + n => write!($f, "{}({} / 0x{:x})", stringify!{$name}, n, n) + } + }; + + // entry + (impl $name:ident {$($body:tt)*}) => ( + #[allow(non_upper_case_globals)] + impl $name { + newtype_enum!{@collect_impl, $name, $($body)*} + } + ); + + // entry with display + (impl display $name:ident {$($body:tt)*}) => ( + newtype_enum!(impl $name { $($body)* }); + + impl $crate::export::fmt::Display for $name { + fn fmt(&self, f: &mut $crate::export::fmt::Formatter) -> $crate::export::fmt::Result { + newtype_enum!(@collect_disp, $name, f, self.0, $($body)*) + } + } + ); + + // entry with display and debug + (impl debug $name:ident {$($body:tt)*}) => ( + newtype_enum!(impl display $name { $($body)* }); + + impl $crate::export::fmt::Debug for $name { + fn fmt(&self, f: &mut $crate::export::fmt::Formatter) -> $crate::export::fmt::Result { + write!(f, "{}", self) + } + } + ); +); + +/// Helper macro for nom parsers: raise error if the condition is true +/// +/// This macro is used when using custom errors +#[macro_export] +macro_rules! custom_check ( + ($i:expr, $cond:expr, $err:expr) => ( + { + if $cond { + Err(::nom::Err::Error($err)) + } else { + Ok(($i, ())) + } + } + ); +); + +/// Helper macro for nom parsers: raise error if the condition is true +/// +/// This macro is used when using `ErrorKind` +#[macro_export] +macro_rules! error_if ( + ($i:expr, $cond:expr, $err:expr) => ( + { + use nom::error_position; + if $cond { + Err(::nom::Err::Error(error_position!($i, $err))) + } else { + Ok(($i, ())) + } + } + ); +); + +/// Helper macro for nom parsers: raise error if input is not empty +/// +/// Deprecated - use `nom::eof` +#[macro_export] +#[deprecated(since = "2.0.0")] +macro_rules! empty ( + ($i:expr,) => ( + { + use nom::eof; + eof!($i,) + } + ); +); + +#[deprecated(since = "3.0.1", note = "please use `be_var_u64` instead")] +/// Read an entire slice as a big-endian value. +/// +/// Returns the value as `u64`. This function checks for integer overflows, and returns a +/// `Result::Err` value if the value is too big. +pub fn bytes_to_u64(s: &[u8]) -> Result<u64, &'static str> { + let mut u: u64 = 0; + + if s.is_empty() { + return Err("empty"); + }; + if s.len() > 8 { + return Err("overflow"); + } + for &c in s { + let u1 = u << 8; + u = u1 | (c as u64); + } + + Ok(u) +} + +/// Read a slice as a big-endian value. +#[macro_export] +macro_rules! parse_hex_to_u64 ( + ( $i:expr, $size:expr ) => { + map_res(take($size as usize), $crate::combinator::be_var_u64)($i) + }; +); + +/// Read 3 bytes as an unsigned integer +#[deprecated(since = "0.5.0", note = "please use `be_u24` instead")] +#[allow(deprecated)] +#[inline] +pub fn parse_uint24(i: &[u8]) -> IResult<&[u8], u64> { + map_res(take(3usize), bytes_to_u64)(i) +} + +//named!(parse_hex4<&[u8], u64>, parse_hex_to_u64!(4)); + +/// Combination and flat_map! and take! as first combinator +#[macro_export] +macro_rules! flat_take ( + ($i:expr, $len:expr, $f:ident) => ({ + if $i.len() < $len { Err(::nom::Err::Incomplete(::nom::Needed::new($len))) } + else { + let taken = &$i[0..$len]; + let rem = &$i[$len..]; + match $f(taken) { + Ok((_,res)) => Ok((rem,res)), + Err(e) => Err(e) + } + } + }); + ($i:expr, $len:expr, $submac:ident!( $($args:tt)*)) => ({ + if $i.len() < $len { Err(::nom::Err::Incomplete(::nom::Needed::new($len))) } + else { + let taken = &$i[0..$len]; + let rem = &$i[$len..]; + match $submac!(taken, $($args)*) { + Ok((_,res)) => Ok((rem,res)), + Err(e) => Err(e) + } + } + }); +); + +/// Apply combinator, trying to "upgrade" error to next error type (using the `Into` or `From` +/// traits). +#[macro_export] +macro_rules! upgrade_error ( + ($i:expr, $submac:ident!( $($args:tt)*) ) => ({ + upgrade_error!( $submac!( $i, $($args)* ) ) + }); + ($i:expr, $f:expr) => ({ + upgrade_error!( call!($i, $f) ) + }); + ($e:expr) => ({ + match $e { + Ok(o) => Ok(o), + Err(::nom::Err::Error(e)) => Err(::nom::Err::Error(e.into())), + Err(::nom::Err::Failure(e)) => Err(::nom::Err::Failure(e.into())), + Err(::nom::Err::Incomplete(i)) => Err(::nom::Err::Incomplete(i)), + } + }); +); + +/// Apply combinator, trying to "upgrade" error to next error type (using the `Into` or `From` +/// traits). +#[macro_export] +macro_rules! upgrade_error_to ( + ($i:expr, $ty:ty, $submac:ident!( $($args:tt)*) ) => ({ + upgrade_error_to!( $ty, $submac!( $i, $($args)* ) ) + }); + ($i:expr, $ty:ty, $f:expr) => ({ + upgrade_error_to!( $ty, call!($i, $f) ) + }); + ($ty:ty, $e:expr) => ({ + match $e { + Ok(o) => Ok(o), + Err(::nom::Err::Error(e)) => Err(::nom::Err::Error(e.into::<$ty>())), + Err(::nom::Err::Failure(e)) => Err(::nom::Err::Failure(e.into::<$ty>())), + Err(::nom::Err::Incomplete(i)) => Err(::nom::Err::Incomplete(i)), + } + }); +); + +/// Nom combinator that returns the given expression unchanged +#[macro_export] +macro_rules! q { + ($i:expr, $x:expr) => {{ + Ok(($i, $x)) + }}; +} + +/// Align input value to the next multiple of n bytes +/// Valid only if n is a power of 2 +#[macro_export] +macro_rules! align_n2 { + ($x:expr, $n:expr) => { + ($x + ($n - 1)) & !($n - 1) + }; +} + +/// Align input value to the next multiple of 4 bytes +#[macro_export] +macro_rules! align32 { + ($x:expr) => { + $crate::align_n2!($x, 4) + }; +} + +#[cfg(test)] +mod tests { + use nom::error::ErrorKind; + use nom::number::streaming::{be_u16, be_u32}; + use nom::{error_position, Err, IResult, Needed}; + + #[test] + fn test_error_if() { + let empty = &b""[..]; + let res: IResult<&[u8], ()> = error_if!(empty, true, ErrorKind::Tag); + assert_eq!(res, Err(Err::Error(error_position!(empty, ErrorKind::Tag)))); + } + + #[test] + fn test_newtype_enum() { + #[derive(Debug, PartialEq, Eq)] + struct MyType(pub u8); + + newtype_enum! { + impl display MyType { + Val1 = 0, + Val2 = 1 + } + } + + assert_eq!(MyType(0), MyType::Val1); + assert_eq!(MyType(1), MyType::Val2); + + assert_eq!(format!("{}", MyType(0)), "Val1"); + assert_eq!(format!("{}", MyType(4)), "MyType(4 / 0x4)"); + } + #[test] + fn test_flat_take() { + let input = &[0x00, 0x01, 0xff]; + // read first 2 bytes and use correct combinator: OK + let res: IResult<&[u8], u16> = flat_take!(input, 2, be_u16); + assert_eq!(res, Ok((&input[2..], 0x0001))); + // read 3 bytes and use 2: OK (some input is just lost) + let res: IResult<&[u8], u16> = flat_take!(input, 3, be_u16); + assert_eq!(res, Ok((&b""[..], 0x0001))); + // read 2 bytes and a combinator requiring more bytes + let res: IResult<&[u8], u32> = flat_take!(input, 2, be_u32); + assert_eq!(res, Err(Err::Incomplete(Needed::new(2)))); + // test with macro as sub-combinator + let res: IResult<&[u8], u16> = flat_take!(input, 2, be_u16); + assert_eq!(res, Ok((&input[2..], 0x0001))); + } + + #[test] + fn test_q() { + let empty = &b""[..]; + let res: IResult<&[u8], &str, ErrorKind> = q!(empty, "test"); + assert_eq!(res, Ok((empty, "test"))); + } + + #[test] + fn test_align32() { + assert_eq!(align32!(3), 4); + assert_eq!(align32!(4), 4); + assert_eq!(align32!(5), 8); + assert_eq!(align32!(5u32), 8); + assert_eq!(align32!(5i32), 8); + assert_eq!(align32!(5usize), 8); + } +} |