1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
# Documentation: BER/DER parsing recipes
## Builtin types
Most builtin types can be parsed by calling the `from_der` or `from_der` functions (see `FromBer` and `FromDer` traits for documentation).
For ex:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = <u32>::from_der(input)?;
# Ok(()) };
```
Note: this crates makes extensive use of types annotation and turbofish operator, for example `<Type>::from_der()` or `TaggedExplicit::<u32, Error, 0>::from_der()`.
See table B-3 in <https://doc.rust-lang.org/book/appendix-02-operators.html> for reference on syntax.
## `SEQUENCE` and `SET`
The `SEQUENCE` and `SET` types are handled very similarly, so recipes will be given for `SEQUENCE`, but can be adapted to `SET` by replacing words.
### Parsing `SEQUENCE`
Usually, the sequence envelope does not need to be stored, so it just needs to be parsed to get the sequence content and parse it.
The methods [`from_ber_and_then`](crate::Sequence::from_ber_and_then()) and [`from_der_and_then`](crate::Sequence::from_der_and_then()) provide helpers for that:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = Sequence::from_ber_and_then(input, |i| {
// first item is INTEGER
let (rem, a) = u32::from_der(input)?;
// second item is OCTET STRING
let (rem, b) = <&[u8]>::from_der(input)?;
Ok((rem, (a, b)))
})?;
// result has type (u32, &[u8])
assert_eq!(result.0, 0);
assert_eq!(result.1, b"\x00\x01");
# Ok(()) };
```
### Automatically deriving sequence parsers
The [`BerSequence`](crate::BerSequence) and [`DerSequence`](crate::DerSequence)
custom derive provide attributes to automatically derive a parser for a sequence.
For ex:
```rust
# use asn1_rs::*;
#[derive(DerSequence)]
pub struct S {
a: u32,
b: u16,
c: u16,
}
# let parser = |input| -> Result<(), Error> {
let (rem, result) = S::from_der(input)?;
# Ok(()) };
```
This will work for any field type that implements [`FromBer`](crate::FromBer) or [`FromDer`](crate::FromDer), respectively.
See [`derive`](mod@derive) documentation for more examples and documentation.
### Parsing `SEQUENCE OF`
`SEQUENCE OF T` can be parsed using either type `SequenceOf<T>` or `Vec<T>`:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = SequenceOf::<u32>::from_der(input)?;
# Ok(()) };
```
or
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = <Vec<u32>>::from_der(input)?;
# Ok(()) };
```
`SET OF T` can be parsed using either `SetOf<T>`, `BTreeSet<T>` or `HashSet<T>`.
## `EXPLICIT` tagged values
### Parsing `EXPLICIT`, expecting a known tag
If you expect only a specific tag, use `TaggedExplicit`.
For ex, to parse a `[3] EXPLICIT INTEGER`:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = TaggedExplicit::<u32, Error, 0>::from_der(input)?;
// result has type TaggedValue. Use `.as_ref()` or `.into_inner()`
// to access content
let tag = result.tag();
let class = result.class();
assert_eq!(result.as_ref(), &0);
# Ok(()) };
```
### Specifying the class
`TaggedExplicit` does not check the class, and accepts any class. It expects you to check the class after reading the value.
To specify the class in the parser, use `TaggedValue`:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
// Note: the strange notation (using braces) is required by the compiler to use
// a constant instead of the numeric value.
let (rem, result) = TaggedValue::<u32, Error, Explicit, {Class::CONTEXT_SPECIFIC}, 0>::from_der(input)?;
# Ok(()) };
```
Note that `TaggedExplicit` is a type alias to `TaggedValue`, so the objects are the same.
### Accepting any `EXPLICIT` tag
To parse a value, accepting any class or tag, use `TaggedParser`.
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = TaggedParser::<Explicit, u32>::from_der(input)?;
// result has type TaggedParser. Use `.as_ref()` or `.into_inner()`
// to access content
let tag = result.tag();
let class = result.class();
assert_eq!(result.as_ref(), &0);
# Ok(()) };
```
### Optional tagged values
To parse optional tagged values, `Option<TaggedExplicit<...>>` can be used:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = Option::<TaggedExplicit::<u32, Error, 0>>::from_der(input)?;
# Ok(()) };
```
The type `OptTaggedExplicit` is also provided as an alias:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = OptTaggedExplicit::<u32, Error, 0>::from_der(input)?;
# Ok(()) };
```
## `IMPLICIT` tagged values
### Parsing `IMPLICIT`, expecting a known tag
If you expect only a specific tag, use `TaggedImplicit`.
For ex, to parse a `[3] EXPLICIT INTEGER`:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = TaggedExplicit::<u32, Error, 0>::from_der(input)?;
// result has type TaggedValue. Use `.as_ref()` or `.into_inner()`
// to access content
let tag = result.tag();
let class = result.class();
assert_eq!(result.as_ref(), &0);
# Ok(()) };
```
### Specifying the class
`TaggedImplicit` does not check the class, and accepts any class. It expects you to check the class after reading the value.
To specify the class in the parser, use `TaggedValue`:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
// Note: the strange notation (using braces) is required by the compiler to use
// a constant instead of the numeric value.
let (rem, result) = TaggedValue::<u32, Error, Implicit, { Class::CONTEXT_SPECIFIC }, 1>::from_der(input)?;
# Ok(()) };
```
Note that `TaggedImplicit` is a type alias to `TaggedValue`, so the objects are the same.
### Accepting any `IMPLICIT` tag
To parse a value, accepting any class or tag, use `TaggedParser`.
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = TaggedParser::<Implicit, u32>::from_der(input)?;
// result has type TaggedParser. Use `.as_ref()` or `.into_inner()`
// to access content
let tag = result.tag();
let class = result.class();
assert_eq!(result.as_ref(), &0);
# Ok(()) };
```
### Optional tagged values
To parse optional tagged values, `Option<TaggedImplicit<...>>` can be used:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = Option::<TaggedImplicit::<u32, Error, 0>>::from_der(input)?;
# Ok(()) };
```
The type `OptTaggedImplicit` is also provided as an alias:
```rust
# use asn1_rs::*;
# let parser = |input| -> Result<(), Error> {
let (rem, result) = OptTaggedImplicit::<u32, Error, 0>::from_der(input)?;
# Ok(()) };
```
|