1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
use crate::compress::{Options, UnpackedSize};
use crate::encode::rangecoder;
use byteorder::{LittleEndian, WriteBytesExt};
use std::io;
pub struct Encoder<'a, W>
where
W: 'a + io::Write,
{
rangecoder: rangecoder::RangeEncoder<'a, W>,
literal_probs: [[u16; 0x300]; 8],
is_match: [u16; 4], // true = LZ, false = literal
unpacked_size: UnpackedSize,
}
const LC: u32 = 3;
const LP: u32 = 0;
const PB: u32 = 2;
impl<'a, W> Encoder<'a, W>
where
W: io::Write,
{
pub fn from_stream(stream: &'a mut W, options: &Options) -> io::Result<Self> {
let dict_size = 0x0080_0000;
// Properties
let props = (LC + 9 * (LP + 5 * PB)) as u8;
lzma_info!("Properties {{ lc: {}, lp: {}, pb: {} }}", LC, LP, PB);
stream.write_u8(props)?;
// Dictionary
lzma_info!("Dict size: {}", dict_size);
stream.write_u32::<LittleEndian>(dict_size)?;
// Unpacked size
match &options.unpacked_size {
UnpackedSize::WriteToHeader(unpacked_size) => {
let value: u64 = match unpacked_size {
None => {
lzma_info!("Unpacked size: unknown");
0xFFFF_FFFF_FFFF_FFFF
}
Some(x) => {
lzma_info!("Unpacked size: {}", x);
*x
}
};
stream.write_u64::<LittleEndian>(value)?;
}
UnpackedSize::SkipWritingToHeader => {}
};
let encoder = Encoder {
rangecoder: rangecoder::RangeEncoder::new(stream),
literal_probs: [[0x400; 0x300]; 8],
is_match: [0x400; 4],
unpacked_size: options.unpacked_size,
};
Ok(encoder)
}
pub fn process<R>(mut self, input: R) -> io::Result<()>
where
R: io::Read,
{
let mut prev_byte = 0u8;
let mut input_len = 0;
for (out_len, byte_result) in input.bytes().enumerate() {
let byte = byte_result?;
let pos_state = out_len & 3;
input_len = out_len;
// Literal
self.rangecoder
.encode_bit(&mut self.is_match[pos_state], false)?;
self.encode_literal(byte, prev_byte)?;
prev_byte = byte;
}
self.finish(input_len + 1)
}
fn finish(&mut self, input_len: usize) -> io::Result<()> {
match self.unpacked_size {
UnpackedSize::SkipWritingToHeader | UnpackedSize::WriteToHeader(Some(_)) => {}
UnpackedSize::WriteToHeader(None) => {
// Write end-of-stream marker
let pos_state = input_len & 3;
// Match
self.rangecoder
.encode_bit(&mut self.is_match[pos_state], true)?;
// New distance
self.rangecoder.encode_bit(&mut 0x400, false)?;
// Dummy len, as small as possible (len = 0)
for _ in 0..4 {
self.rangecoder.encode_bit(&mut 0x400, false)?;
}
// Distance marker = 0xFFFFFFFF
// pos_slot = 63
for _ in 0..6 {
self.rangecoder.encode_bit(&mut 0x400, true)?;
}
// num_direct_bits = 30
// result = 3 << 30 = C000_0000
// + 3FFF_FFF0 (26 bits)
// + F ( 4 bits)
for _ in 0..30 {
self.rangecoder.encode_bit(&mut 0x400, true)?;
}
// = FFFF_FFFF
}
}
// Flush range coder
self.rangecoder.finish()
}
fn encode_literal(&mut self, byte: u8, prev_byte: u8) -> io::Result<()> {
let prev_byte = prev_byte as usize;
let mut result: usize = 1;
let lit_state = prev_byte >> 5;
let probs = &mut self.literal_probs[lit_state];
for i in 0..8 {
let bit = ((byte >> (7 - i)) & 1) != 0;
self.rangecoder.encode_bit(&mut probs[result], bit)?;
result = (result << 1) ^ (bit as usize);
}
Ok(())
}
}
|