1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
|
/* Copyright (C) 2007-2023 Open Information Security Foundation
*
* You can copy, redistribute or modify this Program under the terms of
* the GNU General Public License version 2 as published by the Free
* Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*/
/**
* \defgroup decode Packet decoding
*
* \brief Code in charge of protocol decoding
*
* The task of decoding packets is made in different files and
* as Suricata is supporting encapsulation there is a potential
* recursivity in the call.
*
* For each protocol a DecodePROTO function is provided. For
* example we have DecodeIPV4() for IPv4 and DecodePPP() for
* PPP.
*
* These functions have all a pkt and a len argument which
* are respectively a pointer to the protocol data and the length
* of this protocol data.
*
* \attention The pkt parameter must point to the effective data because
* it will be used later to set per protocol pointer like Packet::tcph
*
* @{
*/
/**
* \file
*
* \author Victor Julien <victor@inliniac.net>
*
* Decode the raw packet
*/
#include "suricata-common.h"
#include "decode.h"
#include "packet.h"
#include "flow.h"
#include "flow-storage.h"
#include "tmqh-packetpool.h"
#include "app-layer.h"
#include "output.h"
#include "decode-vxlan.h"
#include "decode-geneve.h"
#include "decode-erspan.h"
#include "decode-teredo.h"
#include "util-hash.h"
#include "util-hash-string.h"
#include "util-print.h"
#include "util-profiling.h"
#include "util-validate.h"
#include "action-globals.h"
uint32_t default_packet_size = 0;
extern bool stats_decoder_events;
extern const char *stats_decoder_events_prefix;
extern bool stats_stream_events;
uint8_t decoder_max_layers = PKT_DEFAULT_MAX_DECODED_LAYERS;
uint16_t packet_alert_max = PACKET_ALERT_MAX;
/**
* \brief Initialize PacketAlerts with dynamic alerts array size
*
*/
PacketAlert *PacketAlertCreate(void)
{
PacketAlert *pa_array = SCCalloc(packet_alert_max, sizeof(PacketAlert));
BUG_ON(pa_array == NULL);
return pa_array;
}
void PacketAlertFree(PacketAlert *pa)
{
if (pa != NULL) {
SCFree(pa);
}
}
static int DecodeTunnel(ThreadVars *, DecodeThreadVars *, Packet *, const uint8_t *, uint32_t,
enum DecodeTunnelProto) WARN_UNUSED;
static int DecodeTunnel(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p, const uint8_t *pkt,
uint32_t len, enum DecodeTunnelProto proto)
{
switch (proto) {
case DECODE_TUNNEL_PPP:
return DecodePPP(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_IPV4:
DEBUG_VALIDATE_BUG_ON(len > UINT16_MAX);
return DecodeIPV4(tv, dtv, p, pkt, (uint16_t)len);
case DECODE_TUNNEL_IPV6:
case DECODE_TUNNEL_IPV6_TEREDO:
DEBUG_VALIDATE_BUG_ON(len > UINT16_MAX);
return DecodeIPV6(tv, dtv, p, pkt, (uint16_t)len);
case DECODE_TUNNEL_VLAN:
return DecodeVLAN(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ETHERNET:
return DecodeEthernet(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ERSPANII:
return DecodeERSPAN(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_ERSPANI:
return DecodeERSPANTypeI(tv, dtv, p, pkt, len);
case DECODE_TUNNEL_NSH:
return DecodeNSH(tv, dtv, p, pkt, len);
default:
SCLogDebug("FIXME: DecodeTunnel: protocol %" PRIu32 " not supported.", proto);
break;
}
return TM_ECODE_OK;
}
/**
* \brief Return a malloced packet.
*/
void PacketFree(Packet *p)
{
PacketDestructor(p);
SCFree(p);
}
/**
* \brief Finalize decoding of a packet
*
* This function needs to be call at the end of decode
* functions when decoding has been successful.
*
*/
void PacketDecodeFinalize(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p)
{
if (p->flags & PKT_IS_INVALID) {
StatsIncr(tv, dtv->counter_invalid);
}
}
void PacketUpdateEngineEventCounters(ThreadVars *tv,
DecodeThreadVars *dtv, Packet *p)
{
for (uint8_t i = 0; i < p->events.cnt; i++) {
const uint8_t e = p->events.events[i];
if (e <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (e > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
StatsIncr(tv, dtv->counter_engine_events[e]);
}
}
/**
* \brief Get a malloced packet.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromAlloc(void)
{
Packet *p = SCCalloc(1, SIZE_OF_PACKET);
if (unlikely(p == NULL)) {
return NULL;
}
PacketInit(p);
p->ReleasePacket = PacketFree;
SCLogDebug("allocated a new packet only using alloc...");
PACKET_PROFILING_START(p);
return p;
}
/**
* \brief Return a packet to where it was allocated.
*/
void PacketFreeOrRelease(Packet *p)
{
if (likely(p->pool != NULL)) {
p->ReleasePacket = PacketPoolReturnPacket;
PacketPoolReturnPacket(p);
} else {
PacketFree(p);
}
}
/**
* \brief Get a packet. We try to get a packet from the packetpool first, but
* if that is empty we alloc a packet that is free'd again after
* processing.
*
* \retval p packet, NULL on error
*/
Packet *PacketGetFromQueueOrAlloc(void)
{
/* try the pool first */
Packet *p = PacketPoolGetPacket();
if (p == NULL) {
/* non fatal, we're just not processing a packet then */
p = PacketGetFromAlloc();
} else {
DEBUG_VALIDATE_BUG_ON(p->ReleasePacket != PacketPoolReturnPacket);
PACKET_PROFILING_START(p);
}
return p;
}
inline int PacketCallocExtPkt(Packet *p, int datalen)
{
if (! p->ext_pkt) {
p->ext_pkt = SCCalloc(1, datalen);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
}
return 0;
}
/**
* \brief Copy data to Packet payload at given offset
*
* This function copies data/payload to a Packet. It uses the
* space allocated at Packet creation (pointed by Packet::pkt)
* or allocate some memory (pointed by Packet::ext_pkt) if the
* data size is to big to fit in initial space (of size
* default_packet_size).
*
* \param Pointer to the Packet to modify
* \param Offset of the copy relatively to payload of Packet
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyDataOffset(Packet *p, uint32_t offset, const uint8_t *data, uint32_t datalen)
{
if (unlikely(offset + datalen > MAX_PAYLOAD_SIZE)) {
/* too big */
SET_PKT_LEN(p, 0);
return -1;
}
/* Do we have already an packet with allocated data */
if (! p->ext_pkt) {
uint32_t newsize = offset + datalen;
// check overflow
if (newsize < offset)
return -1;
if (newsize <= default_packet_size) {
/* data will fit in memory allocated with packet */
memcpy(GET_PKT_DIRECT_DATA(p) + offset, data, datalen);
} else {
/* here we need a dynamic allocation */
p->ext_pkt = SCMalloc(MAX_PAYLOAD_SIZE);
if (unlikely(p->ext_pkt == NULL)) {
SET_PKT_LEN(p, 0);
return -1;
}
/* copy initial data */
memcpy(p->ext_pkt, GET_PKT_DIRECT_DATA(p), GET_PKT_DIRECT_MAX_SIZE(p));
/* copy data as asked */
memcpy(p->ext_pkt + offset, data, datalen);
}
} else {
memcpy(p->ext_pkt + offset, data, datalen);
}
return 0;
}
/**
* \brief Copy data to Packet payload and set packet length
*
* \param Pointer to the Packet to modify
* \param Pointer to the data to copy
* \param Length of the data to copy
*/
inline int PacketCopyData(Packet *p, const uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
return PacketCopyDataOffset(p, 0, pktdata, pktlen);
}
/**
* \brief Setup a pseudo packet (tunnel)
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketTunnelPktSetup(ThreadVars *tv, DecodeThreadVars *dtv, Packet *parent,
const uint8_t *pkt, uint32_t len, enum DecodeTunnelProto proto)
{
int ret;
SCEnter();
if (parent->nb_decoded_layers + 1 >= decoder_max_layers) {
ENGINE_SET_INVALID_EVENT(parent, GENERIC_TOO_MANY_LAYERS);
SCReturnPtr(NULL, "Packet");
}
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* copy packet and set length, proto */
PacketCopyData(p, pkt, len);
DEBUG_VALIDATE_BUG_ON(parent->recursion_level == 255);
p->recursion_level = parent->recursion_level + 1;
DEBUG_VALIDATE_BUG_ON(parent->nb_decoded_layers >= decoder_max_layers);
p->nb_decoded_layers = parent->nb_decoded_layers + 1;
p->ts = parent->ts;
p->datalink = DLT_RAW;
p->tenant_id = parent->tenant_id;
p->livedev = parent->livedev;
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
ret = DecodeTunnel(tv, dtv, p, GET_PKT_DATA(p),
GET_PKT_LEN(p), proto);
if (unlikely(ret != TM_ECODE_OK) ||
(proto == DECODE_TUNNEL_IPV6_TEREDO && (p->flags & PKT_IS_INVALID)))
{
/* Not a (valid) tunnel packet */
SCLogDebug("tunnel packet is invalid");
p->root = NULL;
UNSET_TUNNEL_PKT(p);
TmqhOutputPacketpool(tv, p);
SCReturnPtr(NULL, "Packet");
}
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(p);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
SCReturnPtr(p, "Packet");
}
/**
* \brief Setup a pseudo packet (reassembled frags)
*
* Difference with PacketPseudoPktSetup is that this func doesn't increment
* the recursion level. It needs to be on the same level as the frags because
* we run the flow engine against this and we need to get the same flow.
*
* \param parent parent packet for this pseudo pkt
* \param pkt raw packet data
* \param len packet data length
* \param proto protocol of the tunneled packet
*
* \retval p the pseudo packet or NULL if out of memory
*/
Packet *PacketDefragPktSetup(Packet *parent, const uint8_t *pkt, uint32_t len, uint8_t proto)
{
SCEnter();
/* get us a packet */
Packet *p = PacketGetFromQueueOrAlloc();
if (unlikely(p == NULL)) {
SCReturnPtr(NULL, "Packet");
}
/* set the root ptr to the lowest layer */
if (parent->root != NULL)
p->root = parent->root;
else
p->root = parent;
/* copy packet and set length, proto */
if (pkt && len) {
PacketCopyData(p, pkt, len);
}
p->recursion_level = parent->recursion_level; /* NOT incremented */
p->ts = parent->ts;
p->tenant_id = parent->tenant_id;
/* tell new packet it's part of a tunnel */
SET_TUNNEL_PKT(p);
memcpy(&p->vlan_id[0], &parent->vlan_id[0], sizeof(p->vlan_id));
p->vlan_idx = parent->vlan_idx;
p->livedev = parent->livedev;
SCReturnPtr(p, "Packet");
}
/**
* \brief inform defrag "parent" that a pseudo packet is
* now associated to it.
*/
void PacketDefragPktSetupParent(Packet *parent)
{
/* tell parent packet it's part of a tunnel */
SET_TUNNEL_PKT(parent);
/* increment tunnel packet refcnt in the root packet */
TUNNEL_INCR_PKT_TPR(parent);
/* disable payload (not packet) inspection on the parent, as the payload
* is the packet we will now run through the system separately. We do
* check it against the ip/port/other header checks though */
DecodeSetNoPayloadInspectionFlag(parent);
}
/**
* \note if p->flow is set, the flow is locked
*/
void PacketBypassCallback(Packet *p)
{
if (PKT_IS_PSEUDOPKT(p))
return;
#ifdef CAPTURE_OFFLOAD
/* Don't try to bypass if flow is already out or
* if we have failed to do it once */
if (p->flow) {
int state = p->flow->flow_state;
if ((state == FLOW_STATE_LOCAL_BYPASSED) ||
(state == FLOW_STATE_CAPTURE_BYPASSED)) {
return;
}
FlowBypassInfo *fc;
fc = FlowGetStorageById(p->flow, GetFlowBypassInfoID());
if (fc == NULL) {
fc = SCCalloc(sizeof(FlowBypassInfo), 1);
if (fc) {
FlowSetStorageById(p->flow, GetFlowBypassInfoID(), fc);
} else {
return;
}
}
}
if (p->BypassPacketsFlow && p->BypassPacketsFlow(p)) {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_CAPTURE_BYPASSED);
}
} else {
if (p->flow) {
FlowUpdateState(p->flow, FLOW_STATE_LOCAL_BYPASSED);
}
}
#else /* CAPTURE_OFFLOAD */
if (p->flow) {
int state = p->flow->flow_state;
if (state == FLOW_STATE_LOCAL_BYPASSED)
return;
FlowUpdateState(p->flow, FLOW_STATE_LOCAL_BYPASSED);
}
#endif
}
/** \brief switch direction of a packet */
void PacketSwap(Packet *p)
{
if (PKT_IS_TOSERVER(p)) {
p->flowflags &= ~FLOW_PKT_TOSERVER;
p->flowflags |= FLOW_PKT_TOCLIENT;
if (p->flowflags & FLOW_PKT_TOSERVER_FIRST) {
p->flowflags &= ~FLOW_PKT_TOSERVER_FIRST;
p->flowflags |= FLOW_PKT_TOCLIENT_FIRST;
}
} else {
p->flowflags &= ~FLOW_PKT_TOCLIENT;
p->flowflags |= FLOW_PKT_TOSERVER;
if (p->flowflags & FLOW_PKT_TOCLIENT_FIRST) {
p->flowflags &= ~FLOW_PKT_TOCLIENT_FIRST;
p->flowflags |= FLOW_PKT_TOSERVER_FIRST;
}
}
}
/* counter name store */
static HashTable *g_counter_table = NULL;
static SCMutex g_counter_table_mutex = SCMUTEX_INITIALIZER;
void DecodeUnregisterCounters(void)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table) {
HashTableFree(g_counter_table);
g_counter_table = NULL;
}
SCMutexUnlock(&g_counter_table_mutex);
}
void DecodeRegisterPerfCounters(DecodeThreadVars *dtv, ThreadVars *tv)
{
/* register counters */
dtv->counter_pkts = StatsRegisterCounter("decoder.pkts", tv);
dtv->counter_bytes = StatsRegisterCounter("decoder.bytes", tv);
dtv->counter_invalid = StatsRegisterCounter("decoder.invalid", tv);
dtv->counter_ipv4 = StatsRegisterCounter("decoder.ipv4", tv);
dtv->counter_ipv6 = StatsRegisterCounter("decoder.ipv6", tv);
dtv->counter_eth = StatsRegisterCounter("decoder.ethernet", tv);
dtv->counter_arp = StatsRegisterCounter("decoder.arp", tv);
dtv->counter_ethertype_unknown = StatsRegisterCounter("decoder.unknown_ethertype", tv);
dtv->counter_chdlc = StatsRegisterCounter("decoder.chdlc", tv);
dtv->counter_raw = StatsRegisterCounter("decoder.raw", tv);
dtv->counter_null = StatsRegisterCounter("decoder.null", tv);
dtv->counter_sll = StatsRegisterCounter("decoder.sll", tv);
dtv->counter_tcp = StatsRegisterCounter("decoder.tcp", tv);
dtv->counter_tcp_syn = StatsRegisterCounter("tcp.syn", tv);
dtv->counter_tcp_synack = StatsRegisterCounter("tcp.synack", tv);
dtv->counter_tcp_rst = StatsRegisterCounter("tcp.rst", tv);
dtv->counter_udp = StatsRegisterCounter("decoder.udp", tv);
dtv->counter_sctp = StatsRegisterCounter("decoder.sctp", tv);
dtv->counter_esp = StatsRegisterCounter("decoder.esp", tv);
dtv->counter_icmpv4 = StatsRegisterCounter("decoder.icmpv4", tv);
dtv->counter_icmpv6 = StatsRegisterCounter("decoder.icmpv6", tv);
dtv->counter_ppp = StatsRegisterCounter("decoder.ppp", tv);
dtv->counter_pppoe = StatsRegisterCounter("decoder.pppoe", tv);
dtv->counter_geneve = StatsRegisterCounter("decoder.geneve", tv);
dtv->counter_gre = StatsRegisterCounter("decoder.gre", tv);
dtv->counter_vlan = StatsRegisterCounter("decoder.vlan", tv);
dtv->counter_vlan_qinq = StatsRegisterCounter("decoder.vlan_qinq", tv);
dtv->counter_vlan_qinqinq = StatsRegisterCounter("decoder.vlan_qinqinq", tv);
dtv->counter_vxlan = StatsRegisterCounter("decoder.vxlan", tv);
dtv->counter_vntag = StatsRegisterCounter("decoder.vntag", tv);
dtv->counter_ieee8021ah = StatsRegisterCounter("decoder.ieee8021ah", tv);
dtv->counter_teredo = StatsRegisterCounter("decoder.teredo", tv);
dtv->counter_ipv4inipv6 = StatsRegisterCounter("decoder.ipv4_in_ipv6", tv);
dtv->counter_ipv6inipv6 = StatsRegisterCounter("decoder.ipv6_in_ipv6", tv);
dtv->counter_mpls = StatsRegisterCounter("decoder.mpls", tv);
dtv->counter_avg_pkt_size = StatsRegisterAvgCounter("decoder.avg_pkt_size", tv);
dtv->counter_max_pkt_size = StatsRegisterMaxCounter("decoder.max_pkt_size", tv);
dtv->counter_max_mac_addrs_src = StatsRegisterMaxCounter("decoder.max_mac_addrs_src", tv);
dtv->counter_max_mac_addrs_dst = StatsRegisterMaxCounter("decoder.max_mac_addrs_dst", tv);
dtv->counter_erspan = StatsRegisterMaxCounter("decoder.erspan", tv);
dtv->counter_nsh = StatsRegisterMaxCounter("decoder.nsh", tv);
dtv->counter_flow_memcap = StatsRegisterCounter("flow.memcap", tv);
dtv->counter_tcp_active_sessions = StatsRegisterCounter("tcp.active_sessions", tv);
dtv->counter_flow_total = StatsRegisterCounter("flow.total", tv);
dtv->counter_flow_active = StatsRegisterCounter("flow.active", tv);
dtv->counter_flow_tcp = StatsRegisterCounter("flow.tcp", tv);
dtv->counter_flow_udp = StatsRegisterCounter("flow.udp", tv);
dtv->counter_flow_icmp4 = StatsRegisterCounter("flow.icmpv4", tv);
dtv->counter_flow_icmp6 = StatsRegisterCounter("flow.icmpv6", tv);
dtv->counter_flow_tcp_reuse = StatsRegisterCounter("flow.tcp_reuse", tv);
dtv->counter_flow_get_used = StatsRegisterCounter("flow.get_used", tv);
dtv->counter_flow_get_used_eval = StatsRegisterCounter("flow.get_used_eval", tv);
dtv->counter_flow_get_used_eval_reject = StatsRegisterCounter("flow.get_used_eval_reject", tv);
dtv->counter_flow_get_used_eval_busy = StatsRegisterCounter("flow.get_used_eval_busy", tv);
dtv->counter_flow_get_used_failed = StatsRegisterCounter("flow.get_used_failed", tv);
dtv->counter_flow_spare_sync_avg = StatsRegisterAvgCounter("flow.wrk.spare_sync_avg", tv);
dtv->counter_flow_spare_sync = StatsRegisterCounter("flow.wrk.spare_sync", tv);
dtv->counter_flow_spare_sync_incomplete = StatsRegisterCounter("flow.wrk.spare_sync_incomplete", tv);
dtv->counter_flow_spare_sync_empty = StatsRegisterCounter("flow.wrk.spare_sync_empty", tv);
dtv->counter_defrag_ipv4_fragments =
StatsRegisterCounter("defrag.ipv4.fragments", tv);
dtv->counter_defrag_ipv4_reassembled = StatsRegisterCounter("defrag.ipv4.reassembled", tv);
dtv->counter_defrag_ipv6_fragments =
StatsRegisterCounter("defrag.ipv6.fragments", tv);
dtv->counter_defrag_ipv6_reassembled = StatsRegisterCounter("defrag.ipv6.reassembled", tv);
dtv->counter_defrag_max_hit =
StatsRegisterCounter("defrag.max_frag_hits", tv);
for (int i = 0; i < DECODE_EVENT_MAX; i++) {
BUG_ON(i != (int)DEvents[i].code);
if (i <= DECODE_EVENT_PACKET_MAX && !stats_decoder_events)
continue;
else if (i > DECODE_EVENT_PACKET_MAX && !stats_stream_events)
continue;
if (i < DECODE_EVENT_PACKET_MAX &&
strncmp(DEvents[i].event_name, "decoder.", 8) == 0)
{
SCMutexLock(&g_counter_table_mutex);
if (g_counter_table == NULL) {
g_counter_table = HashTableInit(256, StringHashFunc,
StringHashCompareFunc,
StringHashFreeFunc);
if (g_counter_table == NULL) {
FatalError("decoder counter hash "
"table init failed");
}
}
char name[256];
char *dot = strchr(DEvents[i].event_name, '.');
BUG_ON(!dot);
snprintf(name, sizeof(name), "%s.%s",
stats_decoder_events_prefix, dot+1);
const char *found = HashTableLookup(g_counter_table, name, 0);
if (!found) {
char *add = SCStrdup(name);
if (add == NULL)
FatalError("decoder counter hash "
"table name init failed");
int r = HashTableAdd(g_counter_table, add, 0);
if (r != 0)
FatalError("decoder counter hash "
"table name add failed");
found = add;
}
dtv->counter_engine_events[i] = StatsRegisterCounter(
found, tv);
SCMutexUnlock(&g_counter_table_mutex);
} else {
dtv->counter_engine_events[i] = StatsRegisterCounter(
DEvents[i].event_name, tv);
}
}
return;
}
void DecodeUpdatePacketCounters(ThreadVars *tv,
const DecodeThreadVars *dtv, const Packet *p)
{
StatsIncr(tv, dtv->counter_pkts);
//StatsIncr(tv, dtv->counter_pkts_per_sec);
StatsAddUI64(tv, dtv->counter_bytes, GET_PKT_LEN(p));
StatsAddUI64(tv, dtv->counter_avg_pkt_size, GET_PKT_LEN(p));
StatsSetUI64(tv, dtv->counter_max_pkt_size, GET_PKT_LEN(p));
}
/**
* \brief Debug print function for printing addresses
*
* \param Address object
*
* \todo IPv6
*/
void AddressDebugPrint(Address *a)
{
if (a == NULL)
return;
switch (a->family) {
case AF_INET:
{
char s[16];
PrintInet(AF_INET, (const void *)&a->addr_data32[0], s, sizeof(s));
SCLogDebug("%s", s);
break;
}
}
}
/** \brief Alloc and setup DecodeThreadVars */
DecodeThreadVars *DecodeThreadVarsAlloc(ThreadVars *tv)
{
DecodeThreadVars *dtv = NULL;
if ( (dtv = SCMalloc(sizeof(DecodeThreadVars))) == NULL)
return NULL;
memset(dtv, 0, sizeof(DecodeThreadVars));
dtv->app_tctx = AppLayerGetCtxThread(tv);
if (OutputFlowLogThreadInit(tv, NULL, &dtv->output_flow_thread_data) != TM_ECODE_OK) {
SCLogError("initializing flow log API for thread failed");
DecodeThreadVarsFree(tv, dtv);
return NULL;
}
return dtv;
}
void DecodeThreadVarsFree(ThreadVars *tv, DecodeThreadVars *dtv)
{
if (dtv != NULL) {
if (dtv->app_tctx != NULL)
AppLayerDestroyCtxThread(dtv->app_tctx);
if (dtv->output_flow_thread_data != NULL)
OutputFlowLogThreadDeinit(tv, dtv->output_flow_thread_data);
SCFree(dtv);
}
}
/**
* \brief Set data for Packet and set length when zero copy is used
*
* \param Pointer to the Packet to modify
* \param Pointer to the data
* \param Length of the data
*/
inline int PacketSetData(Packet *p, const uint8_t *pktdata, uint32_t pktlen)
{
SET_PKT_LEN(p, (size_t)pktlen);
if (unlikely(!pktdata)) {
return -1;
}
// ext_pkt cannot be const (because we sometimes copy)
p->ext_pkt = (uint8_t *) pktdata;
p->flags |= PKT_ZERO_COPY;
return 0;
}
const char *PktSrcToString(enum PktSrcEnum pkt_src)
{
const char *pkt_src_str = NULL;
switch (pkt_src) {
case PKT_SRC_WIRE:
pkt_src_str = "wire/pcap";
break;
case PKT_SRC_DECODER_GRE:
pkt_src_str = "gre tunnel";
break;
case PKT_SRC_DECODER_IPV4:
pkt_src_str = "ipv4 tunnel";
break;
case PKT_SRC_DECODER_IPV6:
pkt_src_str = "ipv6 tunnel";
break;
case PKT_SRC_DECODER_TEREDO:
pkt_src_str = "teredo tunnel";
break;
case PKT_SRC_DEFRAG:
pkt_src_str = "defrag";
break;
case PKT_SRC_STREAM_TCP_DETECTLOG_FLUSH:
pkt_src_str = "stream (detect/log)";
break;
case PKT_SRC_FFR:
pkt_src_str = "stream (flow timeout)";
break;
case PKT_SRC_DECODER_GENEVE:
pkt_src_str = "geneve encapsulation";
break;
case PKT_SRC_DECODER_VXLAN:
pkt_src_str = "vxlan encapsulation";
break;
case PKT_SRC_DETECT_RELOAD_FLUSH:
pkt_src_str = "detect reload flush";
break;
case PKT_SRC_CAPTURE_TIMEOUT:
pkt_src_str = "capture timeout flush";
break;
case PKT_SRC_SHUTDOWN_FLUSH:
pkt_src_str = "shutdown flush";
break;
}
DEBUG_VALIDATE_BUG_ON(pkt_src_str == NULL);
return pkt_src_str;
}
const char *PacketDropReasonToString(enum PacketDropReason r)
{
switch (r) {
case PKT_DROP_REASON_DECODE_ERROR:
return "decode error";
case PKT_DROP_REASON_DEFRAG_ERROR:
return "defrag error";
case PKT_DROP_REASON_DEFRAG_MEMCAP:
return "defrag memcap";
case PKT_DROP_REASON_FLOW_MEMCAP:
return "flow memcap";
case PKT_DROP_REASON_FLOW_DROP:
return "flow drop";
case PKT_DROP_REASON_STREAM_ERROR:
return "stream error";
case PKT_DROP_REASON_STREAM_MEMCAP:
return "stream memcap";
case PKT_DROP_REASON_STREAM_MIDSTREAM:
return "stream midstream";
case PKT_DROP_REASON_STREAM_REASSEMBLY:
return "stream reassembly";
case PKT_DROP_REASON_APPLAYER_ERROR:
return "applayer error";
case PKT_DROP_REASON_APPLAYER_MEMCAP:
return "applayer memcap";
case PKT_DROP_REASON_RULES:
return "rules";
case PKT_DROP_REASON_RULES_THRESHOLD:
return "threshold detection_filter";
case PKT_DROP_REASON_NFQ_ERROR:
return "nfq error";
case PKT_DROP_REASON_INNER_PACKET:
return "tunnel packet drop";
case PKT_DROP_REASON_NOT_SET:
case PKT_DROP_REASON_MAX:
return NULL;
}
return NULL;
}
static const char *PacketDropReasonToJsonString(enum PacketDropReason r)
{
switch (r) {
case PKT_DROP_REASON_DECODE_ERROR:
return "ips.drop_reason.decode_error";
case PKT_DROP_REASON_DEFRAG_ERROR:
return "ips.drop_reason.defrag_error";
case PKT_DROP_REASON_DEFRAG_MEMCAP:
return "ips.drop_reason.defrag_memcap";
case PKT_DROP_REASON_FLOW_MEMCAP:
return "ips.drop_reason.flow_memcap";
case PKT_DROP_REASON_FLOW_DROP:
return "ips.drop_reason.flow_drop";
case PKT_DROP_REASON_STREAM_ERROR:
return "ips.drop_reason.stream_error";
case PKT_DROP_REASON_STREAM_MEMCAP:
return "ips.drop_reason.stream_memcap";
case PKT_DROP_REASON_STREAM_MIDSTREAM:
return "ips.drop_reason.stream_midstream";
case PKT_DROP_REASON_STREAM_REASSEMBLY:
return "ips.drop_reason.stream_reassembly";
case PKT_DROP_REASON_APPLAYER_ERROR:
return "ips.drop_reason.applayer_error";
case PKT_DROP_REASON_APPLAYER_MEMCAP:
return "ips.drop_reason.applayer_memcap";
case PKT_DROP_REASON_RULES:
return "ips.drop_reason.rules";
case PKT_DROP_REASON_RULES_THRESHOLD:
return "ips.drop_reason.threshold_detection_filter";
case PKT_DROP_REASON_NFQ_ERROR:
return "ips.drop_reason.nfq_error";
case PKT_DROP_REASON_INNER_PACKET:
return "ips.drop_reason.tunnel_packet_drop";
case PKT_DROP_REASON_NOT_SET:
case PKT_DROP_REASON_MAX:
return NULL;
}
return NULL;
}
typedef struct CaptureStats_ {
uint16_t counter_ips_accepted;
uint16_t counter_ips_blocked;
uint16_t counter_ips_rejected;
uint16_t counter_ips_replaced;
uint16_t counter_drop_reason[PKT_DROP_REASON_MAX];
} CaptureStats;
thread_local CaptureStats t_capture_stats;
void CaptureStatsUpdate(ThreadVars *tv, const Packet *p)
{
if (!EngineModeIsIPS() || PKT_IS_PSEUDOPKT(p))
return;
CaptureStats *s = &t_capture_stats;
if (unlikely(PacketCheckAction(p, ACTION_REJECT_ANY))) {
StatsIncr(tv, s->counter_ips_rejected);
} else if (unlikely(PacketCheckAction(p, ACTION_DROP))) {
StatsIncr(tv, s->counter_ips_blocked);
} else if (unlikely(p->flags & PKT_STREAM_MODIFIED)) {
StatsIncr(tv, s->counter_ips_replaced);
} else {
StatsIncr(tv, s->counter_ips_accepted);
}
if (p->drop_reason != PKT_DROP_REASON_NOT_SET) {
StatsIncr(tv, s->counter_drop_reason[p->drop_reason]);
}
}
void CaptureStatsSetup(ThreadVars *tv)
{
if (EngineModeIsIPS()) {
CaptureStats *s = &t_capture_stats;
s->counter_ips_accepted = StatsRegisterCounter("ips.accepted", tv);
s->counter_ips_blocked = StatsRegisterCounter("ips.blocked", tv);
s->counter_ips_rejected = StatsRegisterCounter("ips.rejected", tv);
s->counter_ips_replaced = StatsRegisterCounter("ips.replaced", tv);
for (int i = PKT_DROP_REASON_NOT_SET; i < PKT_DROP_REASON_MAX; i++) {
const char *name = PacketDropReasonToJsonString(i);
if (name != NULL)
s->counter_drop_reason[i] = StatsRegisterCounter(name, tv);
}
}
}
void DecodeGlobalConfig(void)
{
DecodeTeredoConfig();
DecodeGeneveConfig();
DecodeVXLANConfig();
DecodeERSPANConfig();
intmax_t value = 0;
if (ConfGetInt("decoder.max-layers", &value) == 1) {
if (value < 0 || value > UINT8_MAX) {
SCLogWarning("Invalid value for decoder.max-layers");
} else {
decoder_max_layers = (uint8_t)value;
}
}
PacketAlertGetMaxConfig();
}
void PacketAlertGetMaxConfig(void)
{
intmax_t max = 0;
if (ConfGetInt("packet-alert-max", &max) == 1) {
if (max <= 0 || max > UINT8_MAX) {
SCLogWarning("Invalid value for packet-alert-max, default value set instead");
} else {
packet_alert_max = (uint16_t)max;
}
}
SCLogDebug("detect->packet_alert_max set to %d", packet_alert_max);
}
/**
* @}
*/
|