summaryrefslogtreecommitdiffstats
path: root/src/core/cgroup.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/cgroup.c')
-rw-r--r--src/core/cgroup.c4665
1 files changed, 4665 insertions, 0 deletions
diff --git a/src/core/cgroup.c b/src/core/cgroup.c
new file mode 100644
index 0000000..61ac4df
--- /dev/null
+++ b/src/core/cgroup.c
@@ -0,0 +1,4665 @@
+/* SPDX-License-Identifier: LGPL-2.1-or-later */
+
+#include <fcntl.h>
+
+#include "sd-messages.h"
+
+#include "af-list.h"
+#include "alloc-util.h"
+#include "blockdev-util.h"
+#include "bpf-devices.h"
+#include "bpf-firewall.h"
+#include "bpf-foreign.h"
+#include "bpf-socket-bind.h"
+#include "btrfs-util.h"
+#include "bus-error.h"
+#include "bus-locator.h"
+#include "cgroup-setup.h"
+#include "cgroup-util.h"
+#include "cgroup.h"
+#include "devnum-util.h"
+#include "fd-util.h"
+#include "fileio.h"
+#include "firewall-util.h"
+#include "in-addr-prefix-util.h"
+#include "inotify-util.h"
+#include "io-util.h"
+#include "ip-protocol-list.h"
+#include "limits-util.h"
+#include "nulstr-util.h"
+#include "parse-util.h"
+#include "path-util.h"
+#include "percent-util.h"
+#include "process-util.h"
+#include "procfs-util.h"
+#include "restrict-ifaces.h"
+#include "special.h"
+#include "stdio-util.h"
+#include "string-table.h"
+#include "string-util.h"
+#include "virt.h"
+
+#if BPF_FRAMEWORK
+#include "bpf-dlopen.h"
+#include "bpf-link.h"
+#include "bpf/restrict_fs/restrict-fs-skel.h"
+#endif
+
+#define CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC ((usec_t) 100 * USEC_PER_MSEC)
+
+/* Returns the log level to use when cgroup attribute writes fail. When an attribute is missing or we have access
+ * problems we downgrade to LOG_DEBUG. This is supposed to be nice to container managers and kernels which want to mask
+ * out specific attributes from us. */
+#define LOG_LEVEL_CGROUP_WRITE(r) (IN_SET(abs(r), ENOENT, EROFS, EACCES, EPERM) ? LOG_DEBUG : LOG_WARNING)
+
+uint64_t cgroup_tasks_max_resolve(const CGroupTasksMax *tasks_max) {
+ if (tasks_max->scale == 0)
+ return tasks_max->value;
+
+ return system_tasks_max_scale(tasks_max->value, tasks_max->scale);
+}
+
+bool manager_owns_host_root_cgroup(Manager *m) {
+ assert(m);
+
+ /* Returns true if we are managing the root cgroup. Note that it isn't sufficient to just check whether the
+ * group root path equals "/" since that will also be the case if CLONE_NEWCGROUP is in the mix. Since there's
+ * appears to be no nice way to detect whether we are in a CLONE_NEWCGROUP namespace we instead just check if
+ * we run in any kind of container virtualization. */
+
+ if (MANAGER_IS_USER(m))
+ return false;
+
+ if (detect_container() > 0)
+ return false;
+
+ return empty_or_root(m->cgroup_root);
+}
+
+bool unit_has_startup_cgroup_constraints(Unit *u) {
+ assert(u);
+
+ /* Returns true if this unit has any directives which apply during
+ * startup/shutdown phases. */
+
+ CGroupContext *c;
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ return c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID ||
+ c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
+ c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
+ c->startup_cpuset_cpus.set ||
+ c->startup_cpuset_mems.set ||
+ c->startup_memory_high_set ||
+ c->startup_memory_max_set ||
+ c->startup_memory_swap_max_set||
+ c->startup_memory_zswap_max_set ||
+ c->startup_memory_low_set;
+}
+
+bool unit_has_host_root_cgroup(Unit *u) {
+ assert(u);
+
+ /* Returns whether this unit manages the root cgroup. This will return true if this unit is the root slice and
+ * the manager manages the root cgroup. */
+
+ if (!manager_owns_host_root_cgroup(u->manager))
+ return false;
+
+ return unit_has_name(u, SPECIAL_ROOT_SLICE);
+}
+
+static int set_attribute_and_warn(Unit *u, const char *controller, const char *attribute, const char *value) {
+ int r;
+
+ r = cg_set_attribute(controller, u->cgroup_path, attribute, value);
+ if (r < 0)
+ log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%.*s': %m",
+ strna(attribute), empty_to_root(u->cgroup_path), (int) strcspn(value, NEWLINE), value);
+
+ return r;
+}
+
+static void cgroup_compat_warn(void) {
+ static bool cgroup_compat_warned = false;
+
+ if (cgroup_compat_warned)
+ return;
+
+ log_warning("cgroup compatibility translation between legacy and unified hierarchy settings activated. "
+ "See cgroup-compat debug messages for details.");
+
+ cgroup_compat_warned = true;
+}
+
+#define log_cgroup_compat(unit, fmt, ...) do { \
+ cgroup_compat_warn(); \
+ log_unit_debug(unit, "cgroup-compat: " fmt, ##__VA_ARGS__); \
+ } while (false)
+
+void cgroup_context_init(CGroupContext *c) {
+ assert(c);
+
+ /* Initialize everything to the kernel defaults. When initializing a bool member to 'true', make
+ * sure to serialize in execute-serialize.c using serialize_bool() instead of
+ * serialize_bool_elide(), as sd-executor will initialize here to 'true', but serialize_bool_elide()
+ * skips serialization if the value is 'false' (as that's the common default), so if the value at
+ * runtime is zero it would be lost after deserialization. Same when initializing uint64_t and other
+ * values, update/add a conditional serialization check. This is to minimize the amount of
+ * serialized data that is sent to the sd-executor, so that there is less work to do on the default
+ * cases. */
+
+ *c = (CGroupContext) {
+ .cpu_weight = CGROUP_WEIGHT_INVALID,
+ .startup_cpu_weight = CGROUP_WEIGHT_INVALID,
+ .cpu_quota_per_sec_usec = USEC_INFINITY,
+ .cpu_quota_period_usec = USEC_INFINITY,
+
+ .cpu_shares = CGROUP_CPU_SHARES_INVALID,
+ .startup_cpu_shares = CGROUP_CPU_SHARES_INVALID,
+
+ .memory_high = CGROUP_LIMIT_MAX,
+ .startup_memory_high = CGROUP_LIMIT_MAX,
+ .memory_max = CGROUP_LIMIT_MAX,
+ .startup_memory_max = CGROUP_LIMIT_MAX,
+ .memory_swap_max = CGROUP_LIMIT_MAX,
+ .startup_memory_swap_max = CGROUP_LIMIT_MAX,
+ .memory_zswap_max = CGROUP_LIMIT_MAX,
+ .startup_memory_zswap_max = CGROUP_LIMIT_MAX,
+
+ .memory_limit = CGROUP_LIMIT_MAX,
+
+ .io_weight = CGROUP_WEIGHT_INVALID,
+ .startup_io_weight = CGROUP_WEIGHT_INVALID,
+
+ .blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
+ .startup_blockio_weight = CGROUP_BLKIO_WEIGHT_INVALID,
+
+ .tasks_max = CGROUP_TASKS_MAX_UNSET,
+
+ .moom_swap = MANAGED_OOM_AUTO,
+ .moom_mem_pressure = MANAGED_OOM_AUTO,
+ .moom_preference = MANAGED_OOM_PREFERENCE_NONE,
+
+ .memory_pressure_watch = _CGROUP_PRESSURE_WATCH_INVALID,
+ .memory_pressure_threshold_usec = USEC_INFINITY,
+ };
+}
+
+void cgroup_context_free_device_allow(CGroupContext *c, CGroupDeviceAllow *a) {
+ assert(c);
+ assert(a);
+
+ LIST_REMOVE(device_allow, c->device_allow, a);
+ free(a->path);
+ free(a);
+}
+
+void cgroup_context_free_io_device_weight(CGroupContext *c, CGroupIODeviceWeight *w) {
+ assert(c);
+ assert(w);
+
+ LIST_REMOVE(device_weights, c->io_device_weights, w);
+ free(w->path);
+ free(w);
+}
+
+void cgroup_context_free_io_device_latency(CGroupContext *c, CGroupIODeviceLatency *l) {
+ assert(c);
+ assert(l);
+
+ LIST_REMOVE(device_latencies, c->io_device_latencies, l);
+ free(l->path);
+ free(l);
+}
+
+void cgroup_context_free_io_device_limit(CGroupContext *c, CGroupIODeviceLimit *l) {
+ assert(c);
+ assert(l);
+
+ LIST_REMOVE(device_limits, c->io_device_limits, l);
+ free(l->path);
+ free(l);
+}
+
+void cgroup_context_free_blockio_device_weight(CGroupContext *c, CGroupBlockIODeviceWeight *w) {
+ assert(c);
+ assert(w);
+
+ LIST_REMOVE(device_weights, c->blockio_device_weights, w);
+ free(w->path);
+ free(w);
+}
+
+void cgroup_context_free_blockio_device_bandwidth(CGroupContext *c, CGroupBlockIODeviceBandwidth *b) {
+ assert(c);
+ assert(b);
+
+ LIST_REMOVE(device_bandwidths, c->blockio_device_bandwidths, b);
+ free(b->path);
+ free(b);
+}
+
+void cgroup_context_remove_bpf_foreign_program(CGroupContext *c, CGroupBPFForeignProgram *p) {
+ assert(c);
+ assert(p);
+
+ LIST_REMOVE(programs, c->bpf_foreign_programs, p);
+ free(p->bpffs_path);
+ free(p);
+}
+
+void cgroup_context_remove_socket_bind(CGroupSocketBindItem **head) {
+ assert(head);
+
+ LIST_CLEAR(socket_bind_items, *head, free);
+}
+
+void cgroup_context_done(CGroupContext *c) {
+ assert(c);
+
+ while (c->io_device_weights)
+ cgroup_context_free_io_device_weight(c, c->io_device_weights);
+
+ while (c->io_device_latencies)
+ cgroup_context_free_io_device_latency(c, c->io_device_latencies);
+
+ while (c->io_device_limits)
+ cgroup_context_free_io_device_limit(c, c->io_device_limits);
+
+ while (c->blockio_device_weights)
+ cgroup_context_free_blockio_device_weight(c, c->blockio_device_weights);
+
+ while (c->blockio_device_bandwidths)
+ cgroup_context_free_blockio_device_bandwidth(c, c->blockio_device_bandwidths);
+
+ while (c->device_allow)
+ cgroup_context_free_device_allow(c, c->device_allow);
+
+ cgroup_context_remove_socket_bind(&c->socket_bind_allow);
+ cgroup_context_remove_socket_bind(&c->socket_bind_deny);
+
+ c->ip_address_allow = set_free(c->ip_address_allow);
+ c->ip_address_deny = set_free(c->ip_address_deny);
+
+ c->ip_filters_ingress = strv_free(c->ip_filters_ingress);
+ c->ip_filters_egress = strv_free(c->ip_filters_egress);
+
+ while (c->bpf_foreign_programs)
+ cgroup_context_remove_bpf_foreign_program(c, c->bpf_foreign_programs);
+
+ c->restrict_network_interfaces = set_free_free(c->restrict_network_interfaces);
+
+ cpu_set_reset(&c->cpuset_cpus);
+ cpu_set_reset(&c->startup_cpuset_cpus);
+ cpu_set_reset(&c->cpuset_mems);
+ cpu_set_reset(&c->startup_cpuset_mems);
+
+ c->delegate_subgroup = mfree(c->delegate_subgroup);
+
+ nft_set_context_clear(&c->nft_set_context);
+}
+
+static int unit_get_kernel_memory_limit(Unit *u, const char *file, uint64_t *ret) {
+ assert(u);
+
+ if (!u->cgroup_realized)
+ return -EOWNERDEAD;
+
+ return cg_get_attribute_as_uint64("memory", u->cgroup_path, file, ret);
+}
+
+static int unit_compare_memory_limit(Unit *u, const char *property_name, uint64_t *ret_unit_value, uint64_t *ret_kernel_value) {
+ CGroupContext *c;
+ CGroupMask m;
+ const char *file;
+ uint64_t unit_value;
+ int r;
+
+ /* Compare kernel memcg configuration against our internal systemd state. Unsupported (and will
+ * return -ENODATA) on cgroup v1.
+ *
+ * Returns:
+ *
+ * <0: On error.
+ * 0: If the kernel memory setting doesn't match our configuration.
+ * >0: If the kernel memory setting matches our configuration.
+ *
+ * The following values are only guaranteed to be populated on return >=0:
+ *
+ * - ret_unit_value will contain our internal expected value for the unit, page-aligned.
+ * - ret_kernel_value will contain the actual value presented by the kernel. */
+
+ assert(u);
+
+ r = cg_all_unified();
+ if (r < 0)
+ return log_debug_errno(r, "Failed to determine cgroup hierarchy version: %m");
+
+ /* Unsupported on v1.
+ *
+ * We don't return ENOENT, since that could actually mask a genuine problem where somebody else has
+ * silently masked the controller. */
+ if (r == 0)
+ return -ENODATA;
+
+ /* The root slice doesn't have any controller files, so we can't compare anything. */
+ if (unit_has_name(u, SPECIAL_ROOT_SLICE))
+ return -ENODATA;
+
+ /* It's possible to have MemoryFoo set without systemd wanting to have the memory controller enabled,
+ * for example, in the case of DisableControllers= or cgroup_disable on the kernel command line. To
+ * avoid specious errors in these scenarios, check that we even expect the memory controller to be
+ * enabled at all. */
+ m = unit_get_target_mask(u);
+ if (!FLAGS_SET(m, CGROUP_MASK_MEMORY))
+ return -ENODATA;
+
+ assert_se(c = unit_get_cgroup_context(u));
+
+ bool startup = u->manager && IN_SET(manager_state(u->manager), MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
+
+ if (streq(property_name, "MemoryLow")) {
+ unit_value = unit_get_ancestor_memory_low(u);
+ file = "memory.low";
+ } else if (startup && streq(property_name, "StartupMemoryLow")) {
+ unit_value = unit_get_ancestor_startup_memory_low(u);
+ file = "memory.low";
+ } else if (streq(property_name, "MemoryMin")) {
+ unit_value = unit_get_ancestor_memory_min(u);
+ file = "memory.min";
+ } else if (streq(property_name, "MemoryHigh")) {
+ unit_value = c->memory_high;
+ file = "memory.high";
+ } else if (startup && streq(property_name, "StartupMemoryHigh")) {
+ unit_value = c->startup_memory_high;
+ file = "memory.high";
+ } else if (streq(property_name, "MemoryMax")) {
+ unit_value = c->memory_max;
+ file = "memory.max";
+ } else if (startup && streq(property_name, "StartupMemoryMax")) {
+ unit_value = c->startup_memory_max;
+ file = "memory.max";
+ } else if (streq(property_name, "MemorySwapMax")) {
+ unit_value = c->memory_swap_max;
+ file = "memory.swap.max";
+ } else if (startup && streq(property_name, "StartupMemorySwapMax")) {
+ unit_value = c->startup_memory_swap_max;
+ file = "memory.swap.max";
+ } else if (streq(property_name, "MemoryZSwapMax")) {
+ unit_value = c->memory_zswap_max;
+ file = "memory.zswap.max";
+ } else if (startup && streq(property_name, "StartupMemoryZSwapMax")) {
+ unit_value = c->startup_memory_zswap_max;
+ file = "memory.zswap.max";
+ } else
+ return -EINVAL;
+
+ r = unit_get_kernel_memory_limit(u, file, ret_kernel_value);
+ if (r < 0)
+ return log_unit_debug_errno(u, r, "Failed to parse %s: %m", file);
+
+ /* It's intended (soon) in a future kernel to not expose cgroup memory limits rounded to page
+ * boundaries, but instead separate the user-exposed limit, which is whatever userspace told us, from
+ * our internal page-counting. To support those future kernels, just check the value itself first
+ * without any page-alignment. */
+ if (*ret_kernel_value == unit_value) {
+ *ret_unit_value = unit_value;
+ return 1;
+ }
+
+ /* The current kernel behaviour, by comparison, is that even if you write a particular number of
+ * bytes into a cgroup memory file, it always returns that number page-aligned down (since the kernel
+ * internally stores cgroup limits in pages). As such, so long as it aligns properly, everything is
+ * cricket. */
+ if (unit_value != CGROUP_LIMIT_MAX)
+ unit_value = PAGE_ALIGN_DOWN(unit_value);
+
+ *ret_unit_value = unit_value;
+
+ return *ret_kernel_value == *ret_unit_value;
+}
+
+#define FORMAT_CGROUP_DIFF_MAX 128
+
+static char *format_cgroup_memory_limit_comparison(char *buf, size_t l, Unit *u, const char *property_name) {
+ uint64_t kval, sval;
+ int r;
+
+ assert(u);
+ assert(buf);
+ assert(l > 0);
+
+ r = unit_compare_memory_limit(u, property_name, &sval, &kval);
+
+ /* memory.swap.max is special in that it relies on CONFIG_MEMCG_SWAP (and the default swapaccount=1).
+ * In the absence of reliably being able to detect whether memcg swap support is available or not,
+ * only complain if the error is not ENOENT. This is similarly the case for memory.zswap.max relying
+ * on CONFIG_ZSWAP. */
+ if (r > 0 || IN_SET(r, -ENODATA, -EOWNERDEAD) ||
+ (r == -ENOENT && STR_IN_SET(property_name,
+ "MemorySwapMax",
+ "StartupMemorySwapMax",
+ "MemoryZSwapMax",
+ "StartupMemoryZSwapMax")))
+ buf[0] = 0;
+ else if (r < 0) {
+ errno = -r;
+ (void) snprintf(buf, l, " (error getting kernel value: %m)");
+ } else
+ (void) snprintf(buf, l, " (different value in kernel: %" PRIu64 ")", kval);
+
+ return buf;
+}
+
+const char *cgroup_device_permissions_to_string(CGroupDevicePermissions p) {
+ static const char *table[_CGROUP_DEVICE_PERMISSIONS_MAX] = {
+ /* Lets simply define a table with every possible combination. As long as those are just 8 we
+ * can get away with it. If this ever grows to more we need to revisit this logic though. */
+ [0] = "",
+ [CGROUP_DEVICE_READ] = "r",
+ [CGROUP_DEVICE_WRITE] = "w",
+ [CGROUP_DEVICE_MKNOD] = "m",
+ [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE] = "rw",
+ [CGROUP_DEVICE_READ|CGROUP_DEVICE_MKNOD] = "rm",
+ [CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "wm",
+ [CGROUP_DEVICE_READ|CGROUP_DEVICE_WRITE|CGROUP_DEVICE_MKNOD] = "rwm",
+ };
+
+ if (p < 0 || p >= _CGROUP_DEVICE_PERMISSIONS_MAX)
+ return NULL;
+
+ return table[p];
+}
+
+CGroupDevicePermissions cgroup_device_permissions_from_string(const char *s) {
+ CGroupDevicePermissions p = 0;
+
+ if (!s)
+ return _CGROUP_DEVICE_PERMISSIONS_INVALID;
+
+ for (const char *c = s; *c; c++) {
+ if (*c == 'r')
+ p |= CGROUP_DEVICE_READ;
+ else if (*c == 'w')
+ p |= CGROUP_DEVICE_WRITE;
+ else if (*c == 'm')
+ p |= CGROUP_DEVICE_MKNOD;
+ else
+ return _CGROUP_DEVICE_PERMISSIONS_INVALID;
+ }
+
+ return p;
+}
+
+void cgroup_context_dump(Unit *u, FILE* f, const char *prefix) {
+ _cleanup_free_ char *disable_controllers_str = NULL, *delegate_controllers_str = NULL, *cpuset_cpus = NULL, *cpuset_mems = NULL, *startup_cpuset_cpus = NULL, *startup_cpuset_mems = NULL;
+ CGroupContext *c;
+ struct in_addr_prefix *iaai;
+
+ char cda[FORMAT_CGROUP_DIFF_MAX];
+ char cdb[FORMAT_CGROUP_DIFF_MAX];
+ char cdc[FORMAT_CGROUP_DIFF_MAX];
+ char cdd[FORMAT_CGROUP_DIFF_MAX];
+ char cde[FORMAT_CGROUP_DIFF_MAX];
+ char cdf[FORMAT_CGROUP_DIFF_MAX];
+ char cdg[FORMAT_CGROUP_DIFF_MAX];
+ char cdh[FORMAT_CGROUP_DIFF_MAX];
+ char cdi[FORMAT_CGROUP_DIFF_MAX];
+ char cdj[FORMAT_CGROUP_DIFF_MAX];
+ char cdk[FORMAT_CGROUP_DIFF_MAX];
+
+ assert(u);
+ assert(f);
+
+ assert_se(c = unit_get_cgroup_context(u));
+
+ prefix = strempty(prefix);
+
+ (void) cg_mask_to_string(c->disable_controllers, &disable_controllers_str);
+ (void) cg_mask_to_string(c->delegate_controllers, &delegate_controllers_str);
+
+ /* "Delegate=" means "yes, but no controllers". Show this as "(none)". */
+ const char *delegate_str = delegate_controllers_str ?: c->delegate ? "(none)" : "no";
+
+ cpuset_cpus = cpu_set_to_range_string(&c->cpuset_cpus);
+ startup_cpuset_cpus = cpu_set_to_range_string(&c->startup_cpuset_cpus);
+ cpuset_mems = cpu_set_to_range_string(&c->cpuset_mems);
+ startup_cpuset_mems = cpu_set_to_range_string(&c->startup_cpuset_mems);
+
+ fprintf(f,
+ "%sCPUAccounting: %s\n"
+ "%sIOAccounting: %s\n"
+ "%sBlockIOAccounting: %s\n"
+ "%sMemoryAccounting: %s\n"
+ "%sTasksAccounting: %s\n"
+ "%sIPAccounting: %s\n"
+ "%sCPUWeight: %" PRIu64 "\n"
+ "%sStartupCPUWeight: %" PRIu64 "\n"
+ "%sCPUShares: %" PRIu64 "\n"
+ "%sStartupCPUShares: %" PRIu64 "\n"
+ "%sCPUQuotaPerSecSec: %s\n"
+ "%sCPUQuotaPeriodSec: %s\n"
+ "%sAllowedCPUs: %s\n"
+ "%sStartupAllowedCPUs: %s\n"
+ "%sAllowedMemoryNodes: %s\n"
+ "%sStartupAllowedMemoryNodes: %s\n"
+ "%sIOWeight: %" PRIu64 "\n"
+ "%sStartupIOWeight: %" PRIu64 "\n"
+ "%sBlockIOWeight: %" PRIu64 "\n"
+ "%sStartupBlockIOWeight: %" PRIu64 "\n"
+ "%sDefaultMemoryMin: %" PRIu64 "\n"
+ "%sDefaultMemoryLow: %" PRIu64 "\n"
+ "%sMemoryMin: %" PRIu64 "%s\n"
+ "%sMemoryLow: %" PRIu64 "%s\n"
+ "%sStartupMemoryLow: %" PRIu64 "%s\n"
+ "%sMemoryHigh: %" PRIu64 "%s\n"
+ "%sStartupMemoryHigh: %" PRIu64 "%s\n"
+ "%sMemoryMax: %" PRIu64 "%s\n"
+ "%sStartupMemoryMax: %" PRIu64 "%s\n"
+ "%sMemorySwapMax: %" PRIu64 "%s\n"
+ "%sStartupMemorySwapMax: %" PRIu64 "%s\n"
+ "%sMemoryZSwapMax: %" PRIu64 "%s\n"
+ "%sStartupMemoryZSwapMax: %" PRIu64 "%s\n"
+ "%sMemoryLimit: %" PRIu64 "\n"
+ "%sTasksMax: %" PRIu64 "\n"
+ "%sDevicePolicy: %s\n"
+ "%sDisableControllers: %s\n"
+ "%sDelegate: %s\n"
+ "%sManagedOOMSwap: %s\n"
+ "%sManagedOOMMemoryPressure: %s\n"
+ "%sManagedOOMMemoryPressureLimit: " PERMYRIAD_AS_PERCENT_FORMAT_STR "\n"
+ "%sManagedOOMPreference: %s\n"
+ "%sMemoryPressureWatch: %s\n"
+ "%sCoredumpReceive: %s\n",
+ prefix, yes_no(c->cpu_accounting),
+ prefix, yes_no(c->io_accounting),
+ prefix, yes_no(c->blockio_accounting),
+ prefix, yes_no(c->memory_accounting),
+ prefix, yes_no(c->tasks_accounting),
+ prefix, yes_no(c->ip_accounting),
+ prefix, c->cpu_weight,
+ prefix, c->startup_cpu_weight,
+ prefix, c->cpu_shares,
+ prefix, c->startup_cpu_shares,
+ prefix, FORMAT_TIMESPAN(c->cpu_quota_per_sec_usec, 1),
+ prefix, FORMAT_TIMESPAN(c->cpu_quota_period_usec, 1),
+ prefix, strempty(cpuset_cpus),
+ prefix, strempty(startup_cpuset_cpus),
+ prefix, strempty(cpuset_mems),
+ prefix, strempty(startup_cpuset_mems),
+ prefix, c->io_weight,
+ prefix, c->startup_io_weight,
+ prefix, c->blockio_weight,
+ prefix, c->startup_blockio_weight,
+ prefix, c->default_memory_min,
+ prefix, c->default_memory_low,
+ prefix, c->memory_min, format_cgroup_memory_limit_comparison(cda, sizeof(cda), u, "MemoryMin"),
+ prefix, c->memory_low, format_cgroup_memory_limit_comparison(cdb, sizeof(cdb), u, "MemoryLow"),
+ prefix, c->startup_memory_low, format_cgroup_memory_limit_comparison(cdc, sizeof(cdc), u, "StartupMemoryLow"),
+ prefix, c->memory_high, format_cgroup_memory_limit_comparison(cdd, sizeof(cdd), u, "MemoryHigh"),
+ prefix, c->startup_memory_high, format_cgroup_memory_limit_comparison(cde, sizeof(cde), u, "StartupMemoryHigh"),
+ prefix, c->memory_max, format_cgroup_memory_limit_comparison(cdf, sizeof(cdf), u, "MemoryMax"),
+ prefix, c->startup_memory_max, format_cgroup_memory_limit_comparison(cdg, sizeof(cdg), u, "StartupMemoryMax"),
+ prefix, c->memory_swap_max, format_cgroup_memory_limit_comparison(cdh, sizeof(cdh), u, "MemorySwapMax"),
+ prefix, c->startup_memory_swap_max, format_cgroup_memory_limit_comparison(cdi, sizeof(cdi), u, "StartupMemorySwapMax"),
+ prefix, c->memory_zswap_max, format_cgroup_memory_limit_comparison(cdj, sizeof(cdj), u, "MemoryZSwapMax"),
+ prefix, c->startup_memory_zswap_max, format_cgroup_memory_limit_comparison(cdk, sizeof(cdk), u, "StartupMemoryZSwapMax"),
+ prefix, c->memory_limit,
+ prefix, cgroup_tasks_max_resolve(&c->tasks_max),
+ prefix, cgroup_device_policy_to_string(c->device_policy),
+ prefix, strempty(disable_controllers_str),
+ prefix, delegate_str,
+ prefix, managed_oom_mode_to_string(c->moom_swap),
+ prefix, managed_oom_mode_to_string(c->moom_mem_pressure),
+ prefix, PERMYRIAD_AS_PERCENT_FORMAT_VAL(UINT32_SCALE_TO_PERMYRIAD(c->moom_mem_pressure_limit)),
+ prefix, managed_oom_preference_to_string(c->moom_preference),
+ prefix, cgroup_pressure_watch_to_string(c->memory_pressure_watch),
+ prefix, yes_no(c->coredump_receive));
+
+ if (c->delegate_subgroup)
+ fprintf(f, "%sDelegateSubgroup: %s\n",
+ prefix, c->delegate_subgroup);
+
+ if (c->memory_pressure_threshold_usec != USEC_INFINITY)
+ fprintf(f, "%sMemoryPressureThresholdSec: %s\n",
+ prefix, FORMAT_TIMESPAN(c->memory_pressure_threshold_usec, 1));
+
+ LIST_FOREACH(device_allow, a, c->device_allow)
+ /* strna() below should be redundant, for avoiding -Werror=format-overflow= error. See #30223. */
+ fprintf(f,
+ "%sDeviceAllow: %s %s\n",
+ prefix,
+ a->path,
+ strna(cgroup_device_permissions_to_string(a->permissions)));
+
+ LIST_FOREACH(device_weights, iw, c->io_device_weights)
+ fprintf(f,
+ "%sIODeviceWeight: %s %" PRIu64 "\n",
+ prefix,
+ iw->path,
+ iw->weight);
+
+ LIST_FOREACH(device_latencies, l, c->io_device_latencies)
+ fprintf(f,
+ "%sIODeviceLatencyTargetSec: %s %s\n",
+ prefix,
+ l->path,
+ FORMAT_TIMESPAN(l->target_usec, 1));
+
+ LIST_FOREACH(device_limits, il, c->io_device_limits)
+ for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
+ if (il->limits[type] != cgroup_io_limit_defaults[type])
+ fprintf(f,
+ "%s%s: %s %s\n",
+ prefix,
+ cgroup_io_limit_type_to_string(type),
+ il->path,
+ FORMAT_BYTES(il->limits[type]));
+
+ LIST_FOREACH(device_weights, w, c->blockio_device_weights)
+ fprintf(f,
+ "%sBlockIODeviceWeight: %s %" PRIu64,
+ prefix,
+ w->path,
+ w->weight);
+
+ LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
+ if (b->rbps != CGROUP_LIMIT_MAX)
+ fprintf(f,
+ "%sBlockIOReadBandwidth: %s %s\n",
+ prefix,
+ b->path,
+ FORMAT_BYTES(b->rbps));
+ if (b->wbps != CGROUP_LIMIT_MAX)
+ fprintf(f,
+ "%sBlockIOWriteBandwidth: %s %s\n",
+ prefix,
+ b->path,
+ FORMAT_BYTES(b->wbps));
+ }
+
+ SET_FOREACH(iaai, c->ip_address_allow)
+ fprintf(f, "%sIPAddressAllow: %s\n", prefix,
+ IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
+ SET_FOREACH(iaai, c->ip_address_deny)
+ fprintf(f, "%sIPAddressDeny: %s\n", prefix,
+ IN_ADDR_PREFIX_TO_STRING(iaai->family, &iaai->address, iaai->prefixlen));
+
+ STRV_FOREACH(path, c->ip_filters_ingress)
+ fprintf(f, "%sIPIngressFilterPath: %s\n", prefix, *path);
+ STRV_FOREACH(path, c->ip_filters_egress)
+ fprintf(f, "%sIPEgressFilterPath: %s\n", prefix, *path);
+
+ LIST_FOREACH(programs, p, c->bpf_foreign_programs)
+ fprintf(f, "%sBPFProgram: %s:%s",
+ prefix, bpf_cgroup_attach_type_to_string(p->attach_type), p->bpffs_path);
+
+ if (c->socket_bind_allow) {
+ fprintf(f, "%sSocketBindAllow: ", prefix);
+ cgroup_context_dump_socket_bind_items(c->socket_bind_allow, f);
+ fputc('\n', f);
+ }
+
+ if (c->socket_bind_deny) {
+ fprintf(f, "%sSocketBindDeny: ", prefix);
+ cgroup_context_dump_socket_bind_items(c->socket_bind_deny, f);
+ fputc('\n', f);
+ }
+
+ if (c->restrict_network_interfaces) {
+ char *iface;
+ SET_FOREACH(iface, c->restrict_network_interfaces)
+ fprintf(f, "%sRestrictNetworkInterfaces: %s\n", prefix, iface);
+ }
+
+ FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets)
+ fprintf(f, "%sNFTSet: %s:%s:%s:%s\n", prefix, nft_set_source_to_string(nft_set->source),
+ nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set);
+}
+
+void cgroup_context_dump_socket_bind_item(const CGroupSocketBindItem *item, FILE *f) {
+ const char *family, *colon1, *protocol = "", *colon2 = "";
+
+ family = strempty(af_to_ipv4_ipv6(item->address_family));
+ colon1 = isempty(family) ? "" : ":";
+
+ if (item->ip_protocol != 0) {
+ protocol = ip_protocol_to_tcp_udp(item->ip_protocol);
+ colon2 = ":";
+ }
+
+ if (item->nr_ports == 0)
+ fprintf(f, "%s%s%s%sany", family, colon1, protocol, colon2);
+ else if (item->nr_ports == 1)
+ fprintf(f, "%s%s%s%s%" PRIu16, family, colon1, protocol, colon2, item->port_min);
+ else {
+ uint16_t port_max = item->port_min + item->nr_ports - 1;
+ fprintf(f, "%s%s%s%s%" PRIu16 "-%" PRIu16, family, colon1, protocol, colon2,
+ item->port_min, port_max);
+ }
+}
+
+void cgroup_context_dump_socket_bind_items(const CGroupSocketBindItem *items, FILE *f) {
+ bool first = true;
+
+ LIST_FOREACH(socket_bind_items, bi, items) {
+ if (first)
+ first = false;
+ else
+ fputc(' ', f);
+
+ cgroup_context_dump_socket_bind_item(bi, f);
+ }
+}
+
+int cgroup_context_add_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
+ _cleanup_free_ CGroupDeviceAllow *a = NULL;
+ _cleanup_free_ char *d = NULL;
+
+ assert(c);
+ assert(dev);
+ assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
+
+ if (p == 0)
+ p = _CGROUP_DEVICE_PERMISSIONS_ALL;
+
+ a = new(CGroupDeviceAllow, 1);
+ if (!a)
+ return -ENOMEM;
+
+ d = strdup(dev);
+ if (!d)
+ return -ENOMEM;
+
+ *a = (CGroupDeviceAllow) {
+ .path = TAKE_PTR(d),
+ .permissions = p,
+ };
+
+ LIST_PREPEND(device_allow, c->device_allow, a);
+ TAKE_PTR(a);
+
+ return 0;
+}
+
+int cgroup_context_add_or_update_device_allow(CGroupContext *c, const char *dev, CGroupDevicePermissions p) {
+ assert(c);
+ assert(dev);
+ assert(p >= 0 && p < _CGROUP_DEVICE_PERMISSIONS_MAX);
+
+ if (p == 0)
+ p = _CGROUP_DEVICE_PERMISSIONS_ALL;
+
+ LIST_FOREACH(device_allow, b, c->device_allow)
+ if (path_equal(b->path, dev)) {
+ b->permissions = p;
+ return 0;
+ }
+
+ return cgroup_context_add_device_allow(c, dev, p);
+}
+
+int cgroup_context_add_bpf_foreign_program(CGroupContext *c, uint32_t attach_type, const char *bpffs_path) {
+ CGroupBPFForeignProgram *p;
+ _cleanup_free_ char *d = NULL;
+
+ assert(c);
+ assert(bpffs_path);
+
+ if (!path_is_normalized(bpffs_path) || !path_is_absolute(bpffs_path))
+ return log_error_errno(SYNTHETIC_ERRNO(EINVAL), "Path is not normalized: %m");
+
+ d = strdup(bpffs_path);
+ if (!d)
+ return log_oom();
+
+ p = new(CGroupBPFForeignProgram, 1);
+ if (!p)
+ return log_oom();
+
+ *p = (CGroupBPFForeignProgram) {
+ .attach_type = attach_type,
+ .bpffs_path = TAKE_PTR(d),
+ };
+
+ LIST_PREPEND(programs, c->bpf_foreign_programs, TAKE_PTR(p));
+
+ return 0;
+}
+
+#define UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(entry) \
+ uint64_t unit_get_ancestor_##entry(Unit *u) { \
+ CGroupContext *c; \
+ \
+ /* 1. Is entry set in this unit? If so, use that. \
+ * 2. Is the default for this entry set in any \
+ * ancestor? If so, use that. \
+ * 3. Otherwise, return CGROUP_LIMIT_MIN. */ \
+ \
+ assert(u); \
+ \
+ c = unit_get_cgroup_context(u); \
+ if (c && c->entry##_set) \
+ return c->entry; \
+ \
+ while ((u = UNIT_GET_SLICE(u))) { \
+ c = unit_get_cgroup_context(u); \
+ if (c && c->default_##entry##_set) \
+ return c->default_##entry; \
+ } \
+ \
+ /* We've reached the root, but nobody had default for \
+ * this entry set, so set it to the kernel default. */ \
+ return CGROUP_LIMIT_MIN; \
+}
+
+UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_low);
+UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(startup_memory_low);
+UNIT_DEFINE_ANCESTOR_MEMORY_LOOKUP(memory_min);
+
+static void unit_set_xattr_graceful(Unit *u, const char *name, const void *data, size_t size) {
+ int r;
+
+ assert(u);
+ assert(name);
+
+ if (!u->cgroup_path)
+ return;
+
+ r = cg_set_xattr(u->cgroup_path, name, data, size, 0);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to set '%s' xattr on control group %s, ignoring: %m", name, empty_to_root(u->cgroup_path));
+}
+
+static void unit_remove_xattr_graceful(Unit *u, const char *name) {
+ int r;
+
+ assert(u);
+ assert(name);
+
+ if (!u->cgroup_path)
+ return;
+
+ r = cg_remove_xattr(u->cgroup_path, name);
+ if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
+ log_unit_debug_errno(u, r, "Failed to remove '%s' xattr flag on control group %s, ignoring: %m", name, empty_to_root(u->cgroup_path));
+}
+
+static void cgroup_oomd_xattr_apply(Unit *u) {
+ CGroupContext *c;
+
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return;
+
+ if (c->moom_preference == MANAGED_OOM_PREFERENCE_OMIT)
+ unit_set_xattr_graceful(u, "user.oomd_omit", "1", 1);
+
+ if (c->moom_preference == MANAGED_OOM_PREFERENCE_AVOID)
+ unit_set_xattr_graceful(u, "user.oomd_avoid", "1", 1);
+
+ if (c->moom_preference != MANAGED_OOM_PREFERENCE_AVOID)
+ unit_remove_xattr_graceful(u, "user.oomd_avoid");
+
+ if (c->moom_preference != MANAGED_OOM_PREFERENCE_OMIT)
+ unit_remove_xattr_graceful(u, "user.oomd_omit");
+}
+
+static int cgroup_log_xattr_apply(Unit *u) {
+ ExecContext *c;
+ size_t len, allowed_patterns_len, denied_patterns_len;
+ _cleanup_free_ char *patterns = NULL, *allowed_patterns = NULL, *denied_patterns = NULL;
+ char *last;
+ int r;
+
+ assert(u);
+
+ c = unit_get_exec_context(u);
+ if (!c)
+ /* Some unit types have a cgroup context but no exec context, so we do not log
+ * any error here to avoid confusion. */
+ return 0;
+
+ if (set_isempty(c->log_filter_allowed_patterns) && set_isempty(c->log_filter_denied_patterns)) {
+ unit_remove_xattr_graceful(u, "user.journald_log_filter_patterns");
+ return 0;
+ }
+
+ r = set_make_nulstr(c->log_filter_allowed_patterns, &allowed_patterns, &allowed_patterns_len);
+ if (r < 0)
+ return log_debug_errno(r, "Failed to make nulstr from set: %m");
+
+ r = set_make_nulstr(c->log_filter_denied_patterns, &denied_patterns, &denied_patterns_len);
+ if (r < 0)
+ return log_debug_errno(r, "Failed to make nulstr from set: %m");
+
+ /* Use nul character separated strings without trailing nul */
+ allowed_patterns_len = LESS_BY(allowed_patterns_len, 1u);
+ denied_patterns_len = LESS_BY(denied_patterns_len, 1u);
+
+ len = allowed_patterns_len + 1 + denied_patterns_len;
+ patterns = new(char, len);
+ if (!patterns)
+ return log_oom_debug();
+
+ last = mempcpy_safe(patterns, allowed_patterns, allowed_patterns_len);
+ *(last++) = '\xff';
+ memcpy_safe(last, denied_patterns, denied_patterns_len);
+
+ unit_set_xattr_graceful(u, "user.journald_log_filter_patterns", patterns, len);
+
+ return 0;
+}
+
+static void cgroup_invocation_id_xattr_apply(Unit *u) {
+ bool b;
+
+ assert(u);
+
+ b = !sd_id128_is_null(u->invocation_id);
+ FOREACH_STRING(xn, "trusted.invocation_id", "user.invocation_id") {
+ if (b)
+ unit_set_xattr_graceful(u, xn, SD_ID128_TO_STRING(u->invocation_id), 32);
+ else
+ unit_remove_xattr_graceful(u, xn);
+ }
+}
+
+static void cgroup_coredump_xattr_apply(Unit *u) {
+ CGroupContext *c;
+
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return;
+
+ if (unit_cgroup_delegate(u) && c->coredump_receive)
+ unit_set_xattr_graceful(u, "user.coredump_receive", "1", 1);
+ else
+ unit_remove_xattr_graceful(u, "user.coredump_receive");
+}
+
+static void cgroup_delegate_xattr_apply(Unit *u) {
+ bool b;
+
+ assert(u);
+
+ /* Indicate on the cgroup whether delegation is on, via an xattr. This is best-effort, as old kernels
+ * didn't support xattrs on cgroups at all. Later they got support for setting 'trusted.*' xattrs,
+ * and even later 'user.*' xattrs. We started setting this field when 'trusted.*' was added, and
+ * given this is now pretty much API, let's continue to support that. But also set 'user.*' as well,
+ * since it is readable by any user, not just CAP_SYS_ADMIN. This hence comes with slightly weaker
+ * security (as users who got delegated cgroups could turn it off if they like), but this shouldn't
+ * be a big problem given this communicates delegation state to clients, but the manager never reads
+ * it. */
+ b = unit_cgroup_delegate(u);
+ FOREACH_STRING(xn, "trusted.delegate", "user.delegate") {
+ if (b)
+ unit_set_xattr_graceful(u, xn, "1", 1);
+ else
+ unit_remove_xattr_graceful(u, xn);
+ }
+}
+
+static void cgroup_survive_xattr_apply(Unit *u) {
+ int r;
+
+ assert(u);
+
+ if (u->survive_final_kill_signal) {
+ r = cg_set_xattr(
+ u->cgroup_path,
+ "user.survive_final_kill_signal",
+ "1",
+ 1,
+ /* flags= */ 0);
+ /* user xattr support was added in kernel v5.7 */
+ if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
+ r = cg_set_xattr(
+ u->cgroup_path,
+ "trusted.survive_final_kill_signal",
+ "1",
+ 1,
+ /* flags= */ 0);
+ if (r < 0)
+ log_unit_debug_errno(u,
+ r,
+ "Failed to set 'survive_final_kill_signal' xattr on control "
+ "group %s, ignoring: %m",
+ empty_to_root(u->cgroup_path));
+ } else {
+ unit_remove_xattr_graceful(u, "user.survive_final_kill_signal");
+ unit_remove_xattr_graceful(u, "trusted.survive_final_kill_signal");
+ }
+}
+
+static void cgroup_xattr_apply(Unit *u) {
+ assert(u);
+
+ /* The 'user.*' xattrs can be set from a user manager. */
+ cgroup_oomd_xattr_apply(u);
+ cgroup_log_xattr_apply(u);
+ cgroup_coredump_xattr_apply(u);
+
+ if (!MANAGER_IS_SYSTEM(u->manager))
+ return;
+
+ cgroup_invocation_id_xattr_apply(u);
+ cgroup_delegate_xattr_apply(u);
+ cgroup_survive_xattr_apply(u);
+}
+
+static int lookup_block_device(const char *p, dev_t *ret) {
+ dev_t rdev, dev = 0;
+ mode_t mode;
+ int r;
+
+ assert(p);
+ assert(ret);
+
+ r = device_path_parse_major_minor(p, &mode, &rdev);
+ if (r == -ENODEV) { /* not a parsable device node, need to go to disk */
+ struct stat st;
+
+ if (stat(p, &st) < 0)
+ return log_warning_errno(errno, "Couldn't stat device '%s': %m", p);
+
+ mode = st.st_mode;
+ rdev = st.st_rdev;
+ dev = st.st_dev;
+ } else if (r < 0)
+ return log_warning_errno(r, "Failed to parse major/minor from path '%s': %m", p);
+
+ if (S_ISCHR(mode))
+ return log_warning_errno(SYNTHETIC_ERRNO(ENOTBLK),
+ "Device node '%s' is a character device, but block device needed.", p);
+ if (S_ISBLK(mode))
+ *ret = rdev;
+ else if (major(dev) != 0)
+ *ret = dev; /* If this is not a device node then use the block device this file is stored on */
+ else {
+ /* If this is btrfs, getting the backing block device is a bit harder */
+ r = btrfs_get_block_device(p, ret);
+ if (r == -ENOTTY)
+ return log_warning_errno(SYNTHETIC_ERRNO(ENODEV),
+ "'%s' is not a block device node, and file system block device cannot be determined or is not local.", p);
+ if (r < 0)
+ return log_warning_errno(r, "Failed to determine block device backing btrfs file system '%s': %m", p);
+ }
+
+ /* If this is a LUKS/DM device, recursively try to get the originating block device */
+ while (block_get_originating(*ret, ret) > 0);
+
+ /* If this is a partition, try to get the originating block device */
+ (void) block_get_whole_disk(*ret, ret);
+ return 0;
+}
+
+static bool cgroup_context_has_cpu_weight(CGroupContext *c) {
+ return c->cpu_weight != CGROUP_WEIGHT_INVALID ||
+ c->startup_cpu_weight != CGROUP_WEIGHT_INVALID;
+}
+
+static bool cgroup_context_has_cpu_shares(CGroupContext *c) {
+ return c->cpu_shares != CGROUP_CPU_SHARES_INVALID ||
+ c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID;
+}
+
+static bool cgroup_context_has_allowed_cpus(CGroupContext *c) {
+ return c->cpuset_cpus.set || c->startup_cpuset_cpus.set;
+}
+
+static bool cgroup_context_has_allowed_mems(CGroupContext *c) {
+ return c->cpuset_mems.set || c->startup_cpuset_mems.set;
+}
+
+uint64_t cgroup_context_cpu_weight(CGroupContext *c, ManagerState state) {
+ assert(c);
+
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_cpu_weight != CGROUP_WEIGHT_INVALID)
+ return c->startup_cpu_weight;
+ else if (c->cpu_weight != CGROUP_WEIGHT_INVALID)
+ return c->cpu_weight;
+ else
+ return CGROUP_WEIGHT_DEFAULT;
+}
+
+static uint64_t cgroup_context_cpu_shares(CGroupContext *c, ManagerState state) {
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_cpu_shares != CGROUP_CPU_SHARES_INVALID)
+ return c->startup_cpu_shares;
+ else if (c->cpu_shares != CGROUP_CPU_SHARES_INVALID)
+ return c->cpu_shares;
+ else
+ return CGROUP_CPU_SHARES_DEFAULT;
+}
+
+static CPUSet *cgroup_context_allowed_cpus(CGroupContext *c, ManagerState state) {
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_cpuset_cpus.set)
+ return &c->startup_cpuset_cpus;
+ else
+ return &c->cpuset_cpus;
+}
+
+static CPUSet *cgroup_context_allowed_mems(CGroupContext *c, ManagerState state) {
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_cpuset_mems.set)
+ return &c->startup_cpuset_mems;
+ else
+ return &c->cpuset_mems;
+}
+
+usec_t cgroup_cpu_adjust_period(usec_t period, usec_t quota, usec_t resolution, usec_t max_period) {
+ /* kernel uses a minimum resolution of 1ms, so both period and (quota * period)
+ * need to be higher than that boundary. quota is specified in USecPerSec.
+ * Additionally, period must be at most max_period. */
+ assert(quota > 0);
+
+ return MIN(MAX3(period, resolution, resolution * USEC_PER_SEC / quota), max_period);
+}
+
+static usec_t cgroup_cpu_adjust_period_and_log(Unit *u, usec_t period, usec_t quota) {
+ usec_t new_period;
+
+ if (quota == USEC_INFINITY)
+ /* Always use default period for infinity quota. */
+ return CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
+
+ if (period == USEC_INFINITY)
+ /* Default period was requested. */
+ period = CGROUP_CPU_QUOTA_DEFAULT_PERIOD_USEC;
+
+ /* Clamp to interval [1ms, 1s] */
+ new_period = cgroup_cpu_adjust_period(period, quota, USEC_PER_MSEC, USEC_PER_SEC);
+
+ if (new_period != period) {
+ log_unit_full(u, u->warned_clamping_cpu_quota_period ? LOG_DEBUG : LOG_WARNING,
+ "Clamping CPU interval for cpu.max: period is now %s",
+ FORMAT_TIMESPAN(new_period, 1));
+ u->warned_clamping_cpu_quota_period = true;
+ }
+
+ return new_period;
+}
+
+static void cgroup_apply_unified_cpu_weight(Unit *u, uint64_t weight) {
+ char buf[DECIMAL_STR_MAX(uint64_t) + 2];
+
+ if (weight == CGROUP_WEIGHT_IDLE)
+ return;
+ xsprintf(buf, "%" PRIu64 "\n", weight);
+ (void) set_attribute_and_warn(u, "cpu", "cpu.weight", buf);
+}
+
+static void cgroup_apply_unified_cpu_idle(Unit *u, uint64_t weight) {
+ int r;
+ bool is_idle;
+ const char *idle_val;
+
+ is_idle = weight == CGROUP_WEIGHT_IDLE;
+ idle_val = one_zero(is_idle);
+ r = cg_set_attribute("cpu", u->cgroup_path, "cpu.idle", idle_val);
+ if (r < 0 && (r != -ENOENT || is_idle))
+ log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r, "Failed to set '%s' attribute on '%s' to '%s': %m",
+ "cpu.idle", empty_to_root(u->cgroup_path), idle_val);
+}
+
+static void cgroup_apply_unified_cpu_quota(Unit *u, usec_t quota, usec_t period) {
+ char buf[(DECIMAL_STR_MAX(usec_t) + 1) * 2 + 1];
+
+ period = cgroup_cpu_adjust_period_and_log(u, period, quota);
+ if (quota != USEC_INFINITY)
+ xsprintf(buf, USEC_FMT " " USEC_FMT "\n",
+ MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC), period);
+ else
+ xsprintf(buf, "max " USEC_FMT "\n", period);
+ (void) set_attribute_and_warn(u, "cpu", "cpu.max", buf);
+}
+
+static void cgroup_apply_legacy_cpu_shares(Unit *u, uint64_t shares) {
+ char buf[DECIMAL_STR_MAX(uint64_t) + 2];
+
+ xsprintf(buf, "%" PRIu64 "\n", shares);
+ (void) set_attribute_and_warn(u, "cpu", "cpu.shares", buf);
+}
+
+static void cgroup_apply_legacy_cpu_quota(Unit *u, usec_t quota, usec_t period) {
+ char buf[DECIMAL_STR_MAX(usec_t) + 2];
+
+ period = cgroup_cpu_adjust_period_and_log(u, period, quota);
+
+ xsprintf(buf, USEC_FMT "\n", period);
+ (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_period_us", buf);
+
+ if (quota != USEC_INFINITY) {
+ xsprintf(buf, USEC_FMT "\n", MAX(quota * period / USEC_PER_SEC, USEC_PER_MSEC));
+ (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", buf);
+ } else
+ (void) set_attribute_and_warn(u, "cpu", "cpu.cfs_quota_us", "-1\n");
+}
+
+static uint64_t cgroup_cpu_shares_to_weight(uint64_t shares) {
+ return CLAMP(shares * CGROUP_WEIGHT_DEFAULT / CGROUP_CPU_SHARES_DEFAULT,
+ CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
+}
+
+static uint64_t cgroup_cpu_weight_to_shares(uint64_t weight) {
+ /* we don't support idle in cgroupv1 */
+ if (weight == CGROUP_WEIGHT_IDLE)
+ return CGROUP_CPU_SHARES_MIN;
+
+ return CLAMP(weight * CGROUP_CPU_SHARES_DEFAULT / CGROUP_WEIGHT_DEFAULT,
+ CGROUP_CPU_SHARES_MIN, CGROUP_CPU_SHARES_MAX);
+}
+
+static void cgroup_apply_unified_cpuset(Unit *u, const CPUSet *cpus, const char *name) {
+ _cleanup_free_ char *buf = NULL;
+
+ buf = cpu_set_to_range_string(cpus);
+ if (!buf) {
+ log_oom();
+ return;
+ }
+
+ (void) set_attribute_and_warn(u, "cpuset", name, buf);
+}
+
+static bool cgroup_context_has_io_config(CGroupContext *c) {
+ return c->io_accounting ||
+ c->io_weight != CGROUP_WEIGHT_INVALID ||
+ c->startup_io_weight != CGROUP_WEIGHT_INVALID ||
+ c->io_device_weights ||
+ c->io_device_latencies ||
+ c->io_device_limits;
+}
+
+static bool cgroup_context_has_blockio_config(CGroupContext *c) {
+ return c->blockio_accounting ||
+ c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
+ c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID ||
+ c->blockio_device_weights ||
+ c->blockio_device_bandwidths;
+}
+
+static uint64_t cgroup_context_io_weight(CGroupContext *c, ManagerState state) {
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_io_weight != CGROUP_WEIGHT_INVALID)
+ return c->startup_io_weight;
+ if (c->io_weight != CGROUP_WEIGHT_INVALID)
+ return c->io_weight;
+ return CGROUP_WEIGHT_DEFAULT;
+}
+
+static uint64_t cgroup_context_blkio_weight(CGroupContext *c, ManagerState state) {
+ if (IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING) &&
+ c->startup_blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
+ return c->startup_blockio_weight;
+ if (c->blockio_weight != CGROUP_BLKIO_WEIGHT_INVALID)
+ return c->blockio_weight;
+ return CGROUP_BLKIO_WEIGHT_DEFAULT;
+}
+
+static uint64_t cgroup_weight_blkio_to_io(uint64_t blkio_weight) {
+ return CLAMP(blkio_weight * CGROUP_WEIGHT_DEFAULT / CGROUP_BLKIO_WEIGHT_DEFAULT,
+ CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
+}
+
+static uint64_t cgroup_weight_io_to_blkio(uint64_t io_weight) {
+ return CLAMP(io_weight * CGROUP_BLKIO_WEIGHT_DEFAULT / CGROUP_WEIGHT_DEFAULT,
+ CGROUP_BLKIO_WEIGHT_MIN, CGROUP_BLKIO_WEIGHT_MAX);
+}
+
+static int set_bfq_weight(Unit *u, const char *controller, dev_t dev, uint64_t io_weight) {
+ static const char * const prop_names[] = {
+ "IOWeight",
+ "BlockIOWeight",
+ "IODeviceWeight",
+ "BlockIODeviceWeight",
+ };
+ static bool warned = false;
+ char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+STRLEN("\n")];
+ const char *p;
+ uint64_t bfq_weight;
+ int r;
+
+ /* FIXME: drop this function when distro kernels properly support BFQ through "io.weight"
+ * See also: https://github.com/systemd/systemd/pull/13335 and
+ * https://github.com/torvalds/linux/commit/65752aef0a407e1ef17ec78a7fc31ba4e0b360f9. */
+ p = strjoina(controller, ".bfq.weight");
+ /* Adjust to kernel range is 1..1000, the default is 100. */
+ bfq_weight = BFQ_WEIGHT(io_weight);
+
+ if (major(dev) > 0)
+ xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), bfq_weight);
+ else
+ xsprintf(buf, "%" PRIu64 "\n", bfq_weight);
+
+ r = cg_set_attribute(controller, u->cgroup_path, p, buf);
+
+ /* FIXME: drop this when kernels prior
+ * 795fe54c2a82 ("bfq: Add per-device weight") v5.4
+ * are not interesting anymore. Old kernels will fail with EINVAL, while new kernels won't return
+ * EINVAL on properly formatted input by us. Treat EINVAL accordingly. */
+ if (r == -EINVAL && major(dev) > 0) {
+ if (!warned) {
+ log_unit_warning(u, "Kernel version does not accept per-device setting in %s.", p);
+ warned = true;
+ }
+ r = -EOPNOTSUPP; /* mask as unconfigured device */
+ } else if (r >= 0 && io_weight != bfq_weight)
+ log_unit_debug(u, "%s=%" PRIu64 " scaled to %s=%" PRIu64,
+ prop_names[2*(major(dev) > 0) + streq(controller, "blkio")],
+ io_weight, p, bfq_weight);
+ return r;
+}
+
+static void cgroup_apply_io_device_weight(Unit *u, const char *dev_path, uint64_t io_weight) {
+ char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
+ dev_t dev;
+ int r, r1, r2;
+
+ if (lookup_block_device(dev_path, &dev) < 0)
+ return;
+
+ r1 = set_bfq_weight(u, "io", dev, io_weight);
+
+ xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), io_weight);
+ r2 = cg_set_attribute("io", u->cgroup_path, "io.weight", buf);
+
+ /* Look at the configured device, when both fail, prefer io.weight errno. */
+ r = r2 == -EOPNOTSUPP ? r1 : r2;
+
+ if (r < 0)
+ log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r),
+ r, "Failed to set 'io[.bfq].weight' attribute on '%s' to '%.*s': %m",
+ empty_to_root(u->cgroup_path), (int) strcspn(buf, NEWLINE), buf);
+}
+
+static void cgroup_apply_blkio_device_weight(Unit *u, const char *dev_path, uint64_t blkio_weight) {
+ char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
+ dev_t dev;
+ int r;
+
+ r = lookup_block_device(dev_path, &dev);
+ if (r < 0)
+ return;
+
+ xsprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), blkio_weight);
+ (void) set_attribute_and_warn(u, "blkio", "blkio.weight_device", buf);
+}
+
+static void cgroup_apply_io_device_latency(Unit *u, const char *dev_path, usec_t target) {
+ char buf[DECIMAL_STR_MAX(dev_t)*2+2+7+DECIMAL_STR_MAX(uint64_t)+1];
+ dev_t dev;
+ int r;
+
+ r = lookup_block_device(dev_path, &dev);
+ if (r < 0)
+ return;
+
+ if (target != USEC_INFINITY)
+ xsprintf(buf, DEVNUM_FORMAT_STR " target=%" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), target);
+ else
+ xsprintf(buf, DEVNUM_FORMAT_STR " target=max\n", DEVNUM_FORMAT_VAL(dev));
+
+ (void) set_attribute_and_warn(u, "io", "io.latency", buf);
+}
+
+static void cgroup_apply_io_device_limit(Unit *u, const char *dev_path, uint64_t *limits) {
+ char limit_bufs[_CGROUP_IO_LIMIT_TYPE_MAX][DECIMAL_STR_MAX(uint64_t)],
+ buf[DECIMAL_STR_MAX(dev_t)*2+2+(6+DECIMAL_STR_MAX(uint64_t)+1)*4];
+ dev_t dev;
+
+ if (lookup_block_device(dev_path, &dev) < 0)
+ return;
+
+ for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
+ if (limits[type] != cgroup_io_limit_defaults[type])
+ xsprintf(limit_bufs[type], "%" PRIu64, limits[type]);
+ else
+ xsprintf(limit_bufs[type], "%s", limits[type] == CGROUP_LIMIT_MAX ? "max" : "0");
+
+ xsprintf(buf, DEVNUM_FORMAT_STR " rbps=%s wbps=%s riops=%s wiops=%s\n", DEVNUM_FORMAT_VAL(dev),
+ limit_bufs[CGROUP_IO_RBPS_MAX], limit_bufs[CGROUP_IO_WBPS_MAX],
+ limit_bufs[CGROUP_IO_RIOPS_MAX], limit_bufs[CGROUP_IO_WIOPS_MAX]);
+ (void) set_attribute_and_warn(u, "io", "io.max", buf);
+}
+
+static void cgroup_apply_blkio_device_limit(Unit *u, const char *dev_path, uint64_t rbps, uint64_t wbps) {
+ char buf[DECIMAL_STR_MAX(dev_t)*2+2+DECIMAL_STR_MAX(uint64_t)+1];
+ dev_t dev;
+
+ if (lookup_block_device(dev_path, &dev) < 0)
+ return;
+
+ sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), rbps);
+ (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.read_bps_device", buf);
+
+ sprintf(buf, DEVNUM_FORMAT_STR " %" PRIu64 "\n", DEVNUM_FORMAT_VAL(dev), wbps);
+ (void) set_attribute_and_warn(u, "blkio", "blkio.throttle.write_bps_device", buf);
+}
+
+static bool unit_has_unified_memory_config(Unit *u) {
+ CGroupContext *c;
+
+ assert(u);
+
+ assert_se(c = unit_get_cgroup_context(u));
+
+ return unit_get_ancestor_memory_min(u) > 0 ||
+ unit_get_ancestor_memory_low(u) > 0 || unit_get_ancestor_startup_memory_low(u) > 0 ||
+ c->memory_high != CGROUP_LIMIT_MAX || c->startup_memory_high_set ||
+ c->memory_max != CGROUP_LIMIT_MAX || c->startup_memory_max_set ||
+ c->memory_swap_max != CGROUP_LIMIT_MAX || c->startup_memory_swap_max_set ||
+ c->memory_zswap_max != CGROUP_LIMIT_MAX || c->startup_memory_zswap_max_set;
+}
+
+static void cgroup_apply_unified_memory_limit(Unit *u, const char *file, uint64_t v) {
+ char buf[DECIMAL_STR_MAX(uint64_t) + 1] = "max\n";
+
+ if (v != CGROUP_LIMIT_MAX)
+ xsprintf(buf, "%" PRIu64 "\n", v);
+
+ (void) set_attribute_and_warn(u, "memory", file, buf);
+}
+
+static void cgroup_apply_firewall(Unit *u) {
+ assert(u);
+
+ /* Best-effort: let's apply IP firewalling and/or accounting if that's enabled */
+
+ if (bpf_firewall_compile(u) < 0)
+ return;
+
+ (void) bpf_firewall_load_custom(u);
+ (void) bpf_firewall_install(u);
+}
+
+void unit_modify_nft_set(Unit *u, bool add) {
+ int r;
+
+ assert(u);
+
+ if (!MANAGER_IS_SYSTEM(u->manager))
+ return;
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return;
+
+ if (cg_all_unified() <= 0)
+ return;
+
+ if (u->cgroup_id == 0)
+ return;
+
+ if (!u->manager->fw_ctx) {
+ r = fw_ctx_new_full(&u->manager->fw_ctx, /* init_tables= */ false);
+ if (r < 0)
+ return;
+
+ assert(u->manager->fw_ctx);
+ }
+
+ CGroupContext *c = ASSERT_PTR(unit_get_cgroup_context(u));
+
+ FOREACH_ARRAY(nft_set, c->nft_set_context.sets, c->nft_set_context.n_sets) {
+ if (nft_set->source != NFT_SET_SOURCE_CGROUP)
+ continue;
+
+ uint64_t element = u->cgroup_id;
+
+ r = nft_set_element_modify_any(u->manager->fw_ctx, add, nft_set->nfproto, nft_set->table, nft_set->set, &element, sizeof(element));
+ if (r < 0)
+ log_warning_errno(r, "Failed to %s NFT set: family %s, table %s, set %s, cgroup %" PRIu64 ", ignoring: %m",
+ add? "add" : "delete", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, u->cgroup_id);
+ else
+ log_debug("%s NFT set: family %s, table %s, set %s, cgroup %" PRIu64,
+ add? "Added" : "Deleted", nfproto_to_string(nft_set->nfproto), nft_set->table, nft_set->set, u->cgroup_id);
+ }
+}
+
+static void cgroup_apply_socket_bind(Unit *u) {
+ assert(u);
+
+ (void) bpf_socket_bind_install(u);
+}
+
+static void cgroup_apply_restrict_network_interfaces(Unit *u) {
+ assert(u);
+
+ (void) restrict_network_interfaces_install(u);
+}
+
+static int cgroup_apply_devices(Unit *u) {
+ _cleanup_(bpf_program_freep) BPFProgram *prog = NULL;
+ const char *path;
+ CGroupContext *c;
+ CGroupDevicePolicy policy;
+ int r;
+
+ assert_se(c = unit_get_cgroup_context(u));
+ assert_se(path = u->cgroup_path);
+
+ policy = c->device_policy;
+
+ if (cg_all_unified() > 0) {
+ r = bpf_devices_cgroup_init(&prog, policy, c->device_allow);
+ if (r < 0)
+ return log_unit_warning_errno(u, r, "Failed to initialize device control bpf program: %m");
+
+ } else {
+ /* Changing the devices list of a populated cgroup might result in EINVAL, hence ignore
+ * EINVAL here. */
+
+ if (c->device_allow || policy != CGROUP_DEVICE_POLICY_AUTO)
+ r = cg_set_attribute("devices", path, "devices.deny", "a");
+ else
+ r = cg_set_attribute("devices", path, "devices.allow", "a");
+ if (r < 0)
+ log_unit_full_errno(u, IN_SET(r, -ENOENT, -EROFS, -EINVAL, -EACCES, -EPERM) ? LOG_DEBUG : LOG_WARNING, r,
+ "Failed to reset devices.allow/devices.deny: %m");
+ }
+
+ bool allow_list_static = policy == CGROUP_DEVICE_POLICY_CLOSED ||
+ (policy == CGROUP_DEVICE_POLICY_AUTO && c->device_allow);
+ if (allow_list_static)
+ (void) bpf_devices_allow_list_static(prog, path);
+
+ bool any = allow_list_static;
+ LIST_FOREACH(device_allow, a, c->device_allow) {
+ const char *val;
+
+ if (a->permissions == 0)
+ continue;
+
+ if (path_startswith(a->path, "/dev/"))
+ r = bpf_devices_allow_list_device(prog, path, a->path, a->permissions);
+ else if ((val = startswith(a->path, "block-")))
+ r = bpf_devices_allow_list_major(prog, path, val, 'b', a->permissions);
+ else if ((val = startswith(a->path, "char-")))
+ r = bpf_devices_allow_list_major(prog, path, val, 'c', a->permissions);
+ else {
+ log_unit_debug(u, "Ignoring device '%s' while writing cgroup attribute.", a->path);
+ continue;
+ }
+
+ if (r >= 0)
+ any = true;
+ }
+
+ if (prog && !any) {
+ log_unit_warning_errno(u, SYNTHETIC_ERRNO(ENODEV), "No devices matched by device filter.");
+
+ /* The kernel verifier would reject a program we would build with the normal intro and outro
+ but no allow-listing rules (outro would contain an unreachable instruction for successful
+ return). */
+ policy = CGROUP_DEVICE_POLICY_STRICT;
+ }
+
+ r = bpf_devices_apply_policy(&prog, policy, any, path, &u->bpf_device_control_installed);
+ if (r < 0) {
+ static bool warned = false;
+
+ log_full_errno(warned ? LOG_DEBUG : LOG_WARNING, r,
+ "Unit %s configures device ACL, but the local system doesn't seem to support the BPF-based device controller.\n"
+ "Proceeding WITHOUT applying ACL (all devices will be accessible)!\n"
+ "(This warning is only shown for the first loaded unit using device ACL.)", u->id);
+
+ warned = true;
+ }
+ return r;
+}
+
+static void set_io_weight(Unit *u, uint64_t weight) {
+ char buf[STRLEN("default \n")+DECIMAL_STR_MAX(uint64_t)];
+
+ assert(u);
+
+ (void) set_bfq_weight(u, "io", makedev(0, 0), weight);
+
+ xsprintf(buf, "default %" PRIu64 "\n", weight);
+ (void) set_attribute_and_warn(u, "io", "io.weight", buf);
+}
+
+static void set_blkio_weight(Unit *u, uint64_t weight) {
+ char buf[STRLEN("\n")+DECIMAL_STR_MAX(uint64_t)];
+
+ assert(u);
+
+ (void) set_bfq_weight(u, "blkio", makedev(0, 0), weight);
+
+ xsprintf(buf, "%" PRIu64 "\n", weight);
+ (void) set_attribute_and_warn(u, "blkio", "blkio.weight", buf);
+}
+
+static void cgroup_apply_bpf_foreign_program(Unit *u) {
+ assert(u);
+
+ (void) bpf_foreign_install(u);
+}
+
+static void cgroup_context_apply(
+ Unit *u,
+ CGroupMask apply_mask,
+ ManagerState state) {
+
+ const char *path;
+ CGroupContext *c;
+ bool is_host_root, is_local_root;
+ int r;
+
+ assert(u);
+
+ /* Nothing to do? Exit early! */
+ if (apply_mask == 0)
+ return;
+
+ /* Some cgroup attributes are not supported on the host root cgroup, hence silently ignore them here. And other
+ * attributes should only be managed for cgroups further down the tree. */
+ is_local_root = unit_has_name(u, SPECIAL_ROOT_SLICE);
+ is_host_root = unit_has_host_root_cgroup(u);
+
+ assert_se(c = unit_get_cgroup_context(u));
+ assert_se(path = u->cgroup_path);
+
+ if (is_local_root) /* Make sure we don't try to display messages with an empty path. */
+ path = "/";
+
+ /* We generally ignore errors caused by read-only mounted cgroup trees (assuming we are running in a container
+ * then), and missing cgroups, i.e. EROFS and ENOENT. */
+
+ /* In fully unified mode these attributes don't exist on the host cgroup root. On legacy the weights exist, but
+ * setting the weight makes very little sense on the host root cgroup, as there are no other cgroups at this
+ * level. The quota exists there too, but any attempt to write to it is refused with EINVAL. Inside of
+ * containers we want to leave control of these to the container manager (and if cgroup v2 delegation is used
+ * we couldn't even write to them if we wanted to). */
+ if ((apply_mask & CGROUP_MASK_CPU) && !is_local_root) {
+
+ if (cg_all_unified() > 0) {
+ uint64_t weight;
+
+ if (cgroup_context_has_cpu_weight(c))
+ weight = cgroup_context_cpu_weight(c, state);
+ else if (cgroup_context_has_cpu_shares(c)) {
+ uint64_t shares;
+
+ shares = cgroup_context_cpu_shares(c, state);
+ weight = cgroup_cpu_shares_to_weight(shares);
+
+ log_cgroup_compat(u, "Applying [Startup]CPUShares=%" PRIu64 " as [Startup]CPUWeight=%" PRIu64 " on %s",
+ shares, weight, path);
+ } else
+ weight = CGROUP_WEIGHT_DEFAULT;
+
+ cgroup_apply_unified_cpu_idle(u, weight);
+ cgroup_apply_unified_cpu_weight(u, weight);
+ cgroup_apply_unified_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
+
+ } else {
+ uint64_t shares;
+
+ if (cgroup_context_has_cpu_weight(c)) {
+ uint64_t weight;
+
+ weight = cgroup_context_cpu_weight(c, state);
+ shares = cgroup_cpu_weight_to_shares(weight);
+
+ log_cgroup_compat(u, "Applying [Startup]CPUWeight=%" PRIu64 " as [Startup]CPUShares=%" PRIu64 " on %s",
+ weight, shares, path);
+ } else if (cgroup_context_has_cpu_shares(c))
+ shares = cgroup_context_cpu_shares(c, state);
+ else
+ shares = CGROUP_CPU_SHARES_DEFAULT;
+
+ cgroup_apply_legacy_cpu_shares(u, shares);
+ cgroup_apply_legacy_cpu_quota(u, c->cpu_quota_per_sec_usec, c->cpu_quota_period_usec);
+ }
+ }
+
+ if ((apply_mask & CGROUP_MASK_CPUSET) && !is_local_root) {
+ cgroup_apply_unified_cpuset(u, cgroup_context_allowed_cpus(c, state), "cpuset.cpus");
+ cgroup_apply_unified_cpuset(u, cgroup_context_allowed_mems(c, state), "cpuset.mems");
+ }
+
+ /* The 'io' controller attributes are not exported on the host's root cgroup (being a pure cgroup v2
+ * controller), and in case of containers we want to leave control of these attributes to the container manager
+ * (and we couldn't access that stuff anyway, even if we tried if proper delegation is used). */
+ if ((apply_mask & CGROUP_MASK_IO) && !is_local_root) {
+ bool has_io, has_blockio;
+ uint64_t weight;
+
+ has_io = cgroup_context_has_io_config(c);
+ has_blockio = cgroup_context_has_blockio_config(c);
+
+ if (has_io)
+ weight = cgroup_context_io_weight(c, state);
+ else if (has_blockio) {
+ uint64_t blkio_weight;
+
+ blkio_weight = cgroup_context_blkio_weight(c, state);
+ weight = cgroup_weight_blkio_to_io(blkio_weight);
+
+ log_cgroup_compat(u, "Applying [Startup]BlockIOWeight=%" PRIu64 " as [Startup]IOWeight=%" PRIu64,
+ blkio_weight, weight);
+ } else
+ weight = CGROUP_WEIGHT_DEFAULT;
+
+ set_io_weight(u, weight);
+
+ if (has_io) {
+ LIST_FOREACH(device_weights, w, c->io_device_weights)
+ cgroup_apply_io_device_weight(u, w->path, w->weight);
+
+ LIST_FOREACH(device_limits, limit, c->io_device_limits)
+ cgroup_apply_io_device_limit(u, limit->path, limit->limits);
+
+ LIST_FOREACH(device_latencies, latency, c->io_device_latencies)
+ cgroup_apply_io_device_latency(u, latency->path, latency->target_usec);
+
+ } else if (has_blockio) {
+ LIST_FOREACH(device_weights, w, c->blockio_device_weights) {
+ weight = cgroup_weight_blkio_to_io(w->weight);
+
+ log_cgroup_compat(u, "Applying BlockIODeviceWeight=%" PRIu64 " as IODeviceWeight=%" PRIu64 " for %s",
+ w->weight, weight, w->path);
+
+ cgroup_apply_io_device_weight(u, w->path, weight);
+ }
+
+ LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths) {
+ uint64_t limits[_CGROUP_IO_LIMIT_TYPE_MAX];
+
+ for (CGroupIOLimitType type = 0; type < _CGROUP_IO_LIMIT_TYPE_MAX; type++)
+ limits[type] = cgroup_io_limit_defaults[type];
+
+ limits[CGROUP_IO_RBPS_MAX] = b->rbps;
+ limits[CGROUP_IO_WBPS_MAX] = b->wbps;
+
+ log_cgroup_compat(u, "Applying BlockIO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as IO{Read|Write}BandwidthMax= for %s",
+ b->rbps, b->wbps, b->path);
+
+ cgroup_apply_io_device_limit(u, b->path, limits);
+ }
+ }
+ }
+
+ if (apply_mask & CGROUP_MASK_BLKIO) {
+ bool has_io, has_blockio;
+
+ has_io = cgroup_context_has_io_config(c);
+ has_blockio = cgroup_context_has_blockio_config(c);
+
+ /* Applying a 'weight' never makes sense for the host root cgroup, and for containers this should be
+ * left to our container manager, too. */
+ if (!is_local_root) {
+ uint64_t weight;
+
+ if (has_io) {
+ uint64_t io_weight;
+
+ io_weight = cgroup_context_io_weight(c, state);
+ weight = cgroup_weight_io_to_blkio(cgroup_context_io_weight(c, state));
+
+ log_cgroup_compat(u, "Applying [Startup]IOWeight=%" PRIu64 " as [Startup]BlockIOWeight=%" PRIu64,
+ io_weight, weight);
+ } else if (has_blockio)
+ weight = cgroup_context_blkio_weight(c, state);
+ else
+ weight = CGROUP_BLKIO_WEIGHT_DEFAULT;
+
+ set_blkio_weight(u, weight);
+
+ if (has_io)
+ LIST_FOREACH(device_weights, w, c->io_device_weights) {
+ weight = cgroup_weight_io_to_blkio(w->weight);
+
+ log_cgroup_compat(u, "Applying IODeviceWeight=%" PRIu64 " as BlockIODeviceWeight=%" PRIu64 " for %s",
+ w->weight, weight, w->path);
+
+ cgroup_apply_blkio_device_weight(u, w->path, weight);
+ }
+ else if (has_blockio)
+ LIST_FOREACH(device_weights, w, c->blockio_device_weights)
+ cgroup_apply_blkio_device_weight(u, w->path, w->weight);
+ }
+
+ /* The bandwidth limits are something that make sense to be applied to the host's root but not container
+ * roots, as there we want the container manager to handle it */
+ if (is_host_root || !is_local_root) {
+ if (has_io)
+ LIST_FOREACH(device_limits, l, c->io_device_limits) {
+ log_cgroup_compat(u, "Applying IO{Read|Write}Bandwidth=%" PRIu64 " %" PRIu64 " as BlockIO{Read|Write}BandwidthMax= for %s",
+ l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX], l->path);
+
+ cgroup_apply_blkio_device_limit(u, l->path, l->limits[CGROUP_IO_RBPS_MAX], l->limits[CGROUP_IO_WBPS_MAX]);
+ }
+ else if (has_blockio)
+ LIST_FOREACH(device_bandwidths, b, c->blockio_device_bandwidths)
+ cgroup_apply_blkio_device_limit(u, b->path, b->rbps, b->wbps);
+ }
+ }
+
+ /* In unified mode 'memory' attributes do not exist on the root cgroup. In legacy mode 'memory.limit_in_bytes'
+ * exists on the root cgroup, but any writes to it are refused with EINVAL. And if we run in a container we
+ * want to leave control to the container manager (and if proper cgroup v2 delegation is used we couldn't even
+ * write to this if we wanted to.) */
+ if ((apply_mask & CGROUP_MASK_MEMORY) && !is_local_root) {
+
+ if (cg_all_unified() > 0) {
+ uint64_t max, swap_max = CGROUP_LIMIT_MAX, zswap_max = CGROUP_LIMIT_MAX, high = CGROUP_LIMIT_MAX;
+
+ if (unit_has_unified_memory_config(u)) {
+ bool startup = IN_SET(state, MANAGER_STARTING, MANAGER_INITIALIZING, MANAGER_STOPPING);
+
+ high = startup && c->startup_memory_high_set ? c->startup_memory_high : c->memory_high;
+ max = startup && c->startup_memory_max_set ? c->startup_memory_max : c->memory_max;
+ swap_max = startup && c->startup_memory_swap_max_set ? c->startup_memory_swap_max : c->memory_swap_max;
+ zswap_max = startup && c->startup_memory_zswap_max_set ? c->startup_memory_zswap_max : c->memory_zswap_max;
+ } else {
+ max = c->memory_limit;
+
+ if (max != CGROUP_LIMIT_MAX)
+ log_cgroup_compat(u, "Applying MemoryLimit=%" PRIu64 " as MemoryMax=", max);
+ }
+
+ cgroup_apply_unified_memory_limit(u, "memory.min", unit_get_ancestor_memory_min(u));
+ cgroup_apply_unified_memory_limit(u, "memory.low", unit_get_ancestor_memory_low(u));
+ cgroup_apply_unified_memory_limit(u, "memory.high", high);
+ cgroup_apply_unified_memory_limit(u, "memory.max", max);
+ cgroup_apply_unified_memory_limit(u, "memory.swap.max", swap_max);
+ cgroup_apply_unified_memory_limit(u, "memory.zswap.max", zswap_max);
+
+ (void) set_attribute_and_warn(u, "memory", "memory.oom.group", one_zero(c->memory_oom_group));
+
+ } else {
+ char buf[DECIMAL_STR_MAX(uint64_t) + 1];
+ uint64_t val;
+
+ if (unit_has_unified_memory_config(u)) {
+ val = c->memory_max;
+ if (val != CGROUP_LIMIT_MAX)
+ log_cgroup_compat(u, "Applying MemoryMax=%" PRIu64 " as MemoryLimit=", val);
+ } else
+ val = c->memory_limit;
+
+ if (val == CGROUP_LIMIT_MAX)
+ strncpy(buf, "-1\n", sizeof(buf));
+ else
+ xsprintf(buf, "%" PRIu64 "\n", val);
+
+ (void) set_attribute_and_warn(u, "memory", "memory.limit_in_bytes", buf);
+ }
+ }
+
+ /* On cgroup v2 we can apply BPF everywhere. On cgroup v1 we apply it everywhere except for the root of
+ * containers, where we leave this to the manager */
+ if ((apply_mask & (CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES)) &&
+ (is_host_root || cg_all_unified() > 0 || !is_local_root))
+ (void) cgroup_apply_devices(u);
+
+ if (apply_mask & CGROUP_MASK_PIDS) {
+
+ if (is_host_root) {
+ /* So, the "pids" controller does not expose anything on the root cgroup, in order not to
+ * replicate knobs exposed elsewhere needlessly. We abstract this away here however, and when
+ * the knobs of the root cgroup are modified propagate this to the relevant sysctls. There's a
+ * non-obvious asymmetry however: unlike the cgroup properties we don't really want to take
+ * exclusive ownership of the sysctls, but we still want to honour things if the user sets
+ * limits. Hence we employ sort of a one-way strategy: when the user sets a bounded limit
+ * through us it counts. When the user afterwards unsets it again (i.e. sets it to unbounded)
+ * it also counts. But if the user never set a limit through us (i.e. we are the default of
+ * "unbounded") we leave things unmodified. For this we manage a global boolean that we turn on
+ * the first time we set a limit. Note that this boolean is flushed out on manager reload,
+ * which is desirable so that there's an official way to release control of the sysctl from
+ * systemd: set the limit to unbounded and reload. */
+
+ if (cgroup_tasks_max_isset(&c->tasks_max)) {
+ u->manager->sysctl_pid_max_changed = true;
+ r = procfs_tasks_set_limit(cgroup_tasks_max_resolve(&c->tasks_max));
+ } else if (u->manager->sysctl_pid_max_changed)
+ r = procfs_tasks_set_limit(TASKS_MAX);
+ else
+ r = 0;
+ if (r < 0)
+ log_unit_full_errno(u, LOG_LEVEL_CGROUP_WRITE(r), r,
+ "Failed to write to tasks limit sysctls: %m");
+ }
+
+ /* The attribute itself is not available on the host root cgroup, and in the container case we want to
+ * leave it for the container manager. */
+ if (!is_local_root) {
+ if (cgroup_tasks_max_isset(&c->tasks_max)) {
+ char buf[DECIMAL_STR_MAX(uint64_t) + 1];
+
+ xsprintf(buf, "%" PRIu64 "\n", cgroup_tasks_max_resolve(&c->tasks_max));
+ (void) set_attribute_and_warn(u, "pids", "pids.max", buf);
+ } else
+ (void) set_attribute_and_warn(u, "pids", "pids.max", "max\n");
+ }
+ }
+
+ if (apply_mask & CGROUP_MASK_BPF_FIREWALL)
+ cgroup_apply_firewall(u);
+
+ if (apply_mask & CGROUP_MASK_BPF_FOREIGN)
+ cgroup_apply_bpf_foreign_program(u);
+
+ if (apply_mask & CGROUP_MASK_BPF_SOCKET_BIND)
+ cgroup_apply_socket_bind(u);
+
+ if (apply_mask & CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES)
+ cgroup_apply_restrict_network_interfaces(u);
+
+ unit_modify_nft_set(u, /* add = */ true);
+}
+
+static bool unit_get_needs_bpf_firewall(Unit *u) {
+ CGroupContext *c;
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ if (c->ip_accounting ||
+ !set_isempty(c->ip_address_allow) ||
+ !set_isempty(c->ip_address_deny) ||
+ c->ip_filters_ingress ||
+ c->ip_filters_egress)
+ return true;
+
+ /* If any parent slice has an IP access list defined, it applies too */
+ for (Unit *p = UNIT_GET_SLICE(u); p; p = UNIT_GET_SLICE(p)) {
+ c = unit_get_cgroup_context(p);
+ if (!c)
+ return false;
+
+ if (!set_isempty(c->ip_address_allow) ||
+ !set_isempty(c->ip_address_deny))
+ return true;
+ }
+
+ return false;
+}
+
+static bool unit_get_needs_bpf_foreign_program(Unit *u) {
+ CGroupContext *c;
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ return !!c->bpf_foreign_programs;
+}
+
+static bool unit_get_needs_socket_bind(Unit *u) {
+ CGroupContext *c;
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ return c->socket_bind_allow || c->socket_bind_deny;
+}
+
+static bool unit_get_needs_restrict_network_interfaces(Unit *u) {
+ CGroupContext *c;
+ assert(u);
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ return !set_isempty(c->restrict_network_interfaces);
+}
+
+static CGroupMask unit_get_cgroup_mask(Unit *u) {
+ CGroupMask mask = 0;
+ CGroupContext *c;
+
+ assert(u);
+
+ assert_se(c = unit_get_cgroup_context(u));
+
+ /* Figure out which controllers we need, based on the cgroup context object */
+
+ if (c->cpu_accounting)
+ mask |= get_cpu_accounting_mask();
+
+ if (cgroup_context_has_cpu_weight(c) ||
+ cgroup_context_has_cpu_shares(c) ||
+ c->cpu_quota_per_sec_usec != USEC_INFINITY)
+ mask |= CGROUP_MASK_CPU;
+
+ if (cgroup_context_has_allowed_cpus(c) || cgroup_context_has_allowed_mems(c))
+ mask |= CGROUP_MASK_CPUSET;
+
+ if (cgroup_context_has_io_config(c) || cgroup_context_has_blockio_config(c))
+ mask |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
+
+ if (c->memory_accounting ||
+ c->memory_limit != CGROUP_LIMIT_MAX ||
+ unit_has_unified_memory_config(u))
+ mask |= CGROUP_MASK_MEMORY;
+
+ if (c->device_allow ||
+ c->device_policy != CGROUP_DEVICE_POLICY_AUTO)
+ mask |= CGROUP_MASK_DEVICES | CGROUP_MASK_BPF_DEVICES;
+
+ if (c->tasks_accounting ||
+ cgroup_tasks_max_isset(&c->tasks_max))
+ mask |= CGROUP_MASK_PIDS;
+
+ return CGROUP_MASK_EXTEND_JOINED(mask);
+}
+
+static CGroupMask unit_get_bpf_mask(Unit *u) {
+ CGroupMask mask = 0;
+
+ /* Figure out which controllers we need, based on the cgroup context, possibly taking into account children
+ * too. */
+
+ if (unit_get_needs_bpf_firewall(u))
+ mask |= CGROUP_MASK_BPF_FIREWALL;
+
+ if (unit_get_needs_bpf_foreign_program(u))
+ mask |= CGROUP_MASK_BPF_FOREIGN;
+
+ if (unit_get_needs_socket_bind(u))
+ mask |= CGROUP_MASK_BPF_SOCKET_BIND;
+
+ if (unit_get_needs_restrict_network_interfaces(u))
+ mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
+
+ return mask;
+}
+
+CGroupMask unit_get_own_mask(Unit *u) {
+ CGroupContext *c;
+
+ /* Returns the mask of controllers the unit needs for itself. If a unit is not properly loaded, return an empty
+ * mask, as we shouldn't reflect it in the cgroup hierarchy then. */
+
+ if (u->load_state != UNIT_LOADED)
+ return 0;
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return 0;
+
+ return unit_get_cgroup_mask(u) | unit_get_bpf_mask(u) | unit_get_delegate_mask(u);
+}
+
+CGroupMask unit_get_delegate_mask(Unit *u) {
+ CGroupContext *c;
+
+ /* If delegation is turned on, then turn on selected controllers, unless we are on the legacy hierarchy and the
+ * process we fork into is known to drop privileges, and hence shouldn't get access to the controllers.
+ *
+ * Note that on the unified hierarchy it is safe to delegate controllers to unprivileged services. */
+
+ if (!unit_cgroup_delegate(u))
+ return 0;
+
+ if (cg_all_unified() <= 0) {
+ ExecContext *e;
+
+ e = unit_get_exec_context(u);
+ if (e && !exec_context_maintains_privileges(e))
+ return 0;
+ }
+
+ assert_se(c = unit_get_cgroup_context(u));
+ return CGROUP_MASK_EXTEND_JOINED(c->delegate_controllers);
+}
+
+static CGroupMask unit_get_subtree_mask(Unit *u) {
+
+ /* Returns the mask of this subtree, meaning of the group
+ * itself and its children. */
+
+ return unit_get_own_mask(u) | unit_get_members_mask(u);
+}
+
+CGroupMask unit_get_members_mask(Unit *u) {
+ assert(u);
+
+ /* Returns the mask of controllers all of the unit's children require, merged */
+
+ if (u->cgroup_members_mask_valid)
+ return u->cgroup_members_mask; /* Use cached value if possible */
+
+ u->cgroup_members_mask = 0;
+
+ if (u->type == UNIT_SLICE) {
+ Unit *member;
+
+ UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
+ u->cgroup_members_mask |= unit_get_subtree_mask(member); /* note that this calls ourselves again, for the children */
+ }
+
+ u->cgroup_members_mask_valid = true;
+ return u->cgroup_members_mask;
+}
+
+CGroupMask unit_get_siblings_mask(Unit *u) {
+ Unit *slice;
+ assert(u);
+
+ /* Returns the mask of controllers all of the unit's siblings
+ * require, i.e. the members mask of the unit's parent slice
+ * if there is one. */
+
+ slice = UNIT_GET_SLICE(u);
+ if (slice)
+ return unit_get_members_mask(slice);
+
+ return unit_get_subtree_mask(u); /* we are the top-level slice */
+}
+
+static CGroupMask unit_get_disable_mask(Unit *u) {
+ CGroupContext *c;
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return 0;
+
+ return c->disable_controllers;
+}
+
+CGroupMask unit_get_ancestor_disable_mask(Unit *u) {
+ CGroupMask mask;
+ Unit *slice;
+
+ assert(u);
+ mask = unit_get_disable_mask(u);
+
+ /* Returns the mask of controllers which are marked as forcibly
+ * disabled in any ancestor unit or the unit in question. */
+
+ slice = UNIT_GET_SLICE(u);
+ if (slice)
+ mask |= unit_get_ancestor_disable_mask(slice);
+
+ return mask;
+}
+
+CGroupMask unit_get_target_mask(Unit *u) {
+ CGroupMask own_mask, mask;
+
+ /* This returns the cgroup mask of all controllers to enable for a specific cgroup, i.e. everything
+ * it needs itself, plus all that its children need, plus all that its siblings need. This is
+ * primarily useful on the legacy cgroup hierarchy, where we need to duplicate each cgroup in each
+ * hierarchy that shall be enabled for it. */
+
+ own_mask = unit_get_own_mask(u);
+
+ if (own_mask & CGROUP_MASK_BPF_FIREWALL & ~u->manager->cgroup_supported)
+ emit_bpf_firewall_warning(u);
+
+ mask = own_mask | unit_get_members_mask(u) | unit_get_siblings_mask(u);
+
+ mask &= u->manager->cgroup_supported;
+ mask &= ~unit_get_ancestor_disable_mask(u);
+
+ return mask;
+}
+
+CGroupMask unit_get_enable_mask(Unit *u) {
+ CGroupMask mask;
+
+ /* This returns the cgroup mask of all controllers to enable
+ * for the children of a specific cgroup. This is primarily
+ * useful for the unified cgroup hierarchy, where each cgroup
+ * controls which controllers are enabled for its children. */
+
+ mask = unit_get_members_mask(u);
+ mask &= u->manager->cgroup_supported;
+ mask &= ~unit_get_ancestor_disable_mask(u);
+
+ return mask;
+}
+
+void unit_invalidate_cgroup_members_masks(Unit *u) {
+ Unit *slice;
+
+ assert(u);
+
+ /* Recurse invalidate the member masks cache all the way up the tree */
+ u->cgroup_members_mask_valid = false;
+
+ slice = UNIT_GET_SLICE(u);
+ if (slice)
+ unit_invalidate_cgroup_members_masks(slice);
+}
+
+const char *unit_get_realized_cgroup_path(Unit *u, CGroupMask mask) {
+
+ /* Returns the realized cgroup path of the specified unit where all specified controllers are available. */
+
+ while (u) {
+
+ if (u->cgroup_path &&
+ u->cgroup_realized &&
+ FLAGS_SET(u->cgroup_realized_mask, mask))
+ return u->cgroup_path;
+
+ u = UNIT_GET_SLICE(u);
+ }
+
+ return NULL;
+}
+
+static const char *migrate_callback(CGroupMask mask, void *userdata) {
+ /* If not realized at all, migrate to root ("").
+ * It may happen if we're upgrading from older version that didn't clean up.
+ */
+ return strempty(unit_get_realized_cgroup_path(userdata, mask));
+}
+
+int unit_default_cgroup_path(const Unit *u, char **ret) {
+ _cleanup_free_ char *p = NULL;
+ int r;
+
+ assert(u);
+ assert(ret);
+
+ if (unit_has_name(u, SPECIAL_ROOT_SLICE))
+ p = strdup(u->manager->cgroup_root);
+ else {
+ _cleanup_free_ char *escaped = NULL, *slice_path = NULL;
+ Unit *slice;
+
+ slice = UNIT_GET_SLICE(u);
+ if (slice && !unit_has_name(slice, SPECIAL_ROOT_SLICE)) {
+ r = cg_slice_to_path(slice->id, &slice_path);
+ if (r < 0)
+ return r;
+ }
+
+ r = cg_escape(u->id, &escaped);
+ if (r < 0)
+ return r;
+
+ p = path_join(empty_to_root(u->manager->cgroup_root), slice_path, escaped);
+ }
+ if (!p)
+ return -ENOMEM;
+
+ *ret = TAKE_PTR(p);
+ return 0;
+}
+
+int unit_set_cgroup_path(Unit *u, const char *path) {
+ _cleanup_free_ char *p = NULL;
+ int r;
+
+ assert(u);
+
+ if (streq_ptr(u->cgroup_path, path))
+ return 0;
+
+ if (path) {
+ p = strdup(path);
+ if (!p)
+ return -ENOMEM;
+ }
+
+ if (p) {
+ r = hashmap_put(u->manager->cgroup_unit, p, u);
+ if (r < 0)
+ return r;
+ }
+
+ unit_release_cgroup(u);
+ u->cgroup_path = TAKE_PTR(p);
+
+ return 1;
+}
+
+int unit_watch_cgroup(Unit *u) {
+ _cleanup_free_ char *events = NULL;
+ int r;
+
+ assert(u);
+
+ /* Watches the "cgroups.events" attribute of this unit's cgroup for "empty" events, but only if
+ * cgroupv2 is available. */
+
+ if (!u->cgroup_path)
+ return 0;
+
+ if (u->cgroup_control_inotify_wd >= 0)
+ return 0;
+
+ /* Only applies to the unified hierarchy */
+ r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether the name=systemd hierarchy is unified: %m");
+ if (r == 0)
+ return 0;
+
+ /* No point in watch the top-level slice, it's never going to run empty. */
+ if (unit_has_name(u, SPECIAL_ROOT_SLICE))
+ return 0;
+
+ r = hashmap_ensure_allocated(&u->manager->cgroup_control_inotify_wd_unit, &trivial_hash_ops);
+ if (r < 0)
+ return log_oom();
+
+ r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events", &events);
+ if (r < 0)
+ return log_oom();
+
+ u->cgroup_control_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
+ if (u->cgroup_control_inotify_wd < 0) {
+
+ if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
+ * is not an error */
+ return 0;
+
+ return log_unit_error_errno(u, errno, "Failed to add control inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
+ }
+
+ r = hashmap_put(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd), u);
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to add control inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
+
+ return 0;
+}
+
+int unit_watch_cgroup_memory(Unit *u) {
+ _cleanup_free_ char *events = NULL;
+ CGroupContext *c;
+ int r;
+
+ assert(u);
+
+ /* Watches the "memory.events" attribute of this unit's cgroup for "oom_kill" events, but only if
+ * cgroupv2 is available. */
+
+ if (!u->cgroup_path)
+ return 0;
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return 0;
+
+ /* The "memory.events" attribute is only available if the memory controller is on. Let's hence tie
+ * this to memory accounting, in a way watching for OOM kills is a form of memory accounting after
+ * all. */
+ if (!c->memory_accounting)
+ return 0;
+
+ /* Don't watch inner nodes, as the kernel doesn't report oom_kill events recursively currently, and
+ * we also don't want to generate a log message for each parent cgroup of a process. */
+ if (u->type == UNIT_SLICE)
+ return 0;
+
+ if (u->cgroup_memory_inotify_wd >= 0)
+ return 0;
+
+ /* Only applies to the unified hierarchy */
+ r = cg_all_unified();
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether the memory controller is unified: %m");
+ if (r == 0)
+ return 0;
+
+ r = hashmap_ensure_allocated(&u->manager->cgroup_memory_inotify_wd_unit, &trivial_hash_ops);
+ if (r < 0)
+ return log_oom();
+
+ r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "memory.events", &events);
+ if (r < 0)
+ return log_oom();
+
+ u->cgroup_memory_inotify_wd = inotify_add_watch(u->manager->cgroup_inotify_fd, events, IN_MODIFY);
+ if (u->cgroup_memory_inotify_wd < 0) {
+
+ if (errno == ENOENT) /* If the directory is already gone we don't need to track it, so this
+ * is not an error */
+ return 0;
+
+ return log_unit_error_errno(u, errno, "Failed to add memory inotify watch descriptor for control group %s: %m", empty_to_root(u->cgroup_path));
+ }
+
+ r = hashmap_put(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd), u);
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to add memory inotify watch descriptor for control group %s to hash map: %m", empty_to_root(u->cgroup_path));
+
+ return 0;
+}
+
+int unit_pick_cgroup_path(Unit *u) {
+ _cleanup_free_ char *path = NULL;
+ int r;
+
+ assert(u);
+
+ if (u->cgroup_path)
+ return 0;
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return -EINVAL;
+
+ r = unit_default_cgroup_path(u, &path);
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to generate default cgroup path: %m");
+
+ r = unit_set_cgroup_path(u, path);
+ if (r == -EEXIST)
+ return log_unit_error_errno(u, r, "Control group %s exists already.", empty_to_root(path));
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to set unit's control group path to %s: %m", empty_to_root(path));
+
+ return 0;
+}
+
+static int unit_update_cgroup(
+ Unit *u,
+ CGroupMask target_mask,
+ CGroupMask enable_mask,
+ ManagerState state) {
+
+ bool created, is_root_slice;
+ CGroupMask migrate_mask = 0;
+ _cleanup_free_ char *cgroup_full_path = NULL;
+ int r;
+
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return 0;
+
+ /* Figure out our cgroup path */
+ r = unit_pick_cgroup_path(u);
+ if (r < 0)
+ return r;
+
+ /* First, create our own group */
+ r = cg_create_everywhere(u->manager->cgroup_supported, target_mask, u->cgroup_path);
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to create cgroup %s: %m", empty_to_root(u->cgroup_path));
+ created = r;
+
+ if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
+ uint64_t cgroup_id = 0;
+
+ r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, NULL, &cgroup_full_path);
+ if (r == 0) {
+ r = cg_path_get_cgroupid(cgroup_full_path, &cgroup_id);
+ if (r < 0)
+ log_unit_full_errno(u, ERRNO_IS_NOT_SUPPORTED(r) ? LOG_DEBUG : LOG_WARNING, r,
+ "Failed to get cgroup ID of cgroup %s, ignoring: %m", cgroup_full_path);
+ } else
+ log_unit_warning_errno(u, r, "Failed to get full cgroup path on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
+
+ u->cgroup_id = cgroup_id;
+ }
+
+ /* Start watching it */
+ (void) unit_watch_cgroup(u);
+ (void) unit_watch_cgroup_memory(u);
+
+ /* For v2 we preserve enabled controllers in delegated units, adjust others,
+ * for v1 we figure out which controller hierarchies need migration. */
+ if (created || !u->cgroup_realized || !unit_cgroup_delegate(u)) {
+ CGroupMask result_mask = 0;
+
+ /* Enable all controllers we need */
+ r = cg_enable_everywhere(u->manager->cgroup_supported, enable_mask, u->cgroup_path, &result_mask);
+ if (r < 0)
+ log_unit_warning_errno(u, r, "Failed to enable/disable controllers on cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
+
+ /* Remember what's actually enabled now */
+ u->cgroup_enabled_mask = result_mask;
+
+ migrate_mask = u->cgroup_realized_mask ^ target_mask;
+ }
+
+ /* Keep track that this is now realized */
+ u->cgroup_realized = true;
+ u->cgroup_realized_mask = target_mask;
+
+ /* Migrate processes in controller hierarchies both downwards (enabling) and upwards (disabling).
+ *
+ * Unnecessary controller cgroups are trimmed (after emptied by upward migration).
+ * We perform migration also with whole slices for cases when users don't care about leave
+ * granularity. Since delegated_mask is subset of target mask, we won't trim slice subtree containing
+ * delegated units.
+ */
+ if (cg_all_unified() == 0) {
+ r = cg_migrate_v1_controllers(u->manager->cgroup_supported, migrate_mask, u->cgroup_path, migrate_callback, u);
+ if (r < 0)
+ log_unit_warning_errno(u, r, "Failed to migrate controller cgroups from %s, ignoring: %m", empty_to_root(u->cgroup_path));
+
+ is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
+ r = cg_trim_v1_controllers(u->manager->cgroup_supported, ~target_mask, u->cgroup_path, !is_root_slice);
+ if (r < 0)
+ log_unit_warning_errno(u, r, "Failed to delete controller cgroups %s, ignoring: %m", empty_to_root(u->cgroup_path));
+ }
+
+ /* Set attributes */
+ cgroup_context_apply(u, target_mask, state);
+ cgroup_xattr_apply(u);
+
+ /* For most units we expect that memory monitoring is set up before the unit is started and we won't
+ * touch it after. For PID 1 this is different though, because we couldn't possibly do that given
+ * that PID 1 runs before init.scope is even set up. Hence, whenever init.scope is realized, let's
+ * try to open the memory pressure interface anew. */
+ if (unit_has_name(u, SPECIAL_INIT_SCOPE))
+ (void) manager_setup_memory_pressure_event_source(u->manager);
+
+ return 0;
+}
+
+static int unit_attach_pid_to_cgroup_via_bus(Unit *u, pid_t pid, const char *suffix_path) {
+ _cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
+ char *pp;
+ int r;
+
+ assert(u);
+
+ if (MANAGER_IS_SYSTEM(u->manager))
+ return -EINVAL;
+
+ if (!u->manager->system_bus)
+ return -EIO;
+
+ if (!u->cgroup_path)
+ return -EINVAL;
+
+ /* Determine this unit's cgroup path relative to our cgroup root */
+ pp = path_startswith(u->cgroup_path, u->manager->cgroup_root);
+ if (!pp)
+ return -EINVAL;
+
+ pp = strjoina("/", pp, suffix_path);
+ path_simplify(pp);
+
+ r = bus_call_method(u->manager->system_bus,
+ bus_systemd_mgr,
+ "AttachProcessesToUnit",
+ &error, NULL,
+ "ssau",
+ NULL /* empty unit name means client's unit, i.e. us */, pp, 1, (uint32_t) pid);
+ if (r < 0)
+ return log_unit_debug_errno(u, r, "Failed to attach unit process " PID_FMT " via the bus: %s", pid, bus_error_message(&error, r));
+
+ return 0;
+}
+
+int unit_attach_pids_to_cgroup(Unit *u, Set *pids, const char *suffix_path) {
+ _cleanup_free_ char *joined = NULL;
+ CGroupMask delegated_mask;
+ const char *p;
+ PidRef *pid;
+ int ret, r;
+
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return -EINVAL;
+
+ if (set_isempty(pids))
+ return 0;
+
+ /* Load any custom firewall BPF programs here once to test if they are existing and actually loadable.
+ * Fail here early since later errors in the call chain unit_realize_cgroup to cgroup_context_apply are ignored. */
+ r = bpf_firewall_load_custom(u);
+ if (r < 0)
+ return r;
+
+ r = unit_realize_cgroup(u);
+ if (r < 0)
+ return r;
+
+ if (isempty(suffix_path))
+ p = u->cgroup_path;
+ else {
+ joined = path_join(u->cgroup_path, suffix_path);
+ if (!joined)
+ return -ENOMEM;
+
+ p = joined;
+ }
+
+ delegated_mask = unit_get_delegate_mask(u);
+
+ ret = 0;
+ SET_FOREACH(pid, pids) {
+
+ /* Unfortunately we cannot add pids by pidfd to a cgroup. Hence we have to use PIDs instead,
+ * which of course is racy. Let's shorten the race a bit though, and re-validate the PID
+ * before we use it */
+ r = pidref_verify(pid);
+ if (r < 0) {
+ log_unit_info_errno(u, r, "PID " PID_FMT " vanished before we could move it to target cgroup '%s', skipping: %m", pid->pid, empty_to_root(p));
+ continue;
+ }
+
+ /* First, attach the PID to the main cgroup hierarchy */
+ r = cg_attach(SYSTEMD_CGROUP_CONTROLLER, p, pid->pid);
+ if (r < 0) {
+ bool again = MANAGER_IS_USER(u->manager) && ERRNO_IS_PRIVILEGE(r);
+
+ log_unit_full_errno(u, again ? LOG_DEBUG : LOG_INFO, r,
+ "Couldn't move process "PID_FMT" to%s requested cgroup '%s': %m",
+ pid->pid, again ? " directly" : "", empty_to_root(p));
+
+ if (again) {
+ int z;
+
+ /* If we are in a user instance, and we can't move the process ourselves due
+ * to permission problems, let's ask the system instance about it instead.
+ * Since it's more privileged it might be able to move the process across the
+ * leaves of a subtree whose top node is not owned by us. */
+
+ z = unit_attach_pid_to_cgroup_via_bus(u, pid->pid, suffix_path);
+ if (z < 0)
+ log_unit_info_errno(u, z, "Couldn't move process "PID_FMT" to requested cgroup '%s' (directly or via the system bus): %m", pid->pid, empty_to_root(p));
+ else {
+ if (ret >= 0)
+ ret++; /* Count successful additions */
+ continue; /* When the bus thing worked via the bus we are fully done for this PID. */
+ }
+ }
+
+ if (ret >= 0)
+ ret = r; /* Remember first error */
+
+ continue;
+ } else if (ret >= 0)
+ ret++; /* Count successful additions */
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ continue;
+
+ /* In the legacy hierarchy, attach the process to the request cgroup if possible, and if not to the
+ * innermost realized one */
+
+ for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++) {
+ CGroupMask bit = CGROUP_CONTROLLER_TO_MASK(c);
+ const char *realized;
+
+ if (!(u->manager->cgroup_supported & bit))
+ continue;
+
+ /* If this controller is delegated and realized, honour the caller's request for the cgroup suffix. */
+ if (delegated_mask & u->cgroup_realized_mask & bit) {
+ r = cg_attach(cgroup_controller_to_string(c), p, pid->pid);
+ if (r >= 0)
+ continue; /* Success! */
+
+ log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to requested cgroup %s in controller %s, falling back to unit's cgroup: %m",
+ pid->pid, empty_to_root(p), cgroup_controller_to_string(c));
+ }
+
+ /* So this controller is either not delegate or realized, or something else weird happened. In
+ * that case let's attach the PID at least to the closest cgroup up the tree that is
+ * realized. */
+ realized = unit_get_realized_cgroup_path(u, bit);
+ if (!realized)
+ continue; /* Not even realized in the root slice? Then let's not bother */
+
+ r = cg_attach(cgroup_controller_to_string(c), realized, pid->pid);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to attach PID " PID_FMT " to realized cgroup %s in controller %s, ignoring: %m",
+ pid->pid, realized, cgroup_controller_to_string(c));
+ }
+ }
+
+ return ret;
+}
+
+static bool unit_has_mask_realized(
+ Unit *u,
+ CGroupMask target_mask,
+ CGroupMask enable_mask) {
+
+ assert(u);
+
+ /* Returns true if this unit is fully realized. We check four things:
+ *
+ * 1. Whether the cgroup was created at all
+ * 2. Whether the cgroup was created in all the hierarchies we need it to be created in (in case of cgroup v1)
+ * 3. Whether the cgroup has all the right controllers enabled (in case of cgroup v2)
+ * 4. Whether the invalidation mask is currently zero
+ *
+ * If you wonder why we mask the target realization and enable mask with CGROUP_MASK_V1/CGROUP_MASK_V2: note
+ * that there are three sets of bitmasks: CGROUP_MASK_V1 (for real cgroup v1 controllers), CGROUP_MASK_V2 (for
+ * real cgroup v2 controllers) and CGROUP_MASK_BPF (for BPF-based pseudo-controllers). Now, cgroup_realized_mask
+ * is only matters for cgroup v1 controllers, and cgroup_enabled_mask only used for cgroup v2, and if they
+ * differ in the others, we don't really care. (After all, the cgroup_enabled_mask tracks with controllers are
+ * enabled through cgroup.subtree_control, and since the BPF pseudo-controllers don't show up there, they
+ * simply don't matter. */
+
+ return u->cgroup_realized &&
+ ((u->cgroup_realized_mask ^ target_mask) & CGROUP_MASK_V1) == 0 &&
+ ((u->cgroup_enabled_mask ^ enable_mask) & CGROUP_MASK_V2) == 0 &&
+ u->cgroup_invalidated_mask == 0;
+}
+
+static bool unit_has_mask_disables_realized(
+ Unit *u,
+ CGroupMask target_mask,
+ CGroupMask enable_mask) {
+
+ assert(u);
+
+ /* Returns true if all controllers which should be disabled are indeed disabled.
+ *
+ * Unlike unit_has_mask_realized, we don't care what was enabled, only that anything we want to remove is
+ * already removed. */
+
+ return !u->cgroup_realized ||
+ (FLAGS_SET(u->cgroup_realized_mask, target_mask & CGROUP_MASK_V1) &&
+ FLAGS_SET(u->cgroup_enabled_mask, enable_mask & CGROUP_MASK_V2));
+}
+
+static bool unit_has_mask_enables_realized(
+ Unit *u,
+ CGroupMask target_mask,
+ CGroupMask enable_mask) {
+
+ assert(u);
+
+ /* Returns true if all controllers which should be enabled are indeed enabled.
+ *
+ * Unlike unit_has_mask_realized, we don't care about the controllers that are not present, only that anything
+ * we want to add is already added. */
+
+ return u->cgroup_realized &&
+ ((u->cgroup_realized_mask | target_mask) & CGROUP_MASK_V1) == (u->cgroup_realized_mask & CGROUP_MASK_V1) &&
+ ((u->cgroup_enabled_mask | enable_mask) & CGROUP_MASK_V2) == (u->cgroup_enabled_mask & CGROUP_MASK_V2);
+}
+
+void unit_add_to_cgroup_realize_queue(Unit *u) {
+ assert(u);
+
+ if (u->in_cgroup_realize_queue)
+ return;
+
+ LIST_APPEND(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
+ u->in_cgroup_realize_queue = true;
+}
+
+static void unit_remove_from_cgroup_realize_queue(Unit *u) {
+ assert(u);
+
+ if (!u->in_cgroup_realize_queue)
+ return;
+
+ LIST_REMOVE(cgroup_realize_queue, u->manager->cgroup_realize_queue, u);
+ u->in_cgroup_realize_queue = false;
+}
+
+/* Controllers can only be enabled breadth-first, from the root of the
+ * hierarchy downwards to the unit in question. */
+static int unit_realize_cgroup_now_enable(Unit *u, ManagerState state) {
+ CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
+ Unit *slice;
+ int r;
+
+ assert(u);
+
+ /* First go deal with this unit's parent, or we won't be able to enable
+ * any new controllers at this layer. */
+ slice = UNIT_GET_SLICE(u);
+ if (slice) {
+ r = unit_realize_cgroup_now_enable(slice, state);
+ if (r < 0)
+ return r;
+ }
+
+ target_mask = unit_get_target_mask(u);
+ enable_mask = unit_get_enable_mask(u);
+
+ /* We can only enable in this direction, don't try to disable anything.
+ */
+ if (unit_has_mask_enables_realized(u, target_mask, enable_mask))
+ return 0;
+
+ new_target_mask = u->cgroup_realized_mask | target_mask;
+ new_enable_mask = u->cgroup_enabled_mask | enable_mask;
+
+ return unit_update_cgroup(u, new_target_mask, new_enable_mask, state);
+}
+
+/* Controllers can only be disabled depth-first, from the leaves of the
+ * hierarchy upwards to the unit in question. */
+static int unit_realize_cgroup_now_disable(Unit *u, ManagerState state) {
+ Unit *m;
+
+ assert(u);
+
+ if (u->type != UNIT_SLICE)
+ return 0;
+
+ UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
+ CGroupMask target_mask, enable_mask, new_target_mask, new_enable_mask;
+ int r;
+
+ /* The cgroup for this unit might not actually be fully realised yet, in which case it isn't
+ * holding any controllers open anyway. */
+ if (!m->cgroup_realized)
+ continue;
+
+ /* We must disable those below us first in order to release the controller. */
+ if (m->type == UNIT_SLICE)
+ (void) unit_realize_cgroup_now_disable(m, state);
+
+ target_mask = unit_get_target_mask(m);
+ enable_mask = unit_get_enable_mask(m);
+
+ /* We can only disable in this direction, don't try to enable anything. */
+ if (unit_has_mask_disables_realized(m, target_mask, enable_mask))
+ continue;
+
+ new_target_mask = m->cgroup_realized_mask & target_mask;
+ new_enable_mask = m->cgroup_enabled_mask & enable_mask;
+
+ r = unit_update_cgroup(m, new_target_mask, new_enable_mask, state);
+ if (r < 0)
+ return r;
+ }
+
+ return 0;
+}
+
+/* Check if necessary controllers and attributes for a unit are in place.
+ *
+ * - If so, do nothing.
+ * - If not, create paths, move processes over, and set attributes.
+ *
+ * Controllers can only be *enabled* in a breadth-first way, and *disabled* in
+ * a depth-first way. As such the process looks like this:
+ *
+ * Suppose we have a cgroup hierarchy which looks like this:
+ *
+ * root
+ * / \
+ * / \
+ * / \
+ * a b
+ * / \ / \
+ * / \ / \
+ * c d e f
+ * / \ / \ / \ / \
+ * h i j k l m n o
+ *
+ * 1. We want to realise cgroup "d" now.
+ * 2. cgroup "a" has DisableControllers=cpu in the associated unit.
+ * 3. cgroup "k" just started requesting the memory controller.
+ *
+ * To make this work we must do the following in order:
+ *
+ * 1. Disable CPU controller in k, j
+ * 2. Disable CPU controller in d
+ * 3. Enable memory controller in root
+ * 4. Enable memory controller in a
+ * 5. Enable memory controller in d
+ * 6. Enable memory controller in k
+ *
+ * Notice that we need to touch j in one direction, but not the other. We also
+ * don't go beyond d when disabling -- it's up to "a" to get realized if it
+ * wants to disable further. The basic rules are therefore:
+ *
+ * - If you're disabling something, you need to realise all of the cgroups from
+ * your recursive descendants to the root. This starts from the leaves.
+ * - If you're enabling something, you need to realise from the root cgroup
+ * downwards, but you don't need to iterate your recursive descendants.
+ *
+ * Returns 0 on success and < 0 on failure. */
+static int unit_realize_cgroup_now(Unit *u, ManagerState state) {
+ CGroupMask target_mask, enable_mask;
+ Unit *slice;
+ int r;
+
+ assert(u);
+
+ unit_remove_from_cgroup_realize_queue(u);
+
+ target_mask = unit_get_target_mask(u);
+ enable_mask = unit_get_enable_mask(u);
+
+ if (unit_has_mask_realized(u, target_mask, enable_mask))
+ return 0;
+
+ /* Disable controllers below us, if there are any */
+ r = unit_realize_cgroup_now_disable(u, state);
+ if (r < 0)
+ return r;
+
+ /* Enable controllers above us, if there are any */
+ slice = UNIT_GET_SLICE(u);
+ if (slice) {
+ r = unit_realize_cgroup_now_enable(slice, state);
+ if (r < 0)
+ return r;
+ }
+
+ /* Now actually deal with the cgroup we were trying to realise and set attributes */
+ r = unit_update_cgroup(u, target_mask, enable_mask, state);
+ if (r < 0)
+ return r;
+
+ /* Now, reset the invalidation mask */
+ u->cgroup_invalidated_mask = 0;
+ return 0;
+}
+
+unsigned manager_dispatch_cgroup_realize_queue(Manager *m) {
+ ManagerState state;
+ unsigned n = 0;
+ Unit *i;
+ int r;
+
+ assert(m);
+
+ state = manager_state(m);
+
+ while ((i = m->cgroup_realize_queue)) {
+ assert(i->in_cgroup_realize_queue);
+
+ if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(i))) {
+ /* Maybe things changed, and the unit is not actually active anymore? */
+ unit_remove_from_cgroup_realize_queue(i);
+ continue;
+ }
+
+ r = unit_realize_cgroup_now(i, state);
+ if (r < 0)
+ log_warning_errno(r, "Failed to realize cgroups for queued unit %s, ignoring: %m", i->id);
+
+ n++;
+ }
+
+ return n;
+}
+
+void unit_add_family_to_cgroup_realize_queue(Unit *u) {
+ assert(u);
+ assert(u->type == UNIT_SLICE);
+
+ /* Family of a unit for is defined as (immediate) children of the unit and immediate children of all
+ * its ancestors.
+ *
+ * Ideally we would enqueue ancestor path only (bottom up). However, on cgroup-v1 scheduling becomes
+ * very weird if two units that own processes reside in the same slice, but one is realized in the
+ * "cpu" hierarchy and one is not (for example because one has CPUWeight= set and the other does
+ * not), because that means individual processes need to be scheduled against whole cgroups. Let's
+ * avoid this asymmetry by always ensuring that siblings of a unit are always realized in their v1
+ * controller hierarchies too (if unit requires the controller to be realized).
+ *
+ * The function must invalidate cgroup_members_mask of all ancestors in order to calculate up to date
+ * masks. */
+
+ do {
+ Unit *m;
+
+ /* Children of u likely changed when we're called */
+ u->cgroup_members_mask_valid = false;
+
+ UNIT_FOREACH_DEPENDENCY(m, u, UNIT_ATOM_SLICE_OF) {
+
+ /* No point in doing cgroup application for units without active processes. */
+ if (UNIT_IS_INACTIVE_OR_FAILED(unit_active_state(m)))
+ continue;
+
+ /* We only enqueue siblings if they were realized once at least, in the main
+ * hierarchy. */
+ if (!m->cgroup_realized)
+ continue;
+
+ /* If the unit doesn't need any new controllers and has current ones
+ * realized, it doesn't need any changes. */
+ if (unit_has_mask_realized(m,
+ unit_get_target_mask(m),
+ unit_get_enable_mask(m)))
+ continue;
+
+ unit_add_to_cgroup_realize_queue(m);
+ }
+
+ /* Parent comes after children */
+ unit_add_to_cgroup_realize_queue(u);
+
+ u = UNIT_GET_SLICE(u);
+ } while (u);
+}
+
+int unit_realize_cgroup(Unit *u) {
+ Unit *slice;
+
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return 0;
+
+ /* So, here's the deal: when realizing the cgroups for this unit, we need to first create all
+ * parents, but there's more actually: for the weight-based controllers we also need to make sure
+ * that all our siblings (i.e. units that are in the same slice as we are) have cgroups, too. On the
+ * other hand, when a controller is removed from realized set, it may become unnecessary in siblings
+ * and ancestors and they should be (de)realized too.
+ *
+ * This call will defer work on the siblings and derealized ancestors to the next event loop
+ * iteration and synchronously creates the parent cgroups (unit_realize_cgroup_now). */
+
+ slice = UNIT_GET_SLICE(u);
+ if (slice)
+ unit_add_family_to_cgroup_realize_queue(slice);
+
+ /* And realize this one now (and apply the values) */
+ return unit_realize_cgroup_now(u, manager_state(u->manager));
+}
+
+void unit_release_cgroup(Unit *u) {
+ assert(u);
+
+ /* Forgets all cgroup details for this cgroup — but does *not* destroy the cgroup. This is hence OK to call
+ * when we close down everything for reexecution, where we really want to leave the cgroup in place. */
+
+ if (u->cgroup_path) {
+ (void) hashmap_remove(u->manager->cgroup_unit, u->cgroup_path);
+ u->cgroup_path = mfree(u->cgroup_path);
+ }
+
+ if (u->cgroup_control_inotify_wd >= 0) {
+ if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_control_inotify_wd) < 0)
+ log_unit_debug_errno(u, errno, "Failed to remove cgroup control inotify watch %i for %s, ignoring: %m", u->cgroup_control_inotify_wd, u->id);
+
+ (void) hashmap_remove(u->manager->cgroup_control_inotify_wd_unit, INT_TO_PTR(u->cgroup_control_inotify_wd));
+ u->cgroup_control_inotify_wd = -1;
+ }
+
+ if (u->cgroup_memory_inotify_wd >= 0) {
+ if (inotify_rm_watch(u->manager->cgroup_inotify_fd, u->cgroup_memory_inotify_wd) < 0)
+ log_unit_debug_errno(u, errno, "Failed to remove cgroup memory inotify watch %i for %s, ignoring: %m", u->cgroup_memory_inotify_wd, u->id);
+
+ (void) hashmap_remove(u->manager->cgroup_memory_inotify_wd_unit, INT_TO_PTR(u->cgroup_memory_inotify_wd));
+ u->cgroup_memory_inotify_wd = -1;
+ }
+}
+
+bool unit_maybe_release_cgroup(Unit *u) {
+ int r;
+
+ assert(u);
+
+ if (!u->cgroup_path)
+ return true;
+
+ /* Don't release the cgroup if there are still processes under it. If we get notified later when all the
+ * processes exit (e.g. the processes were in D-state and exited after the unit was marked as failed)
+ * we need the cgroup paths to continue to be tracked by the manager so they can be looked up and cleaned
+ * up later. */
+ r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Error checking if the cgroup is recursively empty, ignoring: %m");
+ else if (r == 1) {
+ unit_release_cgroup(u);
+ return true;
+ }
+
+ return false;
+}
+
+void unit_prune_cgroup(Unit *u) {
+ int r;
+ bool is_root_slice;
+
+ assert(u);
+
+ /* Removes the cgroup, if empty and possible, and stops watching it. */
+
+ if (!u->cgroup_path)
+ return;
+
+ (void) unit_get_cpu_usage(u, NULL); /* Cache the last CPU usage value before we destroy the cgroup */
+
+#if BPF_FRAMEWORK
+ (void) lsm_bpf_cleanup(u); /* Remove cgroup from the global LSM BPF map */
+#endif
+
+ unit_modify_nft_set(u, /* add = */ false);
+
+ is_root_slice = unit_has_name(u, SPECIAL_ROOT_SLICE);
+
+ r = cg_trim_everywhere(u->manager->cgroup_supported, u->cgroup_path, !is_root_slice);
+ if (r < 0)
+ /* One reason we could have failed here is, that the cgroup still contains a process.
+ * However, if the cgroup becomes removable at a later time, it might be removed when
+ * the containing slice is stopped. So even if we failed now, this unit shouldn't assume
+ * that the cgroup is still realized the next time it is started. Do not return early
+ * on error, continue cleanup. */
+ log_unit_full_errno(u, r == -EBUSY ? LOG_DEBUG : LOG_WARNING, r, "Failed to destroy cgroup %s, ignoring: %m", empty_to_root(u->cgroup_path));
+
+ if (is_root_slice)
+ return;
+
+ if (!unit_maybe_release_cgroup(u)) /* Returns true if the cgroup was released */
+ return;
+
+ u->cgroup_realized = false;
+ u->cgroup_realized_mask = 0;
+ u->cgroup_enabled_mask = 0;
+
+ u->bpf_device_control_installed = bpf_program_free(u->bpf_device_control_installed);
+}
+
+int unit_search_main_pid(Unit *u, PidRef *ret) {
+ _cleanup_(pidref_done) PidRef pidref = PIDREF_NULL;
+ _cleanup_fclose_ FILE *f = NULL;
+ int r;
+
+ assert(u);
+ assert(ret);
+
+ if (!u->cgroup_path)
+ return -ENXIO;
+
+ r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, &f);
+ if (r < 0)
+ return r;
+
+ for (;;) {
+ _cleanup_(pidref_done) PidRef npidref = PIDREF_NULL;
+
+ r = cg_read_pidref(f, &npidref);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ break;
+
+ if (pidref_equal(&pidref, &npidref)) /* seen already, cgroupfs reports duplicates! */
+ continue;
+
+ if (pidref_is_my_child(&npidref) <= 0) /* ignore processes further down the tree */
+ continue;
+
+ if (pidref_is_set(&pidref) != 0)
+ /* Dang, there's more than one daemonized PID in this group, so we don't know what
+ * process is the main process. */
+ return -ENODATA;
+
+ pidref = TAKE_PIDREF(npidref);
+ }
+
+ if (!pidref_is_set(&pidref))
+ return -ENODATA;
+
+ *ret = TAKE_PIDREF(pidref);
+ return 0;
+}
+
+static int unit_watch_pids_in_path(Unit *u, const char *path) {
+ _cleanup_closedir_ DIR *d = NULL;
+ _cleanup_fclose_ FILE *f = NULL;
+ int ret = 0, r;
+
+ assert(u);
+ assert(path);
+
+ r = cg_enumerate_processes(SYSTEMD_CGROUP_CONTROLLER, path, &f);
+ if (r < 0)
+ RET_GATHER(ret, r);
+ else {
+ for (;;) {
+ _cleanup_(pidref_done) PidRef pid = PIDREF_NULL;
+
+ r = cg_read_pidref(f, &pid);
+ if (r == 0)
+ break;
+ if (r < 0) {
+ RET_GATHER(ret, r);
+ break;
+ }
+
+ RET_GATHER(ret, unit_watch_pidref(u, &pid, /* exclusive= */ false));
+ }
+ }
+
+ r = cg_enumerate_subgroups(SYSTEMD_CGROUP_CONTROLLER, path, &d);
+ if (r < 0)
+ RET_GATHER(ret, r);
+ else {
+ for (;;) {
+ _cleanup_free_ char *fn = NULL, *p = NULL;
+
+ r = cg_read_subgroup(d, &fn);
+ if (r == 0)
+ break;
+ if (r < 0) {
+ RET_GATHER(ret, r);
+ break;
+ }
+
+ p = path_join(empty_to_root(path), fn);
+ if (!p)
+ return -ENOMEM;
+
+ RET_GATHER(ret, unit_watch_pids_in_path(u, p));
+ }
+ }
+
+ return ret;
+}
+
+int unit_synthesize_cgroup_empty_event(Unit *u) {
+ int r;
+
+ assert(u);
+
+ /* Enqueue a synthetic cgroup empty event if this unit doesn't watch any PIDs anymore. This is compatibility
+ * support for non-unified systems where notifications aren't reliable, and hence need to take whatever we can
+ * get as notification source as soon as we stopped having any useful PIDs to watch for. */
+
+ if (!u->cgroup_path)
+ return -ENOENT;
+
+ r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
+ if (r < 0)
+ return r;
+ if (r > 0) /* On unified we have reliable notifications, and don't need this */
+ return 0;
+
+ if (!set_isempty(u->pids))
+ return 0;
+
+ unit_add_to_cgroup_empty_queue(u);
+ return 0;
+}
+
+int unit_watch_all_pids(Unit *u) {
+ int r;
+
+ assert(u);
+
+ /* Adds all PIDs from our cgroup to the set of PIDs we
+ * watch. This is a fallback logic for cases where we do not
+ * get reliable cgroup empty notifications: we try to use
+ * SIGCHLD as replacement. */
+
+ if (!u->cgroup_path)
+ return -ENOENT;
+
+ r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
+ if (r < 0)
+ return r;
+ if (r > 0) /* On unified we can use proper notifications */
+ return 0;
+
+ return unit_watch_pids_in_path(u, u->cgroup_path);
+}
+
+static int on_cgroup_empty_event(sd_event_source *s, void *userdata) {
+ Manager *m = ASSERT_PTR(userdata);
+ Unit *u;
+ int r;
+
+ assert(s);
+
+ u = m->cgroup_empty_queue;
+ if (!u)
+ return 0;
+
+ assert(u->in_cgroup_empty_queue);
+ u->in_cgroup_empty_queue = false;
+ LIST_REMOVE(cgroup_empty_queue, m->cgroup_empty_queue, u);
+
+ if (m->cgroup_empty_queue) {
+ /* More stuff queued, let's make sure we remain enabled */
+ r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
+ if (r < 0)
+ log_debug_errno(r, "Failed to reenable cgroup empty event source, ignoring: %m");
+ }
+
+ /* Update state based on OOM kills before we notify about cgroup empty event */
+ (void) unit_check_oom(u);
+ (void) unit_check_oomd_kill(u);
+
+ unit_add_to_gc_queue(u);
+
+ if (IN_SET(unit_active_state(u), UNIT_INACTIVE, UNIT_FAILED))
+ unit_prune_cgroup(u);
+ else if (UNIT_VTABLE(u)->notify_cgroup_empty)
+ UNIT_VTABLE(u)->notify_cgroup_empty(u);
+
+ return 0;
+}
+
+void unit_add_to_cgroup_empty_queue(Unit *u) {
+ int r;
+
+ assert(u);
+
+ /* Note that there are four different ways how cgroup empty events reach us:
+ *
+ * 1. On the unified hierarchy we get an inotify event on the cgroup
+ *
+ * 2. On the legacy hierarchy, when running in system mode, we get a datagram on the cgroup agent socket
+ *
+ * 3. On the legacy hierarchy, when running in user mode, we get a D-Bus signal on the system bus
+ *
+ * 4. On the legacy hierarchy, in service units we start watching all processes of the cgroup for SIGCHLD as
+ * soon as we get one SIGCHLD, to deal with unreliable cgroup notifications.
+ *
+ * Regardless which way we got the notification, we'll verify it here, and then add it to a separate
+ * queue. This queue will be dispatched at a lower priority than the SIGCHLD handler, so that we always use
+ * SIGCHLD if we can get it first, and only use the cgroup empty notifications if there's no SIGCHLD pending
+ * (which might happen if the cgroup doesn't contain processes that are our own child, which is typically the
+ * case for scope units). */
+
+ if (u->in_cgroup_empty_queue)
+ return;
+
+ /* Let's verify that the cgroup is really empty */
+ if (!u->cgroup_path)
+ return;
+
+ r = cg_is_empty_recursive(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path);
+ if (r < 0) {
+ log_unit_debug_errno(u, r, "Failed to determine whether cgroup %s is empty: %m", empty_to_root(u->cgroup_path));
+ return;
+ }
+ if (r == 0)
+ return;
+
+ LIST_PREPEND(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
+ u->in_cgroup_empty_queue = true;
+
+ /* Trigger the defer event */
+ r = sd_event_source_set_enabled(u->manager->cgroup_empty_event_source, SD_EVENT_ONESHOT);
+ if (r < 0)
+ log_debug_errno(r, "Failed to enable cgroup empty event source: %m");
+}
+
+static void unit_remove_from_cgroup_empty_queue(Unit *u) {
+ assert(u);
+
+ if (!u->in_cgroup_empty_queue)
+ return;
+
+ LIST_REMOVE(cgroup_empty_queue, u->manager->cgroup_empty_queue, u);
+ u->in_cgroup_empty_queue = false;
+}
+
+int unit_check_oomd_kill(Unit *u) {
+ _cleanup_free_ char *value = NULL;
+ bool increased;
+ uint64_t n = 0;
+ int r;
+
+ if (!u->cgroup_path)
+ return 0;
+
+ r = cg_all_unified();
+ if (r < 0)
+ return log_unit_debug_errno(u, r, "Couldn't determine whether we are in all unified mode: %m");
+ else if (r == 0)
+ return 0;
+
+ r = cg_get_xattr_malloc(u->cgroup_path, "user.oomd_ooms", &value);
+ if (r < 0 && !ERRNO_IS_XATTR_ABSENT(r))
+ return r;
+
+ if (!isempty(value)) {
+ r = safe_atou64(value, &n);
+ if (r < 0)
+ return r;
+ }
+
+ increased = n > u->managed_oom_kill_last;
+ u->managed_oom_kill_last = n;
+
+ if (!increased)
+ return 0;
+
+ n = 0;
+ value = mfree(value);
+ r = cg_get_xattr_malloc(u->cgroup_path, "user.oomd_kill", &value);
+ if (r >= 0 && !isempty(value))
+ (void) safe_atou64(value, &n);
+
+ if (n > 0)
+ log_unit_struct(u, LOG_NOTICE,
+ "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
+ LOG_UNIT_INVOCATION_ID(u),
+ LOG_UNIT_MESSAGE(u, "systemd-oomd killed %"PRIu64" process(es) in this unit.", n),
+ "N_PROCESSES=%" PRIu64, n);
+ else
+ log_unit_struct(u, LOG_NOTICE,
+ "MESSAGE_ID=" SD_MESSAGE_UNIT_OOMD_KILL_STR,
+ LOG_UNIT_INVOCATION_ID(u),
+ LOG_UNIT_MESSAGE(u, "systemd-oomd killed some process(es) in this unit."));
+
+ unit_notify_cgroup_oom(u, /* ManagedOOM= */ true);
+
+ return 1;
+}
+
+int unit_check_oom(Unit *u) {
+ _cleanup_free_ char *oom_kill = NULL;
+ bool increased;
+ uint64_t c;
+ int r;
+
+ if (!u->cgroup_path)
+ return 0;
+
+ r = cg_get_keyed_attribute("memory", u->cgroup_path, "memory.events", STRV_MAKE("oom_kill"), &oom_kill);
+ if (IN_SET(r, -ENOENT, -ENXIO)) /* Handle gracefully if cgroup or oom_kill attribute don't exist */
+ c = 0;
+ else if (r < 0)
+ return log_unit_debug_errno(u, r, "Failed to read oom_kill field of memory.events cgroup attribute: %m");
+ else {
+ r = safe_atou64(oom_kill, &c);
+ if (r < 0)
+ return log_unit_debug_errno(u, r, "Failed to parse oom_kill field: %m");
+ }
+
+ increased = c > u->oom_kill_last;
+ u->oom_kill_last = c;
+
+ if (!increased)
+ return 0;
+
+ log_unit_struct(u, LOG_NOTICE,
+ "MESSAGE_ID=" SD_MESSAGE_UNIT_OUT_OF_MEMORY_STR,
+ LOG_UNIT_INVOCATION_ID(u),
+ LOG_UNIT_MESSAGE(u, "A process of this unit has been killed by the OOM killer."));
+
+ unit_notify_cgroup_oom(u, /* ManagedOOM= */ false);
+
+ return 1;
+}
+
+static int on_cgroup_oom_event(sd_event_source *s, void *userdata) {
+ Manager *m = ASSERT_PTR(userdata);
+ Unit *u;
+ int r;
+
+ assert(s);
+
+ u = m->cgroup_oom_queue;
+ if (!u)
+ return 0;
+
+ assert(u->in_cgroup_oom_queue);
+ u->in_cgroup_oom_queue = false;
+ LIST_REMOVE(cgroup_oom_queue, m->cgroup_oom_queue, u);
+
+ if (m->cgroup_oom_queue) {
+ /* More stuff queued, let's make sure we remain enabled */
+ r = sd_event_source_set_enabled(s, SD_EVENT_ONESHOT);
+ if (r < 0)
+ log_debug_errno(r, "Failed to reenable cgroup oom event source, ignoring: %m");
+ }
+
+ (void) unit_check_oom(u);
+ unit_add_to_gc_queue(u);
+
+ return 0;
+}
+
+static void unit_add_to_cgroup_oom_queue(Unit *u) {
+ int r;
+
+ assert(u);
+
+ if (u->in_cgroup_oom_queue)
+ return;
+ if (!u->cgroup_path)
+ return;
+
+ LIST_PREPEND(cgroup_oom_queue, u->manager->cgroup_oom_queue, u);
+ u->in_cgroup_oom_queue = true;
+
+ /* Trigger the defer event */
+ if (!u->manager->cgroup_oom_event_source) {
+ _cleanup_(sd_event_source_unrefp) sd_event_source *s = NULL;
+
+ r = sd_event_add_defer(u->manager->event, &s, on_cgroup_oom_event, u->manager);
+ if (r < 0) {
+ log_error_errno(r, "Failed to create cgroup oom event source: %m");
+ return;
+ }
+
+ r = sd_event_source_set_priority(s, SD_EVENT_PRIORITY_NORMAL-8);
+ if (r < 0) {
+ log_error_errno(r, "Failed to set priority of cgroup oom event source: %m");
+ return;
+ }
+
+ (void) sd_event_source_set_description(s, "cgroup-oom");
+ u->manager->cgroup_oom_event_source = TAKE_PTR(s);
+ }
+
+ r = sd_event_source_set_enabled(u->manager->cgroup_oom_event_source, SD_EVENT_ONESHOT);
+ if (r < 0)
+ log_error_errno(r, "Failed to enable cgroup oom event source: %m");
+}
+
+static int unit_check_cgroup_events(Unit *u) {
+ char *values[2] = {};
+ int r;
+
+ assert(u);
+
+ if (!u->cgroup_path)
+ return 0;
+
+ r = cg_get_keyed_attribute_graceful(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.events",
+ STRV_MAKE("populated", "frozen"), values);
+ if (r < 0)
+ return r;
+
+ /* The cgroup.events notifications can be merged together so act as we saw the given state for the
+ * first time. The functions we call to handle given state are idempotent, which makes them
+ * effectively remember the previous state. */
+ if (values[0]) {
+ if (streq(values[0], "1"))
+ unit_remove_from_cgroup_empty_queue(u);
+ else
+ unit_add_to_cgroup_empty_queue(u);
+ }
+
+ /* Disregard freezer state changes due to operations not initiated by us */
+ if (values[1] && IN_SET(u->freezer_state, FREEZER_FREEZING, FREEZER_THAWING)) {
+ if (streq(values[1], "0"))
+ unit_thawed(u);
+ else
+ unit_frozen(u);
+ }
+
+ free(values[0]);
+ free(values[1]);
+
+ return 0;
+}
+
+static int on_cgroup_inotify_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
+ Manager *m = ASSERT_PTR(userdata);
+
+ assert(s);
+ assert(fd >= 0);
+
+ for (;;) {
+ union inotify_event_buffer buffer;
+ ssize_t l;
+
+ l = read(fd, &buffer, sizeof(buffer));
+ if (l < 0) {
+ if (ERRNO_IS_TRANSIENT(errno))
+ return 0;
+
+ return log_error_errno(errno, "Failed to read control group inotify events: %m");
+ }
+
+ FOREACH_INOTIFY_EVENT_WARN(e, buffer, l) {
+ Unit *u;
+
+ if (e->wd < 0)
+ /* Queue overflow has no watch descriptor */
+ continue;
+
+ if (e->mask & IN_IGNORED)
+ /* The watch was just removed */
+ continue;
+
+ /* Note that inotify might deliver events for a watch even after it was removed,
+ * because it was queued before the removal. Let's ignore this here safely. */
+
+ u = hashmap_get(m->cgroup_control_inotify_wd_unit, INT_TO_PTR(e->wd));
+ if (u)
+ unit_check_cgroup_events(u);
+
+ u = hashmap_get(m->cgroup_memory_inotify_wd_unit, INT_TO_PTR(e->wd));
+ if (u)
+ unit_add_to_cgroup_oom_queue(u);
+ }
+ }
+}
+
+static int cg_bpf_mask_supported(CGroupMask *ret) {
+ CGroupMask mask = 0;
+ int r;
+
+ /* BPF-based firewall */
+ r = bpf_firewall_supported();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ mask |= CGROUP_MASK_BPF_FIREWALL;
+
+ /* BPF-based device access control */
+ r = bpf_devices_supported();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ mask |= CGROUP_MASK_BPF_DEVICES;
+
+ /* BPF pinned prog */
+ r = bpf_foreign_supported();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ mask |= CGROUP_MASK_BPF_FOREIGN;
+
+ /* BPF-based bind{4|6} hooks */
+ r = bpf_socket_bind_supported();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ mask |= CGROUP_MASK_BPF_SOCKET_BIND;
+
+ /* BPF-based cgroup_skb/{egress|ingress} hooks */
+ r = restrict_network_interfaces_supported();
+ if (r < 0)
+ return r;
+ if (r > 0)
+ mask |= CGROUP_MASK_BPF_RESTRICT_NETWORK_INTERFACES;
+
+ *ret = mask;
+ return 0;
+}
+
+int manager_setup_cgroup(Manager *m) {
+ _cleanup_free_ char *path = NULL;
+ const char *scope_path;
+ int r, all_unified;
+ CGroupMask mask;
+ char *e;
+
+ assert(m);
+
+ /* 1. Determine hierarchy */
+ m->cgroup_root = mfree(m->cgroup_root);
+ r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, 0, &m->cgroup_root);
+ if (r < 0)
+ return log_error_errno(r, "Cannot determine cgroup we are running in: %m");
+
+ /* Chop off the init scope, if we are already located in it */
+ e = endswith(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
+
+ /* LEGACY: Also chop off the system slice if we are in
+ * it. This is to support live upgrades from older systemd
+ * versions where PID 1 was moved there. Also see
+ * cg_get_root_path(). */
+ if (!e && MANAGER_IS_SYSTEM(m)) {
+ e = endswith(m->cgroup_root, "/" SPECIAL_SYSTEM_SLICE);
+ if (!e)
+ e = endswith(m->cgroup_root, "/system"); /* even more legacy */
+ }
+ if (e)
+ *e = 0;
+
+ /* And make sure to store away the root value without trailing slash, even for the root dir, so that we can
+ * easily prepend it everywhere. */
+ delete_trailing_chars(m->cgroup_root, "/");
+
+ /* 2. Show data */
+ r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, NULL, &path);
+ if (r < 0)
+ return log_error_errno(r, "Cannot find cgroup mount point: %m");
+
+ r = cg_unified();
+ if (r < 0)
+ return log_error_errno(r, "Couldn't determine if we are running in the unified hierarchy: %m");
+
+ all_unified = cg_all_unified();
+ if (all_unified < 0)
+ return log_error_errno(all_unified, "Couldn't determine whether we are in all unified mode: %m");
+ if (all_unified > 0)
+ log_debug("Unified cgroup hierarchy is located at %s.", path);
+ else {
+ r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine whether systemd's own controller is in unified mode: %m");
+ if (r > 0)
+ log_debug("Unified cgroup hierarchy is located at %s. Controllers are on legacy hierarchies.", path);
+ else
+ log_debug("Using cgroup controller " SYSTEMD_CGROUP_CONTROLLER_LEGACY ". File system hierarchy is at %s.", path);
+ }
+
+ /* 3. Allocate cgroup empty defer event source */
+ m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
+ r = sd_event_add_defer(m->event, &m->cgroup_empty_event_source, on_cgroup_empty_event, m);
+ if (r < 0)
+ return log_error_errno(r, "Failed to create cgroup empty event source: %m");
+
+ /* Schedule cgroup empty checks early, but after having processed service notification messages or
+ * SIGCHLD signals, so that a cgroup running empty is always just the last safety net of
+ * notification, and we collected the metadata the notification and SIGCHLD stuff offers first. */
+ r = sd_event_source_set_priority(m->cgroup_empty_event_source, SD_EVENT_PRIORITY_NORMAL-5);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set priority of cgroup empty event source: %m");
+
+ r = sd_event_source_set_enabled(m->cgroup_empty_event_source, SD_EVENT_OFF);
+ if (r < 0)
+ return log_error_errno(r, "Failed to disable cgroup empty event source: %m");
+
+ (void) sd_event_source_set_description(m->cgroup_empty_event_source, "cgroup-empty");
+
+ /* 4. Install notifier inotify object, or agent */
+ if (cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER) > 0) {
+
+ /* In the unified hierarchy we can get cgroup empty notifications via inotify. */
+
+ m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
+ safe_close(m->cgroup_inotify_fd);
+
+ m->cgroup_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
+ if (m->cgroup_inotify_fd < 0)
+ return log_error_errno(errno, "Failed to create control group inotify object: %m");
+
+ r = sd_event_add_io(m->event, &m->cgroup_inotify_event_source, m->cgroup_inotify_fd, EPOLLIN, on_cgroup_inotify_event, m);
+ if (r < 0)
+ return log_error_errno(r, "Failed to watch control group inotify object: %m");
+
+ /* Process cgroup empty notifications early. Note that when this event is dispatched it'll
+ * just add the unit to a cgroup empty queue, hence let's run earlier than that. Also see
+ * handling of cgroup agent notifications, for the classic cgroup hierarchy support. */
+ r = sd_event_source_set_priority(m->cgroup_inotify_event_source, SD_EVENT_PRIORITY_NORMAL-9);
+ if (r < 0)
+ return log_error_errno(r, "Failed to set priority of inotify event source: %m");
+
+ (void) sd_event_source_set_description(m->cgroup_inotify_event_source, "cgroup-inotify");
+
+ } else if (MANAGER_IS_SYSTEM(m) && manager_owns_host_root_cgroup(m) && !MANAGER_IS_TEST_RUN(m)) {
+
+ /* On the legacy hierarchy we only get notifications via cgroup agents. (Which isn't really reliable,
+ * since it does not generate events when control groups with children run empty. */
+
+ r = cg_install_release_agent(SYSTEMD_CGROUP_CONTROLLER, SYSTEMD_CGROUPS_AGENT_PATH);
+ if (r < 0)
+ log_warning_errno(r, "Failed to install release agent, ignoring: %m");
+ else if (r > 0)
+ log_debug("Installed release agent.");
+ else if (r == 0)
+ log_debug("Release agent already installed.");
+ }
+
+ /* 5. Make sure we are in the special "init.scope" unit in the root slice. */
+ scope_path = strjoina(m->cgroup_root, "/" SPECIAL_INIT_SCOPE);
+ r = cg_create_and_attach(SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
+ if (r >= 0) {
+ /* Also, move all other userspace processes remaining in the root cgroup into that scope. */
+ r = cg_migrate(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, SYSTEMD_CGROUP_CONTROLLER, scope_path, 0);
+ if (r < 0)
+ log_warning_errno(r, "Couldn't move remaining userspace processes, ignoring: %m");
+
+ /* 6. And pin it, so that it cannot be unmounted */
+ safe_close(m->pin_cgroupfs_fd);
+ m->pin_cgroupfs_fd = open(path, O_RDONLY|O_CLOEXEC|O_DIRECTORY|O_NOCTTY|O_NONBLOCK);
+ if (m->pin_cgroupfs_fd < 0)
+ return log_error_errno(errno, "Failed to open pin file: %m");
+
+ } else if (!MANAGER_IS_TEST_RUN(m))
+ return log_error_errno(r, "Failed to create %s control group: %m", scope_path);
+
+ /* 7. Always enable hierarchical support if it exists... */
+ if (!all_unified && !MANAGER_IS_TEST_RUN(m))
+ (void) cg_set_attribute("memory", "/", "memory.use_hierarchy", "1");
+
+ /* 8. Figure out which controllers are supported */
+ r = cg_mask_supported_subtree(m->cgroup_root, &m->cgroup_supported);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine supported controllers: %m");
+
+ /* 9. Figure out which bpf-based pseudo-controllers are supported */
+ r = cg_bpf_mask_supported(&mask);
+ if (r < 0)
+ return log_error_errno(r, "Failed to determine supported bpf-based pseudo-controllers: %m");
+ m->cgroup_supported |= mask;
+
+ /* 10. Log which controllers are supported */
+ for (CGroupController c = 0; c < _CGROUP_CONTROLLER_MAX; c++)
+ log_debug("Controller '%s' supported: %s", cgroup_controller_to_string(c),
+ yes_no(m->cgroup_supported & CGROUP_CONTROLLER_TO_MASK(c)));
+
+ return 0;
+}
+
+void manager_shutdown_cgroup(Manager *m, bool delete) {
+ assert(m);
+
+ /* We can't really delete the group, since we are in it. But
+ * let's trim it. */
+ if (delete && m->cgroup_root && !FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
+ (void) cg_trim(SYSTEMD_CGROUP_CONTROLLER, m->cgroup_root, false);
+
+ m->cgroup_empty_event_source = sd_event_source_disable_unref(m->cgroup_empty_event_source);
+
+ m->cgroup_control_inotify_wd_unit = hashmap_free(m->cgroup_control_inotify_wd_unit);
+ m->cgroup_memory_inotify_wd_unit = hashmap_free(m->cgroup_memory_inotify_wd_unit);
+
+ m->cgroup_inotify_event_source = sd_event_source_disable_unref(m->cgroup_inotify_event_source);
+ m->cgroup_inotify_fd = safe_close(m->cgroup_inotify_fd);
+
+ m->pin_cgroupfs_fd = safe_close(m->pin_cgroupfs_fd);
+
+ m->cgroup_root = mfree(m->cgroup_root);
+}
+
+Unit* manager_get_unit_by_cgroup(Manager *m, const char *cgroup) {
+ char *p;
+ Unit *u;
+
+ assert(m);
+ assert(cgroup);
+
+ u = hashmap_get(m->cgroup_unit, cgroup);
+ if (u)
+ return u;
+
+ p = strdupa_safe(cgroup);
+ for (;;) {
+ char *e;
+
+ e = strrchr(p, '/');
+ if (!e || e == p)
+ return hashmap_get(m->cgroup_unit, SPECIAL_ROOT_SLICE);
+
+ *e = 0;
+
+ u = hashmap_get(m->cgroup_unit, p);
+ if (u)
+ return u;
+ }
+}
+
+Unit *manager_get_unit_by_pidref_cgroup(Manager *m, PidRef *pid) {
+ _cleanup_free_ char *cgroup = NULL;
+
+ assert(m);
+
+ if (cg_pidref_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup) < 0)
+ return NULL;
+
+ return manager_get_unit_by_cgroup(m, cgroup);
+}
+
+Unit *manager_get_unit_by_pidref_watching(Manager *m, PidRef *pid) {
+ Unit *u, **array;
+
+ assert(m);
+
+ if (!pidref_is_set(pid))
+ return NULL;
+
+ u = hashmap_get(m->watch_pids, pid);
+ if (u)
+ return u;
+
+ array = hashmap_get(m->watch_pids_more, pid);
+ if (array)
+ return array[0];
+
+ return NULL;
+}
+
+Unit *manager_get_unit_by_pidref(Manager *m, PidRef *pid) {
+ Unit *u;
+
+ assert(m);
+
+ /* Note that a process might be owned by multiple units, we return only one here, which is good
+ * enough for most cases, though not strictly correct. We prefer the one reported by cgroup
+ * membership, as that's the most relevant one as children of the process will be assigned to that
+ * one, too, before all else. */
+
+ if (!pidref_is_set(pid))
+ return NULL;
+
+ if (pidref_is_self(pid))
+ return hashmap_get(m->units, SPECIAL_INIT_SCOPE);
+ if (pid->pid == 1)
+ return NULL;
+
+ u = manager_get_unit_by_pidref_cgroup(m, pid);
+ if (u)
+ return u;
+
+ u = manager_get_unit_by_pidref_watching(m, pid);
+ if (u)
+ return u;
+
+ return NULL;
+}
+
+Unit *manager_get_unit_by_pid(Manager *m, pid_t pid) {
+ assert(m);
+
+ if (!pid_is_valid(pid))
+ return NULL;
+
+ return manager_get_unit_by_pidref(m, &PIDREF_MAKE_FROM_PID(pid));
+}
+
+int manager_notify_cgroup_empty(Manager *m, const char *cgroup) {
+ Unit *u;
+
+ assert(m);
+ assert(cgroup);
+
+ /* Called on the legacy hierarchy whenever we get an explicit cgroup notification from the cgroup agent process
+ * or from the --system instance */
+
+ log_debug("Got cgroup empty notification for: %s", cgroup);
+
+ u = manager_get_unit_by_cgroup(m, cgroup);
+ if (!u)
+ return 0;
+
+ unit_add_to_cgroup_empty_queue(u);
+ return 1;
+}
+
+int unit_get_memory_available(Unit *u, uint64_t *ret) {
+ uint64_t available = UINT64_MAX, current = 0;
+
+ assert(u);
+ assert(ret);
+
+ /* If data from cgroups can be accessed, try to find out how much more memory a unit can
+ * claim before hitting the configured cgroup limits (if any). Consider both MemoryHigh
+ * and MemoryMax, and also any slice the unit might be nested below. */
+
+ do {
+ uint64_t unit_available, unit_limit = UINT64_MAX;
+ CGroupContext *unit_context;
+
+ /* No point in continuing if we can't go any lower */
+ if (available == 0)
+ break;
+
+ unit_context = unit_get_cgroup_context(u);
+ if (!unit_context)
+ return -ENODATA;
+
+ if (!u->cgroup_path)
+ continue;
+
+ (void) unit_get_memory_current(u, &current);
+ /* in case of error, previous current propagates as lower bound */
+
+ if (unit_has_name(u, SPECIAL_ROOT_SLICE))
+ unit_limit = physical_memory();
+ else if (unit_context->memory_max == UINT64_MAX && unit_context->memory_high == UINT64_MAX)
+ continue;
+ unit_limit = MIN3(unit_limit, unit_context->memory_max, unit_context->memory_high);
+
+ unit_available = LESS_BY(unit_limit, current);
+ available = MIN(unit_available, available);
+ } while ((u = UNIT_GET_SLICE(u)));
+
+ *ret = available;
+
+ return 0;
+}
+
+int unit_get_memory_current(Unit *u, uint64_t *ret) {
+ int r;
+
+ // FIXME: Merge this into unit_get_memory_accounting after support for cgroup v1 is dropped
+
+ assert(u);
+ assert(ret);
+
+ if (!UNIT_CGROUP_BOOL(u, memory_accounting))
+ return -ENODATA;
+
+ if (!u->cgroup_path)
+ return -ENODATA;
+
+ /* The root cgroup doesn't expose this information, let's get it from /proc instead */
+ if (unit_has_host_root_cgroup(u))
+ return procfs_memory_get_used(ret);
+
+ if ((u->cgroup_realized_mask & CGROUP_MASK_MEMORY) == 0)
+ return -ENODATA;
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+
+ return cg_get_attribute_as_uint64("memory", u->cgroup_path, r > 0 ? "memory.current" : "memory.usage_in_bytes", ret);
+}
+
+int unit_get_memory_accounting(Unit *u, CGroupMemoryAccountingMetric metric, uint64_t *ret) {
+
+ static const char* const attributes_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
+ [CGROUP_MEMORY_PEAK] = "memory.peak",
+ [CGROUP_MEMORY_SWAP_CURRENT] = "memory.swap.current",
+ [CGROUP_MEMORY_SWAP_PEAK] = "memory.swap.peak",
+ [CGROUP_MEMORY_ZSWAP_CURRENT] = "memory.zswap.current",
+ };
+
+ uint64_t bytes;
+ bool updated = false;
+ int r;
+
+ assert(u);
+ assert(metric >= 0);
+ assert(metric < _CGROUP_MEMORY_ACCOUNTING_METRIC_MAX);
+
+ if (!UNIT_CGROUP_BOOL(u, memory_accounting))
+ return -ENODATA;
+
+ if (!u->cgroup_path)
+ /* If the cgroup is already gone, we try to find the last cached value. */
+ goto finish;
+
+ /* The root cgroup doesn't expose this information. */
+ if (unit_has_host_root_cgroup(u))
+ return -ENODATA;
+
+ if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_MEMORY))
+ return -ENODATA;
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+ if (r == 0)
+ return -ENODATA;
+
+ r = cg_get_attribute_as_uint64("memory", u->cgroup_path, attributes_table[metric], &bytes);
+ if (r < 0 && r != -ENODATA)
+ return r;
+ updated = r >= 0;
+
+finish:
+ if (metric <= _CGROUP_MEMORY_ACCOUNTING_METRIC_CACHED_LAST) {
+ uint64_t *last = &u->memory_accounting_last[metric];
+
+ if (updated)
+ *last = bytes;
+ else if (*last != UINT64_MAX)
+ bytes = *last;
+ else
+ return -ENODATA;
+
+ } else if (!updated)
+ return -ENODATA;
+
+ if (ret)
+ *ret = bytes;
+
+ return 0;
+}
+
+int unit_get_tasks_current(Unit *u, uint64_t *ret) {
+ assert(u);
+ assert(ret);
+
+ if (!UNIT_CGROUP_BOOL(u, tasks_accounting))
+ return -ENODATA;
+
+ if (!u->cgroup_path)
+ return -ENODATA;
+
+ /* The root cgroup doesn't expose this information, let's get it from /proc instead */
+ if (unit_has_host_root_cgroup(u))
+ return procfs_tasks_get_current(ret);
+
+ if ((u->cgroup_realized_mask & CGROUP_MASK_PIDS) == 0)
+ return -ENODATA;
+
+ return cg_get_attribute_as_uint64("pids", u->cgroup_path, "pids.current", ret);
+}
+
+static int unit_get_cpu_usage_raw(Unit *u, nsec_t *ret) {
+ uint64_t ns;
+ int r;
+
+ assert(u);
+ assert(ret);
+
+ if (!u->cgroup_path)
+ return -ENODATA;
+
+ /* The root cgroup doesn't expose this information, let's get it from /proc instead */
+ if (unit_has_host_root_cgroup(u))
+ return procfs_cpu_get_usage(ret);
+
+ /* Requisite controllers for CPU accounting are not enabled */
+ if ((get_cpu_accounting_mask() & ~u->cgroup_realized_mask) != 0)
+ return -ENODATA;
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+ if (r > 0) {
+ _cleanup_free_ char *val = NULL;
+ uint64_t us;
+
+ r = cg_get_keyed_attribute("cpu", u->cgroup_path, "cpu.stat", STRV_MAKE("usage_usec"), &val);
+ if (IN_SET(r, -ENOENT, -ENXIO))
+ return -ENODATA;
+ if (r < 0)
+ return r;
+
+ r = safe_atou64(val, &us);
+ if (r < 0)
+ return r;
+
+ ns = us * NSEC_PER_USEC;
+ } else
+ return cg_get_attribute_as_uint64("cpuacct", u->cgroup_path, "cpuacct.usage", ret);
+
+ *ret = ns;
+ return 0;
+}
+
+int unit_get_cpu_usage(Unit *u, nsec_t *ret) {
+ nsec_t ns;
+ int r;
+
+ assert(u);
+
+ /* Retrieve the current CPU usage counter. This will subtract the CPU counter taken when the unit was
+ * started. If the cgroup has been removed already, returns the last cached value. To cache the value, simply
+ * call this function with a NULL return value. */
+
+ if (!UNIT_CGROUP_BOOL(u, cpu_accounting))
+ return -ENODATA;
+
+ r = unit_get_cpu_usage_raw(u, &ns);
+ if (r == -ENODATA && u->cpu_usage_last != NSEC_INFINITY) {
+ /* If we can't get the CPU usage anymore (because the cgroup was already removed, for example), use our
+ * cached value. */
+
+ if (ret)
+ *ret = u->cpu_usage_last;
+ return 0;
+ }
+ if (r < 0)
+ return r;
+
+ if (ns > u->cpu_usage_base)
+ ns -= u->cpu_usage_base;
+ else
+ ns = 0;
+
+ u->cpu_usage_last = ns;
+ if (ret)
+ *ret = ns;
+
+ return 0;
+}
+
+int unit_get_ip_accounting(
+ Unit *u,
+ CGroupIPAccountingMetric metric,
+ uint64_t *ret) {
+
+ uint64_t value;
+ int fd, r;
+
+ assert(u);
+ assert(metric >= 0);
+ assert(metric < _CGROUP_IP_ACCOUNTING_METRIC_MAX);
+ assert(ret);
+
+ if (!UNIT_CGROUP_BOOL(u, ip_accounting))
+ return -ENODATA;
+
+ fd = IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_INGRESS_PACKETS) ?
+ u->ip_accounting_ingress_map_fd :
+ u->ip_accounting_egress_map_fd;
+ if (fd < 0)
+ return -ENODATA;
+
+ if (IN_SET(metric, CGROUP_IP_INGRESS_BYTES, CGROUP_IP_EGRESS_BYTES))
+ r = bpf_firewall_read_accounting(fd, &value, NULL);
+ else
+ r = bpf_firewall_read_accounting(fd, NULL, &value);
+ if (r < 0)
+ return r;
+
+ /* Add in additional metrics from a previous runtime. Note that when reexecing/reloading the daemon we compile
+ * all BPF programs and maps anew, but serialize the old counters. When deserializing we store them in the
+ * ip_accounting_extra[] field, and add them in here transparently. */
+
+ *ret = value + u->ip_accounting_extra[metric];
+
+ return r;
+}
+
+static int unit_get_io_accounting_raw(Unit *u, uint64_t ret[static _CGROUP_IO_ACCOUNTING_METRIC_MAX]) {
+ static const char *const field_names[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
+ [CGROUP_IO_READ_BYTES] = "rbytes=",
+ [CGROUP_IO_WRITE_BYTES] = "wbytes=",
+ [CGROUP_IO_READ_OPERATIONS] = "rios=",
+ [CGROUP_IO_WRITE_OPERATIONS] = "wios=",
+ };
+ uint64_t acc[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {};
+ _cleanup_free_ char *path = NULL;
+ _cleanup_fclose_ FILE *f = NULL;
+ int r;
+
+ assert(u);
+
+ if (!u->cgroup_path)
+ return -ENODATA;
+
+ if (unit_has_host_root_cgroup(u))
+ return -ENODATA; /* TODO: return useful data for the top-level cgroup */
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+ if (r == 0) /* TODO: support cgroupv1 */
+ return -ENODATA;
+
+ if (!FLAGS_SET(u->cgroup_realized_mask, CGROUP_MASK_IO))
+ return -ENODATA;
+
+ r = cg_get_path("io", u->cgroup_path, "io.stat", &path);
+ if (r < 0)
+ return r;
+
+ f = fopen(path, "re");
+ if (!f)
+ return -errno;
+
+ for (;;) {
+ _cleanup_free_ char *line = NULL;
+ const char *p;
+
+ r = read_line(f, LONG_LINE_MAX, &line);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ break;
+
+ p = line;
+ p += strcspn(p, WHITESPACE); /* Skip over device major/minor */
+ p += strspn(p, WHITESPACE); /* Skip over following whitespace */
+
+ for (;;) {
+ _cleanup_free_ char *word = NULL;
+
+ r = extract_first_word(&p, &word, NULL, EXTRACT_RETAIN_ESCAPE);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ break;
+
+ for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
+ const char *x;
+
+ x = startswith(word, field_names[i]);
+ if (x) {
+ uint64_t w;
+
+ r = safe_atou64(x, &w);
+ if (r < 0)
+ return r;
+
+ /* Sum up the stats of all devices */
+ acc[i] += w;
+ break;
+ }
+ }
+ }
+ }
+
+ memcpy(ret, acc, sizeof(acc));
+ return 0;
+}
+
+int unit_get_io_accounting(
+ Unit *u,
+ CGroupIOAccountingMetric metric,
+ bool allow_cache,
+ uint64_t *ret) {
+
+ uint64_t raw[_CGROUP_IO_ACCOUNTING_METRIC_MAX];
+ int r;
+
+ /* Retrieve an IO account parameter. This will subtract the counter when the unit was started. */
+
+ if (!UNIT_CGROUP_BOOL(u, io_accounting))
+ return -ENODATA;
+
+ if (allow_cache && u->io_accounting_last[metric] != UINT64_MAX)
+ goto done;
+
+ r = unit_get_io_accounting_raw(u, raw);
+ if (r == -ENODATA && u->io_accounting_last[metric] != UINT64_MAX)
+ goto done;
+ if (r < 0)
+ return r;
+
+ for (CGroupIOAccountingMetric i = 0; i < _CGROUP_IO_ACCOUNTING_METRIC_MAX; i++) {
+ /* Saturated subtraction */
+ if (raw[i] > u->io_accounting_base[i])
+ u->io_accounting_last[i] = raw[i] - u->io_accounting_base[i];
+ else
+ u->io_accounting_last[i] = 0;
+ }
+
+done:
+ if (ret)
+ *ret = u->io_accounting_last[metric];
+
+ return 0;
+}
+
+int unit_reset_cpu_accounting(Unit *u) {
+ int r;
+
+ assert(u);
+
+ u->cpu_usage_last = NSEC_INFINITY;
+
+ r = unit_get_cpu_usage_raw(u, &u->cpu_usage_base);
+ if (r < 0) {
+ u->cpu_usage_base = 0;
+ return r;
+ }
+
+ return 0;
+}
+
+void unit_reset_memory_accounting_last(Unit *u) {
+ assert(u);
+
+ FOREACH_ARRAY(i, u->memory_accounting_last, ELEMENTSOF(u->memory_accounting_last))
+ *i = UINT64_MAX;
+}
+
+int unit_reset_ip_accounting(Unit *u) {
+ int r = 0;
+
+ assert(u);
+
+ if (u->ip_accounting_ingress_map_fd >= 0)
+ RET_GATHER(r, bpf_firewall_reset_accounting(u->ip_accounting_ingress_map_fd));
+
+ if (u->ip_accounting_egress_map_fd >= 0)
+ RET_GATHER(r, bpf_firewall_reset_accounting(u->ip_accounting_egress_map_fd));
+
+ zero(u->ip_accounting_extra);
+
+ return r;
+}
+
+void unit_reset_io_accounting_last(Unit *u) {
+ assert(u);
+
+ FOREACH_ARRAY(i, u->io_accounting_last, _CGROUP_IO_ACCOUNTING_METRIC_MAX)
+ *i = UINT64_MAX;
+}
+
+int unit_reset_io_accounting(Unit *u) {
+ int r;
+
+ assert(u);
+
+ unit_reset_io_accounting_last(u);
+
+ r = unit_get_io_accounting_raw(u, u->io_accounting_base);
+ if (r < 0) {
+ zero(u->io_accounting_base);
+ return r;
+ }
+
+ return 0;
+}
+
+int unit_reset_accounting(Unit *u) {
+ int r = 0;
+
+ assert(u);
+
+ RET_GATHER(r, unit_reset_cpu_accounting(u));
+ RET_GATHER(r, unit_reset_io_accounting(u));
+ RET_GATHER(r, unit_reset_ip_accounting(u));
+ unit_reset_memory_accounting_last(u);
+
+ return r;
+}
+
+void unit_invalidate_cgroup(Unit *u, CGroupMask m) {
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return;
+
+ if (m == 0)
+ return;
+
+ /* always invalidate compat pairs together */
+ if (m & (CGROUP_MASK_IO | CGROUP_MASK_BLKIO))
+ m |= CGROUP_MASK_IO | CGROUP_MASK_BLKIO;
+
+ if (m & (CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT))
+ m |= CGROUP_MASK_CPU | CGROUP_MASK_CPUACCT;
+
+ if (FLAGS_SET(u->cgroup_invalidated_mask, m)) /* NOP? */
+ return;
+
+ u->cgroup_invalidated_mask |= m;
+ unit_add_to_cgroup_realize_queue(u);
+}
+
+void unit_invalidate_cgroup_bpf(Unit *u) {
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return;
+
+ if (u->cgroup_invalidated_mask & CGROUP_MASK_BPF_FIREWALL) /* NOP? */
+ return;
+
+ u->cgroup_invalidated_mask |= CGROUP_MASK_BPF_FIREWALL;
+ unit_add_to_cgroup_realize_queue(u);
+
+ /* If we are a slice unit, we also need to put compile a new BPF program for all our children, as the IP access
+ * list of our children includes our own. */
+ if (u->type == UNIT_SLICE) {
+ Unit *member;
+
+ UNIT_FOREACH_DEPENDENCY(member, u, UNIT_ATOM_SLICE_OF)
+ unit_invalidate_cgroup_bpf(member);
+ }
+}
+
+void unit_cgroup_catchup(Unit *u) {
+ assert(u);
+
+ if (!UNIT_HAS_CGROUP_CONTEXT(u))
+ return;
+
+ /* We dropped the inotify watch during reexec/reload, so we need to
+ * check these as they may have changed.
+ * Note that (currently) the kernel doesn't actually update cgroup
+ * file modification times, so we can't just serialize and then check
+ * the mtime for file(s) we are interested in. */
+ (void) unit_check_cgroup_events(u);
+ unit_add_to_cgroup_oom_queue(u);
+}
+
+bool unit_cgroup_delegate(Unit *u) {
+ CGroupContext *c;
+
+ assert(u);
+
+ if (!UNIT_VTABLE(u)->can_delegate)
+ return false;
+
+ c = unit_get_cgroup_context(u);
+ if (!c)
+ return false;
+
+ return c->delegate;
+}
+
+void manager_invalidate_startup_units(Manager *m) {
+ Unit *u;
+
+ assert(m);
+
+ SET_FOREACH(u, m->startup_units)
+ unit_invalidate_cgroup(u, CGROUP_MASK_CPU|CGROUP_MASK_IO|CGROUP_MASK_BLKIO|CGROUP_MASK_CPUSET);
+}
+
+int unit_cgroup_freezer_action(Unit *u, FreezerAction action) {
+ _cleanup_free_ char *path = NULL;
+ FreezerState target, kernel = _FREEZER_STATE_INVALID;
+ int r, ret;
+
+ assert(u);
+ assert(IN_SET(action, FREEZER_FREEZE, FREEZER_THAW));
+
+ if (!cg_freezer_supported())
+ return 0;
+
+ /* Ignore all requests to thaw init.scope or -.slice and reject all requests to freeze them */
+ if (unit_has_name(u, SPECIAL_ROOT_SLICE) || unit_has_name(u, SPECIAL_INIT_SCOPE))
+ return action == FREEZER_FREEZE ? -EPERM : 0;
+
+ if (!u->cgroup_realized)
+ return -EBUSY;
+
+ if (action == FREEZER_THAW) {
+ Unit *slice = UNIT_GET_SLICE(u);
+
+ if (slice) {
+ r = unit_cgroup_freezer_action(slice, FREEZER_THAW);
+ if (r < 0)
+ return log_unit_error_errno(u, r, "Failed to thaw slice %s of unit: %m", slice->id);
+ }
+ }
+
+ target = action == FREEZER_FREEZE ? FREEZER_FROZEN : FREEZER_RUNNING;
+
+ r = unit_freezer_state_kernel(u, &kernel);
+ if (r < 0)
+ log_unit_debug_errno(u, r, "Failed to obtain cgroup freezer state: %m");
+
+ if (target == kernel) {
+ u->freezer_state = target;
+ if (action == FREEZER_FREEZE)
+ return 0;
+ ret = 0;
+ } else
+ ret = 1;
+
+ r = cg_get_path(SYSTEMD_CGROUP_CONTROLLER, u->cgroup_path, "cgroup.freeze", &path);
+ if (r < 0)
+ return r;
+
+ log_unit_debug(u, "%s unit.", action == FREEZER_FREEZE ? "Freezing" : "Thawing");
+
+ if (target != kernel) {
+ if (action == FREEZER_FREEZE)
+ u->freezer_state = FREEZER_FREEZING;
+ else
+ u->freezer_state = FREEZER_THAWING;
+ }
+
+ r = write_string_file(path, one_zero(action == FREEZER_FREEZE), WRITE_STRING_FILE_DISABLE_BUFFER);
+ if (r < 0)
+ return r;
+
+ return ret;
+}
+
+int unit_get_cpuset(Unit *u, CPUSet *cpus, const char *name) {
+ _cleanup_free_ char *v = NULL;
+ int r;
+
+ assert(u);
+ assert(cpus);
+
+ if (!u->cgroup_path)
+ return -ENODATA;
+
+ if ((u->cgroup_realized_mask & CGROUP_MASK_CPUSET) == 0)
+ return -ENODATA;
+
+ r = cg_all_unified();
+ if (r < 0)
+ return r;
+ if (r == 0)
+ return -ENODATA;
+
+ r = cg_get_attribute("cpuset", u->cgroup_path, name, &v);
+ if (r == -ENOENT)
+ return -ENODATA;
+ if (r < 0)
+ return r;
+
+ return parse_cpu_set_full(v, cpus, false, NULL, NULL, 0, NULL);
+}
+
+static const char* const cgroup_device_policy_table[_CGROUP_DEVICE_POLICY_MAX] = {
+ [CGROUP_DEVICE_POLICY_AUTO] = "auto",
+ [CGROUP_DEVICE_POLICY_CLOSED] = "closed",
+ [CGROUP_DEVICE_POLICY_STRICT] = "strict",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(cgroup_device_policy, CGroupDevicePolicy);
+
+static const char* const freezer_action_table[_FREEZER_ACTION_MAX] = {
+ [FREEZER_FREEZE] = "freeze",
+ [FREEZER_THAW] = "thaw",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(freezer_action, FreezerAction);
+
+static const char* const cgroup_pressure_watch_table[_CGROUP_PRESSURE_WATCH_MAX] = {
+ [CGROUP_PRESSURE_WATCH_OFF] = "off",
+ [CGROUP_PRESSURE_WATCH_AUTO] = "auto",
+ [CGROUP_PRESSURE_WATCH_ON] = "on",
+ [CGROUP_PRESSURE_WATCH_SKIP] = "skip",
+};
+
+DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(cgroup_pressure_watch, CGroupPressureWatch, CGROUP_PRESSURE_WATCH_ON);
+
+static const char* const cgroup_ip_accounting_metric_table[_CGROUP_IP_ACCOUNTING_METRIC_MAX] = {
+ [CGROUP_IP_INGRESS_BYTES] = "IPIngressBytes",
+ [CGROUP_IP_EGRESS_BYTES] = "IPEgressBytes",
+ [CGROUP_IP_INGRESS_PACKETS] = "IPIngressPackets",
+ [CGROUP_IP_EGRESS_PACKETS] = "IPEgressPackets",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(cgroup_ip_accounting_metric, CGroupIPAccountingMetric);
+
+static const char* const cgroup_io_accounting_metric_table[_CGROUP_IO_ACCOUNTING_METRIC_MAX] = {
+ [CGROUP_IO_READ_BYTES] = "IOReadBytes",
+ [CGROUP_IO_WRITE_BYTES] = "IOWriteBytes",
+ [CGROUP_IO_READ_OPERATIONS] = "IOReadOperations",
+ [CGROUP_IO_WRITE_OPERATIONS] = "IOWriteOperations",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(cgroup_io_accounting_metric, CGroupIOAccountingMetric);
+
+static const char* const cgroup_memory_accounting_metric_table[_CGROUP_MEMORY_ACCOUNTING_METRIC_MAX] = {
+ [CGROUP_MEMORY_PEAK] = "MemoryPeak",
+ [CGROUP_MEMORY_SWAP_CURRENT] = "MemorySwapCurrent",
+ [CGROUP_MEMORY_SWAP_PEAK] = "MemorySwapPeak",
+ [CGROUP_MEMORY_ZSWAP_CURRENT] = "MemoryZSwapCurrent",
+};
+
+DEFINE_STRING_TABLE_LOOKUP(cgroup_memory_accounting_metric, CGroupMemoryAccountingMetric);