1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <errno.h>
#include <fcntl.h>
#if WANT_LINUX_FS_H
#include <linux/fs.h>
#endif
#include <linux/magic.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include "alloc-util.h"
#include "dirent-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "io-util.h"
#include "macro.h"
#include "missing_fcntl.h"
#include "missing_fs.h"
#include "missing_syscall.h"
#include "mountpoint-util.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "socket-util.h"
#include "sort-util.h"
#include "stat-util.h"
#include "stdio-util.h"
#include "tmpfile-util.h"
/* The maximum number of iterations in the loop to close descriptors in the fallback case
* when /proc/self/fd/ is inaccessible. */
#define MAX_FD_LOOP_LIMIT (1024*1024)
int close_nointr(int fd) {
assert(fd >= 0);
if (close(fd) >= 0)
return 0;
/*
* Just ignore EINTR; a retry loop is the wrong thing to do on
* Linux.
*
* http://lkml.indiana.edu/hypermail/linux/kernel/0509.1/0877.html
* https://bugzilla.gnome.org/show_bug.cgi?id=682819
* http://utcc.utoronto.ca/~cks/space/blog/unix/CloseEINTR
* https://sites.google.com/site/michaelsafyan/software-engineering/checkforeintrwheninvokingclosethinkagain
*/
if (errno == EINTR)
return 0;
return -errno;
}
int safe_close(int fd) {
/*
* Like close_nointr() but cannot fail. Guarantees errno is unchanged. Is a noop for negative fds,
* and returns -EBADF, so that it can be used in this syntax:
*
* fd = safe_close(fd);
*/
if (fd >= 0) {
PROTECT_ERRNO;
/* The kernel might return pretty much any error code
* via close(), but the fd will be closed anyway. The
* only condition we want to check for here is whether
* the fd was invalid at all... */
assert_se(close_nointr(fd) != -EBADF);
}
return -EBADF;
}
void safe_close_pair(int p[static 2]) {
assert(p);
if (p[0] == p[1]) {
/* Special case pairs which use the same fd in both
* directions... */
p[0] = p[1] = safe_close(p[0]);
return;
}
p[0] = safe_close(p[0]);
p[1] = safe_close(p[1]);
}
void close_many(const int fds[], size_t n_fds) {
assert(fds || n_fds == 0);
FOREACH_ARRAY(fd, fds, n_fds)
safe_close(*fd);
}
void close_many_unset(int fds[], size_t n_fds) {
assert(fds || n_fds == 0);
FOREACH_ARRAY(fd, fds, n_fds)
*fd = safe_close(*fd);
}
void close_many_and_free(int *fds, size_t n_fds) {
assert(fds || n_fds == 0);
close_many(fds, n_fds);
free(fds);
}
int fclose_nointr(FILE *f) {
assert(f);
/* Same as close_nointr(), but for fclose() */
errno = 0; /* Extra safety: if the FILE* object is not encapsulating an fd, it might not set errno
* correctly. Let's hence initialize it to zero first, so that we aren't confused by any
* prior errno here */
if (fclose(f) == 0)
return 0;
if (errno == EINTR)
return 0;
return errno_or_else(EIO);
}
FILE* safe_fclose(FILE *f) {
/* Same as safe_close(), but for fclose() */
if (f) {
PROTECT_ERRNO;
assert_se(fclose_nointr(f) != -EBADF);
}
return NULL;
}
DIR* safe_closedir(DIR *d) {
if (d) {
PROTECT_ERRNO;
assert_se(closedir(d) >= 0 || errno != EBADF);
}
return NULL;
}
int fd_nonblock(int fd, bool nonblock) {
int flags, nflags;
assert(fd >= 0);
flags = fcntl(fd, F_GETFL, 0);
if (flags < 0)
return -errno;
nflags = UPDATE_FLAG(flags, O_NONBLOCK, nonblock);
if (nflags == flags)
return 0;
return RET_NERRNO(fcntl(fd, F_SETFL, nflags));
}
int fd_cloexec(int fd, bool cloexec) {
int flags, nflags;
assert(fd >= 0);
flags = fcntl(fd, F_GETFD, 0);
if (flags < 0)
return -errno;
nflags = UPDATE_FLAG(flags, FD_CLOEXEC, cloexec);
if (nflags == flags)
return 0;
return RET_NERRNO(fcntl(fd, F_SETFD, nflags));
}
int fd_cloexec_many(const int fds[], size_t n_fds, bool cloexec) {
int r = 0;
assert(fds || n_fds == 0);
FOREACH_ARRAY(fd, fds, n_fds) {
if (*fd < 0) /* Skip gracefully over already invalidated fds */
continue;
RET_GATHER(r, fd_cloexec(*fd, cloexec));
if (r >= 0)
r = 1; /* report if we did anything */
}
return r;
}
static bool fd_in_set(int fd, const int fds[], size_t n_fds) {
assert(fd >= 0);
assert(fds || n_fds == 0);
FOREACH_ARRAY(i, fds, n_fds) {
if (*i < 0)
continue;
if (*i == fd)
return true;
}
return false;
}
int get_max_fd(void) {
struct rlimit rl;
rlim_t m;
/* Return the highest possible fd, based RLIMIT_NOFILE, but enforcing FD_SETSIZE-1 as lower boundary
* and INT_MAX as upper boundary. */
if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
return -errno;
m = MAX(rl.rlim_cur, rl.rlim_max);
if (m < FD_SETSIZE) /* Let's always cover at least 1024 fds */
return FD_SETSIZE-1;
if (m == RLIM_INFINITY || m > INT_MAX) /* Saturate on overflow. After all fds are "int", hence can
* never be above INT_MAX */
return INT_MAX;
return (int) (m - 1);
}
static int close_all_fds_frugal(const int except[], size_t n_except) {
int max_fd, r = 0;
assert(except || n_except == 0);
/* This is the inner fallback core of close_all_fds(). This never calls malloc() or opendir() or so
* and hence is safe to be called in signal handler context. Most users should call close_all_fds(),
* but when we assume we are called from signal handler context, then use this simpler call
* instead. */
max_fd = get_max_fd();
if (max_fd < 0)
return max_fd;
/* Refuse to do the loop over more too many elements. It's better to fail immediately than to
* spin the CPU for a long time. */
if (max_fd > MAX_FD_LOOP_LIMIT)
return log_debug_errno(SYNTHETIC_ERRNO(EPERM),
"Refusing to loop over %d potential fds.", max_fd);
for (int fd = 3; fd >= 0; fd = fd < max_fd ? fd + 1 : -EBADF) {
int q;
if (fd_in_set(fd, except, n_except))
continue;
q = close_nointr(fd);
if (q != -EBADF)
RET_GATHER(r, q);
}
return r;
}
static bool have_close_range = true; /* Assume we live in the future */
static int close_all_fds_special_case(const int except[], size_t n_except) {
assert(n_except == 0 || except);
/* Handles a few common special cases separately, since they are common and can be optimized really
* nicely, since we won't need sorting for them. Returns > 0 if the special casing worked, 0
* otherwise. */
if (!have_close_range)
return 0;
if (n_except == 1 && except[0] < 0) /* Minor optimization: if we only got one fd, and it's invalid,
* we got none */
n_except = 0;
switch (n_except) {
case 0:
/* Close everything. Yay! */
if (close_range(3, INT_MAX, 0) >= 0)
return 1;
if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
have_close_range = false;
return 0;
}
return -errno;
case 1:
/* Close all but exactly one, then we don't need no sorting. This is a pretty common
* case, hence let's handle it specially. */
if ((except[0] <= 3 || close_range(3, except[0]-1, 0) >= 0) &&
(except[0] >= INT_MAX || close_range(MAX(3, except[0]+1), -1, 0) >= 0))
return 1;
if (ERRNO_IS_NOT_SUPPORTED(errno) || ERRNO_IS_PRIVILEGE(errno)) {
have_close_range = false;
return 0;
}
return -errno;
default:
return 0;
}
}
int close_all_fds_without_malloc(const int except[], size_t n_except) {
int r;
assert(n_except == 0 || except);
r = close_all_fds_special_case(except, n_except);
if (r < 0)
return r;
if (r > 0) /* special case worked! */
return 0;
return close_all_fds_frugal(except, n_except);
}
int close_all_fds(const int except[], size_t n_except) {
_cleanup_closedir_ DIR *d = NULL;
int r = 0;
assert(n_except == 0 || except);
r = close_all_fds_special_case(except, n_except);
if (r < 0)
return r;
if (r > 0) /* special case worked! */
return 0;
if (have_close_range) {
_cleanup_free_ int *sorted_malloc = NULL;
size_t n_sorted;
int *sorted;
/* In the best case we have close_range() to close all fds between a start and an end fd,
* which we can use on the "inverted" exception array, i.e. all intervals between all
* adjacent pairs from the sorted exception array. This changes loop complexity from O(n)
* where n is number of open fds to O(m⋅log(m)) where m is the number of fds to keep
* open. Given that we assume n ≫ m that's preferable to us. */
assert(n_except < SIZE_MAX);
n_sorted = n_except + 1;
if (n_sorted > 64) /* Use heap for large numbers of fds, stack otherwise */
sorted = sorted_malloc = new(int, n_sorted);
else
sorted = newa(int, n_sorted);
if (sorted) {
memcpy(sorted, except, n_except * sizeof(int));
/* Let's add fd 2 to the list of fds, to simplify the loop below, as this
* allows us to cover the head of the array the same way as the body */
sorted[n_sorted-1] = 2;
typesafe_qsort(sorted, n_sorted, cmp_int);
for (size_t i = 0; i < n_sorted-1; i++) {
int start, end;
start = MAX(sorted[i], 2); /* The first three fds shall always remain open */
end = MAX(sorted[i+1], 2);
assert(end >= start);
if (end - start <= 1)
continue;
/* Close everything between the start and end fds (both of which shall stay open) */
if (close_range(start + 1, end - 1, 0) < 0) {
if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
return -errno;
have_close_range = false;
break;
}
}
if (have_close_range) {
/* The loop succeeded. Let's now close everything beyond the end */
if (sorted[n_sorted-1] >= INT_MAX) /* Dont let the addition below overflow */
return 0;
if (close_range(sorted[n_sorted-1] + 1, INT_MAX, 0) >= 0)
return 0;
if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
return -errno;
have_close_range = false;
}
}
/* Fallback on OOM or if close_range() is not supported */
}
d = opendir("/proc/self/fd");
if (!d)
return close_all_fds_frugal(except, n_except); /* ultimate fallback if /proc/ is not available */
FOREACH_DIRENT(de, d, return -errno) {
int fd = -EBADF, q;
if (!IN_SET(de->d_type, DT_LNK, DT_UNKNOWN))
continue;
fd = parse_fd(de->d_name);
if (fd < 0)
/* Let's better ignore this, just in case */
continue;
if (fd < 3)
continue;
if (fd == dirfd(d))
continue;
if (fd_in_set(fd, except, n_except))
continue;
q = close_nointr(fd);
if (q < 0 && q != -EBADF && r >= 0) /* Valgrind has its own FD and doesn't want to have it closed */
r = q;
}
return r;
}
int same_fd(int a, int b) {
struct stat sta, stb;
pid_t pid;
int r, fa, fb;
assert(a >= 0);
assert(b >= 0);
/* Compares two file descriptors. Note that semantics are quite different depending on whether we
* have kcmp() or we don't. If we have kcmp() this will only return true for dup()ed file
* descriptors, but not otherwise. If we don't have kcmp() this will also return true for two fds of
* the same file, created by separate open() calls. Since we use this call mostly for filtering out
* duplicates in the fd store this difference hopefully doesn't matter too much. */
if (a == b)
return true;
/* Try to use kcmp() if we have it. */
pid = getpid_cached();
r = kcmp(pid, pid, KCMP_FILE, a, b);
if (r == 0)
return true;
if (r > 0)
return false;
if (!ERRNO_IS_NOT_SUPPORTED(errno) && !ERRNO_IS_PRIVILEGE(errno))
return -errno;
/* We don't have kcmp(), use fstat() instead. */
if (fstat(a, &sta) < 0)
return -errno;
if (fstat(b, &stb) < 0)
return -errno;
if (!stat_inode_same(&sta, &stb))
return false;
/* We consider all device fds different, since two device fds might refer to quite different device
* contexts even though they share the same inode and backing dev_t. */
if (S_ISCHR(sta.st_mode) || S_ISBLK(sta.st_mode))
return false;
/* The fds refer to the same inode on disk, let's also check if they have the same fd flags. This is
* useful to distinguish the read and write side of a pipe created with pipe(). */
fa = fcntl(a, F_GETFL);
if (fa < 0)
return -errno;
fb = fcntl(b, F_GETFL);
if (fb < 0)
return -errno;
return fa == fb;
}
void cmsg_close_all(struct msghdr *mh) {
struct cmsghdr *cmsg;
assert(mh);
CMSG_FOREACH(cmsg, mh)
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS)
close_many(CMSG_TYPED_DATA(cmsg, int),
(cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int));
}
bool fdname_is_valid(const char *s) {
const char *p;
/* Validates a name for $LISTEN_FDNAMES. We basically allow
* everything ASCII that's not a control character. Also, as
* special exception the ":" character is not allowed, as we
* use that as field separator in $LISTEN_FDNAMES.
*
* Note that the empty string is explicitly allowed
* here. However, we limit the length of the names to 255
* characters. */
if (!s)
return false;
for (p = s; *p; p++) {
if (*p < ' ')
return false;
if (*p >= 127)
return false;
if (*p == ':')
return false;
}
return p - s <= FDNAME_MAX;
}
int fd_get_path(int fd, char **ret) {
int r;
assert(fd >= 0 || fd == AT_FDCWD);
if (fd == AT_FDCWD)
return safe_getcwd(ret);
r = readlink_malloc(FORMAT_PROC_FD_PATH(fd), ret);
if (r == -ENOENT) {
/* ENOENT can mean two things: that the fd does not exist or that /proc is not mounted. Let's make
* things debuggable and distinguish the two. */
if (proc_mounted() == 0)
return -ENOSYS; /* /proc is not available or not set up properly, we're most likely in some chroot
* environment. */
return -EBADF; /* The directory exists, hence it's the fd that doesn't. */
}
return r;
}
int move_fd(int from, int to, int cloexec) {
int r;
/* Move fd 'from' to 'to', make sure FD_CLOEXEC remains equal if requested, and release the old fd. If
* 'cloexec' is passed as -1, the original FD_CLOEXEC is inherited for the new fd. If it is 0, it is turned
* off, if it is > 0 it is turned on. */
if (from < 0)
return -EBADF;
if (to < 0)
return -EBADF;
if (from == to) {
if (cloexec >= 0) {
r = fd_cloexec(to, cloexec);
if (r < 0)
return r;
}
return to;
}
if (cloexec < 0) {
int fl;
fl = fcntl(from, F_GETFD, 0);
if (fl < 0)
return -errno;
cloexec = FLAGS_SET(fl, FD_CLOEXEC);
}
r = dup3(from, to, cloexec ? O_CLOEXEC : 0);
if (r < 0)
return -errno;
assert(r == to);
safe_close(from);
return to;
}
int fd_move_above_stdio(int fd) {
int flags, copy;
PROTECT_ERRNO;
/* Moves the specified file descriptor if possible out of the range [0…2], i.e. the range of
* stdin/stdout/stderr. If it can't be moved outside of this range the original file descriptor is
* returned. This call is supposed to be used for long-lasting file descriptors we allocate in our code that
* might get loaded into foreign code, and where we want ensure our fds are unlikely used accidentally as
* stdin/stdout/stderr of unrelated code.
*
* Note that this doesn't fix any real bugs, it just makes it less likely that our code will be affected by
* buggy code from others that mindlessly invokes 'fprintf(stderr, …' or similar in places where stderr has
* been closed before.
*
* This function is written in a "best-effort" and "least-impact" style. This means whenever we encounter an
* error we simply return the original file descriptor, and we do not touch errno. */
if (fd < 0 || fd > 2)
return fd;
flags = fcntl(fd, F_GETFD, 0);
if (flags < 0)
return fd;
if (flags & FD_CLOEXEC)
copy = fcntl(fd, F_DUPFD_CLOEXEC, 3);
else
copy = fcntl(fd, F_DUPFD, 3);
if (copy < 0)
return fd;
assert(copy > 2);
(void) close(fd);
return copy;
}
int rearrange_stdio(int original_input_fd, int original_output_fd, int original_error_fd) {
int fd[3] = { original_input_fd, /* Put together an array of fds we work on */
original_output_fd,
original_error_fd },
null_fd = -EBADF, /* If we open /dev/null, we store the fd to it here */
copy_fd[3] = EBADF_TRIPLET, /* This contains all fds we duplicate here
* temporarily, and hence need to close at the end. */
r;
bool null_readable, null_writable;
/* Sets up stdin, stdout, stderr with the three file descriptors passed in. If any of the descriptors
* is specified as -EBADF it will be connected with /dev/null instead. If any of the file descriptors
* is passed as itself (e.g. stdin as STDIN_FILENO) it is left unmodified, but the O_CLOEXEC bit is
* turned off should it be on.
*
* Note that if any of the passed file descriptors are > 2 they will be closed — both on success and
* on failure! Thus, callers should assume that when this function returns the input fds are
* invalidated.
*
* Note that when this function fails stdin/stdout/stderr might remain half set up!
*
* O_CLOEXEC is turned off for all three file descriptors (which is how it should be for
* stdin/stdout/stderr). */
null_readable = original_input_fd < 0;
null_writable = original_output_fd < 0 || original_error_fd < 0;
/* First step, open /dev/null once, if we need it */
if (null_readable || null_writable) {
/* Let's open this with O_CLOEXEC first, and convert it to non-O_CLOEXEC when we move the fd to the final position. */
null_fd = open("/dev/null", (null_readable && null_writable ? O_RDWR :
null_readable ? O_RDONLY : O_WRONLY) | O_CLOEXEC);
if (null_fd < 0) {
r = -errno;
goto finish;
}
/* If this fd is in the 0…2 range, let's move it out of it */
if (null_fd < 3) {
int copy;
copy = fcntl(null_fd, F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
if (copy < 0) {
r = -errno;
goto finish;
}
close_and_replace(null_fd, copy);
}
}
/* Let's assemble fd[] with the fds to install in place of stdin/stdout/stderr */
for (int i = 0; i < 3; i++) {
if (fd[i] < 0)
fd[i] = null_fd; /* A negative parameter means: connect this one to /dev/null */
else if (fd[i] != i && fd[i] < 3) {
/* This fd is in the 0…2 territory, but not at its intended place, move it out of there, so that we can work there. */
copy_fd[i] = fcntl(fd[i], F_DUPFD_CLOEXEC, 3); /* Duplicate this with O_CLOEXEC set */
if (copy_fd[i] < 0) {
r = -errno;
goto finish;
}
fd[i] = copy_fd[i];
}
}
/* At this point we now have the fds to use in fd[], and they are all above the stdio range, so that
* we have freedom to move them around. If the fds already were at the right places then the specific
* fds are -EBADF. Let's now move them to the right places. This is the point of no return. */
for (int i = 0; i < 3; i++) {
if (fd[i] == i) {
/* fd is already in place, but let's make sure O_CLOEXEC is off */
r = fd_cloexec(i, false);
if (r < 0)
goto finish;
} else {
assert(fd[i] > 2);
if (dup2(fd[i], i) < 0) { /* Turns off O_CLOEXEC on the new fd. */
r = -errno;
goto finish;
}
}
}
r = 0;
finish:
/* Close the original fds, but only if they were outside of the stdio range. Also, properly check for the same
* fd passed in multiple times. */
safe_close_above_stdio(original_input_fd);
if (original_output_fd != original_input_fd)
safe_close_above_stdio(original_output_fd);
if (original_error_fd != original_input_fd && original_error_fd != original_output_fd)
safe_close_above_stdio(original_error_fd);
/* Close the copies we moved > 2 */
close_many(copy_fd, 3);
/* Close our null fd, if it's > 2 */
safe_close_above_stdio(null_fd);
return r;
}
int fd_reopen(int fd, int flags) {
int r;
assert(fd >= 0 || fd == AT_FDCWD);
assert(!FLAGS_SET(flags, O_CREAT));
/* Reopens the specified fd with new flags. This is useful for convert an O_PATH fd into a regular one, or to
* turn O_RDWR fds into O_RDONLY fds.
*
* This doesn't work on sockets (since they cannot be open()ed, ever).
*
* This implicitly resets the file read index to 0.
*
* If AT_FDCWD is specified as file descriptor gets an fd to the current cwd.
*
* If the specified file descriptor refers to a symlink via O_PATH, then this function cannot be used
* to follow that symlink. Because we cannot have non-O_PATH fds to symlinks reopening it without
* O_PATH will always result in -ELOOP. Or in other words: if you have an O_PATH fd to a symlink you
* can reopen it only if you pass O_PATH again. */
if (FLAGS_SET(flags, O_NOFOLLOW))
/* O_NOFOLLOW is not allowed in fd_reopen(), because after all this is primarily implemented
* via a symlink-based interface in /proc/self/fd. Let's refuse this here early. Note that
* the kernel would generate ELOOP here too, hence this manual check is mostly redundant –
* the only reason we add it here is so that the O_DIRECTORY special case (see below) behaves
* the same way as the non-O_DIRECTORY case. */
return -ELOOP;
if (FLAGS_SET(flags, O_DIRECTORY) || fd == AT_FDCWD)
/* If we shall reopen the fd as directory we can just go via "." and thus bypass the whole
* magic /proc/ directory, and make ourselves independent of that being mounted. */
return RET_NERRNO(openat(fd, ".", flags | O_DIRECTORY));
int new_fd = open(FORMAT_PROC_FD_PATH(fd), flags);
if (new_fd < 0) {
if (errno != ENOENT)
return -errno;
r = proc_mounted();
if (r == 0)
return -ENOSYS; /* if we have no /proc/, the concept is not implementable */
return r > 0 ? -EBADF : -ENOENT; /* If /proc/ is definitely around then this means the fd is
* not valid, otherwise let's propagate the original
* error */
}
return new_fd;
}
int fd_reopen_condition(
int fd,
int flags,
int mask,
int *ret_new_fd) {
int r, new_fd;
assert(fd >= 0);
assert(!FLAGS_SET(flags, O_CREAT));
/* Invokes fd_reopen(fd, flags), but only if the existing F_GETFL flags don't match the specified
* flags (masked by the specified mask). This is useful for converting O_PATH fds into real fds if
* needed, but only then. */
r = fcntl(fd, F_GETFL);
if (r < 0)
return -errno;
if ((r & mask) == (flags & mask)) {
*ret_new_fd = -EBADF;
return fd;
}
new_fd = fd_reopen(fd, flags);
if (new_fd < 0)
return new_fd;
*ret_new_fd = new_fd;
return new_fd;
}
int fd_is_opath(int fd) {
int r;
assert(fd >= 0);
r = fcntl(fd, F_GETFL);
if (r < 0)
return -errno;
return FLAGS_SET(r, O_PATH);
}
int read_nr_open(void) {
_cleanup_free_ char *nr_open = NULL;
int r;
/* Returns the kernel's current fd limit, either by reading it of /proc/sys if that works, or using the
* hard-coded default compiled-in value of current kernels (1M) if not. This call will never fail. */
r = read_one_line_file("/proc/sys/fs/nr_open", &nr_open);
if (r < 0)
log_debug_errno(r, "Failed to read /proc/sys/fs/nr_open, ignoring: %m");
else {
int v;
r = safe_atoi(nr_open, &v);
if (r < 0)
log_debug_errno(r, "Failed to parse /proc/sys/fs/nr_open value '%s', ignoring: %m", nr_open);
else
return v;
}
/* If we fail, fall back to the hard-coded kernel limit of 1024 * 1024. */
return 1024 * 1024;
}
int fd_get_diskseq(int fd, uint64_t *ret) {
uint64_t diskseq;
assert(fd >= 0);
assert(ret);
if (ioctl(fd, BLKGETDISKSEQ, &diskseq) < 0) {
/* Note that the kernel is weird: non-existing ioctls currently return EINVAL
* rather than ENOTTY on loopback block devices. They should fix that in the kernel,
* but in the meantime we accept both here. */
if (!ERRNO_IS_NOT_SUPPORTED(errno) && errno != EINVAL)
return -errno;
return -EOPNOTSUPP;
}
*ret = diskseq;
return 0;
}
int path_is_root_at(int dir_fd, const char *path) {
STRUCT_NEW_STATX_DEFINE(st);
STRUCT_NEW_STATX_DEFINE(pst);
_cleanup_close_ int fd = -EBADF;
int r;
assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
if (!isempty(path)) {
fd = openat(dir_fd, path, O_PATH|O_DIRECTORY|O_CLOEXEC);
if (fd < 0)
return errno == ENOTDIR ? false : -errno;
dir_fd = fd;
}
r = statx_fallback(dir_fd, ".", 0, STATX_TYPE|STATX_INO|STATX_MNT_ID, &st.sx);
if (r == -ENOTDIR)
return false;
if (r < 0)
return r;
r = statx_fallback(dir_fd, "..", 0, STATX_TYPE|STATX_INO|STATX_MNT_ID, &pst.sx);
if (r < 0)
return r;
/* First, compare inode. If these are different, the fd does not point to the root directory "/". */
if (!statx_inode_same(&st.sx, &pst.sx))
return false;
/* Even if the parent directory has the same inode, the fd may not point to the root directory "/",
* and we also need to check that the mount ids are the same. Otherwise, a construct like the
* following could be used to trick us:
*
* $ mkdir /tmp/x /tmp/x/y
* $ mount --bind /tmp/x /tmp/x/y
*
* Note, statx() does not provide the mount ID and path_get_mnt_id_at() does not work when an old
* kernel is used. In that case, let's assume that we do not have such spurious mount points in an
* early boot stage, and silently skip the following check. */
if (!FLAGS_SET(st.nsx.stx_mask, STATX_MNT_ID)) {
int mntid;
r = path_get_mnt_id_at_fallback(dir_fd, "", &mntid);
if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
return true; /* skip the mount ID check */
if (r < 0)
return r;
assert(mntid >= 0);
st.nsx.stx_mnt_id = mntid;
st.nsx.stx_mask |= STATX_MNT_ID;
}
if (!FLAGS_SET(pst.nsx.stx_mask, STATX_MNT_ID)) {
int mntid;
r = path_get_mnt_id_at_fallback(dir_fd, "..", &mntid);
if (ERRNO_IS_NEG_NOT_SUPPORTED(r))
return true; /* skip the mount ID check */
if (r < 0)
return r;
assert(mntid >= 0);
pst.nsx.stx_mnt_id = mntid;
pst.nsx.stx_mask |= STATX_MNT_ID;
}
return statx_mount_same(&st.nsx, &pst.nsx);
}
const char *accmode_to_string(int flags) {
switch (flags & O_ACCMODE) {
case O_RDONLY:
return "ro";
case O_WRONLY:
return "wo";
case O_RDWR:
return "rw";
default:
return NULL;
}
}
char *format_proc_pid_fd_path(char buf[static PROC_PID_FD_PATH_MAX], pid_t pid, int fd) {
assert(buf);
assert(fd >= 0);
assert(pid >= 0);
assert_se(snprintf_ok(buf, PROC_PID_FD_PATH_MAX, "/proc/" PID_FMT "/fd/%i", pid == 0 ? getpid_cached() : pid, fd));
return buf;
}
|