1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include "nulstr-util.h"
#include "string-util.h"
#include "strv.h"
const char* nulstr_get(const char *nulstr, const char *needle) {
if (!nulstr)
return NULL;
NULSTR_FOREACH(i, nulstr)
if (streq(i, needle))
return i;
return NULL;
}
char** strv_parse_nulstr_full(const char *s, size_t l, bool drop_trailing_nuls) {
_cleanup_strv_free_ char **v = NULL;
size_t c = 0, i = 0;
/* l is the length of the input data, which will be split at NULs into elements of the resulting
* strv. Hence, the number of items in the resulting strv will be equal to one plus the number of NUL
* bytes in the l bytes starting at s, unless s[l-1] is NUL, in which case the final empty string is
* not stored in the resulting strv, and length is equal to the number of NUL bytes.
*
* Note that contrary to a normal nulstr which cannot contain empty strings, because the input data
* is terminated by any two consequent NUL bytes, this parser accepts empty strings in s. */
assert(s || l <= 0);
if (drop_trailing_nuls)
while (l > 0 && s[l-1] == '\0')
l--;
if (l <= 0)
return new0(char*, 1);
for (const char *p = s; p < s + l; p++)
if (*p == 0)
c++;
if (s[l-1] != 0)
c++;
v = new0(char*, c+1);
if (!v)
return NULL;
for (const char *p = s; p < s + l;) {
const char *e;
e = memchr(p, 0, s + l - p);
v[i] = memdup_suffix0(p, e ? e - p : s + l - p);
if (!v[i])
return NULL;
i++;
if (!e)
break;
p = e + 1;
}
assert(i == c);
return TAKE_PTR(v);
}
char** strv_split_nulstr(const char *s) {
_cleanup_strv_free_ char **l = NULL;
/* This parses a nulstr, without specification of size, and stops at an empty string. This cannot
* parse nulstrs with embedded empty strings hence, as an empty string is an end marker. Use
* strv_parse_nulstr() above to parse a nulstr with embedded empty strings (which however requires a
* size to be specified) */
NULSTR_FOREACH(i, s)
if (strv_extend(&l, i) < 0)
return NULL;
return l ? TAKE_PTR(l) : strv_new(NULL);
}
int strv_make_nulstr(char * const *l, char **ret, size_t *ret_size) {
_cleanup_free_ char *m = NULL;
size_t n = 0;
/* Builds a nulstr and returns it together with the size. An extra NUL byte will be appended (⚠️ but
* not included in the size! ⚠️). This is done so that the nulstr can be used both in
* strv_parse_nulstr() and in NULSTR_FOREACH()/strv_split_nulstr() contexts, i.e. with and without a
* size parameter. In the former case we can include empty strings, in the latter case we cannot (as
* that is the end marker).
*
* When NULSTR_FOREACH()/strv_split_nulstr() is used it is often assumed that the nulstr ends in two
* NUL bytes (which it will, if not empty). To ensure that this assumption *always* holds, we'll
* return a buffer with two NUL bytes in that case, but return a size of zero. */
assert(ret);
STRV_FOREACH(i, l) {
size_t z;
z = strlen(*i) + 1;
if (!GREEDY_REALLOC(m, n + z + 1)) /* One extra NUL at the end as marker */
return -ENOMEM;
memcpy(m + n, *i, z);
n += z;
}
if (!m) {
/* return a buffer with an extra NUL, so that the assumption that we always have two trailing NULs holds */
m = new0(char, 2);
if (!m)
return -ENOMEM;
n = 0;
} else
/* Extra NUL is not counted in size returned */
m[n] = '\0';
*ret = TAKE_PTR(m);
if (ret_size)
*ret_size = n;
return 0;
}
int set_make_nulstr(Set *s, char **ret, size_t *ret_size) {
/* Use _cleanup_free_ instead of _cleanup_strv_free_ because we need to clean the strv only, not
* the strings owned by the set. */
_cleanup_free_ char **strv = NULL;
assert(ret);
strv = set_get_strv(s);
if (!strv)
return -ENOMEM;
return strv_make_nulstr(strv, ret, ret_size);
}
|