1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/random.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#if HAVE_SYS_AUXV_H
# include <sys/auxv.h>
#endif
#include "alloc-util.h"
#include "env-util.h"
#include "errno-util.h"
#include "fd-util.h"
#include "fileio.h"
#include "io-util.h"
#include "missing_random.h"
#include "missing_syscall.h"
#include "missing_threads.h"
#include "parse-util.h"
#include "process-util.h"
#include "random-util.h"
#include "sha256.h"
#include "time-util.h"
/* This is a "best effort" kind of thing, but has no real security value. So, this should only be used by
* random_bytes(), which is not meant for crypto. This could be made better, but we're *not* trying to roll a
* userspace prng here, or even have forward secrecy, but rather just do the shortest thing that is at least
* better than libc rand(). */
static void fallback_random_bytes(void *p, size_t n) {
static thread_local uint64_t fallback_counter = 0;
struct {
char label[32];
uint64_t call_id, block_id;
usec_t stamp_mono, stamp_real;
pid_t pid, tid;
uint8_t auxval[16];
} state = {
/* Arbitrary domain separation to prevent other usage of AT_RANDOM from clashing. */
.label = "systemd fallback random bytes v1",
.call_id = fallback_counter++,
.stamp_mono = now(CLOCK_MONOTONIC),
.stamp_real = now(CLOCK_REALTIME),
.pid = getpid_cached(),
.tid = gettid(),
};
#if HAVE_SYS_AUXV_H
memcpy(state.auxval, ULONG_TO_PTR(getauxval(AT_RANDOM)), sizeof(state.auxval));
#endif
while (n > 0) {
struct sha256_ctx ctx;
sha256_init_ctx(&ctx);
sha256_process_bytes(&state, sizeof(state), &ctx);
if (n < SHA256_DIGEST_SIZE) {
uint8_t partial[SHA256_DIGEST_SIZE];
sha256_finish_ctx(&ctx, partial);
memcpy(p, partial, n);
break;
}
sha256_finish_ctx(&ctx, p);
p = (uint8_t *) p + SHA256_DIGEST_SIZE;
n -= SHA256_DIGEST_SIZE;
++state.block_id;
}
}
void random_bytes(void *p, size_t n) {
static bool have_getrandom = true, have_grndinsecure = true;
_cleanup_close_ int fd = -EBADF;
if (n == 0)
return;
for (;;) {
ssize_t l;
if (!have_getrandom)
break;
l = getrandom(p, n, have_grndinsecure ? GRND_INSECURE : GRND_NONBLOCK);
if (l > 0) {
if ((size_t) l == n)
return; /* Done reading, success. */
p = (uint8_t *) p + l;
n -= l;
continue; /* Interrupted by a signal; keep going. */
} else if (l == 0)
break; /* Weird, so fallback to /dev/urandom. */
else if (ERRNO_IS_NOT_SUPPORTED(errno)) {
have_getrandom = false;
break; /* No syscall, so fallback to /dev/urandom. */
} else if (errno == EINVAL && have_grndinsecure) {
have_grndinsecure = false;
continue; /* No GRND_INSECURE; fallback to GRND_NONBLOCK. */
} else if (errno == EAGAIN && !have_grndinsecure)
break; /* Will block, but no GRND_INSECURE, so fallback to /dev/urandom. */
break; /* Unexpected, so just give up and fallback to /dev/urandom. */
}
fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd >= 0 && loop_read_exact(fd, p, n, false) == 0)
return;
/* This is a terrible fallback. Oh well. */
fallback_random_bytes(p, n);
}
int crypto_random_bytes(void *p, size_t n) {
static bool have_getrandom = true, seen_initialized = false;
_cleanup_close_ int fd = -EBADF;
if (n == 0)
return 0;
for (;;) {
ssize_t l;
if (!have_getrandom)
break;
l = getrandom(p, n, 0);
if (l > 0) {
if ((size_t) l == n)
return 0; /* Done reading, success. */
p = (uint8_t *) p + l;
n -= l;
continue; /* Interrupted by a signal; keep going. */
} else if (l == 0)
return -EIO; /* Weird, should never happen. */
else if (ERRNO_IS_NOT_SUPPORTED(errno)) {
have_getrandom = false;
break; /* No syscall, so fallback to /dev/urandom. */
}
return -errno;
}
if (!seen_initialized) {
_cleanup_close_ int ready_fd = -EBADF;
int r;
ready_fd = open("/dev/random", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (ready_fd < 0)
return -errno;
r = fd_wait_for_event(ready_fd, POLLIN, USEC_INFINITY);
if (r < 0)
return r;
seen_initialized = true;
}
fd = open("/dev/urandom", O_RDONLY|O_CLOEXEC|O_NOCTTY);
if (fd < 0)
return -errno;
return loop_read_exact(fd, p, n, false);
}
size_t random_pool_size(void) {
_cleanup_free_ char *s = NULL;
int r;
/* Read pool size, if possible */
r = read_one_line_file("/proc/sys/kernel/random/poolsize", &s);
if (r < 0)
log_debug_errno(r, "Failed to read pool size from kernel: %m");
else {
unsigned sz;
r = safe_atou(s, &sz);
if (r < 0)
log_debug_errno(r, "Failed to parse pool size: %s", s);
else
/* poolsize is in bits on 2.6, but we want bytes */
return CLAMP(sz / 8, RANDOM_POOL_SIZE_MIN, RANDOM_POOL_SIZE_MAX);
}
/* Use the minimum as default, if we can't retrieve the correct value */
return RANDOM_POOL_SIZE_MIN;
}
int random_write_entropy(int fd, const void *seed, size_t size, bool credit) {
_cleanup_close_ int opened_fd = -EBADF;
int r;
assert(seed || size == 0);
if (size == 0)
return 0;
if (fd < 0) {
opened_fd = open("/dev/urandom", O_WRONLY|O_CLOEXEC|O_NOCTTY);
if (opened_fd < 0)
return -errno;
fd = opened_fd;
}
if (credit) {
_cleanup_free_ struct rand_pool_info *info = NULL;
/* The kernel API only accepts "int" as entropy count (which is in bits), let's avoid any
* chance for confusion here. */
if (size > INT_MAX / 8)
return -EOVERFLOW;
info = malloc(offsetof(struct rand_pool_info, buf) + size);
if (!info)
return -ENOMEM;
info->entropy_count = size * 8;
info->buf_size = size;
memcpy(info->buf, seed, size);
if (ioctl(fd, RNDADDENTROPY, info) < 0)
return -errno;
} else {
r = loop_write(fd, seed, size);
if (r < 0)
return r;
}
return 1;
}
uint64_t random_u64_range(uint64_t m) {
uint64_t x, remainder;
/* Generates a random number in the range 0…m-1, unbiased. (Java's algorithm) */
if (m == 0) /* Let's take m == 0 as special case to return an integer from the full range */
return random_u64();
if (m == 1)
return 0;
remainder = UINT64_MAX % m;
do {
x = random_u64();
} while (x >= UINT64_MAX - remainder);
return x % m;
}
|