diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /media/libopus/silk/A2NLSF.c | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream.tar.xz thunderbird-upstream.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libopus/silk/A2NLSF.c')
-rw-r--r-- | media/libopus/silk/A2NLSF.c | 267 |
1 files changed, 267 insertions, 0 deletions
diff --git a/media/libopus/silk/A2NLSF.c b/media/libopus/silk/A2NLSF.c new file mode 100644 index 0000000000..b487686ff9 --- /dev/null +++ b/media/libopus/silk/A2NLSF.c @@ -0,0 +1,267 @@ +/*********************************************************************** +Copyright (c) 2006-2011, Skype Limited. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions +are met: +- Redistributions of source code must retain the above copyright notice, +this list of conditions and the following disclaimer. +- Redistributions in binary form must reproduce the above copyright +notice, this list of conditions and the following disclaimer in the +documentation and/or other materials provided with the distribution. +- Neither the name of Internet Society, IETF or IETF Trust, nor the +names of specific contributors, may be used to endorse or promote +products derived from this software without specific prior written +permission. +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. +***********************************************************************/ + +/* Conversion between prediction filter coefficients and NLSFs */ +/* Requires the order to be an even number */ +/* A piecewise linear approximation maps LSF <-> cos(LSF) */ +/* Therefore the result is not accurate NLSFs, but the two */ +/* functions are accurate inverses of each other */ + +#ifdef HAVE_CONFIG_H +#include "config.h" +#endif + +#include "SigProc_FIX.h" +#include "tables.h" + +/* Number of binary divisions, when not in low complexity mode */ +#define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */ +#define MAX_ITERATIONS_A2NLSF_FIX 16 + +/* Helper function for A2NLSF(..) */ +/* Transforms polynomials from cos(n*f) to cos(f)^n */ +static OPUS_INLINE void silk_A2NLSF_trans_poly( + opus_int32 *p, /* I/O Polynomial */ + const opus_int dd /* I Polynomial order (= filter order / 2 ) */ +) +{ + opus_int k, n; + + for( k = 2; k <= dd; k++ ) { + for( n = dd; n > k; n-- ) { + p[ n - 2 ] -= p[ n ]; + } + p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 ); + } +} +/* Helper function for A2NLSF(..) */ +/* Polynomial evaluation */ +static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */ + opus_int32 *p, /* I Polynomial, Q16 */ + const opus_int32 x, /* I Evaluation point, Q12 */ + const opus_int dd /* I Order */ +) +{ + opus_int n; + opus_int32 x_Q16, y32; + + y32 = p[ dd ]; /* Q16 */ + x_Q16 = silk_LSHIFT( x, 4 ); + + if ( opus_likely( 8 == dd ) ) + { + y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 ); + y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 ); + } + else + { + for( n = dd - 1; n >= 0; n-- ) { + y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */ + } + } + return y32; +} + +static OPUS_INLINE void silk_A2NLSF_init( + const opus_int32 *a_Q16, + opus_int32 *P, + opus_int32 *Q, + const opus_int dd +) +{ + opus_int k; + + /* Convert filter coefs to even and odd polynomials */ + P[dd] = silk_LSHIFT( 1, 16 ); + Q[dd] = silk_LSHIFT( 1, 16 ); + for( k = 0; k < dd; k++ ) { + P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */ + Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */ + } + + /* Divide out zeros as we have that for even filter orders, */ + /* z = 1 is always a root in Q, and */ + /* z = -1 is always a root in P */ + for( k = dd; k > 0; k-- ) { + P[ k - 1 ] -= P[ k ]; + Q[ k - 1 ] += Q[ k ]; + } + + /* Transform polynomials from cos(n*f) to cos(f)^n */ + silk_A2NLSF_trans_poly( P, dd ); + silk_A2NLSF_trans_poly( Q, dd ); +} + +/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */ +/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */ +void silk_A2NLSF( + opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */ + opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */ + const opus_int d /* I Filter order (must be even) */ +) +{ + opus_int i, k, m, dd, root_ix, ffrac; + opus_int32 xlo, xhi, xmid; + opus_int32 ylo, yhi, ymid, thr; + opus_int32 nom, den; + opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ]; + opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; + opus_int32 *PQ[ 2 ]; + opus_int32 *p; + + /* Store pointers to array */ + PQ[ 0 ] = P; + PQ[ 1 ] = Q; + + dd = silk_RSHIFT( d, 1 ); + + silk_A2NLSF_init( a_Q16, P, Q, dd ); + + /* Find roots, alternating between P and Q */ + p = P; /* Pointer to polynomial */ + + xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/ + ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); + + if( ylo < 0 ) { + /* Set the first NLSF to zero and move on to the next */ + NLSF[ 0 ] = 0; + p = Q; /* Pointer to polynomial */ + ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); + root_ix = 1; /* Index of current root */ + } else { + root_ix = 0; /* Index of current root */ + } + k = 1; /* Loop counter */ + i = 0; /* Counter for bandwidth expansions applied */ + thr = 0; + while( 1 ) { + /* Evaluate polynomial */ + xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */ + yhi = silk_A2NLSF_eval_poly( p, xhi, dd ); + + /* Detect zero crossing */ + if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) { + if( yhi == 0 ) { + /* If the root lies exactly at the end of the current */ + /* interval, look for the next root in the next interval */ + thr = 1; + } else { + thr = 0; + } + /* Binary division */ + ffrac = -256; + for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) { + /* Evaluate polynomial */ + xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 ); + ymid = silk_A2NLSF_eval_poly( p, xmid, dd ); + + /* Detect zero crossing */ + if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) { + /* Reduce frequency */ + xhi = xmid; + yhi = ymid; + } else { + /* Increase frequency */ + xlo = xmid; + ylo = ymid; + ffrac = silk_ADD_RSHIFT( ffrac, 128, m ); + } + } + + /* Interpolate */ + if( silk_abs( ylo ) < 65536 ) { + /* Avoid dividing by zero */ + den = ylo - yhi; + nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 ); + if( den != 0 ) { + ffrac += silk_DIV32( nom, den ); + } + } else { + /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */ + ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) ); + } + NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX ); + + silk_assert( NLSF[ root_ix ] >= 0 ); + + root_ix++; /* Next root */ + if( root_ix >= d ) { + /* Found all roots */ + break; + } + /* Alternate pointer to polynomial */ + p = PQ[ root_ix & 1 ]; + + /* Evaluate polynomial */ + xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/ + ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 ); + } else { + /* Increment loop counter */ + k++; + xlo = xhi; + ylo = yhi; + thr = 0; + + if( k > LSF_COS_TAB_SZ_FIX ) { + i++; + if( i > MAX_ITERATIONS_A2NLSF_FIX ) { + /* Set NLSFs to white spectrum and exit */ + NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 ); + for( k = 1; k < d; k++ ) { + NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] ); + } + return; + } + + /* Error: Apply progressively more bandwidth expansion and run again */ + silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) ); + + silk_A2NLSF_init( a_Q16, P, Q, dd ); + p = P; /* Pointer to polynomial */ + xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/ + ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); + if( ylo < 0 ) { + /* Set the first NLSF to zero and move on to the next */ + NLSF[ 0 ] = 0; + p = Q; /* Pointer to polynomial */ + ylo = silk_A2NLSF_eval_poly( p, xlo, dd ); + root_ix = 1; /* Index of current root */ + } else { + root_ix = 0; /* Index of current root */ + } + k = 1; /* Reset loop counter */ + } + } + } +} |