diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /media/libwebp/src/dsp | |
parent | Initial commit. (diff) | |
download | thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.tar.xz thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libwebp/src/dsp')
75 files changed, 33166 insertions, 0 deletions
diff --git a/media/libwebp/src/dsp/alpha_processing.c b/media/libwebp/src/dsp/alpha_processing.c new file mode 100644 index 0000000000..1892929a43 --- /dev/null +++ b/media/libwebp/src/dsp/alpha_processing.c @@ -0,0 +1,495 @@ +// Copyright 2013 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> +#include "src/dsp/dsp.h" + +// Tables can be faster on some platform but incur some extra binary size (~2k). +#if !defined(USE_TABLES_FOR_ALPHA_MULT) +#define USE_TABLES_FOR_ALPHA_MULT 0 // ALTERNATE_CODE +#endif + + +// ----------------------------------------------------------------------------- + +#define MFIX 24 // 24bit fixed-point arithmetic +#define HALF ((1u << MFIX) >> 1) +#define KINV_255 ((1u << MFIX) / 255u) + +static uint32_t Mult(uint8_t x, uint32_t mult) { + const uint32_t v = (x * mult + HALF) >> MFIX; + assert(v <= 255); // <- 24bit precision is enough to ensure that. + return v; +} + +#if (USE_TABLES_FOR_ALPHA_MULT == 1) + +static const uint32_t kMultTables[2][256] = { + { // (255u << MFIX) / alpha + 0x00000000, 0xff000000, 0x7f800000, 0x55000000, 0x3fc00000, 0x33000000, + 0x2a800000, 0x246db6db, 0x1fe00000, 0x1c555555, 0x19800000, 0x172e8ba2, + 0x15400000, 0x139d89d8, 0x1236db6d, 0x11000000, 0x0ff00000, 0x0f000000, + 0x0e2aaaaa, 0x0d6bca1a, 0x0cc00000, 0x0c249249, 0x0b9745d1, 0x0b1642c8, + 0x0aa00000, 0x0a333333, 0x09cec4ec, 0x0971c71c, 0x091b6db6, 0x08cb08d3, + 0x08800000, 0x0839ce73, 0x07f80000, 0x07ba2e8b, 0x07800000, 0x07492492, + 0x07155555, 0x06e45306, 0x06b5e50d, 0x0689d89d, 0x06600000, 0x063831f3, + 0x06124924, 0x05ee23b8, 0x05cba2e8, 0x05aaaaaa, 0x058b2164, 0x056cefa8, + 0x05500000, 0x05343eb1, 0x05199999, 0x05000000, 0x04e76276, 0x04cfb2b7, + 0x04b8e38e, 0x04a2e8ba, 0x048db6db, 0x0479435e, 0x04658469, 0x045270d0, + 0x04400000, 0x042e29f7, 0x041ce739, 0x040c30c3, 0x03fc0000, 0x03ec4ec4, + 0x03dd1745, 0x03ce540f, 0x03c00000, 0x03b21642, 0x03a49249, 0x03976fc6, + 0x038aaaaa, 0x037e3f1f, 0x03722983, 0x03666666, 0x035af286, 0x034fcace, + 0x0344ec4e, 0x033a5440, 0x03300000, 0x0325ed09, 0x031c18f9, 0x0312818a, + 0x03092492, 0x03000000, 0x02f711dc, 0x02ee5846, 0x02e5d174, 0x02dd7baf, + 0x02d55555, 0x02cd5cd5, 0x02c590b2, 0x02bdef7b, 0x02b677d4, 0x02af286b, + 0x02a80000, 0x02a0fd5c, 0x029a1f58, 0x029364d9, 0x028ccccc, 0x0286562d, + 0x02800000, 0x0279c952, 0x0273b13b, 0x026db6db, 0x0267d95b, 0x026217ec, + 0x025c71c7, 0x0256e62a, 0x0251745d, 0x024c1bac, 0x0246db6d, 0x0241b2f9, + 0x023ca1af, 0x0237a6f4, 0x0232c234, 0x022df2df, 0x02293868, 0x02249249, + 0x02200000, 0x021b810e, 0x021714fb, 0x0212bb51, 0x020e739c, 0x020a3d70, + 0x02061861, 0x02020408, 0x01fe0000, 0x01fa0be8, 0x01f62762, 0x01f25213, + 0x01ee8ba2, 0x01ead3ba, 0x01e72a07, 0x01e38e38, 0x01e00000, 0x01dc7f10, + 0x01d90b21, 0x01d5a3e9, 0x01d24924, 0x01cefa8d, 0x01cbb7e3, 0x01c880e5, + 0x01c55555, 0x01c234f7, 0x01bf1f8f, 0x01bc14e5, 0x01b914c1, 0x01b61eed, + 0x01b33333, 0x01b05160, 0x01ad7943, 0x01aaaaaa, 0x01a7e567, 0x01a5294a, + 0x01a27627, 0x019fcbd2, 0x019d2a20, 0x019a90e7, 0x01980000, 0x01957741, + 0x0192f684, 0x01907da4, 0x018e0c7c, 0x018ba2e8, 0x018940c5, 0x0186e5f0, + 0x01849249, 0x018245ae, 0x01800000, 0x017dc11f, 0x017b88ee, 0x0179574e, + 0x01772c23, 0x01750750, 0x0172e8ba, 0x0170d045, 0x016ebdd7, 0x016cb157, + 0x016aaaaa, 0x0168a9b9, 0x0166ae6a, 0x0164b8a7, 0x0162c859, 0x0160dd67, + 0x015ef7bd, 0x015d1745, 0x015b3bea, 0x01596596, 0x01579435, 0x0155c7b4, + 0x01540000, 0x01523d03, 0x01507eae, 0x014ec4ec, 0x014d0fac, 0x014b5edc, + 0x0149b26c, 0x01480a4a, 0x01466666, 0x0144c6af, 0x01432b16, 0x0141938b, + 0x01400000, 0x013e7063, 0x013ce4a9, 0x013b5cc0, 0x0139d89d, 0x01385830, + 0x0136db6d, 0x01356246, 0x0133ecad, 0x01327a97, 0x01310bf6, 0x012fa0be, + 0x012e38e3, 0x012cd459, 0x012b7315, 0x012a150a, 0x0128ba2e, 0x01276276, + 0x01260dd6, 0x0124bc44, 0x01236db6, 0x01222222, 0x0120d97c, 0x011f93bc, + 0x011e50d7, 0x011d10c4, 0x011bd37a, 0x011a98ef, 0x0119611a, 0x01182bf2, + 0x0116f96f, 0x0115c988, 0x01149c34, 0x0113716a, 0x01124924, 0x01112358, + 0x01100000, 0x010edf12, 0x010dc087, 0x010ca458, 0x010b8a7d, 0x010a72f0, + 0x01095da8, 0x01084a9f, 0x010739ce, 0x01062b2e, 0x01051eb8, 0x01041465, + 0x01030c30, 0x01020612, 0x01010204, 0x01000000 }, + { // alpha * KINV_255 + 0x00000000, 0x00010101, 0x00020202, 0x00030303, 0x00040404, 0x00050505, + 0x00060606, 0x00070707, 0x00080808, 0x00090909, 0x000a0a0a, 0x000b0b0b, + 0x000c0c0c, 0x000d0d0d, 0x000e0e0e, 0x000f0f0f, 0x00101010, 0x00111111, + 0x00121212, 0x00131313, 0x00141414, 0x00151515, 0x00161616, 0x00171717, + 0x00181818, 0x00191919, 0x001a1a1a, 0x001b1b1b, 0x001c1c1c, 0x001d1d1d, + 0x001e1e1e, 0x001f1f1f, 0x00202020, 0x00212121, 0x00222222, 0x00232323, + 0x00242424, 0x00252525, 0x00262626, 0x00272727, 0x00282828, 0x00292929, + 0x002a2a2a, 0x002b2b2b, 0x002c2c2c, 0x002d2d2d, 0x002e2e2e, 0x002f2f2f, + 0x00303030, 0x00313131, 0x00323232, 0x00333333, 0x00343434, 0x00353535, + 0x00363636, 0x00373737, 0x00383838, 0x00393939, 0x003a3a3a, 0x003b3b3b, + 0x003c3c3c, 0x003d3d3d, 0x003e3e3e, 0x003f3f3f, 0x00404040, 0x00414141, + 0x00424242, 0x00434343, 0x00444444, 0x00454545, 0x00464646, 0x00474747, + 0x00484848, 0x00494949, 0x004a4a4a, 0x004b4b4b, 0x004c4c4c, 0x004d4d4d, + 0x004e4e4e, 0x004f4f4f, 0x00505050, 0x00515151, 0x00525252, 0x00535353, + 0x00545454, 0x00555555, 0x00565656, 0x00575757, 0x00585858, 0x00595959, + 0x005a5a5a, 0x005b5b5b, 0x005c5c5c, 0x005d5d5d, 0x005e5e5e, 0x005f5f5f, + 0x00606060, 0x00616161, 0x00626262, 0x00636363, 0x00646464, 0x00656565, + 0x00666666, 0x00676767, 0x00686868, 0x00696969, 0x006a6a6a, 0x006b6b6b, + 0x006c6c6c, 0x006d6d6d, 0x006e6e6e, 0x006f6f6f, 0x00707070, 0x00717171, + 0x00727272, 0x00737373, 0x00747474, 0x00757575, 0x00767676, 0x00777777, + 0x00787878, 0x00797979, 0x007a7a7a, 0x007b7b7b, 0x007c7c7c, 0x007d7d7d, + 0x007e7e7e, 0x007f7f7f, 0x00808080, 0x00818181, 0x00828282, 0x00838383, + 0x00848484, 0x00858585, 0x00868686, 0x00878787, 0x00888888, 0x00898989, + 0x008a8a8a, 0x008b8b8b, 0x008c8c8c, 0x008d8d8d, 0x008e8e8e, 0x008f8f8f, + 0x00909090, 0x00919191, 0x00929292, 0x00939393, 0x00949494, 0x00959595, + 0x00969696, 0x00979797, 0x00989898, 0x00999999, 0x009a9a9a, 0x009b9b9b, + 0x009c9c9c, 0x009d9d9d, 0x009e9e9e, 0x009f9f9f, 0x00a0a0a0, 0x00a1a1a1, + 0x00a2a2a2, 0x00a3a3a3, 0x00a4a4a4, 0x00a5a5a5, 0x00a6a6a6, 0x00a7a7a7, + 0x00a8a8a8, 0x00a9a9a9, 0x00aaaaaa, 0x00ababab, 0x00acacac, 0x00adadad, + 0x00aeaeae, 0x00afafaf, 0x00b0b0b0, 0x00b1b1b1, 0x00b2b2b2, 0x00b3b3b3, + 0x00b4b4b4, 0x00b5b5b5, 0x00b6b6b6, 0x00b7b7b7, 0x00b8b8b8, 0x00b9b9b9, + 0x00bababa, 0x00bbbbbb, 0x00bcbcbc, 0x00bdbdbd, 0x00bebebe, 0x00bfbfbf, + 0x00c0c0c0, 0x00c1c1c1, 0x00c2c2c2, 0x00c3c3c3, 0x00c4c4c4, 0x00c5c5c5, + 0x00c6c6c6, 0x00c7c7c7, 0x00c8c8c8, 0x00c9c9c9, 0x00cacaca, 0x00cbcbcb, + 0x00cccccc, 0x00cdcdcd, 0x00cecece, 0x00cfcfcf, 0x00d0d0d0, 0x00d1d1d1, + 0x00d2d2d2, 0x00d3d3d3, 0x00d4d4d4, 0x00d5d5d5, 0x00d6d6d6, 0x00d7d7d7, + 0x00d8d8d8, 0x00d9d9d9, 0x00dadada, 0x00dbdbdb, 0x00dcdcdc, 0x00dddddd, + 0x00dedede, 0x00dfdfdf, 0x00e0e0e0, 0x00e1e1e1, 0x00e2e2e2, 0x00e3e3e3, + 0x00e4e4e4, 0x00e5e5e5, 0x00e6e6e6, 0x00e7e7e7, 0x00e8e8e8, 0x00e9e9e9, + 0x00eaeaea, 0x00ebebeb, 0x00ececec, 0x00ededed, 0x00eeeeee, 0x00efefef, + 0x00f0f0f0, 0x00f1f1f1, 0x00f2f2f2, 0x00f3f3f3, 0x00f4f4f4, 0x00f5f5f5, + 0x00f6f6f6, 0x00f7f7f7, 0x00f8f8f8, 0x00f9f9f9, 0x00fafafa, 0x00fbfbfb, + 0x00fcfcfc, 0x00fdfdfd, 0x00fefefe, 0x00ffffff } +}; + +static WEBP_INLINE uint32_t GetScale(uint32_t a, int inverse) { + return kMultTables[!inverse][a]; +} + +#else + +static WEBP_INLINE uint32_t GetScale(uint32_t a, int inverse) { + return inverse ? (255u << MFIX) / a : a * KINV_255; +} + +#endif // USE_TABLES_FOR_ALPHA_MULT + +void WebPMultARGBRow_C(uint32_t* const ptr, int width, int inverse) { + int x; + for (x = 0; x < width; ++x) { + const uint32_t argb = ptr[x]; + if (argb < 0xff000000u) { // alpha < 255 + if (argb <= 0x00ffffffu) { // alpha == 0 + ptr[x] = 0; + } else { + const uint32_t alpha = (argb >> 24) & 0xff; + const uint32_t scale = GetScale(alpha, inverse); + uint32_t out = argb & 0xff000000u; + out |= Mult(argb >> 0, scale) << 0; + out |= Mult(argb >> 8, scale) << 8; + out |= Mult(argb >> 16, scale) << 16; + ptr[x] = out; + } + } + } +} + +void WebPMultRow_C(uint8_t* WEBP_RESTRICT const ptr, + const uint8_t* WEBP_RESTRICT const alpha, + int width, int inverse) { + int x; + for (x = 0; x < width; ++x) { + const uint32_t a = alpha[x]; + if (a != 255) { + if (a == 0) { + ptr[x] = 0; + } else { + const uint32_t scale = GetScale(a, inverse); + ptr[x] = Mult(ptr[x], scale); + } + } + } +} + +#undef KINV_255 +#undef HALF +#undef MFIX + +void (*WebPMultARGBRow)(uint32_t* const ptr, int width, int inverse); +void (*WebPMultRow)(uint8_t* WEBP_RESTRICT const ptr, + const uint8_t* WEBP_RESTRICT const alpha, + int width, int inverse); + +//------------------------------------------------------------------------------ +// Generic per-plane calls + +void WebPMultARGBRows(uint8_t* ptr, int stride, int width, int num_rows, + int inverse) { + int n; + for (n = 0; n < num_rows; ++n) { + WebPMultARGBRow((uint32_t*)ptr, width, inverse); + ptr += stride; + } +} + +void WebPMultRows(uint8_t* WEBP_RESTRICT ptr, int stride, + const uint8_t* WEBP_RESTRICT alpha, int alpha_stride, + int width, int num_rows, int inverse) { + int n; + for (n = 0; n < num_rows; ++n) { + WebPMultRow(ptr, alpha, width, inverse); + ptr += stride; + alpha += alpha_stride; + } +} + +//------------------------------------------------------------------------------ +// Premultiplied modes + +// non dithered-modes + +// (x * a * 32897) >> 23 is bit-wise equivalent to (int)(x * a / 255.) +// for all 8bit x or a. For bit-wise equivalence to (int)(x * a / 255. + .5), +// one can use instead: (x * a * 65793 + (1 << 23)) >> 24 +#if 1 // (int)(x * a / 255.) +#define MULTIPLIER(a) ((a) * 32897U) +#define PREMULTIPLY(x, m) (((x) * (m)) >> 23) +#else // (int)(x * a / 255. + .5) +#define MULTIPLIER(a) ((a) * 65793U) +#define PREMULTIPLY(x, m) (((x) * (m) + (1U << 23)) >> 24) +#endif + +#if !WEBP_NEON_OMIT_C_CODE +static void ApplyAlphaMultiply_C(uint8_t* rgba, int alpha_first, + int w, int h, int stride) { + while (h-- > 0) { + uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); + const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); + int i; + for (i = 0; i < w; ++i) { + const uint32_t a = alpha[4 * i]; + if (a != 0xff) { + const uint32_t mult = MULTIPLIER(a); + rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); + rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); + rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); + } + } + rgba += stride; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE +#undef MULTIPLIER +#undef PREMULTIPLY + +// rgbA4444 + +#define MULTIPLIER(a) ((a) * 0x1111) // 0x1111 ~= (1 << 16) / 15 + +static WEBP_INLINE uint8_t dither_hi(uint8_t x) { + return (x & 0xf0) | (x >> 4); +} + +static WEBP_INLINE uint8_t dither_lo(uint8_t x) { + return (x & 0x0f) | (x << 4); +} + +static WEBP_INLINE uint8_t multiply(uint8_t x, uint32_t m) { + return (x * m) >> 16; +} + +static WEBP_INLINE void ApplyAlphaMultiply4444_C(uint8_t* rgba4444, + int w, int h, int stride, + int rg_byte_pos /* 0 or 1 */) { + while (h-- > 0) { + int i; + for (i = 0; i < w; ++i) { + const uint32_t rg = rgba4444[2 * i + rg_byte_pos]; + const uint32_t ba = rgba4444[2 * i + (rg_byte_pos ^ 1)]; + const uint8_t a = ba & 0x0f; + const uint32_t mult = MULTIPLIER(a); + const uint8_t r = multiply(dither_hi(rg), mult); + const uint8_t g = multiply(dither_lo(rg), mult); + const uint8_t b = multiply(dither_hi(ba), mult); + rgba4444[2 * i + rg_byte_pos] = (r & 0xf0) | ((g >> 4) & 0x0f); + rgba4444[2 * i + (rg_byte_pos ^ 1)] = (b & 0xf0) | a; + } + rgba4444 += stride; + } +} +#undef MULTIPLIER + +static void ApplyAlphaMultiply_16b_C(uint8_t* rgba4444, + int w, int h, int stride) { +#if (WEBP_SWAP_16BIT_CSP == 1) + ApplyAlphaMultiply4444_C(rgba4444, w, h, stride, 1); +#else + ApplyAlphaMultiply4444_C(rgba4444, w, h, stride, 0); +#endif +} + +#if !WEBP_NEON_OMIT_C_CODE +static int DispatchAlpha_C(const uint8_t* WEBP_RESTRICT alpha, int alpha_stride, + int width, int height, + uint8_t* WEBP_RESTRICT dst, int dst_stride) { + uint32_t alpha_mask = 0xff; + int i, j; + + for (j = 0; j < height; ++j) { + for (i = 0; i < width; ++i) { + const uint32_t alpha_value = alpha[i]; + dst[4 * i] = alpha_value; + alpha_mask &= alpha_value; + } + alpha += alpha_stride; + dst += dst_stride; + } + + return (alpha_mask != 0xff); +} + +static void DispatchAlphaToGreen_C(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint32_t* WEBP_RESTRICT dst, + int dst_stride) { + int i, j; + for (j = 0; j < height; ++j) { + for (i = 0; i < width; ++i) { + dst[i] = alpha[i] << 8; // leave A/R/B channels zero'd. + } + alpha += alpha_stride; + dst += dst_stride; + } +} + +static int ExtractAlpha_C(const uint8_t* WEBP_RESTRICT argb, int argb_stride, + int width, int height, + uint8_t* WEBP_RESTRICT alpha, int alpha_stride) { + uint8_t alpha_mask = 0xff; + int i, j; + + for (j = 0; j < height; ++j) { + for (i = 0; i < width; ++i) { + const uint8_t alpha_value = argb[4 * i]; + alpha[i] = alpha_value; + alpha_mask &= alpha_value; + } + argb += argb_stride; + alpha += alpha_stride; + } + return (alpha_mask == 0xff); +} + +static void ExtractGreen_C(const uint32_t* WEBP_RESTRICT argb, + uint8_t* WEBP_RESTRICT alpha, int size) { + int i; + for (i = 0; i < size; ++i) alpha[i] = argb[i] >> 8; +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ + +static int HasAlpha8b_C(const uint8_t* src, int length) { + while (length-- > 0) if (*src++ != 0xff) return 1; + return 0; +} + +static int HasAlpha32b_C(const uint8_t* src, int length) { + int x; + for (x = 0; length-- > 0; x += 4) if (src[x] != 0xff) return 1; + return 0; +} + +static void AlphaReplace_C(uint32_t* src, int length, uint32_t color) { + int x; + for (x = 0; x < length; ++x) if ((src[x] >> 24) == 0) src[x] = color; +} + +//------------------------------------------------------------------------------ +// Simple channel manipulations. + +static WEBP_INLINE uint32_t MakeARGB32(int a, int r, int g, int b) { + return (((uint32_t)a << 24) | (r << 16) | (g << 8) | b); +} + +#ifdef WORDS_BIGENDIAN +static void PackARGB_C(const uint8_t* WEBP_RESTRICT a, + const uint8_t* WEBP_RESTRICT r, + const uint8_t* WEBP_RESTRICT g, + const uint8_t* WEBP_RESTRICT b, + int len, uint32_t* WEBP_RESTRICT out) { + int i; + for (i = 0; i < len; ++i) { + out[i] = MakeARGB32(a[4 * i], r[4 * i], g[4 * i], b[4 * i]); + } +} +#endif + +static void PackRGB_C(const uint8_t* WEBP_RESTRICT r, + const uint8_t* WEBP_RESTRICT g, + const uint8_t* WEBP_RESTRICT b, + int len, int step, uint32_t* WEBP_RESTRICT out) { + int i, offset = 0; + for (i = 0; i < len; ++i) { + out[i] = MakeARGB32(0xff, r[offset], g[offset], b[offset]); + offset += step; + } +} + +void (*WebPApplyAlphaMultiply)(uint8_t*, int, int, int, int); +void (*WebPApplyAlphaMultiply4444)(uint8_t*, int, int, int); +int (*WebPDispatchAlpha)(const uint8_t* WEBP_RESTRICT, int, int, int, + uint8_t* WEBP_RESTRICT, int); +void (*WebPDispatchAlphaToGreen)(const uint8_t* WEBP_RESTRICT, int, int, int, + uint32_t* WEBP_RESTRICT, int); +int (*WebPExtractAlpha)(const uint8_t* WEBP_RESTRICT, int, int, int, + uint8_t* WEBP_RESTRICT, int); +void (*WebPExtractGreen)(const uint32_t* WEBP_RESTRICT argb, + uint8_t* WEBP_RESTRICT alpha, int size); +#ifdef WORDS_BIGENDIAN +void (*WebPPackARGB)(const uint8_t* a, const uint8_t* r, const uint8_t* g, + const uint8_t* b, int, uint32_t*); +#endif +void (*WebPPackRGB)(const uint8_t* WEBP_RESTRICT r, + const uint8_t* WEBP_RESTRICT g, + const uint8_t* WEBP_RESTRICT b, + int len, int step, uint32_t* WEBP_RESTRICT out); + +int (*WebPHasAlpha8b)(const uint8_t* src, int length); +int (*WebPHasAlpha32b)(const uint8_t* src, int length); +void (*WebPAlphaReplace)(uint32_t* src, int length, uint32_t color); + +//------------------------------------------------------------------------------ +// Init function + +extern void WebPInitAlphaProcessingMIPSdspR2(void); +extern void WebPInitAlphaProcessingSSE2(void); +extern void WebPInitAlphaProcessingSSE41(void); +extern void WebPInitAlphaProcessingNEON(void); + +WEBP_DSP_INIT_FUNC(WebPInitAlphaProcessing) { + WebPMultARGBRow = WebPMultARGBRow_C; + WebPMultRow = WebPMultRow_C; + WebPApplyAlphaMultiply4444 = ApplyAlphaMultiply_16b_C; + +#ifdef WORDS_BIGENDIAN + WebPPackARGB = PackARGB_C; +#endif + WebPPackRGB = PackRGB_C; +#if !WEBP_NEON_OMIT_C_CODE + WebPApplyAlphaMultiply = ApplyAlphaMultiply_C; + WebPDispatchAlpha = DispatchAlpha_C; + WebPDispatchAlphaToGreen = DispatchAlphaToGreen_C; + WebPExtractAlpha = ExtractAlpha_C; + WebPExtractGreen = ExtractGreen_C; +#endif + + WebPHasAlpha8b = HasAlpha8b_C; + WebPHasAlpha32b = HasAlpha32b_C; + WebPAlphaReplace = AlphaReplace_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPInitAlphaProcessingSSE2(); +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + WebPInitAlphaProcessingSSE41(); + } +#endif + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + WebPInitAlphaProcessingMIPSdspR2(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + WebPInitAlphaProcessingNEON(); + } +#endif + + assert(WebPMultARGBRow != NULL); + assert(WebPMultRow != NULL); + assert(WebPApplyAlphaMultiply != NULL); + assert(WebPApplyAlphaMultiply4444 != NULL); + assert(WebPDispatchAlpha != NULL); + assert(WebPDispatchAlphaToGreen != NULL); + assert(WebPExtractAlpha != NULL); + assert(WebPExtractGreen != NULL); +#ifdef WORDS_BIGENDIAN + assert(WebPPackARGB != NULL); +#endif + assert(WebPPackRGB != NULL); + assert(WebPHasAlpha8b != NULL); + assert(WebPHasAlpha32b != NULL); + assert(WebPAlphaReplace != NULL); +} diff --git a/media/libwebp/src/dsp/alpha_processing_mips_dsp_r2.c b/media/libwebp/src/dsp/alpha_processing_mips_dsp_r2.c new file mode 100644 index 0000000000..0090e87cd1 --- /dev/null +++ b/media/libwebp/src/dsp/alpha_processing_mips_dsp_r2.c @@ -0,0 +1,228 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel. +// +// Author(s): Branimir Vasic (branimir.vasic@imgtec.com) +// Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +static int DispatchAlpha_MIPSdspR2(const uint8_t* alpha, int alpha_stride, + int width, int height, + uint8_t* dst, int dst_stride) { + uint32_t alpha_mask = 0xffffffff; + int i, j, temp0; + + for (j = 0; j < height; ++j) { + uint8_t* pdst = dst; + const uint8_t* palpha = alpha; + for (i = 0; i < (width >> 2); ++i) { + int temp1, temp2, temp3; + + __asm__ volatile ( + "ulw %[temp0], 0(%[palpha]) \n\t" + "addiu %[palpha], %[palpha], 4 \n\t" + "addiu %[pdst], %[pdst], 16 \n\t" + "srl %[temp1], %[temp0], 8 \n\t" + "srl %[temp2], %[temp0], 16 \n\t" + "srl %[temp3], %[temp0], 24 \n\t" + "and %[alpha_mask], %[alpha_mask], %[temp0] \n\t" + "sb %[temp0], -16(%[pdst]) \n\t" + "sb %[temp1], -12(%[pdst]) \n\t" + "sb %[temp2], -8(%[pdst]) \n\t" + "sb %[temp3], -4(%[pdst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [palpha]"+r"(palpha), [pdst]"+r"(pdst), + [alpha_mask]"+r"(alpha_mask) + : + : "memory" + ); + } + + for (i = 0; i < (width & 3); ++i) { + __asm__ volatile ( + "lbu %[temp0], 0(%[palpha]) \n\t" + "addiu %[palpha], %[palpha], 1 \n\t" + "sb %[temp0], 0(%[pdst]) \n\t" + "and %[alpha_mask], %[alpha_mask], %[temp0] \n\t" + "addiu %[pdst], %[pdst], 4 \n\t" + : [temp0]"=&r"(temp0), [palpha]"+r"(palpha), [pdst]"+r"(pdst), + [alpha_mask]"+r"(alpha_mask) + : + : "memory" + ); + } + alpha += alpha_stride; + dst += dst_stride; + } + + __asm__ volatile ( + "ext %[temp0], %[alpha_mask], 0, 16 \n\t" + "srl %[alpha_mask], %[alpha_mask], 16 \n\t" + "and %[alpha_mask], %[alpha_mask], %[temp0] \n\t" + "ext %[temp0], %[alpha_mask], 0, 8 \n\t" + "srl %[alpha_mask], %[alpha_mask], 8 \n\t" + "and %[alpha_mask], %[alpha_mask], %[temp0] \n\t" + : [temp0]"=&r"(temp0), [alpha_mask]"+r"(alpha_mask) + : + ); + + return (alpha_mask != 0xff); +} + +static void MultARGBRow_MIPSdspR2(uint32_t* const ptr, int width, + int inverse) { + int x; + const uint32_t c_00ffffff = 0x00ffffffu; + const uint32_t c_ff000000 = 0xff000000u; + const uint32_t c_8000000 = 0x00800000u; + const uint32_t c_8000080 = 0x00800080u; + for (x = 0; x < width; ++x) { + const uint32_t argb = ptr[x]; + if (argb < 0xff000000u) { // alpha < 255 + if (argb <= 0x00ffffffu) { // alpha == 0 + ptr[x] = 0; + } else { + int temp0, temp1, temp2, temp3, alpha; + __asm__ volatile ( + "srl %[alpha], %[argb], 24 \n\t" + "replv.qb %[temp0], %[alpha] \n\t" + "and %[temp0], %[temp0], %[c_00ffffff] \n\t" + "beqz %[inverse], 0f \n\t" + "divu $zero, %[c_ff000000], %[alpha] \n\t" + "mflo %[temp0] \n\t" + "0: \n\t" + "andi %[temp1], %[argb], 0xff \n\t" + "ext %[temp2], %[argb], 8, 8 \n\t" + "ext %[temp3], %[argb], 16, 8 \n\t" + "mul %[temp1], %[temp1], %[temp0] \n\t" + "mul %[temp2], %[temp2], %[temp0] \n\t" + "mul %[temp3], %[temp3], %[temp0] \n\t" + "precrq.ph.w %[temp1], %[temp2], %[temp1] \n\t" + "addu %[temp3], %[temp3], %[c_8000000] \n\t" + "addu %[temp1], %[temp1], %[c_8000080] \n\t" + "precrq.ph.w %[temp3], %[argb], %[temp3] \n\t" + "precrq.qb.ph %[temp1], %[temp3], %[temp1] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [alpha]"=&r"(alpha) + : [inverse]"r"(inverse), [c_00ffffff]"r"(c_00ffffff), + [c_8000000]"r"(c_8000000), [c_8000080]"r"(c_8000080), + [c_ff000000]"r"(c_ff000000), [argb]"r"(argb) + : "memory", "hi", "lo" + ); + ptr[x] = temp1; + } + } + } +} + +#ifdef WORDS_BIGENDIAN +static void PackARGB_MIPSdspR2(const uint8_t* a, const uint8_t* r, + const uint8_t* g, const uint8_t* b, int len, + uint32_t* out) { + int temp0, temp1, temp2, temp3, offset; + const int rest = len & 1; + const uint32_t* const loop_end = out + len - rest; + const int step = 4; + __asm__ volatile ( + "xor %[offset], %[offset], %[offset] \n\t" + "beq %[loop_end], %[out], 0f \n\t" + "2: \n\t" + "lbux %[temp0], %[offset](%[a]) \n\t" + "lbux %[temp1], %[offset](%[r]) \n\t" + "lbux %[temp2], %[offset](%[g]) \n\t" + "lbux %[temp3], %[offset](%[b]) \n\t" + "ins %[temp1], %[temp0], 16, 16 \n\t" + "ins %[temp3], %[temp2], 16, 16 \n\t" + "addiu %[out], %[out], 4 \n\t" + "precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t" + "sw %[temp0], -4(%[out]) \n\t" + "addu %[offset], %[offset], %[step] \n\t" + "bne %[loop_end], %[out], 2b \n\t" + "0: \n\t" + "beq %[rest], $zero, 1f \n\t" + "lbux %[temp0], %[offset](%[a]) \n\t" + "lbux %[temp1], %[offset](%[r]) \n\t" + "lbux %[temp2], %[offset](%[g]) \n\t" + "lbux %[temp3], %[offset](%[b]) \n\t" + "ins %[temp1], %[temp0], 16, 16 \n\t" + "ins %[temp3], %[temp2], 16, 16 \n\t" + "precr.qb.ph %[temp0], %[temp1], %[temp3] \n\t" + "sw %[temp0], 0(%[out]) \n\t" + "1: \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [offset]"=&r"(offset), [out]"+&r"(out) + : [a]"r"(a), [r]"r"(r), [g]"r"(g), [b]"r"(b), [step]"r"(step), + [loop_end]"r"(loop_end), [rest]"r"(rest) + : "memory" + ); +} +#endif // WORDS_BIGENDIAN + +static void PackRGB_MIPSdspR2(const uint8_t* r, const uint8_t* g, + const uint8_t* b, int len, int step, + uint32_t* out) { + int temp0, temp1, temp2, offset; + const int rest = len & 1; + const int a = 0xff; + const uint32_t* const loop_end = out + len - rest; + __asm__ volatile ( + "xor %[offset], %[offset], %[offset] \n\t" + "beq %[loop_end], %[out], 0f \n\t" + "2: \n\t" + "lbux %[temp0], %[offset](%[r]) \n\t" + "lbux %[temp1], %[offset](%[g]) \n\t" + "lbux %[temp2], %[offset](%[b]) \n\t" + "ins %[temp0], %[a], 16, 16 \n\t" + "ins %[temp2], %[temp1], 16, 16 \n\t" + "addiu %[out], %[out], 4 \n\t" + "precr.qb.ph %[temp0], %[temp0], %[temp2] \n\t" + "sw %[temp0], -4(%[out]) \n\t" + "addu %[offset], %[offset], %[step] \n\t" + "bne %[loop_end], %[out], 2b \n\t" + "0: \n\t" + "beq %[rest], $zero, 1f \n\t" + "lbux %[temp0], %[offset](%[r]) \n\t" + "lbux %[temp1], %[offset](%[g]) \n\t" + "lbux %[temp2], %[offset](%[b]) \n\t" + "ins %[temp0], %[a], 16, 16 \n\t" + "ins %[temp2], %[temp1], 16, 16 \n\t" + "precr.qb.ph %[temp0], %[temp0], %[temp2] \n\t" + "sw %[temp0], 0(%[out]) \n\t" + "1: \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [offset]"=&r"(offset), [out]"+&r"(out) + : [a]"r"(a), [r]"r"(r), [g]"r"(g), [b]"r"(b), [step]"r"(step), + [loop_end]"r"(loop_end), [rest]"r"(rest) + : "memory" + ); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitAlphaProcessingMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingMIPSdspR2(void) { + WebPDispatchAlpha = DispatchAlpha_MIPSdspR2; + WebPMultARGBRow = MultARGBRow_MIPSdspR2; +#ifdef WORDS_BIGENDIAN + WebPPackARGB = PackARGB_MIPSdspR2; +#endif + WebPPackRGB = PackRGB_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/alpha_processing_neon.c b/media/libwebp/src/dsp/alpha_processing_neon.c new file mode 100644 index 0000000000..6716fb77f0 --- /dev/null +++ b/media/libwebp/src/dsp/alpha_processing_neon.c @@ -0,0 +1,194 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel, NEON version. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include "src/dsp/neon.h" + +//------------------------------------------------------------------------------ + +#define MULTIPLIER(a) ((a) * 0x8081) +#define PREMULTIPLY(x, m) (((x) * (m)) >> 23) + +#define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do { \ + const uint8x8_t alpha = (V).val[(ALPHA)]; \ + const uint16x8_t r1 = vmull_u8((V).val[1], alpha); \ + const uint16x8_t g1 = vmull_u8((V).val[2], alpha); \ + const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha); \ + /* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */ \ + const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8); \ + const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8); \ + const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8); \ + const uint16x8_t r3 = vaddq_u16(r2, kOne); \ + const uint16x8_t g3 = vaddq_u16(g2, kOne); \ + const uint16x8_t b3 = vaddq_u16(b2, kOne); \ + (V).val[1] = vshrn_n_u16(r3, 8); \ + (V).val[2] = vshrn_n_u16(g3, 8); \ + (V).val[(OTHER)] = vshrn_n_u16(b3, 8); \ +} while (0) + +static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first, + int w, int h, int stride) { + const uint16x8_t kOne = vdupq_n_u16(1u); + while (h-- > 0) { + uint32_t* const rgbx = (uint32_t*)rgba; + int i = 0; + if (alpha_first) { + for (; i + 8 <= w; i += 8) { + // load aaaa...|rrrr...|gggg...|bbbb... + uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); + MULTIPLY_BY_ALPHA(RGBX, 0, 3); + vst4_u8((uint8_t*)(rgbx + i), RGBX); + } + } else { + for (; i + 8 <= w; i += 8) { + uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i)); + MULTIPLY_BY_ALPHA(RGBX, 3, 0); + vst4_u8((uint8_t*)(rgbx + i), RGBX); + } + } + // Finish with left-overs. + for (; i < w; ++i) { + uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); + const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); + const uint32_t a = alpha[4 * i]; + if (a != 0xff) { + const uint32_t mult = MULTIPLIER(a); + rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); + rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); + rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); + } + } + rgba += stride; + } +} +#undef MULTIPLY_BY_ALPHA +#undef MULTIPLIER +#undef PREMULTIPLY + +//------------------------------------------------------------------------------ + +static int DispatchAlpha_NEON(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint8_t* WEBP_RESTRICT dst, int dst_stride) { + uint32_t alpha_mask = 0xffu; + uint8x8_t mask8 = vdup_n_u8(0xff); + uint32_t tmp[2]; + int i, j; + for (j = 0; j < height; ++j) { + // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb + // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. + // Hence the test with 'width - 1' instead of just 'width'. + for (i = 0; i + 8 <= width - 1; i += 8) { + uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i)); + const uint8x8_t alphas = vld1_u8(alpha + i); + rgbX.val[0] = alphas; + vst4_u8((uint8_t*)(dst + 4 * i), rgbX); + mask8 = vand_u8(mask8, alphas); + } + for (; i < width; ++i) { + const uint32_t alpha_value = alpha[i]; + dst[4 * i] = alpha_value; + alpha_mask &= alpha_value; + } + alpha += alpha_stride; + dst += dst_stride; + } + vst1_u8((uint8_t*)tmp, mask8); + alpha_mask *= 0x01010101; + alpha_mask &= tmp[0]; + alpha_mask &= tmp[1]; + return (alpha_mask != 0xffffffffu); +} + +static void DispatchAlphaToGreen_NEON(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint32_t* WEBP_RESTRICT dst, + int dst_stride) { + int i, j; + uint8x8x4_t greens; // leave A/R/B channels zero'd. + greens.val[0] = vdup_n_u8(0); + greens.val[2] = vdup_n_u8(0); + greens.val[3] = vdup_n_u8(0); + for (j = 0; j < height; ++j) { + for (i = 0; i + 8 <= width; i += 8) { + greens.val[1] = vld1_u8(alpha + i); + vst4_u8((uint8_t*)(dst + i), greens); + } + for (; i < width; ++i) dst[i] = alpha[i] << 8; + alpha += alpha_stride; + dst += dst_stride; + } +} + +static int ExtractAlpha_NEON(const uint8_t* WEBP_RESTRICT argb, int argb_stride, + int width, int height, + uint8_t* WEBP_RESTRICT alpha, int alpha_stride) { + uint32_t alpha_mask = 0xffu; + uint8x8_t mask8 = vdup_n_u8(0xff); + uint32_t tmp[2]; + int i, j; + for (j = 0; j < height; ++j) { + // We don't know if alpha is first or last in dst[] (depending on rgbA/Argb + // mode). So we must be sure dst[4*i + 8 - 1] is writable for the store. + // Hence the test with 'width - 1' instead of just 'width'. + for (i = 0; i + 8 <= width - 1; i += 8) { + const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i)); + const uint8x8_t alphas = rgbX.val[0]; + vst1_u8((uint8_t*)(alpha + i), alphas); + mask8 = vand_u8(mask8, alphas); + } + for (; i < width; ++i) { + alpha[i] = argb[4 * i]; + alpha_mask &= alpha[i]; + } + argb += argb_stride; + alpha += alpha_stride; + } + vst1_u8((uint8_t*)tmp, mask8); + alpha_mask *= 0x01010101; + alpha_mask &= tmp[0]; + alpha_mask &= tmp[1]; + return (alpha_mask == 0xffffffffu); +} + +static void ExtractGreen_NEON(const uint32_t* WEBP_RESTRICT argb, + uint8_t* WEBP_RESTRICT alpha, int size) { + int i; + for (i = 0; i + 16 <= size; i += 16) { + const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i)); + const uint8x16_t greens = rgbX.val[1]; + vst1q_u8(alpha + i, greens); + } + for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff; +} + +//------------------------------------------------------------------------------ + +extern void WebPInitAlphaProcessingNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) { + WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON; + WebPDispatchAlpha = DispatchAlpha_NEON; + WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON; + WebPExtractAlpha = ExtractAlpha_NEON; + WebPExtractGreen = ExtractGreen_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/alpha_processing_sse2.c b/media/libwebp/src/dsp/alpha_processing_sse2.c new file mode 100644 index 0000000000..f0843d0feb --- /dev/null +++ b/media/libwebp/src/dsp/alpha_processing_sse2.c @@ -0,0 +1,367 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) +#include <emmintrin.h> + +//------------------------------------------------------------------------------ + +static int DispatchAlpha_SSE2(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint8_t* WEBP_RESTRICT dst, int dst_stride) { + // alpha_and stores an 'and' operation of all the alpha[] values. The final + // value is not 0xff if any of the alpha[] is not equal to 0xff. + uint32_t alpha_and = 0xff; + int i, j; + const __m128i zero = _mm_setzero_si128(); + const __m128i rgb_mask = _mm_set1_epi32((int)0xffffff00); // to preserve RGB + const __m128i all_0xff = _mm_set_epi32(0, 0, ~0, ~0); + __m128i all_alphas = all_0xff; + + // We must be able to access 3 extra bytes after the last written byte + // 'dst[4 * width - 4]', because we don't know if alpha is the first or the + // last byte of the quadruplet. + const int limit = (width - 1) & ~7; + + for (j = 0; j < height; ++j) { + __m128i* out = (__m128i*)dst; + for (i = 0; i < limit; i += 8) { + // load 8 alpha bytes + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]); + const __m128i a1 = _mm_unpacklo_epi8(a0, zero); + const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); + const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); + // load 8 dst pixels (32 bytes) + const __m128i b0_lo = _mm_loadu_si128(out + 0); + const __m128i b0_hi = _mm_loadu_si128(out + 1); + // mask dst alpha values + const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask); + const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask); + // combine + const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo); + const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi); + // store + _mm_storeu_si128(out + 0, b2_lo); + _mm_storeu_si128(out + 1, b2_hi); + // accumulate eight alpha 'and' in parallel + all_alphas = _mm_and_si128(all_alphas, a0); + out += 2; + } + for (; i < width; ++i) { + const uint32_t alpha_value = alpha[i]; + dst[4 * i] = alpha_value; + alpha_and &= alpha_value; + } + alpha += alpha_stride; + dst += dst_stride; + } + // Combine the eight alpha 'and' into a 8-bit mask. + alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); + return (alpha_and != 0xff); +} + +static void DispatchAlphaToGreen_SSE2(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint32_t* WEBP_RESTRICT dst, + int dst_stride) { + int i, j; + const __m128i zero = _mm_setzero_si128(); + const int limit = width & ~15; + for (j = 0; j < height; ++j) { + for (i = 0; i < limit; i += 16) { // process 16 alpha bytes + const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]); + const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first! + const __m128i b1 = _mm_unpackhi_epi8(zero, a0); + const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); + const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero); + const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); + const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero); + _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo); + _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi); + _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo); + _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi); + } + for (; i < width; ++i) dst[i] = alpha[i] << 8; + alpha += alpha_stride; + dst += dst_stride; + } +} + +static int ExtractAlpha_SSE2(const uint8_t* WEBP_RESTRICT argb, int argb_stride, + int width, int height, + uint8_t* WEBP_RESTRICT alpha, int alpha_stride) { + // alpha_and stores an 'and' operation of all the alpha[] values. The final + // value is not 0xff if any of the alpha[] is not equal to 0xff. + uint32_t alpha_and = 0xff; + int i, j; + const __m128i a_mask = _mm_set1_epi32(0xff); // to preserve alpha + const __m128i all_0xff = _mm_set_epi32(0, 0, ~0, ~0); + __m128i all_alphas = all_0xff; + + // We must be able to access 3 extra bytes after the last written byte + // 'src[4 * width - 4]', because we don't know if alpha is the first or the + // last byte of the quadruplet. + const int limit = (width - 1) & ~7; + + for (j = 0; j < height; ++j) { + const __m128i* src = (const __m128i*)argb; + for (i = 0; i < limit; i += 8) { + // load 32 argb bytes + const __m128i a0 = _mm_loadu_si128(src + 0); + const __m128i a1 = _mm_loadu_si128(src + 1); + const __m128i b0 = _mm_and_si128(a0, a_mask); + const __m128i b1 = _mm_and_si128(a1, a_mask); + const __m128i c0 = _mm_packs_epi32(b0, b1); + const __m128i d0 = _mm_packus_epi16(c0, c0); + // store + _mm_storel_epi64((__m128i*)&alpha[i], d0); + // accumulate eight alpha 'and' in parallel + all_alphas = _mm_and_si128(all_alphas, d0); + src += 2; + } + for (; i < width; ++i) { + const uint32_t alpha_value = argb[4 * i]; + alpha[i] = alpha_value; + alpha_and &= alpha_value; + } + argb += argb_stride; + alpha += alpha_stride; + } + // Combine the eight alpha 'and' into a 8-bit mask. + alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); + return (alpha_and == 0xff); +} + +//------------------------------------------------------------------------------ +// Non-dither premultiplied modes + +#define MULTIPLIER(a) ((a) * 0x8081) +#define PREMULTIPLY(x, m) (((x) * (m)) >> 23) + +// We can't use a 'const int' for the SHUFFLE value, because it has to be an +// immediate in the _mm_shufflexx_epi16() instruction. We really need a macro. +// We use: v / 255 = (v * 0x8081) >> 23, where v = alpha * {r,g,b} is a 16bit +// value. +#define APPLY_ALPHA(RGBX, SHUFFLE) do { \ + const __m128i argb0 = _mm_loadu_si128((const __m128i*)&(RGBX)); \ + const __m128i argb1_lo = _mm_unpacklo_epi8(argb0, zero); \ + const __m128i argb1_hi = _mm_unpackhi_epi8(argb0, zero); \ + const __m128i alpha0_lo = _mm_or_si128(argb1_lo, kMask); \ + const __m128i alpha0_hi = _mm_or_si128(argb1_hi, kMask); \ + const __m128i alpha1_lo = _mm_shufflelo_epi16(alpha0_lo, SHUFFLE); \ + const __m128i alpha1_hi = _mm_shufflelo_epi16(alpha0_hi, SHUFFLE); \ + const __m128i alpha2_lo = _mm_shufflehi_epi16(alpha1_lo, SHUFFLE); \ + const __m128i alpha2_hi = _mm_shufflehi_epi16(alpha1_hi, SHUFFLE); \ + /* alpha2 = [ff a0 a0 a0][ff a1 a1 a1] */ \ + const __m128i A0_lo = _mm_mullo_epi16(alpha2_lo, argb1_lo); \ + const __m128i A0_hi = _mm_mullo_epi16(alpha2_hi, argb1_hi); \ + const __m128i A1_lo = _mm_mulhi_epu16(A0_lo, kMult); \ + const __m128i A1_hi = _mm_mulhi_epu16(A0_hi, kMult); \ + const __m128i A2_lo = _mm_srli_epi16(A1_lo, 7); \ + const __m128i A2_hi = _mm_srli_epi16(A1_hi, 7); \ + const __m128i A3 = _mm_packus_epi16(A2_lo, A2_hi); \ + _mm_storeu_si128((__m128i*)&(RGBX), A3); \ +} while (0) + +static void ApplyAlphaMultiply_SSE2(uint8_t* rgba, int alpha_first, + int w, int h, int stride) { + const __m128i zero = _mm_setzero_si128(); + const __m128i kMult = _mm_set1_epi16((short)0x8081); + const __m128i kMask = _mm_set_epi16(0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0); + const int kSpan = 4; + while (h-- > 0) { + uint32_t* const rgbx = (uint32_t*)rgba; + int i; + if (!alpha_first) { + for (i = 0; i + kSpan <= w; i += kSpan) { + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(2, 3, 3, 3)); + } + } else { + for (i = 0; i + kSpan <= w; i += kSpan) { + APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 1)); + } + } + // Finish with left-overs. + for (; i < w; ++i) { + uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); + const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); + const uint32_t a = alpha[4 * i]; + if (a != 0xff) { + const uint32_t mult = MULTIPLIER(a); + rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); + rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); + rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); + } + } + rgba += stride; + } +} +#undef MULTIPLIER +#undef PREMULTIPLY + +//------------------------------------------------------------------------------ +// Alpha detection + +static int HasAlpha8b_SSE2(const uint8_t* src, int length) { + const __m128i all_0xff = _mm_set1_epi8((char)0xff); + int i = 0; + for (; i + 16 <= length; i += 16) { + const __m128i v = _mm_loadu_si128((const __m128i*)(src + i)); + const __m128i bits = _mm_cmpeq_epi8(v, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i < length; ++i) if (src[i] != 0xff) return 1; + return 0; +} + +static int HasAlpha32b_SSE2(const uint8_t* src, int length) { + const __m128i alpha_mask = _mm_set1_epi32(0xff); + const __m128i all_0xff = _mm_set1_epi8((char)0xff); + int i = 0; + // We don't know if we can access the last 3 bytes after the last alpha + // value 'src[4 * length - 4]' (because we don't know if alpha is the first + // or the last byte of the quadruplet). Hence the '-3' protection below. + length = length * 4 - 3; // size in bytes + for (; i + 64 <= length; i += 64) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); + const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); + const __m128i a2 = _mm_loadu_si128((const __m128i*)(src + i + 32)); + const __m128i a3 = _mm_loadu_si128((const __m128i*)(src + i + 48)); + const __m128i b0 = _mm_and_si128(a0, alpha_mask); + const __m128i b1 = _mm_and_si128(a1, alpha_mask); + const __m128i b2 = _mm_and_si128(a2, alpha_mask); + const __m128i b3 = _mm_and_si128(a3, alpha_mask); + const __m128i c0 = _mm_packs_epi32(b0, b1); + const __m128i c1 = _mm_packs_epi32(b2, b3); + const __m128i d = _mm_packus_epi16(c0, c1); + const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i + 32 <= length; i += 32) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); + const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 16)); + const __m128i b0 = _mm_and_si128(a0, alpha_mask); + const __m128i b1 = _mm_and_si128(a1, alpha_mask); + const __m128i c = _mm_packs_epi32(b0, b1); + const __m128i d = _mm_packus_epi16(c, c); + const __m128i bits = _mm_cmpeq_epi8(d, all_0xff); + const int mask = _mm_movemask_epi8(bits); + if (mask != 0xffff) return 1; + } + for (; i <= length; i += 4) if (src[i] != 0xff) return 1; + return 0; +} + +static void AlphaReplace_SSE2(uint32_t* src, int length, uint32_t color) { + const __m128i m_color = _mm_set1_epi32((int)color); + const __m128i zero = _mm_setzero_si128(); + int i = 0; + for (; i + 8 <= length; i += 8) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)(src + i + 0)); + const __m128i a1 = _mm_loadu_si128((const __m128i*)(src + i + 4)); + const __m128i b0 = _mm_srai_epi32(a0, 24); + const __m128i b1 = _mm_srai_epi32(a1, 24); + const __m128i c0 = _mm_cmpeq_epi32(b0, zero); + const __m128i c1 = _mm_cmpeq_epi32(b1, zero); + const __m128i d0 = _mm_and_si128(c0, m_color); + const __m128i d1 = _mm_and_si128(c1, m_color); + const __m128i e0 = _mm_andnot_si128(c0, a0); + const __m128i e1 = _mm_andnot_si128(c1, a1); + _mm_storeu_si128((__m128i*)(src + i + 0), _mm_or_si128(d0, e0)); + _mm_storeu_si128((__m128i*)(src + i + 4), _mm_or_si128(d1, e1)); + } + for (; i < length; ++i) if ((src[i] >> 24) == 0) src[i] = color; +} + +// ----------------------------------------------------------------------------- +// Apply alpha value to rows + +static void MultARGBRow_SSE2(uint32_t* const ptr, int width, int inverse) { + int x = 0; + if (!inverse) { + const int kSpan = 2; + const __m128i zero = _mm_setzero_si128(); + const __m128i k128 = _mm_set1_epi16(128); + const __m128i kMult = _mm_set1_epi16(0x0101); + const __m128i kMask = _mm_set_epi16(0, 0xff, 0, 0, 0, 0xff, 0, 0); + for (x = 0; x + kSpan <= width; x += kSpan) { + // To compute 'result = (int)(a * x / 255. + .5)', we use: + // tmp = a * v + 128, result = (tmp * 0x0101u) >> 16 + const __m128i A0 = _mm_loadl_epi64((const __m128i*)&ptr[x]); + const __m128i A1 = _mm_unpacklo_epi8(A0, zero); + const __m128i A2 = _mm_or_si128(A1, kMask); + const __m128i A3 = _mm_shufflelo_epi16(A2, _MM_SHUFFLE(2, 3, 3, 3)); + const __m128i A4 = _mm_shufflehi_epi16(A3, _MM_SHUFFLE(2, 3, 3, 3)); + // here, A4 = [ff a0 a0 a0][ff a1 a1 a1] + const __m128i A5 = _mm_mullo_epi16(A4, A1); + const __m128i A6 = _mm_add_epi16(A5, k128); + const __m128i A7 = _mm_mulhi_epu16(A6, kMult); + const __m128i A10 = _mm_packus_epi16(A7, zero); + _mm_storel_epi64((__m128i*)&ptr[x], A10); + } + } + width -= x; + if (width > 0) WebPMultARGBRow_C(ptr + x, width, inverse); +} + +static void MultRow_SSE2(uint8_t* WEBP_RESTRICT const ptr, + const uint8_t* WEBP_RESTRICT const alpha, + int width, int inverse) { + int x = 0; + if (!inverse) { + const __m128i zero = _mm_setzero_si128(); + const __m128i k128 = _mm_set1_epi16(128); + const __m128i kMult = _mm_set1_epi16(0x0101); + for (x = 0; x + 8 <= width; x += 8) { + const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); + const __m128i v1 = _mm_unpacklo_epi8(v0, zero); + const __m128i a1 = _mm_unpacklo_epi8(a0, zero); + const __m128i v2 = _mm_mullo_epi16(v1, a1); + const __m128i v3 = _mm_add_epi16(v2, k128); + const __m128i v4 = _mm_mulhi_epu16(v3, kMult); + const __m128i v5 = _mm_packus_epi16(v4, zero); + _mm_storel_epi64((__m128i*)&ptr[x], v5); + } + } + width -= x; + if (width > 0) WebPMultRow_C(ptr + x, alpha + x, width, inverse); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitAlphaProcessingSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { + WebPMultARGBRow = MultARGBRow_SSE2; + WebPMultRow = MultRow_SSE2; + WebPApplyAlphaMultiply = ApplyAlphaMultiply_SSE2; + WebPDispatchAlpha = DispatchAlpha_SSE2; + WebPDispatchAlphaToGreen = DispatchAlphaToGreen_SSE2; + WebPExtractAlpha = ExtractAlpha_SSE2; + + WebPHasAlpha8b = HasAlpha8b_SSE2; + WebPHasAlpha32b = HasAlpha32b_SSE2; + WebPAlphaReplace = AlphaReplace_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/alpha_processing_sse41.c b/media/libwebp/src/dsp/alpha_processing_sse41.c new file mode 100644 index 0000000000..1156ac3417 --- /dev/null +++ b/media/libwebp/src/dsp/alpha_processing_sse41.c @@ -0,0 +1,92 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Utilities for processing transparent channel, SSE4.1 variant. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) + +#include <smmintrin.h> + +//------------------------------------------------------------------------------ + +static int ExtractAlpha_SSE41(const uint8_t* WEBP_RESTRICT argb, + int argb_stride, int width, int height, + uint8_t* WEBP_RESTRICT alpha, int alpha_stride) { + // alpha_and stores an 'and' operation of all the alpha[] values. The final + // value is not 0xff if any of the alpha[] is not equal to 0xff. + uint32_t alpha_and = 0xff; + int i, j; + const __m128i all_0xff = _mm_set1_epi32(~0); + __m128i all_alphas = all_0xff; + + // We must be able to access 3 extra bytes after the last written byte + // 'src[4 * width - 4]', because we don't know if alpha is the first or the + // last byte of the quadruplet. + const int limit = (width - 1) & ~15; + const __m128i kCstAlpha0 = _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, 12, 8, 4, 0); + const __m128i kCstAlpha1 = _mm_set_epi8(-1, -1, -1, -1, -1, -1, -1, -1, + 12, 8, 4, 0, -1, -1, -1, -1); + const __m128i kCstAlpha2 = _mm_set_epi8(-1, -1, -1, -1, 12, 8, 4, 0, + -1, -1, -1, -1, -1, -1, -1, -1); + const __m128i kCstAlpha3 = _mm_set_epi8(12, 8, 4, 0, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1); + for (j = 0; j < height; ++j) { + const __m128i* src = (const __m128i*)argb; + for (i = 0; i < limit; i += 16) { + // load 64 argb bytes + const __m128i a0 = _mm_loadu_si128(src + 0); + const __m128i a1 = _mm_loadu_si128(src + 1); + const __m128i a2 = _mm_loadu_si128(src + 2); + const __m128i a3 = _mm_loadu_si128(src + 3); + const __m128i b0 = _mm_shuffle_epi8(a0, kCstAlpha0); + const __m128i b1 = _mm_shuffle_epi8(a1, kCstAlpha1); + const __m128i b2 = _mm_shuffle_epi8(a2, kCstAlpha2); + const __m128i b3 = _mm_shuffle_epi8(a3, kCstAlpha3); + const __m128i c0 = _mm_or_si128(b0, b1); + const __m128i c1 = _mm_or_si128(b2, b3); + const __m128i d0 = _mm_or_si128(c0, c1); + // store + _mm_storeu_si128((__m128i*)&alpha[i], d0); + // accumulate sixteen alpha 'and' in parallel + all_alphas = _mm_and_si128(all_alphas, d0); + src += 4; + } + for (; i < width; ++i) { + const uint32_t alpha_value = argb[4 * i]; + alpha[i] = alpha_value; + alpha_and &= alpha_value; + } + argb += argb_stride; + alpha += alpha_stride; + } + // Combine the sixteen alpha 'and' into an 8-bit mask. + alpha_and |= 0xff00u; // pretend the upper bits [8..15] were tested ok. + alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); + return (alpha_and == 0xffffu); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitAlphaProcessingSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE41(void) { + WebPExtractAlpha = ExtractAlpha_SSE41; +} + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE41) + +#endif // WEBP_USE_SSE41 diff --git a/media/libwebp/src/dsp/common_sse2.h b/media/libwebp/src/dsp/common_sse2.h new file mode 100644 index 0000000000..e9f1ebff44 --- /dev/null +++ b/media/libwebp/src/dsp/common_sse2.h @@ -0,0 +1,194 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 code common to several files. +// +// Author: Vincent Rabaud (vrabaud@google.com) + +#ifndef WEBP_DSP_COMMON_SSE2_H_ +#define WEBP_DSP_COMMON_SSE2_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(WEBP_USE_SSE2) + +#include <emmintrin.h> + +//------------------------------------------------------------------------------ +// Quite useful macro for debugging. Left here for convenience. + +#if 0 +#include <stdio.h> +static WEBP_INLINE void PrintReg(const __m128i r, const char* const name, + int size) { + int n; + union { + __m128i r; + uint8_t i8[16]; + uint16_t i16[8]; + uint32_t i32[4]; + uint64_t i64[2]; + } tmp; + tmp.r = r; + fprintf(stderr, "%s\t: ", name); + if (size == 8) { + for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", tmp.i8[n]); + } else if (size == 16) { + for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", tmp.i16[n]); + } else if (size == 32) { + for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", tmp.i32[n]); + } else { + for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx ", tmp.i64[n]); + } + fprintf(stderr, "\n"); +} +#endif + +//------------------------------------------------------------------------------ +// Math functions. + +// Return the sum of all the 8b in the register. +static WEBP_INLINE int VP8HorizontalAdd8b(const __m128i* const a) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sad8x2 = _mm_sad_epu8(*a, zero); + // sum the two sads: sad8x2[0:1] + sad8x2[8:9] + const __m128i sum = _mm_add_epi32(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); + return _mm_cvtsi128_si32(sum); +} + +// Transpose two 4x4 16b matrices horizontally stored in registers. +static WEBP_INLINE void VP8Transpose_2_4x4_16b( + const __m128i* const in0, const __m128i* const in1, + const __m128i* const in2, const __m128i* const in3, __m128i* const out0, + __m128i* const out1, __m128i* const out2, __m128i* const out3) { + // Transpose the two 4x4. + // a00 a01 a02 a03 b00 b01 b02 b03 + // a10 a11 a12 a13 b10 b11 b12 b13 + // a20 a21 a22 a23 b20 b21 b22 b23 + // a30 a31 a32 a33 b30 b31 b32 b33 + const __m128i transpose0_0 = _mm_unpacklo_epi16(*in0, *in1); + const __m128i transpose0_1 = _mm_unpacklo_epi16(*in2, *in3); + const __m128i transpose0_2 = _mm_unpackhi_epi16(*in0, *in1); + const __m128i transpose0_3 = _mm_unpackhi_epi16(*in2, *in3); + // a00 a10 a01 a11 a02 a12 a03 a13 + // a20 a30 a21 a31 a22 a32 a23 a33 + // b00 b10 b01 b11 b02 b12 b03 b13 + // b20 b30 b21 b31 b22 b32 b23 b33 + const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); + const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); + const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); + const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); + // a00 a10 a20 a30 a01 a11 a21 a31 + // b00 b10 b20 b30 b01 b11 b21 b31 + // a02 a12 a22 a32 a03 a13 a23 a33 + // b02 b12 a22 b32 b03 b13 b23 b33 + *out0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); + *out1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); + *out2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); + *out3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); + // a00 a10 a20 a30 b00 b10 b20 b30 + // a01 a11 a21 a31 b01 b11 b21 b31 + // a02 a12 a22 a32 b02 b12 b22 b32 + // a03 a13 a23 a33 b03 b13 b23 b33 +} + +//------------------------------------------------------------------------------ +// Channel mixing. + +// Function used several times in VP8PlanarTo24b. +// It samples the in buffer as follows: one every two unsigned char is stored +// at the beginning of the buffer, while the other half is stored at the end. +#define VP8PlanarTo24bHelper(IN, OUT) \ + do { \ + const __m128i v_mask = _mm_set1_epi16(0x00ff); \ + /* Take one every two upper 8b values.*/ \ + (OUT##0) = _mm_packus_epi16(_mm_and_si128((IN##0), v_mask), \ + _mm_and_si128((IN##1), v_mask)); \ + (OUT##1) = _mm_packus_epi16(_mm_and_si128((IN##2), v_mask), \ + _mm_and_si128((IN##3), v_mask)); \ + (OUT##2) = _mm_packus_epi16(_mm_and_si128((IN##4), v_mask), \ + _mm_and_si128((IN##5), v_mask)); \ + /* Take one every two lower 8b values.*/ \ + (OUT##3) = _mm_packus_epi16(_mm_srli_epi16((IN##0), 8), \ + _mm_srli_epi16((IN##1), 8)); \ + (OUT##4) = _mm_packus_epi16(_mm_srli_epi16((IN##2), 8), \ + _mm_srli_epi16((IN##3), 8)); \ + (OUT##5) = _mm_packus_epi16(_mm_srli_epi16((IN##4), 8), \ + _mm_srli_epi16((IN##5), 8)); \ + } while (0) + +// Pack the planar buffers +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... +static WEBP_INLINE void VP8PlanarTo24b_SSE2( + __m128i* const in0, __m128i* const in1, __m128i* const in2, + __m128i* const in3, __m128i* const in4, __m128i* const in5) { + // The input is 6 registers of sixteen 8b but for the sake of explanation, + // let's take 6 registers of four 8b values. + // To pack, we will keep taking one every two 8b integer and move it + // around as follows: + // Input: + // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 + // Split the 6 registers in two sets of 3 registers: the first set as the even + // 8b bytes, the second the odd ones: + // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 + // Repeat the same permutations twice more: + // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 + // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 + __m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + VP8PlanarTo24bHelper(*in, tmp); + VP8PlanarTo24bHelper(tmp, *in); + VP8PlanarTo24bHelper(*in, tmp); + // We need to do it two more times than the example as we have sixteen bytes. + { + __m128i out0, out1, out2, out3, out4, out5; + VP8PlanarTo24bHelper(tmp, out); + VP8PlanarTo24bHelper(out, *in); + } +} + +#undef VP8PlanarTo24bHelper + +// Convert four packed four-channel buffers like argbargbargbargb... into the +// split channels aaaaa ... rrrr ... gggg .... bbbbb ...... +static WEBP_INLINE void VP8L32bToPlanar_SSE2(__m128i* const in0, + __m128i* const in1, + __m128i* const in2, + __m128i* const in3) { + // Column-wise transpose. + const __m128i A0 = _mm_unpacklo_epi8(*in0, *in1); + const __m128i A1 = _mm_unpackhi_epi8(*in0, *in1); + const __m128i A2 = _mm_unpacklo_epi8(*in2, *in3); + const __m128i A3 = _mm_unpackhi_epi8(*in2, *in3); + const __m128i B0 = _mm_unpacklo_epi8(A0, A1); + const __m128i B1 = _mm_unpackhi_epi8(A0, A1); + const __m128i B2 = _mm_unpacklo_epi8(A2, A3); + const __m128i B3 = _mm_unpackhi_epi8(A2, A3); + // C0 = g7 g6 ... g1 g0 | b7 b6 ... b1 b0 + // C1 = a7 a6 ... a1 a0 | r7 r6 ... r1 r0 + const __m128i C0 = _mm_unpacklo_epi8(B0, B1); + const __m128i C1 = _mm_unpackhi_epi8(B0, B1); + const __m128i C2 = _mm_unpacklo_epi8(B2, B3); + const __m128i C3 = _mm_unpackhi_epi8(B2, B3); + // Gather the channels. + *in0 = _mm_unpackhi_epi64(C1, C3); + *in1 = _mm_unpacklo_epi64(C1, C3); + *in2 = _mm_unpackhi_epi64(C0, C2); + *in3 = _mm_unpacklo_epi64(C0, C2); +} + +#endif // WEBP_USE_SSE2 + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_COMMON_SSE2_H_ diff --git a/media/libwebp/src/dsp/common_sse41.h b/media/libwebp/src/dsp/common_sse41.h new file mode 100644 index 0000000000..2f173c024a --- /dev/null +++ b/media/libwebp/src/dsp/common_sse41.h @@ -0,0 +1,132 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE4 code common to several files. +// +// Author: Vincent Rabaud (vrabaud@google.com) + +#ifndef WEBP_DSP_COMMON_SSE41_H_ +#define WEBP_DSP_COMMON_SSE41_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#if defined(WEBP_USE_SSE41) +#include <smmintrin.h> + +//------------------------------------------------------------------------------ +// Channel mixing. +// Shuffles the input buffer as A0 0 0 A1 0 0 A2 ... +#define WEBP_SSE41_SHUFF(OUT, IN0, IN1) \ + OUT##0 = _mm_shuffle_epi8(*IN0, shuff0); \ + OUT##1 = _mm_shuffle_epi8(*IN0, shuff1); \ + OUT##2 = _mm_shuffle_epi8(*IN0, shuff2); \ + OUT##3 = _mm_shuffle_epi8(*IN1, shuff0); \ + OUT##4 = _mm_shuffle_epi8(*IN1, shuff1); \ + OUT##5 = _mm_shuffle_epi8(*IN1, shuff2); + +// Pack the planar buffers +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... +static WEBP_INLINE void VP8PlanarTo24b_SSE41( + __m128i* const in0, __m128i* const in1, __m128i* const in2, + __m128i* const in3, __m128i* const in4, __m128i* const in5) { + __m128i R0, R1, R2, R3, R4, R5; + __m128i G0, G1, G2, G3, G4, G5; + __m128i B0, B1, B2, B3, B4, B5; + + // Process R. + { + const __m128i shuff0 = _mm_set_epi8( + 5, -1, -1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0); + const __m128i shuff1 = _mm_set_epi8( + -1, 10, -1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1); + const __m128i shuff2 = _mm_set_epi8( + -1, -1, 15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1); + WEBP_SSE41_SHUFF(R, in0, in1) + } + + // Process G. + { + // Same as before, just shifted to the left by one and including the right + // padding. + const __m128i shuff0 = _mm_set_epi8( + -1, -1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0, -1); + const __m128i shuff1 = _mm_set_epi8( + 10, -1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1, 5); + const __m128i shuff2 = _mm_set_epi8( + -1, 15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1, -1); + WEBP_SSE41_SHUFF(G, in2, in3) + } + + // Process B. + { + const __m128i shuff0 = _mm_set_epi8( + -1, 4, -1, -1, 3, -1, -1, 2, -1, -1, 1, -1, -1, 0, -1, -1); + const __m128i shuff1 = _mm_set_epi8( + -1, -1, 9, -1, -1, 8, -1, -1, 7, -1, -1, 6, -1, -1, 5, -1); + const __m128i shuff2 = _mm_set_epi8( + 15, -1, -1, 14, -1, -1, 13, -1, -1, 12, -1, -1, 11, -1, -1, 10); + WEBP_SSE41_SHUFF(B, in4, in5) + } + + // OR the different channels. + { + const __m128i RG0 = _mm_or_si128(R0, G0); + const __m128i RG1 = _mm_or_si128(R1, G1); + const __m128i RG2 = _mm_or_si128(R2, G2); + const __m128i RG3 = _mm_or_si128(R3, G3); + const __m128i RG4 = _mm_or_si128(R4, G4); + const __m128i RG5 = _mm_or_si128(R5, G5); + *in0 = _mm_or_si128(RG0, B0); + *in1 = _mm_or_si128(RG1, B1); + *in2 = _mm_or_si128(RG2, B2); + *in3 = _mm_or_si128(RG3, B3); + *in4 = _mm_or_si128(RG4, B4); + *in5 = _mm_or_si128(RG5, B5); + } +} + +#undef WEBP_SSE41_SHUFF + +// Convert four packed four-channel buffers like argbargbargbargb... into the +// split channels aaaaa ... rrrr ... gggg .... bbbbb ...... +static WEBP_INLINE void VP8L32bToPlanar_SSE41(__m128i* const in0, + __m128i* const in1, + __m128i* const in2, + __m128i* const in3) { + // aaaarrrrggggbbbb + const __m128i shuff0 = + _mm_set_epi8(15, 11, 7, 3, 14, 10, 6, 2, 13, 9, 5, 1, 12, 8, 4, 0); + const __m128i A0 = _mm_shuffle_epi8(*in0, shuff0); + const __m128i A1 = _mm_shuffle_epi8(*in1, shuff0); + const __m128i A2 = _mm_shuffle_epi8(*in2, shuff0); + const __m128i A3 = _mm_shuffle_epi8(*in3, shuff0); + // A0A1R0R1 + // G0G1B0B1 + // A2A3R2R3 + // G0G1B0B1 + const __m128i B0 = _mm_unpacklo_epi32(A0, A1); + const __m128i B1 = _mm_unpackhi_epi32(A0, A1); + const __m128i B2 = _mm_unpacklo_epi32(A2, A3); + const __m128i B3 = _mm_unpackhi_epi32(A2, A3); + *in3 = _mm_unpacklo_epi64(B0, B2); + *in2 = _mm_unpackhi_epi64(B0, B2); + *in1 = _mm_unpacklo_epi64(B1, B3); + *in0 = _mm_unpackhi_epi64(B1, B3); +} + +#endif // WEBP_USE_SSE41 + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_COMMON_SSE41_H_ diff --git a/media/libwebp/src/dsp/cost.c b/media/libwebp/src/dsp/cost.c new file mode 100644 index 0000000000..460ec4f2a7 --- /dev/null +++ b/media/libwebp/src/dsp/cost.c @@ -0,0 +1,411 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" +#include "src/enc/cost_enc.h" + +//------------------------------------------------------------------------------ +// Boolean-cost cost table + +const uint16_t VP8EntropyCost[256] = { + 1792, 1792, 1792, 1536, 1536, 1408, 1366, 1280, 1280, 1216, + 1178, 1152, 1110, 1076, 1061, 1024, 1024, 992, 968, 951, + 939, 911, 896, 878, 871, 854, 838, 820, 811, 794, + 786, 768, 768, 752, 740, 732, 720, 709, 704, 690, + 683, 672, 666, 655, 647, 640, 631, 622, 615, 607, + 598, 592, 586, 576, 572, 564, 559, 555, 547, 541, + 534, 528, 522, 512, 512, 504, 500, 494, 488, 483, + 477, 473, 467, 461, 458, 452, 448, 443, 438, 434, + 427, 424, 419, 415, 410, 406, 403, 399, 394, 390, + 384, 384, 377, 374, 370, 366, 362, 359, 355, 351, + 347, 342, 342, 336, 333, 330, 326, 323, 320, 316, + 312, 308, 305, 302, 299, 296, 293, 288, 287, 283, + 280, 277, 274, 272, 268, 266, 262, 256, 256, 256, + 251, 248, 245, 242, 240, 237, 234, 232, 228, 226, + 223, 221, 218, 216, 214, 211, 208, 205, 203, 201, + 198, 196, 192, 191, 188, 187, 183, 181, 179, 176, + 175, 171, 171, 168, 165, 163, 160, 159, 156, 154, + 152, 150, 148, 146, 144, 142, 139, 138, 135, 133, + 131, 128, 128, 125, 123, 121, 119, 117, 115, 113, + 111, 110, 107, 105, 103, 102, 100, 98, 96, 94, + 92, 91, 89, 86, 86, 83, 82, 80, 77, 76, + 74, 73, 71, 69, 67, 66, 64, 63, 61, 59, + 57, 55, 54, 52, 51, 49, 47, 46, 44, 43, + 41, 40, 38, 36, 35, 33, 32, 30, 29, 27, + 25, 24, 22, 21, 19, 18, 16, 15, 13, 12, + 10, 9, 7, 6, 4, 3 +}; + +//------------------------------------------------------------------------------ +// Level cost tables + +// fixed costs for coding levels, deduce from the coding tree. +// This is only the part that doesn't depend on the probability state. +const uint16_t VP8LevelFixedCosts[MAX_LEVEL + 1] = { + 0, 256, 256, 256, 256, 432, 618, 630, + 731, 640, 640, 828, 901, 948, 1021, 1101, + 1174, 1221, 1294, 1042, 1085, 1115, 1158, 1202, + 1245, 1275, 1318, 1337, 1380, 1410, 1453, 1497, + 1540, 1570, 1613, 1280, 1295, 1317, 1332, 1358, + 1373, 1395, 1410, 1454, 1469, 1491, 1506, 1532, + 1547, 1569, 1584, 1601, 1616, 1638, 1653, 1679, + 1694, 1716, 1731, 1775, 1790, 1812, 1827, 1853, + 1868, 1890, 1905, 1727, 1733, 1742, 1748, 1759, + 1765, 1774, 1780, 1800, 1806, 1815, 1821, 1832, + 1838, 1847, 1853, 1878, 1884, 1893, 1899, 1910, + 1916, 1925, 1931, 1951, 1957, 1966, 1972, 1983, + 1989, 1998, 2004, 2027, 2033, 2042, 2048, 2059, + 2065, 2074, 2080, 2100, 2106, 2115, 2121, 2132, + 2138, 2147, 2153, 2178, 2184, 2193, 2199, 2210, + 2216, 2225, 2231, 2251, 2257, 2266, 2272, 2283, + 2289, 2298, 2304, 2168, 2174, 2183, 2189, 2200, + 2206, 2215, 2221, 2241, 2247, 2256, 2262, 2273, + 2279, 2288, 2294, 2319, 2325, 2334, 2340, 2351, + 2357, 2366, 2372, 2392, 2398, 2407, 2413, 2424, + 2430, 2439, 2445, 2468, 2474, 2483, 2489, 2500, + 2506, 2515, 2521, 2541, 2547, 2556, 2562, 2573, + 2579, 2588, 2594, 2619, 2625, 2634, 2640, 2651, + 2657, 2666, 2672, 2692, 2698, 2707, 2713, 2724, + 2730, 2739, 2745, 2540, 2546, 2555, 2561, 2572, + 2578, 2587, 2593, 2613, 2619, 2628, 2634, 2645, + 2651, 2660, 2666, 2691, 2697, 2706, 2712, 2723, + 2729, 2738, 2744, 2764, 2770, 2779, 2785, 2796, + 2802, 2811, 2817, 2840, 2846, 2855, 2861, 2872, + 2878, 2887, 2893, 2913, 2919, 2928, 2934, 2945, + 2951, 2960, 2966, 2991, 2997, 3006, 3012, 3023, + 3029, 3038, 3044, 3064, 3070, 3079, 3085, 3096, + 3102, 3111, 3117, 2981, 2987, 2996, 3002, 3013, + 3019, 3028, 3034, 3054, 3060, 3069, 3075, 3086, + 3092, 3101, 3107, 3132, 3138, 3147, 3153, 3164, + 3170, 3179, 3185, 3205, 3211, 3220, 3226, 3237, + 3243, 3252, 3258, 3281, 3287, 3296, 3302, 3313, + 3319, 3328, 3334, 3354, 3360, 3369, 3375, 3386, + 3392, 3401, 3407, 3432, 3438, 3447, 3453, 3464, + 3470, 3479, 3485, 3505, 3511, 3520, 3526, 3537, + 3543, 3552, 3558, 2816, 2822, 2831, 2837, 2848, + 2854, 2863, 2869, 2889, 2895, 2904, 2910, 2921, + 2927, 2936, 2942, 2967, 2973, 2982, 2988, 2999, + 3005, 3014, 3020, 3040, 3046, 3055, 3061, 3072, + 3078, 3087, 3093, 3116, 3122, 3131, 3137, 3148, + 3154, 3163, 3169, 3189, 3195, 3204, 3210, 3221, + 3227, 3236, 3242, 3267, 3273, 3282, 3288, 3299, + 3305, 3314, 3320, 3340, 3346, 3355, 3361, 3372, + 3378, 3387, 3393, 3257, 3263, 3272, 3278, 3289, + 3295, 3304, 3310, 3330, 3336, 3345, 3351, 3362, + 3368, 3377, 3383, 3408, 3414, 3423, 3429, 3440, + 3446, 3455, 3461, 3481, 3487, 3496, 3502, 3513, + 3519, 3528, 3534, 3557, 3563, 3572, 3578, 3589, + 3595, 3604, 3610, 3630, 3636, 3645, 3651, 3662, + 3668, 3677, 3683, 3708, 3714, 3723, 3729, 3740, + 3746, 3755, 3761, 3781, 3787, 3796, 3802, 3813, + 3819, 3828, 3834, 3629, 3635, 3644, 3650, 3661, + 3667, 3676, 3682, 3702, 3708, 3717, 3723, 3734, + 3740, 3749, 3755, 3780, 3786, 3795, 3801, 3812, + 3818, 3827, 3833, 3853, 3859, 3868, 3874, 3885, + 3891, 3900, 3906, 3929, 3935, 3944, 3950, 3961, + 3967, 3976, 3982, 4002, 4008, 4017, 4023, 4034, + 4040, 4049, 4055, 4080, 4086, 4095, 4101, 4112, + 4118, 4127, 4133, 4153, 4159, 4168, 4174, 4185, + 4191, 4200, 4206, 4070, 4076, 4085, 4091, 4102, + 4108, 4117, 4123, 4143, 4149, 4158, 4164, 4175, + 4181, 4190, 4196, 4221, 4227, 4236, 4242, 4253, + 4259, 4268, 4274, 4294, 4300, 4309, 4315, 4326, + 4332, 4341, 4347, 4370, 4376, 4385, 4391, 4402, + 4408, 4417, 4423, 4443, 4449, 4458, 4464, 4475, + 4481, 4490, 4496, 4521, 4527, 4536, 4542, 4553, + 4559, 4568, 4574, 4594, 4600, 4609, 4615, 4626, + 4632, 4641, 4647, 3515, 3521, 3530, 3536, 3547, + 3553, 3562, 3568, 3588, 3594, 3603, 3609, 3620, + 3626, 3635, 3641, 3666, 3672, 3681, 3687, 3698, + 3704, 3713, 3719, 3739, 3745, 3754, 3760, 3771, + 3777, 3786, 3792, 3815, 3821, 3830, 3836, 3847, + 3853, 3862, 3868, 3888, 3894, 3903, 3909, 3920, + 3926, 3935, 3941, 3966, 3972, 3981, 3987, 3998, + 4004, 4013, 4019, 4039, 4045, 4054, 4060, 4071, + 4077, 4086, 4092, 3956, 3962, 3971, 3977, 3988, + 3994, 4003, 4009, 4029, 4035, 4044, 4050, 4061, + 4067, 4076, 4082, 4107, 4113, 4122, 4128, 4139, + 4145, 4154, 4160, 4180, 4186, 4195, 4201, 4212, + 4218, 4227, 4233, 4256, 4262, 4271, 4277, 4288, + 4294, 4303, 4309, 4329, 4335, 4344, 4350, 4361, + 4367, 4376, 4382, 4407, 4413, 4422, 4428, 4439, + 4445, 4454, 4460, 4480, 4486, 4495, 4501, 4512, + 4518, 4527, 4533, 4328, 4334, 4343, 4349, 4360, + 4366, 4375, 4381, 4401, 4407, 4416, 4422, 4433, + 4439, 4448, 4454, 4479, 4485, 4494, 4500, 4511, + 4517, 4526, 4532, 4552, 4558, 4567, 4573, 4584, + 4590, 4599, 4605, 4628, 4634, 4643, 4649, 4660, + 4666, 4675, 4681, 4701, 4707, 4716, 4722, 4733, + 4739, 4748, 4754, 4779, 4785, 4794, 4800, 4811, + 4817, 4826, 4832, 4852, 4858, 4867, 4873, 4884, + 4890, 4899, 4905, 4769, 4775, 4784, 4790, 4801, + 4807, 4816, 4822, 4842, 4848, 4857, 4863, 4874, + 4880, 4889, 4895, 4920, 4926, 4935, 4941, 4952, + 4958, 4967, 4973, 4993, 4999, 5008, 5014, 5025, + 5031, 5040, 5046, 5069, 5075, 5084, 5090, 5101, + 5107, 5116, 5122, 5142, 5148, 5157, 5163, 5174, + 5180, 5189, 5195, 5220, 5226, 5235, 5241, 5252, + 5258, 5267, 5273, 5293, 5299, 5308, 5314, 5325, + 5331, 5340, 5346, 4604, 4610, 4619, 4625, 4636, + 4642, 4651, 4657, 4677, 4683, 4692, 4698, 4709, + 4715, 4724, 4730, 4755, 4761, 4770, 4776, 4787, + 4793, 4802, 4808, 4828, 4834, 4843, 4849, 4860, + 4866, 4875, 4881, 4904, 4910, 4919, 4925, 4936, + 4942, 4951, 4957, 4977, 4983, 4992, 4998, 5009, + 5015, 5024, 5030, 5055, 5061, 5070, 5076, 5087, + 5093, 5102, 5108, 5128, 5134, 5143, 5149, 5160, + 5166, 5175, 5181, 5045, 5051, 5060, 5066, 5077, + 5083, 5092, 5098, 5118, 5124, 5133, 5139, 5150, + 5156, 5165, 5171, 5196, 5202, 5211, 5217, 5228, + 5234, 5243, 5249, 5269, 5275, 5284, 5290, 5301, + 5307, 5316, 5322, 5345, 5351, 5360, 5366, 5377, + 5383, 5392, 5398, 5418, 5424, 5433, 5439, 5450, + 5456, 5465, 5471, 5496, 5502, 5511, 5517, 5528, + 5534, 5543, 5549, 5569, 5575, 5584, 5590, 5601, + 5607, 5616, 5622, 5417, 5423, 5432, 5438, 5449, + 5455, 5464, 5470, 5490, 5496, 5505, 5511, 5522, + 5528, 5537, 5543, 5568, 5574, 5583, 5589, 5600, + 5606, 5615, 5621, 5641, 5647, 5656, 5662, 5673, + 5679, 5688, 5694, 5717, 5723, 5732, 5738, 5749, + 5755, 5764, 5770, 5790, 5796, 5805, 5811, 5822, + 5828, 5837, 5843, 5868, 5874, 5883, 5889, 5900, + 5906, 5915, 5921, 5941, 5947, 5956, 5962, 5973, + 5979, 5988, 5994, 5858, 5864, 5873, 5879, 5890, + 5896, 5905, 5911, 5931, 5937, 5946, 5952, 5963, + 5969, 5978, 5984, 6009, 6015, 6024, 6030, 6041, + 6047, 6056, 6062, 6082, 6088, 6097, 6103, 6114, + 6120, 6129, 6135, 6158, 6164, 6173, 6179, 6190, + 6196, 6205, 6211, 6231, 6237, 6246, 6252, 6263, + 6269, 6278, 6284, 6309, 6315, 6324, 6330, 6341, + 6347, 6356, 6362, 6382, 6388, 6397, 6403, 6414, + 6420, 6429, 6435, 3515, 3521, 3530, 3536, 3547, + 3553, 3562, 3568, 3588, 3594, 3603, 3609, 3620, + 3626, 3635, 3641, 3666, 3672, 3681, 3687, 3698, + 3704, 3713, 3719, 3739, 3745, 3754, 3760, 3771, + 3777, 3786, 3792, 3815, 3821, 3830, 3836, 3847, + 3853, 3862, 3868, 3888, 3894, 3903, 3909, 3920, + 3926, 3935, 3941, 3966, 3972, 3981, 3987, 3998, + 4004, 4013, 4019, 4039, 4045, 4054, 4060, 4071, + 4077, 4086, 4092, 3956, 3962, 3971, 3977, 3988, + 3994, 4003, 4009, 4029, 4035, 4044, 4050, 4061, + 4067, 4076, 4082, 4107, 4113, 4122, 4128, 4139, + 4145, 4154, 4160, 4180, 4186, 4195, 4201, 4212, + 4218, 4227, 4233, 4256, 4262, 4271, 4277, 4288, + 4294, 4303, 4309, 4329, 4335, 4344, 4350, 4361, + 4367, 4376, 4382, 4407, 4413, 4422, 4428, 4439, + 4445, 4454, 4460, 4480, 4486, 4495, 4501, 4512, + 4518, 4527, 4533, 4328, 4334, 4343, 4349, 4360, + 4366, 4375, 4381, 4401, 4407, 4416, 4422, 4433, + 4439, 4448, 4454, 4479, 4485, 4494, 4500, 4511, + 4517, 4526, 4532, 4552, 4558, 4567, 4573, 4584, + 4590, 4599, 4605, 4628, 4634, 4643, 4649, 4660, + 4666, 4675, 4681, 4701, 4707, 4716, 4722, 4733, + 4739, 4748, 4754, 4779, 4785, 4794, 4800, 4811, + 4817, 4826, 4832, 4852, 4858, 4867, 4873, 4884, + 4890, 4899, 4905, 4769, 4775, 4784, 4790, 4801, + 4807, 4816, 4822, 4842, 4848, 4857, 4863, 4874, + 4880, 4889, 4895, 4920, 4926, 4935, 4941, 4952, + 4958, 4967, 4973, 4993, 4999, 5008, 5014, 5025, + 5031, 5040, 5046, 5069, 5075, 5084, 5090, 5101, + 5107, 5116, 5122, 5142, 5148, 5157, 5163, 5174, + 5180, 5189, 5195, 5220, 5226, 5235, 5241, 5252, + 5258, 5267, 5273, 5293, 5299, 5308, 5314, 5325, + 5331, 5340, 5346, 4604, 4610, 4619, 4625, 4636, + 4642, 4651, 4657, 4677, 4683, 4692, 4698, 4709, + 4715, 4724, 4730, 4755, 4761, 4770, 4776, 4787, + 4793, 4802, 4808, 4828, 4834, 4843, 4849, 4860, + 4866, 4875, 4881, 4904, 4910, 4919, 4925, 4936, + 4942, 4951, 4957, 4977, 4983, 4992, 4998, 5009, + 5015, 5024, 5030, 5055, 5061, 5070, 5076, 5087, + 5093, 5102, 5108, 5128, 5134, 5143, 5149, 5160, + 5166, 5175, 5181, 5045, 5051, 5060, 5066, 5077, + 5083, 5092, 5098, 5118, 5124, 5133, 5139, 5150, + 5156, 5165, 5171, 5196, 5202, 5211, 5217, 5228, + 5234, 5243, 5249, 5269, 5275, 5284, 5290, 5301, + 5307, 5316, 5322, 5345, 5351, 5360, 5366, 5377, + 5383, 5392, 5398, 5418, 5424, 5433, 5439, 5450, + 5456, 5465, 5471, 5496, 5502, 5511, 5517, 5528, + 5534, 5543, 5549, 5569, 5575, 5584, 5590, 5601, + 5607, 5616, 5622, 5417, 5423, 5432, 5438, 5449, + 5455, 5464, 5470, 5490, 5496, 5505, 5511, 5522, + 5528, 5537, 5543, 5568, 5574, 5583, 5589, 5600, + 5606, 5615, 5621, 5641, 5647, 5656, 5662, 5673, + 5679, 5688, 5694, 5717, 5723, 5732, 5738, 5749, + 5755, 5764, 5770, 5790, 5796, 5805, 5811, 5822, + 5828, 5837, 5843, 5868, 5874, 5883, 5889, 5900, + 5906, 5915, 5921, 5941, 5947, 5956, 5962, 5973, + 5979, 5988, 5994, 5858, 5864, 5873, 5879, 5890, + 5896, 5905, 5911, 5931, 5937, 5946, 5952, 5963, + 5969, 5978, 5984, 6009, 6015, 6024, 6030, 6041, + 6047, 6056, 6062, 6082, 6088, 6097, 6103, 6114, + 6120, 6129, 6135, 6158, 6164, 6173, 6179, 6190, + 6196, 6205, 6211, 6231, 6237, 6246, 6252, 6263, + 6269, 6278, 6284, 6309, 6315, 6324, 6330, 6341, + 6347, 6356, 6362, 6382, 6388, 6397, 6403, 6414, + 6420, 6429, 6435, 5303, 5309, 5318, 5324, 5335, + 5341, 5350, 5356, 5376, 5382, 5391, 5397, 5408, + 5414, 5423, 5429, 5454, 5460, 5469, 5475, 5486, + 5492, 5501, 5507, 5527, 5533, 5542, 5548, 5559, + 5565, 5574, 5580, 5603, 5609, 5618, 5624, 5635, + 5641, 5650, 5656, 5676, 5682, 5691, 5697, 5708, + 5714, 5723, 5729, 5754, 5760, 5769, 5775, 5786, + 5792, 5801, 5807, 5827, 5833, 5842, 5848, 5859, + 5865, 5874, 5880, 5744, 5750, 5759, 5765, 5776, + 5782, 5791, 5797, 5817, 5823, 5832, 5838, 5849, + 5855, 5864, 5870, 5895, 5901, 5910, 5916, 5927, + 5933, 5942, 5948, 5968, 5974, 5983, 5989, 6000, + 6006, 6015, 6021, 6044, 6050, 6059, 6065, 6076, + 6082, 6091, 6097, 6117, 6123, 6132, 6138, 6149, + 6155, 6164, 6170, 6195, 6201, 6210, 6216, 6227, + 6233, 6242, 6248, 6268, 6274, 6283, 6289, 6300, + 6306, 6315, 6321, 6116, 6122, 6131, 6137, 6148, + 6154, 6163, 6169, 6189, 6195, 6204, 6210, 6221, + 6227, 6236, 6242, 6267, 6273, 6282, 6288, 6299, + 6305, 6314, 6320, 6340, 6346, 6355, 6361, 6372, + 6378, 6387, 6393, 6416, 6422, 6431, 6437, 6448, + 6454, 6463, 6469, 6489, 6495, 6504, 6510, 6521, + 6527, 6536, 6542, 6567, 6573, 6582, 6588, 6599, + 6605, 6614, 6620, 6640, 6646, 6655, 6661, 6672, + 6678, 6687, 6693, 6557, 6563, 6572, 6578, 6589, + 6595, 6604, 6610, 6630, 6636, 6645, 6651, 6662, + 6668, 6677, 6683, 6708, 6714, 6723, 6729, 6740, + 6746, 6755, 6761, 6781, 6787, 6796, 6802, 6813, + 6819, 6828, 6834, 6857, 6863, 6872, 6878, 6889, + 6895, 6904, 6910, 6930, 6936, 6945, 6951, 6962, + 6968, 6977, 6983, 7008, 7014, 7023, 7029, 7040, + 7046, 7055, 7061, 7081, 7087, 7096, 7102, 7113, + 7119, 7128, 7134, 6392, 6398, 6407, 6413, 6424, + 6430, 6439, 6445, 6465, 6471, 6480, 6486, 6497, + 6503, 6512, 6518, 6543, 6549, 6558, 6564, 6575, + 6581, 6590, 6596, 6616, 6622, 6631, 6637, 6648, + 6654, 6663, 6669, 6692, 6698, 6707, 6713, 6724, + 6730, 6739, 6745, 6765, 6771, 6780, 6786, 6797, + 6803, 6812, 6818, 6843, 6849, 6858, 6864, 6875, + 6881, 6890, 6896, 6916, 6922, 6931, 6937, 6948, + 6954, 6963, 6969, 6833, 6839, 6848, 6854, 6865, + 6871, 6880, 6886, 6906, 6912, 6921, 6927, 6938, + 6944, 6953, 6959, 6984, 6990, 6999, 7005, 7016, + 7022, 7031, 7037, 7057, 7063, 7072, 7078, 7089, + 7095, 7104, 7110, 7133, 7139, 7148, 7154, 7165, + 7171, 7180, 7186, 7206, 7212, 7221, 7227, 7238, + 7244, 7253, 7259, 7284, 7290, 7299, 7305, 7316, + 7322, 7331, 7337, 7357, 7363, 7372, 7378, 7389, + 7395, 7404, 7410, 7205, 7211, 7220, 7226, 7237, + 7243, 7252, 7258, 7278, 7284, 7293, 7299, 7310, + 7316, 7325, 7331, 7356, 7362, 7371, 7377, 7388, + 7394, 7403, 7409, 7429, 7435, 7444, 7450, 7461, + 7467, 7476, 7482, 7505, 7511, 7520, 7526, 7537, + 7543, 7552, 7558, 7578, 7584, 7593, 7599, 7610, + 7616, 7625, 7631, 7656, 7662, 7671, 7677, 7688, + 7694, 7703, 7709, 7729, 7735, 7744, 7750, 7761 +}; + +//------------------------------------------------------------------------------ +// Tables for level coding + +const uint8_t VP8EncBands[16 + 1] = { + 0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, + 0 // sentinel +}; + +//------------------------------------------------------------------------------ +// Mode costs + +static int GetResidualCost_C(int ctx0, const VP8Residual* const res) { + int n = res->first; + // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 + const int p0 = res->prob[n][ctx0][0]; + CostArrayPtr const costs = res->costs; + const uint16_t* t = costs[n][ctx0]; + // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 + // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll + // be missing during the loop. + int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; + + if (res->last < 0) { + return VP8BitCost(0, p0); + } + for (; n < res->last; ++n) { + const int v = abs(res->coeffs[n]); + const int ctx = (v >= 2) ? 2 : v; + cost += VP8LevelCost(t, v); + t = costs[n + 1][ctx]; + } + // Last coefficient is always non-zero + { + const int v = abs(res->coeffs[n]); + assert(v != 0); + cost += VP8LevelCost(t, v); + if (n < 15) { + const int b = VP8EncBands[n + 1]; + const int ctx = (v == 1) ? 1 : 2; + const int last_p0 = res->prob[b][ctx][0]; + cost += VP8BitCost(0, last_p0); + } + } + return cost; +} + +static void SetResidualCoeffs_C(const int16_t* const coeffs, + VP8Residual* const res) { + int n; + res->last = -1; + assert(res->first == 0 || coeffs[0] == 0); + for (n = 15; n >= 0; --n) { + if (coeffs[n]) { + res->last = n; + break; + } + } + res->coeffs = coeffs; +} + +//------------------------------------------------------------------------------ +// init function + +VP8GetResidualCostFunc VP8GetResidualCost; +VP8SetResidualCoeffsFunc VP8SetResidualCoeffs; + +extern void VP8EncDspCostInitMIPS32(void); +extern void VP8EncDspCostInitMIPSdspR2(void); +extern void VP8EncDspCostInitSSE2(void); +extern void VP8EncDspCostInitNEON(void); + +WEBP_DSP_INIT_FUNC(VP8EncDspCostInit) { + VP8GetResidualCost = GetResidualCost_C; + VP8SetResidualCoeffs = SetResidualCoeffs_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + VP8EncDspCostInitMIPS32(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8EncDspCostInitMIPSdspR2(); + } +#endif +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8EncDspCostInitSSE2(); + } +#endif +#if defined(WEBP_HAVE_NEON) + if (VP8GetCPUInfo(kNEON)) { + VP8EncDspCostInitNEON(); + } +#endif + } +} + +//------------------------------------------------------------------------------ diff --git a/media/libwebp/src/dsp/cost_mips32.c b/media/libwebp/src/dsp/cost_mips32.c new file mode 100644 index 0000000000..0500f88c13 --- /dev/null +++ b/media/libwebp/src/dsp/cost_mips32.c @@ -0,0 +1,154 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Author: Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS32) + +#include "src/enc/cost_enc.h" + +static int GetResidualCost_MIPS32(int ctx0, const VP8Residual* const res) { + int temp0, temp1; + int v_reg, ctx_reg; + int n = res->first; + // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 + int p0 = res->prob[n][ctx0][0]; + CostArrayPtr const costs = res->costs; + const uint16_t* t = costs[n][ctx0]; + // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 + // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll + // be missing during the loop. + int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; + const int16_t* res_coeffs = res->coeffs; + const int res_last = res->last; + const int const_max_level = MAX_VARIABLE_LEVEL; + const int const_2 = 2; + const uint16_t** p_costs = &costs[n][0]; + const size_t inc_p_costs = NUM_CTX * sizeof(*p_costs); + + if (res->last < 0) { + return VP8BitCost(0, p0); + } + + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "subu %[temp1], %[res_last], %[n] \n\t" + "sll %[temp0], %[n], 1 \n\t" + "blez %[temp1], 2f \n\t" + " addu %[res_coeffs], %[res_coeffs], %[temp0] \n\t" + "1: \n\t" + "lh %[v_reg], 0(%[res_coeffs]) \n\t" + "addiu %[n], %[n], 1 \n\t" + "negu %[temp0], %[v_reg] \n\t" + "slti %[temp1], %[v_reg], 0 \n\t" + "movn %[v_reg], %[temp0], %[temp1] \n\t" + "sltiu %[temp0], %[v_reg], 2 \n\t" + "move %[ctx_reg], %[v_reg] \n\t" + "movz %[ctx_reg], %[const_2], %[temp0] \n\t" + "sll %[temp1], %[v_reg], 1 \n\t" + "addu %[temp1], %[temp1], %[VP8LevelFixedCosts] \n\t" + "lhu %[temp1], 0(%[temp1]) \n\t" + "slt %[temp0], %[v_reg], %[const_max_level] \n\t" + "movz %[v_reg], %[const_max_level], %[temp0] \n\t" + "addu %[cost], %[cost], %[temp1] \n\t" + "sll %[v_reg], %[v_reg], 1 \n\t" + "sll %[ctx_reg], %[ctx_reg], 2 \n\t" + "addu %[v_reg], %[v_reg], %[t] \n\t" + "lhu %[temp0], 0(%[v_reg]) \n\t" + "addu %[p_costs], %[p_costs], %[inc_p_costs] \n\t" + "addu %[t], %[p_costs], %[ctx_reg] \n\t" + "addu %[cost], %[cost], %[temp0] \n\t" + "addiu %[res_coeffs], %[res_coeffs], 2 \n\t" + "bne %[n], %[res_last], 1b \n\t" + " lw %[t], 0(%[t]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [cost]"+&r"(cost), [t]"+&r"(t), [n]"+&r"(n), [v_reg]"=&r"(v_reg), + [ctx_reg]"=&r"(ctx_reg), [p_costs]"+&r"(p_costs), [temp0]"=&r"(temp0), + [temp1]"=&r"(temp1), [res_coeffs]"+&r"(res_coeffs) + : [const_2]"r"(const_2), [const_max_level]"r"(const_max_level), + [VP8LevelFixedCosts]"r"(VP8LevelFixedCosts), [res_last]"r"(res_last), + [inc_p_costs]"r"(inc_p_costs) + : "memory" + ); + + // Last coefficient is always non-zero + { + const int v = abs(res->coeffs[n]); + assert(v != 0); + cost += VP8LevelCost(t, v); + if (n < 15) { + const int b = VP8EncBands[n + 1]; + const int ctx = (v == 1) ? 1 : 2; + const int last_p0 = res->prob[b][ctx][0]; + cost += VP8BitCost(0, last_p0); + } + } + return cost; +} + +static void SetResidualCoeffs_MIPS32(const int16_t* const coeffs, + VP8Residual* const res) { + const int16_t* p_coeffs = (int16_t*)coeffs; + int temp0, temp1, temp2, n, n1; + assert(res->first == 0 || coeffs[0] == 0); + + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "addiu %[p_coeffs], %[p_coeffs], 28 \n\t" + "li %[n], 15 \n\t" + "li %[temp2], -1 \n\t" + "0: \n\t" + "ulw %[temp0], 0(%[p_coeffs]) \n\t" + "beqz %[temp0], 1f \n\t" +#if defined(WORDS_BIGENDIAN) + " sll %[temp1], %[temp0], 16 \n\t" +#else + " srl %[temp1], %[temp0], 16 \n\t" +#endif + "addiu %[n1], %[n], -1 \n\t" + "movz %[temp0], %[n1], %[temp1] \n\t" + "movn %[temp0], %[n], %[temp1] \n\t" + "j 2f \n\t" + " addiu %[temp2], %[temp0], 0 \n\t" + "1: \n\t" + "addiu %[n], %[n], -2 \n\t" + "bgtz %[n], 0b \n\t" + " addiu %[p_coeffs], %[p_coeffs], -4 \n\t" + "2: \n\t" + ".set pop \n\t" + : [p_coeffs]"+&r"(p_coeffs), [temp0]"=&r"(temp0), + [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [n]"=&r"(n), [n1]"=&r"(n1) + : + : "memory" + ); + res->last = temp2; + res->coeffs = coeffs; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspCostInitMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInitMIPS32(void) { + VP8GetResidualCost = GetResidualCost_MIPS32; + VP8SetResidualCoeffs = SetResidualCoeffs_MIPS32; +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(VP8EncDspCostInitMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/cost_mips_dsp_r2.c b/media/libwebp/src/dsp/cost_mips_dsp_r2.c new file mode 100644 index 0000000000..51248de7a1 --- /dev/null +++ b/media/libwebp/src/dsp/cost_mips_dsp_r2.c @@ -0,0 +1,107 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Author: Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/enc/cost_enc.h" + +static int GetResidualCost_MIPSdspR2(int ctx0, const VP8Residual* const res) { + int temp0, temp1; + int v_reg, ctx_reg; + int n = res->first; + // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 + int p0 = res->prob[n][ctx0][0]; + CostArrayPtr const costs = res->costs; + const uint16_t* t = costs[n][ctx0]; + // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 + // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll + // be missing during the loop. + int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; + const int16_t* res_coeffs = res->coeffs; + const int res_last = res->last; + const int const_max_level = MAX_VARIABLE_LEVEL; + const int const_2 = 2; + const uint16_t** p_costs = &costs[n][0]; + const size_t inc_p_costs = NUM_CTX * sizeof(*p_costs); + + if (res->last < 0) { + return VP8BitCost(0, p0); + } + + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "subu %[temp1], %[res_last], %[n] \n\t" + "blez %[temp1], 2f \n\t" + " nop \n\t" + "1: \n\t" + "sll %[temp0], %[n], 1 \n\t" + "lhx %[v_reg], %[temp0](%[res_coeffs]) \n\t" + "addiu %[n], %[n], 1 \n\t" + "absq_s.w %[v_reg], %[v_reg] \n\t" + "sltiu %[temp0], %[v_reg], 2 \n\t" + "move %[ctx_reg], %[v_reg] \n\t" + "movz %[ctx_reg], %[const_2], %[temp0] \n\t" + "sll %[temp1], %[v_reg], 1 \n\t" + "lhx %[temp1], %[temp1](%[VP8LevelFixedCosts]) \n\t" + "slt %[temp0], %[v_reg], %[const_max_level] \n\t" + "movz %[v_reg], %[const_max_level], %[temp0] \n\t" + "addu %[cost], %[cost], %[temp1] \n\t" + "sll %[v_reg], %[v_reg], 1 \n\t" + "sll %[ctx_reg], %[ctx_reg], 2 \n\t" + "lhx %[temp0], %[v_reg](%[t]) \n\t" + "addu %[p_costs], %[p_costs], %[inc_p_costs] \n\t" + "addu %[t], %[p_costs], %[ctx_reg] \n\t" + "addu %[cost], %[cost], %[temp0] \n\t" + "bne %[n], %[res_last], 1b \n\t" + " lw %[t], 0(%[t]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [cost]"+&r"(cost), [t]"+&r"(t), [n]"+&r"(n), [v_reg]"=&r"(v_reg), + [ctx_reg]"=&r"(ctx_reg), [p_costs]"+&r"(p_costs), [temp0]"=&r"(temp0), + [temp1]"=&r"(temp1) + : [const_2]"r"(const_2), [const_max_level]"r"(const_max_level), + [VP8LevelFixedCosts]"r"(VP8LevelFixedCosts), [res_last]"r"(res_last), + [res_coeffs]"r"(res_coeffs), [inc_p_costs]"r"(inc_p_costs) + : "memory" + ); + + // Last coefficient is always non-zero + { + const int v = abs(res->coeffs[n]); + assert(v != 0); + cost += VP8LevelCost(t, v); + if (n < 15) { + const int b = VP8EncBands[n + 1]; + const int ctx = (v == 1) ? 1 : 2; + const int last_p0 = res->prob[b][ctx][0]; + cost += VP8BitCost(0, last_p0); + } + } + return cost; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspCostInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInitMIPSdspR2(void) { + VP8GetResidualCost = GetResidualCost_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8EncDspCostInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/cost_neon.c b/media/libwebp/src/dsp/cost_neon.c new file mode 100644 index 0000000000..8cc8ce58aa --- /dev/null +++ b/media/libwebp/src/dsp/cost_neon.c @@ -0,0 +1,122 @@ +// Copyright 2018 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// ARM NEON version of cost functions + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include "src/dsp/neon.h" +#include "src/enc/cost_enc.h" + +static const uint8_t position[16] = { 1, 2, 3, 4, 5, 6, 7, 8, + 9, 10, 11, 12, 13, 14, 15, 16 }; + +static void SetResidualCoeffs_NEON(const int16_t* const coeffs, + VP8Residual* const res) { + const int16x8_t minus_one = vdupq_n_s16(-1); + const int16x8_t coeffs_0 = vld1q_s16(coeffs); + const int16x8_t coeffs_1 = vld1q_s16(coeffs + 8); + const uint16x8_t eob_0 = vtstq_s16(coeffs_0, minus_one); + const uint16x8_t eob_1 = vtstq_s16(coeffs_1, minus_one); + const uint8x16_t eob = vcombine_u8(vqmovn_u16(eob_0), vqmovn_u16(eob_1)); + const uint8x16_t masked = vandq_u8(eob, vld1q_u8(position)); + +#ifdef __aarch64__ + res->last = vmaxvq_u8(masked) - 1; +#else + const uint8x8_t eob_8x8 = vmax_u8(vget_low_u8(masked), vget_high_u8(masked)); + const uint16x8_t eob_16x8 = vmovl_u8(eob_8x8); + const uint16x4_t eob_16x4 = + vmax_u16(vget_low_u16(eob_16x8), vget_high_u16(eob_16x8)); + const uint32x4_t eob_32x4 = vmovl_u16(eob_16x4); + uint32x2_t eob_32x2 = + vmax_u32(vget_low_u32(eob_32x4), vget_high_u32(eob_32x4)); + eob_32x2 = vpmax_u32(eob_32x2, eob_32x2); + + vst1_lane_s32(&res->last, vreinterpret_s32_u32(eob_32x2), 0); + --res->last; +#endif // __aarch64__ + + res->coeffs = coeffs; +} + +static int GetResidualCost_NEON(int ctx0, const VP8Residual* const res) { + uint8_t levels[16], ctxs[16]; + uint16_t abs_levels[16]; + int n = res->first; + // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 + const int p0 = res->prob[n][ctx0][0]; + CostArrayPtr const costs = res->costs; + const uint16_t* t = costs[n][ctx0]; + // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 + // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll + // be missing during the loop. + int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; + + if (res->last < 0) { + return VP8BitCost(0, p0); + } + + { // precompute clamped levels and contexts, packed to 8b. + const uint8x16_t kCst2 = vdupq_n_u8(2); + const uint8x16_t kCst67 = vdupq_n_u8(MAX_VARIABLE_LEVEL); + const int16x8_t c0 = vld1q_s16(res->coeffs); + const int16x8_t c1 = vld1q_s16(res->coeffs + 8); + const uint16x8_t E0 = vreinterpretq_u16_s16(vabsq_s16(c0)); + const uint16x8_t E1 = vreinterpretq_u16_s16(vabsq_s16(c1)); + const uint8x16_t F = vcombine_u8(vqmovn_u16(E0), vqmovn_u16(E1)); + const uint8x16_t G = vminq_u8(F, kCst2); // context = 0,1,2 + const uint8x16_t H = vminq_u8(F, kCst67); // clamp_level in [0..67] + + vst1q_u8(ctxs, G); + vst1q_u8(levels, H); + + vst1q_u16(abs_levels, E0); + vst1q_u16(abs_levels + 8, E1); + } + for (; n < res->last; ++n) { + const int ctx = ctxs[n]; + const int level = levels[n]; + const int flevel = abs_levels[n]; // full level + cost += VP8LevelFixedCosts[flevel] + t[level]; // simplified VP8LevelCost() + t = costs[n + 1][ctx]; + } + // Last coefficient is always non-zero + { + const int level = levels[n]; + const int flevel = abs_levels[n]; + assert(flevel != 0); + cost += VP8LevelFixedCosts[flevel] + t[level]; + if (n < 15) { + const int b = VP8EncBands[n + 1]; + const int ctx = ctxs[n]; + const int last_p0 = res->prob[b][ctx][0]; + cost += VP8BitCost(0, last_p0); + } + } + return cost; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspCostInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInitNEON(void) { + VP8SetResidualCoeffs = SetResidualCoeffs_NEON; + VP8GetResidualCost = GetResidualCost_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8EncDspCostInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/cost_sse2.c b/media/libwebp/src/dsp/cost_sse2.c new file mode 100644 index 0000000000..487a079921 --- /dev/null +++ b/media/libwebp/src/dsp/cost_sse2.c @@ -0,0 +1,119 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of cost functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) +#include <emmintrin.h> + +#include "src/enc/cost_enc.h" +#include "src/enc/vp8i_enc.h" +#include "src/utils/utils.h" + +//------------------------------------------------------------------------------ + +static void SetResidualCoeffs_SSE2(const int16_t* const coeffs, + VP8Residual* const res) { + const __m128i c0 = _mm_loadu_si128((const __m128i*)(coeffs + 0)); + const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8)); + // Use SSE2 to compare 16 values with a single instruction. + const __m128i zero = _mm_setzero_si128(); + const __m128i m0 = _mm_packs_epi16(c0, c1); + const __m128i m1 = _mm_cmpeq_epi8(m0, zero); + // Get the comparison results as a bitmask into 16bits. Negate the mask to get + // the position of entries that are not equal to zero. We don't need to mask + // out least significant bits according to res->first, since coeffs[0] is 0 + // if res->first > 0. + const uint32_t mask = 0x0000ffffu ^ (uint32_t)_mm_movemask_epi8(m1); + // The position of the most significant non-zero bit indicates the position of + // the last non-zero value. + assert(res->first == 0 || coeffs[0] == 0); + res->last = mask ? BitsLog2Floor(mask) : -1; + res->coeffs = coeffs; +} + +static int GetResidualCost_SSE2(int ctx0, const VP8Residual* const res) { + uint8_t levels[16], ctxs[16]; + uint16_t abs_levels[16]; + int n = res->first; + // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 + const int p0 = res->prob[n][ctx0][0]; + CostArrayPtr const costs = res->costs; + const uint16_t* t = costs[n][ctx0]; + // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 + // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll + // be missing during the loop. + int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; + + if (res->last < 0) { + return VP8BitCost(0, p0); + } + + { // precompute clamped levels and contexts, packed to 8b. + const __m128i zero = _mm_setzero_si128(); + const __m128i kCst2 = _mm_set1_epi8(2); + const __m128i kCst67 = _mm_set1_epi8(MAX_VARIABLE_LEVEL); + const __m128i c0 = _mm_loadu_si128((const __m128i*)&res->coeffs[0]); + const __m128i c1 = _mm_loadu_si128((const __m128i*)&res->coeffs[8]); + const __m128i D0 = _mm_sub_epi16(zero, c0); + const __m128i D1 = _mm_sub_epi16(zero, c1); + const __m128i E0 = _mm_max_epi16(c0, D0); // abs(v), 16b + const __m128i E1 = _mm_max_epi16(c1, D1); + const __m128i F = _mm_packs_epi16(E0, E1); + const __m128i G = _mm_min_epu8(F, kCst2); // context = 0,1,2 + const __m128i H = _mm_min_epu8(F, kCst67); // clamp_level in [0..67] + + _mm_storeu_si128((__m128i*)&ctxs[0], G); + _mm_storeu_si128((__m128i*)&levels[0], H); + + _mm_storeu_si128((__m128i*)&abs_levels[0], E0); + _mm_storeu_si128((__m128i*)&abs_levels[8], E1); + } + for (; n < res->last; ++n) { + const int ctx = ctxs[n]; + const int level = levels[n]; + const int flevel = abs_levels[n]; // full level + cost += VP8LevelFixedCosts[flevel] + t[level]; // simplified VP8LevelCost() + t = costs[n + 1][ctx]; + } + // Last coefficient is always non-zero + { + const int level = levels[n]; + const int flevel = abs_levels[n]; + assert(flevel != 0); + cost += VP8LevelFixedCosts[flevel] + t[level]; + if (n < 15) { + const int b = VP8EncBands[n + 1]; + const int ctx = ctxs[n]; + const int last_p0 = res->prob[b][ctx][0]; + cost += VP8BitCost(0, last_p0); + } + } + return cost; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspCostInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspCostInitSSE2(void) { + VP8SetResidualCoeffs = SetResidualCoeffs_SSE2; + VP8GetResidualCost = GetResidualCost_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8EncDspCostInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/cpu.h b/media/libwebp/src/dsp/cpu.h new file mode 100644 index 0000000000..be80727c0d --- /dev/null +++ b/media/libwebp/src/dsp/cpu.h @@ -0,0 +1,256 @@ +// Copyright 2022 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// CPU detection functions and macros. +// +// Author: Skal (pascal.massimino@gmail.com) + +#ifndef WEBP_DSP_CPU_H_ +#define WEBP_DSP_CPU_H_ + +#include <stddef.h> + +#ifdef HAVE_CONFIG_H +#include "src/webp/config.h" +#endif + +#include "src/webp/types.h" + +#if defined(__GNUC__) +#define LOCAL_GCC_VERSION ((__GNUC__ << 8) | __GNUC_MINOR__) +#define LOCAL_GCC_PREREQ(maj, min) (LOCAL_GCC_VERSION >= (((maj) << 8) | (min))) +#else +#define LOCAL_GCC_VERSION 0 +#define LOCAL_GCC_PREREQ(maj, min) 0 +#endif + +#if defined(__clang__) +#define LOCAL_CLANG_VERSION ((__clang_major__ << 8) | __clang_minor__) +#define LOCAL_CLANG_PREREQ(maj, min) \ + (LOCAL_CLANG_VERSION >= (((maj) << 8) | (min))) +#else +#define LOCAL_CLANG_VERSION 0 +#define LOCAL_CLANG_PREREQ(maj, min) 0 +#endif + +#ifndef __has_builtin +#define __has_builtin(x) 0 +#endif + +#if !defined(HAVE_CONFIG_H) +#if defined(_MSC_VER) && _MSC_VER > 1310 && \ + (defined(_M_X64) || defined(_M_IX86)) +#define WEBP_MSC_SSE2 // Visual C++ SSE2 targets +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1500 && \ + (defined(_M_X64) || defined(_M_IX86)) +#define WEBP_MSC_SSE41 // Visual C++ SSE4.1 targets +#endif +#endif + +// WEBP_HAVE_* are used to indicate the presence of the instruction set in dsp +// files without intrinsics, allowing the corresponding Init() to be called. +// Files containing intrinsics will need to be built targeting the instruction +// set so should succeed on one of the earlier tests. +#if (defined(__SSE2__) || defined(WEBP_MSC_SSE2)) && \ + (!defined(HAVE_CONFIG_H) || defined(WEBP_HAVE_SSE2)) +#define WEBP_USE_SSE2 +#endif + +#if defined(WEBP_USE_SSE2) && !defined(WEBP_HAVE_SSE2) +#define WEBP_HAVE_SSE2 +#endif + +#if (defined(__SSE4_1__) || defined(WEBP_MSC_SSE41)) && \ + (!defined(HAVE_CONFIG_H) || defined(WEBP_HAVE_SSE41)) +#define WEBP_USE_SSE41 +#endif + +#if defined(WEBP_USE_SSE41) && !defined(WEBP_HAVE_SSE41) +#define WEBP_HAVE_SSE41 +#endif + +#undef WEBP_MSC_SSE41 +#undef WEBP_MSC_SSE2 + +// The intrinsics currently cause compiler errors with arm-nacl-gcc and the +// inline assembly would need to be modified for use with Native Client. +#if ((defined(__ARM_NEON__) || defined(__aarch64__)) && \ + (!defined(HAVE_CONFIG_H) || defined(WEBP_HAVE_NEON))) && \ + !defined(__native_client__) +#define WEBP_USE_NEON +#endif + +#if !defined(WEBP_USE_NEON) && defined(__ANDROID__) && \ + defined(__ARM_ARCH_7A__) && defined(HAVE_CPU_FEATURES_H) +#define WEBP_ANDROID_NEON // Android targets that may have NEON +#define WEBP_USE_NEON +#endif + +// Note: ARM64 is supported in Visual Studio 2017, but requires the direct +// inclusion of arm64_neon.h; Visual Studio 2019 includes this file in +// arm_neon.h. Compile errors were seen with Visual Studio 2019 16.4 with +// vtbl4_u8(); a fix was made in 16.6. +#if defined(_MSC_VER) && ((_MSC_VER >= 1700 && defined(_M_ARM)) || \ + (_MSC_VER >= 1926 && defined(_M_ARM64))) +#define WEBP_USE_NEON +#define WEBP_USE_INTRINSICS +#endif + +#if defined(WEBP_USE_NEON) && !defined(WEBP_HAVE_NEON) +#define WEBP_HAVE_NEON +#endif + +#if defined(__mips__) && !defined(__mips64) && defined(__mips_isa_rev) && \ + (__mips_isa_rev >= 1) && (__mips_isa_rev < 6) +#define WEBP_USE_MIPS32 +#if (__mips_isa_rev >= 2) +#define WEBP_USE_MIPS32_R2 +#if defined(__mips_dspr2) || (defined(__mips_dsp_rev) && __mips_dsp_rev >= 2) +#define WEBP_USE_MIPS_DSP_R2 +#endif +#endif +#endif + +#if defined(__mips_msa) && defined(__mips_isa_rev) && (__mips_isa_rev >= 5) +#define WEBP_USE_MSA +#endif + +#ifndef WEBP_DSP_OMIT_C_CODE +#define WEBP_DSP_OMIT_C_CODE 1 +#endif + +#if defined(WEBP_USE_NEON) && WEBP_DSP_OMIT_C_CODE +#define WEBP_NEON_OMIT_C_CODE 1 +#else +#define WEBP_NEON_OMIT_C_CODE 0 +#endif + +#if !(LOCAL_CLANG_PREREQ(3, 8) || LOCAL_GCC_PREREQ(4, 8) || \ + defined(__aarch64__)) +#define WEBP_NEON_WORK_AROUND_GCC 1 +#else +#define WEBP_NEON_WORK_AROUND_GCC 0 +#endif + +// This macro prevents thread_sanitizer from reporting known concurrent writes. +#define WEBP_TSAN_IGNORE_FUNCTION +#if defined(__has_feature) +#if __has_feature(thread_sanitizer) +#undef WEBP_TSAN_IGNORE_FUNCTION +#define WEBP_TSAN_IGNORE_FUNCTION __attribute__((no_sanitize_thread)) +#endif +#endif + +#if defined(__has_feature) +#if __has_feature(memory_sanitizer) +#define WEBP_MSAN +#endif +#endif + +#if defined(WEBP_USE_THREAD) && !defined(_WIN32) +#include <pthread.h> // NOLINT + +#define WEBP_DSP_INIT(func) \ + do { \ + static volatile VP8CPUInfo func##_last_cpuinfo_used = \ + (VP8CPUInfo)&func##_last_cpuinfo_used; \ + static pthread_mutex_t func##_lock = PTHREAD_MUTEX_INITIALIZER; \ + if (pthread_mutex_lock(&func##_lock)) break; \ + if (func##_last_cpuinfo_used != VP8GetCPUInfo) func(); \ + func##_last_cpuinfo_used = VP8GetCPUInfo; \ + (void)pthread_mutex_unlock(&func##_lock); \ + } while (0) +#else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32)) +#define WEBP_DSP_INIT(func) \ + do { \ + static volatile VP8CPUInfo func##_last_cpuinfo_used = \ + (VP8CPUInfo)&func##_last_cpuinfo_used; \ + if (func##_last_cpuinfo_used == VP8GetCPUInfo) break; \ + func(); \ + func##_last_cpuinfo_used = VP8GetCPUInfo; \ + } while (0) +#endif // defined(WEBP_USE_THREAD) && !defined(_WIN32) + +// Defines an Init + helper function that control multiple initialization of +// function pointers / tables. +/* Usage: + WEBP_DSP_INIT_FUNC(InitFunc) { + ...function body + } +*/ +#define WEBP_DSP_INIT_FUNC(name) \ + static WEBP_TSAN_IGNORE_FUNCTION void name##_body(void); \ + WEBP_TSAN_IGNORE_FUNCTION void name(void) { WEBP_DSP_INIT(name##_body); } \ + static WEBP_TSAN_IGNORE_FUNCTION void name##_body(void) + +#define WEBP_UBSAN_IGNORE_UNDEF +#define WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW +#if defined(__clang__) && defined(__has_attribute) +#if __has_attribute(no_sanitize) +// This macro prevents the undefined behavior sanitizer from reporting +// failures. This is only meant to silence unaligned loads on platforms that +// are known to support them. +#undef WEBP_UBSAN_IGNORE_UNDEF +#define WEBP_UBSAN_IGNORE_UNDEF __attribute__((no_sanitize("undefined"))) + +// This macro prevents the undefined behavior sanitizer from reporting +// failures related to unsigned integer overflows. This is only meant to +// silence cases where this well defined behavior is expected. +#undef WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW +#define WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW \ + __attribute__((no_sanitize("unsigned-integer-overflow"))) +#endif +#endif + +// If 'ptr' is NULL, returns NULL. Otherwise returns 'ptr + off'. +// Prevents undefined behavior sanitizer nullptr-with-nonzero-offset warning. +#if !defined(WEBP_OFFSET_PTR) +#define WEBP_OFFSET_PTR(ptr, off) (((ptr) == NULL) ? NULL : ((ptr) + (off))) +#endif + +// Regularize the definition of WEBP_SWAP_16BIT_CSP (backward compatibility) +#if !defined(WEBP_SWAP_16BIT_CSP) +#define WEBP_SWAP_16BIT_CSP 0 +#endif + +// some endian fix (e.g.: mips-gcc doesn't define __BIG_ENDIAN__) +#if !defined(WORDS_BIGENDIAN) && \ + (defined(__BIG_ENDIAN__) || defined(_M_PPC) || \ + (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))) +#define WORDS_BIGENDIAN +#endif + +typedef enum { + kSSE2, + kSSE3, + kSlowSSSE3, // special feature for slow SSSE3 architectures + kSSE4_1, + kAVX, + kAVX2, + kNEON, + kMIPS32, + kMIPSdspR2, + kMSA +} CPUFeature; + +#ifdef __cplusplus +extern "C" { +#endif + +// returns true if the CPU supports the feature. +typedef int (*VP8CPUInfo)(CPUFeature feature); +WEBP_EXTERN VP8CPUInfo VP8GetCPUInfo; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_CPU_H_ diff --git a/media/libwebp/src/dsp/dec.c b/media/libwebp/src/dsp/dec.c new file mode 100644 index 0000000000..537c701282 --- /dev/null +++ b/media/libwebp/src/dsp/dec.c @@ -0,0 +1,887 @@ +// Copyright 2010 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Speed-critical decoding functions, default plain-C implementations. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> + +#include "src/dsp/dsp.h" +#include "src/dec/vp8i_dec.h" +#include "src/utils/utils.h" + +//------------------------------------------------------------------------------ + +static WEBP_INLINE uint8_t clip_8b(int v) { + return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; +} + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +#define STORE(x, y, v) \ + dst[(x) + (y) * BPS] = clip_8b(dst[(x) + (y) * BPS] + ((v) >> 3)) + +#define STORE2(y, dc, d, c) do { \ + const int DC = (dc); \ + STORE(0, y, DC + (d)); \ + STORE(1, y, DC + (c)); \ + STORE(2, y, DC - (c)); \ + STORE(3, y, DC - (d)); \ +} while (0) + +#define MUL1(a) ((((a) * 20091) >> 16) + (a)) +#define MUL2(a) (((a) * 35468) >> 16) + +#if !WEBP_NEON_OMIT_C_CODE +static void TransformOne_C(const int16_t* in, uint8_t* dst) { + int C[4 * 4], *tmp; + int i; + tmp = C; + for (i = 0; i < 4; ++i) { // vertical pass + const int a = in[0] + in[8]; // [-4096, 4094] + const int b = in[0] - in[8]; // [-4095, 4095] + const int c = MUL2(in[4]) - MUL1(in[12]); // [-3783, 3783] + const int d = MUL1(in[4]) + MUL2(in[12]); // [-3785, 3781] + tmp[0] = a + d; // [-7881, 7875] + tmp[1] = b + c; // [-7878, 7878] + tmp[2] = b - c; // [-7878, 7878] + tmp[3] = a - d; // [-7877, 7879] + tmp += 4; + in++; + } + // Each pass is expanding the dynamic range by ~3.85 (upper bound). + // The exact value is (2. + (20091 + 35468) / 65536). + // After the second pass, maximum interval is [-3794, 3794], assuming + // an input in [-2048, 2047] interval. We then need to add a dst value + // in the [0, 255] range. + // In the worst case scenario, the input to clip_8b() can be as large as + // [-60713, 60968]. + tmp = C; + for (i = 0; i < 4; ++i) { // horizontal pass + const int dc = tmp[0] + 4; + const int a = dc + tmp[8]; + const int b = dc - tmp[8]; + const int c = MUL2(tmp[4]) - MUL1(tmp[12]); + const int d = MUL1(tmp[4]) + MUL2(tmp[12]); + STORE(0, 0, a + d); + STORE(1, 0, b + c); + STORE(2, 0, b - c); + STORE(3, 0, a - d); + tmp++; + dst += BPS; + } +} + +// Simplified transform when only in[0], in[1] and in[4] are non-zero +static void TransformAC3_C(const int16_t* in, uint8_t* dst) { + const int a = in[0] + 4; + const int c4 = MUL2(in[4]); + const int d4 = MUL1(in[4]); + const int c1 = MUL2(in[1]); + const int d1 = MUL1(in[1]); + STORE2(0, a + d4, d1, c1); + STORE2(1, a + c4, d1, c1); + STORE2(2, a - c4, d1, c1); + STORE2(3, a - d4, d1, c1); +} +#undef MUL1 +#undef MUL2 +#undef STORE2 + +static void TransformTwo_C(const int16_t* in, uint8_t* dst, int do_two) { + TransformOne_C(in, dst); + if (do_two) { + TransformOne_C(in + 16, dst + 4); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void TransformUV_C(const int16_t* in, uint8_t* dst) { + VP8Transform(in + 0 * 16, dst, 1); + VP8Transform(in + 2 * 16, dst + 4 * BPS, 1); +} + +#if !WEBP_NEON_OMIT_C_CODE +static void TransformDC_C(const int16_t* in, uint8_t* dst) { + const int DC = in[0] + 4; + int i, j; + for (j = 0; j < 4; ++j) { + for (i = 0; i < 4; ++i) { + STORE(i, j, DC); + } + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void TransformDCUV_C(const int16_t* in, uint8_t* dst) { + if (in[0 * 16]) VP8TransformDC(in + 0 * 16, dst); + if (in[1 * 16]) VP8TransformDC(in + 1 * 16, dst + 4); + if (in[2 * 16]) VP8TransformDC(in + 2 * 16, dst + 4 * BPS); + if (in[3 * 16]) VP8TransformDC(in + 3 * 16, dst + 4 * BPS + 4); +} + +#undef STORE + +//------------------------------------------------------------------------------ +// Paragraph 14.3 + +#if !WEBP_NEON_OMIT_C_CODE +static void TransformWHT_C(const int16_t* in, int16_t* out) { + int tmp[16]; + int i; + for (i = 0; i < 4; ++i) { + const int a0 = in[0 + i] + in[12 + i]; + const int a1 = in[4 + i] + in[ 8 + i]; + const int a2 = in[4 + i] - in[ 8 + i]; + const int a3 = in[0 + i] - in[12 + i]; + tmp[0 + i] = a0 + a1; + tmp[8 + i] = a0 - a1; + tmp[4 + i] = a3 + a2; + tmp[12 + i] = a3 - a2; + } + for (i = 0; i < 4; ++i) { + const int dc = tmp[0 + i * 4] + 3; // w/ rounder + const int a0 = dc + tmp[3 + i * 4]; + const int a1 = tmp[1 + i * 4] + tmp[2 + i * 4]; + const int a2 = tmp[1 + i * 4] - tmp[2 + i * 4]; + const int a3 = dc - tmp[3 + i * 4]; + out[ 0] = (a0 + a1) >> 3; + out[16] = (a3 + a2) >> 3; + out[32] = (a0 - a1) >> 3; + out[48] = (a3 - a2) >> 3; + out += 64; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +void (*VP8TransformWHT)(const int16_t* in, int16_t* out); + +//------------------------------------------------------------------------------ +// Intra predictions + +#define DST(x, y) dst[(x) + (y) * BPS] + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) { + const uint8_t* top = dst - BPS; + const uint8_t* const clip0 = VP8kclip1 - top[-1]; + int y; + for (y = 0; y < size; ++y) { + const uint8_t* const clip = clip0 + dst[-1]; + int x; + for (x = 0; x < size; ++x) { + dst[x] = clip[top[x]]; + } + dst += BPS; + } +} +static void TM4_C(uint8_t* dst) { TrueMotion(dst, 4); } +static void TM8uv_C(uint8_t* dst) { TrueMotion(dst, 8); } +static void TM16_C(uint8_t* dst) { TrueMotion(dst, 16); } + +//------------------------------------------------------------------------------ +// 16x16 + +static void VE16_C(uint8_t* dst) { // vertical + int j; + for (j = 0; j < 16; ++j) { + memcpy(dst + j * BPS, dst - BPS, 16); + } +} + +static void HE16_C(uint8_t* dst) { // horizontal + int j; + for (j = 16; j > 0; --j) { + memset(dst, dst[-1], 16); + dst += BPS; + } +} + +static WEBP_INLINE void Put16(int v, uint8_t* dst) { + int j; + for (j = 0; j < 16; ++j) { + memset(dst + j * BPS, v, 16); + } +} + +static void DC16_C(uint8_t* dst) { // DC + int DC = 16; + int j; + for (j = 0; j < 16; ++j) { + DC += dst[-1 + j * BPS] + dst[j - BPS]; + } + Put16(DC >> 5, dst); +} + +static void DC16NoTop_C(uint8_t* dst) { // DC with top samples not available + int DC = 8; + int j; + for (j = 0; j < 16; ++j) { + DC += dst[-1 + j * BPS]; + } + Put16(DC >> 4, dst); +} + +static void DC16NoLeft_C(uint8_t* dst) { // DC with left samples not available + int DC = 8; + int i; + for (i = 0; i < 16; ++i) { + DC += dst[i - BPS]; + } + Put16(DC >> 4, dst); +} + +static void DC16NoTopLeft_C(uint8_t* dst) { // DC with no top and left samples + Put16(0x80, dst); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +VP8PredFunc VP8PredLuma16[NUM_B_DC_MODES]; + +//------------------------------------------------------------------------------ +// 4x4 + +#define AVG3(a, b, c) ((uint8_t)(((a) + 2 * (b) + (c) + 2) >> 2)) +#define AVG2(a, b) (((a) + (b) + 1) >> 1) + +#if !WEBP_NEON_OMIT_C_CODE +static void VE4_C(uint8_t* dst) { // vertical + const uint8_t* top = dst - BPS; + const uint8_t vals[4] = { + AVG3(top[-1], top[0], top[1]), + AVG3(top[ 0], top[1], top[2]), + AVG3(top[ 1], top[2], top[3]), + AVG3(top[ 2], top[3], top[4]) + }; + int i; + for (i = 0; i < 4; ++i) { + memcpy(dst + i * BPS, vals, sizeof(vals)); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void HE4_C(uint8_t* dst) { // horizontal + const int A = dst[-1 - BPS]; + const int B = dst[-1]; + const int C = dst[-1 + BPS]; + const int D = dst[-1 + 2 * BPS]; + const int E = dst[-1 + 3 * BPS]; + WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(A, B, C)); + WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(B, C, D)); + WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(C, D, E)); + WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(D, E, E)); +} + +#if !WEBP_NEON_OMIT_C_CODE +static void DC4_C(uint8_t* dst) { // DC + uint32_t dc = 4; + int i; + for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS]; + dc >>= 3; + for (i = 0; i < 4; ++i) memset(dst + i * BPS, dc, 4); +} + +static void RD4_C(uint8_t* dst) { // Down-right + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int L = dst[-1 + 3 * BPS]; + const int X = dst[-1 - BPS]; + const int A = dst[0 - BPS]; + const int B = dst[1 - BPS]; + const int C = dst[2 - BPS]; + const int D = dst[3 - BPS]; + DST(0, 3) = AVG3(J, K, L); + DST(1, 3) = DST(0, 2) = AVG3(I, J, K); + DST(2, 3) = DST(1, 2) = DST(0, 1) = AVG3(X, I, J); + DST(3, 3) = DST(2, 2) = DST(1, 1) = DST(0, 0) = AVG3(A, X, I); + DST(3, 2) = DST(2, 1) = DST(1, 0) = AVG3(B, A, X); + DST(3, 1) = DST(2, 0) = AVG3(C, B, A); + DST(3, 0) = AVG3(D, C, B); +} + +static void LD4_C(uint8_t* dst) { // Down-Left + const int A = dst[0 - BPS]; + const int B = dst[1 - BPS]; + const int C = dst[2 - BPS]; + const int D = dst[3 - BPS]; + const int E = dst[4 - BPS]; + const int F = dst[5 - BPS]; + const int G = dst[6 - BPS]; + const int H = dst[7 - BPS]; + DST(0, 0) = AVG3(A, B, C); + DST(1, 0) = DST(0, 1) = AVG3(B, C, D); + DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); + DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); + DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); + DST(3, 2) = DST(2, 3) = AVG3(F, G, H); + DST(3, 3) = AVG3(G, H, H); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void VR4_C(uint8_t* dst) { // Vertical-Right + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int X = dst[-1 - BPS]; + const int A = dst[0 - BPS]; + const int B = dst[1 - BPS]; + const int C = dst[2 - BPS]; + const int D = dst[3 - BPS]; + DST(0, 0) = DST(1, 2) = AVG2(X, A); + DST(1, 0) = DST(2, 2) = AVG2(A, B); + DST(2, 0) = DST(3, 2) = AVG2(B, C); + DST(3, 0) = AVG2(C, D); + + DST(0, 3) = AVG3(K, J, I); + DST(0, 2) = AVG3(J, I, X); + DST(0, 1) = DST(1, 3) = AVG3(I, X, A); + DST(1, 1) = DST(2, 3) = AVG3(X, A, B); + DST(2, 1) = DST(3, 3) = AVG3(A, B, C); + DST(3, 1) = AVG3(B, C, D); +} + +static void VL4_C(uint8_t* dst) { // Vertical-Left + const int A = dst[0 - BPS]; + const int B = dst[1 - BPS]; + const int C = dst[2 - BPS]; + const int D = dst[3 - BPS]; + const int E = dst[4 - BPS]; + const int F = dst[5 - BPS]; + const int G = dst[6 - BPS]; + const int H = dst[7 - BPS]; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 2) = AVG3(E, F, G); + DST(3, 3) = AVG3(F, G, H); +} + +static void HU4_C(uint8_t* dst) { // Horizontal-Up + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int L = dst[-1 + 3 * BPS]; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = + DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +static void HD4_C(uint8_t* dst) { // Horizontal-Down + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int L = dst[-1 + 3 * BPS]; + const int X = dst[-1 - BPS]; + const int A = dst[0 - BPS]; + const int B = dst[1 - BPS]; + const int C = dst[2 - BPS]; + + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} + +#undef DST +#undef AVG3 +#undef AVG2 + +VP8PredFunc VP8PredLuma4[NUM_BMODES]; + +//------------------------------------------------------------------------------ +// Chroma + +#if !WEBP_NEON_OMIT_C_CODE +static void VE8uv_C(uint8_t* dst) { // vertical + int j; + for (j = 0; j < 8; ++j) { + memcpy(dst + j * BPS, dst - BPS, 8); + } +} + +static void HE8uv_C(uint8_t* dst) { // horizontal + int j; + for (j = 0; j < 8; ++j) { + memset(dst, dst[-1], 8); + dst += BPS; + } +} + +// helper for chroma-DC predictions +static WEBP_INLINE void Put8x8uv(uint8_t value, uint8_t* dst) { + int j; + for (j = 0; j < 8; ++j) { + memset(dst + j * BPS, value, 8); + } +} + +static void DC8uv_C(uint8_t* dst) { // DC + int dc0 = 8; + int i; + for (i = 0; i < 8; ++i) { + dc0 += dst[i - BPS] + dst[-1 + i * BPS]; + } + Put8x8uv(dc0 >> 4, dst); +} + +static void DC8uvNoLeft_C(uint8_t* dst) { // DC with no left samples + int dc0 = 4; + int i; + for (i = 0; i < 8; ++i) { + dc0 += dst[i - BPS]; + } + Put8x8uv(dc0 >> 3, dst); +} + +static void DC8uvNoTop_C(uint8_t* dst) { // DC with no top samples + int dc0 = 4; + int i; + for (i = 0; i < 8; ++i) { + dc0 += dst[-1 + i * BPS]; + } + Put8x8uv(dc0 >> 3, dst); +} + +static void DC8uvNoTopLeft_C(uint8_t* dst) { // DC with nothing + Put8x8uv(0x80, dst); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +VP8PredFunc VP8PredChroma8[NUM_B_DC_MODES]; + +//------------------------------------------------------------------------------ +// Edge filtering functions + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +// 4 pixels in, 2 pixels out +static WEBP_INLINE void DoFilter2_C(uint8_t* p, int step) { + const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; + const int a = 3 * (q0 - p0) + VP8ksclip1[p1 - q1]; // in [-893,892] + const int a1 = VP8ksclip2[(a + 4) >> 3]; // in [-16,15] + const int a2 = VP8ksclip2[(a + 3) >> 3]; + p[-step] = VP8kclip1[p0 + a2]; + p[ 0] = VP8kclip1[q0 - a1]; +} + +// 4 pixels in, 4 pixels out +static WEBP_INLINE void DoFilter4_C(uint8_t* p, int step) { + const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; + const int a = 3 * (q0 - p0); + const int a1 = VP8ksclip2[(a + 4) >> 3]; + const int a2 = VP8ksclip2[(a + 3) >> 3]; + const int a3 = (a1 + 1) >> 1; + p[-2*step] = VP8kclip1[p1 + a3]; + p[- step] = VP8kclip1[p0 + a2]; + p[ 0] = VP8kclip1[q0 - a1]; + p[ step] = VP8kclip1[q1 - a3]; +} + +// 6 pixels in, 6 pixels out +static WEBP_INLINE void DoFilter6_C(uint8_t* p, int step) { + const int p2 = p[-3*step], p1 = p[-2*step], p0 = p[-step]; + const int q0 = p[0], q1 = p[step], q2 = p[2*step]; + const int a = VP8ksclip1[3 * (q0 - p0) + VP8ksclip1[p1 - q1]]; + // a is in [-128,127], a1 in [-27,27], a2 in [-18,18] and a3 in [-9,9] + const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7 + const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7 + const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7 + p[-3*step] = VP8kclip1[p2 + a3]; + p[-2*step] = VP8kclip1[p1 + a2]; + p[- step] = VP8kclip1[p0 + a1]; + p[ 0] = VP8kclip1[q0 - a1]; + p[ step] = VP8kclip1[q1 - a2]; + p[ 2*step] = VP8kclip1[q2 - a3]; +} + +static WEBP_INLINE int Hev(const uint8_t* p, int step, int thresh) { + const int p1 = p[-2*step], p0 = p[-step], q0 = p[0], q1 = p[step]; + return (VP8kabs0[p1 - p0] > thresh) || (VP8kabs0[q1 - q0] > thresh); +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE int NeedsFilter_C(const uint8_t* p, int step, int t) { + const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; + return ((4 * VP8kabs0[p0 - q0] + VP8kabs0[p1 - q1]) <= t); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static WEBP_INLINE int NeedsFilter2_C(const uint8_t* p, + int step, int t, int it) { + const int p3 = p[-4 * step], p2 = p[-3 * step], p1 = p[-2 * step]; + const int p0 = p[-step], q0 = p[0]; + const int q1 = p[step], q2 = p[2 * step], q3 = p[3 * step]; + if ((4 * VP8kabs0[p0 - q0] + VP8kabs0[p1 - q1]) > t) return 0; + return VP8kabs0[p3 - p2] <= it && VP8kabs0[p2 - p1] <= it && + VP8kabs0[p1 - p0] <= it && VP8kabs0[q3 - q2] <= it && + VP8kabs0[q2 - q1] <= it && VP8kabs0[q1 - q0] <= it; +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +//------------------------------------------------------------------------------ +// Simple In-loop filtering (Paragraph 15.2) + +#if !WEBP_NEON_OMIT_C_CODE +static void SimpleVFilter16_C(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + for (i = 0; i < 16; ++i) { + if (NeedsFilter_C(p + i, stride, thresh2)) { + DoFilter2_C(p + i, stride); + } + } +} + +static void SimpleHFilter16_C(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + for (i = 0; i < 16; ++i) { + if (NeedsFilter_C(p + i * stride, 1, thresh2)) { + DoFilter2_C(p + i * stride, 1); + } + } +} + +static void SimpleVFilter16i_C(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + SimpleVFilter16_C(p, stride, thresh); + } +} + +static void SimpleHFilter16i_C(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + SimpleHFilter16_C(p, stride, thresh); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ +// Complex In-loop filtering (Paragraph 15.3) + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static WEBP_INLINE void FilterLoop26_C(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, + int hev_thresh) { + const int thresh2 = 2 * thresh + 1; + while (size-- > 0) { + if (NeedsFilter2_C(p, hstride, thresh2, ithresh)) { + if (Hev(p, hstride, hev_thresh)) { + DoFilter2_C(p, hstride); + } else { + DoFilter6_C(p, hstride); + } + } + p += vstride; + } +} + +static WEBP_INLINE void FilterLoop24_C(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, + int hev_thresh) { + const int thresh2 = 2 * thresh + 1; + while (size-- > 0) { + if (NeedsFilter2_C(p, hstride, thresh2, ithresh)) { + if (Hev(p, hstride, hev_thresh)) { + DoFilter2_C(p, hstride); + } else { + DoFilter4_C(p, hstride); + } + } + p += vstride; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +#if !WEBP_NEON_OMIT_C_CODE +// on macroblock edges +static void VFilter16_C(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26_C(p, stride, 1, 16, thresh, ithresh, hev_thresh); +} + +static void HFilter16_C(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26_C(p, 1, stride, 16, thresh, ithresh, hev_thresh); +} + +// on three inner edges +static void VFilter16i_C(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + FilterLoop24_C(p, stride, 1, 16, thresh, ithresh, hev_thresh); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static void HFilter16i_C(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + FilterLoop24_C(p, 1, stride, 16, thresh, ithresh, hev_thresh); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +#if !WEBP_NEON_OMIT_C_CODE +// 8-pixels wide variant, for chroma filtering +static void VFilter8_C(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26_C(u, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop26_C(v, stride, 1, 8, thresh, ithresh, hev_thresh); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static void HFilter8_C(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26_C(u, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop26_C(v, 1, stride, 8, thresh, ithresh, hev_thresh); +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +#if !WEBP_NEON_OMIT_C_CODE +static void VFilter8i_C(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24_C(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop24_C(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static void HFilter8i_C(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24_C(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop24_C(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh); +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +//------------------------------------------------------------------------------ + +static void DitherCombine8x8_C(const uint8_t* dither, uint8_t* dst, + int dst_stride) { + int i, j; + for (j = 0; j < 8; ++j) { + for (i = 0; i < 8; ++i) { + const int delta0 = dither[i] - VP8_DITHER_AMP_CENTER; + const int delta1 = + (delta0 + VP8_DITHER_DESCALE_ROUNDER) >> VP8_DITHER_DESCALE; + dst[i] = clip_8b((int)dst[i] + delta1); + } + dst += dst_stride; + dither += 8; + } +} + +//------------------------------------------------------------------------------ + +VP8DecIdct2 VP8Transform; +VP8DecIdct VP8TransformAC3; +VP8DecIdct VP8TransformUV; +VP8DecIdct VP8TransformDC; +VP8DecIdct VP8TransformDCUV; + +VP8LumaFilterFunc VP8VFilter16; +VP8LumaFilterFunc VP8HFilter16; +VP8ChromaFilterFunc VP8VFilter8; +VP8ChromaFilterFunc VP8HFilter8; +VP8LumaFilterFunc VP8VFilter16i; +VP8LumaFilterFunc VP8HFilter16i; +VP8ChromaFilterFunc VP8VFilter8i; +VP8ChromaFilterFunc VP8HFilter8i; +VP8SimpleFilterFunc VP8SimpleVFilter16; +VP8SimpleFilterFunc VP8SimpleHFilter16; +VP8SimpleFilterFunc VP8SimpleVFilter16i; +VP8SimpleFilterFunc VP8SimpleHFilter16i; + +void (*VP8DitherCombine8x8)(const uint8_t* dither, uint8_t* dst, + int dst_stride); + +extern void VP8DspInitSSE2(void); +extern void VP8DspInitSSE41(void); +extern void VP8DspInitNEON(void); +extern void VP8DspInitMIPS32(void); +extern void VP8DspInitMIPSdspR2(void); +extern void VP8DspInitMSA(void); + +WEBP_DSP_INIT_FUNC(VP8DspInit) { + VP8InitClipTables(); + +#if !WEBP_NEON_OMIT_C_CODE + VP8TransformWHT = TransformWHT_C; + VP8Transform = TransformTwo_C; + VP8TransformDC = TransformDC_C; + VP8TransformAC3 = TransformAC3_C; +#endif + VP8TransformUV = TransformUV_C; + VP8TransformDCUV = TransformDCUV_C; + +#if !WEBP_NEON_OMIT_C_CODE + VP8VFilter16 = VFilter16_C; + VP8VFilter16i = VFilter16i_C; + VP8HFilter16 = HFilter16_C; + VP8VFilter8 = VFilter8_C; + VP8VFilter8i = VFilter8i_C; + VP8SimpleVFilter16 = SimpleVFilter16_C; + VP8SimpleHFilter16 = SimpleHFilter16_C; + VP8SimpleVFilter16i = SimpleVFilter16i_C; + VP8SimpleHFilter16i = SimpleHFilter16i_C; +#endif + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + VP8HFilter16i = HFilter16i_C; + VP8HFilter8 = HFilter8_C; + VP8HFilter8i = HFilter8i_C; +#endif + +#if !WEBP_NEON_OMIT_C_CODE + VP8PredLuma4[0] = DC4_C; + VP8PredLuma4[1] = TM4_C; + VP8PredLuma4[2] = VE4_C; + VP8PredLuma4[4] = RD4_C; + VP8PredLuma4[6] = LD4_C; +#endif + + VP8PredLuma4[3] = HE4_C; + VP8PredLuma4[5] = VR4_C; + VP8PredLuma4[7] = VL4_C; + VP8PredLuma4[8] = HD4_C; + VP8PredLuma4[9] = HU4_C; + +#if !WEBP_NEON_OMIT_C_CODE + VP8PredLuma16[0] = DC16_C; + VP8PredLuma16[1] = TM16_C; + VP8PredLuma16[2] = VE16_C; + VP8PredLuma16[3] = HE16_C; + VP8PredLuma16[4] = DC16NoTop_C; + VP8PredLuma16[5] = DC16NoLeft_C; + VP8PredLuma16[6] = DC16NoTopLeft_C; + + VP8PredChroma8[0] = DC8uv_C; + VP8PredChroma8[1] = TM8uv_C; + VP8PredChroma8[2] = VE8uv_C; + VP8PredChroma8[3] = HE8uv_C; + VP8PredChroma8[4] = DC8uvNoTop_C; + VP8PredChroma8[5] = DC8uvNoLeft_C; + VP8PredChroma8[6] = DC8uvNoTopLeft_C; +#endif + + VP8DitherCombine8x8 = DitherCombine8x8_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8DspInitSSE2(); +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + VP8DspInitSSE41(); + } +#endif + } +#endif +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + VP8DspInitMIPS32(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8DspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8DspInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8DspInitNEON(); + } +#endif + + assert(VP8TransformWHT != NULL); + assert(VP8Transform != NULL); + assert(VP8TransformDC != NULL); + assert(VP8TransformAC3 != NULL); + assert(VP8TransformUV != NULL); + assert(VP8TransformDCUV != NULL); + assert(VP8VFilter16 != NULL); + assert(VP8HFilter16 != NULL); + assert(VP8VFilter8 != NULL); + assert(VP8HFilter8 != NULL); + assert(VP8VFilter16i != NULL); + assert(VP8HFilter16i != NULL); + assert(VP8VFilter8i != NULL); + assert(VP8HFilter8i != NULL); + assert(VP8SimpleVFilter16 != NULL); + assert(VP8SimpleHFilter16 != NULL); + assert(VP8SimpleVFilter16i != NULL); + assert(VP8SimpleHFilter16i != NULL); + assert(VP8PredLuma4[0] != NULL); + assert(VP8PredLuma4[1] != NULL); + assert(VP8PredLuma4[2] != NULL); + assert(VP8PredLuma4[3] != NULL); + assert(VP8PredLuma4[4] != NULL); + assert(VP8PredLuma4[5] != NULL); + assert(VP8PredLuma4[6] != NULL); + assert(VP8PredLuma4[7] != NULL); + assert(VP8PredLuma4[8] != NULL); + assert(VP8PredLuma4[9] != NULL); + assert(VP8PredLuma16[0] != NULL); + assert(VP8PredLuma16[1] != NULL); + assert(VP8PredLuma16[2] != NULL); + assert(VP8PredLuma16[3] != NULL); + assert(VP8PredLuma16[4] != NULL); + assert(VP8PredLuma16[5] != NULL); + assert(VP8PredLuma16[6] != NULL); + assert(VP8PredChroma8[0] != NULL); + assert(VP8PredChroma8[1] != NULL); + assert(VP8PredChroma8[2] != NULL); + assert(VP8PredChroma8[3] != NULL); + assert(VP8PredChroma8[4] != NULL); + assert(VP8PredChroma8[5] != NULL); + assert(VP8PredChroma8[6] != NULL); + assert(VP8DitherCombine8x8 != NULL); +} diff --git a/media/libwebp/src/dsp/dec_clip_tables.c b/media/libwebp/src/dsp/dec_clip_tables.c new file mode 100644 index 0000000000..427b74f776 --- /dev/null +++ b/media/libwebp/src/dsp/dec_clip_tables.c @@ -0,0 +1,369 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Clipping tables for filtering +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +// define to 0 to have run-time table initialization +#if !defined(USE_STATIC_TABLES) +#define USE_STATIC_TABLES 1 // ALTERNATE_CODE +#endif + +#if (USE_STATIC_TABLES == 1) + +static const uint8_t abs0[255 + 255 + 1] = { + 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7, 0xf6, 0xf5, 0xf4, + 0xf3, 0xf2, 0xf1, 0xf0, 0xef, 0xee, 0xed, 0xec, 0xeb, 0xea, 0xe9, 0xe8, + 0xe7, 0xe6, 0xe5, 0xe4, 0xe3, 0xe2, 0xe1, 0xe0, 0xdf, 0xde, 0xdd, 0xdc, + 0xdb, 0xda, 0xd9, 0xd8, 0xd7, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xd1, 0xd0, + 0xcf, 0xce, 0xcd, 0xcc, 0xcb, 0xca, 0xc9, 0xc8, 0xc7, 0xc6, 0xc5, 0xc4, + 0xc3, 0xc2, 0xc1, 0xc0, 0xbf, 0xbe, 0xbd, 0xbc, 0xbb, 0xba, 0xb9, 0xb8, + 0xb7, 0xb6, 0xb5, 0xb4, 0xb3, 0xb2, 0xb1, 0xb0, 0xaf, 0xae, 0xad, 0xac, + 0xab, 0xaa, 0xa9, 0xa8, 0xa7, 0xa6, 0xa5, 0xa4, 0xa3, 0xa2, 0xa1, 0xa0, + 0x9f, 0x9e, 0x9d, 0x9c, 0x9b, 0x9a, 0x99, 0x98, 0x97, 0x96, 0x95, 0x94, + 0x93, 0x92, 0x91, 0x90, 0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, + 0x87, 0x86, 0x85, 0x84, 0x83, 0x82, 0x81, 0x80, 0x7f, 0x7e, 0x7d, 0x7c, + 0x7b, 0x7a, 0x79, 0x78, 0x77, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70, + 0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, + 0x63, 0x62, 0x61, 0x60, 0x5f, 0x5e, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58, + 0x57, 0x56, 0x55, 0x54, 0x53, 0x52, 0x51, 0x50, 0x4f, 0x4e, 0x4d, 0x4c, + 0x4b, 0x4a, 0x49, 0x48, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0x41, 0x40, + 0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a, 0x39, 0x38, 0x37, 0x36, 0x35, 0x34, + 0x33, 0x32, 0x31, 0x30, 0x2f, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, + 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, + 0x1b, 0x1a, 0x19, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, + 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, + 0x03, 0x02, 0x01, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, + 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, + 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, + 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, + 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, + 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, + 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, + 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, + 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, + 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, + 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, + 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, + 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, + 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, + 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, + 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, + 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, + 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, + 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, + 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, + 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, + 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff +}; + +static const uint8_t sclip1[1020 + 1020 + 1] = { + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, + 0x80, 0x80, 0x80, 0x80, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, + 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, + 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, + 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, + 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, + 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, + 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, + 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, + 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, + 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, + 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, + 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, + 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, + 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, + 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, + 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, + 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, + 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, + 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, + 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f +}; + +static const uint8_t sclip2[112 + 112 + 1] = { + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, + 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, + 0xfc, 0xfd, 0xfe, 0xff, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, + 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f +}; + +static const uint8_t clip1[255 + 511 + 1] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, + 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, + 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, + 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, + 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, + 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, + 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, + 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, + 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, + 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, + 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, + 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, + 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, + 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, + 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, + 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, + 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, + 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, + 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, + 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, + 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, + 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff +}; + +#else + +// uninitialized tables +static uint8_t abs0[255 + 255 + 1]; +static int8_t sclip1[1020 + 1020 + 1]; +static int8_t sclip2[112 + 112 + 1]; +static uint8_t clip1[255 + 511 + 1]; + +// We declare this variable 'volatile' to prevent instruction reordering +// and make sure it's set to true _last_ (so as to be thread-safe) +static volatile int tables_ok = 0; + +#endif // USE_STATIC_TABLES + +const int8_t* const VP8ksclip1 = (const int8_t*)&sclip1[1020]; +const int8_t* const VP8ksclip2 = (const int8_t*)&sclip2[112]; +const uint8_t* const VP8kclip1 = &clip1[255]; +const uint8_t* const VP8kabs0 = &abs0[255]; + +WEBP_TSAN_IGNORE_FUNCTION void VP8InitClipTables(void) { +#if (USE_STATIC_TABLES == 0) + int i; + if (!tables_ok) { + for (i = -255; i <= 255; ++i) { + abs0[255 + i] = (i < 0) ? -i : i; + } + for (i = -1020; i <= 1020; ++i) { + sclip1[1020 + i] = (i < -128) ? -128 : (i > 127) ? 127 : i; + } + for (i = -112; i <= 112; ++i) { + sclip2[112 + i] = (i < -16) ? -16 : (i > 15) ? 15 : i; + } + for (i = -255; i <= 255 + 255; ++i) { + clip1[255 + i] = (i < 0) ? 0 : (i > 255) ? 255 : i; + } + tables_ok = 1; + } +#endif // USE_STATIC_TABLES +} diff --git a/media/libwebp/src/dsp/dec_mips32.c b/media/libwebp/src/dsp/dec_mips32.c new file mode 100644 index 0000000000..e4e70966d2 --- /dev/null +++ b/media/libwebp/src/dsp/dec_mips32.c @@ -0,0 +1,587 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of dsp functions +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS32) + +#include "src/dsp/mips_macro.h" + +static const int kC1 = 20091 + (1 << 16); +static const int kC2 = 35468; + +static WEBP_INLINE int abs_mips32(int x) { + const int sign = x >> 31; + return (x ^ sign) - sign; +} + +// 4 pixels in, 2 pixels out +static WEBP_INLINE void do_filter2(uint8_t* p, int step) { + const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; + const int a = 3 * (q0 - p0) + VP8ksclip1[p1 - q1]; + const int a1 = VP8ksclip2[(a + 4) >> 3]; + const int a2 = VP8ksclip2[(a + 3) >> 3]; + p[-step] = VP8kclip1[p0 + a2]; + p[ 0] = VP8kclip1[q0 - a1]; +} + +// 4 pixels in, 4 pixels out +static WEBP_INLINE void do_filter4(uint8_t* p, int step) { + const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; + const int a = 3 * (q0 - p0); + const int a1 = VP8ksclip2[(a + 4) >> 3]; + const int a2 = VP8ksclip2[(a + 3) >> 3]; + const int a3 = (a1 + 1) >> 1; + p[-2 * step] = VP8kclip1[p1 + a3]; + p[- step] = VP8kclip1[p0 + a2]; + p[ 0] = VP8kclip1[q0 - a1]; + p[ step] = VP8kclip1[q1 - a3]; +} + +// 6 pixels in, 6 pixels out +static WEBP_INLINE void do_filter6(uint8_t* p, int step) { + const int p2 = p[-3 * step], p1 = p[-2 * step], p0 = p[-step]; + const int q0 = p[0], q1 = p[step], q2 = p[2 * step]; + const int a = VP8ksclip1[3 * (q0 - p0) + VP8ksclip1[p1 - q1]]; + // a is in [-128,127], a1 in [-27,27], a2 in [-18,18] and a3 in [-9,9] + const int a1 = (27 * a + 63) >> 7; // eq. to ((3 * a + 7) * 9) >> 7 + const int a2 = (18 * a + 63) >> 7; // eq. to ((2 * a + 7) * 9) >> 7 + const int a3 = (9 * a + 63) >> 7; // eq. to ((1 * a + 7) * 9) >> 7 + p[-3 * step] = VP8kclip1[p2 + a3]; + p[-2 * step] = VP8kclip1[p1 + a2]; + p[- step] = VP8kclip1[p0 + a1]; + p[ 0] = VP8kclip1[q0 - a1]; + p[ step] = VP8kclip1[q1 - a2]; + p[ 2 * step] = VP8kclip1[q2 - a3]; +} + +static WEBP_INLINE int hev(const uint8_t* p, int step, int thresh) { + const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; + return (abs_mips32(p1 - p0) > thresh) || (abs_mips32(q1 - q0) > thresh); +} + +static WEBP_INLINE int needs_filter(const uint8_t* p, int step, int t) { + const int p1 = p[-2 * step], p0 = p[-step], q0 = p[0], q1 = p[step]; + return ((4 * abs_mips32(p0 - q0) + abs_mips32(p1 - q1)) <= t); +} + +static WEBP_INLINE int needs_filter2(const uint8_t* p, + int step, int t, int it) { + const int p3 = p[-4 * step], p2 = p[-3 * step]; + const int p1 = p[-2 * step], p0 = p[-step]; + const int q0 = p[0], q1 = p[step], q2 = p[2 * step], q3 = p[3 * step]; + if ((4 * abs_mips32(p0 - q0) + abs_mips32(p1 - q1)) > t) { + return 0; + } + return abs_mips32(p3 - p2) <= it && abs_mips32(p2 - p1) <= it && + abs_mips32(p1 - p0) <= it && abs_mips32(q3 - q2) <= it && + abs_mips32(q2 - q1) <= it && abs_mips32(q1 - q0) <= it; +} + +static WEBP_INLINE void FilterLoop26(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, int hev_thresh) { + const int thresh2 = 2 * thresh + 1; + while (size-- > 0) { + if (needs_filter2(p, hstride, thresh2, ithresh)) { + if (hev(p, hstride, hev_thresh)) { + do_filter2(p, hstride); + } else { + do_filter6(p, hstride); + } + } + p += vstride; + } +} + +static WEBP_INLINE void FilterLoop24(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, int hev_thresh) { + const int thresh2 = 2 * thresh + 1; + while (size-- > 0) { + if (needs_filter2(p, hstride, thresh2, ithresh)) { + if (hev(p, hstride, hev_thresh)) { + do_filter2(p, hstride); + } else { + do_filter4(p, hstride); + } + } + p += vstride; + } +} + +// on macroblock edges +static void VFilter16(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh); +} + +static void HFilter16(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh); +} + +// 8-pixels wide variant, for chroma filtering +static void VFilter8(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh); +} + +static void HFilter8(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh); +} + +static void VFilter8i(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); +} + +static void HFilter8i(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh); +} + +// on three inner edges +static void VFilter16i(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh); + } +} + +static void HFilter16i(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh); + } +} + +//------------------------------------------------------------------------------ +// Simple In-loop filtering (Paragraph 15.2) + +static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + for (i = 0; i < 16; ++i) { + if (needs_filter(p + i, stride, thresh2)) { + do_filter2(p + i, stride); + } + } +} + +static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + for (i = 0; i < 16; ++i) { + if (needs_filter(p + i * stride, 1, thresh2)) { + do_filter2(p + i * stride, 1); + } + } +} + +static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + SimpleVFilter16(p, stride, thresh); + } +} + +static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + SimpleHFilter16(p, stride, thresh); + } +} + +static void TransformOne(const int16_t* in, uint8_t* dst) { + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14; + int temp15, temp16, temp17, temp18; + int16_t* p_in = (int16_t*)in; + + // loops unrolled and merged to avoid usage of tmp buffer + // and to reduce number of stalls. MUL macro is written + // in assembler and inlined + __asm__ volatile( + "lh %[temp0], 0(%[in]) \n\t" + "lh %[temp8], 16(%[in]) \n\t" + "lh %[temp4], 8(%[in]) \n\t" + "lh %[temp12], 24(%[in]) \n\t" + "addu %[temp16], %[temp0], %[temp8] \n\t" + "subu %[temp0], %[temp0], %[temp8] \n\t" + "mul %[temp8], %[temp4], %[kC2] \n\t" + "mul %[temp17], %[temp12], %[kC1] \n\t" + "mul %[temp4], %[temp4], %[kC1] \n\t" + "mul %[temp12], %[temp12], %[kC2] \n\t" + "lh %[temp1], 2(%[in]) \n\t" + "lh %[temp5], 10(%[in]) \n\t" + "lh %[temp9], 18(%[in]) \n\t" + "lh %[temp13], 26(%[in]) \n\t" + "sra %[temp8], %[temp8], 16 \n\t" + "sra %[temp17], %[temp17], 16 \n\t" + "sra %[temp4], %[temp4], 16 \n\t" + "sra %[temp12], %[temp12], 16 \n\t" + "lh %[temp2], 4(%[in]) \n\t" + "lh %[temp6], 12(%[in]) \n\t" + "lh %[temp10], 20(%[in]) \n\t" + "lh %[temp14], 28(%[in]) \n\t" + "subu %[temp17], %[temp8], %[temp17] \n\t" + "addu %[temp4], %[temp4], %[temp12] \n\t" + "addu %[temp8], %[temp16], %[temp4] \n\t" + "subu %[temp4], %[temp16], %[temp4] \n\t" + "addu %[temp16], %[temp1], %[temp9] \n\t" + "subu %[temp1], %[temp1], %[temp9] \n\t" + "lh %[temp3], 6(%[in]) \n\t" + "lh %[temp7], 14(%[in]) \n\t" + "lh %[temp11], 22(%[in]) \n\t" + "lh %[temp15], 30(%[in]) \n\t" + "addu %[temp12], %[temp0], %[temp17] \n\t" + "subu %[temp0], %[temp0], %[temp17] \n\t" + "mul %[temp9], %[temp5], %[kC2] \n\t" + "mul %[temp17], %[temp13], %[kC1] \n\t" + "mul %[temp5], %[temp5], %[kC1] \n\t" + "mul %[temp13], %[temp13], %[kC2] \n\t" + "sra %[temp9], %[temp9], 16 \n\t" + "sra %[temp17], %[temp17], 16 \n\t" + "subu %[temp17], %[temp9], %[temp17] \n\t" + "sra %[temp5], %[temp5], 16 \n\t" + "sra %[temp13], %[temp13], 16 \n\t" + "addu %[temp5], %[temp5], %[temp13] \n\t" + "addu %[temp13], %[temp1], %[temp17] \n\t" + "subu %[temp1], %[temp1], %[temp17] \n\t" + "mul %[temp17], %[temp14], %[kC1] \n\t" + "mul %[temp14], %[temp14], %[kC2] \n\t" + "addu %[temp9], %[temp16], %[temp5] \n\t" + "subu %[temp5], %[temp16], %[temp5] \n\t" + "addu %[temp16], %[temp2], %[temp10] \n\t" + "subu %[temp2], %[temp2], %[temp10] \n\t" + "mul %[temp10], %[temp6], %[kC2] \n\t" + "mul %[temp6], %[temp6], %[kC1] \n\t" + "sra %[temp17], %[temp17], 16 \n\t" + "sra %[temp14], %[temp14], 16 \n\t" + "sra %[temp10], %[temp10], 16 \n\t" + "sra %[temp6], %[temp6], 16 \n\t" + "subu %[temp17], %[temp10], %[temp17] \n\t" + "addu %[temp6], %[temp6], %[temp14] \n\t" + "addu %[temp10], %[temp16], %[temp6] \n\t" + "subu %[temp6], %[temp16], %[temp6] \n\t" + "addu %[temp14], %[temp2], %[temp17] \n\t" + "subu %[temp2], %[temp2], %[temp17] \n\t" + "mul %[temp17], %[temp15], %[kC1] \n\t" + "mul %[temp15], %[temp15], %[kC2] \n\t" + "addu %[temp16], %[temp3], %[temp11] \n\t" + "subu %[temp3], %[temp3], %[temp11] \n\t" + "mul %[temp11], %[temp7], %[kC2] \n\t" + "mul %[temp7], %[temp7], %[kC1] \n\t" + "addiu %[temp8], %[temp8], 4 \n\t" + "addiu %[temp12], %[temp12], 4 \n\t" + "addiu %[temp0], %[temp0], 4 \n\t" + "addiu %[temp4], %[temp4], 4 \n\t" + "sra %[temp17], %[temp17], 16 \n\t" + "sra %[temp15], %[temp15], 16 \n\t" + "sra %[temp11], %[temp11], 16 \n\t" + "sra %[temp7], %[temp7], 16 \n\t" + "subu %[temp17], %[temp11], %[temp17] \n\t" + "addu %[temp7], %[temp7], %[temp15] \n\t" + "addu %[temp15], %[temp3], %[temp17] \n\t" + "subu %[temp3], %[temp3], %[temp17] \n\t" + "addu %[temp11], %[temp16], %[temp7] \n\t" + "subu %[temp7], %[temp16], %[temp7] \n\t" + "addu %[temp16], %[temp8], %[temp10] \n\t" + "subu %[temp8], %[temp8], %[temp10] \n\t" + "mul %[temp10], %[temp9], %[kC2] \n\t" + "mul %[temp17], %[temp11], %[kC1] \n\t" + "mul %[temp9], %[temp9], %[kC1] \n\t" + "mul %[temp11], %[temp11], %[kC2] \n\t" + "sra %[temp10], %[temp10], 16 \n\t" + "sra %[temp17], %[temp17], 16 \n\t" + "sra %[temp9], %[temp9], 16 \n\t" + "sra %[temp11], %[temp11], 16 \n\t" + "subu %[temp17], %[temp10], %[temp17] \n\t" + "addu %[temp11], %[temp9], %[temp11] \n\t" + "addu %[temp10], %[temp12], %[temp14] \n\t" + "subu %[temp12], %[temp12], %[temp14] \n\t" + "mul %[temp14], %[temp13], %[kC2] \n\t" + "mul %[temp9], %[temp15], %[kC1] \n\t" + "mul %[temp13], %[temp13], %[kC1] \n\t" + "mul %[temp15], %[temp15], %[kC2] \n\t" + "sra %[temp14], %[temp14], 16 \n\t" + "sra %[temp9], %[temp9], 16 \n\t" + "sra %[temp13], %[temp13], 16 \n\t" + "sra %[temp15], %[temp15], 16 \n\t" + "subu %[temp9], %[temp14], %[temp9] \n\t" + "addu %[temp15], %[temp13], %[temp15] \n\t" + "addu %[temp14], %[temp0], %[temp2] \n\t" + "subu %[temp0], %[temp0], %[temp2] \n\t" + "mul %[temp2], %[temp1], %[kC2] \n\t" + "mul %[temp13], %[temp3], %[kC1] \n\t" + "mul %[temp1], %[temp1], %[kC1] \n\t" + "mul %[temp3], %[temp3], %[kC2] \n\t" + "sra %[temp2], %[temp2], 16 \n\t" + "sra %[temp13], %[temp13], 16 \n\t" + "sra %[temp1], %[temp1], 16 \n\t" + "sra %[temp3], %[temp3], 16 \n\t" + "subu %[temp13], %[temp2], %[temp13] \n\t" + "addu %[temp3], %[temp1], %[temp3] \n\t" + "addu %[temp2], %[temp4], %[temp6] \n\t" + "subu %[temp4], %[temp4], %[temp6] \n\t" + "mul %[temp6], %[temp5], %[kC2] \n\t" + "mul %[temp1], %[temp7], %[kC1] \n\t" + "mul %[temp5], %[temp5], %[kC1] \n\t" + "mul %[temp7], %[temp7], %[kC2] \n\t" + "sra %[temp6], %[temp6], 16 \n\t" + "sra %[temp1], %[temp1], 16 \n\t" + "sra %[temp5], %[temp5], 16 \n\t" + "sra %[temp7], %[temp7], 16 \n\t" + "subu %[temp1], %[temp6], %[temp1] \n\t" + "addu %[temp7], %[temp5], %[temp7] \n\t" + "addu %[temp5], %[temp16], %[temp11] \n\t" + "subu %[temp16], %[temp16], %[temp11] \n\t" + "addu %[temp11], %[temp8], %[temp17] \n\t" + "subu %[temp8], %[temp8], %[temp17] \n\t" + "sra %[temp5], %[temp5], 3 \n\t" + "sra %[temp16], %[temp16], 3 \n\t" + "sra %[temp11], %[temp11], 3 \n\t" + "sra %[temp8], %[temp8], 3 \n\t" + "addu %[temp17], %[temp10], %[temp15] \n\t" + "subu %[temp10], %[temp10], %[temp15] \n\t" + "addu %[temp15], %[temp12], %[temp9] \n\t" + "subu %[temp12], %[temp12], %[temp9] \n\t" + "sra %[temp17], %[temp17], 3 \n\t" + "sra %[temp10], %[temp10], 3 \n\t" + "sra %[temp15], %[temp15], 3 \n\t" + "sra %[temp12], %[temp12], 3 \n\t" + "addu %[temp9], %[temp14], %[temp3] \n\t" + "subu %[temp14], %[temp14], %[temp3] \n\t" + "addu %[temp3], %[temp0], %[temp13] \n\t" + "subu %[temp0], %[temp0], %[temp13] \n\t" + "sra %[temp9], %[temp9], 3 \n\t" + "sra %[temp14], %[temp14], 3 \n\t" + "sra %[temp3], %[temp3], 3 \n\t" + "sra %[temp0], %[temp0], 3 \n\t" + "addu %[temp13], %[temp2], %[temp7] \n\t" + "subu %[temp2], %[temp2], %[temp7] \n\t" + "addu %[temp7], %[temp4], %[temp1] \n\t" + "subu %[temp4], %[temp4], %[temp1] \n\t" + "sra %[temp13], %[temp13], 3 \n\t" + "sra %[temp2], %[temp2], 3 \n\t" + "sra %[temp7], %[temp7], 3 \n\t" + "sra %[temp4], %[temp4], 3 \n\t" + "addiu %[temp6], $zero, 255 \n\t" + "lbu %[temp1], 0+0*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp1], %[temp1], %[temp5] \n\t" + "sra %[temp5], %[temp1], 8 \n\t" + "sra %[temp18], %[temp1], 31 \n\t" + "beqz %[temp5], 1f \n\t" + "xor %[temp1], %[temp1], %[temp1] \n\t" + "movz %[temp1], %[temp6], %[temp18] \n\t" + "1: \n\t" + "lbu %[temp18], 1+0*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp1], 0+0*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp18], %[temp18], %[temp11] \n\t" + "sra %[temp11], %[temp18], 8 \n\t" + "sra %[temp1], %[temp18], 31 \n\t" + "beqz %[temp11], 2f \n\t" + "xor %[temp18], %[temp18], %[temp18] \n\t" + "movz %[temp18], %[temp6], %[temp1] \n\t" + "2: \n\t" + "lbu %[temp1], 2+0*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp18], 1+0*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp1], %[temp1], %[temp8] \n\t" + "sra %[temp8], %[temp1], 8 \n\t" + "sra %[temp18], %[temp1], 31 \n\t" + "beqz %[temp8], 3f \n\t" + "xor %[temp1], %[temp1], %[temp1] \n\t" + "movz %[temp1], %[temp6], %[temp18] \n\t" + "3: \n\t" + "lbu %[temp18], 3+0*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp1], 2+0*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp18], %[temp18], %[temp16] \n\t" + "sra %[temp16], %[temp18], 8 \n\t" + "sra %[temp1], %[temp18], 31 \n\t" + "beqz %[temp16], 4f \n\t" + "xor %[temp18], %[temp18], %[temp18] \n\t" + "movz %[temp18], %[temp6], %[temp1] \n\t" + "4: \n\t" + "sb %[temp18], 3+0*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp5], 0+1*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp8], 1+1*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp11], 2+1*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp16], 3+1*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp5], %[temp5], %[temp17] \n\t" + "addu %[temp8], %[temp8], %[temp15] \n\t" + "addu %[temp11], %[temp11], %[temp12] \n\t" + "addu %[temp16], %[temp16], %[temp10] \n\t" + "sra %[temp18], %[temp5], 8 \n\t" + "sra %[temp1], %[temp5], 31 \n\t" + "beqz %[temp18], 5f \n\t" + "xor %[temp5], %[temp5], %[temp5] \n\t" + "movz %[temp5], %[temp6], %[temp1] \n\t" + "5: \n\t" + "sra %[temp18], %[temp8], 8 \n\t" + "sra %[temp1], %[temp8], 31 \n\t" + "beqz %[temp18], 6f \n\t" + "xor %[temp8], %[temp8], %[temp8] \n\t" + "movz %[temp8], %[temp6], %[temp1] \n\t" + "6: \n\t" + "sra %[temp18], %[temp11], 8 \n\t" + "sra %[temp1], %[temp11], 31 \n\t" + "sra %[temp17], %[temp16], 8 \n\t" + "sra %[temp15], %[temp16], 31 \n\t" + "beqz %[temp18], 7f \n\t" + "xor %[temp11], %[temp11], %[temp11] \n\t" + "movz %[temp11], %[temp6], %[temp1] \n\t" + "7: \n\t" + "beqz %[temp17], 8f \n\t" + "xor %[temp16], %[temp16], %[temp16] \n\t" + "movz %[temp16], %[temp6], %[temp15] \n\t" + "8: \n\t" + "sb %[temp5], 0+1*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp8], 1+1*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp11], 2+1*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp16], 3+1*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp5], 0+2*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp8], 1+2*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp11], 2+2*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp16], 3+2*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp5], %[temp5], %[temp9] \n\t" + "addu %[temp8], %[temp8], %[temp3] \n\t" + "addu %[temp11], %[temp11], %[temp0] \n\t" + "addu %[temp16], %[temp16], %[temp14] \n\t" + "sra %[temp18], %[temp5], 8 \n\t" + "sra %[temp1], %[temp5], 31 \n\t" + "sra %[temp17], %[temp8], 8 \n\t" + "sra %[temp15], %[temp8], 31 \n\t" + "sra %[temp12], %[temp11], 8 \n\t" + "sra %[temp10], %[temp11], 31 \n\t" + "sra %[temp9], %[temp16], 8 \n\t" + "sra %[temp3], %[temp16], 31 \n\t" + "beqz %[temp18], 9f \n\t" + "xor %[temp5], %[temp5], %[temp5] \n\t" + "movz %[temp5], %[temp6], %[temp1] \n\t" + "9: \n\t" + "beqz %[temp17], 10f \n\t" + "xor %[temp8], %[temp8], %[temp8] \n\t" + "movz %[temp8], %[temp6], %[temp15] \n\t" + "10: \n\t" + "beqz %[temp12], 11f \n\t" + "xor %[temp11], %[temp11], %[temp11] \n\t" + "movz %[temp11], %[temp6], %[temp10] \n\t" + "11: \n\t" + "beqz %[temp9], 12f \n\t" + "xor %[temp16], %[temp16], %[temp16] \n\t" + "movz %[temp16], %[temp6], %[temp3] \n\t" + "12: \n\t" + "sb %[temp5], 0+2*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp8], 1+2*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp11], 2+2*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp16], 3+2*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp5], 0+3*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp8], 1+3*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp11], 2+3*" XSTR(BPS) "(%[dst]) \n\t" + "lbu %[temp16], 3+3*" XSTR(BPS) "(%[dst]) \n\t" + "addu %[temp5], %[temp5], %[temp13] \n\t" + "addu %[temp8], %[temp8], %[temp7] \n\t" + "addu %[temp11], %[temp11], %[temp4] \n\t" + "addu %[temp16], %[temp16], %[temp2] \n\t" + "sra %[temp18], %[temp5], 8 \n\t" + "sra %[temp1], %[temp5], 31 \n\t" + "sra %[temp17], %[temp8], 8 \n\t" + "sra %[temp15], %[temp8], 31 \n\t" + "sra %[temp12], %[temp11], 8 \n\t" + "sra %[temp10], %[temp11], 31 \n\t" + "sra %[temp9], %[temp16], 8 \n\t" + "sra %[temp3], %[temp16], 31 \n\t" + "beqz %[temp18], 13f \n\t" + "xor %[temp5], %[temp5], %[temp5] \n\t" + "movz %[temp5], %[temp6], %[temp1] \n\t" + "13: \n\t" + "beqz %[temp17], 14f \n\t" + "xor %[temp8], %[temp8], %[temp8] \n\t" + "movz %[temp8], %[temp6], %[temp15] \n\t" + "14: \n\t" + "beqz %[temp12], 15f \n\t" + "xor %[temp11], %[temp11], %[temp11] \n\t" + "movz %[temp11], %[temp6], %[temp10] \n\t" + "15: \n\t" + "beqz %[temp9], 16f \n\t" + "xor %[temp16], %[temp16], %[temp16] \n\t" + "movz %[temp16], %[temp6], %[temp3] \n\t" + "16: \n\t" + "sb %[temp5], 0+3*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp8], 1+3*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp11], 2+3*" XSTR(BPS) "(%[dst]) \n\t" + "sb %[temp16], 3+3*" XSTR(BPS) "(%[dst]) \n\t" + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), [temp11]"=&r"(temp11), + [temp12]"=&r"(temp12), [temp13]"=&r"(temp13), [temp14]"=&r"(temp14), + [temp15]"=&r"(temp15), [temp16]"=&r"(temp16), [temp17]"=&r"(temp17), + [temp18]"=&r"(temp18) + : [in]"r"(p_in), [kC1]"r"(kC1), [kC2]"r"(kC2), [dst]"r"(dst) + : "memory", "hi", "lo" + ); +} + +static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) { + TransformOne(in, dst); + if (do_two) { + TransformOne(in + 16, dst + 4); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitMIPS32(void) { + VP8InitClipTables(); + + VP8Transform = TransformTwo; + + VP8VFilter16 = VFilter16; + VP8HFilter16 = HFilter16; + VP8VFilter8 = VFilter8; + VP8HFilter8 = HFilter8; + VP8VFilter16i = VFilter16i; + VP8HFilter16i = HFilter16i; + VP8VFilter8i = VFilter8i; + VP8HFilter8i = HFilter8i; + + VP8SimpleVFilter16 = SimpleVFilter16; + VP8SimpleHFilter16 = SimpleHFilter16; + VP8SimpleVFilter16i = SimpleVFilter16i; + VP8SimpleHFilter16i = SimpleHFilter16i; +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(VP8DspInitMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/dec_mips_dsp_r2.c b/media/libwebp/src/dsp/dec_mips_dsp_r2.c new file mode 100644 index 0000000000..b0936bc46e --- /dev/null +++ b/media/libwebp/src/dsp/dec_mips_dsp_r2.c @@ -0,0 +1,994 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of dsp functions +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/mips_macro.h" + +static const int kC1 = 20091 + (1 << 16); +static const int kC2 = 35468; + +#define MUL(a, b) (((a) * (b)) >> 16) + +static void TransformDC(const int16_t* in, uint8_t* dst) { + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9, temp10; + + __asm__ volatile ( + LOAD_WITH_OFFSET_X4(temp1, temp2, temp3, temp4, dst, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + "lh %[temp5], 0(%[in]) \n\t" + "addiu %[temp5], %[temp5], 4 \n\t" + "ins %[temp5], %[temp5], 16, 16 \n\t" + "shra.ph %[temp5], %[temp5], 3 \n\t" + CONVERT_2_BYTES_TO_HALF(temp6, temp7, temp8, temp9, temp10, temp1, temp2, + temp3, temp1, temp2, temp3, temp4) + STORE_SAT_SUM_X2(temp6, temp7, temp8, temp9, temp10, temp1, temp2, temp3, + temp5, temp5, temp5, temp5, temp5, temp5, temp5, temp5, + dst, 0, 1, 2, 3, BPS) + + OUTPUT_EARLY_CLOBBER_REGS_10() + : [in]"r"(in), [dst]"r"(dst) + : "memory" + ); +} + +static void TransformAC3(const int16_t* in, uint8_t* dst) { + const int a = in[0] + 4; + int c4 = MUL(in[4], kC2); + const int d4 = MUL(in[4], kC1); + const int c1 = MUL(in[1], kC2); + const int d1 = MUL(in[1], kC1); + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14, temp15, temp16, temp17, temp18; + + __asm__ volatile ( + "ins %[c4], %[d4], 16, 16 \n\t" + "replv.ph %[temp1], %[a] \n\t" + "replv.ph %[temp4], %[d1] \n\t" + ADD_SUB_HALVES(temp2, temp3, temp1, c4) + "replv.ph %[temp5], %[c1] \n\t" + SHIFT_R_SUM_X2(temp1, temp6, temp7, temp8, temp2, temp9, temp10, temp4, + temp2, temp2, temp3, temp3, temp4, temp5, temp4, temp5) + LOAD_WITH_OFFSET_X4(temp3, temp5, temp11, temp12, dst, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + CONVERT_2_BYTES_TO_HALF(temp13, temp14, temp3, temp15, temp5, temp16, + temp11, temp17, temp3, temp5, temp11, temp12) + PACK_2_HALVES_TO_WORD(temp12, temp18, temp7, temp6, temp1, temp8, temp2, + temp4, temp7, temp6, temp10, temp9) + STORE_SAT_SUM_X2(temp13, temp14, temp3, temp15, temp5, temp16, temp11, + temp17, temp12, temp18, temp1, temp8, temp2, temp4, + temp7, temp6, dst, 0, 1, 2, 3, BPS) + + OUTPUT_EARLY_CLOBBER_REGS_18(), + [c4]"+&r"(c4) + : [dst]"r"(dst), [a]"r"(a), [d1]"r"(d1), [d4]"r"(d4), [c1]"r"(c1) + : "memory" + ); +} + +static void TransformOne(const int16_t* in, uint8_t* dst) { + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14, temp15, temp16, temp17, temp18; + + __asm__ volatile ( + "ulw %[temp1], 0(%[in]) \n\t" + "ulw %[temp2], 16(%[in]) \n\t" + LOAD_IN_X2(temp5, temp6, 24, 26) + ADD_SUB_HALVES(temp3, temp4, temp1, temp2) + LOAD_IN_X2(temp1, temp2, 8, 10) + MUL_SHIFT_SUM(temp7, temp8, temp9, temp10, temp11, temp12, temp13, temp14, + temp10, temp8, temp9, temp7, temp1, temp2, temp5, temp6, + temp13, temp11, temp14, temp12) + INSERT_HALF_X2(temp8, temp7, temp10, temp9) + "ulw %[temp17], 4(%[in]) \n\t" + "ulw %[temp18], 20(%[in]) \n\t" + ADD_SUB_HALVES(temp1, temp2, temp3, temp8) + ADD_SUB_HALVES(temp5, temp6, temp4, temp7) + ADD_SUB_HALVES(temp7, temp8, temp17, temp18) + LOAD_IN_X2(temp17, temp18, 12, 14) + LOAD_IN_X2(temp9, temp10, 28, 30) + MUL_SHIFT_SUM(temp11, temp12, temp13, temp14, temp15, temp16, temp4, temp17, + temp12, temp14, temp11, temp13, temp17, temp18, temp9, temp10, + temp15, temp4, temp16, temp17) + INSERT_HALF_X2(temp11, temp12, temp13, temp14) + ADD_SUB_HALVES(temp17, temp8, temp8, temp11) + ADD_SUB_HALVES(temp3, temp4, temp7, temp12) + + // horizontal + SRA_16(temp9, temp10, temp11, temp12, temp1, temp2, temp5, temp6) + INSERT_HALF_X2(temp1, temp6, temp5, temp2) + SRA_16(temp13, temp14, temp15, temp16, temp3, temp4, temp17, temp8) + "repl.ph %[temp2], 0x4 \n\t" + INSERT_HALF_X2(temp3, temp8, temp17, temp4) + "addq.ph %[temp1], %[temp1], %[temp2] \n\t" + "addq.ph %[temp6], %[temp6], %[temp2] \n\t" + ADD_SUB_HALVES(temp2, temp4, temp1, temp3) + ADD_SUB_HALVES(temp5, temp7, temp6, temp8) + MUL_SHIFT_SUM(temp1, temp3, temp6, temp8, temp9, temp13, temp17, temp18, + temp3, temp13, temp1, temp9, temp9, temp13, temp11, temp15, + temp6, temp17, temp8, temp18) + MUL_SHIFT_SUM(temp6, temp8, temp18, temp17, temp11, temp15, temp12, temp16, + temp8, temp15, temp6, temp11, temp12, temp16, temp10, temp14, + temp18, temp12, temp17, temp16) + INSERT_HALF_X2(temp1, temp3, temp9, temp13) + INSERT_HALF_X2(temp6, temp8, temp11, temp15) + SHIFT_R_SUM_X2(temp9, temp10, temp11, temp12, temp13, temp14, temp15, + temp16, temp2, temp4, temp5, temp7, temp3, temp1, temp8, + temp6) + PACK_2_HALVES_TO_WORD(temp1, temp2, temp3, temp4, temp9, temp12, temp13, + temp16, temp11, temp10, temp15, temp14) + LOAD_WITH_OFFSET_X4(temp10, temp11, temp14, temp15, dst, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + CONVERT_2_BYTES_TO_HALF(temp5, temp6, temp7, temp8, temp17, temp18, temp10, + temp11, temp10, temp11, temp14, temp15) + STORE_SAT_SUM_X2(temp5, temp6, temp7, temp8, temp17, temp18, temp10, temp11, + temp9, temp12, temp1, temp2, temp13, temp16, temp3, temp4, + dst, 0, 1, 2, 3, BPS) + + OUTPUT_EARLY_CLOBBER_REGS_18() + : [dst]"r"(dst), [in]"r"(in), [kC1]"r"(kC1), [kC2]"r"(kC2) + : "memory", "hi", "lo" + ); +} + +static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) { + TransformOne(in, dst); + if (do_two) { + TransformOne(in + 16, dst + 4); + } +} + +static WEBP_INLINE void FilterLoop26(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, int hev_thresh) { + const int thresh2 = 2 * thresh + 1; + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14, temp15; + + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "1: \n\t" + "negu %[temp1], %[hstride] \n\t" + "addiu %[size], %[size], -1 \n\t" + "sll %[temp2], %[hstride], 1 \n\t" + "sll %[temp3], %[temp1], 1 \n\t" + "addu %[temp4], %[temp2], %[hstride] \n\t" + "addu %[temp5], %[temp3], %[temp1] \n\t" + "lbu %[temp7], 0(%[p]) \n\t" + "sll %[temp6], %[temp3], 1 \n\t" + "lbux %[temp8], %[temp5](%[p]) \n\t" + "lbux %[temp9], %[temp3](%[p]) \n\t" + "lbux %[temp10], %[temp1](%[p]) \n\t" + "lbux %[temp11], %[temp6](%[p]) \n\t" + "lbux %[temp12], %[hstride](%[p]) \n\t" + "lbux %[temp13], %[temp2](%[p]) \n\t" + "lbux %[temp14], %[temp4](%[p]) \n\t" + "subu %[temp1], %[temp10], %[temp7] \n\t" + "subu %[temp2], %[temp9], %[temp12] \n\t" + "absq_s.w %[temp3], %[temp1] \n\t" + "absq_s.w %[temp4], %[temp2] \n\t" + "negu %[temp1], %[temp1] \n\t" + "sll %[temp3], %[temp3], 2 \n\t" + "addu %[temp15], %[temp3], %[temp4] \n\t" + "subu %[temp3], %[temp15], %[thresh2] \n\t" + "sll %[temp6], %[temp1], 1 \n\t" + "bgtz %[temp3], 3f \n\t" + " subu %[temp4], %[temp11], %[temp8] \n\t" + "absq_s.w %[temp4], %[temp4] \n\t" + "shll_s.w %[temp2], %[temp2], 24 \n\t" + "subu %[temp4], %[temp4], %[ithresh] \n\t" + "bgtz %[temp4], 3f \n\t" + " subu %[temp3], %[temp8], %[temp9] \n\t" + "absq_s.w %[temp3], %[temp3] \n\t" + "subu %[temp3], %[temp3], %[ithresh] \n\t" + "bgtz %[temp3], 3f \n\t" + " subu %[temp5], %[temp9], %[temp10] \n\t" + "absq_s.w %[temp3], %[temp5] \n\t" + "absq_s.w %[temp5], %[temp5] \n\t" + "subu %[temp3], %[temp3], %[ithresh] \n\t" + "bgtz %[temp3], 3f \n\t" + " subu %[temp3], %[temp14], %[temp13] \n\t" + "absq_s.w %[temp3], %[temp3] \n\t" + "slt %[temp5], %[hev_thresh], %[temp5] \n\t" + "subu %[temp3], %[temp3], %[ithresh] \n\t" + "bgtz %[temp3], 3f \n\t" + " subu %[temp3], %[temp13], %[temp12] \n\t" + "absq_s.w %[temp3], %[temp3] \n\t" + "sra %[temp4], %[temp2], 24 \n\t" + "subu %[temp3], %[temp3], %[ithresh] \n\t" + "bgtz %[temp3], 3f \n\t" + " subu %[temp15], %[temp12], %[temp7] \n\t" + "absq_s.w %[temp3], %[temp15] \n\t" + "absq_s.w %[temp15], %[temp15] \n\t" + "subu %[temp3], %[temp3], %[ithresh] \n\t" + "bgtz %[temp3], 3f \n\t" + " slt %[temp15], %[hev_thresh], %[temp15] \n\t" + "addu %[temp3], %[temp6], %[temp1] \n\t" + "or %[temp2], %[temp5], %[temp15] \n\t" + "addu %[temp5], %[temp4], %[temp3] \n\t" + "beqz %[temp2], 4f \n\t" + " shra_r.w %[temp1], %[temp5], 3 \n\t" + "addiu %[temp2], %[temp5], 3 \n\t" + "sra %[temp2], %[temp2], 3 \n\t" + "shll_s.w %[temp1], %[temp1], 27 \n\t" + "shll_s.w %[temp2], %[temp2], 27 \n\t" + "subu %[temp3], %[p], %[hstride] \n\t" + "sra %[temp1], %[temp1], 27 \n\t" + "sra %[temp2], %[temp2], 27 \n\t" + "subu %[temp1], %[temp7], %[temp1] \n\t" + "addu %[temp2], %[temp10], %[temp2] \n\t" + "lbux %[temp2], %[temp2](%[VP8kclip1]) \n\t" + "lbux %[temp1], %[temp1](%[VP8kclip1]) \n\t" + "sb %[temp2], 0(%[temp3]) \n\t" + "j 3f \n\t" + " sb %[temp1], 0(%[p]) \n\t" + "4: \n\t" + "shll_s.w %[temp5], %[temp5], 24 \n\t" + "subu %[temp14], %[p], %[hstride] \n\t" + "subu %[temp11], %[temp14], %[hstride] \n\t" + "sra %[temp6], %[temp5], 24 \n\t" + "sll %[temp1], %[temp6], 3 \n\t" + "subu %[temp15], %[temp11], %[hstride] \n\t" + "addu %[temp2], %[temp6], %[temp1] \n\t" + "sll %[temp3], %[temp2], 1 \n\t" + "addu %[temp4], %[temp3], %[temp2] \n\t" + "addiu %[temp2], %[temp2], 63 \n\t" + "addiu %[temp3], %[temp3], 63 \n\t" + "addiu %[temp4], %[temp4], 63 \n\t" + "sra %[temp2], %[temp2], 7 \n\t" + "sra %[temp3], %[temp3], 7 \n\t" + "sra %[temp4], %[temp4], 7 \n\t" + "addu %[temp1], %[temp8], %[temp2] \n\t" + "addu %[temp5], %[temp9], %[temp3] \n\t" + "addu %[temp6], %[temp10], %[temp4] \n\t" + "subu %[temp8], %[temp7], %[temp4] \n\t" + "subu %[temp7], %[temp12], %[temp3] \n\t" + "addu %[temp10], %[p], %[hstride] \n\t" + "subu %[temp9], %[temp13], %[temp2] \n\t" + "addu %[temp12], %[temp10], %[hstride] \n\t" + "lbux %[temp2], %[temp1](%[VP8kclip1]) \n\t" + "lbux %[temp3], %[temp5](%[VP8kclip1]) \n\t" + "lbux %[temp4], %[temp6](%[VP8kclip1]) \n\t" + "lbux %[temp5], %[temp8](%[VP8kclip1]) \n\t" + "lbux %[temp6], %[temp7](%[VP8kclip1]) \n\t" + "lbux %[temp8], %[temp9](%[VP8kclip1]) \n\t" + "sb %[temp2], 0(%[temp15]) \n\t" + "sb %[temp3], 0(%[temp11]) \n\t" + "sb %[temp4], 0(%[temp14]) \n\t" + "sb %[temp5], 0(%[p]) \n\t" + "sb %[temp6], 0(%[temp10]) \n\t" + "sb %[temp8], 0(%[temp12]) \n\t" + "3: \n\t" + "bgtz %[size], 1b \n\t" + " addu %[p], %[p], %[vstride] \n\t" + ".set pop \n\t" + : [temp1]"=&r"(temp1), [temp2]"=&r"(temp2),[temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), + [temp7]"=&r"(temp7),[temp8]"=&r"(temp8),[temp9]"=&r"(temp9), + [temp10]"=&r"(temp10),[temp11]"=&r"(temp11),[temp12]"=&r"(temp12), + [temp13]"=&r"(temp13),[temp14]"=&r"(temp14),[temp15]"=&r"(temp15), + [size]"+&r"(size), [p]"+&r"(p) + : [hstride]"r"(hstride), [thresh2]"r"(thresh2), + [ithresh]"r"(ithresh),[vstride]"r"(vstride), [hev_thresh]"r"(hev_thresh), + [VP8kclip1]"r"(VP8kclip1) + : "memory" + ); +} + +static WEBP_INLINE void FilterLoop24(uint8_t* p, + int hstride, int vstride, int size, + int thresh, int ithresh, int hev_thresh) { + int p0, q0, p1, q1, p2, q2, p3, q3; + int step1, step2, temp1, temp2, temp3, temp4; + uint8_t* pTemp0; + uint8_t* pTemp1; + const int thresh2 = 2 * thresh + 1; + + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "bltz %[size], 3f \n\t" + " nop \n\t" + "2: \n\t" + "negu %[step1], %[hstride] \n\t" + "lbu %[q0], 0(%[p]) \n\t" + "lbux %[p0], %[step1](%[p]) \n\t" + "subu %[step1], %[step1], %[hstride] \n\t" + "lbux %[q1], %[hstride](%[p]) \n\t" + "subu %[temp1], %[p0], %[q0] \n\t" + "lbux %[p1], %[step1](%[p]) \n\t" + "addu %[step2], %[hstride], %[hstride] \n\t" + "absq_s.w %[temp2], %[temp1] \n\t" + "subu %[temp3], %[p1], %[q1] \n\t" + "absq_s.w %[temp4], %[temp3] \n\t" + "sll %[temp2], %[temp2], 2 \n\t" + "addu %[temp2], %[temp2], %[temp4] \n\t" + "subu %[temp4], %[temp2], %[thresh2] \n\t" + "subu %[step1], %[step1], %[hstride] \n\t" + "bgtz %[temp4], 0f \n\t" + " lbux %[p2], %[step1](%[p]) \n\t" + "subu %[step1], %[step1], %[hstride] \n\t" + "lbux %[q2], %[step2](%[p]) \n\t" + "lbux %[p3], %[step1](%[p]) \n\t" + "subu %[temp4], %[p2], %[p1] \n\t" + "addu %[step2], %[step2], %[hstride] \n\t" + "subu %[temp2], %[p3], %[p2] \n\t" + "absq_s.w %[temp4], %[temp4] \n\t" + "absq_s.w %[temp2], %[temp2] \n\t" + "lbux %[q3], %[step2](%[p]) \n\t" + "subu %[temp4], %[temp4], %[ithresh] \n\t" + "negu %[temp1], %[temp1] \n\t" + "bgtz %[temp4], 0f \n\t" + " subu %[temp2], %[temp2], %[ithresh] \n\t" + "subu %[p3], %[p1], %[p0] \n\t" + "bgtz %[temp2], 0f \n\t" + " absq_s.w %[p3], %[p3] \n\t" + "subu %[temp4], %[q3], %[q2] \n\t" + "subu %[pTemp0], %[p], %[hstride] \n\t" + "absq_s.w %[temp4], %[temp4] \n\t" + "subu %[temp2], %[p3], %[ithresh] \n\t" + "sll %[step1], %[temp1], 1 \n\t" + "bgtz %[temp2], 0f \n\t" + " subu %[temp4], %[temp4], %[ithresh] \n\t" + "subu %[temp2], %[q2], %[q1] \n\t" + "bgtz %[temp4], 0f \n\t" + " absq_s.w %[temp2], %[temp2] \n\t" + "subu %[q3], %[q1], %[q0] \n\t" + "absq_s.w %[q3], %[q3] \n\t" + "subu %[temp2], %[temp2], %[ithresh] \n\t" + "addu %[temp1], %[temp1], %[step1] \n\t" + "bgtz %[temp2], 0f \n\t" + " subu %[temp4], %[q3], %[ithresh] \n\t" + "slt %[p3], %[hev_thresh], %[p3] \n\t" + "bgtz %[temp4], 0f \n\t" + " slt %[q3], %[hev_thresh], %[q3] \n\t" + "or %[q3], %[q3], %[p3] \n\t" + "bgtz %[q3], 1f \n\t" + " shra_r.w %[temp2], %[temp1], 3 \n\t" + "addiu %[temp1], %[temp1], 3 \n\t" + "sra %[temp1], %[temp1], 3 \n\t" + "shll_s.w %[temp2], %[temp2], 27 \n\t" + "shll_s.w %[temp1], %[temp1], 27 \n\t" + "addu %[pTemp1], %[p], %[hstride] \n\t" + "sra %[temp2], %[temp2], 27 \n\t" + "sra %[temp1], %[temp1], 27 \n\t" + "addiu %[step1], %[temp2], 1 \n\t" + "sra %[step1], %[step1], 1 \n\t" + "addu %[p0], %[p0], %[temp1] \n\t" + "addu %[p1], %[p1], %[step1] \n\t" + "subu %[q0], %[q0], %[temp2] \n\t" + "subu %[q1], %[q1], %[step1] \n\t" + "lbux %[temp2], %[p0](%[VP8kclip1]) \n\t" + "lbux %[temp3], %[q0](%[VP8kclip1]) \n\t" + "lbux %[temp4], %[q1](%[VP8kclip1]) \n\t" + "sb %[temp2], 0(%[pTemp0]) \n\t" + "lbux %[temp1], %[p1](%[VP8kclip1]) \n\t" + "subu %[pTemp0], %[pTemp0], %[hstride] \n\t" + "sb %[temp3], 0(%[p]) \n\t" + "sb %[temp4], 0(%[pTemp1]) \n\t" + "j 0f \n\t" + " sb %[temp1], 0(%[pTemp0]) \n\t" + "1: \n\t" + "shll_s.w %[temp3], %[temp3], 24 \n\t" + "sra %[temp3], %[temp3], 24 \n\t" + "addu %[temp1], %[temp1], %[temp3] \n\t" + "shra_r.w %[temp2], %[temp1], 3 \n\t" + "addiu %[temp1], %[temp1], 3 \n\t" + "shll_s.w %[temp2], %[temp2], 27 \n\t" + "sra %[temp1], %[temp1], 3 \n\t" + "shll_s.w %[temp1], %[temp1], 27 \n\t" + "sra %[temp2], %[temp2], 27 \n\t" + "sra %[temp1], %[temp1], 27 \n\t" + "addu %[p0], %[p0], %[temp1] \n\t" + "subu %[q0], %[q0], %[temp2] \n\t" + "lbux %[temp1], %[p0](%[VP8kclip1]) \n\t" + "lbux %[temp2], %[q0](%[VP8kclip1]) \n\t" + "sb %[temp2], 0(%[p]) \n\t" + "sb %[temp1], 0(%[pTemp0]) \n\t" + "0: \n\t" + "subu %[size], %[size], 1 \n\t" + "bgtz %[size], 2b \n\t" + " addu %[p], %[p], %[vstride] \n\t" + "3: \n\t" + ".set pop \n\t" + : [p0]"=&r"(p0), [q0]"=&r"(q0), [p1]"=&r"(p1), [q1]"=&r"(q1), + [p2]"=&r"(p2), [q2]"=&r"(q2), [p3]"=&r"(p3), [q3]"=&r"(q3), + [step2]"=&r"(step2), [step1]"=&r"(step1), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), + [pTemp0]"=&r"(pTemp0), [pTemp1]"=&r"(pTemp1), [p]"+&r"(p), + [size]"+&r"(size) + : [vstride]"r"(vstride), [ithresh]"r"(ithresh), + [hev_thresh]"r"(hev_thresh), [hstride]"r"(hstride), + [VP8kclip1]"r"(VP8kclip1), [thresh2]"r"(thresh2) + : "memory" + ); +} + +// on macroblock edges +static void VFilter16(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(p, stride, 1, 16, thresh, ithresh, hev_thresh); +} + +static void HFilter16(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(p, 1, stride, 16, thresh, ithresh, hev_thresh); +} + +// 8-pixels wide variant, for chroma filtering +static void VFilter8(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(u, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop26(v, stride, 1, 8, thresh, ithresh, hev_thresh); +} + +static void HFilter8(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop26(u, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop26(v, 1, stride, 8, thresh, ithresh, hev_thresh); +} + +// on three inner edges +static void VFilter16i(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + FilterLoop24(p, stride, 1, 16, thresh, ithresh, hev_thresh); + } +} + +static void HFilter16i(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + FilterLoop24(p, 1, stride, 16, thresh, ithresh, hev_thresh); + } +} + +static void VFilter8i(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24(u + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); + FilterLoop24(v + 4 * stride, stride, 1, 8, thresh, ithresh, hev_thresh); +} + +static void HFilter8i(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + FilterLoop24(u + 4, 1, stride, 8, thresh, ithresh, hev_thresh); + FilterLoop24(v + 4, 1, stride, 8, thresh, ithresh, hev_thresh); +} + +#undef MUL + +//------------------------------------------------------------------------------ +// Simple In-loop filtering (Paragraph 15.2) + +static void SimpleVFilter16(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + uint8_t* p1 = p - stride; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "li %[i], 16 \n\t" + "0: \n\t" + "negu %[temp4], %[stride] \n\t" + "sll %[temp5], %[temp4], 1 \n\t" + "lbu %[temp2], 0(%[p]) \n\t" + "lbux %[temp3], %[stride](%[p]) \n\t" + "lbux %[temp1], %[temp4](%[p]) \n\t" + "lbux %[temp0], %[temp5](%[p]) \n\t" + "subu %[temp7], %[temp1], %[temp2] \n\t" + "subu %[temp6], %[temp0], %[temp3] \n\t" + "absq_s.w %[temp4], %[temp7] \n\t" + "absq_s.w %[temp5], %[temp6] \n\t" + "sll %[temp4], %[temp4], 2 \n\t" + "subu %[temp5], %[temp5], %[thresh2] \n\t" + "addu %[temp5], %[temp4], %[temp5] \n\t" + "negu %[temp8], %[temp7] \n\t" + "bgtz %[temp5], 1f \n\t" + " addiu %[i], %[i], -1 \n\t" + "sll %[temp4], %[temp8], 1 \n\t" + "shll_s.w %[temp5], %[temp6], 24 \n\t" + "addu %[temp3], %[temp4], %[temp8] \n\t" + "sra %[temp5], %[temp5], 24 \n\t" + "addu %[temp3], %[temp3], %[temp5] \n\t" + "addiu %[temp7], %[temp3], 3 \n\t" + "sra %[temp7], %[temp7], 3 \n\t" + "shra_r.w %[temp8], %[temp3], 3 \n\t" + "shll_s.w %[temp0], %[temp7], 27 \n\t" + "shll_s.w %[temp4], %[temp8], 27 \n\t" + "sra %[temp0], %[temp0], 27 \n\t" + "sra %[temp4], %[temp4], 27 \n\t" + "addu %[temp7], %[temp1], %[temp0] \n\t" + "subu %[temp2], %[temp2], %[temp4] \n\t" + "lbux %[temp3], %[temp7](%[VP8kclip1]) \n\t" + "lbux %[temp4], %[temp2](%[VP8kclip1]) \n\t" + "sb %[temp3], 0(%[p1]) \n\t" + "sb %[temp4], 0(%[p]) \n\t" + "1: \n\t" + "addiu %[p1], %[p1], 1 \n\t" + "bgtz %[i], 0b \n\t" + " addiu %[p], %[p], 1 \n\t" + " .set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [p]"+&r"(p), [i]"=&r"(i), [p1]"+&r"(p1) + : [stride]"r"(stride), [VP8kclip1]"r"(VP8kclip1), [thresh2]"r"(thresh2) + : "memory" + ); +} + +// TEMP0 = SRC[A + A1 * BPS] +// TEMP1 = SRC[B + B1 * BPS] +// TEMP2 = SRC[C + C1 * BPS] +// TEMP3 = SRC[D + D1 * BPS] +#define LOAD_4_BYTES(TEMP0, TEMP1, TEMP2, TEMP3, \ + A, A1, B, B1, C, C1, D, D1, SRC) \ + "lbu %[" #TEMP0 "], " #A "+" #A1 "*" XSTR(BPS) "(%[" #SRC "]) \n\t" \ + "lbu %[" #TEMP1 "], " #B "+" #B1 "*" XSTR(BPS) "(%[" #SRC "]) \n\t" \ + "lbu %[" #TEMP2 "], " #C "+" #C1 "*" XSTR(BPS) "(%[" #SRC "]) \n\t" \ + "lbu %[" #TEMP3 "], " #D "+" #D1 "*" XSTR(BPS) "(%[" #SRC "]) \n\t" \ + +static void SimpleHFilter16(uint8_t* p, int stride, int thresh) { + int i; + const int thresh2 = 2 * thresh + 1; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "li %[i], 16 \n\t" + "0: \n\t" + LOAD_4_BYTES(temp0, temp1, temp2, temp3, -2, 0, -1, 0, 0, 0, 1, 0, p) + "subu %[temp7], %[temp1], %[temp2] \n\t" + "subu %[temp6], %[temp0], %[temp3] \n\t" + "absq_s.w %[temp4], %[temp7] \n\t" + "absq_s.w %[temp5], %[temp6] \n\t" + "sll %[temp4], %[temp4], 2 \n\t" + "addu %[temp5], %[temp4], %[temp5] \n\t" + "subu %[temp5], %[temp5], %[thresh2] \n\t" + "negu %[temp8], %[temp7] \n\t" + "bgtz %[temp5], 1f \n\t" + " addiu %[i], %[i], -1 \n\t" + "sll %[temp4], %[temp8], 1 \n\t" + "shll_s.w %[temp5], %[temp6], 24 \n\t" + "addu %[temp3], %[temp4], %[temp8] \n\t" + "sra %[temp5], %[temp5], 24 \n\t" + "addu %[temp3], %[temp3], %[temp5] \n\t" + "addiu %[temp7], %[temp3], 3 \n\t" + "sra %[temp7], %[temp7], 3 \n\t" + "shra_r.w %[temp8], %[temp3], 3 \n\t" + "shll_s.w %[temp0], %[temp7], 27 \n\t" + "shll_s.w %[temp4], %[temp8], 27 \n\t" + "sra %[temp0], %[temp0], 27 \n\t" + "sra %[temp4], %[temp4], 27 \n\t" + "addu %[temp7], %[temp1], %[temp0] \n\t" + "subu %[temp2], %[temp2], %[temp4] \n\t" + "lbux %[temp3], %[temp7](%[VP8kclip1]) \n\t" + "lbux %[temp4], %[temp2](%[VP8kclip1]) \n\t" + "sb %[temp3], -1(%[p]) \n\t" + "sb %[temp4], 0(%[p]) \n\t" + "1: \n\t" + "bgtz %[i], 0b \n\t" + " addu %[p], %[p], %[stride] \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [p]"+&r"(p), [i]"=&r"(i) + : [stride]"r"(stride), [VP8kclip1]"r"(VP8kclip1), [thresh2]"r"(thresh2) + : "memory" + ); +} + +static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + SimpleVFilter16(p, stride, thresh); + } +} + +static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + SimpleHFilter16(p, stride, thresh); + } +} + +// DST[A * BPS] = TEMP0 +// DST[B + C * BPS] = TEMP1 +#define STORE_8_BYTES(TEMP0, TEMP1, A, B, C, DST) \ + "usw %[" #TEMP0 "], " #A "*" XSTR(BPS) "(%[" #DST "]) \n\t" \ + "usw %[" #TEMP1 "], " #B "+" #C "*" XSTR(BPS) "(%[" #DST "]) \n\t" + +static void VE4(uint8_t* dst) { // vertical + const uint8_t* top = dst - BPS; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; + __asm__ volatile ( + "ulw %[temp0], -1(%[top]) \n\t" + "ulh %[temp1], 3(%[top]) \n\t" + "preceu.ph.qbr %[temp2], %[temp0] \n\t" + "preceu.ph.qbl %[temp3], %[temp0] \n\t" + "preceu.ph.qbr %[temp4], %[temp1] \n\t" + "packrl.ph %[temp5], %[temp3], %[temp2] \n\t" + "packrl.ph %[temp6], %[temp4], %[temp3] \n\t" + "shll.ph %[temp5], %[temp5], 1 \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp2], %[temp5], %[temp2] \n\t" + "addq.ph %[temp6], %[temp6], %[temp4] \n\t" + "addq.ph %[temp2], %[temp2], %[temp3] \n\t" + "addq.ph %[temp6], %[temp6], %[temp3] \n\t" + "shra_r.ph %[temp2], %[temp2], 2 \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "precr.qb.ph %[temp4], %[temp6], %[temp2] \n\t" + STORE_8_BYTES(temp4, temp4, 0, 0, 1, dst) + STORE_8_BYTES(temp4, temp4, 2, 0, 3, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void DC4(uint8_t* dst) { // DC + int temp0, temp1, temp2, temp3, temp4; + __asm__ volatile ( + "ulw %[temp0], -1*" XSTR(BPS) "(%[dst]) \n\t" + LOAD_4_BYTES(temp1, temp2, temp3, temp4, -1, 0, -1, 1, -1, 2, -1, 3, dst) + "ins %[temp1], %[temp2], 8, 8 \n\t" + "ins %[temp1], %[temp3], 16, 8 \n\t" + "ins %[temp1], %[temp4], 24, 8 \n\t" + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "shra_r.w %[temp0], %[temp0], 3 \n\t" + "replv.qb %[temp0], %[temp0] \n\t" + STORE_8_BYTES(temp0, temp0, 0, 0, 1, dst) + STORE_8_BYTES(temp0, temp0, 2, 0, 3, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4) + : [dst]"r"(dst) + : "memory" + ); +} + +static void RD4(uint8_t* dst) { // Down-right + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8; + __asm__ volatile ( + LOAD_4_BYTES(temp0, temp1, temp2, temp3, -1, 0, -1, 1, -1, 2, -1, 3, dst) + "ulw %[temp7], -1-" XSTR(BPS) "(%[dst]) \n\t" + "ins %[temp1], %[temp0], 16, 16 \n\t" + "preceu.ph.qbr %[temp5], %[temp7] \n\t" + "ins %[temp2], %[temp1], 16, 16 \n\t" + "preceu.ph.qbl %[temp4], %[temp7] \n\t" + "ins %[temp3], %[temp2], 16, 16 \n\t" + "shll.ph %[temp2], %[temp2], 1 \n\t" + "addq.ph %[temp3], %[temp3], %[temp1] \n\t" + "packrl.ph %[temp6], %[temp5], %[temp1] \n\t" + "addq.ph %[temp3], %[temp3], %[temp2] \n\t" + "addq.ph %[temp1], %[temp1], %[temp5] \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp1], %[temp1], %[temp6] \n\t" + "packrl.ph %[temp0], %[temp4], %[temp5] \n\t" + "addq.ph %[temp8], %[temp5], %[temp4] \n\t" + "shra_r.ph %[temp3], %[temp3], 2 \n\t" + "shll.ph %[temp0], %[temp0], 1 \n\t" + "shra_r.ph %[temp1], %[temp1], 2 \n\t" + "addq.ph %[temp8], %[temp0], %[temp8] \n\t" + "lbu %[temp5], 3-" XSTR(BPS) "(%[dst]) \n\t" + "precrq.ph.w %[temp7], %[temp7], %[temp7] \n\t" + "shra_r.ph %[temp8], %[temp8], 2 \n\t" + "ins %[temp7], %[temp5], 0, 8 \n\t" + "precr.qb.ph %[temp2], %[temp1], %[temp3] \n\t" + "raddu.w.qb %[temp4], %[temp7] \n\t" + "precr.qb.ph %[temp6], %[temp8], %[temp1] \n\t" + "shra_r.w %[temp4], %[temp4], 2 \n\t" + STORE_8_BYTES(temp2, temp6, 3, 0, 1, dst) + "prepend %[temp2], %[temp8], 8 \n\t" + "prepend %[temp6], %[temp4], 8 \n\t" + STORE_8_BYTES(temp2, temp6, 2, 0, 0, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8) + : [dst]"r"(dst) + : "memory" + ); +} + +// TEMP0 = SRC[A * BPS] +// TEMP1 = SRC[B + C * BPS] +#define LOAD_8_BYTES(TEMP0, TEMP1, A, B, C, SRC) \ + "ulw %[" #TEMP0 "], " #A "*" XSTR(BPS) "(%[" #SRC "]) \n\t" \ + "ulw %[" #TEMP1 "], " #B "+" #C "*" XSTR(BPS) "(%[" #SRC "]) \n\t" + +static void LD4(uint8_t* dst) { // Down-Left + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + __asm__ volatile ( + LOAD_8_BYTES(temp0, temp1, -1, 4, -1, dst) + "preceu.ph.qbl %[temp2], %[temp0] \n\t" + "preceu.ph.qbr %[temp3], %[temp0] \n\t" + "preceu.ph.qbr %[temp4], %[temp1] \n\t" + "preceu.ph.qbl %[temp5], %[temp1] \n\t" + "packrl.ph %[temp6], %[temp2], %[temp3] \n\t" + "packrl.ph %[temp7], %[temp4], %[temp2] \n\t" + "packrl.ph %[temp8], %[temp5], %[temp4] \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp9], %[temp2], %[temp6] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "addq.ph %[temp9], %[temp9], %[temp3] \n\t" + "shll.ph %[temp8], %[temp8], 1 \n\t" + "shra_r.ph %[temp9], %[temp9], 2 \n\t" + "addq.ph %[temp3], %[temp4], %[temp7] \n\t" + "addq.ph %[temp0], %[temp5], %[temp8] \n\t" + "addq.ph %[temp3], %[temp3], %[temp2] \n\t" + "addq.ph %[temp0], %[temp0], %[temp4] \n\t" + "shra_r.ph %[temp3], %[temp3], 2 \n\t" + "shra_r.ph %[temp0], %[temp0], 2 \n\t" + "srl %[temp1], %[temp1], 24 \n\t" + "sll %[temp1], %[temp1], 1 \n\t" + "raddu.w.qb %[temp5], %[temp5] \n\t" + "precr.qb.ph %[temp9], %[temp3], %[temp9] \n\t" + "precr.qb.ph %[temp3], %[temp0], %[temp3] \n\t" + "addu %[temp1], %[temp1], %[temp5] \n\t" + "shra_r.w %[temp1], %[temp1], 2 \n\t" + STORE_8_BYTES(temp9, temp3, 0, 0, 2, dst) + "prepend %[temp9], %[temp0], 8 \n\t" + "prepend %[temp3], %[temp1], 8 \n\t" + STORE_8_BYTES(temp9, temp3, 1, 0, 3, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [dst]"r"(dst) + : "memory" + ); +} + +//------------------------------------------------------------------------------ +// Chroma + +static void DC8uv(uint8_t* dst) { // DC + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + __asm__ volatile ( + LOAD_8_BYTES(temp0, temp1, -1, 4, -1, dst) + LOAD_4_BYTES(temp2, temp3, temp4, temp5, -1, 0, -1, 1, -1, 2, -1, 3, dst) + LOAD_4_BYTES(temp6, temp7, temp8, temp9, -1, 4, -1, 5, -1, 6, -1, 7, dst) + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addu %[temp4], %[temp4], %[temp5] \n\t" + "addu %[temp6], %[temp6], %[temp7] \n\t" + "addu %[temp8], %[temp8], %[temp9] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp4] \n\t" + "addu %[temp6], %[temp6], %[temp8] \n\t" + "addu %[temp0], %[temp0], %[temp2] \n\t" + "addu %[temp0], %[temp0], %[temp6] \n\t" + "shra_r.w %[temp0], %[temp0], 4 \n\t" + "replv.qb %[temp0], %[temp0] \n\t" + STORE_8_BYTES(temp0, temp0, 0, 4, 0, dst) + STORE_8_BYTES(temp0, temp0, 1, 4, 1, dst) + STORE_8_BYTES(temp0, temp0, 2, 4, 2, dst) + STORE_8_BYTES(temp0, temp0, 3, 4, 3, dst) + STORE_8_BYTES(temp0, temp0, 4, 4, 4, dst) + STORE_8_BYTES(temp0, temp0, 5, 4, 5, dst) + STORE_8_BYTES(temp0, temp0, 6, 4, 6, dst) + STORE_8_BYTES(temp0, temp0, 7, 4, 7, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [dst]"r"(dst) + : "memory" + ); +} + +static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples + int temp0, temp1; + __asm__ volatile ( + LOAD_8_BYTES(temp0, temp1, -1, 4, -1, dst) + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "shra_r.w %[temp0], %[temp0], 3 \n\t" + "replv.qb %[temp0], %[temp0] \n\t" + STORE_8_BYTES(temp0, temp0, 0, 4, 0, dst) + STORE_8_BYTES(temp0, temp0, 1, 4, 1, dst) + STORE_8_BYTES(temp0, temp0, 2, 4, 2, dst) + STORE_8_BYTES(temp0, temp0, 3, 4, 3, dst) + STORE_8_BYTES(temp0, temp0, 4, 4, 4, dst) + STORE_8_BYTES(temp0, temp0, 5, 4, 5, dst) + STORE_8_BYTES(temp0, temp0, 6, 4, 6, dst) + STORE_8_BYTES(temp0, temp0, 7, 4, 7, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1) + : [dst]"r"(dst) + : "memory" + ); +} + +static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8; + __asm__ volatile ( + LOAD_4_BYTES(temp2, temp3, temp4, temp5, -1, 0, -1, 1, -1, 2, -1, 3, dst) + LOAD_4_BYTES(temp6, temp7, temp8, temp1, -1, 4, -1, 5, -1, 6, -1, 7, dst) + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addu %[temp4], %[temp4], %[temp5] \n\t" + "addu %[temp6], %[temp6], %[temp7] \n\t" + "addu %[temp8], %[temp8], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp4] \n\t" + "addu %[temp6], %[temp6], %[temp8] \n\t" + "addu %[temp0], %[temp6], %[temp2] \n\t" + "shra_r.w %[temp0], %[temp0], 3 \n\t" + "replv.qb %[temp0], %[temp0] \n\t" + STORE_8_BYTES(temp0, temp0, 0, 4, 0, dst) + STORE_8_BYTES(temp0, temp0, 1, 4, 1, dst) + STORE_8_BYTES(temp0, temp0, 2, 4, 2, dst) + STORE_8_BYTES(temp0, temp0, 3, 4, 3, dst) + STORE_8_BYTES(temp0, temp0, 4, 4, 4, dst) + STORE_8_BYTES(temp0, temp0, 5, 4, 5, dst) + STORE_8_BYTES(temp0, temp0, 6, 4, 6, dst) + STORE_8_BYTES(temp0, temp0, 7, 4, 7, dst) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8) + : [dst]"r"(dst) + : "memory" + ); +} + +#undef LOAD_8_BYTES +#undef STORE_8_BYTES +#undef LOAD_4_BYTES + +#define CLIPPING(SIZE) \ + "preceu.ph.qbl %[temp2], %[temp0] \n\t" \ + "preceu.ph.qbr %[temp0], %[temp0] \n\t" \ +".if " #SIZE " == 8 \n\t" \ + "preceu.ph.qbl %[temp3], %[temp1] \n\t" \ + "preceu.ph.qbr %[temp1], %[temp1] \n\t" \ +".endif \n\t" \ + "addu.ph %[temp2], %[temp2], %[dst_1] \n\t" \ + "addu.ph %[temp0], %[temp0], %[dst_1] \n\t" \ +".if " #SIZE " == 8 \n\t" \ + "addu.ph %[temp3], %[temp3], %[dst_1] \n\t" \ + "addu.ph %[temp1], %[temp1], %[dst_1] \n\t" \ +".endif \n\t" \ + "shll_s.ph %[temp2], %[temp2], 7 \n\t" \ + "shll_s.ph %[temp0], %[temp0], 7 \n\t" \ +".if " #SIZE " == 8 \n\t" \ + "shll_s.ph %[temp3], %[temp3], 7 \n\t" \ + "shll_s.ph %[temp1], %[temp1], 7 \n\t" \ +".endif \n\t" \ + "precrqu_s.qb.ph %[temp0], %[temp2], %[temp0] \n\t" \ +".if " #SIZE " == 8 \n\t" \ + "precrqu_s.qb.ph %[temp1], %[temp3], %[temp1] \n\t" \ +".endif \n\t" + + +#define CLIP_8B_TO_DST(DST, TOP, SIZE) do { \ + int dst_1 = ((int)(DST)[-1] << 16) + (DST)[-1]; \ + int temp0, temp1, temp2, temp3; \ + __asm__ volatile ( \ + ".if " #SIZE " < 8 \n\t" \ + "ulw %[temp0], 0(%[top]) \n\t" \ + "subu.ph %[dst_1], %[dst_1], %[top_1] \n\t" \ + CLIPPING(4) \ + "usw %[temp0], 0(%[dst]) \n\t" \ + ".else \n\t" \ + "ulw %[temp0], 0(%[top]) \n\t" \ + "ulw %[temp1], 4(%[top]) \n\t" \ + "subu.ph %[dst_1], %[dst_1], %[top_1] \n\t" \ + CLIPPING(8) \ + "usw %[temp0], 0(%[dst]) \n\t" \ + "usw %[temp1], 4(%[dst]) \n\t" \ + ".if " #SIZE " == 16 \n\t" \ + "ulw %[temp0], 8(%[top]) \n\t" \ + "ulw %[temp1], 12(%[top]) \n\t" \ + CLIPPING(8) \ + "usw %[temp0], 8(%[dst]) \n\t" \ + "usw %[temp1], 12(%[dst]) \n\t" \ + ".endif \n\t" \ + ".endif \n\t" \ + : [dst_1]"+&r"(dst_1), [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), \ + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3) \ + : [top_1]"r"(top_1), [top]"r"((TOP)), [dst]"r"((DST)) \ + : "memory" \ + ); \ +} while (0) + +#define CLIP_TO_DST(DST, SIZE) do { \ + int y; \ + const uint8_t* top = (DST) - BPS; \ + const int top_1 = ((int)top[-1] << 16) + top[-1]; \ + for (y = 0; y < (SIZE); ++y) { \ + CLIP_8B_TO_DST((DST), top, (SIZE)); \ + (DST) += BPS; \ + } \ +} while (0) + +#define TRUE_MOTION(DST, SIZE) \ +static void TrueMotion##SIZE(uint8_t* (DST)) { \ + CLIP_TO_DST((DST), (SIZE)); \ +} + +TRUE_MOTION(dst, 4) +TRUE_MOTION(dst, 8) +TRUE_MOTION(dst, 16) + +#undef TRUE_MOTION +#undef CLIP_TO_DST +#undef CLIP_8B_TO_DST +#undef CLIPPING + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitMIPSdspR2(void) { + VP8TransformDC = TransformDC; + VP8TransformAC3 = TransformAC3; + VP8Transform = TransformTwo; + + VP8VFilter16 = VFilter16; + VP8HFilter16 = HFilter16; + VP8VFilter8 = VFilter8; + VP8HFilter8 = HFilter8; + VP8VFilter16i = VFilter16i; + VP8HFilter16i = HFilter16i; + VP8VFilter8i = VFilter8i; + VP8HFilter8i = HFilter8i; + VP8SimpleVFilter16 = SimpleVFilter16; + VP8SimpleHFilter16 = SimpleHFilter16; + VP8SimpleVFilter16i = SimpleVFilter16i; + VP8SimpleHFilter16i = SimpleHFilter16i; + + VP8PredLuma4[0] = DC4; + VP8PredLuma4[1] = TrueMotion4; + VP8PredLuma4[2] = VE4; + VP8PredLuma4[4] = RD4; + VP8PredLuma4[6] = LD4; + + VP8PredChroma8[0] = DC8uv; + VP8PredChroma8[1] = TrueMotion8; + VP8PredChroma8[4] = DC8uvNoTop; + VP8PredChroma8[5] = DC8uvNoLeft; + + VP8PredLuma16[1] = TrueMotion16; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8DspInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/dec_msa.c b/media/libwebp/src/dsp/dec_msa.c new file mode 100644 index 0000000000..8090622b7b --- /dev/null +++ b/media/libwebp/src/dsp/dec_msa.c @@ -0,0 +1,1020 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA version of dsp functions +// +// Author(s): Prashant Patil (prashant.patil@imgtec.com) + + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include "src/dsp/msa_macro.h" + +//------------------------------------------------------------------------------ +// Transforms + +#define IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3) { \ + v4i32 a1_m, b1_m, c1_m, d1_m; \ + v4i32 c_tmp1_m, c_tmp2_m, d_tmp1_m, d_tmp2_m; \ + const v4i32 cospi8sqrt2minus1 = __msa_fill_w(20091); \ + const v4i32 sinpi8sqrt2 = __msa_fill_w(35468); \ + \ + a1_m = in0 + in2; \ + b1_m = in0 - in2; \ + c_tmp1_m = (in1 * sinpi8sqrt2) >> 16; \ + c_tmp2_m = in3 + ((in3 * cospi8sqrt2minus1) >> 16); \ + c1_m = c_tmp1_m - c_tmp2_m; \ + d_tmp1_m = in1 + ((in1 * cospi8sqrt2minus1) >> 16); \ + d_tmp2_m = (in3 * sinpi8sqrt2) >> 16; \ + d1_m = d_tmp1_m + d_tmp2_m; \ + BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \ +} +#define MULT1(a) ((((a) * 20091) >> 16) + (a)) +#define MULT2(a) (((a) * 35468) >> 16) + +static void TransformOne(const int16_t* in, uint8_t* dst) { + v8i16 input0, input1; + v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3; + v4i32 res0, res1, res2, res3; + const v16i8 zero = { 0 }; + v16i8 dest0, dest1, dest2, dest3; + + LD_SH2(in, 8, input0, input1); + UNPCK_SH_SW(input0, in0, in1); + UNPCK_SH_SW(input1, in2, in3); + IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3); + TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3); + IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3); + SRARI_W4_SW(vt0, vt1, vt2, vt3, 3); + TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); + LD_SB4(dst, BPS, dest0, dest1, dest2, dest3); + ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3, + res0, res1, res2, res3); + ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, + res0, res1, res2, res3); + ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); + CLIP_SW4_0_255(res0, res1, res2, res3); + PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1); + res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1); + ST4x4_UB(res0, res0, 3, 2, 1, 0, dst, BPS); +} + +static void TransformTwo(const int16_t* in, uint8_t* dst, int do_two) { + TransformOne(in, dst); + if (do_two) { + TransformOne(in + 16, dst + 4); + } +} + +static void TransformWHT(const int16_t* in, int16_t* out) { + v8i16 input0, input1; + const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; + const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; + const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; + const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; + v8i16 tmp0, tmp1, tmp2, tmp3; + v8i16 out0, out1; + + LD_SH2(in, 8, input0, input1); + input1 = SLDI_SH(input1, input1, 8); + tmp0 = input0 + input1; + tmp1 = input0 - input1; + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + out0 = tmp2 + tmp3; + out1 = tmp2 - tmp3; + VSHF_H2_SH(out0, out1, out0, out1, mask2, mask3, input0, input1); + tmp0 = input0 + input1; + tmp1 = input0 - input1; + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + tmp0 = tmp2 + tmp3; + tmp1 = tmp2 - tmp3; + ADDVI_H2_SH(tmp0, 3, tmp1, 3, out0, out1); + SRAI_H2_SH(out0, out1, 3); + out[0] = __msa_copy_s_h(out0, 0); + out[16] = __msa_copy_s_h(out0, 4); + out[32] = __msa_copy_s_h(out1, 0); + out[48] = __msa_copy_s_h(out1, 4); + out[64] = __msa_copy_s_h(out0, 1); + out[80] = __msa_copy_s_h(out0, 5); + out[96] = __msa_copy_s_h(out1, 1); + out[112] = __msa_copy_s_h(out1, 5); + out[128] = __msa_copy_s_h(out0, 2); + out[144] = __msa_copy_s_h(out0, 6); + out[160] = __msa_copy_s_h(out1, 2); + out[176] = __msa_copy_s_h(out1, 6); + out[192] = __msa_copy_s_h(out0, 3); + out[208] = __msa_copy_s_h(out0, 7); + out[224] = __msa_copy_s_h(out1, 3); + out[240] = __msa_copy_s_h(out1, 7); +} + +static void TransformDC(const int16_t* in, uint8_t* dst) { + const int DC = (in[0] + 4) >> 3; + const v8i16 tmp0 = __msa_fill_h(DC); + ADDBLK_ST4x4_UB(tmp0, tmp0, tmp0, tmp0, dst, BPS); +} + +static void TransformAC3(const int16_t* in, uint8_t* dst) { + const int a = in[0] + 4; + const int c4 = MULT2(in[4]); + const int d4 = MULT1(in[4]); + const int in2 = MULT2(in[1]); + const int in3 = MULT1(in[1]); + v4i32 tmp0 = { 0 }; + v4i32 out0 = __msa_fill_w(a + d4); + v4i32 out1 = __msa_fill_w(a + c4); + v4i32 out2 = __msa_fill_w(a - c4); + v4i32 out3 = __msa_fill_w(a - d4); + v4i32 res0, res1, res2, res3; + const v4i32 zero = { 0 }; + v16u8 dest0, dest1, dest2, dest3; + + INSERT_W4_SW(in3, in2, -in2, -in3, tmp0); + ADD4(out0, tmp0, out1, tmp0, out2, tmp0, out3, tmp0, + out0, out1, out2, out3); + SRAI_W4_SW(out0, out1, out2, out3, 3); + LD_UB4(dst, BPS, dest0, dest1, dest2, dest3); + ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3, + res0, res1, res2, res3); + ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, + res0, res1, res2, res3); + ADD4(res0, out0, res1, out1, res2, out2, res3, out3, res0, res1, res2, res3); + CLIP_SW4_0_255(res0, res1, res2, res3); + PCKEV_B2_SW(res0, res1, res2, res3, out0, out1); + res0 = (v4i32)__msa_pckev_b((v16i8)out0, (v16i8)out1); + ST4x4_UB(res0, res0, 3, 2, 1, 0, dst, BPS); +} + +//------------------------------------------------------------------------------ +// Edge filtering functions + +#define FLIP_SIGN2(in0, in1, out0, out1) { \ + out0 = (v16i8)__msa_xori_b(in0, 0x80); \ + out1 = (v16i8)__msa_xori_b(in1, 0x80); \ +} + +#define FLIP_SIGN4(in0, in1, in2, in3, out0, out1, out2, out3) { \ + FLIP_SIGN2(in0, in1, out0, out1); \ + FLIP_SIGN2(in2, in3, out2, out3); \ +} + +#define FILT_VAL(q0_m, p0_m, mask, filt) do { \ + v16i8 q0_sub_p0; \ + q0_sub_p0 = __msa_subs_s_b(q0_m, p0_m); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = __msa_adds_s_b(filt, q0_sub_p0); \ + filt = filt & mask; \ +} while (0) + +#define FILT2(q_m, p_m, q, p) do { \ + u_r = SRAI_H(temp1, 7); \ + u_r = __msa_sat_s_h(u_r, 7); \ + u_l = SRAI_H(temp3, 7); \ + u_l = __msa_sat_s_h(u_l, 7); \ + u = __msa_pckev_b((v16i8)u_l, (v16i8)u_r); \ + q_m = __msa_subs_s_b(q_m, u); \ + p_m = __msa_adds_s_b(p_m, u); \ + q = __msa_xori_b((v16u8)q_m, 0x80); \ + p = __msa_xori_b((v16u8)p_m, 0x80); \ +} while (0) + +#define LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev) do { \ + v16i8 p1_m, p0_m, q0_m, q1_m; \ + v16i8 filt, t1, t2; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + \ + FLIP_SIGN4(p1, p0, q0, q1, p1_m, p0_m, q0_m, q1_m); \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + filt = filt & hev; \ + FILT_VAL(q0_m, p0_m, mask, filt); \ + t1 = __msa_adds_s_b(filt, cnst4b); \ + t1 = SRAI_B(t1, 3); \ + t2 = __msa_adds_s_b(filt, cnst3b); \ + t2 = SRAI_B(t2, 3); \ + q0_m = __msa_subs_s_b(q0_m, t1); \ + q0 = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0_m = __msa_adds_s_b(p0_m, t2); \ + p0 = __msa_xori_b((v16u8)p0_m, 0x80); \ + filt = __msa_srari_b(t1, 1); \ + hev = __msa_xori_b(hev, 0xff); \ + filt = filt & hev; \ + q1_m = __msa_subs_s_b(q1_m, filt); \ + q1 = __msa_xori_b((v16u8)q1_m, 0x80); \ + p1_m = __msa_adds_s_b(p1_m, filt); \ + p1 = __msa_xori_b((v16u8)p1_m, 0x80); \ +} while (0) + +#define LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev) do { \ + v16i8 p2_m, p1_m, p0_m, q2_m, q1_m, q0_m; \ + v16i8 u, filt, t1, t2, filt_sign; \ + v8i16 filt_r, filt_l, u_r, u_l; \ + v8i16 temp0, temp1, temp2, temp3; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + const v8i16 cnst9h = __msa_ldi_h(9); \ + const v8i16 cnst63h = __msa_ldi_h(63); \ + \ + FLIP_SIGN4(p1, p0, q0, q1, p1_m, p0_m, q0_m, q1_m); \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + FILT_VAL(q0_m, p0_m, mask, filt); \ + FLIP_SIGN2(p2, q2, p2_m, q2_m); \ + t2 = filt & hev; \ + /* filt_val &= ~hev */ \ + hev = __msa_xori_b(hev, 0xff); \ + filt = filt & hev; \ + t1 = __msa_adds_s_b(t2, cnst4b); \ + t1 = SRAI_B(t1, 3); \ + t2 = __msa_adds_s_b(t2, cnst3b); \ + t2 = SRAI_B(t2, 3); \ + q0_m = __msa_subs_s_b(q0_m, t1); \ + p0_m = __msa_adds_s_b(p0_m, t2); \ + filt_sign = __msa_clti_s_b(filt, 0); \ + ILVRL_B2_SH(filt_sign, filt, filt_r, filt_l); \ + /* update q2/p2 */ \ + temp0 = filt_r * cnst9h; \ + temp1 = temp0 + cnst63h; \ + temp2 = filt_l * cnst9h; \ + temp3 = temp2 + cnst63h; \ + FILT2(q2_m, p2_m, q2, p2); \ + /* update q1/p1 */ \ + temp1 = temp1 + temp0; \ + temp3 = temp3 + temp2; \ + FILT2(q1_m, p1_m, q1, p1); \ + /* update q0/p0 */ \ + temp1 = temp1 + temp0; \ + temp3 = temp3 + temp2; \ + FILT2(q0_m, p0_m, q0, p0); \ +} while (0) + +#define LPF_MASK_HEV(p3_in, p2_in, p1_in, p0_in, \ + q0_in, q1_in, q2_in, q3_in, \ + limit_in, b_limit_in, thresh_in, \ + hev_out, mask_out) do { \ + v16u8 p3_asub_p2_m, p2_asub_p1_m, p1_asub_p0_m, q1_asub_q0_m; \ + v16u8 p1_asub_q1_m, p0_asub_q0_m, q3_asub_q2_m, q2_asub_q1_m; \ + v16u8 flat_out; \ + \ + /* absolute subtraction of pixel values */ \ + p3_asub_p2_m = __msa_asub_u_b(p3_in, p2_in); \ + p2_asub_p1_m = __msa_asub_u_b(p2_in, p1_in); \ + p1_asub_p0_m = __msa_asub_u_b(p1_in, p0_in); \ + q1_asub_q0_m = __msa_asub_u_b(q1_in, q0_in); \ + q2_asub_q1_m = __msa_asub_u_b(q2_in, q1_in); \ + q3_asub_q2_m = __msa_asub_u_b(q3_in, q2_in); \ + p0_asub_q0_m = __msa_asub_u_b(p0_in, q0_in); \ + p1_asub_q1_m = __msa_asub_u_b(p1_in, q1_in); \ + /* calculation of hev */ \ + flat_out = __msa_max_u_b(p1_asub_p0_m, q1_asub_q0_m); \ + hev_out = (thresh_in < flat_out); \ + /* calculation of mask */ \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p0_asub_q0_m); \ + p1_asub_q1_m = SRAI_B(p1_asub_q1_m, 1); \ + p0_asub_q0_m = __msa_adds_u_b(p0_asub_q0_m, p1_asub_q1_m); \ + mask_out = (b_limit_in < p0_asub_q0_m); \ + mask_out = __msa_max_u_b(flat_out, mask_out); \ + p3_asub_p2_m = __msa_max_u_b(p3_asub_p2_m, p2_asub_p1_m); \ + mask_out = __msa_max_u_b(p3_asub_p2_m, mask_out); \ + q2_asub_q1_m = __msa_max_u_b(q2_asub_q1_m, q3_asub_q2_m); \ + mask_out = __msa_max_u_b(q2_asub_q1_m, mask_out); \ + mask_out = (limit_in < mask_out); \ + mask_out = __msa_xori_b(mask_out, 0xff); \ +} while (0) + +#define ST6x1_UB(in0, in0_idx, in1, in1_idx, pdst, stride) do { \ + const uint16_t tmp0_h = __msa_copy_s_h((v8i16)in1, in1_idx); \ + const uint32_t tmp0_w = __msa_copy_s_w((v4i32)in0, in0_idx); \ + SW(tmp0_w, pdst); \ + SH(tmp0_h, pdst + stride); \ +} while (0) + +#define ST6x4_UB(in0, start_in0_idx, in1, start_in1_idx, pdst, stride) do { \ + uint8_t* ptmp1 = (uint8_t*)pdst; \ + ST6x1_UB(in0, start_in0_idx, in1, start_in1_idx, ptmp1, 4); \ + ptmp1 += stride; \ + ST6x1_UB(in0, start_in0_idx + 1, in1, start_in1_idx + 1, ptmp1, 4); \ + ptmp1 += stride; \ + ST6x1_UB(in0, start_in0_idx + 2, in1, start_in1_idx + 2, ptmp1, 4); \ + ptmp1 += stride; \ + ST6x1_UB(in0, start_in0_idx + 3, in1, start_in1_idx + 3, ptmp1, 4); \ +} while (0) + +#define LPF_SIMPLE_FILT(p1_in, p0_in, q0_in, q1_in, mask) do { \ + v16i8 p1_m, p0_m, q0_m, q1_m, filt, filt1, filt2; \ + const v16i8 cnst4b = __msa_ldi_b(4); \ + const v16i8 cnst3b = __msa_ldi_b(3); \ + \ + FLIP_SIGN4(p1_in, p0_in, q0_in, q1_in, p1_m, p0_m, q0_m, q1_m); \ + filt = __msa_subs_s_b(p1_m, q1_m); \ + FILT_VAL(q0_m, p0_m, mask, filt); \ + filt1 = __msa_adds_s_b(filt, cnst4b); \ + filt1 = SRAI_B(filt1, 3); \ + filt2 = __msa_adds_s_b(filt, cnst3b); \ + filt2 = SRAI_B(filt2, 3); \ + q0_m = __msa_subs_s_b(q0_m, filt1); \ + p0_m = __msa_adds_s_b(p0_m, filt2); \ + q0_in = __msa_xori_b((v16u8)q0_m, 0x80); \ + p0_in = __msa_xori_b((v16u8)p0_m, 0x80); \ +} while (0) + +#define LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask) do { \ + v16u8 p1_a_sub_q1, p0_a_sub_q0; \ + \ + p0_a_sub_q0 = __msa_asub_u_b(p0, q0); \ + p1_a_sub_q1 = __msa_asub_u_b(p1, q1); \ + p1_a_sub_q1 = (v16u8)__msa_srli_b((v16i8)p1_a_sub_q1, 1); \ + p0_a_sub_q0 = __msa_adds_u_b(p0_a_sub_q0, p0_a_sub_q0); \ + mask = __msa_adds_u_b(p0_a_sub_q0, p1_a_sub_q1); \ + mask = (mask <= b_limit); \ +} while (0) + +static void VFilter16(uint8_t* src, int stride, + int b_limit_in, int limit_in, int thresh_in) { + uint8_t* ptemp = src - 4 * stride; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev; + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + + LD_UB8(ptemp, stride, p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + ptemp = src - 3 * stride; + ST_UB4(p2, p1, p0, q0, ptemp, stride); + ptemp += (4 * stride); + ST_UB2(q1, q2, ptemp, stride); +} + +static void HFilter16(uint8_t* src, int stride, + int b_limit_in, int limit_in, int thresh_in) { + uint8_t* ptmp = src - 4; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 mask, hev; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + + LD_UB8(ptmp, stride, row0, row1, row2, row3, row4, row5, row6, row7); + ptmp += (8 * stride); + LD_UB8(ptmp, stride, row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, + row8, row9, row10, row11, row12, row13, row14, row15, + p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4); + ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7); + ILVRL_B2_SH(q2, q1, tmp2, tmp5); + ptmp = src - 3; + ST6x1_UB(tmp3, 0, tmp2, 0, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp3, 1, tmp2, 1, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp3, 2, tmp2, 2, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp3, 3, tmp2, 3, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp4, 0, tmp2, 4, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp4, 1, tmp2, 5, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp4, 2, tmp2, 6, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp4, 3, tmp2, 7, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp6, 0, tmp5, 0, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp6, 1, tmp5, 1, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp6, 2, tmp5, 2, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp6, 3, tmp5, 3, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp7, 0, tmp5, 4, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp7, 1, tmp5, 5, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp7, 2, tmp5, 6, ptmp, 4); + ptmp += stride; + ST6x1_UB(tmp7, 3, tmp5, 7, ptmp, 4); +} + +// on three inner edges +static void VFilterHorEdge16i(uint8_t* src, int stride, + int b_limit, int limit, int thresh) { + v16u8 mask, hev; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + const v16u8 thresh0 = (v16u8)__msa_fill_b(thresh); + const v16u8 b_limit0 = (v16u8)__msa_fill_b(b_limit); + const v16u8 limit0 = (v16u8)__msa_fill_b(limit); + + LD_UB8((src - 4 * stride), stride, p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, + hev, mask); + LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + ST_UB4(p1, p0, q0, q1, (src - 2 * stride), stride); +} + +static void VFilter16i(uint8_t* src_y, int stride, + int b_limit, int limit, int thresh) { + VFilterHorEdge16i(src_y + 4 * stride, stride, b_limit, limit, thresh); + VFilterHorEdge16i(src_y + 8 * stride, stride, b_limit, limit, thresh); + VFilterHorEdge16i(src_y + 12 * stride, stride, b_limit, limit, thresh); +} + +static void HFilterVertEdge16i(uint8_t* src, int stride, + int b_limit, int limit, int thresh) { + v16u8 mask, hev; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7; + v16u8 row8, row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + const v16u8 thresh0 = (v16u8)__msa_fill_b(thresh); + const v16u8 b_limit0 = (v16u8)__msa_fill_b(b_limit); + const v16u8 limit0 = (v16u8)__msa_fill_b(limit); + + LD_UB8(src - 4, stride, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src - 4 + (8 * stride), stride, + row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, + row8, row9, row10, row11, row12, row13, row14, row15, + p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit0, b_limit0, thresh0, + hev, mask); + LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + ILVR_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp2, tmp3); + ILVL_B2_SH(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp4, tmp5); + src -= 2; + ST4x8_UB(tmp2, tmp3, src, stride); + src += (8 * stride); + ST4x8_UB(tmp4, tmp5, src, stride); +} + +static void HFilter16i(uint8_t* src_y, int stride, + int b_limit, int limit, int thresh) { + HFilterVertEdge16i(src_y + 4, stride, b_limit, limit, thresh); + HFilterVertEdge16i(src_y + 8, stride, b_limit, limit, thresh); + HFilterVertEdge16i(src_y + 12, stride, b_limit, limit, thresh); +} + +// 8-pixels wide variants, for chroma filtering +static void VFilter8(uint8_t* src_u, uint8_t* src_v, int stride, + int b_limit_in, int limit_in, int thresh_in) { + uint8_t* ptmp_src_u = src_u - 4 * stride; + uint8_t* ptmp_src_v = src_v - 4 * stride; + uint64_t p2_d, p1_d, p0_d, q0_d, q1_d, q2_d; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev; + v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u; + v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v; + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + + LD_UB8(ptmp_src_u, stride, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u); + LD_UB8(ptmp_src_v, stride, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v); + ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0); + ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + p2_d = __msa_copy_s_d((v2i64)p2, 0); + p1_d = __msa_copy_s_d((v2i64)p1, 0); + p0_d = __msa_copy_s_d((v2i64)p0, 0); + q0_d = __msa_copy_s_d((v2i64)q0, 0); + q1_d = __msa_copy_s_d((v2i64)q1, 0); + q2_d = __msa_copy_s_d((v2i64)q2, 0); + ptmp_src_u += stride; + SD4(p2_d, p1_d, p0_d, q0_d, ptmp_src_u, stride); + ptmp_src_u += (4 * stride); + SD(q1_d, ptmp_src_u); + ptmp_src_u += stride; + SD(q2_d, ptmp_src_u); + p2_d = __msa_copy_s_d((v2i64)p2, 1); + p1_d = __msa_copy_s_d((v2i64)p1, 1); + p0_d = __msa_copy_s_d((v2i64)p0, 1); + q0_d = __msa_copy_s_d((v2i64)q0, 1); + q1_d = __msa_copy_s_d((v2i64)q1, 1); + q2_d = __msa_copy_s_d((v2i64)q2, 1); + ptmp_src_v += stride; + SD4(p2_d, p1_d, p0_d, q0_d, ptmp_src_v, stride); + ptmp_src_v += (4 * stride); + SD(q1_d, ptmp_src_v); + ptmp_src_v += stride; + SD(q2_d, ptmp_src_v); +} + +static void HFilter8(uint8_t* src_u, uint8_t* src_v, int stride, + int b_limit_in, int limit_in, int thresh_in) { + uint8_t* ptmp_src_u = src_u - 4; + uint8_t* ptmp_src_v = src_v - 4; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + + LD_UB8(ptmp_src_u, stride, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(ptmp_src_v, stride, + row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, + row8, row9, row10, row11, row12, row13, row14, row15, + p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_MBFILTER(p2, p1, p0, q0, q1, q2, mask, hev); + ILVR_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp3, tmp4); + ILVL_B2_SH(p1, p2, q0, p0, tmp0, tmp1); + ILVRL_H2_SH(tmp1, tmp0, tmp6, tmp7); + ILVRL_B2_SH(q2, q1, tmp2, tmp5); + ptmp_src_u += 1; + ST6x4_UB(tmp3, 0, tmp2, 0, ptmp_src_u, stride); + ptmp_src_u += 4 * stride; + ST6x4_UB(tmp4, 0, tmp2, 4, ptmp_src_u, stride); + ptmp_src_v += 1; + ST6x4_UB(tmp6, 0, tmp5, 0, ptmp_src_v, stride); + ptmp_src_v += 4 * stride; + ST6x4_UB(tmp7, 0, tmp5, 4, ptmp_src_v, stride); +} + +static void VFilter8i(uint8_t* src_u, uint8_t* src_v, int stride, + int b_limit_in, int limit_in, int thresh_in) { + uint64_t p1_d, p0_d, q0_d, q1_d; + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev; + v16u8 p3_u, p2_u, p1_u, p0_u, q3_u, q2_u, q1_u, q0_u; + v16u8 p3_v, p2_v, p1_v, p0_v, q3_v, q2_v, q1_v, q0_v; + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + + LD_UB8(src_u, stride, p3_u, p2_u, p1_u, p0_u, q0_u, q1_u, q2_u, q3_u); + src_u += (5 * stride); + LD_UB8(src_v, stride, p3_v, p2_v, p1_v, p0_v, q0_v, q1_v, q2_v, q3_v); + src_v += (5 * stride); + ILVR_D4_UB(p3_v, p3_u, p2_v, p2_u, p1_v, p1_u, p0_v, p0_u, p3, p2, p1, p0); + ILVR_D4_UB(q0_v, q0_u, q1_v, q1_u, q2_v, q2_u, q3_v, q3_u, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + p1_d = __msa_copy_s_d((v2i64)p1, 0); + p0_d = __msa_copy_s_d((v2i64)p0, 0); + q0_d = __msa_copy_s_d((v2i64)q0, 0); + q1_d = __msa_copy_s_d((v2i64)q1, 0); + SD4(q1_d, q0_d, p0_d, p1_d, src_u, -stride); + p1_d = __msa_copy_s_d((v2i64)p1, 1); + p0_d = __msa_copy_s_d((v2i64)p0, 1); + q0_d = __msa_copy_s_d((v2i64)q0, 1); + q1_d = __msa_copy_s_d((v2i64)q1, 1); + SD4(q1_d, q0_d, p0_d, p1_d, src_v, -stride); +} + +static void HFilter8i(uint8_t* src_u, uint8_t* src_v, int stride, + int b_limit_in, int limit_in, int thresh_in) { + v16u8 p3, p2, p1, p0, q3, q2, q1, q0, mask, hev; + v16u8 row0, row1, row2, row3, row4, row5, row6, row7, row8; + v16u8 row9, row10, row11, row12, row13, row14, row15; + v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + const v16u8 thresh = (v16u8)__msa_fill_b(thresh_in); + const v16u8 limit = (v16u8)__msa_fill_b(limit_in); + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + + LD_UB8(src_u, stride, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(src_v, stride, + row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x8_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, + row8, row9, row10, row11, row12, row13, row14, row15, + p3, p2, p1, p0, q0, q1, q2, q3); + LPF_MASK_HEV(p3, p2, p1, p0, q0, q1, q2, q3, limit, b_limit, thresh, + hev, mask); + LPF_FILTER4_4W(p1, p0, q0, q1, mask, hev); + ILVR_B2_SW(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SW(tmp1, tmp0, tmp2, tmp3); + ILVL_B2_SW(p0, p1, q1, q0, tmp0, tmp1); + ILVRL_H2_SW(tmp1, tmp0, tmp4, tmp5); + src_u += 2; + ST4x4_UB(tmp2, tmp2, 0, 1, 2, 3, src_u, stride); + src_u += 4 * stride; + ST4x4_UB(tmp3, tmp3, 0, 1, 2, 3, src_u, stride); + src_v += 2; + ST4x4_UB(tmp4, tmp4, 0, 1, 2, 3, src_v, stride); + src_v += 4 * stride; + ST4x4_UB(tmp5, tmp5, 0, 1, 2, 3, src_v, stride); +} + +static void SimpleVFilter16(uint8_t* src, int stride, int b_limit_in) { + v16u8 p1, p0, q1, q0, mask; + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + + LD_UB4(src - 2 * stride, stride, p1, p0, q0, q1); + LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask); + LPF_SIMPLE_FILT(p1, p0, q0, q1, mask); + ST_UB2(p0, q0, src - stride, stride); +} + +static void SimpleHFilter16(uint8_t* src, int stride, int b_limit_in) { + v16u8 p1, p0, q1, q0, mask, row0, row1, row2, row3, row4, row5, row6, row7; + v16u8 row8, row9, row10, row11, row12, row13, row14, row15; + v8i16 tmp0, tmp1; + const v16u8 b_limit = (v16u8)__msa_fill_b(b_limit_in); + uint8_t* ptemp_src = src - 2; + + LD_UB8(ptemp_src, stride, row0, row1, row2, row3, row4, row5, row6, row7); + LD_UB8(ptemp_src + 8 * stride, stride, + row8, row9, row10, row11, row12, row13, row14, row15); + TRANSPOSE16x4_UB_UB(row0, row1, row2, row3, row4, row5, row6, row7, + row8, row9, row10, row11, row12, row13, row14, row15, + p1, p0, q0, q1); + LPF_SIMPLE_MASK(p1, p0, q0, q1, b_limit, mask); + LPF_SIMPLE_FILT(p1, p0, q0, q1, mask); + ILVRL_B2_SH(q0, p0, tmp1, tmp0); + ptemp_src += 1; + ST2x4_UB(tmp1, 0, ptemp_src, stride); + ptemp_src += 4 * stride; + ST2x4_UB(tmp1, 4, ptemp_src, stride); + ptemp_src += 4 * stride; + ST2x4_UB(tmp0, 0, ptemp_src, stride); + ptemp_src += 4 * stride; + ST2x4_UB(tmp0, 4, ptemp_src, stride); + ptemp_src += 4 * stride; +} + +static void SimpleVFilter16i(uint8_t* src_y, int stride, int b_limit_in) { + SimpleVFilter16(src_y + 4 * stride, stride, b_limit_in); + SimpleVFilter16(src_y + 8 * stride, stride, b_limit_in); + SimpleVFilter16(src_y + 12 * stride, stride, b_limit_in); +} + +static void SimpleHFilter16i(uint8_t* src_y, int stride, int b_limit_in) { + SimpleHFilter16(src_y + 4, stride, b_limit_in); + SimpleHFilter16(src_y + 8, stride, b_limit_in); + SimpleHFilter16(src_y + 12, stride, b_limit_in); +} + +//------------------------------------------------------------------------------ +// Intra predictions +//------------------------------------------------------------------------------ + +// 4x4 + +static void DC4(uint8_t* dst) { // DC + uint32_t dc = 4; + int i; + for (i = 0; i < 4; ++i) dc += dst[i - BPS] + dst[-1 + i * BPS]; + dc >>= 3; + dc = dc | (dc << 8) | (dc << 16) | (dc << 24); + SW4(dc, dc, dc, dc, dst, BPS); +} + +static void TM4(uint8_t* dst) { + const uint8_t* const ptemp = dst - BPS - 1; + v8i16 T, d, r0, r1, r2, r3; + const v16i8 zero = { 0 }; + const v8i16 TL = (v8i16)__msa_fill_h(ptemp[0 * BPS]); + const v8i16 L0 = (v8i16)__msa_fill_h(ptemp[1 * BPS]); + const v8i16 L1 = (v8i16)__msa_fill_h(ptemp[2 * BPS]); + const v8i16 L2 = (v8i16)__msa_fill_h(ptemp[3 * BPS]); + const v8i16 L3 = (v8i16)__msa_fill_h(ptemp[4 * BPS]); + const v16u8 T1 = LD_UB(ptemp + 1); + + T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1); + d = T - TL; + ADD4(d, L0, d, L1, d, L2, d, L3, r0, r1, r2, r3); + CLIP_SH4_0_255(r0, r1, r2, r3); + PCKEV_ST4x4_UB(r0, r1, r2, r3, dst, BPS); +} + +static void VE4(uint8_t* dst) { // vertical + const uint8_t* const ptop = dst - BPS - 1; + const uint32_t val0 = LW(ptop + 0); + const uint32_t val1 = LW(ptop + 4); + uint32_t out; + v16u8 A = { 0 }, B, C, AC, B2, R; + + INSERT_W2_UB(val0, val1, A); + B = SLDI_UB(A, A, 1); + C = SLDI_UB(A, A, 2); + AC = __msa_ave_u_b(A, C); + B2 = __msa_ave_u_b(B, B); + R = __msa_aver_u_b(AC, B2); + out = __msa_copy_s_w((v4i32)R, 0); + SW4(out, out, out, out, dst, BPS); +} + +static void RD4(uint8_t* dst) { // Down-right + const uint8_t* const ptop = dst - 1 - BPS; + uint32_t val0 = LW(ptop + 0); + uint32_t val1 = LW(ptop + 4); + uint32_t val2, val3; + v16u8 A, B, C, AC, B2, R, A1 = { 0 }; + + INSERT_W2_UB(val0, val1, A1); + A = SLDI_UB(A1, A1, 12); + A = (v16u8)__msa_insert_b((v16i8)A, 3, ptop[1 * BPS]); + A = (v16u8)__msa_insert_b((v16i8)A, 2, ptop[2 * BPS]); + A = (v16u8)__msa_insert_b((v16i8)A, 1, ptop[3 * BPS]); + A = (v16u8)__msa_insert_b((v16i8)A, 0, ptop[4 * BPS]); + B = SLDI_UB(A, A, 1); + C = SLDI_UB(A, A, 2); + AC = __msa_ave_u_b(A, C); + B2 = __msa_ave_u_b(B, B); + R = __msa_aver_u_b(AC, B2); + val3 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val2 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val1 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val0 = __msa_copy_s_w((v4i32)R, 0); + SW4(val0, val1, val2, val3, dst, BPS); +} + +static void LD4(uint8_t* dst) { // Down-Left + const uint8_t* const ptop = dst - BPS; + uint32_t val0 = LW(ptop + 0); + uint32_t val1 = LW(ptop + 4); + uint32_t val2, val3; + v16u8 A = { 0 }, B, C, AC, B2, R; + + INSERT_W2_UB(val0, val1, A); + B = SLDI_UB(A, A, 1); + C = SLDI_UB(A, A, 2); + C = (v16u8)__msa_insert_b((v16i8)C, 6, ptop[7]); + AC = __msa_ave_u_b(A, C); + B2 = __msa_ave_u_b(B, B); + R = __msa_aver_u_b(AC, B2); + val0 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val1 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val2 = __msa_copy_s_w((v4i32)R, 0); + R = SLDI_UB(R, R, 1); + val3 = __msa_copy_s_w((v4i32)R, 0); + SW4(val0, val1, val2, val3, dst, BPS); +} + +// 16x16 + +static void DC16(uint8_t* dst) { // DC + uint32_t dc = 16; + int i; + const v16u8 rtop = LD_UB(dst - BPS); + const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); + v16u8 out; + + for (i = 0; i < 16; ++i) { + dc += dst[-1 + i * BPS]; + } + dc += HADD_UH_U32(dctop); + out = (v16u8)__msa_fill_b(dc >> 5); + ST_UB8(out, out, out, out, out, out, out, out, dst, BPS); + ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); +} + +static void TM16(uint8_t* dst) { + int j; + v8i16 d1, d2; + const v16i8 zero = { 0 }; + const v8i16 TL = (v8i16)__msa_fill_h(dst[-1 - BPS]); + const v16i8 T = LD_SB(dst - BPS); + + ILVRL_B2_SH(zero, T, d1, d2); + SUB2(d1, TL, d2, TL, d1, d2); + for (j = 0; j < 16; j += 4) { + v16i8 t0, t1, t2, t3; + v8i16 r0, r1, r2, r3, r4, r5, r6, r7; + const v8i16 L0 = (v8i16)__msa_fill_h(dst[-1 + 0 * BPS]); + const v8i16 L1 = (v8i16)__msa_fill_h(dst[-1 + 1 * BPS]); + const v8i16 L2 = (v8i16)__msa_fill_h(dst[-1 + 2 * BPS]); + const v8i16 L3 = (v8i16)__msa_fill_h(dst[-1 + 3 * BPS]); + ADD4(d1, L0, d1, L1, d1, L2, d1, L3, r0, r1, r2, r3); + ADD4(d2, L0, d2, L1, d2, L2, d2, L3, r4, r5, r6, r7); + CLIP_SH4_0_255(r0, r1, r2, r3); + CLIP_SH4_0_255(r4, r5, r6, r7); + PCKEV_B4_SB(r4, r0, r5, r1, r6, r2, r7, r3, t0, t1, t2, t3); + ST_SB4(t0, t1, t2, t3, dst, BPS); + dst += 4 * BPS; + } +} + +static void VE16(uint8_t* dst) { // vertical + const v16u8 rtop = LD_UB(dst - BPS); + ST_UB8(rtop, rtop, rtop, rtop, rtop, rtop, rtop, rtop, dst, BPS); + ST_UB8(rtop, rtop, rtop, rtop, rtop, rtop, rtop, rtop, dst + 8 * BPS, BPS); +} + +static void HE16(uint8_t* dst) { // horizontal + int j; + for (j = 16; j > 0; j -= 4) { + const v16u8 L0 = (v16u8)__msa_fill_b(dst[-1 + 0 * BPS]); + const v16u8 L1 = (v16u8)__msa_fill_b(dst[-1 + 1 * BPS]); + const v16u8 L2 = (v16u8)__msa_fill_b(dst[-1 + 2 * BPS]); + const v16u8 L3 = (v16u8)__msa_fill_b(dst[-1 + 3 * BPS]); + ST_UB4(L0, L1, L2, L3, dst, BPS); + dst += 4 * BPS; + } +} + +static void DC16NoTop(uint8_t* dst) { // DC with top samples not available + int j; + uint32_t dc = 8; + v16u8 out; + + for (j = 0; j < 16; ++j) { + dc += dst[-1 + j * BPS]; + } + out = (v16u8)__msa_fill_b(dc >> 4); + ST_UB8(out, out, out, out, out, out, out, out, dst, BPS); + ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); +} + +static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available + uint32_t dc = 8; + const v16u8 rtop = LD_UB(dst - BPS); + const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); + v16u8 out; + + dc += HADD_UH_U32(dctop); + out = (v16u8)__msa_fill_b(dc >> 4); + ST_UB8(out, out, out, out, out, out, out, out, dst, BPS); + ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); +} + +static void DC16NoTopLeft(uint8_t* dst) { // DC with nothing + const v16u8 out = (v16u8)__msa_fill_b(0x80); + ST_UB8(out, out, out, out, out, out, out, out, dst, BPS); + ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); +} + +// Chroma + +#define STORE8x8(out, dst) do { \ + SD4(out, out, out, out, dst + 0 * BPS, BPS); \ + SD4(out, out, out, out, dst + 4 * BPS, BPS); \ +} while (0) + +static void DC8uv(uint8_t* dst) { // DC + uint32_t dc = 8; + int i; + uint64_t out; + const v16u8 rtop = LD_UB(dst - BPS); + const v8u16 temp0 = __msa_hadd_u_h(rtop, rtop); + const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0); + const v2u64 temp2 = __msa_hadd_u_d(temp1, temp1); + v16u8 dctemp; + + for (i = 0; i < 8; ++i) { + dc += dst[-1 + i * BPS]; + } + dc += __msa_copy_s_w((v4i32)temp2, 0); + dctemp = (v16u8)__msa_fill_b(dc >> 4); + out = __msa_copy_s_d((v2i64)dctemp, 0); + STORE8x8(out, dst); +} + +static void TM8uv(uint8_t* dst) { + int j; + const v16i8 T1 = LD_SB(dst - BPS); + const v16i8 zero = { 0 }; + const v8i16 T = (v8i16)__msa_ilvr_b(zero, T1); + const v8i16 TL = (v8i16)__msa_fill_h(dst[-1 - BPS]); + const v8i16 d = T - TL; + + for (j = 0; j < 8; j += 4) { + v16i8 t0, t1; + v8i16 r0 = (v8i16)__msa_fill_h(dst[-1 + 0 * BPS]); + v8i16 r1 = (v8i16)__msa_fill_h(dst[-1 + 1 * BPS]); + v8i16 r2 = (v8i16)__msa_fill_h(dst[-1 + 2 * BPS]); + v8i16 r3 = (v8i16)__msa_fill_h(dst[-1 + 3 * BPS]); + ADD4(d, r0, d, r1, d, r2, d, r3, r0, r1, r2, r3); + CLIP_SH4_0_255(r0, r1, r2, r3); + PCKEV_B2_SB(r1, r0, r3, r2, t0, t1); + ST4x4_UB(t0, t1, 0, 2, 0, 2, dst, BPS); + ST4x4_UB(t0, t1, 1, 3, 1, 3, dst + 4, BPS); + dst += 4 * BPS; + } +} + +static void VE8uv(uint8_t* dst) { // vertical + const v16u8 rtop = LD_UB(dst - BPS); + const uint64_t out = __msa_copy_s_d((v2i64)rtop, 0); + STORE8x8(out, dst); +} + +static void HE8uv(uint8_t* dst) { // horizontal + int j; + for (j = 0; j < 8; j += 4) { + const v16u8 L0 = (v16u8)__msa_fill_b(dst[-1 + 0 * BPS]); + const v16u8 L1 = (v16u8)__msa_fill_b(dst[-1 + 1 * BPS]); + const v16u8 L2 = (v16u8)__msa_fill_b(dst[-1 + 2 * BPS]); + const v16u8 L3 = (v16u8)__msa_fill_b(dst[-1 + 3 * BPS]); + const uint64_t out0 = __msa_copy_s_d((v2i64)L0, 0); + const uint64_t out1 = __msa_copy_s_d((v2i64)L1, 0); + const uint64_t out2 = __msa_copy_s_d((v2i64)L2, 0); + const uint64_t out3 = __msa_copy_s_d((v2i64)L3, 0); + SD4(out0, out1, out2, out3, dst, BPS); + dst += 4 * BPS; + } +} + +static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples + const uint32_t dc = 4; + const v16u8 rtop = LD_UB(dst - BPS); + const v8u16 temp0 = __msa_hadd_u_h(rtop, rtop); + const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0); + const v2u64 temp2 = __msa_hadd_u_d(temp1, temp1); + const uint32_t sum_m = __msa_copy_s_w((v4i32)temp2, 0); + const v16u8 dcval = (v16u8)__msa_fill_b((dc + sum_m) >> 3); + const uint64_t out = __msa_copy_s_d((v2i64)dcval, 0); + STORE8x8(out, dst); +} + +static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples + uint32_t dc = 4; + int i; + uint64_t out; + v16u8 dctemp; + + for (i = 0; i < 8; ++i) { + dc += dst[-1 + i * BPS]; + } + dctemp = (v16u8)__msa_fill_b(dc >> 3); + out = __msa_copy_s_d((v2i64)dctemp, 0); + STORE8x8(out, dst); +} + +static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing + const uint64_t out = 0x8080808080808080ULL; + STORE8x8(out, dst); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitMSA(void) { + VP8TransformWHT = TransformWHT; + VP8Transform = TransformTwo; + VP8TransformDC = TransformDC; + VP8TransformAC3 = TransformAC3; + + VP8VFilter16 = VFilter16; + VP8HFilter16 = HFilter16; + VP8VFilter16i = VFilter16i; + VP8HFilter16i = HFilter16i; + VP8VFilter8 = VFilter8; + VP8HFilter8 = HFilter8; + VP8VFilter8i = VFilter8i; + VP8HFilter8i = HFilter8i; + VP8SimpleVFilter16 = SimpleVFilter16; + VP8SimpleHFilter16 = SimpleHFilter16; + VP8SimpleVFilter16i = SimpleVFilter16i; + VP8SimpleHFilter16i = SimpleHFilter16i; + + VP8PredLuma4[0] = DC4; + VP8PredLuma4[1] = TM4; + VP8PredLuma4[2] = VE4; + VP8PredLuma4[4] = RD4; + VP8PredLuma4[6] = LD4; + VP8PredLuma16[0] = DC16; + VP8PredLuma16[1] = TM16; + VP8PredLuma16[2] = VE16; + VP8PredLuma16[3] = HE16; + VP8PredLuma16[4] = DC16NoTop; + VP8PredLuma16[5] = DC16NoLeft; + VP8PredLuma16[6] = DC16NoTopLeft; + VP8PredChroma8[0] = DC8uv; + VP8PredChroma8[1] = TM8uv; + VP8PredChroma8[2] = VE8uv; + VP8PredChroma8[3] = HE8uv; + VP8PredChroma8[4] = DC8uvNoTop; + VP8PredChroma8[5] = DC8uvNoLeft; + VP8PredChroma8[6] = DC8uvNoTopLeft; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(VP8DspInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/dec_neon.c b/media/libwebp/src/dsp/dec_neon.c new file mode 100644 index 0000000000..fa851707e2 --- /dev/null +++ b/media/libwebp/src/dsp/dec_neon.c @@ -0,0 +1,1663 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// ARM NEON version of dsp functions and loop filtering. +// +// Authors: Somnath Banerjee (somnath@google.com) +// Johann Koenig (johannkoenig@google.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include "src/dsp/neon.h" +#include "src/dec/vp8i_dec.h" + +//------------------------------------------------------------------------------ +// NxM Loading functions + +#if !defined(WORK_AROUND_GCC) + +// This intrinsics version makes gcc-4.6.3 crash during Load4x??() compilation +// (register alloc, probably). The variants somewhat mitigate the problem, but +// not quite. HFilter16i() remains problematic. +static WEBP_INLINE uint8x8x4_t Load4x8_NEON(const uint8_t* const src, + int stride) { + const uint8x8_t zero = vdup_n_u8(0); + uint8x8x4_t out; + INIT_VECTOR4(out, zero, zero, zero, zero); + out = vld4_lane_u8(src + 0 * stride, out, 0); + out = vld4_lane_u8(src + 1 * stride, out, 1); + out = vld4_lane_u8(src + 2 * stride, out, 2); + out = vld4_lane_u8(src + 3 * stride, out, 3); + out = vld4_lane_u8(src + 4 * stride, out, 4); + out = vld4_lane_u8(src + 5 * stride, out, 5); + out = vld4_lane_u8(src + 6 * stride, out, 6); + out = vld4_lane_u8(src + 7 * stride, out, 7); + return out; +} + +static WEBP_INLINE void Load4x16_NEON(const uint8_t* const src, int stride, + uint8x16_t* const p1, + uint8x16_t* const p0, + uint8x16_t* const q0, + uint8x16_t* const q1) { + // row0 = p1[0..7]|p0[0..7]|q0[0..7]|q1[0..7] + // row8 = p1[8..15]|p0[8..15]|q0[8..15]|q1[8..15] + const uint8x8x4_t row0 = Load4x8_NEON(src - 2 + 0 * stride, stride); + const uint8x8x4_t row8 = Load4x8_NEON(src - 2 + 8 * stride, stride); + *p1 = vcombine_u8(row0.val[0], row8.val[0]); + *p0 = vcombine_u8(row0.val[1], row8.val[1]); + *q0 = vcombine_u8(row0.val[2], row8.val[2]); + *q1 = vcombine_u8(row0.val[3], row8.val[3]); +} + +#else // WORK_AROUND_GCC + +#define LOADQ_LANE_32b(VALUE, LANE) do { \ + (VALUE) = vld1q_lane_u32((const uint32_t*)src, (VALUE), (LANE)); \ + src += stride; \ +} while (0) + +static WEBP_INLINE void Load4x16_NEON(const uint8_t* src, int stride, + uint8x16_t* const p1, + uint8x16_t* const p0, + uint8x16_t* const q0, + uint8x16_t* const q1) { + const uint32x4_t zero = vdupq_n_u32(0); + uint32x4x4_t in; + INIT_VECTOR4(in, zero, zero, zero, zero); + src -= 2; + LOADQ_LANE_32b(in.val[0], 0); + LOADQ_LANE_32b(in.val[1], 0); + LOADQ_LANE_32b(in.val[2], 0); + LOADQ_LANE_32b(in.val[3], 0); + LOADQ_LANE_32b(in.val[0], 1); + LOADQ_LANE_32b(in.val[1], 1); + LOADQ_LANE_32b(in.val[2], 1); + LOADQ_LANE_32b(in.val[3], 1); + LOADQ_LANE_32b(in.val[0], 2); + LOADQ_LANE_32b(in.val[1], 2); + LOADQ_LANE_32b(in.val[2], 2); + LOADQ_LANE_32b(in.val[3], 2); + LOADQ_LANE_32b(in.val[0], 3); + LOADQ_LANE_32b(in.val[1], 3); + LOADQ_LANE_32b(in.val[2], 3); + LOADQ_LANE_32b(in.val[3], 3); + // Transpose four 4x4 parts: + { + const uint8x16x2_t row01 = vtrnq_u8(vreinterpretq_u8_u32(in.val[0]), + vreinterpretq_u8_u32(in.val[1])); + const uint8x16x2_t row23 = vtrnq_u8(vreinterpretq_u8_u32(in.val[2]), + vreinterpretq_u8_u32(in.val[3])); + const uint16x8x2_t row02 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[0]), + vreinterpretq_u16_u8(row23.val[0])); + const uint16x8x2_t row13 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[1]), + vreinterpretq_u16_u8(row23.val[1])); + *p1 = vreinterpretq_u8_u16(row02.val[0]); + *p0 = vreinterpretq_u8_u16(row13.val[0]); + *q0 = vreinterpretq_u8_u16(row02.val[1]); + *q1 = vreinterpretq_u8_u16(row13.val[1]); + } +} +#undef LOADQ_LANE_32b + +#endif // !WORK_AROUND_GCC + +static WEBP_INLINE void Load8x16_NEON( + const uint8_t* const src, int stride, + uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, + uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, + uint8x16_t* const q2, uint8x16_t* const q3) { + Load4x16_NEON(src - 2, stride, p3, p2, p1, p0); + Load4x16_NEON(src + 2, stride, q0, q1, q2, q3); +} + +static WEBP_INLINE void Load16x4_NEON(const uint8_t* const src, int stride, + uint8x16_t* const p1, + uint8x16_t* const p0, + uint8x16_t* const q0, + uint8x16_t* const q1) { + *p1 = vld1q_u8(src - 2 * stride); + *p0 = vld1q_u8(src - 1 * stride); + *q0 = vld1q_u8(src + 0 * stride); + *q1 = vld1q_u8(src + 1 * stride); +} + +static WEBP_INLINE void Load16x8_NEON( + const uint8_t* const src, int stride, + uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, + uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, + uint8x16_t* const q2, uint8x16_t* const q3) { + Load16x4_NEON(src - 2 * stride, stride, p3, p2, p1, p0); + Load16x4_NEON(src + 2 * stride, stride, q0, q1, q2, q3); +} + +static WEBP_INLINE void Load8x8x2_NEON( + const uint8_t* const u, const uint8_t* const v, int stride, + uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, + uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, + uint8x16_t* const q2, uint8x16_t* const q3) { + // We pack the 8x8 u-samples in the lower half of the uint8x16_t destination + // and the v-samples on the higher half. + *p3 = vcombine_u8(vld1_u8(u - 4 * stride), vld1_u8(v - 4 * stride)); + *p2 = vcombine_u8(vld1_u8(u - 3 * stride), vld1_u8(v - 3 * stride)); + *p1 = vcombine_u8(vld1_u8(u - 2 * stride), vld1_u8(v - 2 * stride)); + *p0 = vcombine_u8(vld1_u8(u - 1 * stride), vld1_u8(v - 1 * stride)); + *q0 = vcombine_u8(vld1_u8(u + 0 * stride), vld1_u8(v + 0 * stride)); + *q1 = vcombine_u8(vld1_u8(u + 1 * stride), vld1_u8(v + 1 * stride)); + *q2 = vcombine_u8(vld1_u8(u + 2 * stride), vld1_u8(v + 2 * stride)); + *q3 = vcombine_u8(vld1_u8(u + 3 * stride), vld1_u8(v + 3 * stride)); +} + +#if !defined(WORK_AROUND_GCC) + +#define LOAD_UV_8(ROW) \ + vcombine_u8(vld1_u8(u - 4 + (ROW) * stride), vld1_u8(v - 4 + (ROW) * stride)) + +static WEBP_INLINE void Load8x8x2T_NEON( + const uint8_t* const u, const uint8_t* const v, int stride, + uint8x16_t* const p3, uint8x16_t* const p2, uint8x16_t* const p1, + uint8x16_t* const p0, uint8x16_t* const q0, uint8x16_t* const q1, + uint8x16_t* const q2, uint8x16_t* const q3) { + // We pack the 8x8 u-samples in the lower half of the uint8x16_t destination + // and the v-samples on the higher half. + const uint8x16_t row0 = LOAD_UV_8(0); + const uint8x16_t row1 = LOAD_UV_8(1); + const uint8x16_t row2 = LOAD_UV_8(2); + const uint8x16_t row3 = LOAD_UV_8(3); + const uint8x16_t row4 = LOAD_UV_8(4); + const uint8x16_t row5 = LOAD_UV_8(5); + const uint8x16_t row6 = LOAD_UV_8(6); + const uint8x16_t row7 = LOAD_UV_8(7); + // Perform two side-by-side 8x8 transposes + // u00 u01 u02 u03 u04 u05 u06 u07 | v00 v01 v02 v03 v04 v05 v06 v07 + // u10 u11 u12 u13 u14 u15 u16 u17 | v10 v11 v12 ... + // u20 u21 u22 u23 u24 u25 u26 u27 | v20 v21 ... + // u30 u31 u32 u33 u34 u35 u36 u37 | ... + // u40 u41 u42 u43 u44 u45 u46 u47 | ... + // u50 u51 u52 u53 u54 u55 u56 u57 | ... + // u60 u61 u62 u63 u64 u65 u66 u67 | v60 ... + // u70 u71 u72 u73 u74 u75 u76 u77 | v70 v71 v72 ... + const uint8x16x2_t row01 = vtrnq_u8(row0, row1); // u00 u10 u02 u12 ... + // u01 u11 u03 u13 ... + const uint8x16x2_t row23 = vtrnq_u8(row2, row3); // u20 u30 u22 u32 ... + // u21 u31 u23 u33 ... + const uint8x16x2_t row45 = vtrnq_u8(row4, row5); // ... + const uint8x16x2_t row67 = vtrnq_u8(row6, row7); // ... + const uint16x8x2_t row02 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[0]), + vreinterpretq_u16_u8(row23.val[0])); + const uint16x8x2_t row13 = vtrnq_u16(vreinterpretq_u16_u8(row01.val[1]), + vreinterpretq_u16_u8(row23.val[1])); + const uint16x8x2_t row46 = vtrnq_u16(vreinterpretq_u16_u8(row45.val[0]), + vreinterpretq_u16_u8(row67.val[0])); + const uint16x8x2_t row57 = vtrnq_u16(vreinterpretq_u16_u8(row45.val[1]), + vreinterpretq_u16_u8(row67.val[1])); + const uint32x4x2_t row04 = vtrnq_u32(vreinterpretq_u32_u16(row02.val[0]), + vreinterpretq_u32_u16(row46.val[0])); + const uint32x4x2_t row26 = vtrnq_u32(vreinterpretq_u32_u16(row02.val[1]), + vreinterpretq_u32_u16(row46.val[1])); + const uint32x4x2_t row15 = vtrnq_u32(vreinterpretq_u32_u16(row13.val[0]), + vreinterpretq_u32_u16(row57.val[0])); + const uint32x4x2_t row37 = vtrnq_u32(vreinterpretq_u32_u16(row13.val[1]), + vreinterpretq_u32_u16(row57.val[1])); + *p3 = vreinterpretq_u8_u32(row04.val[0]); + *p2 = vreinterpretq_u8_u32(row15.val[0]); + *p1 = vreinterpretq_u8_u32(row26.val[0]); + *p0 = vreinterpretq_u8_u32(row37.val[0]); + *q0 = vreinterpretq_u8_u32(row04.val[1]); + *q1 = vreinterpretq_u8_u32(row15.val[1]); + *q2 = vreinterpretq_u8_u32(row26.val[1]); + *q3 = vreinterpretq_u8_u32(row37.val[1]); +} +#undef LOAD_UV_8 + +#endif // !WORK_AROUND_GCC + +static WEBP_INLINE void Store2x8_NEON(const uint8x8x2_t v, + uint8_t* const dst, int stride) { + vst2_lane_u8(dst + 0 * stride, v, 0); + vst2_lane_u8(dst + 1 * stride, v, 1); + vst2_lane_u8(dst + 2 * stride, v, 2); + vst2_lane_u8(dst + 3 * stride, v, 3); + vst2_lane_u8(dst + 4 * stride, v, 4); + vst2_lane_u8(dst + 5 * stride, v, 5); + vst2_lane_u8(dst + 6 * stride, v, 6); + vst2_lane_u8(dst + 7 * stride, v, 7); +} + +static WEBP_INLINE void Store2x16_NEON(const uint8x16_t p0, const uint8x16_t q0, + uint8_t* const dst, int stride) { + uint8x8x2_t lo, hi; + lo.val[0] = vget_low_u8(p0); + lo.val[1] = vget_low_u8(q0); + hi.val[0] = vget_high_u8(p0); + hi.val[1] = vget_high_u8(q0); + Store2x8_NEON(lo, dst - 1 + 0 * stride, stride); + Store2x8_NEON(hi, dst - 1 + 8 * stride, stride); +} + +#if !defined(WORK_AROUND_GCC) +static WEBP_INLINE void Store4x8_NEON(const uint8x8x4_t v, + uint8_t* const dst, int stride) { + vst4_lane_u8(dst + 0 * stride, v, 0); + vst4_lane_u8(dst + 1 * stride, v, 1); + vst4_lane_u8(dst + 2 * stride, v, 2); + vst4_lane_u8(dst + 3 * stride, v, 3); + vst4_lane_u8(dst + 4 * stride, v, 4); + vst4_lane_u8(dst + 5 * stride, v, 5); + vst4_lane_u8(dst + 6 * stride, v, 6); + vst4_lane_u8(dst + 7 * stride, v, 7); +} + +static WEBP_INLINE void Store4x16_NEON(const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + uint8_t* const dst, int stride) { + uint8x8x4_t lo, hi; + INIT_VECTOR4(lo, + vget_low_u8(p1), vget_low_u8(p0), + vget_low_u8(q0), vget_low_u8(q1)); + INIT_VECTOR4(hi, + vget_high_u8(p1), vget_high_u8(p0), + vget_high_u8(q0), vget_high_u8(q1)); + Store4x8_NEON(lo, dst - 2 + 0 * stride, stride); + Store4x8_NEON(hi, dst - 2 + 8 * stride, stride); +} +#endif // !WORK_AROUND_GCC + +static WEBP_INLINE void Store16x2_NEON(const uint8x16_t p0, const uint8x16_t q0, + uint8_t* const dst, int stride) { + vst1q_u8(dst - stride, p0); + vst1q_u8(dst, q0); +} + +static WEBP_INLINE void Store16x4_NEON(const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + uint8_t* const dst, int stride) { + Store16x2_NEON(p1, p0, dst - stride, stride); + Store16x2_NEON(q0, q1, dst + stride, stride); +} + +static WEBP_INLINE void Store8x2x2_NEON(const uint8x16_t p0, + const uint8x16_t q0, + uint8_t* const u, uint8_t* const v, + int stride) { + // p0 and q0 contain the u+v samples packed in low/high halves. + vst1_u8(u - stride, vget_low_u8(p0)); + vst1_u8(u, vget_low_u8(q0)); + vst1_u8(v - stride, vget_high_u8(p0)); + vst1_u8(v, vget_high_u8(q0)); +} + +static WEBP_INLINE void Store8x4x2_NEON(const uint8x16_t p1, + const uint8x16_t p0, + const uint8x16_t q0, + const uint8x16_t q1, + uint8_t* const u, uint8_t* const v, + int stride) { + // The p1...q1 registers contain the u+v samples packed in low/high halves. + Store8x2x2_NEON(p1, p0, u - stride, v - stride, stride); + Store8x2x2_NEON(q0, q1, u + stride, v + stride, stride); +} + +#if !defined(WORK_AROUND_GCC) + +#define STORE6_LANE(DST, VAL0, VAL1, LANE) do { \ + vst3_lane_u8((DST) - 3, (VAL0), (LANE)); \ + vst3_lane_u8((DST) + 0, (VAL1), (LANE)); \ + (DST) += stride; \ +} while (0) + +static WEBP_INLINE void Store6x8x2_NEON( + const uint8x16_t p2, const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t q2, + uint8_t* u, uint8_t* v, int stride) { + uint8x8x3_t u0, u1, v0, v1; + INIT_VECTOR3(u0, vget_low_u8(p2), vget_low_u8(p1), vget_low_u8(p0)); + INIT_VECTOR3(u1, vget_low_u8(q0), vget_low_u8(q1), vget_low_u8(q2)); + INIT_VECTOR3(v0, vget_high_u8(p2), vget_high_u8(p1), vget_high_u8(p0)); + INIT_VECTOR3(v1, vget_high_u8(q0), vget_high_u8(q1), vget_high_u8(q2)); + STORE6_LANE(u, u0, u1, 0); + STORE6_LANE(u, u0, u1, 1); + STORE6_LANE(u, u0, u1, 2); + STORE6_LANE(u, u0, u1, 3); + STORE6_LANE(u, u0, u1, 4); + STORE6_LANE(u, u0, u1, 5); + STORE6_LANE(u, u0, u1, 6); + STORE6_LANE(u, u0, u1, 7); + STORE6_LANE(v, v0, v1, 0); + STORE6_LANE(v, v0, v1, 1); + STORE6_LANE(v, v0, v1, 2); + STORE6_LANE(v, v0, v1, 3); + STORE6_LANE(v, v0, v1, 4); + STORE6_LANE(v, v0, v1, 5); + STORE6_LANE(v, v0, v1, 6); + STORE6_LANE(v, v0, v1, 7); +} +#undef STORE6_LANE + +static WEBP_INLINE void Store4x8x2_NEON(const uint8x16_t p1, + const uint8x16_t p0, + const uint8x16_t q0, + const uint8x16_t q1, + uint8_t* const u, uint8_t* const v, + int stride) { + uint8x8x4_t u0, v0; + INIT_VECTOR4(u0, + vget_low_u8(p1), vget_low_u8(p0), + vget_low_u8(q0), vget_low_u8(q1)); + INIT_VECTOR4(v0, + vget_high_u8(p1), vget_high_u8(p0), + vget_high_u8(q0), vget_high_u8(q1)); + vst4_lane_u8(u - 2 + 0 * stride, u0, 0); + vst4_lane_u8(u - 2 + 1 * stride, u0, 1); + vst4_lane_u8(u - 2 + 2 * stride, u0, 2); + vst4_lane_u8(u - 2 + 3 * stride, u0, 3); + vst4_lane_u8(u - 2 + 4 * stride, u0, 4); + vst4_lane_u8(u - 2 + 5 * stride, u0, 5); + vst4_lane_u8(u - 2 + 6 * stride, u0, 6); + vst4_lane_u8(u - 2 + 7 * stride, u0, 7); + vst4_lane_u8(v - 2 + 0 * stride, v0, 0); + vst4_lane_u8(v - 2 + 1 * stride, v0, 1); + vst4_lane_u8(v - 2 + 2 * stride, v0, 2); + vst4_lane_u8(v - 2 + 3 * stride, v0, 3); + vst4_lane_u8(v - 2 + 4 * stride, v0, 4); + vst4_lane_u8(v - 2 + 5 * stride, v0, 5); + vst4_lane_u8(v - 2 + 6 * stride, v0, 6); + vst4_lane_u8(v - 2 + 7 * stride, v0, 7); +} + +#endif // !WORK_AROUND_GCC + +// Zero extend 'v' to an int16x8_t. +static WEBP_INLINE int16x8_t ConvertU8ToS16_NEON(uint8x8_t v) { + return vreinterpretq_s16_u16(vmovl_u8(v)); +} + +// Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result +// to the corresponding rows of 'dst'. +static WEBP_INLINE void SaturateAndStore4x4_NEON(uint8_t* const dst, + const int16x8_t dst01, + const int16x8_t dst23) { + // Unsigned saturate to 8b. + const uint8x8_t dst01_u8 = vqmovun_s16(dst01); + const uint8x8_t dst23_u8 = vqmovun_s16(dst23); + + // Store the results. + vst1_lane_u32((uint32_t*)(dst + 0 * BPS), vreinterpret_u32_u8(dst01_u8), 0); + vst1_lane_u32((uint32_t*)(dst + 1 * BPS), vreinterpret_u32_u8(dst01_u8), 1); + vst1_lane_u32((uint32_t*)(dst + 2 * BPS), vreinterpret_u32_u8(dst23_u8), 0); + vst1_lane_u32((uint32_t*)(dst + 3 * BPS), vreinterpret_u32_u8(dst23_u8), 1); +} + +static WEBP_INLINE void Add4x4_NEON(const int16x8_t row01, + const int16x8_t row23, + uint8_t* const dst) { + uint32x2_t dst01 = vdup_n_u32(0); + uint32x2_t dst23 = vdup_n_u32(0); + + // Load the source pixels. + dst01 = vld1_lane_u32((uint32_t*)(dst + 0 * BPS), dst01, 0); + dst23 = vld1_lane_u32((uint32_t*)(dst + 2 * BPS), dst23, 0); + dst01 = vld1_lane_u32((uint32_t*)(dst + 1 * BPS), dst01, 1); + dst23 = vld1_lane_u32((uint32_t*)(dst + 3 * BPS), dst23, 1); + + { + // Convert to 16b. + const int16x8_t dst01_s16 = ConvertU8ToS16_NEON(vreinterpret_u8_u32(dst01)); + const int16x8_t dst23_s16 = ConvertU8ToS16_NEON(vreinterpret_u8_u32(dst23)); + + // Descale with rounding. + const int16x8_t out01 = vrsraq_n_s16(dst01_s16, row01, 3); + const int16x8_t out23 = vrsraq_n_s16(dst23_s16, row23, 3); + // Add the inverse transform. + SaturateAndStore4x4_NEON(dst, out01, out23); + } +} + +//----------------------------------------------------------------------------- +// Simple In-loop filtering (Paragraph 15.2) + +static uint8x16_t NeedsFilter_NEON(const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + int thresh) { + const uint8x16_t thresh_v = vdupq_n_u8((uint8_t)thresh); + const uint8x16_t a_p0_q0 = vabdq_u8(p0, q0); // abs(p0-q0) + const uint8x16_t a_p1_q1 = vabdq_u8(p1, q1); // abs(p1-q1) + const uint8x16_t a_p0_q0_2 = vqaddq_u8(a_p0_q0, a_p0_q0); // 2 * abs(p0-q0) + const uint8x16_t a_p1_q1_2 = vshrq_n_u8(a_p1_q1, 1); // abs(p1-q1) / 2 + const uint8x16_t sum = vqaddq_u8(a_p0_q0_2, a_p1_q1_2); + const uint8x16_t mask = vcgeq_u8(thresh_v, sum); + return mask; +} + +static int8x16_t FlipSign_NEON(const uint8x16_t v) { + const uint8x16_t sign_bit = vdupq_n_u8(0x80); + return vreinterpretq_s8_u8(veorq_u8(v, sign_bit)); +} + +static uint8x16_t FlipSignBack_NEON(const int8x16_t v) { + const int8x16_t sign_bit = vdupq_n_s8(0x80); + return vreinterpretq_u8_s8(veorq_s8(v, sign_bit)); +} + +static int8x16_t GetBaseDelta_NEON(const int8x16_t p1, const int8x16_t p0, + const int8x16_t q0, const int8x16_t q1) { + const int8x16_t q0_p0 = vqsubq_s8(q0, p0); // (q0-p0) + const int8x16_t p1_q1 = vqsubq_s8(p1, q1); // (p1-q1) + const int8x16_t s1 = vqaddq_s8(p1_q1, q0_p0); // (p1-q1) + 1 * (q0 - p0) + const int8x16_t s2 = vqaddq_s8(q0_p0, s1); // (p1-q1) + 2 * (q0 - p0) + const int8x16_t s3 = vqaddq_s8(q0_p0, s2); // (p1-q1) + 3 * (q0 - p0) + return s3; +} + +static int8x16_t GetBaseDelta0_NEON(const int8x16_t p0, const int8x16_t q0) { + const int8x16_t q0_p0 = vqsubq_s8(q0, p0); // (q0-p0) + const int8x16_t s1 = vqaddq_s8(q0_p0, q0_p0); // 2 * (q0 - p0) + const int8x16_t s2 = vqaddq_s8(q0_p0, s1); // 3 * (q0 - p0) + return s2; +} + +//------------------------------------------------------------------------------ + +static void ApplyFilter2NoFlip_NEON(const int8x16_t p0s, const int8x16_t q0s, + const int8x16_t delta, + int8x16_t* const op0, + int8x16_t* const oq0) { + const int8x16_t kCst3 = vdupq_n_s8(0x03); + const int8x16_t kCst4 = vdupq_n_s8(0x04); + const int8x16_t delta_p3 = vqaddq_s8(delta, kCst3); + const int8x16_t delta_p4 = vqaddq_s8(delta, kCst4); + const int8x16_t delta3 = vshrq_n_s8(delta_p3, 3); + const int8x16_t delta4 = vshrq_n_s8(delta_p4, 3); + *op0 = vqaddq_s8(p0s, delta3); + *oq0 = vqsubq_s8(q0s, delta4); +} + +#if defined(WEBP_USE_INTRINSICS) + +static void ApplyFilter2_NEON(const int8x16_t p0s, const int8x16_t q0s, + const int8x16_t delta, + uint8x16_t* const op0, uint8x16_t* const oq0) { + const int8x16_t kCst3 = vdupq_n_s8(0x03); + const int8x16_t kCst4 = vdupq_n_s8(0x04); + const int8x16_t delta_p3 = vqaddq_s8(delta, kCst3); + const int8x16_t delta_p4 = vqaddq_s8(delta, kCst4); + const int8x16_t delta3 = vshrq_n_s8(delta_p3, 3); + const int8x16_t delta4 = vshrq_n_s8(delta_p4, 3); + const int8x16_t sp0 = vqaddq_s8(p0s, delta3); + const int8x16_t sq0 = vqsubq_s8(q0s, delta4); + *op0 = FlipSignBack_NEON(sp0); + *oq0 = FlipSignBack_NEON(sq0); +} + +static void DoFilter2_NEON(const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + const uint8x16_t mask, + uint8x16_t* const op0, uint8x16_t* const oq0) { + const int8x16_t p1s = FlipSign_NEON(p1); + const int8x16_t p0s = FlipSign_NEON(p0); + const int8x16_t q0s = FlipSign_NEON(q0); + const int8x16_t q1s = FlipSign_NEON(q1); + const int8x16_t delta0 = GetBaseDelta_NEON(p1s, p0s, q0s, q1s); + const int8x16_t delta1 = vandq_s8(delta0, vreinterpretq_s8_u8(mask)); + ApplyFilter2_NEON(p0s, q0s, delta1, op0, oq0); +} + +static void SimpleVFilter16_NEON(uint8_t* p, int stride, int thresh) { + uint8x16_t p1, p0, q0, q1, op0, oq0; + Load16x4_NEON(p, stride, &p1, &p0, &q0, &q1); + { + const uint8x16_t mask = NeedsFilter_NEON(p1, p0, q0, q1, thresh); + DoFilter2_NEON(p1, p0, q0, q1, mask, &op0, &oq0); + } + Store16x2_NEON(op0, oq0, p, stride); +} + +static void SimpleHFilter16_NEON(uint8_t* p, int stride, int thresh) { + uint8x16_t p1, p0, q0, q1, oq0, op0; + Load4x16_NEON(p, stride, &p1, &p0, &q0, &q1); + { + const uint8x16_t mask = NeedsFilter_NEON(p1, p0, q0, q1, thresh); + DoFilter2_NEON(p1, p0, q0, q1, mask, &op0, &oq0); + } + Store2x16_NEON(op0, oq0, p, stride); +} + +#else + +// Load/Store vertical edge +#define LOAD8x4(c1, c2, c3, c4, b1, b2, stride) \ + "vld4.8 {" #c1 "[0]," #c2 "[0]," #c3 "[0]," #c4 "[0]}," #b1 "," #stride "\n" \ + "vld4.8 {" #c1 "[1]," #c2 "[1]," #c3 "[1]," #c4 "[1]}," #b2 "," #stride "\n" \ + "vld4.8 {" #c1 "[2]," #c2 "[2]," #c3 "[2]," #c4 "[2]}," #b1 "," #stride "\n" \ + "vld4.8 {" #c1 "[3]," #c2 "[3]," #c3 "[3]," #c4 "[3]}," #b2 "," #stride "\n" \ + "vld4.8 {" #c1 "[4]," #c2 "[4]," #c3 "[4]," #c4 "[4]}," #b1 "," #stride "\n" \ + "vld4.8 {" #c1 "[5]," #c2 "[5]," #c3 "[5]," #c4 "[5]}," #b2 "," #stride "\n" \ + "vld4.8 {" #c1 "[6]," #c2 "[6]," #c3 "[6]," #c4 "[6]}," #b1 "," #stride "\n" \ + "vld4.8 {" #c1 "[7]," #c2 "[7]," #c3 "[7]," #c4 "[7]}," #b2 "," #stride "\n" + +#define STORE8x2(c1, c2, p, stride) \ + "vst2.8 {" #c1 "[0], " #c2 "[0]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[1], " #c2 "[1]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[2], " #c2 "[2]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[3], " #c2 "[3]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[4], " #c2 "[4]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[5], " #c2 "[5]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[6], " #c2 "[6]}," #p "," #stride " \n" \ + "vst2.8 {" #c1 "[7], " #c2 "[7]}," #p "," #stride " \n" + +#define QRegs "q0", "q1", "q2", "q3", \ + "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" + +#define FLIP_SIGN_BIT2(a, b, s) \ + "veor " #a "," #a "," #s " \n" \ + "veor " #b "," #b "," #s " \n" \ + +#define FLIP_SIGN_BIT4(a, b, c, d, s) \ + FLIP_SIGN_BIT2(a, b, s) \ + FLIP_SIGN_BIT2(c, d, s) \ + +#define NEEDS_FILTER(p1, p0, q0, q1, thresh, mask) \ + "vabd.u8 q15," #p0 "," #q0 " \n" /* abs(p0 - q0) */ \ + "vabd.u8 q14," #p1 "," #q1 " \n" /* abs(p1 - q1) */ \ + "vqadd.u8 q15, q15, q15 \n" /* abs(p0 - q0) * 2 */ \ + "vshr.u8 q14, q14, #1 \n" /* abs(p1 - q1) / 2 */ \ + "vqadd.u8 q15, q15, q14 \n" /* abs(p0 - q0) * 2 + abs(p1 - q1) / 2 */ \ + "vdup.8 q14, " #thresh " \n" \ + "vcge.u8 " #mask ", q14, q15 \n" /* mask <= thresh */ + +#define GET_BASE_DELTA(p1, p0, q0, q1, o) \ + "vqsub.s8 q15," #q0 "," #p0 " \n" /* (q0 - p0) */ \ + "vqsub.s8 " #o "," #p1 "," #q1 " \n" /* (p1 - q1) */ \ + "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 1 * (p0 - q0) */ \ + "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 2 * (p0 - q0) */ \ + "vqadd.s8 " #o "," #o ", q15 \n" /* (p1 - q1) + 3 * (p0 - q0) */ + +#define DO_SIMPLE_FILTER(p0, q0, fl) \ + "vmov.i8 q15, #0x03 \n" \ + "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 3 */ \ + "vshr.s8 q15, q15, #3 \n" /* filter1 >> 3 */ \ + "vqadd.s8 " #p0 "," #p0 ", q15 \n" /* p0 += filter1 */ \ + \ + "vmov.i8 q15, #0x04 \n" \ + "vqadd.s8 q15, q15, " #fl " \n" /* filter1 = filter + 4 */ \ + "vshr.s8 q15, q15, #3 \n" /* filter2 >> 3 */ \ + "vqsub.s8 " #q0 "," #q0 ", q15 \n" /* q0 -= filter2 */ + +// Applies filter on 2 pixels (p0 and q0) +#define DO_FILTER2(p1, p0, q0, q1, thresh) \ + NEEDS_FILTER(p1, p0, q0, q1, thresh, q9) /* filter mask in q9 */ \ + "vmov.i8 q10, #0x80 \n" /* sign bit */ \ + FLIP_SIGN_BIT4(p1, p0, q0, q1, q10) /* convert to signed value */ \ + GET_BASE_DELTA(p1, p0, q0, q1, q11) /* get filter level */ \ + "vand q9, q9, q11 \n" /* apply filter mask */ \ + DO_SIMPLE_FILTER(p0, q0, q9) /* apply filter */ \ + FLIP_SIGN_BIT2(p0, q0, q10) + +static void SimpleVFilter16_NEON(uint8_t* p, int stride, int thresh) { + __asm__ volatile ( + "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride + + "vld1.u8 {q1}, [%[p]], %[stride] \n" // p1 + "vld1.u8 {q2}, [%[p]], %[stride] \n" // p0 + "vld1.u8 {q3}, [%[p]], %[stride] \n" // q0 + "vld1.u8 {q12}, [%[p]] \n" // q1 + + DO_FILTER2(q1, q2, q3, q12, %[thresh]) + + "sub %[p], %[p], %[stride], lsl #1 \n" // p -= 2 * stride + + "vst1.u8 {q2}, [%[p]], %[stride] \n" // store op0 + "vst1.u8 {q3}, [%[p]] \n" // store oq0 + : [p] "+r"(p) + : [stride] "r"(stride), [thresh] "r"(thresh) + : "memory", QRegs + ); +} + +static void SimpleHFilter16_NEON(uint8_t* p, int stride, int thresh) { + __asm__ volatile ( + "sub r4, %[p], #2 \n" // base1 = p - 2 + "lsl r6, %[stride], #1 \n" // r6 = 2 * stride + "add r5, r4, %[stride] \n" // base2 = base1 + stride + + LOAD8x4(d2, d3, d4, d5, [r4], [r5], r6) + LOAD8x4(d24, d25, d26, d27, [r4], [r5], r6) + "vswp d3, d24 \n" // p1:q1 p0:q3 + "vswp d5, d26 \n" // q0:q2 q1:q4 + "vswp q2, q12 \n" // p1:q1 p0:q2 q0:q3 q1:q4 + + DO_FILTER2(q1, q2, q12, q13, %[thresh]) + + "sub %[p], %[p], #1 \n" // p - 1 + + "vswp d5, d24 \n" + STORE8x2(d4, d5, [%[p]], %[stride]) + STORE8x2(d24, d25, [%[p]], %[stride]) + + : [p] "+r"(p) + : [stride] "r"(stride), [thresh] "r"(thresh) + : "memory", "r4", "r5", "r6", QRegs + ); +} + +#undef LOAD8x4 +#undef STORE8x2 + +#endif // WEBP_USE_INTRINSICS + +static void SimpleVFilter16i_NEON(uint8_t* p, int stride, int thresh) { + uint32_t k; + for (k = 3; k != 0; --k) { + p += 4 * stride; + SimpleVFilter16_NEON(p, stride, thresh); + } +} + +static void SimpleHFilter16i_NEON(uint8_t* p, int stride, int thresh) { + uint32_t k; + for (k = 3; k != 0; --k) { + p += 4; + SimpleHFilter16_NEON(p, stride, thresh); + } +} + +//------------------------------------------------------------------------------ +// Complex In-loop filtering (Paragraph 15.3) + +static uint8x16_t NeedsHev_NEON(const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + int hev_thresh) { + const uint8x16_t hev_thresh_v = vdupq_n_u8((uint8_t)hev_thresh); + const uint8x16_t a_p1_p0 = vabdq_u8(p1, p0); // abs(p1 - p0) + const uint8x16_t a_q1_q0 = vabdq_u8(q1, q0); // abs(q1 - q0) + const uint8x16_t a_max = vmaxq_u8(a_p1_p0, a_q1_q0); + const uint8x16_t mask = vcgtq_u8(a_max, hev_thresh_v); + return mask; +} + +static uint8x16_t NeedsFilter2_NEON(const uint8x16_t p3, const uint8x16_t p2, + const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + const uint8x16_t q2, const uint8x16_t q3, + int ithresh, int thresh) { + const uint8x16_t ithresh_v = vdupq_n_u8((uint8_t)ithresh); + const uint8x16_t a_p3_p2 = vabdq_u8(p3, p2); // abs(p3 - p2) + const uint8x16_t a_p2_p1 = vabdq_u8(p2, p1); // abs(p2 - p1) + const uint8x16_t a_p1_p0 = vabdq_u8(p1, p0); // abs(p1 - p0) + const uint8x16_t a_q3_q2 = vabdq_u8(q3, q2); // abs(q3 - q2) + const uint8x16_t a_q2_q1 = vabdq_u8(q2, q1); // abs(q2 - q1) + const uint8x16_t a_q1_q0 = vabdq_u8(q1, q0); // abs(q1 - q0) + const uint8x16_t max1 = vmaxq_u8(a_p3_p2, a_p2_p1); + const uint8x16_t max2 = vmaxq_u8(a_p1_p0, a_q3_q2); + const uint8x16_t max3 = vmaxq_u8(a_q2_q1, a_q1_q0); + const uint8x16_t max12 = vmaxq_u8(max1, max2); + const uint8x16_t max123 = vmaxq_u8(max12, max3); + const uint8x16_t mask2 = vcgeq_u8(ithresh_v, max123); + const uint8x16_t mask1 = NeedsFilter_NEON(p1, p0, q0, q1, thresh); + const uint8x16_t mask = vandq_u8(mask1, mask2); + return mask; +} + +// 4-points filter + +static void ApplyFilter4_NEON( + const int8x16_t p1, const int8x16_t p0, + const int8x16_t q0, const int8x16_t q1, + const int8x16_t delta0, + uint8x16_t* const op1, uint8x16_t* const op0, + uint8x16_t* const oq0, uint8x16_t* const oq1) { + const int8x16_t kCst3 = vdupq_n_s8(0x03); + const int8x16_t kCst4 = vdupq_n_s8(0x04); + const int8x16_t delta1 = vqaddq_s8(delta0, kCst4); + const int8x16_t delta2 = vqaddq_s8(delta0, kCst3); + const int8x16_t a1 = vshrq_n_s8(delta1, 3); + const int8x16_t a2 = vshrq_n_s8(delta2, 3); + const int8x16_t a3 = vrshrq_n_s8(a1, 1); // a3 = (a1 + 1) >> 1 + *op0 = FlipSignBack_NEON(vqaddq_s8(p0, a2)); // clip(p0 + a2) + *oq0 = FlipSignBack_NEON(vqsubq_s8(q0, a1)); // clip(q0 - a1) + *op1 = FlipSignBack_NEON(vqaddq_s8(p1, a3)); // clip(p1 + a3) + *oq1 = FlipSignBack_NEON(vqsubq_s8(q1, a3)); // clip(q1 - a3) +} + +static void DoFilter4_NEON( + const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, + const uint8x16_t mask, const uint8x16_t hev_mask, + uint8x16_t* const op1, uint8x16_t* const op0, + uint8x16_t* const oq0, uint8x16_t* const oq1) { + // This is a fused version of DoFilter2() calling ApplyFilter2 directly + const int8x16_t p1s = FlipSign_NEON(p1); + int8x16_t p0s = FlipSign_NEON(p0); + int8x16_t q0s = FlipSign_NEON(q0); + const int8x16_t q1s = FlipSign_NEON(q1); + const uint8x16_t simple_lf_mask = vandq_u8(mask, hev_mask); + + // do_filter2 part (simple loopfilter on pixels with hev) + { + const int8x16_t delta = GetBaseDelta_NEON(p1s, p0s, q0s, q1s); + const int8x16_t simple_lf_delta = + vandq_s8(delta, vreinterpretq_s8_u8(simple_lf_mask)); + ApplyFilter2NoFlip_NEON(p0s, q0s, simple_lf_delta, &p0s, &q0s); + } + + // do_filter4 part (complex loopfilter on pixels without hev) + { + const int8x16_t delta0 = GetBaseDelta0_NEON(p0s, q0s); + // we use: (mask & hev_mask) ^ mask = mask & !hev_mask + const uint8x16_t complex_lf_mask = veorq_u8(simple_lf_mask, mask); + const int8x16_t complex_lf_delta = + vandq_s8(delta0, vreinterpretq_s8_u8(complex_lf_mask)); + ApplyFilter4_NEON(p1s, p0s, q0s, q1s, complex_lf_delta, op1, op0, oq0, oq1); + } +} + +// 6-points filter + +static void ApplyFilter6_NEON( + const int8x16_t p2, const int8x16_t p1, const int8x16_t p0, + const int8x16_t q0, const int8x16_t q1, const int8x16_t q2, + const int8x16_t delta, + uint8x16_t* const op2, uint8x16_t* const op1, uint8x16_t* const op0, + uint8x16_t* const oq0, uint8x16_t* const oq1, uint8x16_t* const oq2) { + // We have to compute: X = (9*a+63) >> 7, Y = (18*a+63)>>7, Z = (27*a+63) >> 7 + // Turns out, there's a common sub-expression S=9 * a - 1 that can be used + // with the special vqrshrn_n_s16 rounding-shift-and-narrow instruction: + // X = (S + 64) >> 7, Y = (S + 32) >> 6, Z = (18 * a + S + 64) >> 7 + const int8x8_t delta_lo = vget_low_s8(delta); + const int8x8_t delta_hi = vget_high_s8(delta); + const int8x8_t kCst9 = vdup_n_s8(9); + const int16x8_t kCstm1 = vdupq_n_s16(-1); + const int8x8_t kCst18 = vdup_n_s8(18); + const int16x8_t S_lo = vmlal_s8(kCstm1, kCst9, delta_lo); // S = 9 * a - 1 + const int16x8_t S_hi = vmlal_s8(kCstm1, kCst9, delta_hi); + const int16x8_t Z_lo = vmlal_s8(S_lo, kCst18, delta_lo); // S + 18 * a + const int16x8_t Z_hi = vmlal_s8(S_hi, kCst18, delta_hi); + const int8x8_t a3_lo = vqrshrn_n_s16(S_lo, 7); // (9 * a + 63) >> 7 + const int8x8_t a3_hi = vqrshrn_n_s16(S_hi, 7); + const int8x8_t a2_lo = vqrshrn_n_s16(S_lo, 6); // (9 * a + 31) >> 6 + const int8x8_t a2_hi = vqrshrn_n_s16(S_hi, 6); + const int8x8_t a1_lo = vqrshrn_n_s16(Z_lo, 7); // (27 * a + 63) >> 7 + const int8x8_t a1_hi = vqrshrn_n_s16(Z_hi, 7); + const int8x16_t a1 = vcombine_s8(a1_lo, a1_hi); + const int8x16_t a2 = vcombine_s8(a2_lo, a2_hi); + const int8x16_t a3 = vcombine_s8(a3_lo, a3_hi); + + *op0 = FlipSignBack_NEON(vqaddq_s8(p0, a1)); // clip(p0 + a1) + *oq0 = FlipSignBack_NEON(vqsubq_s8(q0, a1)); // clip(q0 - q1) + *oq1 = FlipSignBack_NEON(vqsubq_s8(q1, a2)); // clip(q1 - a2) + *op1 = FlipSignBack_NEON(vqaddq_s8(p1, a2)); // clip(p1 + a2) + *oq2 = FlipSignBack_NEON(vqsubq_s8(q2, a3)); // clip(q2 - a3) + *op2 = FlipSignBack_NEON(vqaddq_s8(p2, a3)); // clip(p2 + a3) +} + +static void DoFilter6_NEON( + const uint8x16_t p2, const uint8x16_t p1, const uint8x16_t p0, + const uint8x16_t q0, const uint8x16_t q1, const uint8x16_t q2, + const uint8x16_t mask, const uint8x16_t hev_mask, + uint8x16_t* const op2, uint8x16_t* const op1, uint8x16_t* const op0, + uint8x16_t* const oq0, uint8x16_t* const oq1, uint8x16_t* const oq2) { + // This is a fused version of DoFilter2() calling ApplyFilter2 directly + const int8x16_t p2s = FlipSign_NEON(p2); + const int8x16_t p1s = FlipSign_NEON(p1); + int8x16_t p0s = FlipSign_NEON(p0); + int8x16_t q0s = FlipSign_NEON(q0); + const int8x16_t q1s = FlipSign_NEON(q1); + const int8x16_t q2s = FlipSign_NEON(q2); + const uint8x16_t simple_lf_mask = vandq_u8(mask, hev_mask); + const int8x16_t delta0 = GetBaseDelta_NEON(p1s, p0s, q0s, q1s); + + // do_filter2 part (simple loopfilter on pixels with hev) + { + const int8x16_t simple_lf_delta = + vandq_s8(delta0, vreinterpretq_s8_u8(simple_lf_mask)); + ApplyFilter2NoFlip_NEON(p0s, q0s, simple_lf_delta, &p0s, &q0s); + } + + // do_filter6 part (complex loopfilter on pixels without hev) + { + // we use: (mask & hev_mask) ^ mask = mask & !hev_mask + const uint8x16_t complex_lf_mask = veorq_u8(simple_lf_mask, mask); + const int8x16_t complex_lf_delta = + vandq_s8(delta0, vreinterpretq_s8_u8(complex_lf_mask)); + ApplyFilter6_NEON(p2s, p1s, p0s, q0s, q1s, q2s, complex_lf_delta, + op2, op1, op0, oq0, oq1, oq2); + } +} + +// on macroblock edges + +static void VFilter16_NEON(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + Load16x8_NEON(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op2, op1, op0, oq0, oq1, oq2; + DoFilter6_NEON(p2, p1, p0, q0, q1, q2, mask, hev_mask, + &op2, &op1, &op0, &oq0, &oq1, &oq2); + Store16x2_NEON(op2, op1, p - 2 * stride, stride); + Store16x2_NEON(op0, oq0, p + 0 * stride, stride); + Store16x2_NEON(oq1, oq2, p + 2 * stride, stride); + } +} + +static void HFilter16_NEON(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + Load8x16_NEON(p, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op2, op1, op0, oq0, oq1, oq2; + DoFilter6_NEON(p2, p1, p0, q0, q1, q2, mask, hev_mask, + &op2, &op1, &op0, &oq0, &oq1, &oq2); + Store2x16_NEON(op2, op1, p - 2, stride); + Store2x16_NEON(op0, oq0, p + 0, stride); + Store2x16_NEON(oq1, oq2, p + 2, stride); + } +} + +// on three inner edges +static void VFilter16i_NEON(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + uint32_t k; + uint8x16_t p3, p2, p1, p0; + Load16x4_NEON(p + 2 * stride, stride, &p3, &p2, &p1, &p0); + for (k = 3; k != 0; --k) { + uint8x16_t q0, q1, q2, q3; + p += 4 * stride; + Load16x4_NEON(p + 2 * stride, stride, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = + NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + // p3 and p2 are not just temporary variables here: they will be + // re-used for next span. And q2/q3 will become p1/p0 accordingly. + DoFilter4_NEON(p1, p0, q0, q1, mask, hev_mask, &p1, &p0, &p3, &p2); + Store16x4_NEON(p1, p0, p3, p2, p, stride); + p1 = q2; + p0 = q3; + } + } +} + +#if !defined(WORK_AROUND_GCC) +static void HFilter16i_NEON(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + uint32_t k; + uint8x16_t p3, p2, p1, p0; + Load4x16_NEON(p + 2, stride, &p3, &p2, &p1, &p0); + for (k = 3; k != 0; --k) { + uint8x16_t q0, q1, q2, q3; + p += 4; + Load4x16_NEON(p + 2, stride, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = + NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + DoFilter4_NEON(p1, p0, q0, q1, mask, hev_mask, &p1, &p0, &p3, &p2); + Store4x16_NEON(p1, p0, p3, p2, p, stride); + p1 = q2; + p0 = q3; + } + } +} +#endif // !WORK_AROUND_GCC + +// 8-pixels wide variant, for chroma filtering +static void VFilter8_NEON(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + Load8x8x2_NEON(u, v, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op2, op1, op0, oq0, oq1, oq2; + DoFilter6_NEON(p2, p1, p0, q0, q1, q2, mask, hev_mask, + &op2, &op1, &op0, &oq0, &oq1, &oq2); + Store8x2x2_NEON(op2, op1, u - 2 * stride, v - 2 * stride, stride); + Store8x2x2_NEON(op0, oq0, u + 0 * stride, v + 0 * stride, stride); + Store8x2x2_NEON(oq1, oq2, u + 2 * stride, v + 2 * stride, stride); + } +} +static void VFilter8i_NEON(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + u += 4 * stride; + v += 4 * stride; + Load8x8x2_NEON(u, v, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op1, op0, oq0, oq1; + DoFilter4_NEON(p1, p0, q0, q1, mask, hev_mask, &op1, &op0, &oq0, &oq1); + Store8x4x2_NEON(op1, op0, oq0, oq1, u, v, stride); + } +} + +#if !defined(WORK_AROUND_GCC) +static void HFilter8_NEON(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + Load8x8x2T_NEON(u, v, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op2, op1, op0, oq0, oq1, oq2; + DoFilter6_NEON(p2, p1, p0, q0, q1, q2, mask, hev_mask, + &op2, &op1, &op0, &oq0, &oq1, &oq2); + Store6x8x2_NEON(op2, op1, op0, oq0, oq1, oq2, u, v, stride); + } +} + +static void HFilter8i_NEON(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + uint8x16_t p3, p2, p1, p0, q0, q1, q2, q3; + u += 4; + v += 4; + Load8x8x2T_NEON(u, v, stride, &p3, &p2, &p1, &p0, &q0, &q1, &q2, &q3); + { + const uint8x16_t mask = NeedsFilter2_NEON(p3, p2, p1, p0, q0, q1, q2, q3, + ithresh, thresh); + const uint8x16_t hev_mask = NeedsHev_NEON(p1, p0, q0, q1, hev_thresh); + uint8x16_t op1, op0, oq0, oq1; + DoFilter4_NEON(p1, p0, q0, q1, mask, hev_mask, &op1, &op0, &oq0, &oq1); + Store4x8x2_NEON(op1, op0, oq0, oq1, u, v, stride); + } +} +#endif // !WORK_AROUND_GCC + +//----------------------------------------------------------------------------- +// Inverse transforms (Paragraph 14.4) + +// Technically these are unsigned but vqdmulh is only available in signed. +// vqdmulh returns high half (effectively >> 16) but also doubles the value, +// changing the >> 16 to >> 15 and requiring an additional >> 1. +// We use this to our advantage with kC2. The canonical value is 35468. +// However, the high bit is set so treating it as signed will give incorrect +// results. We avoid this by down shifting by 1 here to clear the highest bit. +// Combined with the doubling effect of vqdmulh we get >> 16. +// This can not be applied to kC1 because the lowest bit is set. Down shifting +// the constant would reduce precision. + +// libwebp uses a trick to avoid some extra addition that libvpx does. +// Instead of: +// temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16); +// libwebp adds 1 << 16 to cospi8sqrt2minus1 (kC1). However, this causes the +// same issue with kC1 and vqdmulh that we work around by down shifting kC2 + +static const int16_t kC1 = 20091; +static const int16_t kC2 = 17734; // half of kC2, actually. See comment above. + +#if defined(WEBP_USE_INTRINSICS) +static WEBP_INLINE void Transpose8x2_NEON(const int16x8_t in0, + const int16x8_t in1, + int16x8x2_t* const out) { + // a0 a1 a2 a3 | b0 b1 b2 b3 => a0 b0 c0 d0 | a1 b1 c1 d1 + // c0 c1 c2 c3 | d0 d1 d2 d3 a2 b2 c2 d2 | a3 b3 c3 d3 + const int16x8x2_t tmp0 = vzipq_s16(in0, in1); // a0 c0 a1 c1 a2 c2 ... + // b0 d0 b1 d1 b2 d2 ... + *out = vzipq_s16(tmp0.val[0], tmp0.val[1]); +} + +static WEBP_INLINE void TransformPass_NEON(int16x8x2_t* const rows) { + // {rows} = in0 | in4 + // in8 | in12 + // B1 = in4 | in12 + const int16x8_t B1 = + vcombine_s16(vget_high_s16(rows->val[0]), vget_high_s16(rows->val[1])); + // C0 = kC1 * in4 | kC1 * in12 + // C1 = kC2 * in4 | kC2 * in12 + const int16x8_t C0 = vsraq_n_s16(B1, vqdmulhq_n_s16(B1, kC1), 1); + const int16x8_t C1 = vqdmulhq_n_s16(B1, kC2); + const int16x4_t a = vqadd_s16(vget_low_s16(rows->val[0]), + vget_low_s16(rows->val[1])); // in0 + in8 + const int16x4_t b = vqsub_s16(vget_low_s16(rows->val[0]), + vget_low_s16(rows->val[1])); // in0 - in8 + // c = kC2 * in4 - kC1 * in12 + // d = kC1 * in4 + kC2 * in12 + const int16x4_t c = vqsub_s16(vget_low_s16(C1), vget_high_s16(C0)); + const int16x4_t d = vqadd_s16(vget_low_s16(C0), vget_high_s16(C1)); + const int16x8_t D0 = vcombine_s16(a, b); // D0 = a | b + const int16x8_t D1 = vcombine_s16(d, c); // D1 = d | c + const int16x8_t E0 = vqaddq_s16(D0, D1); // a+d | b+c + const int16x8_t E_tmp = vqsubq_s16(D0, D1); // a-d | b-c + const int16x8_t E1 = vcombine_s16(vget_high_s16(E_tmp), vget_low_s16(E_tmp)); + Transpose8x2_NEON(E0, E1, rows); +} + +static void TransformOne_NEON(const int16_t* in, uint8_t* dst) { + int16x8x2_t rows; + INIT_VECTOR2(rows, vld1q_s16(in + 0), vld1q_s16(in + 8)); + TransformPass_NEON(&rows); + TransformPass_NEON(&rows); + Add4x4_NEON(rows.val[0], rows.val[1], dst); +} + +#else + +static void TransformOne_NEON(const int16_t* in, uint8_t* dst) { + const int kBPS = BPS; + // kC1, kC2. Padded because vld1.16 loads 8 bytes + const int16_t constants[4] = { kC1, kC2, 0, 0 }; + /* Adapted from libvpx: vp8/common/arm/neon/shortidct4x4llm_neon.asm */ + __asm__ volatile ( + "vld1.16 {q1, q2}, [%[in]] \n" + "vld1.16 {d0}, [%[constants]] \n" + + /* d2: in[0] + * d3: in[8] + * d4: in[4] + * d5: in[12] + */ + "vswp d3, d4 \n" + + /* q8 = {in[4], in[12]} * kC1 * 2 >> 16 + * q9 = {in[4], in[12]} * kC2 >> 16 + */ + "vqdmulh.s16 q8, q2, d0[0] \n" + "vqdmulh.s16 q9, q2, d0[1] \n" + + /* d22 = a = in[0] + in[8] + * d23 = b = in[0] - in[8] + */ + "vqadd.s16 d22, d2, d3 \n" + "vqsub.s16 d23, d2, d3 \n" + + /* The multiplication should be x * kC1 >> 16 + * However, with vqdmulh we get x * kC1 * 2 >> 16 + * (multiply, double, return high half) + * We avoided this in kC2 by pre-shifting the constant. + * q8 = in[4]/[12] * kC1 >> 16 + */ + "vshr.s16 q8, q8, #1 \n" + + /* Add {in[4], in[12]} back after the multiplication. This is handled by + * adding 1 << 16 to kC1 in the libwebp C code. + */ + "vqadd.s16 q8, q2, q8 \n" + + /* d20 = c = in[4]*kC2 - in[12]*kC1 + * d21 = d = in[4]*kC1 + in[12]*kC2 + */ + "vqsub.s16 d20, d18, d17 \n" + "vqadd.s16 d21, d19, d16 \n" + + /* d2 = tmp[0] = a + d + * d3 = tmp[1] = b + c + * d4 = tmp[2] = b - c + * d5 = tmp[3] = a - d + */ + "vqadd.s16 d2, d22, d21 \n" + "vqadd.s16 d3, d23, d20 \n" + "vqsub.s16 d4, d23, d20 \n" + "vqsub.s16 d5, d22, d21 \n" + + "vzip.16 q1, q2 \n" + "vzip.16 q1, q2 \n" + + "vswp d3, d4 \n" + + /* q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16 + * q9 = {tmp[4], tmp[12]} * kC2 >> 16 + */ + "vqdmulh.s16 q8, q2, d0[0] \n" + "vqdmulh.s16 q9, q2, d0[1] \n" + + /* d22 = a = tmp[0] + tmp[8] + * d23 = b = tmp[0] - tmp[8] + */ + "vqadd.s16 d22, d2, d3 \n" + "vqsub.s16 d23, d2, d3 \n" + + /* See long winded explanations prior */ + "vshr.s16 q8, q8, #1 \n" + "vqadd.s16 q8, q2, q8 \n" + + /* d20 = c = in[4]*kC2 - in[12]*kC1 + * d21 = d = in[4]*kC1 + in[12]*kC2 + */ + "vqsub.s16 d20, d18, d17 \n" + "vqadd.s16 d21, d19, d16 \n" + + /* d2 = tmp[0] = a + d + * d3 = tmp[1] = b + c + * d4 = tmp[2] = b - c + * d5 = tmp[3] = a - d + */ + "vqadd.s16 d2, d22, d21 \n" + "vqadd.s16 d3, d23, d20 \n" + "vqsub.s16 d4, d23, d20 \n" + "vqsub.s16 d5, d22, d21 \n" + + "vld1.32 d6[0], [%[dst]], %[kBPS] \n" + "vld1.32 d6[1], [%[dst]], %[kBPS] \n" + "vld1.32 d7[0], [%[dst]], %[kBPS] \n" + "vld1.32 d7[1], [%[dst]], %[kBPS] \n" + + "sub %[dst], %[dst], %[kBPS], lsl #2 \n" + + /* (val) + 4 >> 3 */ + "vrshr.s16 d2, d2, #3 \n" + "vrshr.s16 d3, d3, #3 \n" + "vrshr.s16 d4, d4, #3 \n" + "vrshr.s16 d5, d5, #3 \n" + + "vzip.16 q1, q2 \n" + "vzip.16 q1, q2 \n" + + /* Must accumulate before saturating */ + "vmovl.u8 q8, d6 \n" + "vmovl.u8 q9, d7 \n" + + "vqadd.s16 q1, q1, q8 \n" + "vqadd.s16 q2, q2, q9 \n" + + "vqmovun.s16 d0, q1 \n" + "vqmovun.s16 d1, q2 \n" + + "vst1.32 d0[0], [%[dst]], %[kBPS] \n" + "vst1.32 d0[1], [%[dst]], %[kBPS] \n" + "vst1.32 d1[0], [%[dst]], %[kBPS] \n" + "vst1.32 d1[1], [%[dst]] \n" + + : [in] "+r"(in), [dst] "+r"(dst) /* modified registers */ + : [kBPS] "r"(kBPS), [constants] "r"(constants) /* constants */ + : "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" /* clobbered */ + ); +} + +#endif // WEBP_USE_INTRINSICS + +static void TransformTwo_NEON(const int16_t* in, uint8_t* dst, int do_two) { + TransformOne_NEON(in, dst); + if (do_two) { + TransformOne_NEON(in + 16, dst + 4); + } +} + +static void TransformDC_NEON(const int16_t* in, uint8_t* dst) { + const int16x8_t DC = vdupq_n_s16(in[0]); + Add4x4_NEON(DC, DC, dst); +} + +//------------------------------------------------------------------------------ + +#define STORE_WHT(dst, col, rows) do { \ + *dst = vgetq_lane_s32(rows.val[0], col); (dst) += 16; \ + *dst = vgetq_lane_s32(rows.val[1], col); (dst) += 16; \ + *dst = vgetq_lane_s32(rows.val[2], col); (dst) += 16; \ + *dst = vgetq_lane_s32(rows.val[3], col); (dst) += 16; \ +} while (0) + +static void TransformWHT_NEON(const int16_t* in, int16_t* out) { + int32x4x4_t tmp; + + { + // Load the source. + const int16x4_t in00_03 = vld1_s16(in + 0); + const int16x4_t in04_07 = vld1_s16(in + 4); + const int16x4_t in08_11 = vld1_s16(in + 8); + const int16x4_t in12_15 = vld1_s16(in + 12); + const int32x4_t a0 = vaddl_s16(in00_03, in12_15); // in[0..3] + in[12..15] + const int32x4_t a1 = vaddl_s16(in04_07, in08_11); // in[4..7] + in[8..11] + const int32x4_t a2 = vsubl_s16(in04_07, in08_11); // in[4..7] - in[8..11] + const int32x4_t a3 = vsubl_s16(in00_03, in12_15); // in[0..3] - in[12..15] + tmp.val[0] = vaddq_s32(a0, a1); + tmp.val[1] = vaddq_s32(a3, a2); + tmp.val[2] = vsubq_s32(a0, a1); + tmp.val[3] = vsubq_s32(a3, a2); + // Arrange the temporary results column-wise. + tmp = Transpose4x4_NEON(tmp); + } + + { + const int32x4_t kCst3 = vdupq_n_s32(3); + const int32x4_t dc = vaddq_s32(tmp.val[0], kCst3); // add rounder + const int32x4_t a0 = vaddq_s32(dc, tmp.val[3]); + const int32x4_t a1 = vaddq_s32(tmp.val[1], tmp.val[2]); + const int32x4_t a2 = vsubq_s32(tmp.val[1], tmp.val[2]); + const int32x4_t a3 = vsubq_s32(dc, tmp.val[3]); + + tmp.val[0] = vaddq_s32(a0, a1); + tmp.val[1] = vaddq_s32(a3, a2); + tmp.val[2] = vsubq_s32(a0, a1); + tmp.val[3] = vsubq_s32(a3, a2); + + // right shift the results by 3. + tmp.val[0] = vshrq_n_s32(tmp.val[0], 3); + tmp.val[1] = vshrq_n_s32(tmp.val[1], 3); + tmp.val[2] = vshrq_n_s32(tmp.val[2], 3); + tmp.val[3] = vshrq_n_s32(tmp.val[3], 3); + + STORE_WHT(out, 0, tmp); + STORE_WHT(out, 1, tmp); + STORE_WHT(out, 2, tmp); + STORE_WHT(out, 3, tmp); + } +} + +#undef STORE_WHT + +//------------------------------------------------------------------------------ + +#define MUL(a, b) (((a) * (b)) >> 16) +static void TransformAC3_NEON(const int16_t* in, uint8_t* dst) { + static const int kC1_full = 20091 + (1 << 16); + static const int kC2_full = 35468; + const int16x4_t A = vld1_dup_s16(in); + const int16x4_t c4 = vdup_n_s16(MUL(in[4], kC2_full)); + const int16x4_t d4 = vdup_n_s16(MUL(in[4], kC1_full)); + const int c1 = MUL(in[1], kC2_full); + const int d1 = MUL(in[1], kC1_full); + const uint64_t cd = (uint64_t)( d1 & 0xffff) << 0 | + (uint64_t)( c1 & 0xffff) << 16 | + (uint64_t)(-c1 & 0xffff) << 32 | + (uint64_t)(-d1 & 0xffff) << 48; + const int16x4_t CD = vcreate_s16(cd); + const int16x4_t B = vqadd_s16(A, CD); + const int16x8_t m0_m1 = vcombine_s16(vqadd_s16(B, d4), vqadd_s16(B, c4)); + const int16x8_t m2_m3 = vcombine_s16(vqsub_s16(B, c4), vqsub_s16(B, d4)); + Add4x4_NEON(m0_m1, m2_m3, dst); +} +#undef MUL + +//------------------------------------------------------------------------------ +// 4x4 + +static void DC4_NEON(uint8_t* dst) { // DC + const uint8x8_t A = vld1_u8(dst - BPS); // top row + const uint16x4_t p0 = vpaddl_u8(A); // cascading summation of the top + const uint16x4_t p1 = vpadd_u16(p0, p0); + const uint8x8_t L0 = vld1_u8(dst + 0 * BPS - 1); + const uint8x8_t L1 = vld1_u8(dst + 1 * BPS - 1); + const uint8x8_t L2 = vld1_u8(dst + 2 * BPS - 1); + const uint8x8_t L3 = vld1_u8(dst + 3 * BPS - 1); + const uint16x8_t s0 = vaddl_u8(L0, L1); + const uint16x8_t s1 = vaddl_u8(L2, L3); + const uint16x8_t s01 = vaddq_u16(s0, s1); + const uint16x8_t sum = vaddq_u16(s01, vcombine_u16(p1, p1)); + const uint8x8_t dc0 = vrshrn_n_u16(sum, 3); // (sum + 4) >> 3 + const uint8x8_t dc = vdup_lane_u8(dc0, 0); + int i; + for (i = 0; i < 4; ++i) { + vst1_lane_u32((uint32_t*)(dst + i * BPS), vreinterpret_u32_u8(dc), 0); + } +} + +// TrueMotion (4x4 + 8x8) +static WEBP_INLINE void TrueMotion_NEON(uint8_t* dst, int size) { + const uint8x8_t TL = vld1_dup_u8(dst - BPS - 1); // top-left pixel 'A[-1]' + const uint8x8_t T = vld1_u8(dst - BPS); // top row 'A[0..3]' + const int16x8_t d = vreinterpretq_s16_u16(vsubl_u8(T, TL)); // A[c] - A[-1] + int y; + for (y = 0; y < size; y += 4) { + // left edge + const int16x8_t L0 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 0 * BPS - 1)); + const int16x8_t L1 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 1 * BPS - 1)); + const int16x8_t L2 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 2 * BPS - 1)); + const int16x8_t L3 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 3 * BPS - 1)); + const int16x8_t r0 = vaddq_s16(L0, d); // L[r] + A[c] - A[-1] + const int16x8_t r1 = vaddq_s16(L1, d); + const int16x8_t r2 = vaddq_s16(L2, d); + const int16x8_t r3 = vaddq_s16(L3, d); + // Saturate and store the result. + const uint32x2_t r0_u32 = vreinterpret_u32_u8(vqmovun_s16(r0)); + const uint32x2_t r1_u32 = vreinterpret_u32_u8(vqmovun_s16(r1)); + const uint32x2_t r2_u32 = vreinterpret_u32_u8(vqmovun_s16(r2)); + const uint32x2_t r3_u32 = vreinterpret_u32_u8(vqmovun_s16(r3)); + if (size == 4) { + vst1_lane_u32((uint32_t*)(dst + 0 * BPS), r0_u32, 0); + vst1_lane_u32((uint32_t*)(dst + 1 * BPS), r1_u32, 0); + vst1_lane_u32((uint32_t*)(dst + 2 * BPS), r2_u32, 0); + vst1_lane_u32((uint32_t*)(dst + 3 * BPS), r3_u32, 0); + } else { + vst1_u32((uint32_t*)(dst + 0 * BPS), r0_u32); + vst1_u32((uint32_t*)(dst + 1 * BPS), r1_u32); + vst1_u32((uint32_t*)(dst + 2 * BPS), r2_u32); + vst1_u32((uint32_t*)(dst + 3 * BPS), r3_u32); + } + dst += 4 * BPS; + } +} + +static void TM4_NEON(uint8_t* dst) { TrueMotion_NEON(dst, 4); } + +static void VE4_NEON(uint8_t* dst) { // vertical + // NB: avoid vld1_u64 here as an alignment hint may be added -> SIGBUS. + const uint64x1_t A0 = vreinterpret_u64_u8(vld1_u8(dst - BPS - 1)); // top row + const uint64x1_t A1 = vshr_n_u64(A0, 8); + const uint64x1_t A2 = vshr_n_u64(A0, 16); + const uint8x8_t ABCDEFGH = vreinterpret_u8_u64(A0); + const uint8x8_t BCDEFGH0 = vreinterpret_u8_u64(A1); + const uint8x8_t CDEFGH00 = vreinterpret_u8_u64(A2); + const uint8x8_t b = vhadd_u8(ABCDEFGH, CDEFGH00); + const uint8x8_t avg = vrhadd_u8(b, BCDEFGH0); + int i; + for (i = 0; i < 4; ++i) { + vst1_lane_u32((uint32_t*)(dst + i * BPS), vreinterpret_u32_u8(avg), 0); + } +} + +static void RD4_NEON(uint8_t* dst) { // Down-right + const uint8x8_t XABCD_u8 = vld1_u8(dst - BPS - 1); + const uint64x1_t XABCD = vreinterpret_u64_u8(XABCD_u8); + const uint64x1_t ____XABC = vshl_n_u64(XABCD, 32); + const uint32_t I = dst[-1 + 0 * BPS]; + const uint32_t J = dst[-1 + 1 * BPS]; + const uint32_t K = dst[-1 + 2 * BPS]; + const uint32_t L = dst[-1 + 3 * BPS]; + const uint64x1_t LKJI____ = + vcreate_u64((uint64_t)L | (K << 8) | (J << 16) | (I << 24)); + const uint64x1_t LKJIXABC = vorr_u64(LKJI____, ____XABC); + const uint8x8_t KJIXABC_ = vreinterpret_u8_u64(vshr_n_u64(LKJIXABC, 8)); + const uint8x8_t JIXABC__ = vreinterpret_u8_u64(vshr_n_u64(LKJIXABC, 16)); + const uint8_t D = vget_lane_u8(XABCD_u8, 4); + const uint8x8_t JIXABCD_ = vset_lane_u8(D, JIXABC__, 6); + const uint8x8_t LKJIXABC_u8 = vreinterpret_u8_u64(LKJIXABC); + const uint8x8_t avg1 = vhadd_u8(JIXABCD_, LKJIXABC_u8); + const uint8x8_t avg2 = vrhadd_u8(avg1, KJIXABC_); + const uint64x1_t avg2_u64 = vreinterpret_u64_u8(avg2); + const uint32x2_t r3 = vreinterpret_u32_u8(avg2); + const uint32x2_t r2 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 8)); + const uint32x2_t r1 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 16)); + const uint32x2_t r0 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 24)); + vst1_lane_u32((uint32_t*)(dst + 0 * BPS), r0, 0); + vst1_lane_u32((uint32_t*)(dst + 1 * BPS), r1, 0); + vst1_lane_u32((uint32_t*)(dst + 2 * BPS), r2, 0); + vst1_lane_u32((uint32_t*)(dst + 3 * BPS), r3, 0); +} + +static void LD4_NEON(uint8_t* dst) { // Down-left + // Note using the same shift trick as VE4() is slower here. + const uint8x8_t ABCDEFGH = vld1_u8(dst - BPS + 0); + const uint8x8_t BCDEFGH0 = vld1_u8(dst - BPS + 1); + const uint8x8_t CDEFGH00 = vld1_u8(dst - BPS + 2); + const uint8x8_t CDEFGHH0 = vset_lane_u8(dst[-BPS + 7], CDEFGH00, 6); + const uint8x8_t avg1 = vhadd_u8(ABCDEFGH, CDEFGHH0); + const uint8x8_t avg2 = vrhadd_u8(avg1, BCDEFGH0); + const uint64x1_t avg2_u64 = vreinterpret_u64_u8(avg2); + const uint32x2_t r0 = vreinterpret_u32_u8(avg2); + const uint32x2_t r1 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 8)); + const uint32x2_t r2 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 16)); + const uint32x2_t r3 = vreinterpret_u32_u64(vshr_n_u64(avg2_u64, 24)); + vst1_lane_u32((uint32_t*)(dst + 0 * BPS), r0, 0); + vst1_lane_u32((uint32_t*)(dst + 1 * BPS), r1, 0); + vst1_lane_u32((uint32_t*)(dst + 2 * BPS), r2, 0); + vst1_lane_u32((uint32_t*)(dst + 3 * BPS), r3, 0); +} + +//------------------------------------------------------------------------------ +// Chroma + +static void VE8uv_NEON(uint8_t* dst) { // vertical + const uint8x8_t top = vld1_u8(dst - BPS); + int j; + for (j = 0; j < 8; ++j) { + vst1_u8(dst + j * BPS, top); + } +} + +static void HE8uv_NEON(uint8_t* dst) { // horizontal + int j; + for (j = 0; j < 8; ++j) { + const uint8x8_t left = vld1_dup_u8(dst - 1); + vst1_u8(dst, left); + dst += BPS; + } +} + +static WEBP_INLINE void DC8_NEON(uint8_t* dst, int do_top, int do_left) { + uint16x8_t sum_top; + uint16x8_t sum_left; + uint8x8_t dc0; + + if (do_top) { + const uint8x8_t A = vld1_u8(dst - BPS); // top row +#if defined(__aarch64__) + const uint16_t p2 = vaddlv_u8(A); + sum_top = vdupq_n_u16(p2); +#else + const uint16x4_t p0 = vpaddl_u8(A); // cascading summation of the top + const uint16x4_t p1 = vpadd_u16(p0, p0); + const uint16x4_t p2 = vpadd_u16(p1, p1); + sum_top = vcombine_u16(p2, p2); +#endif + } + + if (do_left) { + const uint8x8_t L0 = vld1_u8(dst + 0 * BPS - 1); + const uint8x8_t L1 = vld1_u8(dst + 1 * BPS - 1); + const uint8x8_t L2 = vld1_u8(dst + 2 * BPS - 1); + const uint8x8_t L3 = vld1_u8(dst + 3 * BPS - 1); + const uint8x8_t L4 = vld1_u8(dst + 4 * BPS - 1); + const uint8x8_t L5 = vld1_u8(dst + 5 * BPS - 1); + const uint8x8_t L6 = vld1_u8(dst + 6 * BPS - 1); + const uint8x8_t L7 = vld1_u8(dst + 7 * BPS - 1); + const uint16x8_t s0 = vaddl_u8(L0, L1); + const uint16x8_t s1 = vaddl_u8(L2, L3); + const uint16x8_t s2 = vaddl_u8(L4, L5); + const uint16x8_t s3 = vaddl_u8(L6, L7); + const uint16x8_t s01 = vaddq_u16(s0, s1); + const uint16x8_t s23 = vaddq_u16(s2, s3); + sum_left = vaddq_u16(s01, s23); + } + + if (do_top && do_left) { + const uint16x8_t sum = vaddq_u16(sum_left, sum_top); + dc0 = vrshrn_n_u16(sum, 4); + } else if (do_top) { + dc0 = vrshrn_n_u16(sum_top, 3); + } else if (do_left) { + dc0 = vrshrn_n_u16(sum_left, 3); + } else { + dc0 = vdup_n_u8(0x80); + } + + { + const uint8x8_t dc = vdup_lane_u8(dc0, 0); + int i; + for (i = 0; i < 8; ++i) { + vst1_u32((uint32_t*)(dst + i * BPS), vreinterpret_u32_u8(dc)); + } + } +} + +static void DC8uv_NEON(uint8_t* dst) { DC8_NEON(dst, 1, 1); } +static void DC8uvNoTop_NEON(uint8_t* dst) { DC8_NEON(dst, 0, 1); } +static void DC8uvNoLeft_NEON(uint8_t* dst) { DC8_NEON(dst, 1, 0); } +static void DC8uvNoTopLeft_NEON(uint8_t* dst) { DC8_NEON(dst, 0, 0); } + +static void TM8uv_NEON(uint8_t* dst) { TrueMotion_NEON(dst, 8); } + +//------------------------------------------------------------------------------ +// 16x16 + +static void VE16_NEON(uint8_t* dst) { // vertical + const uint8x16_t top = vld1q_u8(dst - BPS); + int j; + for (j = 0; j < 16; ++j) { + vst1q_u8(dst + j * BPS, top); + } +} + +static void HE16_NEON(uint8_t* dst) { // horizontal + int j; + for (j = 0; j < 16; ++j) { + const uint8x16_t left = vld1q_dup_u8(dst - 1); + vst1q_u8(dst, left); + dst += BPS; + } +} + +static WEBP_INLINE void DC16_NEON(uint8_t* dst, int do_top, int do_left) { + uint16x8_t sum_top; + uint16x8_t sum_left; + uint8x8_t dc0; + + if (do_top) { + const uint8x16_t A = vld1q_u8(dst - BPS); // top row +#if defined(__aarch64__) + const uint16_t p3 = vaddlvq_u8(A); + sum_top = vdupq_n_u16(p3); +#else + const uint16x8_t p0 = vpaddlq_u8(A); // cascading summation of the top + const uint16x4_t p1 = vadd_u16(vget_low_u16(p0), vget_high_u16(p0)); + const uint16x4_t p2 = vpadd_u16(p1, p1); + const uint16x4_t p3 = vpadd_u16(p2, p2); + sum_top = vcombine_u16(p3, p3); +#endif + } + + if (do_left) { + int i; + sum_left = vdupq_n_u16(0); + for (i = 0; i < 16; i += 8) { + const uint8x8_t L0 = vld1_u8(dst + (i + 0) * BPS - 1); + const uint8x8_t L1 = vld1_u8(dst + (i + 1) * BPS - 1); + const uint8x8_t L2 = vld1_u8(dst + (i + 2) * BPS - 1); + const uint8x8_t L3 = vld1_u8(dst + (i + 3) * BPS - 1); + const uint8x8_t L4 = vld1_u8(dst + (i + 4) * BPS - 1); + const uint8x8_t L5 = vld1_u8(dst + (i + 5) * BPS - 1); + const uint8x8_t L6 = vld1_u8(dst + (i + 6) * BPS - 1); + const uint8x8_t L7 = vld1_u8(dst + (i + 7) * BPS - 1); + const uint16x8_t s0 = vaddl_u8(L0, L1); + const uint16x8_t s1 = vaddl_u8(L2, L3); + const uint16x8_t s2 = vaddl_u8(L4, L5); + const uint16x8_t s3 = vaddl_u8(L6, L7); + const uint16x8_t s01 = vaddq_u16(s0, s1); + const uint16x8_t s23 = vaddq_u16(s2, s3); + const uint16x8_t sum = vaddq_u16(s01, s23); + sum_left = vaddq_u16(sum_left, sum); + } + } + + if (do_top && do_left) { + const uint16x8_t sum = vaddq_u16(sum_left, sum_top); + dc0 = vrshrn_n_u16(sum, 5); + } else if (do_top) { + dc0 = vrshrn_n_u16(sum_top, 4); + } else if (do_left) { + dc0 = vrshrn_n_u16(sum_left, 4); + } else { + dc0 = vdup_n_u8(0x80); + } + + { + const uint8x16_t dc = vdupq_lane_u8(dc0, 0); + int i; + for (i = 0; i < 16; ++i) { + vst1q_u8(dst + i * BPS, dc); + } + } +} + +static void DC16TopLeft_NEON(uint8_t* dst) { DC16_NEON(dst, 1, 1); } +static void DC16NoTop_NEON(uint8_t* dst) { DC16_NEON(dst, 0, 1); } +static void DC16NoLeft_NEON(uint8_t* dst) { DC16_NEON(dst, 1, 0); } +static void DC16NoTopLeft_NEON(uint8_t* dst) { DC16_NEON(dst, 0, 0); } + +static void TM16_NEON(uint8_t* dst) { + const uint8x8_t TL = vld1_dup_u8(dst - BPS - 1); // top-left pixel 'A[-1]' + const uint8x16_t T = vld1q_u8(dst - BPS); // top row 'A[0..15]' + // A[c] - A[-1] + const int16x8_t d_lo = vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), TL)); + const int16x8_t d_hi = vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), TL)); + int y; + for (y = 0; y < 16; y += 4) { + // left edge + const int16x8_t L0 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 0 * BPS - 1)); + const int16x8_t L1 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 1 * BPS - 1)); + const int16x8_t L2 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 2 * BPS - 1)); + const int16x8_t L3 = ConvertU8ToS16_NEON(vld1_dup_u8(dst + 3 * BPS - 1)); + const int16x8_t r0_lo = vaddq_s16(L0, d_lo); // L[r] + A[c] - A[-1] + const int16x8_t r1_lo = vaddq_s16(L1, d_lo); + const int16x8_t r2_lo = vaddq_s16(L2, d_lo); + const int16x8_t r3_lo = vaddq_s16(L3, d_lo); + const int16x8_t r0_hi = vaddq_s16(L0, d_hi); + const int16x8_t r1_hi = vaddq_s16(L1, d_hi); + const int16x8_t r2_hi = vaddq_s16(L2, d_hi); + const int16x8_t r3_hi = vaddq_s16(L3, d_hi); + // Saturate and store the result. + const uint8x16_t row0 = vcombine_u8(vqmovun_s16(r0_lo), vqmovun_s16(r0_hi)); + const uint8x16_t row1 = vcombine_u8(vqmovun_s16(r1_lo), vqmovun_s16(r1_hi)); + const uint8x16_t row2 = vcombine_u8(vqmovun_s16(r2_lo), vqmovun_s16(r2_hi)); + const uint8x16_t row3 = vcombine_u8(vqmovun_s16(r3_lo), vqmovun_s16(r3_hi)); + vst1q_u8(dst + 0 * BPS, row0); + vst1q_u8(dst + 1 * BPS, row1); + vst1q_u8(dst + 2 * BPS, row2); + vst1q_u8(dst + 3 * BPS, row3); + dst += 4 * BPS; + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitNEON(void) { + VP8Transform = TransformTwo_NEON; + VP8TransformAC3 = TransformAC3_NEON; + VP8TransformDC = TransformDC_NEON; + VP8TransformWHT = TransformWHT_NEON; + + VP8VFilter16 = VFilter16_NEON; + VP8VFilter16i = VFilter16i_NEON; + VP8HFilter16 = HFilter16_NEON; +#if !defined(WORK_AROUND_GCC) + VP8HFilter16i = HFilter16i_NEON; +#endif + VP8VFilter8 = VFilter8_NEON; + VP8VFilter8i = VFilter8i_NEON; +#if !defined(WORK_AROUND_GCC) + VP8HFilter8 = HFilter8_NEON; + VP8HFilter8i = HFilter8i_NEON; +#endif + VP8SimpleVFilter16 = SimpleVFilter16_NEON; + VP8SimpleHFilter16 = SimpleHFilter16_NEON; + VP8SimpleVFilter16i = SimpleVFilter16i_NEON; + VP8SimpleHFilter16i = SimpleHFilter16i_NEON; + + VP8PredLuma4[0] = DC4_NEON; + VP8PredLuma4[1] = TM4_NEON; + VP8PredLuma4[2] = VE4_NEON; + VP8PredLuma4[4] = RD4_NEON; + VP8PredLuma4[6] = LD4_NEON; + + VP8PredLuma16[0] = DC16TopLeft_NEON; + VP8PredLuma16[1] = TM16_NEON; + VP8PredLuma16[2] = VE16_NEON; + VP8PredLuma16[3] = HE16_NEON; + VP8PredLuma16[4] = DC16NoTop_NEON; + VP8PredLuma16[5] = DC16NoLeft_NEON; + VP8PredLuma16[6] = DC16NoTopLeft_NEON; + + VP8PredChroma8[0] = DC8uv_NEON; + VP8PredChroma8[1] = TM8uv_NEON; + VP8PredChroma8[2] = VE8uv_NEON; + VP8PredChroma8[3] = HE8uv_NEON; + VP8PredChroma8[4] = DC8uvNoTop_NEON; + VP8PredChroma8[5] = DC8uvNoLeft_NEON; + VP8PredChroma8[6] = DC8uvNoTopLeft_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8DspInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/dec_sse2.c b/media/libwebp/src/dsp/dec_sse2.c new file mode 100644 index 0000000000..01e6bcb636 --- /dev/null +++ b/media/libwebp/src/dsp/dec_sse2.c @@ -0,0 +1,1228 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of some decoding functions (idct, loop filtering). +// +// Author: somnath@google.com (Somnath Banerjee) +// cduvivier@google.com (Christian Duvivier) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +// The 3-coeff sparse transform in SSE2 is not really faster than the plain-C +// one it seems => disable it by default. Uncomment the following to enable: +#if !defined(USE_TRANSFORM_AC3) +#define USE_TRANSFORM_AC3 0 // ALTERNATE_CODE +#endif + +#include <emmintrin.h> +#include "src/dsp/common_sse2.h" +#include "src/dec/vp8i_dec.h" +#include "src/utils/utils.h" + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +static void Transform_SSE2(const int16_t* in, uint8_t* dst, int do_two) { + // This implementation makes use of 16-bit fixed point versions of two + // multiply constants: + // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 + // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 + // + // To be able to use signed 16-bit integers, we use the following trick to + // have constants within range: + // - Associated constants are obtained by subtracting the 16-bit fixed point + // version of one: + // k = K - (1 << 16) => K = k + (1 << 16) + // K1 = 85267 => k1 = 20091 + // K2 = 35468 => k2 = -30068 + // - The multiplication of a variable by a constant become the sum of the + // variable and the multiplication of that variable by the associated + // constant: + // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x + const __m128i k1 = _mm_set1_epi16(20091); + const __m128i k2 = _mm_set1_epi16(-30068); + __m128i T0, T1, T2, T3; + + // Load and concatenate the transform coefficients (we'll do two transforms + // in parallel). In the case of only one transform, the second half of the + // vectors will just contain random value we'll never use nor store. + __m128i in0, in1, in2, in3; + { + in0 = _mm_loadl_epi64((const __m128i*)&in[0]); + in1 = _mm_loadl_epi64((const __m128i*)&in[4]); + in2 = _mm_loadl_epi64((const __m128i*)&in[8]); + in3 = _mm_loadl_epi64((const __m128i*)&in[12]); + // a00 a10 a20 a30 x x x x + // a01 a11 a21 a31 x x x x + // a02 a12 a22 a32 x x x x + // a03 a13 a23 a33 x x x x + if (do_two) { + const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); + const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); + const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); + const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); + in0 = _mm_unpacklo_epi64(in0, inB0); + in1 = _mm_unpacklo_epi64(in1, inB1); + in2 = _mm_unpacklo_epi64(in2, inB2); + in3 = _mm_unpacklo_epi64(in3, inB3); + // a00 a10 a20 a30 b00 b10 b20 b30 + // a01 a11 a21 a31 b01 b11 b21 b31 + // a02 a12 a22 a32 b02 b12 b22 b32 + // a03 a13 a23 a33 b03 b13 b23 b33 + } + } + + // Vertical pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i a = _mm_add_epi16(in0, in2); + const __m128i b = _mm_sub_epi16(in0, in2); + // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 + const __m128i c1 = _mm_mulhi_epi16(in1, k2); + const __m128i c2 = _mm_mulhi_epi16(in3, k1); + const __m128i c3 = _mm_sub_epi16(in1, in3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 + const __m128i d1 = _mm_mulhi_epi16(in1, k1); + const __m128i d2 = _mm_mulhi_epi16(in3, k2); + const __m128i d3 = _mm_add_epi16(in1, in3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); + } + + // Horizontal pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i four = _mm_set1_epi16(4); + const __m128i dc = _mm_add_epi16(T0, four); + const __m128i a = _mm_add_epi16(dc, T2); + const __m128i b = _mm_sub_epi16(dc, T2); + // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 + const __m128i c1 = _mm_mulhi_epi16(T1, k2); + const __m128i c2 = _mm_mulhi_epi16(T3, k1); + const __m128i c3 = _mm_sub_epi16(T1, T3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 + const __m128i d1 = _mm_mulhi_epi16(T1, k1); + const __m128i d2 = _mm_mulhi_epi16(T3, k2); + const __m128i d3 = _mm_add_epi16(T1, T3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); + const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); + const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); + const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, + &T2, &T3); + } + + // Add inverse transform to 'dst' and store. + { + const __m128i zero = _mm_setzero_si128(); + // Load the reference(s). + __m128i dst0, dst1, dst2, dst3; + if (do_two) { + // Load eight bytes/pixels per line. + dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); + dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); + dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); + dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); + } else { + // Load four bytes/pixels per line. + dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS)); + dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS)); + dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS)); + dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS)); + } + // Convert to 16b. + dst0 = _mm_unpacklo_epi8(dst0, zero); + dst1 = _mm_unpacklo_epi8(dst1, zero); + dst2 = _mm_unpacklo_epi8(dst2, zero); + dst3 = _mm_unpacklo_epi8(dst3, zero); + // Add the inverse transform(s). + dst0 = _mm_add_epi16(dst0, T0); + dst1 = _mm_add_epi16(dst1, T1); + dst2 = _mm_add_epi16(dst2, T2); + dst3 = _mm_add_epi16(dst3, T3); + // Unsigned saturate to 8b. + dst0 = _mm_packus_epi16(dst0, dst0); + dst1 = _mm_packus_epi16(dst1, dst1); + dst2 = _mm_packus_epi16(dst2, dst2); + dst3 = _mm_packus_epi16(dst3, dst3); + // Store the results. + if (do_two) { + // Store eight bytes/pixels per line. + _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); + _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); + _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); + _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); + } else { + // Store four bytes/pixels per line. + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); + } + } +} + +#if (USE_TRANSFORM_AC3 == 1) +#define MUL(a, b) (((a) * (b)) >> 16) +static void TransformAC3(const int16_t* in, uint8_t* dst) { + static const int kC1 = 20091 + (1 << 16); + static const int kC2 = 35468; + const __m128i A = _mm_set1_epi16(in[0] + 4); + const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); + const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); + const int c1 = MUL(in[1], kC2); + const int d1 = MUL(in[1], kC1); + const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); + const __m128i B = _mm_adds_epi16(A, CD); + const __m128i m0 = _mm_adds_epi16(B, d4); + const __m128i m1 = _mm_adds_epi16(B, c4); + const __m128i m2 = _mm_subs_epi16(B, c4); + const __m128i m3 = _mm_subs_epi16(B, d4); + const __m128i zero = _mm_setzero_si128(); + // Load the source pixels. + __m128i dst0 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 0 * BPS)); + __m128i dst1 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 1 * BPS)); + __m128i dst2 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 2 * BPS)); + __m128i dst3 = _mm_cvtsi32_si128(WebPMemToInt32(dst + 3 * BPS)); + // Convert to 16b. + dst0 = _mm_unpacklo_epi8(dst0, zero); + dst1 = _mm_unpacklo_epi8(dst1, zero); + dst2 = _mm_unpacklo_epi8(dst2, zero); + dst3 = _mm_unpacklo_epi8(dst3, zero); + // Add the inverse transform. + dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); + dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); + dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); + dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); + // Unsigned saturate to 8b. + dst0 = _mm_packus_epi16(dst0, dst0); + dst1 = _mm_packus_epi16(dst1, dst1); + dst2 = _mm_packus_epi16(dst2, dst2); + dst3 = _mm_packus_epi16(dst3, dst3); + // Store the results. + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0)); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1)); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2)); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3)); +} +#undef MUL +#endif // USE_TRANSFORM_AC3 + +//------------------------------------------------------------------------------ +// Loop Filter (Paragraph 15) + +// Compute abs(p - q) = subs(p - q) OR subs(q - p) +#define MM_ABS(p, q) _mm_or_si128( \ + _mm_subs_epu8((q), (p)), \ + _mm_subs_epu8((p), (q))) + +// Shift each byte of "x" by 3 bits while preserving by the sign bit. +static WEBP_INLINE void SignedShift8b_SSE2(__m128i* const x) { + const __m128i zero = _mm_setzero_si128(); + const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x); + const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x); + const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8); + const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8); + *x = _mm_packs_epi16(lo_1, hi_1); +} + +#define FLIP_SIGN_BIT2(a, b) { \ + (a) = _mm_xor_si128(a, sign_bit); \ + (b) = _mm_xor_si128(b, sign_bit); \ +} + +#define FLIP_SIGN_BIT4(a, b, c, d) { \ + FLIP_SIGN_BIT2(a, b); \ + FLIP_SIGN_BIT2(c, d); \ +} + +// input/output is uint8_t +static WEBP_INLINE void GetNotHEV_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int hev_thresh, __m128i* const not_hev) { + const __m128i zero = _mm_setzero_si128(); + const __m128i t_1 = MM_ABS(*p1, *p0); + const __m128i t_2 = MM_ABS(*q1, *q0); + + const __m128i h = _mm_set1_epi8(hev_thresh); + const __m128i t_max = _mm_max_epu8(t_1, t_2); + + const __m128i t_max_h = _mm_subs_epu8(t_max, h); + *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2 +} + +// input pixels are int8_t +static WEBP_INLINE void GetBaseDelta_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + __m128i* const delta) { + // beware of addition order, for saturation! + const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 + const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0 + const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0) + const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0) + const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0) + *delta = s3; +} + +// input and output are int8_t +static WEBP_INLINE void DoSimpleFilter_SSE2(__m128i* const p0, + __m128i* const q0, + const __m128i* const fl) { + const __m128i k3 = _mm_set1_epi8(3); + const __m128i k4 = _mm_set1_epi8(4); + __m128i v3 = _mm_adds_epi8(*fl, k3); + __m128i v4 = _mm_adds_epi8(*fl, k4); + + SignedShift8b_SSE2(&v4); // v4 >> 3 + SignedShift8b_SSE2(&v3); // v3 >> 3 + *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4 + *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3 +} + +// Updates values of 2 pixels at MB edge during complex filtering. +// Update operations: +// q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] +// Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). +static WEBP_INLINE void Update2Pixels_SSE2(__m128i* const pi, __m128i* const qi, + const __m128i* const a0_lo, + const __m128i* const a0_hi) { + const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); + const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); + const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); + const __m128i sign_bit = _mm_set1_epi8((char)0x80); + *pi = _mm_adds_epi8(*pi, delta); + *qi = _mm_subs_epi8(*qi, delta); + FLIP_SIGN_BIT2(*pi, *qi); +} + +// input pixels are uint8_t +static WEBP_INLINE void NeedsFilter_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int thresh, __m128i* const mask) { + const __m128i m_thresh = _mm_set1_epi8((char)thresh); + const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) + const __m128i kFE = _mm_set1_epi8((char)0xFE); + const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero + const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2 + + const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0) + const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2 + const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2 + + const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh + *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128()); +} + +//------------------------------------------------------------------------------ +// Edge filtering functions + +// Applies filter on 2 pixels (p0 and q0) +static WEBP_INLINE void DoFilter2_SSE2(__m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1, + int thresh) { + __m128i a, mask; + const __m128i sign_bit = _mm_set1_epi8((char)0x80); + // convert p1/q1 to int8_t (for GetBaseDelta_SSE2) + const __m128i p1s = _mm_xor_si128(*p1, sign_bit); + const __m128i q1s = _mm_xor_si128(*q1, sign_bit); + + NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &mask); + + FLIP_SIGN_BIT2(*p0, *q0); + GetBaseDelta_SSE2(&p1s, p0, q0, &q1s, &a); + a = _mm_and_si128(a, mask); // mask filter values we don't care about + DoSimpleFilter_SSE2(p0, q0, &a); + FLIP_SIGN_BIT2(*p0, *q0); +} + +// Applies filter on 4 pixels (p1, p0, q0 and q1) +static WEBP_INLINE void DoFilter4_SSE2(__m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1, + const __m128i* const mask, + int hev_thresh) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bit = _mm_set1_epi8((char)0x80); + const __m128i k64 = _mm_set1_epi8(64); + const __m128i k3 = _mm_set1_epi8(3); + const __m128i k4 = _mm_set1_epi8(4); + __m128i not_hev; + __m128i t1, t2, t3; + + // compute hev mask + GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); + + // convert to signed values + FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); + + t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 + t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) + t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) + t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) + t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about + + t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3 + t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4 + SignedShift8b_SSE2(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 + SignedShift8b_SSE2(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 + *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 + *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 + FLIP_SIGN_BIT2(*p0, *q0); + + // this is equivalent to signed (a + 1) >> 1 calculation + t2 = _mm_add_epi8(t3, sign_bit); + t3 = _mm_avg_epu8(t2, zero); + t3 = _mm_sub_epi8(t3, k64); + + t3 = _mm_and_si128(not_hev, t3); // if !hev + *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 + *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 + FLIP_SIGN_BIT2(*p1, *q1); +} + +// Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) +static WEBP_INLINE void DoFilter6_SSE2(__m128i* const p2, __m128i* const p1, + __m128i* const p0, __m128i* const q0, + __m128i* const q1, __m128i* const q2, + const __m128i* const mask, + int hev_thresh) { + const __m128i zero = _mm_setzero_si128(); + const __m128i sign_bit = _mm_set1_epi8((char)0x80); + __m128i a, not_hev; + + // compute hev mask + GetNotHEV_SSE2(p1, p0, q0, q1, hev_thresh, ¬_hev); + + FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); + FLIP_SIGN_BIT2(*p2, *q2); + GetBaseDelta_SSE2(p1, p0, q0, q1, &a); + + { // do simple filter on pixels with hev + const __m128i m = _mm_andnot_si128(not_hev, *mask); + const __m128i f = _mm_and_si128(a, m); + DoSimpleFilter_SSE2(p0, q0, &f); + } + + { // do strong filter on pixels with not hev + const __m128i k9 = _mm_set1_epi16(0x0900); + const __m128i k63 = _mm_set1_epi16(63); + + const __m128i m = _mm_and_si128(not_hev, *mask); + const __m128i f = _mm_and_si128(a, m); + + const __m128i f_lo = _mm_unpacklo_epi8(zero, f); + const __m128i f_hi = _mm_unpackhi_epi8(zero, f); + + const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9 + const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9 + + const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63 + const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63 + + const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63 + const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63 + + const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 + const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 + + Update2Pixels_SSE2(p2, q2, &a2_lo, &a2_hi); + Update2Pixels_SSE2(p1, q1, &a1_lo, &a1_hi); + Update2Pixels_SSE2(p0, q0, &a0_lo, &a0_hi); + } +} + +// reads 8 rows across a vertical edge. +static WEBP_INLINE void Load8x4_SSE2(const uint8_t* const b, int stride, + __m128i* const p, __m128i* const q) { + // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00 + // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10 + const __m128i A0 = _mm_set_epi32( + WebPMemToInt32(&b[6 * stride]), WebPMemToInt32(&b[2 * stride]), + WebPMemToInt32(&b[4 * stride]), WebPMemToInt32(&b[0 * stride])); + const __m128i A1 = _mm_set_epi32( + WebPMemToInt32(&b[7 * stride]), WebPMemToInt32(&b[3 * stride]), + WebPMemToInt32(&b[5 * stride]), WebPMemToInt32(&b[1 * stride])); + + // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 + // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 + const __m128i B0 = _mm_unpacklo_epi8(A0, A1); + const __m128i B1 = _mm_unpackhi_epi8(A0, A1); + + // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 + // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 + const __m128i C0 = _mm_unpacklo_epi16(B0, B1); + const __m128i C1 = _mm_unpackhi_epi16(B0, B1); + + // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + *p = _mm_unpacklo_epi32(C0, C1); + *q = _mm_unpackhi_epi32(C0, C1); +} + +static WEBP_INLINE void Load16x4_SSE2(const uint8_t* const r0, + const uint8_t* const r8, + int stride, + __m128i* const p1, __m128i* const p0, + __m128i* const q0, __m128i* const q1) { + // Assume the pixels around the edge (|) are numbered as follows + // 00 01 | 02 03 + // 10 11 | 12 13 + // ... | ... + // e0 e1 | e2 e3 + // f0 f1 | f2 f3 + // + // r0 is pointing to the 0th row (00) + // r8 is pointing to the 8th row (80) + + // Load + // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 + // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 + // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 + // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 + Load8x4_SSE2(r0, stride, p1, q0); + Load8x4_SSE2(r8, stride, p0, q1); + + { + // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 + // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 + // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 + // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 + const __m128i t1 = *p1; + const __m128i t2 = *q0; + *p1 = _mm_unpacklo_epi64(t1, *p0); + *p0 = _mm_unpackhi_epi64(t1, *p0); + *q0 = _mm_unpacklo_epi64(t2, *q1); + *q1 = _mm_unpackhi_epi64(t2, *q1); + } +} + +static WEBP_INLINE void Store4x4_SSE2(__m128i* const x, + uint8_t* dst, int stride) { + int i; + for (i = 0; i < 4; ++i, dst += stride) { + WebPInt32ToMem(dst, _mm_cvtsi128_si32(*x)); + *x = _mm_srli_si128(*x, 4); + } +} + +// Transpose back and store +static WEBP_INLINE void Store16x4_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + uint8_t* r0, uint8_t* r8, + int stride) { + __m128i t1, p1_s, p0_s, q0_s, q1_s; + + // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 + // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 + t1 = *p0; + p0_s = _mm_unpacklo_epi8(*p1, t1); + p1_s = _mm_unpackhi_epi8(*p1, t1); + + // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 + // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 + t1 = *q0; + q0_s = _mm_unpacklo_epi8(t1, *q1); + q1_s = _mm_unpackhi_epi8(t1, *q1); + + // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 + // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 + t1 = p0_s; + p0_s = _mm_unpacklo_epi16(t1, q0_s); + q0_s = _mm_unpackhi_epi16(t1, q0_s); + + // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 + // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 + t1 = p1_s; + p1_s = _mm_unpacklo_epi16(t1, q1_s); + q1_s = _mm_unpackhi_epi16(t1, q1_s); + + Store4x4_SSE2(&p0_s, r0, stride); + r0 += 4 * stride; + Store4x4_SSE2(&q0_s, r0, stride); + + Store4x4_SSE2(&p1_s, r8, stride); + r8 += 4 * stride; + Store4x4_SSE2(&q1_s, r8, stride); +} + +//------------------------------------------------------------------------------ +// Simple In-loop filtering (Paragraph 15.2) + +static void SimpleVFilter16_SSE2(uint8_t* p, int stride, int thresh) { + // Load + __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); + __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); + __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); + __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); + + DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); + + // Store + _mm_storeu_si128((__m128i*)&p[-stride], p0); + _mm_storeu_si128((__m128i*)&p[0], q0); +} + +static void SimpleHFilter16_SSE2(uint8_t* p, int stride, int thresh) { + __m128i p1, p0, q0, q1; + + p -= 2; // beginning of p1 + + Load16x4_SSE2(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); + DoFilter2_SSE2(&p1, &p0, &q0, &q1, thresh); + Store16x4_SSE2(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride); +} + +static void SimpleVFilter16i_SSE2(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4 * stride; + SimpleVFilter16_SSE2(p, stride, thresh); + } +} + +static void SimpleHFilter16i_SSE2(uint8_t* p, int stride, int thresh) { + int k; + for (k = 3; k > 0; --k) { + p += 4; + SimpleHFilter16_SSE2(p, stride, thresh); + } +} + +//------------------------------------------------------------------------------ +// Complex In-loop filtering (Paragraph 15.3) + +#define MAX_DIFF1(p3, p2, p1, p0, m) do { \ + (m) = MM_ABS(p1, p0); \ + (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ + (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ +} while (0) + +#define MAX_DIFF2(p3, p2, p1, p0, m) do { \ + (m) = _mm_max_epu8(m, MM_ABS(p1, p0)); \ + (m) = _mm_max_epu8(m, MM_ABS(p3, p2)); \ + (m) = _mm_max_epu8(m, MM_ABS(p2, p1)); \ +} while (0) + +#define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ + (e1) = _mm_loadu_si128((__m128i*)&(p)[0 * (stride)]); \ + (e2) = _mm_loadu_si128((__m128i*)&(p)[1 * (stride)]); \ + (e3) = _mm_loadu_si128((__m128i*)&(p)[2 * (stride)]); \ + (e4) = _mm_loadu_si128((__m128i*)&(p)[3 * (stride)]); \ +} + +#define LOADUV_H_EDGE(p, u, v, stride) do { \ + const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ + const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \ + (p) = _mm_unpacklo_epi64(U, V); \ +} while (0) + +#define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ + LOADUV_H_EDGE(e1, u, v, 0 * (stride)); \ + LOADUV_H_EDGE(e2, u, v, 1 * (stride)); \ + LOADUV_H_EDGE(e3, u, v, 2 * (stride)); \ + LOADUV_H_EDGE(e4, u, v, 3 * (stride)); \ +} + +#define STOREUV(p, u, v, stride) { \ + _mm_storel_epi64((__m128i*)&(u)[(stride)], p); \ + (p) = _mm_srli_si128(p, 8); \ + _mm_storel_epi64((__m128i*)&(v)[(stride)], p); \ +} + +static WEBP_INLINE void ComplexMask_SSE2(const __m128i* const p1, + const __m128i* const p0, + const __m128i* const q0, + const __m128i* const q1, + int thresh, int ithresh, + __m128i* const mask) { + const __m128i it = _mm_set1_epi8(ithresh); + const __m128i diff = _mm_subs_epu8(*mask, it); + const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128()); + __m128i filter_mask; + NeedsFilter_SSE2(p1, p0, q0, q1, thresh, &filter_mask); + *mask = _mm_and_si128(thresh_mask, filter_mask); +} + +// on macroblock edges +static void VFilter16_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i t1; + __m128i mask; + __m128i p2, p1, p0, q0, q1, q2; + + // Load p3, p2, p1, p0 + LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); + MAX_DIFF1(t1, p2, p1, p0, mask); + + // Load q0, q1, q2, q3 + LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); + MAX_DIFF2(t1, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + // Store + _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); + _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); + _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); + _mm_storeu_si128((__m128i*)&p[+0 * stride], q0); + _mm_storeu_si128((__m128i*)&p[+1 * stride], q1); + _mm_storeu_si128((__m128i*)&p[+2 * stride], q2); +} + +static void HFilter16_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + + uint8_t* const b = p - 4; + Load16x4_SSE2(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); + MAX_DIFF1(p3, p2, p1, p0, mask); + + Load16x4_SSE2(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); + MAX_DIFF2(q3, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + Store16x4_SSE2(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride); + Store16x4_SSE2(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride); +} + +// on three inner edges +static void VFilter16i_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + __m128i p3, p2, p1, p0; // loop invariants + + LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue + + for (k = 3; k > 0; --k) { + __m128i mask, tmp1, tmp2; + uint8_t* const b = p + 2 * stride; // beginning of p1 + p += 4 * stride; + + MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask + LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2); + MAX_DIFF2(p3, p2, tmp1, tmp2, mask); + + // p3 and p2 are not just temporary variables here: they will be + // re-used for next span. And q2/q3 will become p1/p0 accordingly. + ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); + + // Store + _mm_storeu_si128((__m128i*)&b[0 * stride], p1); + _mm_storeu_si128((__m128i*)&b[1 * stride], p0); + _mm_storeu_si128((__m128i*)&b[2 * stride], p3); + _mm_storeu_si128((__m128i*)&b[3 * stride], p2); + + // rotate samples + p1 = tmp1; + p0 = tmp2; + } +} + +static void HFilter16i_SSE2(uint8_t* p, int stride, + int thresh, int ithresh, int hev_thresh) { + int k; + __m128i p3, p2, p1, p0; // loop invariants + + Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue + + for (k = 3; k > 0; --k) { + __m128i mask, tmp1, tmp2; + uint8_t* const b = p + 2; // beginning of p1 + + p += 4; // beginning of q0 (and next span) + + MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask + Load16x4_SSE2(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2); + MAX_DIFF2(p3, p2, tmp1, tmp2, mask); + + ComplexMask_SSE2(&p1, &p0, &p3, &p2, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &p3, &p2, &mask, hev_thresh); + + Store16x4_SSE2(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride); + + // rotate samples + p1 = tmp1; + p0 = tmp2; + } +} + +// 8-pixels wide variant, for chroma filtering +static void VFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, p2, p1, p0, q0, q1, q2; + + // Load p3, p2, p1, p0 + LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); + MAX_DIFF1(t1, p2, p1, p0, mask); + + // Load q0, q1, q2, q3 + LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); + MAX_DIFF2(t1, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + // Store + STOREUV(p2, u, v, -3 * stride); + STOREUV(p1, u, v, -2 * stride); + STOREUV(p0, u, v, -1 * stride); + STOREUV(q0, u, v, 0 * stride); + STOREUV(q1, u, v, 1 * stride); + STOREUV(q2, u, v, 2 * stride); +} + +static void HFilter8_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i p3, p2, p1, p0, q0, q1, q2, q3; + + uint8_t* const tu = u - 4; + uint8_t* const tv = v - 4; + Load16x4_SSE2(tu, tv, stride, &p3, &p2, &p1, &p0); + MAX_DIFF1(p3, p2, p1, p0, mask); + + Load16x4_SSE2(u, v, stride, &q0, &q1, &q2, &q3); + MAX_DIFF2(q3, q2, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter6_SSE2(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); + + Store16x4_SSE2(&p3, &p2, &p1, &p0, tu, tv, stride); + Store16x4_SSE2(&q0, &q1, &q2, &q3, u, v, stride); +} + +static void VFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, t2, p1, p0, q0, q1; + + // Load p3, p2, p1, p0 + LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); + MAX_DIFF1(t2, t1, p1, p0, mask); + + u += 4 * stride; + v += 4 * stride; + + // Load q0, q1, q2, q3 + LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); + MAX_DIFF2(t2, t1, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); + + // Store + STOREUV(p1, u, v, -2 * stride); + STOREUV(p0, u, v, -1 * stride); + STOREUV(q0, u, v, 0 * stride); + STOREUV(q1, u, v, 1 * stride); +} + +static void HFilter8i_SSE2(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_thresh) { + __m128i mask; + __m128i t1, t2, p1, p0, q0, q1; + Load16x4_SSE2(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 + MAX_DIFF1(t2, t1, p1, p0, mask); + + u += 4; // beginning of q0 + v += 4; + Load16x4_SSE2(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 + MAX_DIFF2(t2, t1, q1, q0, mask); + + ComplexMask_SSE2(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); + DoFilter4_SSE2(&p1, &p0, &q0, &q1, &mask, hev_thresh); + + u -= 2; // beginning of p1 + v -= 2; + Store16x4_SSE2(&p1, &p0, &q0, &q1, u, v, stride); +} + +//------------------------------------------------------------------------------ +// 4x4 predictions + +#define DST(x, y) dst[(x) + (y) * BPS] +#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) + +// We use the following 8b-arithmetic tricks: +// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 +// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] +// and: +// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb +// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 +// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 + +static void VE4_SSE2(uint8_t* dst) { // vertical + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); + const __m128i b = _mm_subs_epu8(a, lsb); + const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); + const int vals = _mm_cvtsi128_si32(avg); + int i; + for (i = 0; i < 4; ++i) { + WebPInt32ToMem(dst + i * BPS, vals); + } +} + +static void LD4_SSE2(uint8_t* dst) { // Down-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +static void VR4_SSE2(uint8_t* dst) { // Vertical-Right + const __m128i one = _mm_set1_epi8(1); + const int I = dst[-1 + 0 * BPS]; + const int J = dst[-1 + 1 * BPS]; + const int K = dst[-1 + 2 * BPS]; + const int X = dst[-1 - BPS]; + const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); + const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); + const __m128i _XABCD = _mm_slli_si128(XABCD, 1); + const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); + const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i efgh = _mm_avg_epu8(avg2, XABCD); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); + + // these two are hard to implement in SSE2, so we keep the C-version: + DST(0, 2) = AVG3(J, I, X); + DST(0, 3) = AVG3(K, J, I); +} + +static void VL4_SSE2(uint8_t* dst) { // Vertical-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS)); + const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); + const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); + const __m128i avg3 = _mm_avg_epu8(avg1, avg2); + const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); + const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); + const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); + const __m128i abbc = _mm_or_si128(ab, bc); + const __m128i lsb2 = _mm_and_si128(abbc, lsb1); + const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); + const uint32_t extra_out = + (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); + + // these two are hard to get and irregular + DST(3, 2) = (extra_out >> 0) & 0xff; + DST(3, 3) = (extra_out >> 8) & 0xff; +} + +static void RD4_SSE2(uint8_t* dst) { // Down-right + const __m128i one = _mm_set1_epi8(1); + const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1)); + const __m128i ____XABCD = _mm_slli_si128(XABCD, 4); + const uint32_t I = dst[-1 + 0 * BPS]; + const uint32_t J = dst[-1 + 1 * BPS]; + const uint32_t K = dst[-1 + 2 * BPS]; + const uint32_t L = dst[-1 + 3 * BPS]; + const __m128i LKJI_____ = + _mm_cvtsi32_si128((int)(L | (K << 8) | (J << 16) | (I << 24))); + const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD); + const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); + const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); + const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +#undef DST +#undef AVG3 + +//------------------------------------------------------------------------------ +// Luma 16x16 + +static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, int size) { + const uint8_t* top = dst - BPS; + const __m128i zero = _mm_setzero_si128(); + int y; + if (size == 4) { + const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top)); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + for (y = 0; y < 4; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + WebPInt32ToMem(dst, _mm_cvtsi128_si32(out)); + } + } else if (size == 8) { + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + for (y = 0; y < 8; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + _mm_storel_epi64((__m128i*)dst, out); + } + } else { + const __m128i top_values = _mm_loadu_si128((const __m128i*)top); + const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); + const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); + for (y = 0; y < 16; ++y, dst += BPS) { + const int val = dst[-1] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out_0 = _mm_add_epi16(base, top_base_0); + const __m128i out_1 = _mm_add_epi16(base, top_base_1); + const __m128i out = _mm_packus_epi16(out_0, out_1); + _mm_storeu_si128((__m128i*)dst, out); + } + } +} + +static void TM4_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 4); } +static void TM8uv_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 8); } +static void TM16_SSE2(uint8_t* dst) { TrueMotion_SSE2(dst, 16); } + +static void VE16_SSE2(uint8_t* dst) { + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + int j; + for (j = 0; j < 16; ++j) { + _mm_storeu_si128((__m128i*)(dst + j * BPS), top); + } +} + +static void HE16_SSE2(uint8_t* dst) { // horizontal + int j; + for (j = 16; j > 0; --j) { + const __m128i values = _mm_set1_epi8((char)dst[-1]); + _mm_storeu_si128((__m128i*)dst, values); + dst += BPS; + } +} + +static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8((char)v); + for (j = 0; j < 16; ++j) { + _mm_storeu_si128((__m128i*)(dst + j * BPS), values); + } +} + +static void DC16_SSE2(uint8_t* dst) { // DC + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + const __m128i sad8x2 = _mm_sad_epu8(top, zero); + // sum the two sads: sad8x2[0:1] + sad8x2[8:9] + const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); + int left = 0; + int j; + for (j = 0; j < 16; ++j) { + left += dst[-1 + j * BPS]; + } + { + const int DC = _mm_cvtsi128_si32(sum) + left + 16; + Put16_SSE2(DC >> 5, dst); + } +} + +static void DC16NoTop_SSE2(uint8_t* dst) { // DC with top samples unavailable + int DC = 8; + int j; + for (j = 0; j < 16; ++j) { + DC += dst[-1 + j * BPS]; + } + Put16_SSE2(DC >> 4, dst); +} + +static void DC16NoLeft_SSE2(uint8_t* dst) { // DC with left samples unavailable + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS)); + const __m128i sad8x2 = _mm_sad_epu8(top, zero); + // sum the two sads: sad8x2[0:1] + sad8x2[8:9] + const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); + const int DC = _mm_cvtsi128_si32(sum) + 8; + Put16_SSE2(DC >> 4, dst); +} + +static void DC16NoTopLeft_SSE2(uint8_t* dst) { // DC with no top & left samples + Put16_SSE2(0x80, dst); +} + +//------------------------------------------------------------------------------ +// Chroma + +static void VE8uv_SSE2(uint8_t* dst) { // vertical + int j; + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), top); + } +} + +// helper for chroma-DC predictions +static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8((char)v); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), values); + } +} + +static void DC8uv_SSE2(uint8_t* dst) { // DC + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + const __m128i sum = _mm_sad_epu8(top, zero); + int left = 0; + int j; + for (j = 0; j < 8; ++j) { + left += dst[-1 + j * BPS]; + } + { + const int DC = _mm_cvtsi128_si32(sum) + left + 8; + Put8x8uv_SSE2(DC >> 4, dst); + } +} + +static void DC8uvNoLeft_SSE2(uint8_t* dst) { // DC with no left samples + const __m128i zero = _mm_setzero_si128(); + const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS)); + const __m128i sum = _mm_sad_epu8(top, zero); + const int DC = _mm_cvtsi128_si32(sum) + 4; + Put8x8uv_SSE2(DC >> 3, dst); +} + +static void DC8uvNoTop_SSE2(uint8_t* dst) { // DC with no top samples + int dc0 = 4; + int i; + for (i = 0; i < 8; ++i) { + dc0 += dst[-1 + i * BPS]; + } + Put8x8uv_SSE2(dc0 >> 3, dst); +} + +static void DC8uvNoTopLeft_SSE2(uint8_t* dst) { // DC with nothing + Put8x8uv_SSE2(0x80, dst); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) { + VP8Transform = Transform_SSE2; +#if (USE_TRANSFORM_AC3 == 1) + VP8TransformAC3 = TransformAC3_SSE2; +#endif + + VP8VFilter16 = VFilter16_SSE2; + VP8HFilter16 = HFilter16_SSE2; + VP8VFilter8 = VFilter8_SSE2; + VP8HFilter8 = HFilter8_SSE2; + VP8VFilter16i = VFilter16i_SSE2; + VP8HFilter16i = HFilter16i_SSE2; + VP8VFilter8i = VFilter8i_SSE2; + VP8HFilter8i = HFilter8i_SSE2; + + VP8SimpleVFilter16 = SimpleVFilter16_SSE2; + VP8SimpleHFilter16 = SimpleHFilter16_SSE2; + VP8SimpleVFilter16i = SimpleVFilter16i_SSE2; + VP8SimpleHFilter16i = SimpleHFilter16i_SSE2; + + VP8PredLuma4[1] = TM4_SSE2; + VP8PredLuma4[2] = VE4_SSE2; + VP8PredLuma4[4] = RD4_SSE2; + VP8PredLuma4[5] = VR4_SSE2; + VP8PredLuma4[6] = LD4_SSE2; + VP8PredLuma4[7] = VL4_SSE2; + + VP8PredLuma16[0] = DC16_SSE2; + VP8PredLuma16[1] = TM16_SSE2; + VP8PredLuma16[2] = VE16_SSE2; + VP8PredLuma16[3] = HE16_SSE2; + VP8PredLuma16[4] = DC16NoTop_SSE2; + VP8PredLuma16[5] = DC16NoLeft_SSE2; + VP8PredLuma16[6] = DC16NoTopLeft_SSE2; + + VP8PredChroma8[0] = DC8uv_SSE2; + VP8PredChroma8[1] = TM8uv_SSE2; + VP8PredChroma8[2] = VE8uv_SSE2; + VP8PredChroma8[4] = DC8uvNoTop_SSE2; + VP8PredChroma8[5] = DC8uvNoLeft_SSE2; + VP8PredChroma8[6] = DC8uvNoTopLeft_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8DspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/dec_sse41.c b/media/libwebp/src/dsp/dec_sse41.c new file mode 100644 index 0000000000..08a3630272 --- /dev/null +++ b/media/libwebp/src/dsp/dec_sse41.c @@ -0,0 +1,46 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE4 version of some decoding functions. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) + +#include <smmintrin.h> +#include "src/dec/vp8i_dec.h" +#include "src/utils/utils.h" + +static void HE16_SSE41(uint8_t* dst) { // horizontal + int j; + const __m128i kShuffle3 = _mm_set1_epi8(3); + for (j = 16; j > 0; --j) { + const __m128i in = _mm_cvtsi32_si128(WebPMemToInt32(dst - 4)); + const __m128i values = _mm_shuffle_epi8(in, kShuffle3); + _mm_storeu_si128((__m128i*)dst, values); + dst += BPS; + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8DspInitSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE41(void) { + VP8PredLuma16[3] = HE16_SSE41; +} + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(VP8DspInitSSE41) + +#endif // WEBP_USE_SSE41 diff --git a/media/libwebp/src/dsp/dsp.h b/media/libwebp/src/dsp/dsp.h new file mode 100644 index 0000000000..d2000b8efc --- /dev/null +++ b/media/libwebp/src/dsp/dsp.h @@ -0,0 +1,504 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Speed-critical functions. +// +// Author: Skal (pascal.massimino@gmail.com) + +#ifndef WEBP_DSP_DSP_H_ +#define WEBP_DSP_DSP_H_ + +#ifdef HAVE_CONFIG_H +#include "src/webp/config.h" +#endif + +#include "src/dsp/cpu.h" +#include "src/webp/types.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define BPS 32 // this is the common stride for enc/dec + +//------------------------------------------------------------------------------ +// WEBP_RESTRICT + +// Declares a pointer with the restrict type qualifier if available. +// This allows code to hint to the compiler that only this pointer references a +// particular object or memory region within the scope of the block in which it +// is declared. This may allow for improved optimizations due to the lack of +// pointer aliasing. See also: +// https://en.cppreference.com/w/c/language/restrict +#if defined(__GNUC__) +#define WEBP_RESTRICT __restrict__ +#elif defined(_MSC_VER) +#define WEBP_RESTRICT __restrict +#else +#define WEBP_RESTRICT +#endif + + +//------------------------------------------------------------------------------ +// Init stub generator + +// Defines an init function stub to ensure each module exposes a symbol, +// avoiding a compiler warning. +#define WEBP_DSP_INIT_STUB(func) \ + extern void func(void); \ + void func(void) {} + +//------------------------------------------------------------------------------ +// Encoding + +// Transforms +// VP8Idct: Does one of two inverse transforms. If do_two is set, the transforms +// will be done for (ref, in, dst) and (ref + 4, in + 16, dst + 4). +typedef void (*VP8Idct)(const uint8_t* ref, const int16_t* in, uint8_t* dst, + int do_two); +typedef void (*VP8Fdct)(const uint8_t* src, const uint8_t* ref, int16_t* out); +typedef void (*VP8WHT)(const int16_t* in, int16_t* out); +extern VP8Idct VP8ITransform; +extern VP8Fdct VP8FTransform; +extern VP8Fdct VP8FTransform2; // performs two transforms at a time +extern VP8WHT VP8FTransformWHT; +// Predictions +// *dst is the destination block. *top and *left can be NULL. +typedef void (*VP8IntraPreds)(uint8_t* dst, const uint8_t* left, + const uint8_t* top); +typedef void (*VP8Intra4Preds)(uint8_t* dst, const uint8_t* top); +extern VP8Intra4Preds VP8EncPredLuma4; +extern VP8IntraPreds VP8EncPredLuma16; +extern VP8IntraPreds VP8EncPredChroma8; + +typedef int (*VP8Metric)(const uint8_t* pix, const uint8_t* ref); +extern VP8Metric VP8SSE16x16, VP8SSE16x8, VP8SSE8x8, VP8SSE4x4; +typedef int (*VP8WMetric)(const uint8_t* pix, const uint8_t* ref, + const uint16_t* const weights); +// The weights for VP8TDisto4x4 and VP8TDisto16x16 contain a row-major +// 4 by 4 symmetric matrix. +extern VP8WMetric VP8TDisto4x4, VP8TDisto16x16; + +// Compute the average (DC) of four 4x4 blocks. +// Each sub-4x4 block #i sum is stored in dc[i]. +typedef void (*VP8MeanMetric)(const uint8_t* ref, uint32_t dc[4]); +extern VP8MeanMetric VP8Mean16x4; + +typedef void (*VP8BlockCopy)(const uint8_t* src, uint8_t* dst); +extern VP8BlockCopy VP8Copy4x4; +extern VP8BlockCopy VP8Copy16x8; +// Quantization +struct VP8Matrix; // forward declaration +typedef int (*VP8QuantizeBlock)(int16_t in[16], int16_t out[16], + const struct VP8Matrix* const mtx); +// Same as VP8QuantizeBlock, but quantizes two consecutive blocks. +typedef int (*VP8Quantize2Blocks)(int16_t in[32], int16_t out[32], + const struct VP8Matrix* const mtx); + +extern VP8QuantizeBlock VP8EncQuantizeBlock; +extern VP8Quantize2Blocks VP8EncQuantize2Blocks; + +// specific to 2nd transform: +typedef int (*VP8QuantizeBlockWHT)(int16_t in[16], int16_t out[16], + const struct VP8Matrix* const mtx); +extern VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT; + +extern const int VP8DspScan[16 + 4 + 4]; + +// Collect histogram for susceptibility calculation. +#define MAX_COEFF_THRESH 31 // size of histogram used by CollectHistogram. +typedef struct { + // We only need to store max_value and last_non_zero, not the distribution. + int max_value; + int last_non_zero; +} VP8Histogram; +typedef void (*VP8CHisto)(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo); +extern VP8CHisto VP8CollectHistogram; +// General-purpose util function to help VP8CollectHistogram(). +void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1], + VP8Histogram* const histo); + +// must be called before using any of the above +void VP8EncDspInit(void); + +//------------------------------------------------------------------------------ +// cost functions (encoding) + +extern const uint16_t VP8EntropyCost[256]; // 8bit fixed-point log(p) +// approximate cost per level: +extern const uint16_t VP8LevelFixedCosts[2047 /*MAX_LEVEL*/ + 1]; +extern const uint8_t VP8EncBands[16 + 1]; + +struct VP8Residual; +typedef void (*VP8SetResidualCoeffsFunc)(const int16_t* const coeffs, + struct VP8Residual* const res); +extern VP8SetResidualCoeffsFunc VP8SetResidualCoeffs; + +// Cost calculation function. +typedef int (*VP8GetResidualCostFunc)(int ctx0, + const struct VP8Residual* const res); +extern VP8GetResidualCostFunc VP8GetResidualCost; + +// must be called before anything using the above +void VP8EncDspCostInit(void); + +//------------------------------------------------------------------------------ +// SSIM / PSNR utils + +// struct for accumulating statistical moments +typedef struct { + uint32_t w; // sum(w_i) : sum of weights + uint32_t xm, ym; // sum(w_i * x_i), sum(w_i * y_i) + uint32_t xxm, xym, yym; // sum(w_i * x_i * x_i), etc. +} VP8DistoStats; + +// Compute the final SSIM value +// The non-clipped version assumes stats->w = (2 * VP8_SSIM_KERNEL + 1)^2. +double VP8SSIMFromStats(const VP8DistoStats* const stats); +double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats); + +#define VP8_SSIM_KERNEL 3 // total size of the kernel: 2 * VP8_SSIM_KERNEL + 1 +typedef double (*VP8SSIMGetClippedFunc)(const uint8_t* src1, int stride1, + const uint8_t* src2, int stride2, + int xo, int yo, // center position + int W, int H); // plane dimension + +#if !defined(WEBP_REDUCE_SIZE) +// This version is called with the guarantee that you can load 8 bytes and +// 8 rows at offset src1 and src2 +typedef double (*VP8SSIMGetFunc)(const uint8_t* src1, int stride1, + const uint8_t* src2, int stride2); + +extern VP8SSIMGetFunc VP8SSIMGet; // unclipped / unchecked +extern VP8SSIMGetClippedFunc VP8SSIMGetClipped; // with clipping +#endif + +#if !defined(WEBP_DISABLE_STATS) +typedef uint32_t (*VP8AccumulateSSEFunc)(const uint8_t* src1, + const uint8_t* src2, int len); +extern VP8AccumulateSSEFunc VP8AccumulateSSE; +#endif + +// must be called before using any of the above directly +void VP8SSIMDspInit(void); + +//------------------------------------------------------------------------------ +// Decoding + +typedef void (*VP8DecIdct)(const int16_t* coeffs, uint8_t* dst); +// when doing two transforms, coeffs is actually int16_t[2][16]. +typedef void (*VP8DecIdct2)(const int16_t* coeffs, uint8_t* dst, int do_two); +extern VP8DecIdct2 VP8Transform; +extern VP8DecIdct VP8TransformAC3; +extern VP8DecIdct VP8TransformUV; +extern VP8DecIdct VP8TransformDC; +extern VP8DecIdct VP8TransformDCUV; +extern VP8WHT VP8TransformWHT; + +// *dst is the destination block, with stride BPS. Boundary samples are +// assumed accessible when needed. +typedef void (*VP8PredFunc)(uint8_t* dst); +extern VP8PredFunc VP8PredLuma16[/* NUM_B_DC_MODES */]; +extern VP8PredFunc VP8PredChroma8[/* NUM_B_DC_MODES */]; +extern VP8PredFunc VP8PredLuma4[/* NUM_BMODES */]; + +// clipping tables (for filtering) +extern const int8_t* const VP8ksclip1; // clips [-1020, 1020] to [-128, 127] +extern const int8_t* const VP8ksclip2; // clips [-112, 112] to [-16, 15] +extern const uint8_t* const VP8kclip1; // clips [-255,511] to [0,255] +extern const uint8_t* const VP8kabs0; // abs(x) for x in [-255,255] +// must be called first +void VP8InitClipTables(void); + +// simple filter (only for luma) +typedef void (*VP8SimpleFilterFunc)(uint8_t* p, int stride, int thresh); +extern VP8SimpleFilterFunc VP8SimpleVFilter16; +extern VP8SimpleFilterFunc VP8SimpleHFilter16; +extern VP8SimpleFilterFunc VP8SimpleVFilter16i; // filter 3 inner edges +extern VP8SimpleFilterFunc VP8SimpleHFilter16i; + +// regular filter (on both macroblock edges and inner edges) +typedef void (*VP8LumaFilterFunc)(uint8_t* luma, int stride, + int thresh, int ithresh, int hev_t); +typedef void (*VP8ChromaFilterFunc)(uint8_t* u, uint8_t* v, int stride, + int thresh, int ithresh, int hev_t); +// on outer edge +extern VP8LumaFilterFunc VP8VFilter16; +extern VP8LumaFilterFunc VP8HFilter16; +extern VP8ChromaFilterFunc VP8VFilter8; +extern VP8ChromaFilterFunc VP8HFilter8; + +// on inner edge +extern VP8LumaFilterFunc VP8VFilter16i; // filtering 3 inner edges altogether +extern VP8LumaFilterFunc VP8HFilter16i; +extern VP8ChromaFilterFunc VP8VFilter8i; // filtering u and v altogether +extern VP8ChromaFilterFunc VP8HFilter8i; + +// Dithering. Combines dithering values (centered around 128) with dst[], +// according to: dst[] = clip(dst[] + (((dither[]-128) + 8) >> 4) +#define VP8_DITHER_DESCALE 4 +#define VP8_DITHER_DESCALE_ROUNDER (1 << (VP8_DITHER_DESCALE - 1)) +#define VP8_DITHER_AMP_BITS 7 +#define VP8_DITHER_AMP_CENTER (1 << VP8_DITHER_AMP_BITS) +extern void (*VP8DitherCombine8x8)(const uint8_t* dither, uint8_t* dst, + int dst_stride); + +// must be called before anything using the above +void VP8DspInit(void); + +//------------------------------------------------------------------------------ +// WebP I/O + +#define FANCY_UPSAMPLING // undefined to remove fancy upsampling support + +// Convert a pair of y/u/v lines together to the output rgb/a colorspace. +// bottom_y can be NULL if only one line of output is needed (at top/bottom). +typedef void (*WebPUpsampleLinePairFunc)( + const uint8_t* top_y, const uint8_t* bottom_y, + const uint8_t* top_u, const uint8_t* top_v, + const uint8_t* cur_u, const uint8_t* cur_v, + uint8_t* top_dst, uint8_t* bottom_dst, int len); + +#ifdef FANCY_UPSAMPLING + +// Fancy upsampling functions to convert YUV to RGB(A) modes +extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */]; + +#endif // FANCY_UPSAMPLING + +// Per-row point-sampling methods. +typedef void (*WebPSamplerRowFunc)(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len); +// Generic function to apply 'WebPSamplerRowFunc' to the whole plane: +void WebPSamplerProcessPlane(const uint8_t* y, int y_stride, + const uint8_t* u, const uint8_t* v, int uv_stride, + uint8_t* dst, int dst_stride, + int width, int height, WebPSamplerRowFunc func); + +// Sampling functions to convert rows of YUV to RGB(A) +extern WebPSamplerRowFunc WebPSamplers[/* MODE_LAST */]; + +// General function for converting two lines of ARGB or RGBA. +// 'alpha_is_last' should be true if 0xff000000 is stored in memory as +// as 0x00, 0x00, 0x00, 0xff (little endian). +WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last); + +// YUV444->RGB converters +typedef void (*WebPYUV444Converter)(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len); + +extern WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */]; + +// Must be called before using the WebPUpsamplers[] (and for premultiplied +// colorspaces like rgbA, rgbA4444, etc) +void WebPInitUpsamplers(void); +// Must be called before using WebPSamplers[] +void WebPInitSamplers(void); +// Must be called before using WebPYUV444Converters[] +void WebPInitYUV444Converters(void); + +//------------------------------------------------------------------------------ +// ARGB -> YUV converters + +// Convert ARGB samples to luma Y. +extern void (*WebPConvertARGBToY)(const uint32_t* argb, uint8_t* y, int width); +// Convert ARGB samples to U/V with downsampling. do_store should be '1' for +// even lines and '0' for odd ones. 'src_width' is the original width, not +// the U/V one. +extern void (*WebPConvertARGBToUV)(const uint32_t* argb, uint8_t* u, uint8_t* v, + int src_width, int do_store); + +// Convert a row of accumulated (four-values) of rgba32 toward U/V +extern void (*WebPConvertRGBA32ToUV)(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width); + +// Convert RGB or BGR to Y +extern void (*WebPConvertRGB24ToY)(const uint8_t* rgb, uint8_t* y, int width); +extern void (*WebPConvertBGR24ToY)(const uint8_t* bgr, uint8_t* y, int width); + +// used for plain-C fallback. +extern void WebPConvertARGBToUV_C(const uint32_t* argb, uint8_t* u, uint8_t* v, + int src_width, int do_store); +extern void WebPConvertRGBA32ToUV_C(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width); + +// Must be called before using the above. +void WebPInitConvertARGBToYUV(void); + +//------------------------------------------------------------------------------ +// Rescaler + +struct WebPRescaler; + +// Import a row of data and save its contribution in the rescaler. +// 'channel' denotes the channel number to be imported. 'Expand' corresponds to +// the wrk->x_expand case. Otherwise, 'Shrink' is to be used. +typedef void (*WebPRescalerImportRowFunc)(struct WebPRescaler* const wrk, + const uint8_t* src); + +extern WebPRescalerImportRowFunc WebPRescalerImportRowExpand; +extern WebPRescalerImportRowFunc WebPRescalerImportRowShrink; + +// Export one row (starting at x_out position) from rescaler. +// 'Expand' corresponds to the wrk->y_expand case. +// Otherwise 'Shrink' is to be used +typedef void (*WebPRescalerExportRowFunc)(struct WebPRescaler* const wrk); +extern WebPRescalerExportRowFunc WebPRescalerExportRowExpand; +extern WebPRescalerExportRowFunc WebPRescalerExportRowShrink; + +// Plain-C implementation, as fall-back. +extern void WebPRescalerImportRowExpand_C(struct WebPRescaler* const wrk, + const uint8_t* src); +extern void WebPRescalerImportRowShrink_C(struct WebPRescaler* const wrk, + const uint8_t* src); +extern void WebPRescalerExportRowExpand_C(struct WebPRescaler* const wrk); +extern void WebPRescalerExportRowShrink_C(struct WebPRescaler* const wrk); + +// Main entry calls: +extern void WebPRescalerImportRow(struct WebPRescaler* const wrk, + const uint8_t* src); +// Export one row (starting at x_out position) from rescaler. +extern void WebPRescalerExportRow(struct WebPRescaler* const wrk); + +// Must be called first before using the above. +void WebPRescalerDspInit(void); + +//------------------------------------------------------------------------------ +// Utilities for processing transparent channel. + +// Apply alpha pre-multiply on an rgba, bgra or argb plane of size w * h. +// alpha_first should be 0 for argb, 1 for rgba or bgra (where alpha is last). +extern void (*WebPApplyAlphaMultiply)( + uint8_t* rgba, int alpha_first, int w, int h, int stride); + +// Same, buf specifically for RGBA4444 format +extern void (*WebPApplyAlphaMultiply4444)( + uint8_t* rgba4444, int w, int h, int stride); + +// Dispatch the values from alpha[] plane to the ARGB destination 'dst'. +// Returns true if alpha[] plane has non-trivial values different from 0xff. +extern int (*WebPDispatchAlpha)(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint8_t* WEBP_RESTRICT dst, int dst_stride); + +// Transfer packed 8b alpha[] values to green channel in dst[], zero'ing the +// A/R/B values. 'dst_stride' is the stride for dst[] in uint32_t units. +extern void (*WebPDispatchAlphaToGreen)(const uint8_t* WEBP_RESTRICT alpha, + int alpha_stride, int width, int height, + uint32_t* WEBP_RESTRICT dst, + int dst_stride); + +// Extract the alpha values from 32b values in argb[] and pack them into alpha[] +// (this is the opposite of WebPDispatchAlpha). +// Returns true if there's only trivial 0xff alpha values. +extern int (*WebPExtractAlpha)(const uint8_t* WEBP_RESTRICT argb, + int argb_stride, int width, int height, + uint8_t* WEBP_RESTRICT alpha, + int alpha_stride); + +// Extract the green values from 32b values in argb[] and pack them into alpha[] +// (this is the opposite of WebPDispatchAlphaToGreen). +extern void (*WebPExtractGreen)(const uint32_t* WEBP_RESTRICT argb, + uint8_t* WEBP_RESTRICT alpha, int size); + +// Pre-Multiply operation transforms x into x * A / 255 (where x=Y,R,G or B). +// Un-Multiply operation transforms x into x * 255 / A. + +// Pre-Multiply or Un-Multiply (if 'inverse' is true) argb values in a row. +extern void (*WebPMultARGBRow)(uint32_t* const ptr, int width, int inverse); + +// Same a WebPMultARGBRow(), but for several rows. +void WebPMultARGBRows(uint8_t* ptr, int stride, int width, int num_rows, + int inverse); + +// Same for a row of single values, with side alpha values. +extern void (*WebPMultRow)(uint8_t* WEBP_RESTRICT const ptr, + const uint8_t* WEBP_RESTRICT const alpha, + int width, int inverse); + +// Same a WebPMultRow(), but for several 'num_rows' rows. +void WebPMultRows(uint8_t* WEBP_RESTRICT ptr, int stride, + const uint8_t* WEBP_RESTRICT alpha, int alpha_stride, + int width, int num_rows, int inverse); + +// Plain-C versions, used as fallback by some implementations. +void WebPMultRow_C(uint8_t* WEBP_RESTRICT const ptr, + const uint8_t* WEBP_RESTRICT const alpha, + int width, int inverse); +void WebPMultARGBRow_C(uint32_t* const ptr, int width, int inverse); + +#ifdef WORDS_BIGENDIAN +// ARGB packing function: a/r/g/b input is rgba or bgra order. +extern void (*WebPPackARGB)(const uint8_t* WEBP_RESTRICT a, + const uint8_t* WEBP_RESTRICT r, + const uint8_t* WEBP_RESTRICT g, + const uint8_t* WEBP_RESTRICT b, + int len, uint32_t* WEBP_RESTRICT out); +#endif + +// RGB packing function. 'step' can be 3 or 4. r/g/b input is rgb or bgr order. +extern void (*WebPPackRGB)(const uint8_t* WEBP_RESTRICT r, + const uint8_t* WEBP_RESTRICT g, + const uint8_t* WEBP_RESTRICT b, + int len, int step, uint32_t* WEBP_RESTRICT out); + +// This function returns true if src[i] contains a value different from 0xff. +extern int (*WebPHasAlpha8b)(const uint8_t* src, int length); +// This function returns true if src[4*i] contains a value different from 0xff. +extern int (*WebPHasAlpha32b)(const uint8_t* src, int length); +// replaces transparent values in src[] by 'color'. +extern void (*WebPAlphaReplace)(uint32_t* src, int length, uint32_t color); + +// To be called first before using the above. +void WebPInitAlphaProcessing(void); + +//------------------------------------------------------------------------------ +// Filter functions + +typedef enum { // Filter types. + WEBP_FILTER_NONE = 0, + WEBP_FILTER_HORIZONTAL, + WEBP_FILTER_VERTICAL, + WEBP_FILTER_GRADIENT, + WEBP_FILTER_LAST = WEBP_FILTER_GRADIENT + 1, // end marker + WEBP_FILTER_BEST, // meta-types + WEBP_FILTER_FAST +} WEBP_FILTER_TYPE; + +typedef void (*WebPFilterFunc)(const uint8_t* in, int width, int height, + int stride, uint8_t* out); +// In-place un-filtering. +// Warning! 'prev_line' pointer can be equal to 'cur_line' or 'preds'. +typedef void (*WebPUnfilterFunc)(const uint8_t* prev_line, const uint8_t* preds, + uint8_t* cur_line, int width); + +// Filter the given data using the given predictor. +// 'in' corresponds to a 2-dimensional pixel array of size (stride * height) +// in raster order. +// 'stride' is number of bytes per scan line (with possible padding). +// 'out' should be pre-allocated. +extern WebPFilterFunc WebPFilters[WEBP_FILTER_LAST]; + +// In-place reconstruct the original data from the given filtered data. +// The reconstruction will be done for 'num_rows' rows starting from 'row' +// (assuming rows upto 'row - 1' are already reconstructed). +extern WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST]; + +// To be called first before using the above. +void VP8FiltersInit(void); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_DSP_H_ diff --git a/media/libwebp/src/dsp/enc.c b/media/libwebp/src/dsp/enc.c new file mode 100644 index 0000000000..ea47a3fd95 --- /dev/null +++ b/media/libwebp/src/dsp/enc.c @@ -0,0 +1,830 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Speed-critical encoding functions. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> +#include <stdlib.h> // for abs() + +#include "src/dsp/dsp.h" +#include "src/enc/vp8i_enc.h" + +static WEBP_INLINE uint8_t clip_8b(int v) { + return (!(v & ~0xff)) ? v : (v < 0) ? 0 : 255; +} + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE int clip_max(int v, int max) { + return (v > max) ? max : v; +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ +// Compute susceptibility based on DCT-coeff histograms: +// the higher, the "easier" the macroblock is to compress. + +const int VP8DspScan[16 + 4 + 4] = { + // Luma + 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, + 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, + 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, + 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS, + + 0 + 0 * BPS, 4 + 0 * BPS, 0 + 4 * BPS, 4 + 4 * BPS, // U + 8 + 0 * BPS, 12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS // V +}; + +// general-purpose util function +void VP8SetHistogramData(const int distribution[MAX_COEFF_THRESH + 1], + VP8Histogram* const histo) { + int max_value = 0, last_non_zero = 1; + int k; + for (k = 0; k <= MAX_COEFF_THRESH; ++k) { + const int value = distribution[k]; + if (value > 0) { + if (value > max_value) max_value = value; + last_non_zero = k; + } + } + histo->max_value = max_value; + histo->last_non_zero = last_non_zero; +} + +#if !WEBP_NEON_OMIT_C_CODE +static void CollectHistogram_C(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + for (j = start_block; j < end_block; ++j) { + int k; + int16_t out[16]; + + VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + + // Convert coefficients to bin. + for (k = 0; k < 16; ++k) { + const int v = abs(out[k]) >> 3; + const int clipped_value = clip_max(v, MAX_COEFF_THRESH); + ++distribution[clipped_value]; + } + } + VP8SetHistogramData(distribution, histo); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ +// run-time tables (~4k) + +static uint8_t clip1[255 + 510 + 1]; // clips [-255,510] to [0,255] + +// We declare this variable 'volatile' to prevent instruction reordering +// and make sure it's set to true _last_ (so as to be thread-safe) +static volatile int tables_ok = 0; + +static WEBP_TSAN_IGNORE_FUNCTION void InitTables(void) { + if (!tables_ok) { + int i; + for (i = -255; i <= 255 + 255; ++i) { + clip1[255 + i] = clip_8b(i); + } + tables_ok = 1; + } +} + + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +#if !WEBP_NEON_OMIT_C_CODE + +#define STORE(x, y, v) \ + dst[(x) + (y) * BPS] = clip_8b(ref[(x) + (y) * BPS] + ((v) >> 3)) + +static const int kC1 = 20091 + (1 << 16); +static const int kC2 = 35468; +#define MUL(a, b) (((a) * (b)) >> 16) + +static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in, + uint8_t* dst) { + int C[4 * 4], *tmp; + int i; + tmp = C; + for (i = 0; i < 4; ++i) { // vertical pass + const int a = in[0] + in[8]; + const int b = in[0] - in[8]; + const int c = MUL(in[4], kC2) - MUL(in[12], kC1); + const int d = MUL(in[4], kC1) + MUL(in[12], kC2); + tmp[0] = a + d; + tmp[1] = b + c; + tmp[2] = b - c; + tmp[3] = a - d; + tmp += 4; + in++; + } + + tmp = C; + for (i = 0; i < 4; ++i) { // horizontal pass + const int dc = tmp[0] + 4; + const int a = dc + tmp[8]; + const int b = dc - tmp[8]; + const int c = MUL(tmp[4], kC2) - MUL(tmp[12], kC1); + const int d = MUL(tmp[4], kC1) + MUL(tmp[12], kC2); + STORE(0, i, a + d); + STORE(1, i, b + c); + STORE(2, i, b - c); + STORE(3, i, a - d); + tmp++; + } +} + +static void ITransform_C(const uint8_t* ref, const int16_t* in, uint8_t* dst, + int do_two) { + ITransformOne(ref, in, dst); + if (do_two) { + ITransformOne(ref + 4, in + 16, dst + 4); + } +} + +static void FTransform_C(const uint8_t* src, const uint8_t* ref, int16_t* out) { + int i; + int tmp[16]; + for (i = 0; i < 4; ++i, src += BPS, ref += BPS) { + const int d0 = src[0] - ref[0]; // 9bit dynamic range ([-255,255]) + const int d1 = src[1] - ref[1]; + const int d2 = src[2] - ref[2]; + const int d3 = src[3] - ref[3]; + const int a0 = (d0 + d3); // 10b [-510,510] + const int a1 = (d1 + d2); + const int a2 = (d1 - d2); + const int a3 = (d0 - d3); + tmp[0 + i * 4] = (a0 + a1) * 8; // 14b [-8160,8160] + tmp[1 + i * 4] = (a2 * 2217 + a3 * 5352 + 1812) >> 9; // [-7536,7542] + tmp[2 + i * 4] = (a0 - a1) * 8; + tmp[3 + i * 4] = (a3 * 2217 - a2 * 5352 + 937) >> 9; + } + for (i = 0; i < 4; ++i) { + const int a0 = (tmp[0 + i] + tmp[12 + i]); // 15b + const int a1 = (tmp[4 + i] + tmp[ 8 + i]); + const int a2 = (tmp[4 + i] - tmp[ 8 + i]); + const int a3 = (tmp[0 + i] - tmp[12 + i]); + out[0 + i] = (a0 + a1 + 7) >> 4; // 12b + out[4 + i] = ((a2 * 2217 + a3 * 5352 + 12000) >> 16) + (a3 != 0); + out[8 + i] = (a0 - a1 + 7) >> 4; + out[12+ i] = ((a3 * 2217 - a2 * 5352 + 51000) >> 16); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void FTransform2_C(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + VP8FTransform(src, ref, out); + VP8FTransform(src + 4, ref + 4, out + 16); +} + +#if !WEBP_NEON_OMIT_C_CODE +static void FTransformWHT_C(const int16_t* in, int16_t* out) { + // input is 12b signed + int32_t tmp[16]; + int i; + for (i = 0; i < 4; ++i, in += 64) { + const int a0 = (in[0 * 16] + in[2 * 16]); // 13b + const int a1 = (in[1 * 16] + in[3 * 16]); + const int a2 = (in[1 * 16] - in[3 * 16]); + const int a3 = (in[0 * 16] - in[2 * 16]); + tmp[0 + i * 4] = a0 + a1; // 14b + tmp[1 + i * 4] = a3 + a2; + tmp[2 + i * 4] = a3 - a2; + tmp[3 + i * 4] = a0 - a1; + } + for (i = 0; i < 4; ++i) { + const int a0 = (tmp[0 + i] + tmp[8 + i]); // 15b + const int a1 = (tmp[4 + i] + tmp[12+ i]); + const int a2 = (tmp[4 + i] - tmp[12+ i]); + const int a3 = (tmp[0 + i] - tmp[8 + i]); + const int b0 = a0 + a1; // 16b + const int b1 = a3 + a2; + const int b2 = a3 - a2; + const int b3 = a0 - a1; + out[ 0 + i] = b0 >> 1; // 15b + out[ 4 + i] = b1 >> 1; + out[ 8 + i] = b2 >> 1; + out[12 + i] = b3 >> 1; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#undef MUL +#undef STORE + +//------------------------------------------------------------------------------ +// Intra predictions + +static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) { + int j; + for (j = 0; j < size; ++j) { + memset(dst + j * BPS, value, size); + } +} + +static WEBP_INLINE void VerticalPred(uint8_t* dst, + const uint8_t* top, int size) { + int j; + if (top != NULL) { + for (j = 0; j < size; ++j) memcpy(dst + j * BPS, top, size); + } else { + Fill(dst, 127, size); + } +} + +static WEBP_INLINE void HorizontalPred(uint8_t* dst, + const uint8_t* left, int size) { + if (left != NULL) { + int j; + for (j = 0; j < size; ++j) { + memset(dst + j * BPS, left[j], size); + } + } else { + Fill(dst, 129, size); + } +} + +static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left, + const uint8_t* top, int size) { + int y; + if (left != NULL) { + if (top != NULL) { + const uint8_t* const clip = clip1 + 255 - left[-1]; + for (y = 0; y < size; ++y) { + const uint8_t* const clip_table = clip + left[y]; + int x; + for (x = 0; x < size; ++x) { + dst[x] = clip_table[top[x]]; + } + dst += BPS; + } + } else { + HorizontalPred(dst, left, size); + } + } else { + // true motion without left samples (hence: with default 129 value) + // is equivalent to VE prediction where you just copy the top samples. + // Note that if top samples are not available, the default value is + // then 129, and not 127 as in the VerticalPred case. + if (top != NULL) { + VerticalPred(dst, top, size); + } else { + Fill(dst, 129, size); + } + } +} + +static WEBP_INLINE void DCMode(uint8_t* dst, const uint8_t* left, + const uint8_t* top, + int size, int round, int shift) { + int DC = 0; + int j; + if (top != NULL) { + for (j = 0; j < size; ++j) DC += top[j]; + if (left != NULL) { // top and left present + for (j = 0; j < size; ++j) DC += left[j]; + } else { // top, but no left + DC += DC; + } + DC = (DC + round) >> shift; + } else if (left != NULL) { // left but no top + for (j = 0; j < size; ++j) DC += left[j]; + DC += DC; + DC = (DC + round) >> shift; + } else { // no top, no left, nothing. + DC = 0x80; + } + Fill(dst, DC, size); +} + +//------------------------------------------------------------------------------ +// Chroma 8x8 prediction (paragraph 12.2) + +static void IntraChromaPreds_C(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + // U block + DCMode(C8DC8 + dst, left, top, 8, 8, 4); + VerticalPred(C8VE8 + dst, top, 8); + HorizontalPred(C8HE8 + dst, left, 8); + TrueMotion(C8TM8 + dst, left, top, 8); + // V block + dst += 8; + if (top != NULL) top += 8; + if (left != NULL) left += 16; + DCMode(C8DC8 + dst, left, top, 8, 8, 4); + VerticalPred(C8VE8 + dst, top, 8); + HorizontalPred(C8HE8 + dst, left, 8); + TrueMotion(C8TM8 + dst, left, top, 8); +} + +//------------------------------------------------------------------------------ +// luma 16x16 prediction (paragraph 12.3) + +static void Intra16Preds_C(uint8_t* dst, + const uint8_t* left, const uint8_t* top) { + DCMode(I16DC16 + dst, left, top, 16, 16, 5); + VerticalPred(I16VE16 + dst, top, 16); + HorizontalPred(I16HE16 + dst, left, 16); + TrueMotion(I16TM16 + dst, left, top, 16); +} + +//------------------------------------------------------------------------------ +// luma 4x4 prediction + +#define DST(x, y) dst[(x) + (y) * BPS] +#define AVG3(a, b, c) ((uint8_t)(((a) + 2 * (b) + (c) + 2) >> 2)) +#define AVG2(a, b) (((a) + (b) + 1) >> 1) + +static void VE4(uint8_t* dst, const uint8_t* top) { // vertical + const uint8_t vals[4] = { + AVG3(top[-1], top[0], top[1]), + AVG3(top[ 0], top[1], top[2]), + AVG3(top[ 1], top[2], top[3]), + AVG3(top[ 2], top[3], top[4]) + }; + int i; + for (i = 0; i < 4; ++i) { + memcpy(dst + i * BPS, vals, 4); + } +} + +static void HE4(uint8_t* dst, const uint8_t* top) { // horizontal + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); + WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); + WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); + WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); +} + +static void DC4(uint8_t* dst, const uint8_t* top) { + uint32_t dc = 4; + int i; + for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; + Fill(dst, dc >> 3, 4); +} + +static void RD4(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + DST(0, 3) = AVG3(J, K, L); + DST(0, 2) = DST(1, 3) = AVG3(I, J, K); + DST(0, 1) = DST(1, 2) = DST(2, 3) = AVG3(X, I, J); + DST(0, 0) = DST(1, 1) = DST(2, 2) = DST(3, 3) = AVG3(A, X, I); + DST(1, 0) = DST(2, 1) = DST(3, 2) = AVG3(B, A, X); + DST(2, 0) = DST(3, 1) = AVG3(C, B, A); + DST(3, 0) = AVG3(D, C, B); +} + +static void LD4(uint8_t* dst, const uint8_t* top) { + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + const int E = top[4]; + const int F = top[5]; + const int G = top[6]; + const int H = top[7]; + DST(0, 0) = AVG3(A, B, C); + DST(1, 0) = DST(0, 1) = AVG3(B, C, D); + DST(2, 0) = DST(1, 1) = DST(0, 2) = AVG3(C, D, E); + DST(3, 0) = DST(2, 1) = DST(1, 2) = DST(0, 3) = AVG3(D, E, F); + DST(3, 1) = DST(2, 2) = DST(1, 3) = AVG3(E, F, G); + DST(3, 2) = DST(2, 3) = AVG3(F, G, H); + DST(3, 3) = AVG3(G, H, H); +} + +static void VR4(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + DST(0, 0) = DST(1, 2) = AVG2(X, A); + DST(1, 0) = DST(2, 2) = AVG2(A, B); + DST(2, 0) = DST(3, 2) = AVG2(B, C); + DST(3, 0) = AVG2(C, D); + + DST(0, 3) = AVG3(K, J, I); + DST(0, 2) = AVG3(J, I, X); + DST(0, 1) = DST(1, 3) = AVG3(I, X, A); + DST(1, 1) = DST(2, 3) = AVG3(X, A, B); + DST(2, 1) = DST(3, 3) = AVG3(A, B, C); + DST(3, 1) = AVG3(B, C, D); +} + +static void VL4(uint8_t* dst, const uint8_t* top) { + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + const int E = top[4]; + const int F = top[5]; + const int G = top[6]; + const int H = top[7]; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 2) = AVG3(E, F, G); + DST(3, 3) = AVG3(F, G, H); +} + +static void HU4(uint8_t* dst, const uint8_t* top) { + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = + DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +static void HD4(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} + +static void TM4(uint8_t* dst, const uint8_t* top) { + int x, y; + const uint8_t* const clip = clip1 + 255 - top[-1]; + for (y = 0; y < 4; ++y) { + const uint8_t* const clip_table = clip + top[-2 - y]; + for (x = 0; x < 4; ++x) { + dst[x] = clip_table[top[x]]; + } + dst += BPS; + } +} + +#undef DST +#undef AVG3 +#undef AVG2 + +// Left samples are top[-5 .. -2], top_left is top[-1], top are +// located at top[0..3], and top right is top[4..7] +static void Intra4Preds_C(uint8_t* dst, const uint8_t* top) { + DC4(I4DC4 + dst, top); + TM4(I4TM4 + dst, top); + VE4(I4VE4 + dst, top); + HE4(I4HE4 + dst, top); + RD4(I4RD4 + dst, top); + VR4(I4VR4 + dst, top); + LD4(I4LD4 + dst, top); + VL4(I4VL4 + dst, top); + HD4(I4HD4 + dst, top); + HU4(I4HU4 + dst, top); +} + +//------------------------------------------------------------------------------ +// Metric + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE int GetSSE(const uint8_t* a, const uint8_t* b, + int w, int h) { + int count = 0; + int y, x; + for (y = 0; y < h; ++y) { + for (x = 0; x < w; ++x) { + const int diff = (int)a[x] - b[x]; + count += diff * diff; + } + a += BPS; + b += BPS; + } + return count; +} + +static int SSE16x16_C(const uint8_t* a, const uint8_t* b) { + return GetSSE(a, b, 16, 16); +} +static int SSE16x8_C(const uint8_t* a, const uint8_t* b) { + return GetSSE(a, b, 16, 8); +} +static int SSE8x8_C(const uint8_t* a, const uint8_t* b) { + return GetSSE(a, b, 8, 8); +} +static int SSE4x4_C(const uint8_t* a, const uint8_t* b) { + return GetSSE(a, b, 4, 4); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void Mean16x4_C(const uint8_t* ref, uint32_t dc[4]) { + int k, x, y; + for (k = 0; k < 4; ++k) { + uint32_t avg = 0; + for (y = 0; y < 4; ++y) { + for (x = 0; x < 4; ++x) { + avg += ref[x + y * BPS]; + } + } + dc[k] = avg; + ref += 4; // go to next 4x4 block. + } +} + +//------------------------------------------------------------------------------ +// Texture distortion +// +// We try to match the spectral content (weighted) between source and +// reconstructed samples. + +#if !WEBP_NEON_OMIT_C_CODE +// Hadamard transform +// Returns the weighted sum of the absolute value of transformed coefficients. +// w[] contains a row-major 4 by 4 symmetric matrix. +static int TTransform(const uint8_t* in, const uint16_t* w) { + int sum = 0; + int tmp[16]; + int i; + // horizontal pass + for (i = 0; i < 4; ++i, in += BPS) { + const int a0 = in[0] + in[2]; + const int a1 = in[1] + in[3]; + const int a2 = in[1] - in[3]; + const int a3 = in[0] - in[2]; + tmp[0 + i * 4] = a0 + a1; + tmp[1 + i * 4] = a3 + a2; + tmp[2 + i * 4] = a3 - a2; + tmp[3 + i * 4] = a0 - a1; + } + // vertical pass + for (i = 0; i < 4; ++i, ++w) { + const int a0 = tmp[0 + i] + tmp[8 + i]; + const int a1 = tmp[4 + i] + tmp[12+ i]; + const int a2 = tmp[4 + i] - tmp[12+ i]; + const int a3 = tmp[0 + i] - tmp[8 + i]; + const int b0 = a0 + a1; + const int b1 = a3 + a2; + const int b2 = a3 - a2; + const int b3 = a0 - a1; + + sum += w[ 0] * abs(b0); + sum += w[ 4] * abs(b1); + sum += w[ 8] * abs(b2); + sum += w[12] * abs(b3); + } + return sum; +} + +static int Disto4x4_C(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + const int sum1 = TTransform(a, w); + const int sum2 = TTransform(b, w); + return abs(sum2 - sum1) >> 5; +} + +static int Disto16x16_C(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_C(a + x + y, b + x + y, w); + } + } + return D; +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ +// Quantization +// + +static const uint8_t kZigzag[16] = { + 0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15 +}; + +// Simple quantization +static int QuantizeBlock_C(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + int last = -1; + int n; + for (n = 0; n < 16; ++n) { + const int j = kZigzag[n]; + const int sign = (in[j] < 0); + const uint32_t coeff = (sign ? -in[j] : in[j]) + mtx->sharpen_[j]; + if (coeff > mtx->zthresh_[j]) { + const uint32_t Q = mtx->q_[j]; + const uint32_t iQ = mtx->iq_[j]; + const uint32_t B = mtx->bias_[j]; + int level = QUANTDIV(coeff, iQ, B); + if (level > MAX_LEVEL) level = MAX_LEVEL; + if (sign) level = -level; + in[j] = level * (int)Q; + out[n] = level; + if (level) last = n; + } else { + out[n] = 0; + in[j] = 0; + } + } + return (last >= 0); +} + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC +static int Quantize2Blocks_C(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0; + nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1; + return nz; +} +#endif // !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + +//------------------------------------------------------------------------------ +// Block copy + +static WEBP_INLINE void Copy(const uint8_t* src, uint8_t* dst, int w, int h) { + int y; + for (y = 0; y < h; ++y) { + memcpy(dst, src, w); + src += BPS; + dst += BPS; + } +} + +static void Copy4x4_C(const uint8_t* src, uint8_t* dst) { + Copy(src, dst, 4, 4); +} + +static void Copy16x8_C(const uint8_t* src, uint8_t* dst) { + Copy(src, dst, 16, 8); +} + +//------------------------------------------------------------------------------ +// Initialization + +// Speed-critical function pointers. We have to initialize them to the default +// implementations within VP8EncDspInit(). +VP8CHisto VP8CollectHistogram; +VP8Idct VP8ITransform; +VP8Fdct VP8FTransform; +VP8Fdct VP8FTransform2; +VP8WHT VP8FTransformWHT; +VP8Intra4Preds VP8EncPredLuma4; +VP8IntraPreds VP8EncPredLuma16; +VP8IntraPreds VP8EncPredChroma8; +VP8Metric VP8SSE16x16; +VP8Metric VP8SSE8x8; +VP8Metric VP8SSE16x8; +VP8Metric VP8SSE4x4; +VP8WMetric VP8TDisto4x4; +VP8WMetric VP8TDisto16x16; +VP8MeanMetric VP8Mean16x4; +VP8QuantizeBlock VP8EncQuantizeBlock; +VP8Quantize2Blocks VP8EncQuantize2Blocks; +VP8QuantizeBlockWHT VP8EncQuantizeBlockWHT; +VP8BlockCopy VP8Copy4x4; +VP8BlockCopy VP8Copy16x8; + +extern void VP8EncDspInitSSE2(void); +extern void VP8EncDspInitSSE41(void); +extern void VP8EncDspInitNEON(void); +extern void VP8EncDspInitMIPS32(void); +extern void VP8EncDspInitMIPSdspR2(void); +extern void VP8EncDspInitMSA(void); + +WEBP_DSP_INIT_FUNC(VP8EncDspInit) { + VP8DspInit(); // common inverse transforms + InitTables(); + + // default C implementations +#if !WEBP_NEON_OMIT_C_CODE + VP8ITransform = ITransform_C; + VP8FTransform = FTransform_C; + VP8FTransformWHT = FTransformWHT_C; + VP8TDisto4x4 = Disto4x4_C; + VP8TDisto16x16 = Disto16x16_C; + VP8CollectHistogram = CollectHistogram_C; + VP8SSE16x16 = SSE16x16_C; + VP8SSE16x8 = SSE16x8_C; + VP8SSE8x8 = SSE8x8_C; + VP8SSE4x4 = SSE4x4_C; +#endif + +#if !WEBP_NEON_OMIT_C_CODE || WEBP_NEON_WORK_AROUND_GCC + VP8EncQuantizeBlock = QuantizeBlock_C; + VP8EncQuantize2Blocks = Quantize2Blocks_C; +#endif + + VP8FTransform2 = FTransform2_C; + VP8EncPredLuma4 = Intra4Preds_C; + VP8EncPredLuma16 = Intra16Preds_C; + VP8EncPredChroma8 = IntraChromaPreds_C; + VP8Mean16x4 = Mean16x4_C; + VP8EncQuantizeBlockWHT = QuantizeBlock_C; + VP8Copy4x4 = Copy4x4_C; + VP8Copy16x8 = Copy16x8_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8EncDspInitSSE2(); +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + VP8EncDspInitSSE41(); + } +#endif + } +#endif +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + VP8EncDspInitMIPS32(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8EncDspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8EncDspInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8EncDspInitNEON(); + } +#endif + + assert(VP8ITransform != NULL); + assert(VP8FTransform != NULL); + assert(VP8FTransformWHT != NULL); + assert(VP8TDisto4x4 != NULL); + assert(VP8TDisto16x16 != NULL); + assert(VP8CollectHistogram != NULL); + assert(VP8SSE16x16 != NULL); + assert(VP8SSE16x8 != NULL); + assert(VP8SSE8x8 != NULL); + assert(VP8SSE4x4 != NULL); + assert(VP8EncQuantizeBlock != NULL); + assert(VP8EncQuantize2Blocks != NULL); + assert(VP8FTransform2 != NULL); + assert(VP8EncPredLuma4 != NULL); + assert(VP8EncPredLuma16 != NULL); + assert(VP8EncPredChroma8 != NULL); + assert(VP8Mean16x4 != NULL); + assert(VP8EncQuantizeBlockWHT != NULL); + assert(VP8Copy4x4 != NULL); + assert(VP8Copy16x8 != NULL); +} diff --git a/media/libwebp/src/dsp/enc_mips32.c b/media/libwebp/src/dsp/enc_mips32.c new file mode 100644 index 0000000000..618f0fc0ee --- /dev/null +++ b/media/libwebp/src/dsp/enc_mips32.c @@ -0,0 +1,677 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of speed-critical encoding functions. +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) +// Slobodan Prijic (slobodan.prijic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS32) + +#include "src/dsp/mips_macro.h" +#include "src/enc/vp8i_enc.h" +#include "src/enc/cost_enc.h" + +static const int kC1 = 20091 + (1 << 16); +static const int kC2 = 35468; + +// macro for one vertical pass in ITransformOne +// MUL macro inlined +// temp0..temp15 holds tmp[0]..tmp[15] +// A..D - offsets in bytes to load from in buffer +// TEMP0..TEMP3 - registers for corresponding tmp elements +// TEMP4..TEMP5 - temporary registers +#define VERTICAL_PASS(A, B, C, D, TEMP4, TEMP0, TEMP1, TEMP2, TEMP3) \ + "lh %[temp16], " #A "(%[temp20]) \n\t" \ + "lh %[temp18], " #B "(%[temp20]) \n\t" \ + "lh %[temp17], " #C "(%[temp20]) \n\t" \ + "lh %[temp19], " #D "(%[temp20]) \n\t" \ + "addu %[" #TEMP4 "], %[temp16], %[temp18] \n\t" \ + "subu %[temp16], %[temp16], %[temp18] \n\t" \ + "mul %[" #TEMP0 "], %[temp17], %[kC2] \n\t" \ + "mul %[temp18], %[temp19], %[kC1] \n\t" \ + "mul %[temp17], %[temp17], %[kC1] \n\t" \ + "mul %[temp19], %[temp19], %[kC2] \n\t" \ + "sra %[" #TEMP0 "], %[" #TEMP0 "], 16 \n\n" \ + "sra %[temp18], %[temp18], 16 \n\n" \ + "sra %[temp17], %[temp17], 16 \n\n" \ + "sra %[temp19], %[temp19], 16 \n\n" \ + "subu %[" #TEMP2 "], %[" #TEMP0 "], %[temp18] \n\t" \ + "addu %[" #TEMP3 "], %[temp17], %[temp19] \n\t" \ + "addu %[" #TEMP0 "], %[" #TEMP4 "], %[" #TEMP3 "] \n\t" \ + "addu %[" #TEMP1 "], %[temp16], %[" #TEMP2 "] \n\t" \ + "subu %[" #TEMP2 "], %[temp16], %[" #TEMP2 "] \n\t" \ + "subu %[" #TEMP3 "], %[" #TEMP4 "], %[" #TEMP3 "] \n\t" + +// macro for one horizontal pass in ITransformOne +// MUL and STORE macros inlined +// a = clip_8b(a) is replaced with: a = max(a, 0); a = min(a, 255) +// temp0..temp15 holds tmp[0]..tmp[15] +// A - offset in bytes to load from ref and store to dst buffer +// TEMP0, TEMP4, TEMP8 and TEMP12 - registers for corresponding tmp elements +#define HORIZONTAL_PASS(A, TEMP0, TEMP4, TEMP8, TEMP12) \ + "addiu %[" #TEMP0 "], %[" #TEMP0 "], 4 \n\t" \ + "addu %[temp16], %[" #TEMP0 "], %[" #TEMP8 "] \n\t" \ + "subu %[temp17], %[" #TEMP0 "], %[" #TEMP8 "] \n\t" \ + "mul %[" #TEMP0 "], %[" #TEMP4 "], %[kC2] \n\t" \ + "mul %[" #TEMP8 "], %[" #TEMP12 "], %[kC1] \n\t" \ + "mul %[" #TEMP4 "], %[" #TEMP4 "], %[kC1] \n\t" \ + "mul %[" #TEMP12 "], %[" #TEMP12 "], %[kC2] \n\t" \ + "sra %[" #TEMP0 "], %[" #TEMP0 "], 16 \n\t" \ + "sra %[" #TEMP8 "], %[" #TEMP8 "], 16 \n\t" \ + "sra %[" #TEMP4 "], %[" #TEMP4 "], 16 \n\t" \ + "sra %[" #TEMP12 "], %[" #TEMP12 "], 16 \n\t" \ + "subu %[temp18], %[" #TEMP0 "], %[" #TEMP8 "] \n\t" \ + "addu %[temp19], %[" #TEMP4 "], %[" #TEMP12 "] \n\t" \ + "addu %[" #TEMP0 "], %[temp16], %[temp19] \n\t" \ + "addu %[" #TEMP4 "], %[temp17], %[temp18] \n\t" \ + "subu %[" #TEMP8 "], %[temp17], %[temp18] \n\t" \ + "subu %[" #TEMP12 "], %[temp16], %[temp19] \n\t" \ + "lw %[temp20], 0(%[args]) \n\t" \ + "sra %[" #TEMP0 "], %[" #TEMP0 "], 3 \n\t" \ + "sra %[" #TEMP4 "], %[" #TEMP4 "], 3 \n\t" \ + "sra %[" #TEMP8 "], %[" #TEMP8 "], 3 \n\t" \ + "sra %[" #TEMP12 "], %[" #TEMP12 "], 3 \n\t" \ + "lbu %[temp16], 0+" XSTR(BPS) "*" #A "(%[temp20]) \n\t" \ + "lbu %[temp17], 1+" XSTR(BPS) "*" #A "(%[temp20]) \n\t" \ + "lbu %[temp18], 2+" XSTR(BPS) "*" #A "(%[temp20]) \n\t" \ + "lbu %[temp19], 3+" XSTR(BPS) "*" #A "(%[temp20]) \n\t" \ + "addu %[" #TEMP0 "], %[temp16], %[" #TEMP0 "] \n\t" \ + "addu %[" #TEMP4 "], %[temp17], %[" #TEMP4 "] \n\t" \ + "addu %[" #TEMP8 "], %[temp18], %[" #TEMP8 "] \n\t" \ + "addu %[" #TEMP12 "], %[temp19], %[" #TEMP12 "] \n\t" \ + "slt %[temp16], %[" #TEMP0 "], $zero \n\t" \ + "slt %[temp17], %[" #TEMP4 "], $zero \n\t" \ + "slt %[temp18], %[" #TEMP8 "], $zero \n\t" \ + "slt %[temp19], %[" #TEMP12 "], $zero \n\t" \ + "movn %[" #TEMP0 "], $zero, %[temp16] \n\t" \ + "movn %[" #TEMP4 "], $zero, %[temp17] \n\t" \ + "movn %[" #TEMP8 "], $zero, %[temp18] \n\t" \ + "movn %[" #TEMP12 "], $zero, %[temp19] \n\t" \ + "addiu %[temp20], $zero, 255 \n\t" \ + "slt %[temp16], %[" #TEMP0 "], %[temp20] \n\t" \ + "slt %[temp17], %[" #TEMP4 "], %[temp20] \n\t" \ + "slt %[temp18], %[" #TEMP8 "], %[temp20] \n\t" \ + "slt %[temp19], %[" #TEMP12 "], %[temp20] \n\t" \ + "movz %[" #TEMP0 "], %[temp20], %[temp16] \n\t" \ + "movz %[" #TEMP4 "], %[temp20], %[temp17] \n\t" \ + "lw %[temp16], 8(%[args]) \n\t" \ + "movz %[" #TEMP8 "], %[temp20], %[temp18] \n\t" \ + "movz %[" #TEMP12 "], %[temp20], %[temp19] \n\t" \ + "sb %[" #TEMP0 "], 0+" XSTR(BPS) "*" #A "(%[temp16]) \n\t" \ + "sb %[" #TEMP4 "], 1+" XSTR(BPS) "*" #A "(%[temp16]) \n\t" \ + "sb %[" #TEMP8 "], 2+" XSTR(BPS) "*" #A "(%[temp16]) \n\t" \ + "sb %[" #TEMP12 "], 3+" XSTR(BPS) "*" #A "(%[temp16]) \n\t" + +// Does one or two inverse transforms. +static WEBP_INLINE void ITransformOne_MIPS32(const uint8_t* ref, + const int16_t* in, + uint8_t* dst) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; + int temp7, temp8, temp9, temp10, temp11, temp12, temp13; + int temp14, temp15, temp16, temp17, temp18, temp19, temp20; + const int* args[3] = {(const int*)ref, (const int*)in, (const int*)dst}; + + __asm__ volatile( + "lw %[temp20], 4(%[args]) \n\t" + VERTICAL_PASS(0, 16, 8, 24, temp4, temp0, temp1, temp2, temp3) + VERTICAL_PASS(2, 18, 10, 26, temp8, temp4, temp5, temp6, temp7) + VERTICAL_PASS(4, 20, 12, 28, temp12, temp8, temp9, temp10, temp11) + VERTICAL_PASS(6, 22, 14, 30, temp20, temp12, temp13, temp14, temp15) + + HORIZONTAL_PASS(0, temp0, temp4, temp8, temp12) + HORIZONTAL_PASS(1, temp1, temp5, temp9, temp13) + HORIZONTAL_PASS(2, temp2, temp6, temp10, temp14) + HORIZONTAL_PASS(3, temp3, temp7, temp11, temp15) + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), [temp11]"=&r"(temp11), + [temp12]"=&r"(temp12), [temp13]"=&r"(temp13), [temp14]"=&r"(temp14), + [temp15]"=&r"(temp15), [temp16]"=&r"(temp16), [temp17]"=&r"(temp17), + [temp18]"=&r"(temp18), [temp19]"=&r"(temp19), [temp20]"=&r"(temp20) + : [args]"r"(args), [kC1]"r"(kC1), [kC2]"r"(kC2) + : "memory", "hi", "lo" + ); +} + +static void ITransform_MIPS32(const uint8_t* ref, const int16_t* in, + uint8_t* dst, int do_two) { + ITransformOne_MIPS32(ref, in, dst); + if (do_two) { + ITransformOne_MIPS32(ref + 4, in + 16, dst + 4); + } +} + +#undef VERTICAL_PASS +#undef HORIZONTAL_PASS + +// macro for one pass through for loop in QuantizeBlock +// QUANTDIV macro inlined +// J - offset in bytes (kZigzag[n] * 2) +// K - offset in bytes (kZigzag[n] * 4) +// N - offset in bytes (n * 2) +#define QUANTIZE_ONE(J, K, N) \ + "lh %[temp0], " #J "(%[ppin]) \n\t" \ + "lhu %[temp1], " #J "(%[ppsharpen]) \n\t" \ + "lw %[temp2], " #K "(%[ppzthresh]) \n\t" \ + "sra %[sign], %[temp0], 15 \n\t" \ + "xor %[coeff], %[temp0], %[sign] \n\t" \ + "subu %[coeff], %[coeff], %[sign] \n\t" \ + "addu %[coeff], %[coeff], %[temp1] \n\t" \ + "slt %[temp4], %[temp2], %[coeff] \n\t" \ + "addiu %[temp5], $zero, 0 \n\t" \ + "addiu %[level], $zero, 0 \n\t" \ + "beqz %[temp4], 2f \n\t" \ + "lhu %[temp1], " #J "(%[ppiq]) \n\t" \ + "lw %[temp2], " #K "(%[ppbias]) \n\t" \ + "lhu %[temp3], " #J "(%[ppq]) \n\t" \ + "mul %[level], %[coeff], %[temp1] \n\t" \ + "addu %[level], %[level], %[temp2] \n\t" \ + "sra %[level], %[level], 17 \n\t" \ + "slt %[temp4], %[max_level], %[level] \n\t" \ + "movn %[level], %[max_level], %[temp4] \n\t" \ + "xor %[level], %[level], %[sign] \n\t" \ + "subu %[level], %[level], %[sign] \n\t" \ + "mul %[temp5], %[level], %[temp3] \n\t" \ +"2: \n\t" \ + "sh %[temp5], " #J "(%[ppin]) \n\t" \ + "sh %[level], " #N "(%[pout]) \n\t" + +static int QuantizeBlock_MIPS32(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + int temp0, temp1, temp2, temp3, temp4, temp5; + int sign, coeff, level, i; + int max_level = MAX_LEVEL; + + int16_t* ppin = &in[0]; + int16_t* pout = &out[0]; + const uint16_t* ppsharpen = &mtx->sharpen_[0]; + const uint32_t* ppzthresh = &mtx->zthresh_[0]; + const uint16_t* ppq = &mtx->q_[0]; + const uint16_t* ppiq = &mtx->iq_[0]; + const uint32_t* ppbias = &mtx->bias_[0]; + + __asm__ volatile( + QUANTIZE_ONE( 0, 0, 0) + QUANTIZE_ONE( 2, 4, 2) + QUANTIZE_ONE( 8, 16, 4) + QUANTIZE_ONE(16, 32, 6) + QUANTIZE_ONE(10, 20, 8) + QUANTIZE_ONE( 4, 8, 10) + QUANTIZE_ONE( 6, 12, 12) + QUANTIZE_ONE(12, 24, 14) + QUANTIZE_ONE(18, 36, 16) + QUANTIZE_ONE(24, 48, 18) + QUANTIZE_ONE(26, 52, 20) + QUANTIZE_ONE(20, 40, 22) + QUANTIZE_ONE(14, 28, 24) + QUANTIZE_ONE(22, 44, 26) + QUANTIZE_ONE(28, 56, 28) + QUANTIZE_ONE(30, 60, 30) + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [sign]"=&r"(sign), [coeff]"=&r"(coeff), + [level]"=&r"(level) + : [pout]"r"(pout), [ppin]"r"(ppin), + [ppiq]"r"(ppiq), [max_level]"r"(max_level), + [ppbias]"r"(ppbias), [ppzthresh]"r"(ppzthresh), + [ppsharpen]"r"(ppsharpen), [ppq]"r"(ppq) + : "memory", "hi", "lo" + ); + + // moved out from macro to increase possibility for earlier breaking + for (i = 15; i >= 0; i--) { + if (out[i]) return 1; + } + return 0; +} + +static int Quantize2Blocks_MIPS32(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + nz = QuantizeBlock_MIPS32(in + 0 * 16, out + 0 * 16, mtx) << 0; + nz |= QuantizeBlock_MIPS32(in + 1 * 16, out + 1 * 16, mtx) << 1; + return nz; +} + +#undef QUANTIZE_ONE + +// macro for one horizontal pass in Disto4x4 (TTransform) +// two calls of function TTransform are merged into single one +// A - offset in bytes to load from a and b buffers +// E..H - offsets in bytes to store first results to tmp buffer +// E1..H1 - offsets in bytes to store second results to tmp buffer +#define HORIZONTAL_PASS(A, E, F, G, H, E1, F1, G1, H1) \ + "lbu %[temp0], 0+" XSTR(BPS) "*" #A "(%[a]) \n\t" \ + "lbu %[temp1], 1+" XSTR(BPS) "*" #A "(%[a]) \n\t" \ + "lbu %[temp2], 2+" XSTR(BPS) "*" #A "(%[a]) \n\t" \ + "lbu %[temp3], 3+" XSTR(BPS) "*" #A "(%[a]) \n\t" \ + "lbu %[temp4], 0+" XSTR(BPS) "*" #A "(%[b]) \n\t" \ + "lbu %[temp5], 1+" XSTR(BPS) "*" #A "(%[b]) \n\t" \ + "lbu %[temp6], 2+" XSTR(BPS) "*" #A "(%[b]) \n\t" \ + "lbu %[temp7], 3+" XSTR(BPS) "*" #A "(%[b]) \n\t" \ + "addu %[temp8], %[temp0], %[temp2] \n\t" \ + "subu %[temp0], %[temp0], %[temp2] \n\t" \ + "addu %[temp2], %[temp1], %[temp3] \n\t" \ + "subu %[temp1], %[temp1], %[temp3] \n\t" \ + "addu %[temp3], %[temp4], %[temp6] \n\t" \ + "subu %[temp4], %[temp4], %[temp6] \n\t" \ + "addu %[temp6], %[temp5], %[temp7] \n\t" \ + "subu %[temp5], %[temp5], %[temp7] \n\t" \ + "addu %[temp7], %[temp8], %[temp2] \n\t" \ + "subu %[temp2], %[temp8], %[temp2] \n\t" \ + "addu %[temp8], %[temp0], %[temp1] \n\t" \ + "subu %[temp0], %[temp0], %[temp1] \n\t" \ + "addu %[temp1], %[temp3], %[temp6] \n\t" \ + "subu %[temp3], %[temp3], %[temp6] \n\t" \ + "addu %[temp6], %[temp4], %[temp5] \n\t" \ + "subu %[temp4], %[temp4], %[temp5] \n\t" \ + "sw %[temp7], " #E "(%[tmp]) \n\t" \ + "sw %[temp2], " #H "(%[tmp]) \n\t" \ + "sw %[temp8], " #F "(%[tmp]) \n\t" \ + "sw %[temp0], " #G "(%[tmp]) \n\t" \ + "sw %[temp1], " #E1 "(%[tmp]) \n\t" \ + "sw %[temp3], " #H1 "(%[tmp]) \n\t" \ + "sw %[temp6], " #F1 "(%[tmp]) \n\t" \ + "sw %[temp4], " #G1 "(%[tmp]) \n\t" + +// macro for one vertical pass in Disto4x4 (TTransform) +// two calls of function TTransform are merged into single one +// since only one accu is available in mips32r1 instruction set +// first is done second call of function TTransform and after +// that first one. +// const int sum1 = TTransform(a, w); +// const int sum2 = TTransform(b, w); +// return abs(sum2 - sum1) >> 5; +// (sum2 - sum1) is calculated with madds (sub2) and msubs (sub1) +// A..D - offsets in bytes to load first results from tmp buffer +// A1..D1 - offsets in bytes to load second results from tmp buffer +// E..H - offsets in bytes to load from w buffer +#define VERTICAL_PASS(A, B, C, D, A1, B1, C1, D1, E, F, G, H) \ + "lw %[temp0], " #A1 "(%[tmp]) \n\t" \ + "lw %[temp1], " #C1 "(%[tmp]) \n\t" \ + "lw %[temp2], " #B1 "(%[tmp]) \n\t" \ + "lw %[temp3], " #D1 "(%[tmp]) \n\t" \ + "addu %[temp8], %[temp0], %[temp1] \n\t" \ + "subu %[temp0], %[temp0], %[temp1] \n\t" \ + "addu %[temp1], %[temp2], %[temp3] \n\t" \ + "subu %[temp2], %[temp2], %[temp3] \n\t" \ + "addu %[temp3], %[temp8], %[temp1] \n\t" \ + "subu %[temp8], %[temp8], %[temp1] \n\t" \ + "addu %[temp1], %[temp0], %[temp2] \n\t" \ + "subu %[temp0], %[temp0], %[temp2] \n\t" \ + "sra %[temp4], %[temp3], 31 \n\t" \ + "sra %[temp5], %[temp1], 31 \n\t" \ + "sra %[temp6], %[temp0], 31 \n\t" \ + "sra %[temp7], %[temp8], 31 \n\t" \ + "xor %[temp3], %[temp3], %[temp4] \n\t" \ + "xor %[temp1], %[temp1], %[temp5] \n\t" \ + "xor %[temp0], %[temp0], %[temp6] \n\t" \ + "xor %[temp8], %[temp8], %[temp7] \n\t" \ + "subu %[temp3], %[temp3], %[temp4] \n\t" \ + "subu %[temp1], %[temp1], %[temp5] \n\t" \ + "subu %[temp0], %[temp0], %[temp6] \n\t" \ + "subu %[temp8], %[temp8], %[temp7] \n\t" \ + "lhu %[temp4], " #E "(%[w]) \n\t" \ + "lhu %[temp5], " #F "(%[w]) \n\t" \ + "lhu %[temp6], " #G "(%[w]) \n\t" \ + "lhu %[temp7], " #H "(%[w]) \n\t" \ + "madd %[temp4], %[temp3] \n\t" \ + "madd %[temp5], %[temp1] \n\t" \ + "madd %[temp6], %[temp0] \n\t" \ + "madd %[temp7], %[temp8] \n\t" \ + "lw %[temp0], " #A "(%[tmp]) \n\t" \ + "lw %[temp1], " #C "(%[tmp]) \n\t" \ + "lw %[temp2], " #B "(%[tmp]) \n\t" \ + "lw %[temp3], " #D "(%[tmp]) \n\t" \ + "addu %[temp8], %[temp0], %[temp1] \n\t" \ + "subu %[temp0], %[temp0], %[temp1] \n\t" \ + "addu %[temp1], %[temp2], %[temp3] \n\t" \ + "subu %[temp2], %[temp2], %[temp3] \n\t" \ + "addu %[temp3], %[temp8], %[temp1] \n\t" \ + "subu %[temp1], %[temp8], %[temp1] \n\t" \ + "addu %[temp8], %[temp0], %[temp2] \n\t" \ + "subu %[temp0], %[temp0], %[temp2] \n\t" \ + "sra %[temp2], %[temp3], 31 \n\t" \ + "xor %[temp3], %[temp3], %[temp2] \n\t" \ + "subu %[temp3], %[temp3], %[temp2] \n\t" \ + "msub %[temp4], %[temp3] \n\t" \ + "sra %[temp2], %[temp8], 31 \n\t" \ + "sra %[temp3], %[temp0], 31 \n\t" \ + "sra %[temp4], %[temp1], 31 \n\t" \ + "xor %[temp8], %[temp8], %[temp2] \n\t" \ + "xor %[temp0], %[temp0], %[temp3] \n\t" \ + "xor %[temp1], %[temp1], %[temp4] \n\t" \ + "subu %[temp8], %[temp8], %[temp2] \n\t" \ + "subu %[temp0], %[temp0], %[temp3] \n\t" \ + "subu %[temp1], %[temp1], %[temp4] \n\t" \ + "msub %[temp5], %[temp8] \n\t" \ + "msub %[temp6], %[temp0] \n\t" \ + "msub %[temp7], %[temp1] \n\t" + +static int Disto4x4_MIPS32(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int tmp[32]; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + + __asm__ volatile( + HORIZONTAL_PASS(0, 0, 4, 8, 12, 64, 68, 72, 76) + HORIZONTAL_PASS(1, 16, 20, 24, 28, 80, 84, 88, 92) + HORIZONTAL_PASS(2, 32, 36, 40, 44, 96, 100, 104, 108) + HORIZONTAL_PASS(3, 48, 52, 56, 60, 112, 116, 120, 124) + "mthi $zero \n\t" + "mtlo $zero \n\t" + VERTICAL_PASS( 0, 16, 32, 48, 64, 80, 96, 112, 0, 8, 16, 24) + VERTICAL_PASS( 4, 20, 36, 52, 68, 84, 100, 116, 2, 10, 18, 26) + VERTICAL_PASS( 8, 24, 40, 56, 72, 88, 104, 120, 4, 12, 20, 28) + VERTICAL_PASS(12, 28, 44, 60, 76, 92, 108, 124, 6, 14, 22, 30) + "mflo %[temp0] \n\t" + "sra %[temp1], %[temp0], 31 \n\t" + "xor %[temp0], %[temp0], %[temp1] \n\t" + "subu %[temp0], %[temp0], %[temp1] \n\t" + "sra %[temp0], %[temp0], 5 \n\t" + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8) + : [a]"r"(a), [b]"r"(b), [w]"r"(w), [tmp]"r"(tmp) + : "memory", "hi", "lo" + ); + + return temp0; +} + +#undef VERTICAL_PASS +#undef HORIZONTAL_PASS + +static int Disto16x16_MIPS32(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_MIPS32(a + x + y, b + x + y, w); + } + } + return D; +} + +// macro for one horizontal pass in FTransform +// temp0..temp15 holds tmp[0]..tmp[15] +// A - offset in bytes to load from src and ref buffers +// TEMP0..TEMP3 - registers for corresponding tmp elements +#define HORIZONTAL_PASS(A, TEMP0, TEMP1, TEMP2, TEMP3) \ + "lw %[" #TEMP1 "], 0(%[args]) \n\t" \ + "lw %[" #TEMP2 "], 4(%[args]) \n\t" \ + "lbu %[temp16], 0+" XSTR(BPS) "*" #A "(%[" #TEMP1 "]) \n\t" \ + "lbu %[temp17], 0+" XSTR(BPS) "*" #A "(%[" #TEMP2 "]) \n\t" \ + "lbu %[temp18], 1+" XSTR(BPS) "*" #A "(%[" #TEMP1 "]) \n\t" \ + "lbu %[temp19], 1+" XSTR(BPS) "*" #A "(%[" #TEMP2 "]) \n\t" \ + "subu %[temp20], %[temp16], %[temp17] \n\t" \ + "lbu %[temp16], 2+" XSTR(BPS) "*" #A "(%[" #TEMP1 "]) \n\t" \ + "lbu %[temp17], 2+" XSTR(BPS) "*" #A "(%[" #TEMP2 "]) \n\t" \ + "subu %[" #TEMP0 "], %[temp18], %[temp19] \n\t" \ + "lbu %[temp18], 3+" XSTR(BPS) "*" #A "(%[" #TEMP1 "]) \n\t" \ + "lbu %[temp19], 3+" XSTR(BPS) "*" #A "(%[" #TEMP2 "]) \n\t" \ + "subu %[" #TEMP1 "], %[temp16], %[temp17] \n\t" \ + "subu %[" #TEMP2 "], %[temp18], %[temp19] \n\t" \ + "addu %[" #TEMP3 "], %[temp20], %[" #TEMP2 "] \n\t" \ + "subu %[" #TEMP2 "], %[temp20], %[" #TEMP2 "] \n\t" \ + "addu %[temp20], %[" #TEMP0 "], %[" #TEMP1 "] \n\t" \ + "subu %[" #TEMP0 "], %[" #TEMP0 "], %[" #TEMP1 "] \n\t" \ + "mul %[temp16], %[" #TEMP2 "], %[c5352] \n\t" \ + "mul %[temp17], %[" #TEMP2 "], %[c2217] \n\t" \ + "mul %[temp18], %[" #TEMP0 "], %[c5352] \n\t" \ + "mul %[temp19], %[" #TEMP0 "], %[c2217] \n\t" \ + "addu %[" #TEMP1 "], %[" #TEMP3 "], %[temp20] \n\t" \ + "subu %[temp20], %[" #TEMP3 "], %[temp20] \n\t" \ + "sll %[" #TEMP0 "], %[" #TEMP1 "], 3 \n\t" \ + "sll %[" #TEMP2 "], %[temp20], 3 \n\t" \ + "addiu %[temp16], %[temp16], 1812 \n\t" \ + "addiu %[temp17], %[temp17], 937 \n\t" \ + "addu %[temp16], %[temp16], %[temp19] \n\t" \ + "subu %[temp17], %[temp17], %[temp18] \n\t" \ + "sra %[" #TEMP1 "], %[temp16], 9 \n\t" \ + "sra %[" #TEMP3 "], %[temp17], 9 \n\t" + +// macro for one vertical pass in FTransform +// temp0..temp15 holds tmp[0]..tmp[15] +// A..D - offsets in bytes to store to out buffer +// TEMP0, TEMP4, TEMP8 and TEMP12 - registers for corresponding tmp elements +#define VERTICAL_PASS(A, B, C, D, TEMP0, TEMP4, TEMP8, TEMP12) \ + "addu %[temp16], %[" #TEMP0 "], %[" #TEMP12 "] \n\t" \ + "subu %[temp19], %[" #TEMP0 "], %[" #TEMP12 "] \n\t" \ + "addu %[temp17], %[" #TEMP4 "], %[" #TEMP8 "] \n\t" \ + "subu %[temp18], %[" #TEMP4 "], %[" #TEMP8 "] \n\t" \ + "mul %[" #TEMP8 "], %[temp19], %[c2217] \n\t" \ + "mul %[" #TEMP12 "], %[temp18], %[c2217] \n\t" \ + "mul %[" #TEMP4 "], %[temp19], %[c5352] \n\t" \ + "mul %[temp18], %[temp18], %[c5352] \n\t" \ + "addiu %[temp16], %[temp16], 7 \n\t" \ + "addu %[" #TEMP0 "], %[temp16], %[temp17] \n\t" \ + "sra %[" #TEMP0 "], %[" #TEMP0 "], 4 \n\t" \ + "addu %[" #TEMP12 "], %[" #TEMP12 "], %[" #TEMP4 "] \n\t" \ + "subu %[" #TEMP4 "], %[temp16], %[temp17] \n\t" \ + "sra %[" #TEMP4 "], %[" #TEMP4 "], 4 \n\t" \ + "addiu %[" #TEMP8 "], %[" #TEMP8 "], 30000 \n\t" \ + "addiu %[" #TEMP12 "], %[" #TEMP12 "], 12000 \n\t" \ + "addiu %[" #TEMP8 "], %[" #TEMP8 "], 21000 \n\t" \ + "subu %[" #TEMP8 "], %[" #TEMP8 "], %[temp18] \n\t" \ + "sra %[" #TEMP12 "], %[" #TEMP12 "], 16 \n\t" \ + "sra %[" #TEMP8 "], %[" #TEMP8 "], 16 \n\t" \ + "addiu %[temp16], %[" #TEMP12 "], 1 \n\t" \ + "movn %[" #TEMP12 "], %[temp16], %[temp19] \n\t" \ + "sh %[" #TEMP0 "], " #A "(%[temp20]) \n\t" \ + "sh %[" #TEMP4 "], " #C "(%[temp20]) \n\t" \ + "sh %[" #TEMP8 "], " #D "(%[temp20]) \n\t" \ + "sh %[" #TEMP12 "], " #B "(%[temp20]) \n\t" + +static void FTransform_MIPS32(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + int temp9, temp10, temp11, temp12, temp13, temp14, temp15, temp16; + int temp17, temp18, temp19, temp20; + const int c2217 = 2217; + const int c5352 = 5352; + const int* const args[3] = + { (const int*)src, (const int*)ref, (const int*)out }; + + __asm__ volatile( + HORIZONTAL_PASS(0, temp0, temp1, temp2, temp3) + HORIZONTAL_PASS(1, temp4, temp5, temp6, temp7) + HORIZONTAL_PASS(2, temp8, temp9, temp10, temp11) + HORIZONTAL_PASS(3, temp12, temp13, temp14, temp15) + "lw %[temp20], 8(%[args]) \n\t" + VERTICAL_PASS(0, 8, 16, 24, temp0, temp4, temp8, temp12) + VERTICAL_PASS(2, 10, 18, 26, temp1, temp5, temp9, temp13) + VERTICAL_PASS(4, 12, 20, 28, temp2, temp6, temp10, temp14) + VERTICAL_PASS(6, 14, 22, 30, temp3, temp7, temp11, temp15) + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), [temp11]"=&r"(temp11), + [temp12]"=&r"(temp12), [temp13]"=&r"(temp13), [temp14]"=&r"(temp14), + [temp15]"=&r"(temp15), [temp16]"=&r"(temp16), [temp17]"=&r"(temp17), + [temp18]"=&r"(temp18), [temp19]"=&r"(temp19), [temp20]"=&r"(temp20) + : [args]"r"(args), [c2217]"r"(c2217), [c5352]"r"(c5352) + : "memory", "hi", "lo" + ); +} + +#undef VERTICAL_PASS +#undef HORIZONTAL_PASS + +#if !defined(WORK_AROUND_GCC) + +#define GET_SSE_INNER(A, B, C, D) \ + "lbu %[temp0], " #A "(%[a]) \n\t" \ + "lbu %[temp1], " #A "(%[b]) \n\t" \ + "lbu %[temp2], " #B "(%[a]) \n\t" \ + "lbu %[temp3], " #B "(%[b]) \n\t" \ + "lbu %[temp4], " #C "(%[a]) \n\t" \ + "lbu %[temp5], " #C "(%[b]) \n\t" \ + "lbu %[temp6], " #D "(%[a]) \n\t" \ + "lbu %[temp7], " #D "(%[b]) \n\t" \ + "subu %[temp0], %[temp0], %[temp1] \n\t" \ + "subu %[temp2], %[temp2], %[temp3] \n\t" \ + "subu %[temp4], %[temp4], %[temp5] \n\t" \ + "subu %[temp6], %[temp6], %[temp7] \n\t" \ + "madd %[temp0], %[temp0] \n\t" \ + "madd %[temp2], %[temp2] \n\t" \ + "madd %[temp4], %[temp4] \n\t" \ + "madd %[temp6], %[temp6] \n\t" + +#define GET_SSE(A, B, C, D) \ + GET_SSE_INNER(A, A + 1, A + 2, A + 3) \ + GET_SSE_INNER(B, B + 1, B + 2, B + 3) \ + GET_SSE_INNER(C, C + 1, C + 2, C + 3) \ + GET_SSE_INNER(D, D + 1, D + 2, D + 3) + +static int SSE16x16_MIPS32(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + + __asm__ volatile( + "mult $zero, $zero \n\t" + + GET_SSE( 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS) + GET_SSE( 1 * BPS, 4 + 1 * BPS, 8 + 1 * BPS, 12 + 1 * BPS) + GET_SSE( 2 * BPS, 4 + 2 * BPS, 8 + 2 * BPS, 12 + 2 * BPS) + GET_SSE( 3 * BPS, 4 + 3 * BPS, 8 + 3 * BPS, 12 + 3 * BPS) + GET_SSE( 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS) + GET_SSE( 5 * BPS, 4 + 5 * BPS, 8 + 5 * BPS, 12 + 5 * BPS) + GET_SSE( 6 * BPS, 4 + 6 * BPS, 8 + 6 * BPS, 12 + 6 * BPS) + GET_SSE( 7 * BPS, 4 + 7 * BPS, 8 + 7 * BPS, 12 + 7 * BPS) + GET_SSE( 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS) + GET_SSE( 9 * BPS, 4 + 9 * BPS, 8 + 9 * BPS, 12 + 9 * BPS) + GET_SSE(10 * BPS, 4 + 10 * BPS, 8 + 10 * BPS, 12 + 10 * BPS) + GET_SSE(11 * BPS, 4 + 11 * BPS, 8 + 11 * BPS, 12 + 11 * BPS) + GET_SSE(12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS) + GET_SSE(13 * BPS, 4 + 13 * BPS, 8 + 13 * BPS, 12 + 13 * BPS) + GET_SSE(14 * BPS, 4 + 14 * BPS, 8 + 14 * BPS, 12 + 14 * BPS) + GET_SSE(15 * BPS, 4 + 15 * BPS, 8 + 15 * BPS, 12 + 15 * BPS) + + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE16x8_MIPS32(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + + __asm__ volatile( + "mult $zero, $zero \n\t" + + GET_SSE( 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS) + GET_SSE( 1 * BPS, 4 + 1 * BPS, 8 + 1 * BPS, 12 + 1 * BPS) + GET_SSE( 2 * BPS, 4 + 2 * BPS, 8 + 2 * BPS, 12 + 2 * BPS) + GET_SSE( 3 * BPS, 4 + 3 * BPS, 8 + 3 * BPS, 12 + 3 * BPS) + GET_SSE( 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS) + GET_SSE( 5 * BPS, 4 + 5 * BPS, 8 + 5 * BPS, 12 + 5 * BPS) + GET_SSE( 6 * BPS, 4 + 6 * BPS, 8 + 6 * BPS, 12 + 6 * BPS) + GET_SSE( 7 * BPS, 4 + 7 * BPS, 8 + 7 * BPS, 12 + 7 * BPS) + + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE8x8_MIPS32(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + + __asm__ volatile( + "mult $zero, $zero \n\t" + + GET_SSE(0 * BPS, 4 + 0 * BPS, 1 * BPS, 4 + 1 * BPS) + GET_SSE(2 * BPS, 4 + 2 * BPS, 3 * BPS, 4 + 3 * BPS) + GET_SSE(4 * BPS, 4 + 4 * BPS, 5 * BPS, 4 + 5 * BPS) + GET_SSE(6 * BPS, 4 + 6 * BPS, 7 * BPS, 4 + 7 * BPS) + + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE4x4_MIPS32(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + + __asm__ volatile( + "mult $zero, $zero \n\t" + + GET_SSE(0 * BPS, 1 * BPS, 2 * BPS, 3 * BPS) + + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +#undef GET_SSE +#undef GET_SSE_INNER + +#endif // !WORK_AROUND_GCC + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitMIPS32(void) { + VP8ITransform = ITransform_MIPS32; + VP8FTransform = FTransform_MIPS32; + + VP8EncQuantizeBlock = QuantizeBlock_MIPS32; + VP8EncQuantize2Blocks = Quantize2Blocks_MIPS32; + + VP8TDisto4x4 = Disto4x4_MIPS32; + VP8TDisto16x16 = Disto16x16_MIPS32; + +#if !defined(WORK_AROUND_GCC) + VP8SSE16x16 = SSE16x16_MIPS32; + VP8SSE8x8 = SSE8x8_MIPS32; + VP8SSE16x8 = SSE16x8_MIPS32; + VP8SSE4x4 = SSE4x4_MIPS32; +#endif +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(VP8EncDspInitMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/enc_mips_dsp_r2.c b/media/libwebp/src/dsp/enc_mips_dsp_r2.c new file mode 100644 index 0000000000..9ddd895086 --- /dev/null +++ b/media/libwebp/src/dsp/enc_mips_dsp_r2.c @@ -0,0 +1,1517 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of speed-critical encoding functions. +// +// Author(s): Darko Laus (darko.laus@imgtec.com) +// Mirko Raus (mirko.raus@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/mips_macro.h" +#include "src/enc/cost_enc.h" +#include "src/enc/vp8i_enc.h" + +static const int kC1 = 20091 + (1 << 16); +static const int kC2 = 35468; + +// O - output +// I - input (macro doesn't change it) +#define ADD_SUB_HALVES_X4(O0, O1, O2, O3, O4, O5, O6, O7, \ + I0, I1, I2, I3, I4, I5, I6, I7) \ + "addq.ph %[" #O0 "], %[" #I0 "], %[" #I1 "] \n\t" \ + "subq.ph %[" #O1 "], %[" #I0 "], %[" #I1 "] \n\t" \ + "addq.ph %[" #O2 "], %[" #I2 "], %[" #I3 "] \n\t" \ + "subq.ph %[" #O3 "], %[" #I2 "], %[" #I3 "] \n\t" \ + "addq.ph %[" #O4 "], %[" #I4 "], %[" #I5 "] \n\t" \ + "subq.ph %[" #O5 "], %[" #I4 "], %[" #I5 "] \n\t" \ + "addq.ph %[" #O6 "], %[" #I6 "], %[" #I7 "] \n\t" \ + "subq.ph %[" #O7 "], %[" #I6 "], %[" #I7 "] \n\t" + +// IO - input/output +#define ABS_X8(IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7) \ + "absq_s.ph %[" #IO0 "], %[" #IO0 "] \n\t" \ + "absq_s.ph %[" #IO1 "], %[" #IO1 "] \n\t" \ + "absq_s.ph %[" #IO2 "], %[" #IO2 "] \n\t" \ + "absq_s.ph %[" #IO3 "], %[" #IO3 "] \n\t" \ + "absq_s.ph %[" #IO4 "], %[" #IO4 "] \n\t" \ + "absq_s.ph %[" #IO5 "], %[" #IO5 "] \n\t" \ + "absq_s.ph %[" #IO6 "], %[" #IO6 "] \n\t" \ + "absq_s.ph %[" #IO7 "], %[" #IO7 "] \n\t" + +// dpa.w.ph $ac0 temp0 ,temp1 +// $ac += temp0[31..16] * temp1[31..16] + temp0[15..0] * temp1[15..0] +// dpax.w.ph $ac0 temp0 ,temp1 +// $ac += temp0[31..16] * temp1[15..0] + temp0[15..0] * temp1[31..16] +// O - output +// I - input (macro doesn't change it) +#define MUL_HALF(O0, I0, I1, I2, I3, I4, I5, I6, I7, \ + I8, I9, I10, I11, I12, I13, I14, I15) \ + "mult $ac0, $zero, $zero \n\t" \ + "dpa.w.ph $ac0, %[" #I2 "], %[" #I0 "] \n\t" \ + "dpax.w.ph $ac0, %[" #I5 "], %[" #I6 "] \n\t" \ + "dpa.w.ph $ac0, %[" #I8 "], %[" #I9 "] \n\t" \ + "dpax.w.ph $ac0, %[" #I11 "], %[" #I4 "] \n\t" \ + "dpa.w.ph $ac0, %[" #I12 "], %[" #I7 "] \n\t" \ + "dpax.w.ph $ac0, %[" #I13 "], %[" #I1 "] \n\t" \ + "dpa.w.ph $ac0, %[" #I14 "], %[" #I3 "] \n\t" \ + "dpax.w.ph $ac0, %[" #I15 "], %[" #I10 "] \n\t" \ + "mflo %[" #O0 "], $ac0 \n\t" + +#define OUTPUT_EARLY_CLOBBER_REGS_17() \ + OUTPUT_EARLY_CLOBBER_REGS_10(), \ + [temp11]"=&r"(temp11), [temp12]"=&r"(temp12), [temp13]"=&r"(temp13), \ + [temp14]"=&r"(temp14), [temp15]"=&r"(temp15), [temp16]"=&r"(temp16), \ + [temp17]"=&r"(temp17) + +// macro for one horizontal pass in FTransform +// temp0..temp15 holds tmp[0]..tmp[15] +// A - offset in bytes to load from src and ref buffers +// TEMP0..TEMP3 - registers for corresponding tmp elements +#define HORIZONTAL_PASS(A, TEMP0, TEMP1, TEMP2, TEMP3) \ + "lw %[" #TEMP0 "], 0(%[args]) \n\t" \ + "lw %[" #TEMP1 "], 4(%[args]) \n\t" \ + "lw %[" #TEMP2 "], " XSTR(BPS) "*" #A "(%[" #TEMP0 "]) \n\t" \ + "lw %[" #TEMP3 "], " XSTR(BPS) "*" #A "(%[" #TEMP1 "]) \n\t" \ + "preceu.ph.qbl %[" #TEMP0 "], %[" #TEMP2 "] \n\t" \ + "preceu.ph.qbl %[" #TEMP1 "], %[" #TEMP3 "] \n\t" \ + "preceu.ph.qbr %[" #TEMP2 "], %[" #TEMP2 "] \n\t" \ + "preceu.ph.qbr %[" #TEMP3 "], %[" #TEMP3 "] \n\t" \ + "subq.ph %[" #TEMP0 "], %[" #TEMP0 "], %[" #TEMP1 "] \n\t" \ + "subq.ph %[" #TEMP2 "], %[" #TEMP2 "], %[" #TEMP3 "] \n\t" \ + "rotr %[" #TEMP0 "], %[" #TEMP0 "], 16 \n\t" \ + "addq.ph %[" #TEMP1 "], %[" #TEMP2 "], %[" #TEMP0 "] \n\t" \ + "subq.ph %[" #TEMP3 "], %[" #TEMP2 "], %[" #TEMP0 "] \n\t" \ + "seh %[" #TEMP0 "], %[" #TEMP1 "] \n\t" \ + "sra %[temp16], %[" #TEMP1 "], 16 \n\t" \ + "seh %[temp19], %[" #TEMP3 "] \n\t" \ + "sra %[" #TEMP3 "], %[" #TEMP3 "], 16 \n\t" \ + "subu %[" #TEMP2 "], %[" #TEMP0 "], %[temp16] \n\t" \ + "addu %[" #TEMP0 "], %[" #TEMP0 "], %[temp16] \n\t" \ + "mul %[temp17], %[temp19], %[c2217] \n\t" \ + "mul %[temp18], %[" #TEMP3 "], %[c5352] \n\t" \ + "mul %[" #TEMP1 "], %[temp19], %[c5352] \n\t" \ + "mul %[temp16], %[" #TEMP3 "], %[c2217] \n\t" \ + "sll %[" #TEMP2 "], %[" #TEMP2 "], 3 \n\t" \ + "sll %[" #TEMP0 "], %[" #TEMP0 "], 3 \n\t" \ + "subu %[" #TEMP3 "], %[temp17], %[temp18] \n\t" \ + "addu %[" #TEMP1 "], %[temp16], %[" #TEMP1 "] \n\t" \ + "addiu %[" #TEMP3 "], %[" #TEMP3 "], 937 \n\t" \ + "addiu %[" #TEMP1 "], %[" #TEMP1 "], 1812 \n\t" \ + "sra %[" #TEMP3 "], %[" #TEMP3 "], 9 \n\t" \ + "sra %[" #TEMP1 "], %[" #TEMP1 "], 9 \n\t" + +// macro for one vertical pass in FTransform +// temp0..temp15 holds tmp[0]..tmp[15] +// A..D - offsets in bytes to store to out buffer +// TEMP0, TEMP4, TEMP8 and TEMP12 - registers for corresponding tmp elements +#define VERTICAL_PASS(A, B, C, D, TEMP0, TEMP4, TEMP8, TEMP12) \ + "addu %[temp16], %[" #TEMP0 "], %[" #TEMP12 "] \n\t" \ + "subu %[temp19], %[" #TEMP0 "], %[" #TEMP12 "] \n\t" \ + "addu %[temp17], %[" #TEMP4 "], %[" #TEMP8 "] \n\t" \ + "subu %[temp18], %[" #TEMP4 "], %[" #TEMP8 "] \n\t" \ + "mul %[" #TEMP8 "], %[temp19], %[c2217] \n\t" \ + "mul %[" #TEMP12 "], %[temp18], %[c2217] \n\t" \ + "mul %[" #TEMP4 "], %[temp19], %[c5352] \n\t" \ + "mul %[temp18], %[temp18], %[c5352] \n\t" \ + "addiu %[temp16], %[temp16], 7 \n\t" \ + "addu %[" #TEMP0 "], %[temp16], %[temp17] \n\t" \ + "sra %[" #TEMP0 "], %[" #TEMP0 "], 4 \n\t" \ + "addu %[" #TEMP12 "], %[" #TEMP12 "], %[" #TEMP4 "] \n\t" \ + "subu %[" #TEMP4 "], %[temp16], %[temp17] \n\t" \ + "sra %[" #TEMP4 "], %[" #TEMP4 "], 4 \n\t" \ + "addiu %[" #TEMP8 "], %[" #TEMP8 "], 30000 \n\t" \ + "addiu %[" #TEMP12 "], %[" #TEMP12 "], 12000 \n\t" \ + "addiu %[" #TEMP8 "], %[" #TEMP8 "], 21000 \n\t" \ + "subu %[" #TEMP8 "], %[" #TEMP8 "], %[temp18] \n\t" \ + "sra %[" #TEMP12 "], %[" #TEMP12 "], 16 \n\t" \ + "sra %[" #TEMP8 "], %[" #TEMP8 "], 16 \n\t" \ + "addiu %[temp16], %[" #TEMP12 "], 1 \n\t" \ + "movn %[" #TEMP12 "], %[temp16], %[temp19] \n\t" \ + "sh %[" #TEMP0 "], " #A "(%[temp20]) \n\t" \ + "sh %[" #TEMP4 "], " #C "(%[temp20]) \n\t" \ + "sh %[" #TEMP8 "], " #D "(%[temp20]) \n\t" \ + "sh %[" #TEMP12 "], " #B "(%[temp20]) \n\t" + +static void FTransform_MIPSdspR2(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + const int c2217 = 2217; + const int c5352 = 5352; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + int temp9, temp10, temp11, temp12, temp13, temp14, temp15, temp16; + int temp17, temp18, temp19, temp20; + const int* const args[3] = + { (const int*)src, (const int*)ref, (const int*)out }; + + __asm__ volatile ( + HORIZONTAL_PASS(0, temp0, temp1, temp2, temp3) + HORIZONTAL_PASS(1, temp4, temp5, temp6, temp7) + HORIZONTAL_PASS(2, temp8, temp9, temp10, temp11) + HORIZONTAL_PASS(3, temp12, temp13, temp14, temp15) + "lw %[temp20], 8(%[args]) \n\t" + VERTICAL_PASS(0, 8, 16, 24, temp0, temp4, temp8, temp12) + VERTICAL_PASS(2, 10, 18, 26, temp1, temp5, temp9, temp13) + VERTICAL_PASS(4, 12, 20, 28, temp2, temp6, temp10, temp14) + VERTICAL_PASS(6, 14, 22, 30, temp3, temp7, temp11, temp15) + OUTPUT_EARLY_CLOBBER_REGS_18(), + [temp0]"=&r"(temp0), [temp19]"=&r"(temp19), [temp20]"=&r"(temp20) + : [args]"r"(args), [c2217]"r"(c2217), [c5352]"r"(c5352) + : "memory", "hi", "lo" + ); +} + +#undef VERTICAL_PASS +#undef HORIZONTAL_PASS + +static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in, + uint8_t* dst) { + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14, temp15, temp16, temp17, temp18; + + __asm__ volatile ( + "ulw %[temp1], 0(%[in]) \n\t" + "ulw %[temp2], 16(%[in]) \n\t" + LOAD_IN_X2(temp5, temp6, 24, 26) + ADD_SUB_HALVES(temp3, temp4, temp1, temp2) + LOAD_IN_X2(temp1, temp2, 8, 10) + MUL_SHIFT_SUM(temp7, temp8, temp9, temp10, temp11, temp12, temp13, temp14, + temp10, temp8, temp9, temp7, temp1, temp2, temp5, temp6, + temp13, temp11, temp14, temp12) + INSERT_HALF_X2(temp8, temp7, temp10, temp9) + "ulw %[temp17], 4(%[in]) \n\t" + "ulw %[temp18], 20(%[in]) \n\t" + ADD_SUB_HALVES(temp1, temp2, temp3, temp8) + ADD_SUB_HALVES(temp5, temp6, temp4, temp7) + ADD_SUB_HALVES(temp7, temp8, temp17, temp18) + LOAD_IN_X2(temp17, temp18, 12, 14) + LOAD_IN_X2(temp9, temp10, 28, 30) + MUL_SHIFT_SUM(temp11, temp12, temp13, temp14, temp15, temp16, temp4, temp17, + temp12, temp14, temp11, temp13, temp17, temp18, temp9, temp10, + temp15, temp4, temp16, temp17) + INSERT_HALF_X2(temp11, temp12, temp13, temp14) + ADD_SUB_HALVES(temp17, temp8, temp8, temp11) + ADD_SUB_HALVES(temp3, temp4, temp7, temp12) + + // horizontal + SRA_16(temp9, temp10, temp11, temp12, temp1, temp2, temp5, temp6) + INSERT_HALF_X2(temp1, temp6, temp5, temp2) + SRA_16(temp13, temp14, temp15, temp16, temp3, temp4, temp17, temp8) + "repl.ph %[temp2], 0x4 \n\t" + INSERT_HALF_X2(temp3, temp8, temp17, temp4) + "addq.ph %[temp1], %[temp1], %[temp2] \n\t" + "addq.ph %[temp6], %[temp6], %[temp2] \n\t" + ADD_SUB_HALVES(temp2, temp4, temp1, temp3) + ADD_SUB_HALVES(temp5, temp7, temp6, temp8) + MUL_SHIFT_SUM(temp1, temp3, temp6, temp8, temp9, temp13, temp17, temp18, + temp3, temp13, temp1, temp9, temp9, temp13, temp11, temp15, + temp6, temp17, temp8, temp18) + MUL_SHIFT_SUM(temp6, temp8, temp18, temp17, temp11, temp15, temp12, temp16, + temp8, temp15, temp6, temp11, temp12, temp16, temp10, temp14, + temp18, temp12, temp17, temp16) + INSERT_HALF_X2(temp1, temp3, temp9, temp13) + INSERT_HALF_X2(temp6, temp8, temp11, temp15) + SHIFT_R_SUM_X2(temp9, temp10, temp11, temp12, temp13, temp14, temp15, + temp16, temp2, temp4, temp5, temp7, temp3, temp1, temp8, + temp6) + PACK_2_HALVES_TO_WORD(temp1, temp2, temp3, temp4, temp9, temp12, temp13, + temp16, temp11, temp10, temp15, temp14) + LOAD_WITH_OFFSET_X4(temp10, temp11, temp14, temp15, ref, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + CONVERT_2_BYTES_TO_HALF(temp5, temp6, temp7, temp8, temp17, temp18, temp10, + temp11, temp10, temp11, temp14, temp15) + STORE_SAT_SUM_X2(temp5, temp6, temp7, temp8, temp17, temp18, temp10, temp11, + temp9, temp12, temp1, temp2, temp13, temp16, temp3, temp4, + dst, 0, 1, 2, 3, BPS) + + OUTPUT_EARLY_CLOBBER_REGS_18() + : [dst]"r"(dst), [in]"r"(in), [kC1]"r"(kC1), [kC2]"r"(kC2), [ref]"r"(ref) + : "memory", "hi", "lo" + ); +} + +static void ITransform_MIPSdspR2(const uint8_t* ref, const int16_t* in, + uint8_t* dst, int do_two) { + ITransformOne(ref, in, dst); + if (do_two) { + ITransformOne(ref + 4, in + 16, dst + 4); + } +} + +static int Disto4x4_MIPSdspR2(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, temp9; + int temp10, temp11, temp12, temp13, temp14, temp15, temp16, temp17; + + __asm__ volatile ( + LOAD_WITH_OFFSET_X4(temp1, temp2, temp3, temp4, a, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + CONVERT_2_BYTES_TO_HALF(temp5, temp6, temp7, temp8, temp9,temp10, temp11, + temp12, temp1, temp2, temp3, temp4) + ADD_SUB_HALVES_X4(temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, + temp5, temp6, temp7, temp8, temp9, temp10, temp11, temp12) + PACK_2_HALVES_TO_WORD(temp9, temp10, temp11, temp12, temp1, temp3, temp5, + temp7, temp2, temp4, temp6, temp8) + ADD_SUB_HALVES_X4(temp2, temp4, temp6, temp8, temp9, temp1, temp3, temp10, + temp1, temp9, temp3, temp10, temp5, temp11, temp7, temp12) + ADD_SUB_HALVES_X4(temp5, temp11, temp7, temp2, temp9, temp3, temp6, temp12, + temp2, temp9, temp6, temp3, temp4, temp1, temp8, temp10) + ADD_SUB_HALVES_X4(temp1, temp4, temp10, temp8, temp7, temp11, temp5, temp2, + temp5, temp7, temp11, temp2, temp9, temp6, temp3, temp12) + ABS_X8(temp1, temp4, temp10, temp8, temp7, temp11, temp5, temp2) + LOAD_WITH_OFFSET_X4(temp3, temp6, temp9, temp12, w, + 0, 4, 8, 12, + 0, 0, 0, 0, + 0) + LOAD_WITH_OFFSET_X4(temp13, temp14, temp15, temp16, w, + 0, 4, 8, 12, + 1, 1, 1, 1, + 16) + MUL_HALF(temp17, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, + temp9, temp10, temp11, temp12, temp13, temp14, temp15, temp16) + LOAD_WITH_OFFSET_X4(temp1, temp2, temp3, temp4, b, + 0, 0, 0, 0, + 0, 1, 2, 3, + BPS) + CONVERT_2_BYTES_TO_HALF(temp5,temp6, temp7, temp8, temp9,temp10, temp11, + temp12, temp1, temp2, temp3, temp4) + ADD_SUB_HALVES_X4(temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, + temp5, temp6, temp7, temp8, temp9, temp10, temp11, temp12) + PACK_2_HALVES_TO_WORD(temp9, temp10, temp11, temp12, temp1, temp3, temp5, + temp7, temp2, temp4, temp6, temp8) + ADD_SUB_HALVES_X4(temp2, temp4, temp6, temp8, temp9, temp1, temp3, temp10, + temp1, temp9, temp3, temp10, temp5, temp11, temp7, temp12) + ADD_SUB_HALVES_X4(temp5, temp11, temp7, temp2, temp9, temp3, temp6, temp12, + temp2, temp9, temp6, temp3, temp4, temp1, temp8, temp10) + ADD_SUB_HALVES_X4(temp1, temp4, temp10, temp8, temp7, temp11, temp5, temp2, + temp5, temp7, temp11, temp2, temp9, temp6, temp3, temp12) + ABS_X8(temp1, temp4, temp10, temp8, temp7, temp11, temp5, temp2) + LOAD_WITH_OFFSET_X4(temp3, temp6, temp9, temp12, w, + 0, 4, 8, 12, + 0, 0, 0, 0, + 0) + LOAD_WITH_OFFSET_X4(temp13, temp14, temp15, temp16, w, + 0, 4, 8, 12, + 1, 1, 1, 1, + 16) + MUL_HALF(temp3, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8, + temp9, temp10, temp11, temp12, temp13, temp14, temp15, temp16) + OUTPUT_EARLY_CLOBBER_REGS_17() + : [a]"r"(a), [b]"r"(b), [w]"r"(w) + : "memory", "hi", "lo" + ); + return abs(temp3 - temp17) >> 5; +} + +static int Disto16x16_MIPSdspR2(const uint8_t* const a, + const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_MIPSdspR2(a + x + y, b + x + y, w); + } + } + return D; +} + +//------------------------------------------------------------------------------ +// Intra predictions + +#define FILL_PART(J, SIZE) \ + "usw %[value], 0+" #J "*" XSTR(BPS) "(%[dst]) \n\t" \ + "usw %[value], 4+" #J "*" XSTR(BPS) "(%[dst]) \n\t" \ + ".if " #SIZE " == 16 \n\t" \ + "usw %[value], 8+" #J "*" XSTR(BPS) "(%[dst]) \n\t" \ + "usw %[value], 12+" #J "*" XSTR(BPS) "(%[dst]) \n\t" \ + ".endif \n\t" + +#define FILL_8_OR_16(DST, VALUE, SIZE) do { \ + int value = (VALUE); \ + __asm__ volatile ( \ + "replv.qb %[value], %[value] \n\t" \ + FILL_PART( 0, SIZE) \ + FILL_PART( 1, SIZE) \ + FILL_PART( 2, SIZE) \ + FILL_PART( 3, SIZE) \ + FILL_PART( 4, SIZE) \ + FILL_PART( 5, SIZE) \ + FILL_PART( 6, SIZE) \ + FILL_PART( 7, SIZE) \ + ".if " #SIZE " == 16 \n\t" \ + FILL_PART( 8, 16) \ + FILL_PART( 9, 16) \ + FILL_PART(10, 16) \ + FILL_PART(11, 16) \ + FILL_PART(12, 16) \ + FILL_PART(13, 16) \ + FILL_PART(14, 16) \ + FILL_PART(15, 16) \ + ".endif \n\t" \ + : [value]"+&r"(value) \ + : [dst]"r"((DST)) \ + : "memory" \ + ); \ +} while (0) + +#define VERTICAL_PRED(DST, TOP, SIZE) \ +static WEBP_INLINE void VerticalPred##SIZE(uint8_t* (DST), \ + const uint8_t* (TOP)) { \ + int j; \ + if ((TOP)) { \ + for (j = 0; j < (SIZE); ++j) memcpy((DST) + j * BPS, (TOP), (SIZE)); \ + } else { \ + FILL_8_OR_16((DST), 127, (SIZE)); \ + } \ +} + +VERTICAL_PRED(dst, top, 8) +VERTICAL_PRED(dst, top, 16) + +#undef VERTICAL_PRED + +#define HORIZONTAL_PRED(DST, LEFT, SIZE) \ +static WEBP_INLINE void HorizontalPred##SIZE(uint8_t* (DST), \ + const uint8_t* (LEFT)) { \ + if (LEFT) { \ + int j; \ + for (j = 0; j < (SIZE); ++j) { \ + memset((DST) + j * BPS, (LEFT)[j], (SIZE)); \ + } \ + } else { \ + FILL_8_OR_16((DST), 129, (SIZE)); \ + } \ +} + +HORIZONTAL_PRED(dst, left, 8) +HORIZONTAL_PRED(dst, left, 16) + +#undef HORIZONTAL_PRED + +#define CLIPPING() \ + "preceu.ph.qbl %[temp2], %[temp0] \n\t" \ + "preceu.ph.qbr %[temp0], %[temp0] \n\t" \ + "preceu.ph.qbl %[temp3], %[temp1] \n\t" \ + "preceu.ph.qbr %[temp1], %[temp1] \n\t" \ + "addu.ph %[temp2], %[temp2], %[leftY_1] \n\t" \ + "addu.ph %[temp0], %[temp0], %[leftY_1] \n\t" \ + "addu.ph %[temp3], %[temp3], %[leftY_1] \n\t" \ + "addu.ph %[temp1], %[temp1], %[leftY_1] \n\t" \ + "shll_s.ph %[temp2], %[temp2], 7 \n\t" \ + "shll_s.ph %[temp0], %[temp0], 7 \n\t" \ + "shll_s.ph %[temp3], %[temp3], 7 \n\t" \ + "shll_s.ph %[temp1], %[temp1], 7 \n\t" \ + "precrqu_s.qb.ph %[temp0], %[temp2], %[temp0] \n\t" \ + "precrqu_s.qb.ph %[temp1], %[temp3], %[temp1] \n\t" + +#define CLIP_8B_TO_DST(DST, LEFT, TOP, SIZE) do { \ + int leftY_1 = ((int)(LEFT)[y] << 16) + (LEFT)[y]; \ + int temp0, temp1, temp2, temp3; \ + __asm__ volatile ( \ + "replv.ph %[leftY_1], %[leftY_1] \n\t" \ + "ulw %[temp0], 0(%[top]) \n\t" \ + "ulw %[temp1], 4(%[top]) \n\t" \ + "subu.ph %[leftY_1], %[leftY_1], %[left_1] \n\t" \ + CLIPPING() \ + "usw %[temp0], 0(%[dst]) \n\t" \ + "usw %[temp1], 4(%[dst]) \n\t" \ + ".if " #SIZE " == 16 \n\t" \ + "ulw %[temp0], 8(%[top]) \n\t" \ + "ulw %[temp1], 12(%[top]) \n\t" \ + CLIPPING() \ + "usw %[temp0], 8(%[dst]) \n\t" \ + "usw %[temp1], 12(%[dst]) \n\t" \ + ".endif \n\t" \ + : [leftY_1]"+&r"(leftY_1), [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), \ + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3) \ + : [left_1]"r"(left_1), [top]"r"((TOP)), [dst]"r"((DST)) \ + : "memory" \ + ); \ +} while (0) + +#define CLIP_TO_DST(DST, LEFT, TOP, SIZE) do { \ + int y; \ + const int left_1 = ((int)(LEFT)[-1] << 16) + (LEFT)[-1]; \ + for (y = 0; y < (SIZE); ++y) { \ + CLIP_8B_TO_DST((DST), (LEFT), (TOP), (SIZE)); \ + (DST) += BPS; \ + } \ +} while (0) + +#define TRUE_MOTION(DST, LEFT, TOP, SIZE) \ +static WEBP_INLINE void TrueMotion##SIZE(uint8_t* (DST), const uint8_t* (LEFT),\ + const uint8_t* (TOP)) { \ + if ((LEFT) != NULL) { \ + if ((TOP) != NULL) { \ + CLIP_TO_DST((DST), (LEFT), (TOP), (SIZE)); \ + } else { \ + HorizontalPred##SIZE((DST), (LEFT)); \ + } \ + } else { \ + /* true motion without left samples (hence: with default 129 value) */ \ + /* is equivalent to VE prediction where you just copy the top samples. */ \ + /* Note that if top samples are not available, the default value is */ \ + /* then 129, and not 127 as in the VerticalPred case. */ \ + if ((TOP) != NULL) { \ + VerticalPred##SIZE((DST), (TOP)); \ + } else { \ + FILL_8_OR_16((DST), 129, (SIZE)); \ + } \ + } \ +} + +TRUE_MOTION(dst, left, top, 8) +TRUE_MOTION(dst, left, top, 16) + +#undef TRUE_MOTION +#undef CLIP_TO_DST +#undef CLIP_8B_TO_DST +#undef CLIPPING + +static WEBP_INLINE void DCMode16(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + int DC, DC1; + int temp0, temp1, temp2, temp3; + + __asm__ volatile( + "beqz %[top], 2f \n\t" + LOAD_WITH_OFFSET_X4(temp0, temp1, temp2, temp3, top, + 0, 4, 8, 12, + 0, 0, 0, 0, + 0) + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "raddu.w.qb %[temp2], %[temp2] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addu %[DC], %[temp0], %[temp2] \n\t" + "move %[DC1], %[DC] \n\t" + "beqz %[left], 1f \n\t" + LOAD_WITH_OFFSET_X4(temp0, temp1, temp2, temp3, left, + 0, 4, 8, 12, + 0, 0, 0, 0, + 0) + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "raddu.w.qb %[temp2], %[temp2] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addu %[DC1], %[temp0], %[temp2] \n\t" + "1: \n\t" + "addu %[DC], %[DC], %[DC1] \n\t" + "j 3f \n\t" + "2: \n\t" + "beqz %[left], 4f \n\t" + LOAD_WITH_OFFSET_X4(temp0, temp1, temp2, temp3, left, + 0, 4, 8, 12, + 0, 0, 0, 0, + 0) + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "raddu.w.qb %[temp2], %[temp2] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addu %[DC], %[temp0], %[temp2] \n\t" + "addu %[DC], %[DC], %[DC] \n\t" + "3: \n\t" + "shra_r.w %[DC], %[DC], 5 \n\t" + "j 5f \n\t" + "4: \n\t" + "li %[DC], 0x80 \n\t" + "5: \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [DC]"=&r"(DC), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [DC1]"=&r"(DC1) + : [left]"r"(left), [top]"r"(top) + : "memory" + ); + + FILL_8_OR_16(dst, DC, 16); +} + +static WEBP_INLINE void DCMode8(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + int DC, DC1; + int temp0, temp1, temp2, temp3; + + __asm__ volatile( + "beqz %[top], 2f \n\t" + "ulw %[temp0], 0(%[top]) \n\t" + "ulw %[temp1], 4(%[top]) \n\t" + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "addu %[DC], %[temp0], %[temp1] \n\t" + "move %[DC1], %[DC] \n\t" + "beqz %[left], 1f \n\t" + "ulw %[temp2], 0(%[left]) \n\t" + "ulw %[temp3], 4(%[left]) \n\t" + "raddu.w.qb %[temp2], %[temp2] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "addu %[DC1], %[temp2], %[temp3] \n\t" + "1: \n\t" + "addu %[DC], %[DC], %[DC1] \n\t" + "j 3f \n\t" + "2: \n\t" + "beqz %[left], 4f \n\t" + "ulw %[temp2], 0(%[left]) \n\t" + "ulw %[temp3], 4(%[left]) \n\t" + "raddu.w.qb %[temp2], %[temp2] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "addu %[DC], %[temp2], %[temp3] \n\t" + "addu %[DC], %[DC], %[DC] \n\t" + "3: \n\t" + "shra_r.w %[DC], %[DC], 4 \n\t" + "j 5f \n\t" + "4: \n\t" + "li %[DC], 0x80 \n\t" + "5: \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [DC]"=&r"(DC), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [DC1]"=&r"(DC1) + : [left]"r"(left), [top]"r"(top) + : "memory" + ); + + FILL_8_OR_16(dst, DC, 8); +} + +static void DC4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1; + __asm__ volatile( + "ulw %[temp0], 0(%[top]) \n\t" + "ulw %[temp1], -5(%[top]) \n\t" + "raddu.w.qb %[temp0], %[temp0] \n\t" + "raddu.w.qb %[temp1], %[temp1] \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addiu %[temp0], %[temp0], 4 \n\t" + "srl %[temp0], %[temp0], 3 \n\t" + "replv.qb %[temp0], %[temp0] \n\t" + "usw %[temp0], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp0], 1*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp0], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp0], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void TM4(uint8_t* dst, const uint8_t* top) { + int a10, a32, temp0, temp1, temp2, temp3, temp4, temp5; + const int c35 = 0xff00ff; + __asm__ volatile ( + "lbu %[temp1], 0(%[top]) \n\t" + "lbu %[a10], 1(%[top]) \n\t" + "lbu %[temp2], 2(%[top]) \n\t" + "lbu %[a32], 3(%[top]) \n\t" + "ulw %[temp0], -5(%[top]) \n\t" + "lbu %[temp4], -1(%[top]) \n\t" + "append %[a10], %[temp1], 16 \n\t" + "append %[a32], %[temp2], 16 \n\t" + "replv.ph %[temp4], %[temp4] \n\t" + "shrl.ph %[temp1], %[temp0], 8 \n\t" + "and %[temp0], %[temp0], %[c35] \n\t" + "subu.ph %[temp1], %[temp1], %[temp4] \n\t" + "subu.ph %[temp0], %[temp0], %[temp4] \n\t" + "srl %[temp2], %[temp1], 16 \n\t" + "srl %[temp3], %[temp0], 16 \n\t" + "replv.ph %[temp2], %[temp2] \n\t" + "replv.ph %[temp3], %[temp3] \n\t" + "replv.ph %[temp4], %[temp1] \n\t" + "replv.ph %[temp5], %[temp0] \n\t" + "addu.ph %[temp0], %[temp3], %[a10] \n\t" + "addu.ph %[temp1], %[temp3], %[a32] \n\t" + "addu.ph %[temp3], %[temp2], %[a10] \n\t" + "addu.ph %[temp2], %[temp2], %[a32] \n\t" + "shll_s.ph %[temp0], %[temp0], 7 \n\t" + "shll_s.ph %[temp1], %[temp1], 7 \n\t" + "shll_s.ph %[temp3], %[temp3], 7 \n\t" + "shll_s.ph %[temp2], %[temp2], 7 \n\t" + "precrqu_s.qb.ph %[temp0], %[temp1], %[temp0] \n\t" + "precrqu_s.qb.ph %[temp1], %[temp2], %[temp3] \n\t" + "addu.ph %[temp2], %[temp5], %[a10] \n\t" + "addu.ph %[temp3], %[temp5], %[a32] \n\t" + "addu.ph %[temp5], %[temp4], %[a10] \n\t" + "addu.ph %[temp4], %[temp4], %[a32] \n\t" + "shll_s.ph %[temp2], %[temp2], 7 \n\t" + "shll_s.ph %[temp3], %[temp3], 7 \n\t" + "shll_s.ph %[temp4], %[temp4], 7 \n\t" + "shll_s.ph %[temp5], %[temp5], 7 \n\t" + "precrqu_s.qb.ph %[temp2], %[temp3], %[temp2] \n\t" + "precrqu_s.qb.ph %[temp3], %[temp4], %[temp5] \n\t" + "usw %[temp1], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp0], 1*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp3], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp2], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [a10]"=&r"(a10), [a32]"=&r"(a32) + : [c35]"r"(c35), [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void VE4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; + __asm__ volatile( + "ulw %[temp0], -1(%[top]) \n\t" + "ulh %[temp1], 3(%[top]) \n\t" + "preceu.ph.qbr %[temp2], %[temp0] \n\t" + "preceu.ph.qbl %[temp3], %[temp0] \n\t" + "preceu.ph.qbr %[temp4], %[temp1] \n\t" + "packrl.ph %[temp5], %[temp3], %[temp2] \n\t" + "packrl.ph %[temp6], %[temp4], %[temp3] \n\t" + "shll.ph %[temp5], %[temp5], 1 \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp2], %[temp5], %[temp2] \n\t" + "addq.ph %[temp6], %[temp6], %[temp4] \n\t" + "addq.ph %[temp2], %[temp2], %[temp3] \n\t" + "addq.ph %[temp6], %[temp6], %[temp3] \n\t" + "shra_r.ph %[temp2], %[temp2], 2 \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "precr.qb.ph %[temp4], %[temp6], %[temp2] \n\t" + "usw %[temp4], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp4], 1*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp4], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp4], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void HE4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; + __asm__ volatile( + "ulw %[temp0], -4(%[top]) \n\t" + "lbu %[temp1], -5(%[top]) \n\t" + "preceu.ph.qbr %[temp2], %[temp0] \n\t" + "preceu.ph.qbl %[temp3], %[temp0] \n\t" + "replv.ph %[temp4], %[temp1] \n\t" + "packrl.ph %[temp5], %[temp3], %[temp2] \n\t" + "packrl.ph %[temp6], %[temp2], %[temp4] \n\t" + "shll.ph %[temp5], %[temp5], 1 \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp3], %[temp3], %[temp5] \n\t" + "addq.ph %[temp3], %[temp3], %[temp2] \n\t" + "addq.ph %[temp2], %[temp2], %[temp6] \n\t" + "addq.ph %[temp2], %[temp2], %[temp4] \n\t" + "shra_r.ph %[temp3], %[temp3], 2 \n\t" + "shra_r.ph %[temp2], %[temp2], 2 \n\t" + "replv.qb %[temp0], %[temp3] \n\t" + "replv.qb %[temp1], %[temp2] \n\t" + "srl %[temp3], %[temp3], 16 \n\t" + "srl %[temp2], %[temp2], 16 \n\t" + "replv.qb %[temp3], %[temp3] \n\t" + "replv.qb %[temp2], %[temp2] \n\t" + "usw %[temp3], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp0], 1*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp2], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp1], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void RD4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4, temp5; + int temp6, temp7, temp8, temp9, temp10, temp11; + __asm__ volatile( + "ulw %[temp0], -5(%[top]) \n\t" + "ulw %[temp1], -1(%[top]) \n\t" + "preceu.ph.qbl %[temp2], %[temp0] \n\t" + "preceu.ph.qbr %[temp3], %[temp0] \n\t" + "preceu.ph.qbr %[temp4], %[temp1] \n\t" + "preceu.ph.qbl %[temp5], %[temp1] \n\t" + "packrl.ph %[temp6], %[temp2], %[temp3] \n\t" + "packrl.ph %[temp7], %[temp4], %[temp2] \n\t" + "packrl.ph %[temp8], %[temp5], %[temp4] \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp9], %[temp2], %[temp6] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "addq.ph %[temp9], %[temp9], %[temp3] \n\t" + "shll.ph %[temp8], %[temp8], 1 \n\t" + "shra_r.ph %[temp9], %[temp9], 2 \n\t" + "addq.ph %[temp10], %[temp4], %[temp7] \n\t" + "addq.ph %[temp11], %[temp5], %[temp8] \n\t" + "addq.ph %[temp10], %[temp10], %[temp2] \n\t" + "addq.ph %[temp11], %[temp11], %[temp4] \n\t" + "shra_r.ph %[temp10], %[temp10], 2 \n\t" + "shra_r.ph %[temp11], %[temp11], 2 \n\t" + "lbu %[temp0], 3(%[top]) \n\t" + "lbu %[temp1], 2(%[top]) \n\t" + "lbu %[temp2], 1(%[top]) \n\t" + "sll %[temp1], %[temp1], 1 \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp0], %[temp0], %[temp2] \n\t" + "precr.qb.ph %[temp9], %[temp10], %[temp9] \n\t" + "shra_r.w %[temp0], %[temp0], 2 \n\t" + "precr.qb.ph %[temp10], %[temp11], %[temp10] \n\t" + "usw %[temp9], 3*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp10], 1*" XSTR(BPS) "(%[dst]) \n\t" + "prepend %[temp9], %[temp11], 8 \n\t" + "prepend %[temp10], %[temp0], 8 \n\t" + "usw %[temp9], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp10], 0*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), [temp11]"=&r"(temp11) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void VR4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + __asm__ volatile ( + "ulw %[temp0], -4(%[top]) \n\t" + "ulw %[temp1], 0(%[top]) \n\t" + "preceu.ph.qbl %[temp2], %[temp0] \n\t" + "preceu.ph.qbr %[temp0], %[temp0] \n\t" + "preceu.ph.qbla %[temp3], %[temp1] \n\t" + "preceu.ph.qbra %[temp1], %[temp1] \n\t" + "packrl.ph %[temp7], %[temp3], %[temp2] \n\t" + "addqh_r.ph %[temp4], %[temp1], %[temp3] \n\t" + "move %[temp6], %[temp1] \n\t" + "append %[temp1], %[temp2], 16 \n\t" + "shll.ph %[temp9], %[temp6], 1 \n\t" + "addqh_r.ph %[temp5], %[temp7], %[temp6] \n\t" + "shll.ph %[temp8], %[temp7], 1 \n\t" + "addu.ph %[temp3], %[temp7], %[temp3] \n\t" + "addu.ph %[temp1], %[temp1], %[temp6] \n\t" + "packrl.ph %[temp7], %[temp2], %[temp0] \n\t" + "addu.ph %[temp6], %[temp0], %[temp2] \n\t" + "addu.ph %[temp3], %[temp3], %[temp9] \n\t" + "addu.ph %[temp1], %[temp1], %[temp8] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "shra_r.ph %[temp3], %[temp3], 2 \n\t" + "shra_r.ph %[temp1], %[temp1], 2 \n\t" + "addu.ph %[temp6], %[temp6], %[temp7] \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "precrq.ph.w %[temp8], %[temp4], %[temp5] \n\t" + "append %[temp4], %[temp5], 16 \n\t" + "precrq.ph.w %[temp2], %[temp3], %[temp1] \n\t" + "append %[temp3], %[temp1], 16 \n\t" + "precr.qb.ph %[temp8], %[temp8], %[temp4] \n\t" + "precr.qb.ph %[temp3], %[temp2], %[temp3] \n\t" + "usw %[temp8], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp3], 1*" XSTR(BPS) "(%[dst]) \n\t" + "append %[temp3], %[temp6], 8 \n\t" + "srl %[temp6], %[temp6], 16 \n\t" + "append %[temp8], %[temp6], 8 \n\t" + "usw %[temp3], 3*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp8], 2*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void LD4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4, temp5; + int temp6, temp7, temp8, temp9, temp10, temp11; + __asm__ volatile( + "ulw %[temp0], 0(%[top]) \n\t" + "ulw %[temp1], 4(%[top]) \n\t" + "preceu.ph.qbl %[temp2], %[temp0] \n\t" + "preceu.ph.qbr %[temp3], %[temp0] \n\t" + "preceu.ph.qbr %[temp4], %[temp1] \n\t" + "preceu.ph.qbl %[temp5], %[temp1] \n\t" + "packrl.ph %[temp6], %[temp2], %[temp3] \n\t" + "packrl.ph %[temp7], %[temp4], %[temp2] \n\t" + "packrl.ph %[temp8], %[temp5], %[temp4] \n\t" + "shll.ph %[temp6], %[temp6], 1 \n\t" + "addq.ph %[temp9], %[temp2], %[temp6] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "addq.ph %[temp9], %[temp9], %[temp3] \n\t" + "shll.ph %[temp8], %[temp8], 1 \n\t" + "shra_r.ph %[temp9], %[temp9], 2 \n\t" + "addq.ph %[temp10], %[temp4], %[temp7] \n\t" + "addq.ph %[temp11], %[temp5], %[temp8] \n\t" + "addq.ph %[temp10], %[temp10], %[temp2] \n\t" + "addq.ph %[temp11], %[temp11], %[temp4] \n\t" + "shra_r.ph %[temp10], %[temp10], 2 \n\t" + "shra_r.ph %[temp11], %[temp11], 2 \n\t" + "srl %[temp1], %[temp1], 24 \n\t" + "sll %[temp1], %[temp1], 1 \n\t" + "raddu.w.qb %[temp5], %[temp5] \n\t" + "precr.qb.ph %[temp9], %[temp10], %[temp9] \n\t" + "precr.qb.ph %[temp10], %[temp11], %[temp10] \n\t" + "addu %[temp1], %[temp1], %[temp5] \n\t" + "shra_r.w %[temp1], %[temp1], 2 \n\t" + "usw %[temp9], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp10], 2*" XSTR(BPS) "(%[dst]) \n\t" + "prepend %[temp9], %[temp11], 8 \n\t" + "prepend %[temp10], %[temp1], 8 \n\t" + "usw %[temp9], 1*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp10], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), [temp11]"=&r"(temp11) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void VL4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + __asm__ volatile ( + "ulw %[temp0], 0(%[top]) \n\t" + "ulw %[temp1], 4(%[top]) \n\t" + "preceu.ph.qbla %[temp2], %[temp0] \n\t" + "preceu.ph.qbra %[temp0], %[temp0] \n\t" + "preceu.ph.qbl %[temp3], %[temp1] \n\t" + "preceu.ph.qbr %[temp1], %[temp1] \n\t" + "addqh_r.ph %[temp4], %[temp0], %[temp2] \n\t" + "packrl.ph %[temp7], %[temp1], %[temp0] \n\t" + "precrq.ph.w %[temp6], %[temp1], %[temp2] \n\t" + "shll.ph %[temp9], %[temp2], 1 \n\t" + "addqh_r.ph %[temp5], %[temp7], %[temp2] \n\t" + "shll.ph %[temp8], %[temp7], 1 \n\t" + "addu.ph %[temp2], %[temp2], %[temp6] \n\t" + "addu.ph %[temp0], %[temp0], %[temp7] \n\t" + "packrl.ph %[temp7], %[temp3], %[temp1] \n\t" + "addu.ph %[temp6], %[temp1], %[temp3] \n\t" + "addu.ph %[temp2], %[temp2], %[temp8] \n\t" + "addu.ph %[temp0], %[temp0], %[temp9] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "shra_r.ph %[temp2], %[temp2], 2 \n\t" + "shra_r.ph %[temp0], %[temp0], 2 \n\t" + "addu.ph %[temp6], %[temp6], %[temp7] \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "precrq.ph.w %[temp8], %[temp5], %[temp4] \n\t" + "append %[temp5], %[temp4], 16 \n\t" + "precrq.ph.w %[temp3], %[temp2], %[temp0] \n\t" + "append %[temp2], %[temp0], 16 \n\t" + "precr.qb.ph %[temp8], %[temp8], %[temp5] \n\t" + "precr.qb.ph %[temp3], %[temp3], %[temp2] \n\t" + "usw %[temp8], 0*" XSTR(BPS) "(%[dst]) \n\t" + "prepend %[temp8], %[temp6], 8 \n\t" + "usw %[temp3], 1*" XSTR(BPS) "(%[dst]) \n\t" + "srl %[temp6], %[temp6], 16 \n\t" + "prepend %[temp3], %[temp6], 8 \n\t" + "usw %[temp8], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp3], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void HD4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + __asm__ volatile ( + "ulw %[temp0], -5(%[top]) \n\t" + "ulw %[temp1], -1(%[top]) \n\t" + "preceu.ph.qbla %[temp2], %[temp0] \n\t" + "preceu.ph.qbra %[temp0], %[temp0] \n\t" + "preceu.ph.qbl %[temp3], %[temp1] \n\t" + "preceu.ph.qbr %[temp1], %[temp1] \n\t" + "addqh_r.ph %[temp4], %[temp0], %[temp2] \n\t" + "packrl.ph %[temp7], %[temp1], %[temp0] \n\t" + "precrq.ph.w %[temp6], %[temp1], %[temp2] \n\t" + "shll.ph %[temp9], %[temp2], 1 \n\t" + "addqh_r.ph %[temp5], %[temp7], %[temp2] \n\t" + "shll.ph %[temp8], %[temp7], 1 \n\t" + "addu.ph %[temp2], %[temp2], %[temp6] \n\t" + "addu.ph %[temp0], %[temp0], %[temp7] \n\t" + "packrl.ph %[temp7], %[temp3], %[temp1] \n\t" + "addu.ph %[temp6], %[temp1], %[temp3] \n\t" + "addu.ph %[temp2], %[temp2], %[temp8] \n\t" + "addu.ph %[temp0], %[temp0], %[temp9] \n\t" + "shll.ph %[temp7], %[temp7], 1 \n\t" + "shra_r.ph %[temp2], %[temp2], 2 \n\t" + "shra_r.ph %[temp0], %[temp0], 2 \n\t" + "addu.ph %[temp6], %[temp6], %[temp7] \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "precrq.ph.w %[temp1], %[temp2], %[temp5] \n\t" + "precrq.ph.w %[temp3], %[temp0], %[temp4] \n\t" + "precr.qb.ph %[temp7], %[temp6], %[temp1] \n\t" + "precr.qb.ph %[temp6], %[temp1], %[temp3] \n\t" + "usw %[temp7], 0*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp6], 1*" XSTR(BPS) "(%[dst]) \n\t" + "append %[temp2], %[temp5], 16 \n\t" + "append %[temp0], %[temp4], 16 \n\t" + "precr.qb.ph %[temp5], %[temp3], %[temp2] \n\t" + "precr.qb.ph %[temp4], %[temp2], %[temp0] \n\t" + "usw %[temp5], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp4], 3*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +static void HU4(uint8_t* dst, const uint8_t* top) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + __asm__ volatile ( + "ulw %[temp0], -5(%[top]) \n\t" + "preceu.ph.qbl %[temp1], %[temp0] \n\t" + "preceu.ph.qbr %[temp2], %[temp0] \n\t" + "packrl.ph %[temp3], %[temp1], %[temp2] \n\t" + "replv.qb %[temp7], %[temp2] \n\t" + "addqh_r.ph %[temp4], %[temp1], %[temp3] \n\t" + "addqh_r.ph %[temp5], %[temp3], %[temp2] \n\t" + "shll.ph %[temp6], %[temp3], 1 \n\t" + "addu.ph %[temp3], %[temp2], %[temp3] \n\t" + "addu.ph %[temp6], %[temp1], %[temp6] \n\t" + "shll.ph %[temp0], %[temp2], 1 \n\t" + "addu.ph %[temp6], %[temp6], %[temp2] \n\t" + "addu.ph %[temp0], %[temp3], %[temp0] \n\t" + "shra_r.ph %[temp6], %[temp6], 2 \n\t" + "shra_r.ph %[temp0], %[temp0], 2 \n\t" + "packrl.ph %[temp3], %[temp6], %[temp5] \n\t" + "precrq.ph.w %[temp2], %[temp6], %[temp4] \n\t" + "append %[temp0], %[temp5], 16 \n\t" + "precr.qb.ph %[temp3], %[temp3], %[temp2] \n\t" + "usw %[temp3], 0*" XSTR(BPS) "(%[dst]) \n\t" + "precr.qb.ph %[temp1], %[temp7], %[temp0] \n\t" + "usw %[temp7], 3*" XSTR(BPS) "(%[dst]) \n\t" + "packrl.ph %[temp2], %[temp1], %[temp3] \n\t" + "usw %[temp1], 2*" XSTR(BPS) "(%[dst]) \n\t" + "usw %[temp2], 1*" XSTR(BPS) "(%[dst]) \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7) + : [top]"r"(top), [dst]"r"(dst) + : "memory" + ); +} + +//------------------------------------------------------------------------------ +// Chroma 8x8 prediction (paragraph 12.2) + +static void IntraChromaPreds_MIPSdspR2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + // U block + DCMode8(C8DC8 + dst, left, top); + VerticalPred8(C8VE8 + dst, top); + HorizontalPred8(C8HE8 + dst, left); + TrueMotion8(C8TM8 + dst, left, top); + // V block + dst += 8; + if (top) top += 8; + if (left) left += 16; + DCMode8(C8DC8 + dst, left, top); + VerticalPred8(C8VE8 + dst, top); + HorizontalPred8(C8HE8 + dst, left); + TrueMotion8(C8TM8 + dst, left, top); +} + +//------------------------------------------------------------------------------ +// luma 16x16 prediction (paragraph 12.3) + +static void Intra16Preds_MIPSdspR2(uint8_t* dst, + const uint8_t* left, const uint8_t* top) { + DCMode16(I16DC16 + dst, left, top); + VerticalPred16(I16VE16 + dst, top); + HorizontalPred16(I16HE16 + dst, left); + TrueMotion16(I16TM16 + dst, left, top); +} + +// Left samples are top[-5 .. -2], top_left is top[-1], top are +// located at top[0..3], and top right is top[4..7] +static void Intra4Preds_MIPSdspR2(uint8_t* dst, const uint8_t* top) { + DC4(I4DC4 + dst, top); + TM4(I4TM4 + dst, top); + VE4(I4VE4 + dst, top); + HE4(I4HE4 + dst, top); + RD4(I4RD4 + dst, top); + VR4(I4VR4 + dst, top); + LD4(I4LD4 + dst, top); + VL4(I4VL4 + dst, top); + HD4(I4HD4 + dst, top); + HU4(I4HU4 + dst, top); +} + +//------------------------------------------------------------------------------ +// Metric + +#if !defined(WORK_AROUND_GCC) + +#define GET_SSE_INNER(A) \ + "lw %[temp0], " #A "(%[a]) \n\t" \ + "lw %[temp1], " #A "(%[b]) \n\t" \ + "preceu.ph.qbr %[temp2], %[temp0] \n\t" \ + "preceu.ph.qbl %[temp0], %[temp0] \n\t" \ + "preceu.ph.qbr %[temp3], %[temp1] \n\t" \ + "preceu.ph.qbl %[temp1], %[temp1] \n\t" \ + "subq.ph %[temp2], %[temp2], %[temp3] \n\t" \ + "subq.ph %[temp0], %[temp0], %[temp1] \n\t" \ + "dpa.w.ph $ac0, %[temp2], %[temp2] \n\t" \ + "dpa.w.ph $ac0, %[temp0], %[temp0] \n\t" + +#define GET_SSE(A, B, C, D) \ + GET_SSE_INNER(A) \ + GET_SSE_INNER(B) \ + GET_SSE_INNER(C) \ + GET_SSE_INNER(D) + +static int SSE16x16_MIPSdspR2(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3; + __asm__ volatile ( + "mult $zero, $zero \n\t" + GET_SSE( 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS) + GET_SSE( 1 * BPS, 4 + 1 * BPS, 8 + 1 * BPS, 12 + 1 * BPS) + GET_SSE( 2 * BPS, 4 + 2 * BPS, 8 + 2 * BPS, 12 + 2 * BPS) + GET_SSE( 3 * BPS, 4 + 3 * BPS, 8 + 3 * BPS, 12 + 3 * BPS) + GET_SSE( 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS) + GET_SSE( 5 * BPS, 4 + 5 * BPS, 8 + 5 * BPS, 12 + 5 * BPS) + GET_SSE( 6 * BPS, 4 + 6 * BPS, 8 + 6 * BPS, 12 + 6 * BPS) + GET_SSE( 7 * BPS, 4 + 7 * BPS, 8 + 7 * BPS, 12 + 7 * BPS) + GET_SSE( 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS) + GET_SSE( 9 * BPS, 4 + 9 * BPS, 8 + 9 * BPS, 12 + 9 * BPS) + GET_SSE(10 * BPS, 4 + 10 * BPS, 8 + 10 * BPS, 12 + 10 * BPS) + GET_SSE(11 * BPS, 4 + 11 * BPS, 8 + 11 * BPS, 12 + 11 * BPS) + GET_SSE(12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS) + GET_SSE(13 * BPS, 4 + 13 * BPS, 8 + 13 * BPS, 12 + 13 * BPS) + GET_SSE(14 * BPS, 4 + 14 * BPS, 8 + 14 * BPS, 12 + 14 * BPS) + GET_SSE(15 * BPS, 4 + 15 * BPS, 8 + 15 * BPS, 12 + 15 * BPS) + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE16x8_MIPSdspR2(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3; + __asm__ volatile ( + "mult $zero, $zero \n\t" + GET_SSE( 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS) + GET_SSE( 1 * BPS, 4 + 1 * BPS, 8 + 1 * BPS, 12 + 1 * BPS) + GET_SSE( 2 * BPS, 4 + 2 * BPS, 8 + 2 * BPS, 12 + 2 * BPS) + GET_SSE( 3 * BPS, 4 + 3 * BPS, 8 + 3 * BPS, 12 + 3 * BPS) + GET_SSE( 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS) + GET_SSE( 5 * BPS, 4 + 5 * BPS, 8 + 5 * BPS, 12 + 5 * BPS) + GET_SSE( 6 * BPS, 4 + 6 * BPS, 8 + 6 * BPS, 12 + 6 * BPS) + GET_SSE( 7 * BPS, 4 + 7 * BPS, 8 + 7 * BPS, 12 + 7 * BPS) + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE8x8_MIPSdspR2(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3; + __asm__ volatile ( + "mult $zero, $zero \n\t" + GET_SSE(0 * BPS, 4 + 0 * BPS, 1 * BPS, 4 + 1 * BPS) + GET_SSE(2 * BPS, 4 + 2 * BPS, 3 * BPS, 4 + 3 * BPS) + GET_SSE(4 * BPS, 4 + 4 * BPS, 5 * BPS, 4 + 5 * BPS) + GET_SSE(6 * BPS, 4 + 6 * BPS, 7 * BPS, 4 + 7 * BPS) + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +static int SSE4x4_MIPSdspR2(const uint8_t* a, const uint8_t* b) { + int count; + int temp0, temp1, temp2, temp3; + __asm__ volatile ( + "mult $zero, $zero \n\t" + GET_SSE(0 * BPS, 1 * BPS, 2 * BPS, 3 * BPS) + "mflo %[count] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [count]"=&r"(count) + : [a]"r"(a), [b]"r"(b) + : "memory", "hi", "lo" + ); + return count; +} + +#undef GET_SSE +#undef GET_SSE_INNER + +#endif // !WORK_AROUND_GCC + +#undef FILL_8_OR_16 +#undef FILL_PART +#undef OUTPUT_EARLY_CLOBBER_REGS_17 +#undef MUL_HALF +#undef ABS_X8 +#undef ADD_SUB_HALVES_X4 + +//------------------------------------------------------------------------------ +// Quantization +// + +// macro for one pass through for loop in QuantizeBlock reading 2 values at time +// QUANTDIV macro inlined +// J - offset in bytes (kZigzag[n] * 2) +// K - offset in bytes (kZigzag[n] * 4) +// N - offset in bytes (n * 2) +// N1 - offset in bytes ((n + 1) * 2) +#define QUANTIZE_ONE(J, K, N, N1) \ + "ulw %[temp1], " #J "(%[ppin]) \n\t" \ + "ulw %[temp2], " #J "(%[ppsharpen]) \n\t" \ + "lhu %[temp3], " #K "(%[ppzthresh]) \n\t" \ + "lhu %[temp6], " #K "+4(%[ppzthresh]) \n\t" \ + "absq_s.ph %[temp4], %[temp1] \n\t" \ + "ins %[temp3], %[temp6], 16, 16 \n\t" \ + "addu.ph %[coeff], %[temp4], %[temp2] \n\t" \ + "shra.ph %[sign], %[temp1], 15 \n\t" \ + "li %[level], 0x10001 \n\t" \ + "cmp.lt.ph %[temp3], %[coeff] \n\t" \ + "lhu %[temp1], " #J "(%[ppiq]) \n\t" \ + "pick.ph %[temp5], %[level], $0 \n\t" \ + "lw %[temp2], " #K "(%[ppbias]) \n\t" \ + "beqz %[temp5], 0f \n\t" \ + "lhu %[temp3], " #J "(%[ppq]) \n\t" \ + "beq %[temp5], %[level], 1f \n\t" \ + "andi %[temp5], %[temp5], 0x1 \n\t" \ + "andi %[temp4], %[coeff], 0xffff \n\t" \ + "beqz %[temp5], 2f \n\t" \ + "mul %[level], %[temp4], %[temp1] \n\t" \ + "sh $0, " #J "+2(%[ppin]) \n\t" \ + "sh $0, " #N1 "(%[pout]) \n\t" \ + "addu %[level], %[level], %[temp2] \n\t" \ + "sra %[level], %[level], 17 \n\t" \ + "slt %[temp4], %[max_level], %[level] \n\t" \ + "movn %[level], %[max_level], %[temp4] \n\t" \ + "andi %[temp6], %[sign], 0xffff \n\t" \ + "xor %[level], %[level], %[temp6] \n\t" \ + "subu %[level], %[level], %[temp6] \n\t" \ + "mul %[temp5], %[level], %[temp3] \n\t" \ + "or %[ret], %[ret], %[level] \n\t" \ + "sh %[level], " #N "(%[pout]) \n\t" \ + "sh %[temp5], " #J "(%[ppin]) \n\t" \ + "j 3f \n\t" \ +"2: \n\t" \ + "lhu %[temp1], " #J "+2(%[ppiq]) \n\t" \ + "srl %[temp5], %[coeff], 16 \n\t" \ + "mul %[level], %[temp5], %[temp1] \n\t" \ + "lw %[temp2], " #K "+4(%[ppbias]) \n\t" \ + "lhu %[temp3], " #J "+2(%[ppq]) \n\t" \ + "addu %[level], %[level], %[temp2] \n\t" \ + "sra %[level], %[level], 17 \n\t" \ + "srl %[temp6], %[sign], 16 \n\t" \ + "slt %[temp4], %[max_level], %[level] \n\t" \ + "movn %[level], %[max_level], %[temp4] \n\t" \ + "xor %[level], %[level], %[temp6] \n\t" \ + "subu %[level], %[level], %[temp6] \n\t" \ + "mul %[temp5], %[level], %[temp3] \n\t" \ + "sh $0, " #J "(%[ppin]) \n\t" \ + "sh $0, " #N "(%[pout]) \n\t" \ + "or %[ret], %[ret], %[level] \n\t" \ + "sh %[temp5], " #J "+2(%[ppin]) \n\t" \ + "sh %[level], " #N1 "(%[pout]) \n\t" \ + "j 3f \n\t" \ +"1: \n\t" \ + "lhu %[temp1], " #J "(%[ppiq]) \n\t" \ + "lw %[temp2], " #K "(%[ppbias]) \n\t" \ + "ulw %[temp3], " #J "(%[ppq]) \n\t" \ + "andi %[temp5], %[coeff], 0xffff \n\t" \ + "srl %[temp0], %[coeff], 16 \n\t" \ + "lhu %[temp6], " #J "+2(%[ppiq]) \n\t" \ + "lw %[coeff], " #K "+4(%[ppbias]) \n\t" \ + "mul %[level], %[temp5], %[temp1] \n\t" \ + "mul %[temp4], %[temp0], %[temp6] \n\t" \ + "addu %[level], %[level], %[temp2] \n\t" \ + "addu %[temp4], %[temp4], %[coeff] \n\t" \ + "precrq.ph.w %[level], %[temp4], %[level] \n\t" \ + "shra.ph %[level], %[level], 1 \n\t" \ + "cmp.lt.ph %[max_level1],%[level] \n\t" \ + "pick.ph %[level], %[max_level], %[level] \n\t" \ + "xor %[level], %[level], %[sign] \n\t" \ + "subu.ph %[level], %[level], %[sign] \n\t" \ + "mul.ph %[temp3], %[level], %[temp3] \n\t" \ + "or %[ret], %[ret], %[level] \n\t" \ + "sh %[level], " #N "(%[pout]) \n\t" \ + "srl %[level], %[level], 16 \n\t" \ + "sh %[level], " #N1 "(%[pout]) \n\t" \ + "usw %[temp3], " #J "(%[ppin]) \n\t" \ + "j 3f \n\t" \ +"0: \n\t" \ + "sh $0, " #N "(%[pout]) \n\t" \ + "sh $0, " #N1 "(%[pout]) \n\t" \ + "usw $0, " #J "(%[ppin]) \n\t" \ +"3: \n\t" + +static int QuantizeBlock_MIPSdspR2(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + int temp0, temp1, temp2, temp3, temp4, temp5,temp6; + int sign, coeff, level; + int max_level = MAX_LEVEL; + int max_level1 = max_level << 16 | max_level; + int ret = 0; + + int16_t* ppin = &in[0]; + int16_t* pout = &out[0]; + const uint16_t* ppsharpen = &mtx->sharpen_[0]; + const uint32_t* ppzthresh = &mtx->zthresh_[0]; + const uint16_t* ppq = &mtx->q_[0]; + const uint16_t* ppiq = &mtx->iq_[0]; + const uint32_t* ppbias = &mtx->bias_[0]; + + __asm__ volatile ( + QUANTIZE_ONE( 0, 0, 0, 2) + QUANTIZE_ONE( 4, 8, 10, 12) + QUANTIZE_ONE( 8, 16, 4, 8) + QUANTIZE_ONE(12, 24, 14, 24) + QUANTIZE_ONE(16, 32, 6, 16) + QUANTIZE_ONE(20, 40, 22, 26) + QUANTIZE_ONE(24, 48, 18, 20) + QUANTIZE_ONE(28, 56, 28, 30) + + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [sign]"=&r"(sign), [coeff]"=&r"(coeff), + [level]"=&r"(level), [temp6]"=&r"(temp6), [ret]"+&r"(ret) + : [ppin]"r"(ppin), [pout]"r"(pout), [max_level1]"r"(max_level1), + [ppiq]"r"(ppiq), [max_level]"r"(max_level), + [ppbias]"r"(ppbias), [ppzthresh]"r"(ppzthresh), + [ppsharpen]"r"(ppsharpen), [ppq]"r"(ppq) + : "memory", "hi", "lo" + ); + + return (ret != 0); +} + +static int Quantize2Blocks_MIPSdspR2(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + nz = QuantizeBlock_MIPSdspR2(in + 0 * 16, out + 0 * 16, mtx) << 0; + nz |= QuantizeBlock_MIPSdspR2(in + 1 * 16, out + 1 * 16, mtx) << 1; + return nz; +} + +#undef QUANTIZE_ONE + +// macro for one horizontal pass in FTransformWHT +// temp0..temp7 holds tmp[0]..tmp[15] +// A, B, C, D - offset in bytes to load from in buffer +// TEMP0, TEMP1 - registers for corresponding tmp elements +#define HORIZONTAL_PASS_WHT(A, B, C, D, TEMP0, TEMP1) \ + "lh %[" #TEMP0 "], " #A "(%[in]) \n\t" \ + "lh %[" #TEMP1 "], " #B "(%[in]) \n\t" \ + "lh %[temp8], " #C "(%[in]) \n\t" \ + "lh %[temp9], " #D "(%[in]) \n\t" \ + "ins %[" #TEMP1 "], %[" #TEMP0 "], 16, 16 \n\t" \ + "ins %[temp9], %[temp8], 16, 16 \n\t" \ + "subq.ph %[temp8], %[" #TEMP1 "], %[temp9] \n\t" \ + "addq.ph %[temp9], %[" #TEMP1 "], %[temp9] \n\t" \ + "precrq.ph.w %[" #TEMP0 "], %[temp8], %[temp9] \n\t" \ + "append %[temp8], %[temp9], 16 \n\t" \ + "subq.ph %[" #TEMP1 "], %[" #TEMP0 "], %[temp8] \n\t" \ + "addq.ph %[" #TEMP0 "], %[" #TEMP0 "], %[temp8] \n\t" \ + "rotr %[" #TEMP1 "], %[" #TEMP1 "], 16 \n\t" + +// macro for one vertical pass in FTransformWHT +// temp0..temp7 holds tmp[0]..tmp[15] +// A, B, C, D - offsets in bytes to store to out buffer +// TEMP0, TEMP2, TEMP4 and TEMP6 - registers for corresponding tmp elements +#define VERTICAL_PASS_WHT(A, B, C, D, TEMP0, TEMP2, TEMP4, TEMP6) \ + "addq.ph %[temp8], %[" #TEMP0 "], %[" #TEMP4 "] \n\t" \ + "addq.ph %[temp9], %[" #TEMP2 "], %[" #TEMP6 "] \n\t" \ + "subq.ph %[" #TEMP2 "], %[" #TEMP2 "], %[" #TEMP6 "] \n\t" \ + "subq.ph %[" #TEMP6 "], %[" #TEMP0 "], %[" #TEMP4 "] \n\t" \ + "addqh.ph %[" #TEMP0 "], %[temp8], %[temp9] \n\t" \ + "subqh.ph %[" #TEMP4 "], %[" #TEMP6 "], %[" #TEMP2 "] \n\t" \ + "addqh.ph %[" #TEMP2 "], %[" #TEMP2 "], %[" #TEMP6 "] \n\t" \ + "subqh.ph %[" #TEMP6 "], %[temp8], %[temp9] \n\t" \ + "usw %[" #TEMP0 "], " #A "(%[out]) \n\t" \ + "usw %[" #TEMP2 "], " #B "(%[out]) \n\t" \ + "usw %[" #TEMP4 "], " #C "(%[out]) \n\t" \ + "usw %[" #TEMP6 "], " #D "(%[out]) \n\t" + +static void FTransformWHT_MIPSdspR2(const int16_t* in, int16_t* out) { + int temp0, temp1, temp2, temp3, temp4; + int temp5, temp6, temp7, temp8, temp9; + + __asm__ volatile ( + HORIZONTAL_PASS_WHT( 0, 32, 64, 96, temp0, temp1) + HORIZONTAL_PASS_WHT(128, 160, 192, 224, temp2, temp3) + HORIZONTAL_PASS_WHT(256, 288, 320, 352, temp4, temp5) + HORIZONTAL_PASS_WHT(384, 416, 448, 480, temp6, temp7) + VERTICAL_PASS_WHT(0, 8, 16, 24, temp0, temp2, temp4, temp6) + VERTICAL_PASS_WHT(4, 12, 20, 28, temp1, temp3, temp5, temp7) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), + [temp9]"=&r"(temp9) + : [in]"r"(in), [out]"r"(out) + : "memory" + ); +} + +#undef VERTICAL_PASS_WHT +#undef HORIZONTAL_PASS_WHT + +// macro for converting coefficients to bin +// convert 8 coeffs at time +// A, B, C, D - offsets in bytes to load from out buffer +#define CONVERT_COEFFS_TO_BIN(A, B, C, D) \ + "ulw %[temp0], " #A "(%[out]) \n\t" \ + "ulw %[temp1], " #B "(%[out]) \n\t" \ + "ulw %[temp2], " #C "(%[out]) \n\t" \ + "ulw %[temp3], " #D "(%[out]) \n\t" \ + "absq_s.ph %[temp0], %[temp0] \n\t" \ + "absq_s.ph %[temp1], %[temp1] \n\t" \ + "absq_s.ph %[temp2], %[temp2] \n\t" \ + "absq_s.ph %[temp3], %[temp3] \n\t" \ + "shra.ph %[temp0], %[temp0], 3 \n\t" \ + "shra.ph %[temp1], %[temp1], 3 \n\t" \ + "shra.ph %[temp2], %[temp2], 3 \n\t" \ + "shra.ph %[temp3], %[temp3], 3 \n\t" \ + "shll_s.ph %[temp0], %[temp0], 10 \n\t" \ + "shll_s.ph %[temp1], %[temp1], 10 \n\t" \ + "shll_s.ph %[temp2], %[temp2], 10 \n\t" \ + "shll_s.ph %[temp3], %[temp3], 10 \n\t" \ + "shrl.ph %[temp0], %[temp0], 10 \n\t" \ + "shrl.ph %[temp1], %[temp1], 10 \n\t" \ + "shrl.ph %[temp2], %[temp2], 10 \n\t" \ + "shrl.ph %[temp3], %[temp3], 10 \n\t" \ + "shll.ph %[temp0], %[temp0], 2 \n\t" \ + "shll.ph %[temp1], %[temp1], 2 \n\t" \ + "shll.ph %[temp2], %[temp2], 2 \n\t" \ + "shll.ph %[temp3], %[temp3], 2 \n\t" \ + "ext %[temp4], %[temp0], 0, 16 \n\t" \ + "ext %[temp0], %[temp0], 16, 16 \n\t" \ + "addu %[temp4], %[temp4], %[dist] \n\t" \ + "addu %[temp0], %[temp0], %[dist] \n\t" \ + "ext %[temp5], %[temp1], 0, 16 \n\t" \ + "lw %[temp8], 0(%[temp4]) \n\t" \ + "ext %[temp1], %[temp1], 16, 16 \n\t" \ + "addu %[temp5], %[temp5], %[dist] \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp4]) \n\t" \ + "lw %[temp8], 0(%[temp0]) \n\t" \ + "addu %[temp1], %[temp1], %[dist] \n\t" \ + "ext %[temp6], %[temp2], 0, 16 \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp0]) \n\t" \ + "lw %[temp8], 0(%[temp5]) \n\t" \ + "ext %[temp2], %[temp2], 16, 16 \n\t" \ + "addu %[temp6], %[temp6], %[dist] \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp5]) \n\t" \ + "lw %[temp8], 0(%[temp1]) \n\t" \ + "addu %[temp2], %[temp2], %[dist] \n\t" \ + "ext %[temp7], %[temp3], 0, 16 \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp1]) \n\t" \ + "lw %[temp8], 0(%[temp6]) \n\t" \ + "ext %[temp3], %[temp3], 16, 16 \n\t" \ + "addu %[temp7], %[temp7], %[dist] \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp6]) \n\t" \ + "lw %[temp8], 0(%[temp2]) \n\t" \ + "addu %[temp3], %[temp3], %[dist] \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp2]) \n\t" \ + "lw %[temp8], 0(%[temp7]) \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp7]) \n\t" \ + "lw %[temp8], 0(%[temp3]) \n\t" \ + "addiu %[temp8], %[temp8], 1 \n\t" \ + "sw %[temp8], 0(%[temp3]) \n\t" + +static void CollectHistogram_MIPSdspR2(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + const int max_coeff = (MAX_COEFF_THRESH << 16) + MAX_COEFF_THRESH; + for (j = start_block; j < end_block; ++j) { + int16_t out[16]; + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7, temp8; + + VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + + // Convert coefficients to bin. + __asm__ volatile ( + CONVERT_COEFFS_TO_BIN( 0, 4, 8, 12) + CONVERT_COEFFS_TO_BIN(16, 20, 24, 28) + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [temp8]"=&r"(temp8) + : [dist]"r"(distribution), [out]"r"(out), [max_coeff]"r"(max_coeff) + : "memory" + ); + } + VP8SetHistogramData(distribution, histo); +} + +#undef CONVERT_COEFFS_TO_BIN + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitMIPSdspR2(void) { + VP8FTransform = FTransform_MIPSdspR2; + VP8FTransformWHT = FTransformWHT_MIPSdspR2; + VP8ITransform = ITransform_MIPSdspR2; + + VP8TDisto4x4 = Disto4x4_MIPSdspR2; + VP8TDisto16x16 = Disto16x16_MIPSdspR2; + + VP8EncPredLuma16 = Intra16Preds_MIPSdspR2; + VP8EncPredChroma8 = IntraChromaPreds_MIPSdspR2; + VP8EncPredLuma4 = Intra4Preds_MIPSdspR2; + +#if !defined(WORK_AROUND_GCC) + VP8SSE16x16 = SSE16x16_MIPSdspR2; + VP8SSE8x8 = SSE8x8_MIPSdspR2; + VP8SSE16x8 = SSE16x8_MIPSdspR2; + VP8SSE4x4 = SSE4x4_MIPSdspR2; +#endif + + VP8EncQuantizeBlock = QuantizeBlock_MIPSdspR2; + VP8EncQuantize2Blocks = Quantize2Blocks_MIPSdspR2; + + VP8CollectHistogram = CollectHistogram_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8EncDspInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/enc_msa.c b/media/libwebp/src/dsp/enc_msa.c new file mode 100644 index 0000000000..6f85add4bb --- /dev/null +++ b/media/libwebp/src/dsp/enc_msa.c @@ -0,0 +1,896 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA version of encoder dsp functions. +// +// Author: Prashant Patil (prashant.patil@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include <stdlib.h> +#include "src/dsp/msa_macro.h" +#include "src/enc/vp8i_enc.h" + +//------------------------------------------------------------------------------ +// Transforms + +#define IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3) do { \ + v4i32 a1_m, b1_m, c1_m, d1_m; \ + const v4i32 cospi8sqrt2minus1 = __msa_fill_w(20091); \ + const v4i32 sinpi8sqrt2 = __msa_fill_w(35468); \ + v4i32 c_tmp1_m = in1 * sinpi8sqrt2; \ + v4i32 c_tmp2_m = in3 * cospi8sqrt2minus1; \ + v4i32 d_tmp1_m = in1 * cospi8sqrt2minus1; \ + v4i32 d_tmp2_m = in3 * sinpi8sqrt2; \ + \ + ADDSUB2(in0, in2, a1_m, b1_m); \ + SRAI_W2_SW(c_tmp1_m, c_tmp2_m, 16); \ + c_tmp2_m = c_tmp2_m + in3; \ + c1_m = c_tmp1_m - c_tmp2_m; \ + SRAI_W2_SW(d_tmp1_m, d_tmp2_m, 16); \ + d_tmp1_m = d_tmp1_m + in1; \ + d1_m = d_tmp1_m + d_tmp2_m; \ + BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3); \ +} while (0) + +static WEBP_INLINE void ITransformOne(const uint8_t* ref, const int16_t* in, + uint8_t* dst) { + v8i16 input0, input1; + v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3; + v4i32 res0, res1, res2, res3; + v16i8 dest0, dest1, dest2, dest3; + const v16i8 zero = { 0 }; + + LD_SH2(in, 8, input0, input1); + UNPCK_SH_SW(input0, in0, in1); + UNPCK_SH_SW(input1, in2, in3); + IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3); + TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3); + IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3); + SRARI_W4_SW(vt0, vt1, vt2, vt3, 3); + TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3); + LD_SB4(ref, BPS, dest0, dest1, dest2, dest3); + ILVR_B4_SW(zero, dest0, zero, dest1, zero, dest2, zero, dest3, + res0, res1, res2, res3); + ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3, + res0, res1, res2, res3); + ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3); + CLIP_SW4_0_255(res0, res1, res2, res3); + PCKEV_B2_SW(res0, res1, res2, res3, vt0, vt1); + res0 = (v4i32)__msa_pckev_b((v16i8)vt0, (v16i8)vt1); + ST4x4_UB(res0, res0, 3, 2, 1, 0, dst, BPS); +} + +static void ITransform_MSA(const uint8_t* ref, const int16_t* in, uint8_t* dst, + int do_two) { + ITransformOne(ref, in, dst); + if (do_two) { + ITransformOne(ref + 4, in + 16, dst + 4); + } +} + +static void FTransform_MSA(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + uint64_t out0, out1, out2, out3; + uint32_t in0, in1, in2, in3; + v4i32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; + v8i16 t0, t1, t2, t3; + v16u8 srcl0, srcl1, src0 = { 0 }, src1 = { 0 }; + const v8i16 mask0 = { 0, 4, 8, 12, 1, 5, 9, 13 }; + const v8i16 mask1 = { 3, 7, 11, 15, 2, 6, 10, 14 }; + const v8i16 mask2 = { 4, 0, 5, 1, 6, 2, 7, 3 }; + const v8i16 mask3 = { 0, 4, 1, 5, 2, 6, 3, 7 }; + const v8i16 cnst0 = { 2217, -5352, 2217, -5352, 2217, -5352, 2217, -5352 }; + const v8i16 cnst1 = { 5352, 2217, 5352, 2217, 5352, 2217, 5352, 2217 }; + + LW4(src, BPS, in0, in1, in2, in3); + INSERT_W4_UB(in0, in1, in2, in3, src0); + LW4(ref, BPS, in0, in1, in2, in3); + INSERT_W4_UB(in0, in1, in2, in3, src1); + ILVRL_B2_UB(src0, src1, srcl0, srcl1); + HSUB_UB2_SH(srcl0, srcl1, t0, t1); + VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3); + ADDSUB2(t2, t3, t0, t1); + t0 = SRLI_H(t0, 3); + VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2); + tmp0 = __msa_hadd_s_w(t3, t3); + tmp2 = __msa_hsub_s_w(t3, t3); + FILL_W2_SW(1812, 937, tmp1, tmp3); + DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1); + SRAI_W2_SW(tmp1, tmp3, 9); + PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1); + VSHF_H2_SH(t0, t1, t0, t1, mask0, mask1, t2, t3); + ADDSUB2(t2, t3, t0, t1); + VSHF_H2_SH(t0, t0, t1, t1, mask2, mask3, t3, t2); + tmp0 = __msa_hadd_s_w(t3, t3); + tmp2 = __msa_hsub_s_w(t3, t3); + ADDVI_W2_SW(tmp0, 7, tmp2, 7, tmp0, tmp2); + SRAI_W2_SW(tmp0, tmp2, 4); + FILL_W2_SW(12000, 51000, tmp1, tmp3); + DPADD_SH2_SW(t2, t2, cnst0, cnst1, tmp3, tmp1); + SRAI_W2_SW(tmp1, tmp3, 16); + UNPCK_R_SH_SW(t1, tmp4); + tmp5 = __msa_ceqi_w(tmp4, 0); + tmp4 = (v4i32)__msa_nor_v((v16u8)tmp5, (v16u8)tmp5); + tmp5 = __msa_fill_w(1); + tmp5 = (v4i32)__msa_and_v((v16u8)tmp5, (v16u8)tmp4); + tmp1 += tmp5; + PCKEV_H2_SH(tmp1, tmp0, tmp3, tmp2, t0, t1); + out0 = __msa_copy_s_d((v2i64)t0, 0); + out1 = __msa_copy_s_d((v2i64)t0, 1); + out2 = __msa_copy_s_d((v2i64)t1, 0); + out3 = __msa_copy_s_d((v2i64)t1, 1); + SD4(out0, out1, out2, out3, out, 8); +} + +static void FTransformWHT_MSA(const int16_t* in, int16_t* out) { + v8i16 in0 = { 0 }; + v8i16 in1 = { 0 }; + v8i16 tmp0, tmp1, tmp2, tmp3; + v8i16 out0, out1; + const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; + const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; + const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; + const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; + + in0 = __msa_insert_h(in0, 0, in[ 0]); + in0 = __msa_insert_h(in0, 1, in[ 64]); + in0 = __msa_insert_h(in0, 2, in[128]); + in0 = __msa_insert_h(in0, 3, in[192]); + in0 = __msa_insert_h(in0, 4, in[ 16]); + in0 = __msa_insert_h(in0, 5, in[ 80]); + in0 = __msa_insert_h(in0, 6, in[144]); + in0 = __msa_insert_h(in0, 7, in[208]); + in1 = __msa_insert_h(in1, 0, in[ 48]); + in1 = __msa_insert_h(in1, 1, in[112]); + in1 = __msa_insert_h(in1, 2, in[176]); + in1 = __msa_insert_h(in1, 3, in[240]); + in1 = __msa_insert_h(in1, 4, in[ 32]); + in1 = __msa_insert_h(in1, 5, in[ 96]); + in1 = __msa_insert_h(in1, 6, in[160]); + in1 = __msa_insert_h(in1, 7, in[224]); + ADDSUB2(in0, in1, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + ADDSUB2(tmp2, tmp3, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); + ADDSUB2(in0, in1, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + ADDSUB2(tmp2, tmp3, out0, out1); + SRAI_H2_SH(out0, out1, 1); + ST_SH2(out0, out1, out, 8); +} + +static int TTransform_MSA(const uint8_t* in, const uint16_t* w) { + int sum; + uint32_t in0_m, in1_m, in2_m, in3_m; + v16i8 src0 = { 0 }; + v8i16 in0, in1, tmp0, tmp1, tmp2, tmp3; + v4i32 dst0, dst1; + const v16i8 zero = { 0 }; + const v8i16 mask0 = { 0, 1, 2, 3, 8, 9, 10, 11 }; + const v8i16 mask1 = { 4, 5, 6, 7, 12, 13, 14, 15 }; + const v8i16 mask2 = { 0, 4, 8, 12, 1, 5, 9, 13 }; + const v8i16 mask3 = { 3, 7, 11, 15, 2, 6, 10, 14 }; + + LW4(in, BPS, in0_m, in1_m, in2_m, in3_m); + INSERT_W4_SB(in0_m, in1_m, in2_m, in3_m, src0); + ILVRL_B2_SH(zero, src0, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); + ADDSUB2(in0, in1, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + ADDSUB2(tmp2, tmp3, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask2, mask3, in0, in1); + ADDSUB2(in0, in1, tmp0, tmp1); + VSHF_H2_SH(tmp0, tmp1, tmp0, tmp1, mask0, mask1, tmp2, tmp3); + ADDSUB2(tmp2, tmp3, tmp0, tmp1); + tmp0 = __msa_add_a_h(tmp0, (v8i16)zero); + tmp1 = __msa_add_a_h(tmp1, (v8i16)zero); + LD_SH2(w, 8, tmp2, tmp3); + DOTP_SH2_SW(tmp0, tmp1, tmp2, tmp3, dst0, dst1); + dst0 = dst0 + dst1; + sum = HADD_SW_S32(dst0); + return sum; +} + +static int Disto4x4_MSA(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + const int sum1 = TTransform_MSA(a, w); + const int sum2 = TTransform_MSA(b, w); + return abs(sum2 - sum1) >> 5; +} + +static int Disto16x16_MSA(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_MSA(a + x + y, b + x + y, w); + } + } + return D; +} + +//------------------------------------------------------------------------------ +// Histogram + +static void CollectHistogram_MSA(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + for (j = start_block; j < end_block; ++j) { + int16_t out[16]; + VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + { + int k; + v8i16 coeff0, coeff1; + const v8i16 zero = { 0 }; + const v8i16 max_coeff_thr = __msa_ldi_h(MAX_COEFF_THRESH); + LD_SH2(&out[0], 8, coeff0, coeff1); + coeff0 = __msa_add_a_h(coeff0, zero); + coeff1 = __msa_add_a_h(coeff1, zero); + SRAI_H2_SH(coeff0, coeff1, 3); + coeff0 = __msa_min_s_h(coeff0, max_coeff_thr); + coeff1 = __msa_min_s_h(coeff1, max_coeff_thr); + ST_SH2(coeff0, coeff1, &out[0], 8); + for (k = 0; k < 16; ++k) { + ++distribution[out[k]]; + } + } + } + VP8SetHistogramData(distribution, histo); +} + +//------------------------------------------------------------------------------ +// Intra predictions + +// luma 4x4 prediction + +#define DST(x, y) dst[(x) + (y) * BPS] +#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) +#define AVG2(a, b) (((a) + (b) + 1) >> 1) + +static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical + const v16u8 A1 = { 0 }; + const uint64_t val_m = LD(top - 1); + const v16u8 A = (v16u8)__msa_insert_d((v2i64)A1, 0, val_m); + const v16u8 B = SLDI_UB(A, A, 1); + const v16u8 C = SLDI_UB(A, A, 2); + const v16u8 AC = __msa_ave_u_b(A, C); + const v16u8 B2 = __msa_ave_u_b(B, B); + const v16u8 R = __msa_aver_u_b(AC, B2); + const uint32_t out = __msa_copy_s_w((v4i32)R, 0); + SW4(out, out, out, out, dst, BPS); +} + +static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); + WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); + WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); + WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); +} + +static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) { + uint32_t dc = 4; + int i; + for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; + dc >>= 3; + dc = dc | (dc << 8) | (dc << 16) | (dc << 24); + SW4(dc, dc, dc, dc, dst, BPS); +} + +static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { + const v16u8 A2 = { 0 }; + const uint64_t val_m = LD(top - 5); + const v16u8 A1 = (v16u8)__msa_insert_d((v2i64)A2, 0, val_m); + const v16u8 A = (v16u8)__msa_insert_b((v16i8)A1, 8, top[3]); + const v16u8 B = SLDI_UB(A, A, 1); + const v16u8 C = SLDI_UB(A, A, 2); + const v16u8 AC = __msa_ave_u_b(A, C); + const v16u8 B2 = __msa_ave_u_b(B, B); + const v16u8 R0 = __msa_aver_u_b(AC, B2); + const v16u8 R1 = SLDI_UB(R0, R0, 1); + const v16u8 R2 = SLDI_UB(R1, R1, 1); + const v16u8 R3 = SLDI_UB(R2, R2, 1); + const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0); + const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0); + const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0); + const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0); + SW4(val3, val2, val1, val0, dst, BPS); +} + +static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { + const v16u8 A1 = { 0 }; + const uint64_t val_m = LD(top); + const v16u8 A = (v16u8)__msa_insert_d((v2i64)A1, 0, val_m); + const v16u8 B = SLDI_UB(A, A, 1); + const v16u8 C1 = SLDI_UB(A, A, 2); + const v16u8 C = (v16u8)__msa_insert_b((v16i8)C1, 6, top[7]); + const v16u8 AC = __msa_ave_u_b(A, C); + const v16u8 B2 = __msa_ave_u_b(B, B); + const v16u8 R0 = __msa_aver_u_b(AC, B2); + const v16u8 R1 = SLDI_UB(R0, R0, 1); + const v16u8 R2 = SLDI_UB(R1, R1, 1); + const v16u8 R3 = SLDI_UB(R2, R2, 1); + const uint32_t val0 = __msa_copy_s_w((v4i32)R0, 0); + const uint32_t val1 = __msa_copy_s_w((v4i32)R1, 0); + const uint32_t val2 = __msa_copy_s_w((v4i32)R2, 0); + const uint32_t val3 = __msa_copy_s_w((v4i32)R3, 0); + SW4(val0, val1, val2, val3, dst, BPS); +} + +static WEBP_INLINE void VR4(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + DST(0, 0) = DST(1, 2) = AVG2(X, A); + DST(1, 0) = DST(2, 2) = AVG2(A, B); + DST(2, 0) = DST(3, 2) = AVG2(B, C); + DST(3, 0) = AVG2(C, D); + DST(0, 3) = AVG3(K, J, I); + DST(0, 2) = AVG3(J, I, X); + DST(0, 1) = DST(1, 3) = AVG3(I, X, A); + DST(1, 1) = DST(2, 3) = AVG3(X, A, B); + DST(2, 1) = DST(3, 3) = AVG3(A, B, C); + DST(3, 1) = AVG3(B, C, D); +} + +static WEBP_INLINE void VL4(uint8_t* dst, const uint8_t* top) { + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + const int D = top[3]; + const int E = top[4]; + const int F = top[5]; + const int G = top[6]; + const int H = top[7]; + DST(0, 0) = AVG2(A, B); + DST(1, 0) = DST(0, 2) = AVG2(B, C); + DST(2, 0) = DST(1, 2) = AVG2(C, D); + DST(3, 0) = DST(2, 2) = AVG2(D, E); + DST(0, 1) = AVG3(A, B, C); + DST(1, 1) = DST(0, 3) = AVG3(B, C, D); + DST(2, 1) = DST(1, 3) = AVG3(C, D, E); + DST(3, 1) = DST(2, 3) = AVG3(D, E, F); + DST(3, 2) = AVG3(E, F, G); + DST(3, 3) = AVG3(F, G, H); +} + +static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) { + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = + DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} + +static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) { + const v16i8 zero = { 0 }; + const v8i16 TL = (v8i16)__msa_fill_h(top[-1]); + const v8i16 L0 = (v8i16)__msa_fill_h(top[-2]); + const v8i16 L1 = (v8i16)__msa_fill_h(top[-3]); + const v8i16 L2 = (v8i16)__msa_fill_h(top[-4]); + const v8i16 L3 = (v8i16)__msa_fill_h(top[-5]); + const v16u8 T1 = LD_UB(top); + const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1); + const v8i16 d = T - TL; + v8i16 r0, r1, r2, r3; + ADD4(d, L0, d, L1, d, L2, d, L3, r0, r1, r2, r3); + CLIP_SH4_0_255(r0, r1, r2, r3); + PCKEV_ST4x4_UB(r0, r1, r2, r3, dst, BPS); +} + +#undef DST +#undef AVG3 +#undef AVG2 + +static void Intra4Preds_MSA(uint8_t* dst, const uint8_t* top) { + DC4(I4DC4 + dst, top); + TM4(I4TM4 + dst, top); + VE4(I4VE4 + dst, top); + HE4(I4HE4 + dst, top); + RD4(I4RD4 + dst, top); + VR4(I4VR4 + dst, top); + LD4(I4LD4 + dst, top); + VL4(I4VL4 + dst, top); + HD4(I4HD4 + dst, top); + HU4(I4HU4 + dst, top); +} + +// luma 16x16 prediction + +#define STORE16x16(out, dst) do { \ + ST_UB8(out, out, out, out, out, out, out, out, dst + 0 * BPS, BPS); \ + ST_UB8(out, out, out, out, out, out, out, out, dst + 8 * BPS, BPS); \ +} while (0) + +static WEBP_INLINE void VerticalPred16x16(uint8_t* dst, const uint8_t* top) { + if (top != NULL) { + const v16u8 out = LD_UB(top); + STORE16x16(out, dst); + } else { + const v16u8 out = (v16u8)__msa_fill_b(0x7f); + STORE16x16(out, dst); + } +} + +static WEBP_INLINE void HorizontalPred16x16(uint8_t* dst, + const uint8_t* left) { + if (left != NULL) { + int j; + for (j = 0; j < 16; j += 4) { + const v16u8 L0 = (v16u8)__msa_fill_b(left[0]); + const v16u8 L1 = (v16u8)__msa_fill_b(left[1]); + const v16u8 L2 = (v16u8)__msa_fill_b(left[2]); + const v16u8 L3 = (v16u8)__msa_fill_b(left[3]); + ST_UB4(L0, L1, L2, L3, dst, BPS); + dst += 4 * BPS; + left += 4; + } + } else { + const v16u8 out = (v16u8)__msa_fill_b(0x81); + STORE16x16(out, dst); + } +} + +static WEBP_INLINE void TrueMotion16x16(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + if (left != NULL) { + if (top != NULL) { + int j; + v8i16 d1, d2; + const v16i8 zero = { 0 }; + const v8i16 TL = (v8i16)__msa_fill_h(left[-1]); + const v16u8 T = LD_UB(top); + ILVRL_B2_SH(zero, T, d1, d2); + SUB2(d1, TL, d2, TL, d1, d2); + for (j = 0; j < 16; j += 4) { + v16i8 t0, t1, t2, t3; + v8i16 r0, r1, r2, r3, r4, r5, r6, r7; + const v8i16 L0 = (v8i16)__msa_fill_h(left[j + 0]); + const v8i16 L1 = (v8i16)__msa_fill_h(left[j + 1]); + const v8i16 L2 = (v8i16)__msa_fill_h(left[j + 2]); + const v8i16 L3 = (v8i16)__msa_fill_h(left[j + 3]); + ADD4(d1, L0, d1, L1, d1, L2, d1, L3, r0, r1, r2, r3); + ADD4(d2, L0, d2, L1, d2, L2, d2, L3, r4, r5, r6, r7); + CLIP_SH4_0_255(r0, r1, r2, r3); + CLIP_SH4_0_255(r4, r5, r6, r7); + PCKEV_B4_SB(r4, r0, r5, r1, r6, r2, r7, r3, t0, t1, t2, t3); + ST_SB4(t0, t1, t2, t3, dst, BPS); + dst += 4 * BPS; + } + } else { + HorizontalPred16x16(dst, left); + } + } else { + if (top != NULL) { + VerticalPred16x16(dst, top); + } else { + const v16u8 out = (v16u8)__msa_fill_b(0x81); + STORE16x16(out, dst); + } + } +} + +static WEBP_INLINE void DCMode16x16(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + int DC; + v16u8 out; + if (top != NULL && left != NULL) { + const v16u8 rtop = LD_UB(top); + const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); + const v16u8 rleft = LD_UB(left); + const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft); + const v8u16 dctemp = dctop + dcleft; + DC = HADD_UH_U32(dctemp); + DC = (DC + 16) >> 5; + } else if (left != NULL) { // left but no top + const v16u8 rleft = LD_UB(left); + const v8u16 dcleft = __msa_hadd_u_h(rleft, rleft); + DC = HADD_UH_U32(dcleft); + DC = (DC + DC + 16) >> 5; + } else if (top != NULL) { // top but no left + const v16u8 rtop = LD_UB(top); + const v8u16 dctop = __msa_hadd_u_h(rtop, rtop); + DC = HADD_UH_U32(dctop); + DC = (DC + DC + 16) >> 5; + } else { // no top, no left, nothing. + DC = 0x80; + } + out = (v16u8)__msa_fill_b(DC); + STORE16x16(out, dst); +} + +static void Intra16Preds_MSA(uint8_t* dst, + const uint8_t* left, const uint8_t* top) { + DCMode16x16(I16DC16 + dst, left, top); + VerticalPred16x16(I16VE16 + dst, top); + HorizontalPred16x16(I16HE16 + dst, left); + TrueMotion16x16(I16TM16 + dst, left, top); +} + +// Chroma 8x8 prediction + +#define CALC_DC8(in, out) do { \ + const v8u16 temp0 = __msa_hadd_u_h(in, in); \ + const v4u32 temp1 = __msa_hadd_u_w(temp0, temp0); \ + const v2i64 temp2 = (v2i64)__msa_hadd_u_d(temp1, temp1); \ + const v2i64 temp3 = __msa_splati_d(temp2, 1); \ + const v2i64 temp4 = temp3 + temp2; \ + const v16i8 temp5 = (v16i8)__msa_srari_d(temp4, 4); \ + const v2i64 temp6 = (v2i64)__msa_splati_b(temp5, 0); \ + out = __msa_copy_s_d(temp6, 0); \ +} while (0) + +#define STORE8x8(out, dst) do { \ + SD4(out, out, out, out, dst + 0 * BPS, BPS); \ + SD4(out, out, out, out, dst + 4 * BPS, BPS); \ +} while (0) + +static WEBP_INLINE void VerticalPred8x8(uint8_t* dst, const uint8_t* top) { + if (top != NULL) { + const uint64_t out = LD(top); + STORE8x8(out, dst); + } else { + const uint64_t out = 0x7f7f7f7f7f7f7f7fULL; + STORE8x8(out, dst); + } +} + +static WEBP_INLINE void HorizontalPred8x8(uint8_t* dst, const uint8_t* left) { + if (left != NULL) { + int j; + for (j = 0; j < 8; j += 4) { + const v16u8 L0 = (v16u8)__msa_fill_b(left[0]); + const v16u8 L1 = (v16u8)__msa_fill_b(left[1]); + const v16u8 L2 = (v16u8)__msa_fill_b(left[2]); + const v16u8 L3 = (v16u8)__msa_fill_b(left[3]); + const uint64_t out0 = __msa_copy_s_d((v2i64)L0, 0); + const uint64_t out1 = __msa_copy_s_d((v2i64)L1, 0); + const uint64_t out2 = __msa_copy_s_d((v2i64)L2, 0); + const uint64_t out3 = __msa_copy_s_d((v2i64)L3, 0); + SD4(out0, out1, out2, out3, dst, BPS); + dst += 4 * BPS; + left += 4; + } + } else { + const uint64_t out = 0x8181818181818181ULL; + STORE8x8(out, dst); + } +} + +static WEBP_INLINE void TrueMotion8x8(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + if (left != NULL) { + if (top != NULL) { + int j; + const v8i16 TL = (v8i16)__msa_fill_h(left[-1]); + const v16u8 T1 = LD_UB(top); + const v16i8 zero = { 0 }; + const v8i16 T = (v8i16)__msa_ilvr_b(zero, (v16i8)T1); + const v8i16 d = T - TL; + for (j = 0; j < 8; j += 4) { + uint64_t out0, out1, out2, out3; + v16i8 t0, t1; + v8i16 r0 = (v8i16)__msa_fill_h(left[j + 0]); + v8i16 r1 = (v8i16)__msa_fill_h(left[j + 1]); + v8i16 r2 = (v8i16)__msa_fill_h(left[j + 2]); + v8i16 r3 = (v8i16)__msa_fill_h(left[j + 3]); + ADD4(d, r0, d, r1, d, r2, d, r3, r0, r1, r2, r3); + CLIP_SH4_0_255(r0, r1, r2, r3); + PCKEV_B2_SB(r1, r0, r3, r2, t0, t1); + out0 = __msa_copy_s_d((v2i64)t0, 0); + out1 = __msa_copy_s_d((v2i64)t0, 1); + out2 = __msa_copy_s_d((v2i64)t1, 0); + out3 = __msa_copy_s_d((v2i64)t1, 1); + SD4(out0, out1, out2, out3, dst, BPS); + dst += 4 * BPS; + } + } else { + HorizontalPred8x8(dst, left); + } + } else { + if (top != NULL) { + VerticalPred8x8(dst, top); + } else { + const uint64_t out = 0x8181818181818181ULL; + STORE8x8(out, dst); + } + } +} + +static WEBP_INLINE void DCMode8x8(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + uint64_t out; + v16u8 src = { 0 }; + if (top != NULL && left != NULL) { + const uint64_t left_m = LD(left); + const uint64_t top_m = LD(top); + INSERT_D2_UB(left_m, top_m, src); + CALC_DC8(src, out); + } else if (left != NULL) { // left but no top + const uint64_t left_m = LD(left); + INSERT_D2_UB(left_m, left_m, src); + CALC_DC8(src, out); + } else if (top != NULL) { // top but no left + const uint64_t top_m = LD(top); + INSERT_D2_UB(top_m, top_m, src); + CALC_DC8(src, out); + } else { // no top, no left, nothing. + src = (v16u8)__msa_fill_b(0x80); + out = __msa_copy_s_d((v2i64)src, 0); + } + STORE8x8(out, dst); +} + +static void IntraChromaPreds_MSA(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + // U block + DCMode8x8(C8DC8 + dst, left, top); + VerticalPred8x8(C8VE8 + dst, top); + HorizontalPred8x8(C8HE8 + dst, left); + TrueMotion8x8(C8TM8 + dst, left, top); + // V block + dst += 8; + if (top != NULL) top += 8; + if (left != NULL) left += 16; + DCMode8x8(C8DC8 + dst, left, top); + VerticalPred8x8(C8VE8 + dst, top); + HorizontalPred8x8(C8HE8 + dst, left); + TrueMotion8x8(C8TM8 + dst, left, top); +} + +//------------------------------------------------------------------------------ +// Metric + +#define PACK_DOTP_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \ + v16u8 tmp0, tmp1; \ + v8i16 tmp2, tmp3; \ + ILVRL_B2_UB(in0, in1, tmp0, tmp1); \ + HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ + DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \ + ILVRL_B2_UB(in2, in3, tmp0, tmp1); \ + HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ + DOTP_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \ +} while (0) + +#define PACK_DPADD_UB4_SW(in0, in1, in2, in3, out0, out1, out2, out3) do { \ + v16u8 tmp0, tmp1; \ + v8i16 tmp2, tmp3; \ + ILVRL_B2_UB(in0, in1, tmp0, tmp1); \ + HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ + DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out0, out1); \ + ILVRL_B2_UB(in2, in3, tmp0, tmp1); \ + HSUB_UB2_SH(tmp0, tmp1, tmp2, tmp3); \ + DPADD_SH2_SW(tmp2, tmp3, tmp2, tmp3, out2, out3); \ +} while (0) + +static int SSE16x16_MSA(const uint8_t* a, const uint8_t* b) { + uint32_t sum; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v4i32 out0, out1, out2, out3; + + LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); + LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); + a += 8 * BPS; + b += 8 * BPS; + LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); + LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + PACK_DPADD_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); + out0 += out1; + out2 += out3; + out0 += out2; + sum = HADD_SW_S32(out0); + return sum; +} + +static int SSE16x8_MSA(const uint8_t* a, const uint8_t* b) { + uint32_t sum; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v4i32 out0, out1, out2, out3; + + LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); + LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + PACK_DOTP_UB4_SW(src0, ref0, src1, ref1, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src2, ref2, src3, ref3, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src4, ref4, src5, ref5, out0, out1, out2, out3); + PACK_DPADD_UB4_SW(src6, ref6, src7, ref7, out0, out1, out2, out3); + out0 += out1; + out2 += out3; + out0 += out2; + sum = HADD_SW_S32(out0); + return sum; +} + +static int SSE8x8_MSA(const uint8_t* a, const uint8_t* b) { + uint32_t sum; + v16u8 src0, src1, src2, src3, src4, src5, src6, src7; + v16u8 ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7; + v16u8 t0, t1, t2, t3; + v4i32 out0, out1, out2, out3; + + LD_UB8(a, BPS, src0, src1, src2, src3, src4, src5, src6, src7); + LD_UB8(b, BPS, ref0, ref1, ref2, ref3, ref4, ref5, ref6, ref7); + ILVR_B4_UB(src0, src1, src2, src3, ref0, ref1, ref2, ref3, t0, t1, t2, t3); + PACK_DOTP_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3); + ILVR_B4_UB(src4, src5, src6, src7, ref4, ref5, ref6, ref7, t0, t1, t2, t3); + PACK_DPADD_UB4_SW(t0, t2, t1, t3, out0, out1, out2, out3); + out0 += out1; + out2 += out3; + out0 += out2; + sum = HADD_SW_S32(out0); + return sum; +} + +static int SSE4x4_MSA(const uint8_t* a, const uint8_t* b) { + uint32_t sum = 0; + uint32_t src0, src1, src2, src3, ref0, ref1, ref2, ref3; + v16u8 src = { 0 }, ref = { 0 }, tmp0, tmp1; + v8i16 diff0, diff1; + v4i32 out0, out1; + + LW4(a, BPS, src0, src1, src2, src3); + LW4(b, BPS, ref0, ref1, ref2, ref3); + INSERT_W4_UB(src0, src1, src2, src3, src); + INSERT_W4_UB(ref0, ref1, ref2, ref3, ref); + ILVRL_B2_UB(src, ref, tmp0, tmp1); + HSUB_UB2_SH(tmp0, tmp1, diff0, diff1); + DOTP_SH2_SW(diff0, diff1, diff0, diff1, out0, out1); + out0 += out1; + sum = HADD_SW_S32(out0); + return sum; +} + +//------------------------------------------------------------------------------ +// Quantization + +static int QuantizeBlock_MSA(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + int sum; + v8i16 in0, in1, sh0, sh1, out0, out1; + v8i16 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, sign0, sign1; + v4i32 s0, s1, s2, s3, b0, b1, b2, b3, t0, t1, t2, t3; + const v8i16 zero = { 0 }; + const v8i16 zigzag0 = { 0, 1, 4, 8, 5, 2, 3, 6 }; + const v8i16 zigzag1 = { 9, 12, 13, 10, 7, 11, 14, 15 }; + const v8i16 maxlevel = __msa_fill_h(MAX_LEVEL); + + LD_SH2(&in[0], 8, in0, in1); + LD_SH2(&mtx->sharpen_[0], 8, sh0, sh1); + tmp4 = __msa_add_a_h(in0, zero); + tmp5 = __msa_add_a_h(in1, zero); + ILVRL_H2_SH(sh0, tmp4, tmp0, tmp1); + ILVRL_H2_SH(sh1, tmp5, tmp2, tmp3); + HADD_SH4_SW(tmp0, tmp1, tmp2, tmp3, s0, s1, s2, s3); + sign0 = (in0 < zero); + sign1 = (in1 < zero); // sign + LD_SH2(&mtx->iq_[0], 8, tmp0, tmp1); // iq + ILVRL_H2_SW(zero, tmp0, t0, t1); + ILVRL_H2_SW(zero, tmp1, t2, t3); + LD_SW4(&mtx->bias_[0], 4, b0, b1, b2, b3); // bias + MUL4(t0, s0, t1, s1, t2, s2, t3, s3, t0, t1, t2, t3); + ADD4(b0, t0, b1, t1, b2, t2, b3, t3, b0, b1, b2, b3); + SRAI_W4_SW(b0, b1, b2, b3, 17); + PCKEV_H2_SH(b1, b0, b3, b2, tmp2, tmp3); + tmp0 = (tmp2 > maxlevel); + tmp1 = (tmp3 > maxlevel); + tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)maxlevel, (v16u8)tmp0); + tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)maxlevel, (v16u8)tmp1); + SUB2(zero, tmp2, zero, tmp3, tmp0, tmp1); + tmp2 = (v8i16)__msa_bmnz_v((v16u8)tmp2, (v16u8)tmp0, (v16u8)sign0); + tmp3 = (v8i16)__msa_bmnz_v((v16u8)tmp3, (v16u8)tmp1, (v16u8)sign1); + LD_SW4(&mtx->zthresh_[0], 4, t0, t1, t2, t3); // zthresh + t0 = (s0 > t0); + t1 = (s1 > t1); + t2 = (s2 > t2); + t3 = (s3 > t3); + PCKEV_H2_SH(t1, t0, t3, t2, tmp0, tmp1); + tmp4 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp2, (v16u8)tmp0); + tmp5 = (v8i16)__msa_bmnz_v((v16u8)zero, (v16u8)tmp3, (v16u8)tmp1); + LD_SH2(&mtx->q_[0], 8, tmp0, tmp1); + MUL2(tmp4, tmp0, tmp5, tmp1, in0, in1); + VSHF_H2_SH(tmp4, tmp5, tmp4, tmp5, zigzag0, zigzag1, out0, out1); + ST_SH2(in0, in1, &in[0], 8); + ST_SH2(out0, out1, &out[0], 8); + out0 = __msa_add_a_h(out0, out1); + sum = HADD_SH_S32(out0); + return (sum > 0); +} + +static int Quantize2Blocks_MSA(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + nz = VP8EncQuantizeBlock(in + 0 * 16, out + 0 * 16, mtx) << 0; + nz |= VP8EncQuantizeBlock(in + 1 * 16, out + 1 * 16, mtx) << 1; + return nz; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitMSA(void) { + VP8ITransform = ITransform_MSA; + VP8FTransform = FTransform_MSA; + VP8FTransformWHT = FTransformWHT_MSA; + + VP8TDisto4x4 = Disto4x4_MSA; + VP8TDisto16x16 = Disto16x16_MSA; + VP8CollectHistogram = CollectHistogram_MSA; + + VP8EncPredLuma4 = Intra4Preds_MSA; + VP8EncPredLuma16 = Intra16Preds_MSA; + VP8EncPredChroma8 = IntraChromaPreds_MSA; + + VP8SSE16x16 = SSE16x16_MSA; + VP8SSE16x8 = SSE16x8_MSA; + VP8SSE8x8 = SSE8x8_MSA; + VP8SSE4x4 = SSE4x4_MSA; + + VP8EncQuantizeBlock = QuantizeBlock_MSA; + VP8EncQuantize2Blocks = Quantize2Blocks_MSA; + VP8EncQuantizeBlockWHT = QuantizeBlock_MSA; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(VP8EncDspInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/enc_neon.c b/media/libwebp/src/dsp/enc_neon.c new file mode 100644 index 0000000000..3a04111c55 --- /dev/null +++ b/media/libwebp/src/dsp/enc_neon.c @@ -0,0 +1,943 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// ARM NEON version of speed-critical encoding functions. +// +// adapted from libvpx (https://www.webmproject.org/code/) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <assert.h> + +#include "src/dsp/neon.h" +#include "src/enc/vp8i_enc.h" + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +// Inverse transform. +// This code is pretty much the same as TransformOne in the dec_neon.c, except +// for subtraction to *ref. See the comments there for algorithmic explanations. + +static const int16_t kC1 = 20091; +static const int16_t kC2 = 17734; // half of kC2, actually. See comment above. + +// This code works but is *slower* than the inlined-asm version below +// (with gcc-4.6). So we disable it for now. Later, it'll be conditional to +// WEBP_USE_INTRINSICS define. +// With gcc-4.8, it's a little faster speed than inlined-assembly. +#if defined(WEBP_USE_INTRINSICS) + +// Treats 'v' as an uint8x8_t and zero extends to an int16x8_t. +static WEBP_INLINE int16x8_t ConvertU8ToS16_NEON(uint32x2_t v) { + return vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(v))); +} + +// Performs unsigned 8b saturation on 'dst01' and 'dst23' storing the result +// to the corresponding rows of 'dst'. +static WEBP_INLINE void SaturateAndStore4x4_NEON(uint8_t* const dst, + const int16x8_t dst01, + const int16x8_t dst23) { + // Unsigned saturate to 8b. + const uint8x8_t dst01_u8 = vqmovun_s16(dst01); + const uint8x8_t dst23_u8 = vqmovun_s16(dst23); + + // Store the results. + vst1_lane_u32((uint32_t*)(dst + 0 * BPS), vreinterpret_u32_u8(dst01_u8), 0); + vst1_lane_u32((uint32_t*)(dst + 1 * BPS), vreinterpret_u32_u8(dst01_u8), 1); + vst1_lane_u32((uint32_t*)(dst + 2 * BPS), vreinterpret_u32_u8(dst23_u8), 0); + vst1_lane_u32((uint32_t*)(dst + 3 * BPS), vreinterpret_u32_u8(dst23_u8), 1); +} + +static WEBP_INLINE void Add4x4_NEON(const int16x8_t row01, + const int16x8_t row23, + const uint8_t* const ref, + uint8_t* const dst) { + uint32x2_t dst01 = vdup_n_u32(0); + uint32x2_t dst23 = vdup_n_u32(0); + + // Load the source pixels. + dst01 = vld1_lane_u32((uint32_t*)(ref + 0 * BPS), dst01, 0); + dst23 = vld1_lane_u32((uint32_t*)(ref + 2 * BPS), dst23, 0); + dst01 = vld1_lane_u32((uint32_t*)(ref + 1 * BPS), dst01, 1); + dst23 = vld1_lane_u32((uint32_t*)(ref + 3 * BPS), dst23, 1); + + { + // Convert to 16b. + const int16x8_t dst01_s16 = ConvertU8ToS16_NEON(dst01); + const int16x8_t dst23_s16 = ConvertU8ToS16_NEON(dst23); + + // Descale with rounding. + const int16x8_t out01 = vrsraq_n_s16(dst01_s16, row01, 3); + const int16x8_t out23 = vrsraq_n_s16(dst23_s16, row23, 3); + // Add the inverse transform. + SaturateAndStore4x4_NEON(dst, out01, out23); + } +} + +static WEBP_INLINE void Transpose8x2_NEON(const int16x8_t in0, + const int16x8_t in1, + int16x8x2_t* const out) { + // a0 a1 a2 a3 | b0 b1 b2 b3 => a0 b0 c0 d0 | a1 b1 c1 d1 + // c0 c1 c2 c3 | d0 d1 d2 d3 a2 b2 c2 d2 | a3 b3 c3 d3 + const int16x8x2_t tmp0 = vzipq_s16(in0, in1); // a0 c0 a1 c1 a2 c2 ... + // b0 d0 b1 d1 b2 d2 ... + *out = vzipq_s16(tmp0.val[0], tmp0.val[1]); +} + +static WEBP_INLINE void TransformPass_NEON(int16x8x2_t* const rows) { + // {rows} = in0 | in4 + // in8 | in12 + // B1 = in4 | in12 + const int16x8_t B1 = + vcombine_s16(vget_high_s16(rows->val[0]), vget_high_s16(rows->val[1])); + // C0 = kC1 * in4 | kC1 * in12 + // C1 = kC2 * in4 | kC2 * in12 + const int16x8_t C0 = vsraq_n_s16(B1, vqdmulhq_n_s16(B1, kC1), 1); + const int16x8_t C1 = vqdmulhq_n_s16(B1, kC2); + const int16x4_t a = vqadd_s16(vget_low_s16(rows->val[0]), + vget_low_s16(rows->val[1])); // in0 + in8 + const int16x4_t b = vqsub_s16(vget_low_s16(rows->val[0]), + vget_low_s16(rows->val[1])); // in0 - in8 + // c = kC2 * in4 - kC1 * in12 + // d = kC1 * in4 + kC2 * in12 + const int16x4_t c = vqsub_s16(vget_low_s16(C1), vget_high_s16(C0)); + const int16x4_t d = vqadd_s16(vget_low_s16(C0), vget_high_s16(C1)); + const int16x8_t D0 = vcombine_s16(a, b); // D0 = a | b + const int16x8_t D1 = vcombine_s16(d, c); // D1 = d | c + const int16x8_t E0 = vqaddq_s16(D0, D1); // a+d | b+c + const int16x8_t E_tmp = vqsubq_s16(D0, D1); // a-d | b-c + const int16x8_t E1 = vcombine_s16(vget_high_s16(E_tmp), vget_low_s16(E_tmp)); + Transpose8x2_NEON(E0, E1, rows); +} + +static void ITransformOne_NEON(const uint8_t* ref, + const int16_t* in, uint8_t* dst) { + int16x8x2_t rows; + INIT_VECTOR2(rows, vld1q_s16(in + 0), vld1q_s16(in + 8)); + TransformPass_NEON(&rows); + TransformPass_NEON(&rows); + Add4x4_NEON(rows.val[0], rows.val[1], ref, dst); +} + +#else + +static void ITransformOne_NEON(const uint8_t* ref, + const int16_t* in, uint8_t* dst) { + const int kBPS = BPS; + const int16_t kC1C2[] = { kC1, kC2, 0, 0 }; + + __asm__ volatile ( + "vld1.16 {q1, q2}, [%[in]] \n" + "vld1.16 {d0}, [%[kC1C2]] \n" + + // d2: in[0] + // d3: in[8] + // d4: in[4] + // d5: in[12] + "vswp d3, d4 \n" + + // q8 = {in[4], in[12]} * kC1 * 2 >> 16 + // q9 = {in[4], in[12]} * kC2 >> 16 + "vqdmulh.s16 q8, q2, d0[0] \n" + "vqdmulh.s16 q9, q2, d0[1] \n" + + // d22 = a = in[0] + in[8] + // d23 = b = in[0] - in[8] + "vqadd.s16 d22, d2, d3 \n" + "vqsub.s16 d23, d2, d3 \n" + + // q8 = in[4]/[12] * kC1 >> 16 + "vshr.s16 q8, q8, #1 \n" + + // Add {in[4], in[12]} back after the multiplication. + "vqadd.s16 q8, q2, q8 \n" + + // d20 = c = in[4]*kC2 - in[12]*kC1 + // d21 = d = in[4]*kC1 + in[12]*kC2 + "vqsub.s16 d20, d18, d17 \n" + "vqadd.s16 d21, d19, d16 \n" + + // d2 = tmp[0] = a + d + // d3 = tmp[1] = b + c + // d4 = tmp[2] = b - c + // d5 = tmp[3] = a - d + "vqadd.s16 d2, d22, d21 \n" + "vqadd.s16 d3, d23, d20 \n" + "vqsub.s16 d4, d23, d20 \n" + "vqsub.s16 d5, d22, d21 \n" + + "vzip.16 q1, q2 \n" + "vzip.16 q1, q2 \n" + + "vswp d3, d4 \n" + + // q8 = {tmp[4], tmp[12]} * kC1 * 2 >> 16 + // q9 = {tmp[4], tmp[12]} * kC2 >> 16 + "vqdmulh.s16 q8, q2, d0[0] \n" + "vqdmulh.s16 q9, q2, d0[1] \n" + + // d22 = a = tmp[0] + tmp[8] + // d23 = b = tmp[0] - tmp[8] + "vqadd.s16 d22, d2, d3 \n" + "vqsub.s16 d23, d2, d3 \n" + + "vshr.s16 q8, q8, #1 \n" + "vqadd.s16 q8, q2, q8 \n" + + // d20 = c = in[4]*kC2 - in[12]*kC1 + // d21 = d = in[4]*kC1 + in[12]*kC2 + "vqsub.s16 d20, d18, d17 \n" + "vqadd.s16 d21, d19, d16 \n" + + // d2 = tmp[0] = a + d + // d3 = tmp[1] = b + c + // d4 = tmp[2] = b - c + // d5 = tmp[3] = a - d + "vqadd.s16 d2, d22, d21 \n" + "vqadd.s16 d3, d23, d20 \n" + "vqsub.s16 d4, d23, d20 \n" + "vqsub.s16 d5, d22, d21 \n" + + "vld1.32 d6[0], [%[ref]], %[kBPS] \n" + "vld1.32 d6[1], [%[ref]], %[kBPS] \n" + "vld1.32 d7[0], [%[ref]], %[kBPS] \n" + "vld1.32 d7[1], [%[ref]], %[kBPS] \n" + + "sub %[ref], %[ref], %[kBPS], lsl #2 \n" + + // (val) + 4 >> 3 + "vrshr.s16 d2, d2, #3 \n" + "vrshr.s16 d3, d3, #3 \n" + "vrshr.s16 d4, d4, #3 \n" + "vrshr.s16 d5, d5, #3 \n" + + "vzip.16 q1, q2 \n" + "vzip.16 q1, q2 \n" + + // Must accumulate before saturating + "vmovl.u8 q8, d6 \n" + "vmovl.u8 q9, d7 \n" + + "vqadd.s16 q1, q1, q8 \n" + "vqadd.s16 q2, q2, q9 \n" + + "vqmovun.s16 d0, q1 \n" + "vqmovun.s16 d1, q2 \n" + + "vst1.32 d0[0], [%[dst]], %[kBPS] \n" + "vst1.32 d0[1], [%[dst]], %[kBPS] \n" + "vst1.32 d1[0], [%[dst]], %[kBPS] \n" + "vst1.32 d1[1], [%[dst]] \n" + + : [in] "+r"(in), [dst] "+r"(dst) // modified registers + : [kBPS] "r"(kBPS), [kC1C2] "r"(kC1C2), [ref] "r"(ref) // constants + : "memory", "q0", "q1", "q2", "q8", "q9", "q10", "q11" // clobbered + ); +} + +#endif // WEBP_USE_INTRINSICS + +static void ITransform_NEON(const uint8_t* ref, + const int16_t* in, uint8_t* dst, int do_two) { + ITransformOne_NEON(ref, in, dst); + if (do_two) { + ITransformOne_NEON(ref + 4, in + 16, dst + 4); + } +} + +// Load all 4x4 pixels into a single uint8x16_t variable. +static uint8x16_t Load4x4_NEON(const uint8_t* src) { + uint32x4_t out = vdupq_n_u32(0); + out = vld1q_lane_u32((const uint32_t*)(src + 0 * BPS), out, 0); + out = vld1q_lane_u32((const uint32_t*)(src + 1 * BPS), out, 1); + out = vld1q_lane_u32((const uint32_t*)(src + 2 * BPS), out, 2); + out = vld1q_lane_u32((const uint32_t*)(src + 3 * BPS), out, 3); + return vreinterpretq_u8_u32(out); +} + +// Forward transform. + +#if defined(WEBP_USE_INTRINSICS) + +static WEBP_INLINE void Transpose4x4_S16_NEON(const int16x4_t A, + const int16x4_t B, + const int16x4_t C, + const int16x4_t D, + int16x8_t* const out01, + int16x8_t* const out32) { + const int16x4x2_t AB = vtrn_s16(A, B); + const int16x4x2_t CD = vtrn_s16(C, D); + const int32x2x2_t tmp02 = vtrn_s32(vreinterpret_s32_s16(AB.val[0]), + vreinterpret_s32_s16(CD.val[0])); + const int32x2x2_t tmp13 = vtrn_s32(vreinterpret_s32_s16(AB.val[1]), + vreinterpret_s32_s16(CD.val[1])); + *out01 = vreinterpretq_s16_s64( + vcombine_s64(vreinterpret_s64_s32(tmp02.val[0]), + vreinterpret_s64_s32(tmp13.val[0]))); + *out32 = vreinterpretq_s16_s64( + vcombine_s64(vreinterpret_s64_s32(tmp13.val[1]), + vreinterpret_s64_s32(tmp02.val[1]))); +} + +static WEBP_INLINE int16x8_t DiffU8ToS16_NEON(const uint8x8_t a, + const uint8x8_t b) { + return vreinterpretq_s16_u16(vsubl_u8(a, b)); +} + +static void FTransform_NEON(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + int16x8_t d0d1, d3d2; // working 4x4 int16 variables + { + const uint8x16_t S0 = Load4x4_NEON(src); + const uint8x16_t R0 = Load4x4_NEON(ref); + const int16x8_t D0D1 = DiffU8ToS16_NEON(vget_low_u8(S0), vget_low_u8(R0)); + const int16x8_t D2D3 = DiffU8ToS16_NEON(vget_high_u8(S0), vget_high_u8(R0)); + const int16x4_t D0 = vget_low_s16(D0D1); + const int16x4_t D1 = vget_high_s16(D0D1); + const int16x4_t D2 = vget_low_s16(D2D3); + const int16x4_t D3 = vget_high_s16(D2D3); + Transpose4x4_S16_NEON(D0, D1, D2, D3, &d0d1, &d3d2); + } + { // 1rst pass + const int32x4_t kCst937 = vdupq_n_s32(937); + const int32x4_t kCst1812 = vdupq_n_s32(1812); + const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) + const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) + const int16x8_t a0a1_2 = vshlq_n_s16(a0a1, 3); + const int16x4_t tmp0 = vadd_s16(vget_low_s16(a0a1_2), + vget_high_s16(a0a1_2)); + const int16x4_t tmp2 = vsub_s16(vget_low_s16(a0a1_2), + vget_high_s16(a0a1_2)); + const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); + const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); + const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); + const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); + const int16x4_t tmp1 = vshrn_n_s32(vaddq_s32(a2_p_a3, kCst1812), 9); + const int16x4_t tmp3 = vshrn_n_s32(vaddq_s32(a3_m_a2, kCst937), 9); + Transpose4x4_S16_NEON(tmp0, tmp1, tmp2, tmp3, &d0d1, &d3d2); + } + { // 2nd pass + // the (1<<16) addition is for the replacement: a3!=0 <-> 1-(a3==0) + const int32x4_t kCst12000 = vdupq_n_s32(12000 + (1 << 16)); + const int32x4_t kCst51000 = vdupq_n_s32(51000); + const int16x8_t a0a1 = vaddq_s16(d0d1, d3d2); // d0+d3 | d1+d2 (=a0|a1) + const int16x8_t a3a2 = vsubq_s16(d0d1, d3d2); // d0-d3 | d1-d2 (=a3|a2) + const int16x4_t a0_k7 = vadd_s16(vget_low_s16(a0a1), vdup_n_s16(7)); + const int16x4_t out0 = vshr_n_s16(vadd_s16(a0_k7, vget_high_s16(a0a1)), 4); + const int16x4_t out2 = vshr_n_s16(vsub_s16(a0_k7, vget_high_s16(a0a1)), 4); + const int32x4_t a3_2217 = vmull_n_s16(vget_low_s16(a3a2), 2217); + const int32x4_t a2_2217 = vmull_n_s16(vget_high_s16(a3a2), 2217); + const int32x4_t a2_p_a3 = vmlal_n_s16(a2_2217, vget_low_s16(a3a2), 5352); + const int32x4_t a3_m_a2 = vmlsl_n_s16(a3_2217, vget_high_s16(a3a2), 5352); + const int16x4_t tmp1 = vaddhn_s32(a2_p_a3, kCst12000); + const int16x4_t out3 = vaddhn_s32(a3_m_a2, kCst51000); + const int16x4_t a3_eq_0 = + vreinterpret_s16_u16(vceq_s16(vget_low_s16(a3a2), vdup_n_s16(0))); + const int16x4_t out1 = vadd_s16(tmp1, a3_eq_0); + vst1_s16(out + 0, out0); + vst1_s16(out + 4, out1); + vst1_s16(out + 8, out2); + vst1_s16(out + 12, out3); + } +} + +#else + +// adapted from vp8/encoder/arm/neon/shortfdct_neon.asm +static const int16_t kCoeff16[] = { + 5352, 5352, 5352, 5352, 2217, 2217, 2217, 2217 +}; +static const int32_t kCoeff32[] = { + 1812, 1812, 1812, 1812, + 937, 937, 937, 937, + 12000, 12000, 12000, 12000, + 51000, 51000, 51000, 51000 +}; + +static void FTransform_NEON(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + const int kBPS = BPS; + const uint8_t* src_ptr = src; + const uint8_t* ref_ptr = ref; + const int16_t* coeff16 = kCoeff16; + const int32_t* coeff32 = kCoeff32; + + __asm__ volatile ( + // load src into q4, q5 in high half + "vld1.8 {d8}, [%[src_ptr]], %[kBPS] \n" + "vld1.8 {d10}, [%[src_ptr]], %[kBPS] \n" + "vld1.8 {d9}, [%[src_ptr]], %[kBPS] \n" + "vld1.8 {d11}, [%[src_ptr]] \n" + + // load ref into q6, q7 in high half + "vld1.8 {d12}, [%[ref_ptr]], %[kBPS] \n" + "vld1.8 {d14}, [%[ref_ptr]], %[kBPS] \n" + "vld1.8 {d13}, [%[ref_ptr]], %[kBPS] \n" + "vld1.8 {d15}, [%[ref_ptr]] \n" + + // Pack the high values in to q4 and q6 + "vtrn.32 q4, q5 \n" + "vtrn.32 q6, q7 \n" + + // d[0-3] = src - ref + "vsubl.u8 q0, d8, d12 \n" + "vsubl.u8 q1, d9, d13 \n" + + // load coeff16 into q8(d16=5352, d17=2217) + "vld1.16 {q8}, [%[coeff16]] \n" + + // load coeff32 high half into q9 = 1812, q10 = 937 + "vld1.32 {q9, q10}, [%[coeff32]]! \n" + + // load coeff32 low half into q11=12000, q12=51000 + "vld1.32 {q11,q12}, [%[coeff32]] \n" + + // part 1 + // Transpose. Register dN is the same as dN in C + "vtrn.32 d0, d2 \n" + "vtrn.32 d1, d3 \n" + "vtrn.16 d0, d1 \n" + "vtrn.16 d2, d3 \n" + + "vadd.s16 d4, d0, d3 \n" // a0 = d0 + d3 + "vadd.s16 d5, d1, d2 \n" // a1 = d1 + d2 + "vsub.s16 d6, d1, d2 \n" // a2 = d1 - d2 + "vsub.s16 d7, d0, d3 \n" // a3 = d0 - d3 + + "vadd.s16 d0, d4, d5 \n" // a0 + a1 + "vshl.s16 d0, d0, #3 \n" // temp[0+i*4] = (a0+a1) << 3 + "vsub.s16 d2, d4, d5 \n" // a0 - a1 + "vshl.s16 d2, d2, #3 \n" // (temp[2+i*4] = (a0-a1) << 3 + + "vmlal.s16 q9, d7, d16 \n" // a3*5352 + 1812 + "vmlal.s16 q10, d7, d17 \n" // a3*2217 + 937 + "vmlal.s16 q9, d6, d17 \n" // a2*2217 + a3*5352 + 1812 + "vmlsl.s16 q10, d6, d16 \n" // a3*2217 + 937 - a2*5352 + + // temp[1+i*4] = (d2*2217 + d3*5352 + 1812) >> 9 + // temp[3+i*4] = (d3*2217 + 937 - d2*5352) >> 9 + "vshrn.s32 d1, q9, #9 \n" + "vshrn.s32 d3, q10, #9 \n" + + // part 2 + // transpose d0=ip[0], d1=ip[4], d2=ip[8], d3=ip[12] + "vtrn.32 d0, d2 \n" + "vtrn.32 d1, d3 \n" + "vtrn.16 d0, d1 \n" + "vtrn.16 d2, d3 \n" + + "vmov.s16 d26, #7 \n" + + "vadd.s16 d4, d0, d3 \n" // a1 = ip[0] + ip[12] + "vadd.s16 d5, d1, d2 \n" // b1 = ip[4] + ip[8] + "vsub.s16 d6, d1, d2 \n" // c1 = ip[4] - ip[8] + "vadd.s16 d4, d4, d26 \n" // a1 + 7 + "vsub.s16 d7, d0, d3 \n" // d1 = ip[0] - ip[12] + + "vadd.s16 d0, d4, d5 \n" // op[0] = a1 + b1 + 7 + "vsub.s16 d2, d4, d5 \n" // op[8] = a1 - b1 + 7 + + "vmlal.s16 q11, d7, d16 \n" // d1*5352 + 12000 + "vmlal.s16 q12, d7, d17 \n" // d1*2217 + 51000 + + "vceq.s16 d4, d7, #0 \n" + + "vshr.s16 d0, d0, #4 \n" + "vshr.s16 d2, d2, #4 \n" + + "vmlal.s16 q11, d6, d17 \n" // c1*2217 + d1*5352 + 12000 + "vmlsl.s16 q12, d6, d16 \n" // d1*2217 - c1*5352 + 51000 + + "vmvn d4, d4 \n" // !(d1 == 0) + // op[4] = (c1*2217 + d1*5352 + 12000)>>16 + "vshrn.s32 d1, q11, #16 \n" + // op[4] += (d1!=0) + "vsub.s16 d1, d1, d4 \n" + // op[12]= (d1*2217 - c1*5352 + 51000)>>16 + "vshrn.s32 d3, q12, #16 \n" + + // set result to out array + "vst1.16 {q0, q1}, [%[out]] \n" + : [src_ptr] "+r"(src_ptr), [ref_ptr] "+r"(ref_ptr), + [coeff32] "+r"(coeff32) // modified registers + : [kBPS] "r"(kBPS), [coeff16] "r"(coeff16), + [out] "r"(out) // constants + : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", + "q10", "q11", "q12", "q13" // clobbered + ); +} + +#endif + +#define LOAD_LANE_16b(VALUE, LANE) do { \ + (VALUE) = vld1_lane_s16(src, (VALUE), (LANE)); \ + src += stride; \ +} while (0) + +static void FTransformWHT_NEON(const int16_t* src, int16_t* out) { + const int stride = 16; + const int16x4_t zero = vdup_n_s16(0); + int32x4x4_t tmp0; + int16x4x4_t in; + INIT_VECTOR4(in, zero, zero, zero, zero); + LOAD_LANE_16b(in.val[0], 0); + LOAD_LANE_16b(in.val[1], 0); + LOAD_LANE_16b(in.val[2], 0); + LOAD_LANE_16b(in.val[3], 0); + LOAD_LANE_16b(in.val[0], 1); + LOAD_LANE_16b(in.val[1], 1); + LOAD_LANE_16b(in.val[2], 1); + LOAD_LANE_16b(in.val[3], 1); + LOAD_LANE_16b(in.val[0], 2); + LOAD_LANE_16b(in.val[1], 2); + LOAD_LANE_16b(in.val[2], 2); + LOAD_LANE_16b(in.val[3], 2); + LOAD_LANE_16b(in.val[0], 3); + LOAD_LANE_16b(in.val[1], 3); + LOAD_LANE_16b(in.val[2], 3); + LOAD_LANE_16b(in.val[3], 3); + + { + // a0 = in[0 * 16] + in[2 * 16] + // a1 = in[1 * 16] + in[3 * 16] + // a2 = in[1 * 16] - in[3 * 16] + // a3 = in[0 * 16] - in[2 * 16] + const int32x4_t a0 = vaddl_s16(in.val[0], in.val[2]); + const int32x4_t a1 = vaddl_s16(in.val[1], in.val[3]); + const int32x4_t a2 = vsubl_s16(in.val[1], in.val[3]); + const int32x4_t a3 = vsubl_s16(in.val[0], in.val[2]); + tmp0.val[0] = vaddq_s32(a0, a1); + tmp0.val[1] = vaddq_s32(a3, a2); + tmp0.val[2] = vsubq_s32(a3, a2); + tmp0.val[3] = vsubq_s32(a0, a1); + } + { + const int32x4x4_t tmp1 = Transpose4x4_NEON(tmp0); + // a0 = tmp[0 + i] + tmp[ 8 + i] + // a1 = tmp[4 + i] + tmp[12 + i] + // a2 = tmp[4 + i] - tmp[12 + i] + // a3 = tmp[0 + i] - tmp[ 8 + i] + const int32x4_t a0 = vaddq_s32(tmp1.val[0], tmp1.val[2]); + const int32x4_t a1 = vaddq_s32(tmp1.val[1], tmp1.val[3]); + const int32x4_t a2 = vsubq_s32(tmp1.val[1], tmp1.val[3]); + const int32x4_t a3 = vsubq_s32(tmp1.val[0], tmp1.val[2]); + const int32x4_t b0 = vhaddq_s32(a0, a1); // (a0 + a1) >> 1 + const int32x4_t b1 = vhaddq_s32(a3, a2); // (a3 + a2) >> 1 + const int32x4_t b2 = vhsubq_s32(a3, a2); // (a3 - a2) >> 1 + const int32x4_t b3 = vhsubq_s32(a0, a1); // (a0 - a1) >> 1 + const int16x4_t out0 = vmovn_s32(b0); + const int16x4_t out1 = vmovn_s32(b1); + const int16x4_t out2 = vmovn_s32(b2); + const int16x4_t out3 = vmovn_s32(b3); + + vst1_s16(out + 0, out0); + vst1_s16(out + 4, out1); + vst1_s16(out + 8, out2); + vst1_s16(out + 12, out3); + } +} +#undef LOAD_LANE_16b + +//------------------------------------------------------------------------------ +// Texture distortion +// +// We try to match the spectral content (weighted) between source and +// reconstructed samples. + +// a 0123, b 0123 +// a 4567, b 4567 +// a 89ab, b 89ab +// a cdef, b cdef +// +// transpose +// +// a 048c, b 048c +// a 159d, b 159d +// a 26ae, b 26ae +// a 37bf, b 37bf +// +static WEBP_INLINE int16x8x4_t DistoTranspose4x4S16_NEON(int16x8x4_t q4_in) { + const int16x8x2_t q2_tmp0 = vtrnq_s16(q4_in.val[0], q4_in.val[1]); + const int16x8x2_t q2_tmp1 = vtrnq_s16(q4_in.val[2], q4_in.val[3]); + const int32x4x2_t q2_tmp2 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[0]), + vreinterpretq_s32_s16(q2_tmp1.val[0])); + const int32x4x2_t q2_tmp3 = vtrnq_s32(vreinterpretq_s32_s16(q2_tmp0.val[1]), + vreinterpretq_s32_s16(q2_tmp1.val[1])); + q4_in.val[0] = vreinterpretq_s16_s32(q2_tmp2.val[0]); + q4_in.val[2] = vreinterpretq_s16_s32(q2_tmp2.val[1]); + q4_in.val[1] = vreinterpretq_s16_s32(q2_tmp3.val[0]); + q4_in.val[3] = vreinterpretq_s16_s32(q2_tmp3.val[1]); + return q4_in; +} + +static WEBP_INLINE int16x8x4_t DistoHorizontalPass_NEON( + const int16x8x4_t q4_in) { + // {a0, a1} = {in[0] + in[2], in[1] + in[3]} + // {a3, a2} = {in[0] - in[2], in[1] - in[3]} + const int16x8_t q_a0 = vaddq_s16(q4_in.val[0], q4_in.val[2]); + const int16x8_t q_a1 = vaddq_s16(q4_in.val[1], q4_in.val[3]); + const int16x8_t q_a3 = vsubq_s16(q4_in.val[0], q4_in.val[2]); + const int16x8_t q_a2 = vsubq_s16(q4_in.val[1], q4_in.val[3]); + int16x8x4_t q4_out; + // tmp[0] = a0 + a1 + // tmp[1] = a3 + a2 + // tmp[2] = a3 - a2 + // tmp[3] = a0 - a1 + INIT_VECTOR4(q4_out, + vabsq_s16(vaddq_s16(q_a0, q_a1)), + vabsq_s16(vaddq_s16(q_a3, q_a2)), + vabdq_s16(q_a3, q_a2), vabdq_s16(q_a0, q_a1)); + return q4_out; +} + +static WEBP_INLINE int16x8x4_t DistoVerticalPass_NEON(const uint8x8x4_t q4_in) { + const int16x8_t q_a0 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[0], + q4_in.val[2])); + const int16x8_t q_a1 = vreinterpretq_s16_u16(vaddl_u8(q4_in.val[1], + q4_in.val[3])); + const int16x8_t q_a2 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[1], + q4_in.val[3])); + const int16x8_t q_a3 = vreinterpretq_s16_u16(vsubl_u8(q4_in.val[0], + q4_in.val[2])); + int16x8x4_t q4_out; + + INIT_VECTOR4(q4_out, + vaddq_s16(q_a0, q_a1), vaddq_s16(q_a3, q_a2), + vsubq_s16(q_a3, q_a2), vsubq_s16(q_a0, q_a1)); + return q4_out; +} + +static WEBP_INLINE int16x4x4_t DistoLoadW_NEON(const uint16_t* w) { + const uint16x8_t q_w07 = vld1q_u16(&w[0]); + const uint16x8_t q_w8f = vld1q_u16(&w[8]); + int16x4x4_t d4_w; + INIT_VECTOR4(d4_w, + vget_low_s16(vreinterpretq_s16_u16(q_w07)), + vget_high_s16(vreinterpretq_s16_u16(q_w07)), + vget_low_s16(vreinterpretq_s16_u16(q_w8f)), + vget_high_s16(vreinterpretq_s16_u16(q_w8f))); + return d4_w; +} + +static WEBP_INLINE int32x2_t DistoSum_NEON(const int16x8x4_t q4_in, + const int16x4x4_t d4_w) { + int32x2_t d_sum; + // sum += w[ 0] * abs(b0); + // sum += w[ 4] * abs(b1); + // sum += w[ 8] * abs(b2); + // sum += w[12] * abs(b3); + int32x4_t q_sum0 = vmull_s16(d4_w.val[0], vget_low_s16(q4_in.val[0])); + int32x4_t q_sum1 = vmull_s16(d4_w.val[1], vget_low_s16(q4_in.val[1])); + int32x4_t q_sum2 = vmull_s16(d4_w.val[2], vget_low_s16(q4_in.val[2])); + int32x4_t q_sum3 = vmull_s16(d4_w.val[3], vget_low_s16(q4_in.val[3])); + q_sum0 = vmlsl_s16(q_sum0, d4_w.val[0], vget_high_s16(q4_in.val[0])); + q_sum1 = vmlsl_s16(q_sum1, d4_w.val[1], vget_high_s16(q4_in.val[1])); + q_sum2 = vmlsl_s16(q_sum2, d4_w.val[2], vget_high_s16(q4_in.val[2])); + q_sum3 = vmlsl_s16(q_sum3, d4_w.val[3], vget_high_s16(q4_in.val[3])); + + q_sum0 = vaddq_s32(q_sum0, q_sum1); + q_sum2 = vaddq_s32(q_sum2, q_sum3); + q_sum2 = vaddq_s32(q_sum0, q_sum2); + d_sum = vpadd_s32(vget_low_s32(q_sum2), vget_high_s32(q_sum2)); + d_sum = vpadd_s32(d_sum, d_sum); + return d_sum; +} + +#define LOAD_LANE_32b(src, VALUE, LANE) \ + (VALUE) = vld1_lane_u32((const uint32_t*)(src), (VALUE), (LANE)) + +// Hadamard transform +// Returns the weighted sum of the absolute value of transformed coefficients. +// w[] contains a row-major 4 by 4 symmetric matrix. +static int Disto4x4_NEON(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + uint32x2_t d_in_ab_0123 = vdup_n_u32(0); + uint32x2_t d_in_ab_4567 = vdup_n_u32(0); + uint32x2_t d_in_ab_89ab = vdup_n_u32(0); + uint32x2_t d_in_ab_cdef = vdup_n_u32(0); + uint8x8x4_t d4_in; + + // load data a, b + LOAD_LANE_32b(a + 0 * BPS, d_in_ab_0123, 0); + LOAD_LANE_32b(a + 1 * BPS, d_in_ab_4567, 0); + LOAD_LANE_32b(a + 2 * BPS, d_in_ab_89ab, 0); + LOAD_LANE_32b(a + 3 * BPS, d_in_ab_cdef, 0); + LOAD_LANE_32b(b + 0 * BPS, d_in_ab_0123, 1); + LOAD_LANE_32b(b + 1 * BPS, d_in_ab_4567, 1); + LOAD_LANE_32b(b + 2 * BPS, d_in_ab_89ab, 1); + LOAD_LANE_32b(b + 3 * BPS, d_in_ab_cdef, 1); + INIT_VECTOR4(d4_in, + vreinterpret_u8_u32(d_in_ab_0123), + vreinterpret_u8_u32(d_in_ab_4567), + vreinterpret_u8_u32(d_in_ab_89ab), + vreinterpret_u8_u32(d_in_ab_cdef)); + + { + // Vertical pass first to avoid a transpose (vertical and horizontal passes + // are commutative because w/kWeightY is symmetric) and subsequent + // transpose. + const int16x8x4_t q4_v = DistoVerticalPass_NEON(d4_in); + const int16x4x4_t d4_w = DistoLoadW_NEON(w); + // horizontal pass + const int16x8x4_t q4_t = DistoTranspose4x4S16_NEON(q4_v); + const int16x8x4_t q4_h = DistoHorizontalPass_NEON(q4_t); + int32x2_t d_sum = DistoSum_NEON(q4_h, d4_w); + + // abs(sum2 - sum1) >> 5 + d_sum = vabs_s32(d_sum); + d_sum = vshr_n_s32(d_sum, 5); + return vget_lane_s32(d_sum, 0); + } +} +#undef LOAD_LANE_32b + +static int Disto16x16_NEON(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_NEON(a + x + y, b + x + y, w); + } + } + return D; +} + +//------------------------------------------------------------------------------ + +static void CollectHistogram_NEON(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + const uint16x8_t max_coeff_thresh = vdupq_n_u16(MAX_COEFF_THRESH); + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + for (j = start_block; j < end_block; ++j) { + int16_t out[16]; + FTransform_NEON(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + { + int k; + const int16x8_t a0 = vld1q_s16(out + 0); + const int16x8_t b0 = vld1q_s16(out + 8); + const uint16x8_t a1 = vreinterpretq_u16_s16(vabsq_s16(a0)); + const uint16x8_t b1 = vreinterpretq_u16_s16(vabsq_s16(b0)); + const uint16x8_t a2 = vshrq_n_u16(a1, 3); + const uint16x8_t b2 = vshrq_n_u16(b1, 3); + const uint16x8_t a3 = vminq_u16(a2, max_coeff_thresh); + const uint16x8_t b3 = vminq_u16(b2, max_coeff_thresh); + vst1q_s16(out + 0, vreinterpretq_s16_u16(a3)); + vst1q_s16(out + 8, vreinterpretq_s16_u16(b3)); + // Convert coefficients to bin. + for (k = 0; k < 16; ++k) { + ++distribution[out[k]]; + } + } + } + VP8SetHistogramData(distribution, histo); +} + +//------------------------------------------------------------------------------ + +static WEBP_INLINE void AccumulateSSE16_NEON(const uint8_t* const a, + const uint8_t* const b, + uint32x4_t* const sum) { + const uint8x16_t a0 = vld1q_u8(a); + const uint8x16_t b0 = vld1q_u8(b); + const uint8x16_t abs_diff = vabdq_u8(a0, b0); + const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), + vget_low_u8(abs_diff)); + const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), + vget_high_u8(abs_diff)); + /* pair-wise adds and widen */ + const uint32x4_t sum1 = vpaddlq_u16(prod1); + const uint32x4_t sum2 = vpaddlq_u16(prod2); + *sum = vaddq_u32(*sum, vaddq_u32(sum1, sum2)); +} + +// Horizontal sum of all four uint32_t values in 'sum'. +static int SumToInt_NEON(uint32x4_t sum) { +#if defined(__aarch64__) + return (int)vaddvq_u32(sum); +#else + const uint64x2_t sum2 = vpaddlq_u32(sum); + const uint32x2_t sum3 = vadd_u32(vreinterpret_u32_u64(vget_low_u64(sum2)), + vreinterpret_u32_u64(vget_high_u64(sum2))); + return (int)vget_lane_u32(sum3, 0); +#endif +} + +static int SSE16x16_NEON(const uint8_t* a, const uint8_t* b) { + uint32x4_t sum = vdupq_n_u32(0); + int y; + for (y = 0; y < 16; ++y) { + AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum); + } + return SumToInt_NEON(sum); +} + +static int SSE16x8_NEON(const uint8_t* a, const uint8_t* b) { + uint32x4_t sum = vdupq_n_u32(0); + int y; + for (y = 0; y < 8; ++y) { + AccumulateSSE16_NEON(a + y * BPS, b + y * BPS, &sum); + } + return SumToInt_NEON(sum); +} + +static int SSE8x8_NEON(const uint8_t* a, const uint8_t* b) { + uint32x4_t sum = vdupq_n_u32(0); + int y; + for (y = 0; y < 8; ++y) { + const uint8x8_t a0 = vld1_u8(a + y * BPS); + const uint8x8_t b0 = vld1_u8(b + y * BPS); + const uint8x8_t abs_diff = vabd_u8(a0, b0); + const uint16x8_t prod = vmull_u8(abs_diff, abs_diff); + sum = vpadalq_u16(sum, prod); + } + return SumToInt_NEON(sum); +} + +static int SSE4x4_NEON(const uint8_t* a, const uint8_t* b) { + const uint8x16_t a0 = Load4x4_NEON(a); + const uint8x16_t b0 = Load4x4_NEON(b); + const uint8x16_t abs_diff = vabdq_u8(a0, b0); + const uint16x8_t prod1 = vmull_u8(vget_low_u8(abs_diff), + vget_low_u8(abs_diff)); + const uint16x8_t prod2 = vmull_u8(vget_high_u8(abs_diff), + vget_high_u8(abs_diff)); + /* pair-wise adds and widen */ + const uint32x4_t sum1 = vpaddlq_u16(prod1); + const uint32x4_t sum2 = vpaddlq_u16(prod2); + return SumToInt_NEON(vaddq_u32(sum1, sum2)); +} + +//------------------------------------------------------------------------------ + +// Compilation with gcc-4.6.x is problematic for now. +#if !defined(WORK_AROUND_GCC) + +static int16x8_t Quantize_NEON(int16_t* const in, + const VP8Matrix* const mtx, int offset) { + const uint16x8_t sharp = vld1q_u16(&mtx->sharpen_[offset]); + const uint16x8_t q = vld1q_u16(&mtx->q_[offset]); + const uint16x8_t iq = vld1q_u16(&mtx->iq_[offset]); + const uint32x4_t bias0 = vld1q_u32(&mtx->bias_[offset + 0]); + const uint32x4_t bias1 = vld1q_u32(&mtx->bias_[offset + 4]); + + const int16x8_t a = vld1q_s16(in + offset); // in + const uint16x8_t b = vreinterpretq_u16_s16(vabsq_s16(a)); // coeff = abs(in) + const int16x8_t sign = vshrq_n_s16(a, 15); // sign + const uint16x8_t c = vaddq_u16(b, sharp); // + sharpen + const uint32x4_t m0 = vmull_u16(vget_low_u16(c), vget_low_u16(iq)); + const uint32x4_t m1 = vmull_u16(vget_high_u16(c), vget_high_u16(iq)); + const uint32x4_t m2 = vhaddq_u32(m0, bias0); + const uint32x4_t m3 = vhaddq_u32(m1, bias1); // (coeff * iQ + bias) >> 1 + const uint16x8_t c0 = vcombine_u16(vshrn_n_u32(m2, 16), + vshrn_n_u32(m3, 16)); // QFIX=17 = 16+1 + const uint16x8_t c1 = vminq_u16(c0, vdupq_n_u16(MAX_LEVEL)); + const int16x8_t c2 = veorq_s16(vreinterpretq_s16_u16(c1), sign); + const int16x8_t c3 = vsubq_s16(c2, sign); // restore sign + const int16x8_t c4 = vmulq_s16(c3, vreinterpretq_s16_u16(q)); + vst1q_s16(in + offset, c4); + assert(QFIX == 17); // this function can't work as is if QFIX != 16+1 + return c3; +} + +static const uint8_t kShuffles[4][8] = { + { 0, 1, 2, 3, 8, 9, 16, 17 }, + { 10, 11, 4, 5, 6, 7, 12, 13 }, + { 18, 19, 24, 25, 26, 27, 20, 21 }, + { 14, 15, 22, 23, 28, 29, 30, 31 } +}; + +static int QuantizeBlock_NEON(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + const int16x8_t out0 = Quantize_NEON(in, mtx, 0); + const int16x8_t out1 = Quantize_NEON(in, mtx, 8); + uint8x8x4_t shuffles; + // vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use + // non-standard versions there. +#if defined(__APPLE__) && defined(__aarch64__) && \ + defined(__apple_build_version__) && (__apple_build_version__< 6020037) + uint8x16x2_t all_out; + INIT_VECTOR2(all_out, vreinterpretq_u8_s16(out0), vreinterpretq_u8_s16(out1)); + INIT_VECTOR4(shuffles, + vtbl2q_u8(all_out, vld1_u8(kShuffles[0])), + vtbl2q_u8(all_out, vld1_u8(kShuffles[1])), + vtbl2q_u8(all_out, vld1_u8(kShuffles[2])), + vtbl2q_u8(all_out, vld1_u8(kShuffles[3]))); +#else + uint8x8x4_t all_out; + INIT_VECTOR4(all_out, + vreinterpret_u8_s16(vget_low_s16(out0)), + vreinterpret_u8_s16(vget_high_s16(out0)), + vreinterpret_u8_s16(vget_low_s16(out1)), + vreinterpret_u8_s16(vget_high_s16(out1))); + INIT_VECTOR4(shuffles, + vtbl4_u8(all_out, vld1_u8(kShuffles[0])), + vtbl4_u8(all_out, vld1_u8(kShuffles[1])), + vtbl4_u8(all_out, vld1_u8(kShuffles[2])), + vtbl4_u8(all_out, vld1_u8(kShuffles[3]))); +#endif + // Zigzag reordering + vst1_u8((uint8_t*)(out + 0), shuffles.val[0]); + vst1_u8((uint8_t*)(out + 4), shuffles.val[1]); + vst1_u8((uint8_t*)(out + 8), shuffles.val[2]); + vst1_u8((uint8_t*)(out + 12), shuffles.val[3]); + // test zeros + if (*(uint64_t*)(out + 0) != 0) return 1; + if (*(uint64_t*)(out + 4) != 0) return 1; + if (*(uint64_t*)(out + 8) != 0) return 1; + if (*(uint64_t*)(out + 12) != 0) return 1; + return 0; +} + +static int Quantize2Blocks_NEON(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + nz = QuantizeBlock_NEON(in + 0 * 16, out + 0 * 16, mtx) << 0; + nz |= QuantizeBlock_NEON(in + 1 * 16, out + 1 * 16, mtx) << 1; + return nz; +} + +#endif // !WORK_AROUND_GCC + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitNEON(void) { + VP8ITransform = ITransform_NEON; + VP8FTransform = FTransform_NEON; + + VP8FTransformWHT = FTransformWHT_NEON; + + VP8TDisto4x4 = Disto4x4_NEON; + VP8TDisto16x16 = Disto16x16_NEON; + VP8CollectHistogram = CollectHistogram_NEON; + + VP8SSE16x16 = SSE16x16_NEON; + VP8SSE16x8 = SSE16x8_NEON; + VP8SSE8x8 = SSE8x8_NEON; + VP8SSE4x4 = SSE4x4_NEON; + +#if !defined(WORK_AROUND_GCC) + VP8EncQuantizeBlock = QuantizeBlock_NEON; + VP8EncQuantize2Blocks = Quantize2Blocks_NEON; +#endif +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8EncDspInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/enc_sse2.c b/media/libwebp/src/dsp/enc_sse2.c new file mode 100644 index 0000000000..1d1055668f --- /dev/null +++ b/media/libwebp/src/dsp/enc_sse2.c @@ -0,0 +1,1382 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of speed-critical encoding functions. +// +// Author: Christian Duvivier (cduvivier@google.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) +#include <assert.h> +#include <stdlib.h> // for abs() +#include <emmintrin.h> + +#include "src/dsp/common_sse2.h" +#include "src/enc/cost_enc.h" +#include "src/enc/vp8i_enc.h" + +//------------------------------------------------------------------------------ +// Transforms (Paragraph 14.4) + +// Does one or two inverse transforms. +static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, + int do_two) { + // This implementation makes use of 16-bit fixed point versions of two + // multiply constants: + // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 + // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 + // + // To be able to use signed 16-bit integers, we use the following trick to + // have constants within range: + // - Associated constants are obtained by subtracting the 16-bit fixed point + // version of one: + // k = K - (1 << 16) => K = k + (1 << 16) + // K1 = 85267 => k1 = 20091 + // K2 = 35468 => k2 = -30068 + // - The multiplication of a variable by a constant become the sum of the + // variable and the multiplication of that variable by the associated + // constant: + // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x + const __m128i k1 = _mm_set1_epi16(20091); + const __m128i k2 = _mm_set1_epi16(-30068); + __m128i T0, T1, T2, T3; + + // Load and concatenate the transform coefficients (we'll do two inverse + // transforms in parallel). In the case of only one inverse transform, the + // second half of the vectors will just contain random value we'll never + // use nor store. + __m128i in0, in1, in2, in3; + { + in0 = _mm_loadl_epi64((const __m128i*)&in[0]); + in1 = _mm_loadl_epi64((const __m128i*)&in[4]); + in2 = _mm_loadl_epi64((const __m128i*)&in[8]); + in3 = _mm_loadl_epi64((const __m128i*)&in[12]); + // a00 a10 a20 a30 x x x x + // a01 a11 a21 a31 x x x x + // a02 a12 a22 a32 x x x x + // a03 a13 a23 a33 x x x x + if (do_two) { + const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); + const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); + const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); + const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); + in0 = _mm_unpacklo_epi64(in0, inB0); + in1 = _mm_unpacklo_epi64(in1, inB1); + in2 = _mm_unpacklo_epi64(in2, inB2); + in3 = _mm_unpacklo_epi64(in3, inB3); + // a00 a10 a20 a30 b00 b10 b20 b30 + // a01 a11 a21 a31 b01 b11 b21 b31 + // a02 a12 a22 a32 b02 b12 b22 b32 + // a03 a13 a23 a33 b03 b13 b23 b33 + } + } + + // Vertical pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i a = _mm_add_epi16(in0, in2); + const __m128i b = _mm_sub_epi16(in0, in2); + // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 + const __m128i c1 = _mm_mulhi_epi16(in1, k2); + const __m128i c2 = _mm_mulhi_epi16(in3, k1); + const __m128i c3 = _mm_sub_epi16(in1, in3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 + const __m128i d1 = _mm_mulhi_epi16(in1, k1); + const __m128i d2 = _mm_mulhi_epi16(in3, k2); + const __m128i d3 = _mm_add_epi16(in1, in3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); + } + + // Horizontal pass and subsequent transpose. + { + // First pass, c and d calculations are longer because of the "trick" + // multiplications. + const __m128i four = _mm_set1_epi16(4); + const __m128i dc = _mm_add_epi16(T0, four); + const __m128i a = _mm_add_epi16(dc, T2); + const __m128i b = _mm_sub_epi16(dc, T2); + // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 + const __m128i c1 = _mm_mulhi_epi16(T1, k2); + const __m128i c2 = _mm_mulhi_epi16(T3, k1); + const __m128i c3 = _mm_sub_epi16(T1, T3); + const __m128i c4 = _mm_sub_epi16(c1, c2); + const __m128i c = _mm_add_epi16(c3, c4); + // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 + const __m128i d1 = _mm_mulhi_epi16(T1, k1); + const __m128i d2 = _mm_mulhi_epi16(T3, k2); + const __m128i d3 = _mm_add_epi16(T1, T3); + const __m128i d4 = _mm_add_epi16(d1, d2); + const __m128i d = _mm_add_epi16(d3, d4); + + // Second pass. + const __m128i tmp0 = _mm_add_epi16(a, d); + const __m128i tmp1 = _mm_add_epi16(b, c); + const __m128i tmp2 = _mm_sub_epi16(b, c); + const __m128i tmp3 = _mm_sub_epi16(a, d); + const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); + const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); + const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); + const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, + &T2, &T3); + } + + // Add inverse transform to 'ref' and store. + { + const __m128i zero = _mm_setzero_si128(); + // Load the reference(s). + __m128i ref0, ref1, ref2, ref3; + if (do_two) { + // Load eight bytes/pixels per line. + ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); + ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); + ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); + ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); + } else { + // Load four bytes/pixels per line. + ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS])); + ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS])); + ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS])); + ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS])); + } + // Convert to 16b. + ref0 = _mm_unpacklo_epi8(ref0, zero); + ref1 = _mm_unpacklo_epi8(ref1, zero); + ref2 = _mm_unpacklo_epi8(ref2, zero); + ref3 = _mm_unpacklo_epi8(ref3, zero); + // Add the inverse transform(s). + ref0 = _mm_add_epi16(ref0, T0); + ref1 = _mm_add_epi16(ref1, T1); + ref2 = _mm_add_epi16(ref2, T2); + ref3 = _mm_add_epi16(ref3, T3); + // Unsigned saturate to 8b. + ref0 = _mm_packus_epi16(ref0, ref0); + ref1 = _mm_packus_epi16(ref1, ref1); + ref2 = _mm_packus_epi16(ref2, ref2); + ref3 = _mm_packus_epi16(ref3, ref3); + // Store the results. + if (do_two) { + // Store eight bytes/pixels per line. + _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); + _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); + _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); + _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); + } else { + // Store four bytes/pixels per line. + WebPInt32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); + WebPInt32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); + WebPInt32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); + WebPInt32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); + } + } +} + +static void FTransformPass1_SSE2(const __m128i* const in01, + const __m128i* const in23, + __m128i* const out01, + __m128i* const out32) { + const __m128i k937 = _mm_set1_epi32(937); + const __m128i k1812 = _mm_set1_epi32(1812); + + const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); + const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); + const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, + 2217, 5352, 2217, 5352); + const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, + -5352, 2217, -5352, 2217); + + // *in01 = 00 01 10 11 02 03 12 13 + // *in23 = 20 21 30 31 22 23 32 33 + const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); + const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); + // 00 01 10 11 03 02 13 12 + // 20 21 30 31 23 22 33 32 + const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); + const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); + // 00 01 10 11 20 21 30 31 + // 03 02 13 12 23 22 33 32 + const __m128i a01 = _mm_add_epi16(s01, s32); + const __m128i a32 = _mm_sub_epi16(s01, s32); + // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] + // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] + + const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] + const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] + const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); + const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); + const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); + const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); + const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); + const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); + const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); + const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); + const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... + const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 + const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); + *out01 = _mm_unpacklo_epi32(s_lo, s_hi); + *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. +} + +static void FTransformPass2_SSE2(const __m128i* const v01, + const __m128i* const v32, + int16_t* out) { + const __m128i zero = _mm_setzero_si128(); + const __m128i seven = _mm_set1_epi16(7); + const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, + 5352, 2217, 5352, 2217); + const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, + 2217, -5352, 2217, -5352); + const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); + const __m128i k51000 = _mm_set1_epi32(51000); + + // Same operations are done on the (0,3) and (1,2) pairs. + // a3 = v0 - v3 + // a2 = v1 - v2 + const __m128i a32 = _mm_sub_epi16(*v01, *v32); + const __m128i a22 = _mm_unpackhi_epi64(a32, a32); + + const __m128i b23 = _mm_unpacklo_epi16(a22, a32); + const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); + const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); + const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); + const __m128i d3 = _mm_add_epi32(c3, k51000); + const __m128i e1 = _mm_srai_epi32(d1, 16); + const __m128i e3 = _mm_srai_epi32(d3, 16); + // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) + // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) + const __m128i f1 = _mm_packs_epi32(e1, e1); + const __m128i f3 = _mm_packs_epi32(e3, e3); + // g1 = f1 + (a3 != 0); + // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the + // desired (0, 1), we add one earlier through k12000_plus_one. + // -> g1 = f1 + 1 - (a3 == 0) + const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); + + // a0 = v0 + v3 + // a1 = v1 + v2 + const __m128i a01 = _mm_add_epi16(*v01, *v32); + const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); + const __m128i a11 = _mm_unpackhi_epi64(a01, a01); + const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); + const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); + // d0 = (a0 + a1 + 7) >> 4; + // d2 = (a0 - a1 + 7) >> 4; + const __m128i d0 = _mm_srai_epi16(c0, 4); + const __m128i d2 = _mm_srai_epi16(c2, 4); + + const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); + const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); + _mm_storeu_si128((__m128i*)&out[0], d0_g1); + _mm_storeu_si128((__m128i*)&out[8], d2_f3); +} + +static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + const __m128i zero = _mm_setzero_si128(); + // Load src. + const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); + const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); + const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); + const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); + // 00 01 02 03 * + // 10 11 12 13 * + // 20 21 22 23 * + // 30 31 32 33 * + // Shuffle. + const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); + const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); + // 00 01 10 11 02 03 12 13 * * ... + // 20 21 30 31 22 22 32 33 * * ... + + // Load ref. + const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); + const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); + const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); + const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); + const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); + const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); + + // Convert both to 16 bit. + const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); + const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); + const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); + const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); + + // Compute the difference. + const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); + const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); + __m128i v01, v32; + + // First pass + FTransformPass1_SSE2(&row01, &row23, &v01, &v32); + + // Second pass + FTransformPass2_SSE2(&v01, &v32, out); +} + +static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref, + int16_t* out) { + const __m128i zero = _mm_setzero_si128(); + + // Load src and convert to 16b. + const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); + const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); + const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); + const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); + const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); + const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); + const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); + const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); + // Load ref and convert to 16b. + const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); + const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); + const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); + const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); + const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); + const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); + const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); + const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); + // Compute difference. -> 00 01 02 03 00' 01' 02' 03' + const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); + const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); + const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); + const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); + + // Unpack and shuffle + // 00 01 02 03 0 0 0 0 + // 10 11 12 13 0 0 0 0 + // 20 21 22 23 0 0 0 0 + // 30 31 32 33 0 0 0 0 + const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); + const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); + const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); + const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); + __m128i v01l, v32l; + __m128i v01h, v32h; + + // First pass + FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l); + FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h); + + // Second pass + FTransformPass2_SSE2(&v01l, &v32l, out + 0); + FTransformPass2_SSE2(&v01h, &v32h, out + 16); +} + +static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) { + const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); + const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); + const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); + const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); + const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); + const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... + const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... + const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... + const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... + const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... + const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... + const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 + *out = _mm_madd_epi16(D, kMult); +} + +static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) { + // Input is 12b signed. + __m128i row0, row1, row2, row3; + // Rows are 14b signed. + FTransformWHTRow_SSE2(in + 0 * 64, &row0); + FTransformWHTRow_SSE2(in + 1 * 64, &row1); + FTransformWHTRow_SSE2(in + 2 * 64, &row2); + FTransformWHTRow_SSE2(in + 3 * 64, &row3); + + { + // The a* are 15b signed. + const __m128i a0 = _mm_add_epi32(row0, row2); + const __m128i a1 = _mm_add_epi32(row1, row3); + const __m128i a2 = _mm_sub_epi32(row1, row3); + const __m128i a3 = _mm_sub_epi32(row0, row2); + const __m128i a0a3 = _mm_packs_epi32(a0, a3); + const __m128i a1a2 = _mm_packs_epi32(a1, a2); + + // The b* are 16b signed. + const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); + const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); + const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); + const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); + + _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); + _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); + } +} + +//------------------------------------------------------------------------------ +// Compute susceptibility based on DCT-coeff histograms: +// the higher, the "easier" the macroblock is to compress. + +static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + const __m128i zero = _mm_setzero_si128(); + const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + for (j = start_block; j < end_block; ++j) { + int16_t out[16]; + int k; + + FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + + // Convert coefficients to bin (within out[]). + { + // Load. + const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); + const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); + const __m128i d0 = _mm_sub_epi16(zero, out0); + const __m128i d1 = _mm_sub_epi16(zero, out1); + const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b + const __m128i abs1 = _mm_max_epi16(out1, d1); + // v = abs(out) >> 3 + const __m128i v0 = _mm_srai_epi16(abs0, 3); + const __m128i v1 = _mm_srai_epi16(abs1, 3); + // bin = min(v, MAX_COEFF_THRESH) + const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); + const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); + // Store. + _mm_storeu_si128((__m128i*)&out[0], bin0); + _mm_storeu_si128((__m128i*)&out[8], bin1); + } + + // Convert coefficients to bin. + for (k = 0; k < 16; ++k) { + ++distribution[out[k]]; + } + } + VP8SetHistogramData(distribution, histo); +} + +//------------------------------------------------------------------------------ +// Intra predictions + +// helper for chroma-DC predictions +static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8((char)v); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), values); + } +} + +static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { + int j; + const __m128i values = _mm_set1_epi8((char)v); + for (j = 0; j < 16; ++j) { + _mm_store_si128((__m128i*)(dst + j * BPS), values); + } +} + +static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) { + if (size == 4) { + int j; + for (j = 0; j < 4; ++j) { + memset(dst + j * BPS, value, 4); + } + } else if (size == 8) { + Put8x8uv_SSE2(value, dst); + } else { + Put16_SSE2(value, dst); + } +} + +static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) { + int j; + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + for (j = 0; j < 8; ++j) { + _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); + } +} + +static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) { + const __m128i top_values = _mm_load_si128((const __m128i*)top); + int j; + for (j = 0; j < 16; ++j) { + _mm_store_si128((__m128i*)(dst + j * BPS), top_values); + } +} + +static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst, + const uint8_t* top, int size) { + if (top != NULL) { + if (size == 8) { + VE8uv_SSE2(dst, top); + } else { + VE16_SSE2(dst, top); + } + } else { + Fill_SSE2(dst, 127, size); + } +} + +static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) { + int j; + for (j = 0; j < 8; ++j) { + const __m128i values = _mm_set1_epi8((char)left[j]); + _mm_storel_epi64((__m128i*)dst, values); + dst += BPS; + } +} + +static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) { + int j; + for (j = 0; j < 16; ++j) { + const __m128i values = _mm_set1_epi8((char)left[j]); + _mm_store_si128((__m128i*)dst, values); + dst += BPS; + } +} + +static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst, + const uint8_t* left, int size) { + if (left != NULL) { + if (size == 8) { + HE8uv_SSE2(dst, left); + } else { + HE16_SSE2(dst, left); + } + } else { + Fill_SSE2(dst, 129, size); + } +} + +static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top, int size) { + const __m128i zero = _mm_setzero_si128(); + int y; + if (size == 8) { + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + for (y = 0; y < 8; ++y, dst += BPS) { + const int val = left[y] - left[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + _mm_storel_epi64((__m128i*)dst, out); + } + } else { + const __m128i top_values = _mm_load_si128((const __m128i*)top); + const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); + const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); + for (y = 0; y < 16; ++y, dst += BPS) { + const int val = left[y] - left[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out_0 = _mm_add_epi16(base, top_base_0); + const __m128i out_1 = _mm_add_epi16(base, top_base_1); + const __m128i out = _mm_packus_epi16(out_0, out_1); + _mm_store_si128((__m128i*)dst, out); + } + } +} + +static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top, int size) { + if (left != NULL) { + if (top != NULL) { + TM_SSE2(dst, left, top, size); + } else { + HorizontalPred_SSE2(dst, left, size); + } + } else { + // true motion without left samples (hence: with default 129 value) + // is equivalent to VE prediction where you just copy the top samples. + // Note that if top samples are not available, the default value is + // then 129, and not 127 as in the VerticalPred case. + if (top != NULL) { + VerticalPred_SSE2(dst, top, size); + } else { + Fill_SSE2(dst, 129, size); + } + } +} + +static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); + const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); + const int DC = VP8HorizontalAdd8b(&combined) + 8; + Put8x8uv_SSE2(DC >> 4, dst); +} + +static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) { + const __m128i zero = _mm_setzero_si128(); + const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); + const __m128i sum = _mm_sad_epu8(top_values, zero); + const int DC = _mm_cvtsi128_si32(sum) + 4; + Put8x8uv_SSE2(DC >> 3, dst); +} + +static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) { + // 'left' is contiguous so we can reuse the top summation. + DC8uvNoLeft_SSE2(dst, left); +} + +static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) { + Put8x8uv_SSE2(0x80, dst); +} + +static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + if (top != NULL) { + if (left != NULL) { // top and left present + DC8uv_SSE2(dst, left, top); + } else { // top, but no left + DC8uvNoLeft_SSE2(dst, top); + } + } else if (left != NULL) { // left but no top + DC8uvNoTop_SSE2(dst, left); + } else { // no top, no left, nothing. + DC8uvNoTopLeft_SSE2(dst); + } +} + +static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + const __m128i top_row = _mm_load_si128((const __m128i*)top); + const __m128i left_row = _mm_load_si128((const __m128i*)left); + const int DC = + VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; + Put16_SSE2(DC >> 5, dst); +} + +static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) { + const __m128i top_row = _mm_load_si128((const __m128i*)top); + const int DC = VP8HorizontalAdd8b(&top_row) + 8; + Put16_SSE2(DC >> 4, dst); +} + +static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) { + // 'left' is contiguous so we can reuse the top summation. + DC16NoLeft_SSE2(dst, left); +} + +static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) { + Put16_SSE2(0x80, dst); +} + +static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + if (top != NULL) { + if (left != NULL) { // top and left present + DC16_SSE2(dst, left, top); + } else { // top, but no left + DC16NoLeft_SSE2(dst, top); + } + } else if (left != NULL) { // left but no top + DC16NoTop_SSE2(dst, left); + } else { // no top, no left, nothing. + DC16NoTopLeft_SSE2(dst); + } +} + +//------------------------------------------------------------------------------ +// 4x4 predictions + +#define DST(x, y) dst[(x) + (y) * BPS] +#define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) +#define AVG2(a, b) (((a) + (b) + 1) >> 1) + +// We use the following 8b-arithmetic tricks: +// (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 +// where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] +// and: +// (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb +// where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 +// and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 + +static WEBP_INLINE void VE4_SSE2(uint8_t* dst, + const uint8_t* top) { // vertical + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); + const __m128i b = _mm_subs_epu8(a, lsb); + const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); + const int vals = _mm_cvtsi128_si32(avg); + int i; + for (i = 0; i < 4; ++i) { + WebPInt32ToMem(dst + i * BPS, vals); + } +} + +static WEBP_INLINE void HE4_SSE2(uint8_t* dst, + const uint8_t* top) { // horizontal + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); + WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); + WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); + WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); +} + +static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) { + uint32_t dc = 4; + int i; + for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; + Fill_SSE2(dst, dc >> 3, 4); +} + +static WEBP_INLINE void LD4_SSE2(uint8_t* dst, + const uint8_t* top) { // Down-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); + const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); + const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +static WEBP_INLINE void VR4_SSE2(uint8_t* dst, + const uint8_t* top) { // Vertical-Right + const __m128i one = _mm_set1_epi8(1); + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int X = top[-1]; + const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); + const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); + const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); + const __m128i _XABCD = _mm_slli_si128(XABCD, 1); + const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); + const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i efgh = _mm_avg_epu8(avg2, XABCD); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); + + // these two are hard to implement in SSE2, so we keep the C-version: + DST(0, 2) = AVG3(J, I, X); + DST(0, 3) = AVG3(K, J, I); +} + +static WEBP_INLINE void VL4_SSE2(uint8_t* dst, + const uint8_t* top) { // Vertical-Left + const __m128i one = _mm_set1_epi8(1); + const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); + const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); + const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); + const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); + const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); + const __m128i avg3 = _mm_avg_epu8(avg1, avg2); + const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); + const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); + const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); + const __m128i abbc = _mm_or_si128(ab, bc); + const __m128i lsb2 = _mm_and_si128(abbc, lsb1); + const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); + const uint32_t extra_out = + (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); + + // these two are hard to get and irregular + DST(3, 2) = (extra_out >> 0) & 0xff; + DST(3, 3) = (extra_out >> 8) & 0xff; +} + +static WEBP_INLINE void RD4_SSE2(uint8_t* dst, + const uint8_t* top) { // Down-right + const __m128i one = _mm_set1_epi8(1); + const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); + const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); + const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); + const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); + const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); + const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); + const __m128i avg2 = _mm_subs_epu8(avg1, lsb); + const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); + WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); + WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); + WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); + WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); +} + +static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) { + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + DST(0, 0) = AVG2(I, J); + DST(2, 0) = DST(0, 1) = AVG2(J, K); + DST(2, 1) = DST(0, 2) = AVG2(K, L); + DST(1, 0) = AVG3(I, J, K); + DST(3, 0) = DST(1, 1) = AVG3(J, K, L); + DST(3, 1) = DST(1, 2) = AVG3(K, L, L); + DST(3, 2) = DST(2, 2) = + DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; +} + +static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) { + const int X = top[-1]; + const int I = top[-2]; + const int J = top[-3]; + const int K = top[-4]; + const int L = top[-5]; + const int A = top[0]; + const int B = top[1]; + const int C = top[2]; + + DST(0, 0) = DST(2, 1) = AVG2(I, X); + DST(0, 1) = DST(2, 2) = AVG2(J, I); + DST(0, 2) = DST(2, 3) = AVG2(K, J); + DST(0, 3) = AVG2(L, K); + + DST(3, 0) = AVG3(A, B, C); + DST(2, 0) = AVG3(X, A, B); + DST(1, 0) = DST(3, 1) = AVG3(I, X, A); + DST(1, 1) = DST(3, 2) = AVG3(J, I, X); + DST(1, 2) = DST(3, 3) = AVG3(K, J, I); + DST(1, 3) = AVG3(L, K, J); +} + +static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) { + const __m128i zero = _mm_setzero_si128(); + const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top)); + const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); + int y; + for (y = 0; y < 4; ++y, dst += BPS) { + const int val = top[-2 - y] - top[-1]; + const __m128i base = _mm_set1_epi16(val); + const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); + WebPInt32ToMem(dst, _mm_cvtsi128_si32(out)); + } +} + +#undef DST +#undef AVG3 +#undef AVG2 + +//------------------------------------------------------------------------------ +// luma 4x4 prediction + +// Left samples are top[-5 .. -2], top_left is top[-1], top are +// located at top[0..3], and top right is top[4..7] +static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) { + DC4_SSE2(I4DC4 + dst, top); + TM4_SSE2(I4TM4 + dst, top); + VE4_SSE2(I4VE4 + dst, top); + HE4_SSE2(I4HE4 + dst, top); + RD4_SSE2(I4RD4 + dst, top); + VR4_SSE2(I4VR4 + dst, top); + LD4_SSE2(I4LD4 + dst, top); + VL4_SSE2(I4VL4 + dst, top); + HD4_SSE2(I4HD4 + dst, top); + HU4_SSE2(I4HU4 + dst, top); +} + +//------------------------------------------------------------------------------ +// Chroma 8x8 prediction (paragraph 12.2) + +static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left, + const uint8_t* top) { + // U block + DC8uvMode_SSE2(C8DC8 + dst, left, top); + VerticalPred_SSE2(C8VE8 + dst, top, 8); + HorizontalPred_SSE2(C8HE8 + dst, left, 8); + TrueMotion_SSE2(C8TM8 + dst, left, top, 8); + // V block + dst += 8; + if (top != NULL) top += 8; + if (left != NULL) left += 16; + DC8uvMode_SSE2(C8DC8 + dst, left, top); + VerticalPred_SSE2(C8VE8 + dst, top, 8); + HorizontalPred_SSE2(C8HE8 + dst, left, 8); + TrueMotion_SSE2(C8TM8 + dst, left, top, 8); +} + +//------------------------------------------------------------------------------ +// luma 16x16 prediction (paragraph 12.3) + +static void Intra16Preds_SSE2(uint8_t* dst, + const uint8_t* left, const uint8_t* top) { + DC16Mode_SSE2(I16DC16 + dst, left, top); + VerticalPred_SSE2(I16VE16 + dst, top, 16); + HorizontalPred_SSE2(I16HE16 + dst, left, 16); + TrueMotion_SSE2(I16TM16 + dst, left, top, 16); +} + +//------------------------------------------------------------------------------ +// Metric + +static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a, + const __m128i b, + __m128i* const sum) { + // take abs(a-b) in 8b + const __m128i a_b = _mm_subs_epu8(a, b); + const __m128i b_a = _mm_subs_epu8(b, a); + const __m128i abs_a_b = _mm_or_si128(a_b, b_a); + // zero-extend to 16b + const __m128i zero = _mm_setzero_si128(); + const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); + const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); + // multiply with self + const __m128i sum1 = _mm_madd_epi16(C0, C0); + const __m128i sum2 = _mm_madd_epi16(C1, C1); + *sum = _mm_add_epi32(sum1, sum2); +} + +static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b, + int num_pairs) { + __m128i sum = _mm_setzero_si128(); + int32_t tmp[4]; + int i; + + for (i = 0; i < num_pairs; ++i) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); + const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); + const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); + const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); + __m128i sum1, sum2; + SubtractAndAccumulate_SSE2(a0, b0, &sum1); + SubtractAndAccumulate_SSE2(a1, b1, &sum2); + sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); + a += 2 * BPS; + b += 2 * BPS; + } + _mm_storeu_si128((__m128i*)tmp, sum); + return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); +} + +static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) { + return SSE_16xN_SSE2(a, b, 8); +} + +static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) { + return SSE_16xN_SSE2(a, b, 4); +} + +#define LOAD_8x16b(ptr) \ + _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) + +static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) { + const __m128i zero = _mm_setzero_si128(); + int num_pairs = 4; + __m128i sum = zero; + int32_t tmp[4]; + while (num_pairs-- > 0) { + const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); + const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); + const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); + const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); + // subtract + const __m128i c0 = _mm_subs_epi16(a0, b0); + const __m128i c1 = _mm_subs_epi16(a1, b1); + // multiply/accumulate with self + const __m128i d0 = _mm_madd_epi16(c0, c0); + const __m128i d1 = _mm_madd_epi16(c1, c1); + // collect + const __m128i sum01 = _mm_add_epi32(d0, d1); + sum = _mm_add_epi32(sum, sum01); + a += 2 * BPS; + b += 2 * BPS; + } + _mm_storeu_si128((__m128i*)tmp, sum); + return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); +} +#undef LOAD_8x16b + +static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) { + const __m128i zero = _mm_setzero_si128(); + + // Load values. Note that we read 8 pixels instead of 4, + // but the a/b buffers are over-allocated to that effect. + const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); + const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); + const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); + const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); + const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); + const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); + const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); + const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); + // Combine pair of lines. + const __m128i a01 = _mm_unpacklo_epi32(a0, a1); + const __m128i a23 = _mm_unpacklo_epi32(a2, a3); + const __m128i b01 = _mm_unpacklo_epi32(b0, b1); + const __m128i b23 = _mm_unpacklo_epi32(b2, b3); + // Convert to 16b. + const __m128i a01s = _mm_unpacklo_epi8(a01, zero); + const __m128i a23s = _mm_unpacklo_epi8(a23, zero); + const __m128i b01s = _mm_unpacklo_epi8(b01, zero); + const __m128i b23s = _mm_unpacklo_epi8(b23, zero); + // subtract, square and accumulate + const __m128i d0 = _mm_subs_epi16(a01s, b01s); + const __m128i d1 = _mm_subs_epi16(a23s, b23s); + const __m128i e0 = _mm_madd_epi16(d0, d0); + const __m128i e1 = _mm_madd_epi16(d1, d1); + const __m128i sum = _mm_add_epi32(e0, e1); + + int32_t tmp[4]; + _mm_storeu_si128((__m128i*)tmp, sum); + return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); +} + +//------------------------------------------------------------------------------ + +static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) { + const __m128i mask = _mm_set1_epi16(0x00ff); + const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); + const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); + const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); + const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); + const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte + const __m128i b1 = _mm_srli_epi16(a1, 8); + const __m128i b2 = _mm_srli_epi16(a2, 8); + const __m128i b3 = _mm_srli_epi16(a3, 8); + const __m128i c0 = _mm_and_si128(a0, mask); // lo byte + const __m128i c1 = _mm_and_si128(a1, mask); + const __m128i c2 = _mm_and_si128(a2, mask); + const __m128i c3 = _mm_and_si128(a3, mask); + const __m128i d0 = _mm_add_epi32(b0, c0); + const __m128i d1 = _mm_add_epi32(b1, c1); + const __m128i d2 = _mm_add_epi32(b2, c2); + const __m128i d3 = _mm_add_epi32(b3, c3); + const __m128i e0 = _mm_add_epi32(d0, d1); + const __m128i e1 = _mm_add_epi32(d2, d3); + const __m128i f0 = _mm_add_epi32(e0, e1); + uint16_t tmp[8]; + _mm_storeu_si128((__m128i*)tmp, f0); + dc[0] = tmp[0] + tmp[1]; + dc[1] = tmp[2] + tmp[3]; + dc[2] = tmp[4] + tmp[5]; + dc[3] = tmp[6] + tmp[7]; +} + +//------------------------------------------------------------------------------ +// Texture distortion +// +// We try to match the spectral content (weighted) between source and +// reconstructed samples. + +// Hadamard transform +// Returns the weighted sum of the absolute value of transformed coefficients. +// w[] contains a row-major 4 by 4 symmetric matrix. +static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB, + const uint16_t* const w) { + int32_t sum[4]; + __m128i tmp_0, tmp_1, tmp_2, tmp_3; + const __m128i zero = _mm_setzero_si128(); + + // Load and combine inputs. + { + const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); + const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); + const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); + const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); + const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); + const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); + const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); + const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); + + // Combine inA and inB (we'll do two transforms in parallel). + const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); + const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); + const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); + const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); + tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); + tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); + tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); + tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); + // a00 a01 a02 a03 b00 b01 b02 b03 + // a10 a11 a12 a13 b10 b11 b12 b13 + // a20 a21 a22 a23 b20 b21 b22 b23 + // a30 a31 a32 a33 b30 b31 b32 b33 + } + + // Vertical pass first to avoid a transpose (vertical and horizontal passes + // are commutative because w/kWeightY is symmetric) and subsequent transpose. + { + // Calculate a and b (two 4x4 at once). + const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); + const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); + const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); + const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); + const __m128i b0 = _mm_add_epi16(a0, a1); + const __m128i b1 = _mm_add_epi16(a3, a2); + const __m128i b2 = _mm_sub_epi16(a3, a2); + const __m128i b3 = _mm_sub_epi16(a0, a1); + // a00 a01 a02 a03 b00 b01 b02 b03 + // a10 a11 a12 a13 b10 b11 b12 b13 + // a20 a21 a22 a23 b20 b21 b22 b23 + // a30 a31 a32 a33 b30 b31 b32 b33 + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); + } + + // Horizontal pass and difference of weighted sums. + { + // Load all inputs. + const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); + const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); + + // Calculate a and b (two 4x4 at once). + const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); + const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); + const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); + const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); + const __m128i b0 = _mm_add_epi16(a0, a1); + const __m128i b1 = _mm_add_epi16(a3, a2); + const __m128i b2 = _mm_sub_epi16(a3, a2); + const __m128i b3 = _mm_sub_epi16(a0, a1); + + // Separate the transforms of inA and inB. + __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); + __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); + __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); + __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); + + { + const __m128i d0 = _mm_sub_epi16(zero, A_b0); + const __m128i d1 = _mm_sub_epi16(zero, A_b2); + const __m128i d2 = _mm_sub_epi16(zero, B_b0); + const __m128i d3 = _mm_sub_epi16(zero, B_b2); + A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b + A_b2 = _mm_max_epi16(A_b2, d1); + B_b0 = _mm_max_epi16(B_b0, d2); + B_b2 = _mm_max_epi16(B_b2, d3); + } + + // weighted sums + A_b0 = _mm_madd_epi16(A_b0, w_0); + A_b2 = _mm_madd_epi16(A_b2, w_8); + B_b0 = _mm_madd_epi16(B_b0, w_0); + B_b2 = _mm_madd_epi16(B_b2, w_8); + A_b0 = _mm_add_epi32(A_b0, A_b2); + B_b0 = _mm_add_epi32(B_b0, B_b2); + + // difference of weighted sums + A_b0 = _mm_sub_epi32(A_b0, B_b0); + _mm_storeu_si128((__m128i*)&sum[0], A_b0); + } + return sum[0] + sum[1] + sum[2] + sum[3]; +} + +static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + const int diff_sum = TTransform_SSE2(a, b, w); + return abs(diff_sum) >> 5; +} + +static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_SSE2(a + x + y, b + x + y, w); + } + } + return D; +} + +//------------------------------------------------------------------------------ +// Quantization +// + +static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16], + const uint16_t* const sharpen, + const VP8Matrix* const mtx) { + const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); + const __m128i zero = _mm_setzero_si128(); + __m128i coeff0, coeff8; + __m128i out0, out8; + __m128i packed_out; + + // Load all inputs. + __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); + __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); + const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); + const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); + const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); + const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); + + // extract sign(in) (0x0000 if positive, 0xffff if negative) + const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); + const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); + + // coeff = abs(in) = (in ^ sign) - sign + coeff0 = _mm_xor_si128(in0, sign0); + coeff8 = _mm_xor_si128(in8, sign8); + coeff0 = _mm_sub_epi16(coeff0, sign0); + coeff8 = _mm_sub_epi16(coeff8, sign8); + + // coeff = abs(in) + sharpen + if (sharpen != NULL) { + const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); + const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); + coeff0 = _mm_add_epi16(coeff0, sharpen0); + coeff8 = _mm_add_epi16(coeff8, sharpen8); + } + + // out = (coeff * iQ + B) >> QFIX + { + // doing calculations with 32b precision (QFIX=17) + // out = (coeff * iQ) + const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); + const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); + const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); + const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); + __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); + __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); + __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); + __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); + // out = (coeff * iQ + B) + const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); + const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); + const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); + const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); + out_00 = _mm_add_epi32(out_00, bias_00); + out_04 = _mm_add_epi32(out_04, bias_04); + out_08 = _mm_add_epi32(out_08, bias_08); + out_12 = _mm_add_epi32(out_12, bias_12); + // out = QUANTDIV(coeff, iQ, B, QFIX) + out_00 = _mm_srai_epi32(out_00, QFIX); + out_04 = _mm_srai_epi32(out_04, QFIX); + out_08 = _mm_srai_epi32(out_08, QFIX); + out_12 = _mm_srai_epi32(out_12, QFIX); + + // pack result as 16b + out0 = _mm_packs_epi32(out_00, out_04); + out8 = _mm_packs_epi32(out_08, out_12); + + // if (coeff > 2047) coeff = 2047 + out0 = _mm_min_epi16(out0, max_coeff_2047); + out8 = _mm_min_epi16(out8, max_coeff_2047); + } + + // get sign back (if (sign[j]) out_n = -out_n) + out0 = _mm_xor_si128(out0, sign0); + out8 = _mm_xor_si128(out8, sign8); + out0 = _mm_sub_epi16(out0, sign0); + out8 = _mm_sub_epi16(out8, sign8); + + // in = out * Q + in0 = _mm_mullo_epi16(out0, q0); + in8 = _mm_mullo_epi16(out8, q8); + + _mm_storeu_si128((__m128i*)&in[0], in0); + _mm_storeu_si128((__m128i*)&in[8], in8); + + // zigzag the output before storing it. + // + // The zigzag pattern can almost be reproduced with a small sequence of + // shuffles. After it, we only need to swap the 7th (ending up in third + // position instead of twelfth) and 8th values. + { + __m128i outZ0, outZ8; + outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); + outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); + outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); + outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); + outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); + outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); + _mm_storeu_si128((__m128i*)&out[0], outZ0); + _mm_storeu_si128((__m128i*)&out[8], outZ8); + packed_out = _mm_packs_epi16(outZ0, outZ8); + } + { + const int16_t outZ_12 = out[12]; + const int16_t outZ_3 = out[3]; + out[3] = outZ_12; + out[12] = outZ_3; + } + + // detect if all 'out' values are zeroes or not + return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); +} + +static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx); +} + +static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + return DoQuantizeBlock_SSE2(in, out, NULL, mtx); +} + +static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + const uint16_t* const sharpen = &mtx->sharpen_[0]; + nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; + nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; + return nz; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { + VP8CollectHistogram = CollectHistogram_SSE2; + VP8EncPredLuma16 = Intra16Preds_SSE2; + VP8EncPredChroma8 = IntraChromaPreds_SSE2; + VP8EncPredLuma4 = Intra4Preds_SSE2; + VP8EncQuantizeBlock = QuantizeBlock_SSE2; + VP8EncQuantize2Blocks = Quantize2Blocks_SSE2; + VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2; + VP8ITransform = ITransform_SSE2; + VP8FTransform = FTransform_SSE2; + VP8FTransform2 = FTransform2_SSE2; + VP8FTransformWHT = FTransformWHT_SSE2; + VP8SSE16x16 = SSE16x16_SSE2; + VP8SSE16x8 = SSE16x8_SSE2; + VP8SSE8x8 = SSE8x8_SSE2; + VP8SSE4x4 = SSE4x4_SSE2; + VP8TDisto4x4 = Disto4x4_SSE2; + VP8TDisto16x16 = Disto16x16_SSE2; + VP8Mean16x4 = Mean16x4_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/enc_sse41.c b/media/libwebp/src/dsp/enc_sse41.c new file mode 100644 index 0000000000..924035a644 --- /dev/null +++ b/media/libwebp/src/dsp/enc_sse41.c @@ -0,0 +1,339 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE4 version of some encoding functions. +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) +#include <smmintrin.h> +#include <stdlib.h> // for abs() + +#include "src/dsp/common_sse2.h" +#include "src/enc/vp8i_enc.h" + +//------------------------------------------------------------------------------ +// Compute susceptibility based on DCT-coeff histograms. + +static void CollectHistogram_SSE41(const uint8_t* ref, const uint8_t* pred, + int start_block, int end_block, + VP8Histogram* const histo) { + const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); + int j; + int distribution[MAX_COEFF_THRESH + 1] = { 0 }; + for (j = start_block; j < end_block; ++j) { + int16_t out[16]; + int k; + + VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); + + // Convert coefficients to bin (within out[]). + { + // Load. + const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); + const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); + // v = abs(out) >> 3 + const __m128i abs0 = _mm_abs_epi16(out0); + const __m128i abs1 = _mm_abs_epi16(out1); + const __m128i v0 = _mm_srai_epi16(abs0, 3); + const __m128i v1 = _mm_srai_epi16(abs1, 3); + // bin = min(v, MAX_COEFF_THRESH) + const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); + const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); + // Store. + _mm_storeu_si128((__m128i*)&out[0], bin0); + _mm_storeu_si128((__m128i*)&out[8], bin1); + } + + // Convert coefficients to bin. + for (k = 0; k < 16; ++k) { + ++distribution[out[k]]; + } + } + VP8SetHistogramData(distribution, histo); +} + +//------------------------------------------------------------------------------ +// Texture distortion +// +// We try to match the spectral content (weighted) between source and +// reconstructed samples. + +// Hadamard transform +// Returns the weighted sum of the absolute value of transformed coefficients. +// w[] contains a row-major 4 by 4 symmetric matrix. +static int TTransform_SSE41(const uint8_t* inA, const uint8_t* inB, + const uint16_t* const w) { + int32_t sum[4]; + __m128i tmp_0, tmp_1, tmp_2, tmp_3; + + // Load and combine inputs. + { + const __m128i inA_0 = _mm_loadu_si128((const __m128i*)&inA[BPS * 0]); + const __m128i inA_1 = _mm_loadu_si128((const __m128i*)&inA[BPS * 1]); + const __m128i inA_2 = _mm_loadu_si128((const __m128i*)&inA[BPS * 2]); + // In SSE4.1, with gcc 4.8 at least (maybe other versions), + // _mm_loadu_si128 is faster than _mm_loadl_epi64. But for the last lump + // of inA and inB, _mm_loadl_epi64 is still used not to have an out of + // bound read. + const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); + const __m128i inB_0 = _mm_loadu_si128((const __m128i*)&inB[BPS * 0]); + const __m128i inB_1 = _mm_loadu_si128((const __m128i*)&inB[BPS * 1]); + const __m128i inB_2 = _mm_loadu_si128((const __m128i*)&inB[BPS * 2]); + const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); + + // Combine inA and inB (we'll do two transforms in parallel). + const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); + const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); + const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); + const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); + tmp_0 = _mm_cvtepu8_epi16(inAB_0); + tmp_1 = _mm_cvtepu8_epi16(inAB_1); + tmp_2 = _mm_cvtepu8_epi16(inAB_2); + tmp_3 = _mm_cvtepu8_epi16(inAB_3); + // a00 a01 a02 a03 b00 b01 b02 b03 + // a10 a11 a12 a13 b10 b11 b12 b13 + // a20 a21 a22 a23 b20 b21 b22 b23 + // a30 a31 a32 a33 b30 b31 b32 b33 + } + + // Vertical pass first to avoid a transpose (vertical and horizontal passes + // are commutative because w/kWeightY is symmetric) and subsequent transpose. + { + // Calculate a and b (two 4x4 at once). + const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); + const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); + const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); + const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); + const __m128i b0 = _mm_add_epi16(a0, a1); + const __m128i b1 = _mm_add_epi16(a3, a2); + const __m128i b2 = _mm_sub_epi16(a3, a2); + const __m128i b3 = _mm_sub_epi16(a0, a1); + // a00 a01 a02 a03 b00 b01 b02 b03 + // a10 a11 a12 a13 b10 b11 b12 b13 + // a20 a21 a22 a23 b20 b21 b22 b23 + // a30 a31 a32 a33 b30 b31 b32 b33 + + // Transpose the two 4x4. + VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); + } + + // Horizontal pass and difference of weighted sums. + { + // Load all inputs. + const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); + const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); + + // Calculate a and b (two 4x4 at once). + const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); + const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); + const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); + const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); + const __m128i b0 = _mm_add_epi16(a0, a1); + const __m128i b1 = _mm_add_epi16(a3, a2); + const __m128i b2 = _mm_sub_epi16(a3, a2); + const __m128i b3 = _mm_sub_epi16(a0, a1); + + // Separate the transforms of inA and inB. + __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); + __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); + __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); + __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); + + A_b0 = _mm_abs_epi16(A_b0); + A_b2 = _mm_abs_epi16(A_b2); + B_b0 = _mm_abs_epi16(B_b0); + B_b2 = _mm_abs_epi16(B_b2); + + // weighted sums + A_b0 = _mm_madd_epi16(A_b0, w_0); + A_b2 = _mm_madd_epi16(A_b2, w_8); + B_b0 = _mm_madd_epi16(B_b0, w_0); + B_b2 = _mm_madd_epi16(B_b2, w_8); + A_b0 = _mm_add_epi32(A_b0, A_b2); + B_b0 = _mm_add_epi32(B_b0, B_b2); + + // difference of weighted sums + A_b2 = _mm_sub_epi32(A_b0, B_b0); + _mm_storeu_si128((__m128i*)&sum[0], A_b2); + } + return sum[0] + sum[1] + sum[2] + sum[3]; +} + +static int Disto4x4_SSE41(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + const int diff_sum = TTransform_SSE41(a, b, w); + return abs(diff_sum) >> 5; +} + +static int Disto16x16_SSE41(const uint8_t* const a, const uint8_t* const b, + const uint16_t* const w) { + int D = 0; + int x, y; + for (y = 0; y < 16 * BPS; y += 4 * BPS) { + for (x = 0; x < 16; x += 4) { + D += Disto4x4_SSE41(a + x + y, b + x + y, w); + } + } + return D; +} + +//------------------------------------------------------------------------------ +// Quantization +// + +// Generates a pshufb constant for shuffling 16b words. +#define PSHUFB_CST(A,B,C,D,E,F,G,H) \ + _mm_set_epi8(2 * (H) + 1, 2 * (H) + 0, 2 * (G) + 1, 2 * (G) + 0, \ + 2 * (F) + 1, 2 * (F) + 0, 2 * (E) + 1, 2 * (E) + 0, \ + 2 * (D) + 1, 2 * (D) + 0, 2 * (C) + 1, 2 * (C) + 0, \ + 2 * (B) + 1, 2 * (B) + 0, 2 * (A) + 1, 2 * (A) + 0) + +static WEBP_INLINE int DoQuantizeBlock_SSE41(int16_t in[16], int16_t out[16], + const uint16_t* const sharpen, + const VP8Matrix* const mtx) { + const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); + const __m128i zero = _mm_setzero_si128(); + __m128i out0, out8; + __m128i packed_out; + + // Load all inputs. + __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); + __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); + const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); + const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); + const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); + const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); + + // coeff = abs(in) + __m128i coeff0 = _mm_abs_epi16(in0); + __m128i coeff8 = _mm_abs_epi16(in8); + + // coeff = abs(in) + sharpen + if (sharpen != NULL) { + const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); + const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); + coeff0 = _mm_add_epi16(coeff0, sharpen0); + coeff8 = _mm_add_epi16(coeff8, sharpen8); + } + + // out = (coeff * iQ + B) >> QFIX + { + // doing calculations with 32b precision (QFIX=17) + // out = (coeff * iQ) + const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); + const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); + const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); + const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); + __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); + __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); + __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); + __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); + // out = (coeff * iQ + B) + const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); + const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); + const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); + const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); + out_00 = _mm_add_epi32(out_00, bias_00); + out_04 = _mm_add_epi32(out_04, bias_04); + out_08 = _mm_add_epi32(out_08, bias_08); + out_12 = _mm_add_epi32(out_12, bias_12); + // out = QUANTDIV(coeff, iQ, B, QFIX) + out_00 = _mm_srai_epi32(out_00, QFIX); + out_04 = _mm_srai_epi32(out_04, QFIX); + out_08 = _mm_srai_epi32(out_08, QFIX); + out_12 = _mm_srai_epi32(out_12, QFIX); + + // pack result as 16b + out0 = _mm_packs_epi32(out_00, out_04); + out8 = _mm_packs_epi32(out_08, out_12); + + // if (coeff > 2047) coeff = 2047 + out0 = _mm_min_epi16(out0, max_coeff_2047); + out8 = _mm_min_epi16(out8, max_coeff_2047); + } + + // put sign back + out0 = _mm_sign_epi16(out0, in0); + out8 = _mm_sign_epi16(out8, in8); + + // in = out * Q + in0 = _mm_mullo_epi16(out0, q0); + in8 = _mm_mullo_epi16(out8, q8); + + _mm_storeu_si128((__m128i*)&in[0], in0); + _mm_storeu_si128((__m128i*)&in[8], in8); + + // zigzag the output before storing it. The re-ordering is: + // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 + // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15 + // There's only two misplaced entries ([8] and [7]) that are crossing the + // reg's boundaries. + // We use pshufb instead of pshuflo/pshufhi. + { + const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6); + const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1); + const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo); + const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7 + const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7); + const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1); + const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi); + const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8 + const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8); + const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7); + _mm_storeu_si128((__m128i*)&out[0], out_z0); + _mm_storeu_si128((__m128i*)&out[8], out_z8); + packed_out = _mm_packs_epi16(out_z0, out_z8); + } + + // detect if all 'out' values are zeroes or not + return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); +} + +#undef PSHUFB_CST + +static int QuantizeBlock_SSE41(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + return DoQuantizeBlock_SSE41(in, out, &mtx->sharpen_[0], mtx); +} + +static int QuantizeBlockWHT_SSE41(int16_t in[16], int16_t out[16], + const VP8Matrix* const mtx) { + return DoQuantizeBlock_SSE41(in, out, NULL, mtx); +} + +static int Quantize2Blocks_SSE41(int16_t in[32], int16_t out[32], + const VP8Matrix* const mtx) { + int nz; + const uint16_t* const sharpen = &mtx->sharpen_[0]; + nz = DoQuantizeBlock_SSE41(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; + nz |= DoQuantizeBlock_SSE41(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; + return nz; +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8EncDspInitSSE41(void); +WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE41(void) { + VP8CollectHistogram = CollectHistogram_SSE41; + VP8EncQuantizeBlock = QuantizeBlock_SSE41; + VP8EncQuantize2Blocks = Quantize2Blocks_SSE41; + VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE41; + VP8TDisto4x4 = Disto4x4_SSE41; + VP8TDisto16x16 = Disto16x16_SSE41; +} + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(VP8EncDspInitSSE41) + +#endif // WEBP_USE_SSE41 diff --git a/media/libwebp/src/dsp/filters.c b/media/libwebp/src/dsp/filters.c new file mode 100644 index 0000000000..4506567ba3 --- /dev/null +++ b/media/libwebp/src/dsp/filters.c @@ -0,0 +1,287 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Spatial prediction using various filters +// +// Author: Urvang (urvang@google.com) + +#include "src/dsp/dsp.h" +#include <assert.h> +#include <stdlib.h> +#include <string.h> + +//------------------------------------------------------------------------------ +// Helpful macro. + +# define SANITY_CHECK(in, out) \ + assert((in) != NULL); \ + assert((out) != NULL); \ + assert(width > 0); \ + assert(height > 0); \ + assert(stride >= width); \ + assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ + (void)height; // Silence unused warning. + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE void PredictLine_C(const uint8_t* src, const uint8_t* pred, + uint8_t* dst, int length, int inverse) { + int i; + if (inverse) { + for (i = 0; i < length; ++i) dst[i] = (uint8_t)(src[i] + pred[i]); + } else { + for (i = 0; i < length; ++i) dst[i] = (uint8_t)(src[i] - pred[i]); + } +} + +//------------------------------------------------------------------------------ +// Horizontal filter. + +static WEBP_INLINE void DoHorizontalFilter_C(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + int inverse, uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = inverse ? out : in; + + if (row == 0) { + // Leftmost pixel is the same as input for topmost scanline. + out[0] = in[0]; + PredictLine_C(in + 1, preds, out + 1, width - 1, inverse); + row = 1; + preds += stride; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + // Leftmost pixel is predicted from above. + PredictLine_C(in, preds - stride, out, 1, inverse); + PredictLine_C(in + 1, preds, out + 1, width - 1, inverse); + ++row; + preds += stride; + in += stride; + out += stride; + } +} + +//------------------------------------------------------------------------------ +// Vertical filter. + +static WEBP_INLINE void DoVerticalFilter_C(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + int inverse, uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = inverse ? out : in; + + if (row == 0) { + // Very first top-left pixel is copied. + out[0] = in[0]; + // Rest of top scan-line is left-predicted. + PredictLine_C(in + 1, preds, out + 1, width - 1, inverse); + row = 1; + in += stride; + out += stride; + } else { + // We are starting from in-between. Make sure 'preds' points to prev row. + preds -= stride; + } + + // Filter line-by-line. + while (row < last_row) { + PredictLine_C(in, preds, out, width, inverse); + ++row; + preds += stride; + in += stride; + out += stride; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ +// Gradient filter. + +static WEBP_INLINE int GradientPredictor_C(uint8_t a, uint8_t b, uint8_t c) { + const int g = a + b - c; + return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit +} + +#if !WEBP_NEON_OMIT_C_CODE +static WEBP_INLINE void DoGradientFilter_C(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + int inverse, uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = inverse ? out : in; + + // left prediction for top scan-line + if (row == 0) { + out[0] = in[0]; + PredictLine_C(in + 1, preds, out + 1, width - 1, inverse); + row = 1; + preds += stride; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + int w; + // leftmost pixel: predict from above. + PredictLine_C(in, preds - stride, out, 1, inverse); + for (w = 1; w < width; ++w) { + const int pred = GradientPredictor_C(preds[w - 1], + preds[w - stride], + preds[w - stride - 1]); + out[w] = (uint8_t)(in[w] + (inverse ? pred : -pred)); + } + ++row; + preds += stride; + in += stride; + out += stride; + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +#undef SANITY_CHECK + +//------------------------------------------------------------------------------ + +#if !WEBP_NEON_OMIT_C_CODE +static void HorizontalFilter_C(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoHorizontalFilter_C(data, width, height, stride, 0, height, 0, + filtered_data); +} + +static void VerticalFilter_C(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoVerticalFilter_C(data, width, height, stride, 0, height, 0, filtered_data); +} + +static void GradientFilter_C(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoGradientFilter_C(data, width, height, stride, 0, height, 0, filtered_data); +} +#endif // !WEBP_NEON_OMIT_C_CODE + +//------------------------------------------------------------------------------ + +static void HorizontalUnfilter_C(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + uint8_t pred = (prev == NULL) ? 0 : prev[0]; + int i; + for (i = 0; i < width; ++i) { + out[i] = (uint8_t)(pred + in[i]); + pred = out[i]; + } +} + +#if !WEBP_NEON_OMIT_C_CODE +static void VerticalUnfilter_C(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_C(NULL, in, out, width); + } else { + int i; + for (i = 0; i < width; ++i) out[i] = (uint8_t)(prev[i] + in[i]); + } +} +#endif // !WEBP_NEON_OMIT_C_CODE + +static void GradientUnfilter_C(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_C(NULL, in, out, width); + } else { + uint8_t top = prev[0], top_left = top, left = top; + int i; + for (i = 0; i < width; ++i) { + top = prev[i]; // need to read this first, in case prev==out + left = (uint8_t)(in[i] + GradientPredictor_C(left, top, top_left)); + top_left = top; + out[i] = left; + } + } +} + +//------------------------------------------------------------------------------ +// Init function + +WebPFilterFunc WebPFilters[WEBP_FILTER_LAST]; +WebPUnfilterFunc WebPUnfilters[WEBP_FILTER_LAST]; + +extern void VP8FiltersInitMIPSdspR2(void); +extern void VP8FiltersInitMSA(void); +extern void VP8FiltersInitNEON(void); +extern void VP8FiltersInitSSE2(void); + +WEBP_DSP_INIT_FUNC(VP8FiltersInit) { + WebPUnfilters[WEBP_FILTER_NONE] = NULL; +#if !WEBP_NEON_OMIT_C_CODE + WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_C; + WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_C; +#endif + WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_C; + + WebPFilters[WEBP_FILTER_NONE] = NULL; +#if !WEBP_NEON_OMIT_C_CODE + WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_C; + WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_C; + WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_C; +#endif + + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8FiltersInitSSE2(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8FiltersInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8FiltersInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8FiltersInitNEON(); + } +#endif + + assert(WebPUnfilters[WEBP_FILTER_HORIZONTAL] != NULL); + assert(WebPUnfilters[WEBP_FILTER_VERTICAL] != NULL); + assert(WebPUnfilters[WEBP_FILTER_GRADIENT] != NULL); + assert(WebPFilters[WEBP_FILTER_HORIZONTAL] != NULL); + assert(WebPFilters[WEBP_FILTER_VERTICAL] != NULL); + assert(WebPFilters[WEBP_FILTER_GRADIENT] != NULL); +} diff --git a/media/libwebp/src/dsp/filters_mips_dsp_r2.c b/media/libwebp/src/dsp/filters_mips_dsp_r2.c new file mode 100644 index 0000000000..9382b12823 --- /dev/null +++ b/media/libwebp/src/dsp/filters_mips_dsp_r2.c @@ -0,0 +1,402 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Spatial prediction using various filters +// +// Author(s): Branimir Vasic (branimir.vasic@imgtec.com) +// Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/dsp.h" +#include <assert.h> +#include <stdlib.h> +#include <string.h> + +//------------------------------------------------------------------------------ +// Helpful macro. + +# define SANITY_CHECK(in, out) \ + assert(in != NULL); \ + assert(out != NULL); \ + assert(width > 0); \ + assert(height > 0); \ + assert(stride >= width); \ + assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ + (void)height; // Silence unused warning. + +#define DO_PREDICT_LINE(SRC, DST, LENGTH, INVERSE) do { \ + const uint8_t* psrc = (uint8_t*)(SRC); \ + uint8_t* pdst = (uint8_t*)(DST); \ + const int ilength = (int)(LENGTH); \ + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; \ + __asm__ volatile ( \ + ".set push \n\t" \ + ".set noreorder \n\t" \ + "srl %[temp0], %[length], 2 \n\t" \ + "beqz %[temp0], 4f \n\t" \ + " andi %[temp6], %[length], 3 \n\t" \ + ".if " #INVERSE " \n\t" \ + "1: \n\t" \ + "lbu %[temp1], -1(%[dst]) \n\t" \ + "lbu %[temp2], 0(%[src]) \n\t" \ + "lbu %[temp3], 1(%[src]) \n\t" \ + "lbu %[temp4], 2(%[src]) \n\t" \ + "lbu %[temp5], 3(%[src]) \n\t" \ + "addu %[temp1], %[temp1], %[temp2] \n\t" \ + "addu %[temp2], %[temp1], %[temp3] \n\t" \ + "addu %[temp3], %[temp2], %[temp4] \n\t" \ + "addu %[temp4], %[temp3], %[temp5] \n\t" \ + "sb %[temp1], 0(%[dst]) \n\t" \ + "sb %[temp2], 1(%[dst]) \n\t" \ + "sb %[temp3], 2(%[dst]) \n\t" \ + "sb %[temp4], 3(%[dst]) \n\t" \ + "addiu %[src], %[src], 4 \n\t" \ + "addiu %[temp0], %[temp0], -1 \n\t" \ + "bnez %[temp0], 1b \n\t" \ + " addiu %[dst], %[dst], 4 \n\t" \ + ".else \n\t" \ + "1: \n\t" \ + "ulw %[temp1], -1(%[src]) \n\t" \ + "ulw %[temp2], 0(%[src]) \n\t" \ + "addiu %[src], %[src], 4 \n\t" \ + "addiu %[temp0], %[temp0], -1 \n\t" \ + "subu.qb %[temp3], %[temp2], %[temp1] \n\t" \ + "usw %[temp3], 0(%[dst]) \n\t" \ + "bnez %[temp0], 1b \n\t" \ + " addiu %[dst], %[dst], 4 \n\t" \ + ".endif \n\t" \ + "4: \n\t" \ + "beqz %[temp6], 3f \n\t" \ + " nop \n\t" \ + "2: \n\t" \ + "lbu %[temp2], 0(%[src]) \n\t" \ + ".if " #INVERSE " \n\t" \ + "lbu %[temp1], -1(%[dst]) \n\t" \ + "addu %[temp3], %[temp1], %[temp2] \n\t" \ + ".else \n\t" \ + "lbu %[temp1], -1(%[src]) \n\t" \ + "subu %[temp3], %[temp1], %[temp2] \n\t" \ + ".endif \n\t" \ + "addiu %[src], %[src], 1 \n\t" \ + "sb %[temp3], 0(%[dst]) \n\t" \ + "addiu %[temp6], %[temp6], -1 \n\t" \ + "bnez %[temp6], 2b \n\t" \ + " addiu %[dst], %[dst], 1 \n\t" \ + "3: \n\t" \ + ".set pop \n\t" \ + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), \ + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), \ + [temp6]"=&r"(temp6), [dst]"+&r"(pdst), [src]"+&r"(psrc) \ + : [length]"r"(ilength) \ + : "memory" \ + ); \ + } while (0) + +static WEBP_INLINE void PredictLine_MIPSdspR2(const uint8_t* src, uint8_t* dst, + int length) { + DO_PREDICT_LINE(src, dst, length, 0); +} + +#define DO_PREDICT_LINE_VERTICAL(SRC, PRED, DST, LENGTH, INVERSE) do { \ + const uint8_t* psrc = (uint8_t*)(SRC); \ + const uint8_t* ppred = (uint8_t*)(PRED); \ + uint8_t* pdst = (uint8_t*)(DST); \ + const int ilength = (int)(LENGTH); \ + int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; \ + __asm__ volatile ( \ + ".set push \n\t" \ + ".set noreorder \n\t" \ + "srl %[temp0], %[length], 0x3 \n\t" \ + "beqz %[temp0], 4f \n\t" \ + " andi %[temp7], %[length], 0x7 \n\t" \ + "1: \n\t" \ + "ulw %[temp1], 0(%[src]) \n\t" \ + "ulw %[temp2], 0(%[pred]) \n\t" \ + "ulw %[temp3], 4(%[src]) \n\t" \ + "ulw %[temp4], 4(%[pred]) \n\t" \ + "addiu %[src], %[src], 8 \n\t" \ + ".if " #INVERSE " \n\t" \ + "addu.qb %[temp5], %[temp1], %[temp2] \n\t" \ + "addu.qb %[temp6], %[temp3], %[temp4] \n\t" \ + ".else \n\t" \ + "subu.qb %[temp5], %[temp1], %[temp2] \n\t" \ + "subu.qb %[temp6], %[temp3], %[temp4] \n\t" \ + ".endif \n\t" \ + "addiu %[pred], %[pred], 8 \n\t" \ + "usw %[temp5], 0(%[dst]) \n\t" \ + "usw %[temp6], 4(%[dst]) \n\t" \ + "addiu %[temp0], %[temp0], -1 \n\t" \ + "bnez %[temp0], 1b \n\t" \ + " addiu %[dst], %[dst], 8 \n\t" \ + "4: \n\t" \ + "beqz %[temp7], 3f \n\t" \ + " nop \n\t" \ + "2: \n\t" \ + "lbu %[temp1], 0(%[src]) \n\t" \ + "lbu %[temp2], 0(%[pred]) \n\t" \ + "addiu %[src], %[src], 1 \n\t" \ + "addiu %[pred], %[pred], 1 \n\t" \ + ".if " #INVERSE " \n\t" \ + "addu %[temp3], %[temp1], %[temp2] \n\t" \ + ".else \n\t" \ + "subu %[temp3], %[temp1], %[temp2] \n\t" \ + ".endif \n\t" \ + "sb %[temp3], 0(%[dst]) \n\t" \ + "addiu %[temp7], %[temp7], -1 \n\t" \ + "bnez %[temp7], 2b \n\t" \ + " addiu %[dst], %[dst], 1 \n\t" \ + "3: \n\t" \ + ".set pop \n\t" \ + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), \ + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), \ + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), [pred]"+&r"(ppred), \ + [dst]"+&r"(pdst), [src]"+&r"(psrc) \ + : [length]"r"(ilength) \ + : "memory" \ + ); \ + } while (0) + +#define PREDICT_LINE_ONE_PASS(SRC, PRED, DST) do { \ + int temp1, temp2, temp3; \ + __asm__ volatile ( \ + "lbu %[temp1], 0(%[src]) \n\t" \ + "lbu %[temp2], 0(%[pred]) \n\t" \ + "subu %[temp3], %[temp1], %[temp2] \n\t" \ + "sb %[temp3], 0(%[dst]) \n\t" \ + : [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3) \ + : [pred]"r"((PRED)), [dst]"r"((DST)), [src]"r"((SRC)) \ + : "memory" \ + ); \ + } while (0) + +//------------------------------------------------------------------------------ +// Horizontal filter. + +#define FILTER_LINE_BY_LINE do { \ + while (row < last_row) { \ + PREDICT_LINE_ONE_PASS(in, preds - stride, out); \ + DO_PREDICT_LINE(in + 1, out + 1, width - 1, 0); \ + ++row; \ + preds += stride; \ + in += stride; \ + out += stride; \ + } \ + } while (0) + +static WEBP_INLINE void DoHorizontalFilter_MIPSdspR2(const uint8_t* in, + int width, int height, + int stride, + int row, int num_rows, + uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = in; + + if (row == 0) { + // Leftmost pixel is the same as input for topmost scanline. + out[0] = in[0]; + PredictLine_MIPSdspR2(in + 1, out + 1, width - 1); + row = 1; + preds += stride; + in += stride; + out += stride; + } + + // Filter line-by-line. + FILTER_LINE_BY_LINE; +} +#undef FILTER_LINE_BY_LINE + +static void HorizontalFilter_MIPSdspR2(const uint8_t* data, + int width, int height, + int stride, uint8_t* filtered_data) { + DoHorizontalFilter_MIPSdspR2(data, width, height, stride, 0, height, + filtered_data); +} + +//------------------------------------------------------------------------------ +// Vertical filter. + +#define FILTER_LINE_BY_LINE do { \ + while (row < last_row) { \ + DO_PREDICT_LINE_VERTICAL(in, preds, out, width, 0); \ + ++row; \ + preds += stride; \ + in += stride; \ + out += stride; \ + } \ + } while (0) + +static WEBP_INLINE void DoVerticalFilter_MIPSdspR2(const uint8_t* in, + int width, int height, + int stride, + int row, int num_rows, + uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = in; + + if (row == 0) { + // Very first top-left pixel is copied. + out[0] = in[0]; + // Rest of top scan-line is left-predicted. + PredictLine_MIPSdspR2(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } else { + // We are starting from in-between. Make sure 'preds' points to prev row. + preds -= stride; + } + + // Filter line-by-line. + FILTER_LINE_BY_LINE; +} +#undef FILTER_LINE_BY_LINE + +static void VerticalFilter_MIPSdspR2(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoVerticalFilter_MIPSdspR2(data, width, height, stride, 0, height, + filtered_data); +} + +//------------------------------------------------------------------------------ +// Gradient filter. + +static int GradientPredictor_MIPSdspR2(uint8_t a, uint8_t b, uint8_t c) { + int temp0; + __asm__ volatile ( + "addu %[temp0], %[a], %[b] \n\t" + "subu %[temp0], %[temp0], %[c] \n\t" + "shll_s.w %[temp0], %[temp0], 23 \n\t" + "precrqu_s.qb.ph %[temp0], %[temp0], $zero \n\t" + "srl %[temp0], %[temp0], 24 \n\t" + : [temp0]"=&r"(temp0) + : [a]"r"(a),[b]"r"(b),[c]"r"(c) + ); + return temp0; +} + +#define FILTER_LINE_BY_LINE(PREDS, OPERATION) do { \ + while (row < last_row) { \ + int w; \ + PREDICT_LINE_ONE_PASS(in, PREDS - stride, out); \ + for (w = 1; w < width; ++w) { \ + const int pred = GradientPredictor_MIPSdspR2(PREDS[w - 1], \ + PREDS[w - stride], \ + PREDS[w - stride - 1]); \ + out[w] = in[w] OPERATION pred; \ + } \ + ++row; \ + in += stride; \ + out += stride; \ + } \ + } while (0) + +static void DoGradientFilter_MIPSdspR2(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, uint8_t* out) { + const uint8_t* preds; + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + preds = in; + + // left prediction for top scan-line + if (row == 0) { + out[0] = in[0]; + PredictLine_MIPSdspR2(in + 1, out + 1, width - 1); + row = 1; + preds += stride; + in += stride; + out += stride; + } + + // Filter line-by-line. + FILTER_LINE_BY_LINE(in, -); +} +#undef FILTER_LINE_BY_LINE + +static void GradientFilter_MIPSdspR2(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoGradientFilter_MIPSdspR2(data, width, height, stride, 0, height, + filtered_data); +} + +//------------------------------------------------------------------------------ + +static void HorizontalUnfilter_MIPSdspR2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + out[0] = in[0] + (prev == NULL ? 0 : prev[0]); + DO_PREDICT_LINE(in + 1, out + 1, width - 1, 1); +} + +static void VerticalUnfilter_MIPSdspR2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_MIPSdspR2(NULL, in, out, width); + } else { + DO_PREDICT_LINE_VERTICAL(in, prev, out, width, 1); + } +} + +static void GradientUnfilter_MIPSdspR2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_MIPSdspR2(NULL, in, out, width); + } else { + uint8_t top = prev[0], top_left = top, left = top; + int i; + for (i = 0; i < width; ++i) { + top = prev[i]; // need to read this first, in case prev==dst + left = in[i] + GradientPredictor_MIPSdspR2(left, top, top_left); + top_left = top; + out[i] = left; + } + } +} + +#undef DO_PREDICT_LINE_VERTICAL +#undef PREDICT_LINE_ONE_PASS +#undef DO_PREDICT_LINE +#undef SANITY_CHECK + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8FiltersInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitMIPSdspR2(void) { + WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_MIPSdspR2; + WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_MIPSdspR2; + WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_MIPSdspR2; + + WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_MIPSdspR2; + WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_MIPSdspR2; + WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8FiltersInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/filters_msa.c b/media/libwebp/src/dsp/filters_msa.c new file mode 100644 index 0000000000..14c437d141 --- /dev/null +++ b/media/libwebp/src/dsp/filters_msa.c @@ -0,0 +1,202 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA variant of alpha filters +// +// Author: Prashant Patil (prashant.patil@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include "src/dsp/msa_macro.h" + +#include <assert.h> + +static WEBP_INLINE void PredictLineInverse0(const uint8_t* src, + const uint8_t* pred, + uint8_t* dst, int length) { + v16u8 src0, pred0, dst0; + assert(length >= 0); + while (length >= 32) { + v16u8 src1, pred1, dst1; + LD_UB2(src, 16, src0, src1); + LD_UB2(pred, 16, pred0, pred1); + SUB2(src0, pred0, src1, pred1, dst0, dst1); + ST_UB2(dst0, dst1, dst, 16); + src += 32; + pred += 32; + dst += 32; + length -= 32; + } + if (length > 0) { + int i; + if (length >= 16) { + src0 = LD_UB(src); + pred0 = LD_UB(pred); + dst0 = src0 - pred0; + ST_UB(dst0, dst); + src += 16; + pred += 16; + dst += 16; + length -= 16; + } + for (i = 0; i < length; i++) { + dst[i] = src[i] - pred[i]; + } + } +} + +//------------------------------------------------------------------------------ +// Helpful macro. + +#define SANITY_CHECK(in, out) \ + assert(in != NULL); \ + assert(out != NULL); \ + assert(width > 0); \ + assert(height > 0); \ + assert(stride >= width); + +//------------------------------------------------------------------------------ +// Horrizontal filter + +static void HorizontalFilter_MSA(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + const uint8_t* preds = data; + const uint8_t* in = data; + uint8_t* out = filtered_data; + int row = 1; + SANITY_CHECK(in, out); + + // Leftmost pixel is the same as input for topmost scanline. + out[0] = in[0]; + PredictLineInverse0(in + 1, preds, out + 1, width - 1); + preds += stride; + in += stride; + out += stride; + // Filter line-by-line. + while (row < height) { + // Leftmost pixel is predicted from above. + PredictLineInverse0(in, preds - stride, out, 1); + PredictLineInverse0(in + 1, preds, out + 1, width - 1); + ++row; + preds += stride; + in += stride; + out += stride; + } +} + +//------------------------------------------------------------------------------ +// Gradient filter + +static WEBP_INLINE void PredictLineGradient(const uint8_t* pinput, + const uint8_t* ppred, + uint8_t* poutput, int stride, + int size) { + int w; + const v16i8 zero = { 0 }; + while (size >= 16) { + v16u8 pred0, dst0; + v8i16 a0, a1, b0, b1, c0, c1; + const v16u8 tmp0 = LD_UB(ppred - 1); + const v16u8 tmp1 = LD_UB(ppred - stride); + const v16u8 tmp2 = LD_UB(ppred - stride - 1); + const v16u8 src0 = LD_UB(pinput); + ILVRL_B2_SH(zero, tmp0, a0, a1); + ILVRL_B2_SH(zero, tmp1, b0, b1); + ILVRL_B2_SH(zero, tmp2, c0, c1); + ADD2(a0, b0, a1, b1, a0, a1); + SUB2(a0, c0, a1, c1, a0, a1); + CLIP_SH2_0_255(a0, a1); + pred0 = (v16u8)__msa_pckev_b((v16i8)a1, (v16i8)a0); + dst0 = src0 - pred0; + ST_UB(dst0, poutput); + ppred += 16; + pinput += 16; + poutput += 16; + size -= 16; + } + for (w = 0; w < size; ++w) { + const int pred = ppred[w - 1] + ppred[w - stride] - ppred[w - stride - 1]; + poutput[w] = pinput[w] - (pred < 0 ? 0 : pred > 255 ? 255 : pred); + } +} + + +static void GradientFilter_MSA(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + const uint8_t* in = data; + const uint8_t* preds = data; + uint8_t* out = filtered_data; + int row = 1; + SANITY_CHECK(in, out); + + // left prediction for top scan-line + out[0] = in[0]; + PredictLineInverse0(in + 1, preds, out + 1, width - 1); + preds += stride; + in += stride; + out += stride; + // Filter line-by-line. + while (row < height) { + out[0] = in[0] - preds[- stride]; + PredictLineGradient(preds + 1, in + 1, out + 1, stride, width - 1); + ++row; + preds += stride; + in += stride; + out += stride; + } +} + +//------------------------------------------------------------------------------ +// Vertical filter + +static void VerticalFilter_MSA(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + const uint8_t* in = data; + const uint8_t* preds = data; + uint8_t* out = filtered_data; + int row = 1; + SANITY_CHECK(in, out); + + // Very first top-left pixel is copied. + out[0] = in[0]; + // Rest of top scan-line is left-predicted. + PredictLineInverse0(in + 1, preds, out + 1, width - 1); + in += stride; + out += stride; + + // Filter line-by-line. + while (row < height) { + PredictLineInverse0(in, preds, out, width); + ++row; + preds += stride; + in += stride; + out += stride; + } +} + +#undef SANITY_CHECK + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8FiltersInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitMSA(void) { + WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_MSA; + WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_MSA; + WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_MSA; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(VP8FiltersInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/filters_neon.c b/media/libwebp/src/dsp/filters_neon.c new file mode 100644 index 0000000000..3e6a578ea7 --- /dev/null +++ b/media/libwebp/src/dsp/filters_neon.c @@ -0,0 +1,329 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON variant of alpha filters +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <assert.h> +#include "src/dsp/neon.h" + +//------------------------------------------------------------------------------ +// Helpful macros. + +# define SANITY_CHECK(in, out) \ + assert(in != NULL); \ + assert(out != NULL); \ + assert(width > 0); \ + assert(height > 0); \ + assert(stride >= width); \ + assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ + (void)height; // Silence unused warning. + +// load eight u8 and widen to s16 +#define U8_TO_S16(A) vreinterpretq_s16_u16(vmovl_u8(A)) +#define LOAD_U8_TO_S16(A) U8_TO_S16(vld1_u8(A)) + +// shift left or right by N byte, inserting zeros +#define SHIFT_RIGHT_N_Q(A, N) vextq_u8((A), zero, (N)) +#define SHIFT_LEFT_N_Q(A, N) vextq_u8(zero, (A), (16 - (N)) % 16) + +// rotate left by N bytes +#define ROTATE_LEFT_N(A, N) vext_u8((A), (A), (N)) +// rotate right by N bytes +#define ROTATE_RIGHT_N(A, N) vext_u8((A), (A), (8 - (N)) % 8) + +static void PredictLine_NEON(const uint8_t* src, const uint8_t* pred, + uint8_t* dst, int length) { + int i; + assert(length >= 0); + for (i = 0; i + 16 <= length; i += 16) { + const uint8x16_t A = vld1q_u8(&src[i]); + const uint8x16_t B = vld1q_u8(&pred[i]); + const uint8x16_t C = vsubq_u8(A, B); + vst1q_u8(&dst[i], C); + } + for (; i < length; ++i) dst[i] = src[i] - pred[i]; +} + +// Special case for left-based prediction (when preds==dst-1 or preds==src-1). +static void PredictLineLeft_NEON(const uint8_t* src, uint8_t* dst, int length) { + PredictLine_NEON(src, src - 1, dst, length); +} + +//------------------------------------------------------------------------------ +// Horizontal filter. + +static WEBP_INLINE void DoHorizontalFilter_NEON(const uint8_t* in, + int width, int height, + int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + if (row == 0) { + // Leftmost pixel is the same as input for topmost scanline. + out[0] = in[0]; + PredictLineLeft_NEON(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + // Leftmost pixel is predicted from above. + out[0] = in[0] - in[-stride]; + PredictLineLeft_NEON(in + 1, out + 1, width - 1); + ++row; + in += stride; + out += stride; + } +} + +static void HorizontalFilter_NEON(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoHorizontalFilter_NEON(data, width, height, stride, 0, height, + filtered_data); +} + +//------------------------------------------------------------------------------ +// Vertical filter. + +static WEBP_INLINE void DoVerticalFilter_NEON(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + if (row == 0) { + // Very first top-left pixel is copied. + out[0] = in[0]; + // Rest of top scan-line is left-predicted. + PredictLineLeft_NEON(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + PredictLine_NEON(in, in - stride, out, width); + ++row; + in += stride; + out += stride; + } +} + +static void VerticalFilter_NEON(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoVerticalFilter_NEON(data, width, height, stride, 0, height, + filtered_data); +} + +//------------------------------------------------------------------------------ +// Gradient filter. + +static WEBP_INLINE int GradientPredictor_C(uint8_t a, uint8_t b, uint8_t c) { + const int g = a + b - c; + return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit +} + +static void GradientPredictDirect_NEON(const uint8_t* const row, + const uint8_t* const top, + uint8_t* const out, int length) { + int i; + for (i = 0; i + 8 <= length; i += 8) { + const uint8x8_t A = vld1_u8(&row[i - 1]); + const uint8x8_t B = vld1_u8(&top[i + 0]); + const int16x8_t C = vreinterpretq_s16_u16(vaddl_u8(A, B)); + const int16x8_t D = LOAD_U8_TO_S16(&top[i - 1]); + const uint8x8_t E = vqmovun_s16(vsubq_s16(C, D)); + const uint8x8_t F = vld1_u8(&row[i + 0]); + vst1_u8(&out[i], vsub_u8(F, E)); + } + for (; i < length; ++i) { + out[i] = row[i] - GradientPredictor_C(row[i - 1], top[i], top[i - 1]); + } +} + +static WEBP_INLINE void DoGradientFilter_NEON(const uint8_t* in, + int width, int height, + int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + // left prediction for top scan-line + if (row == 0) { + out[0] = in[0]; + PredictLineLeft_NEON(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + out[0] = in[0] - in[-stride]; + GradientPredictDirect_NEON(in + 1, in + 1 - stride, out + 1, width - 1); + ++row; + in += stride; + out += stride; + } +} + +static void GradientFilter_NEON(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoGradientFilter_NEON(data, width, height, stride, 0, height, + filtered_data); +} + +#undef SANITY_CHECK + +//------------------------------------------------------------------------------ +// Inverse transforms + +static void HorizontalUnfilter_NEON(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + int i; + const uint8x16_t zero = vdupq_n_u8(0); + uint8x16_t last; + out[0] = in[0] + (prev == NULL ? 0 : prev[0]); + if (width <= 1) return; + last = vsetq_lane_u8(out[0], zero, 0); + for (i = 1; i + 16 <= width; i += 16) { + const uint8x16_t A0 = vld1q_u8(&in[i]); + const uint8x16_t A1 = vaddq_u8(A0, last); + const uint8x16_t A2 = SHIFT_LEFT_N_Q(A1, 1); + const uint8x16_t A3 = vaddq_u8(A1, A2); + const uint8x16_t A4 = SHIFT_LEFT_N_Q(A3, 2); + const uint8x16_t A5 = vaddq_u8(A3, A4); + const uint8x16_t A6 = SHIFT_LEFT_N_Q(A5, 4); + const uint8x16_t A7 = vaddq_u8(A5, A6); + const uint8x16_t A8 = SHIFT_LEFT_N_Q(A7, 8); + const uint8x16_t A9 = vaddq_u8(A7, A8); + vst1q_u8(&out[i], A9); + last = SHIFT_RIGHT_N_Q(A9, 15); + } + for (; i < width; ++i) out[i] = in[i] + out[i - 1]; +} + +static void VerticalUnfilter_NEON(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_NEON(NULL, in, out, width); + } else { + int i; + assert(width >= 0); + for (i = 0; i + 16 <= width; i += 16) { + const uint8x16_t A = vld1q_u8(&in[i]); + const uint8x16_t B = vld1q_u8(&prev[i]); + const uint8x16_t C = vaddq_u8(A, B); + vst1q_u8(&out[i], C); + } + for (; i < width; ++i) out[i] = in[i] + prev[i]; + } +} + +// GradientUnfilter_NEON is correct but slower than the C-version, +// at least on ARM64. For armv7, it's a wash. +// So best is to disable it for now, but keep the idea around... +#if !defined(USE_GRADIENT_UNFILTER) +#define USE_GRADIENT_UNFILTER 0 // ALTERNATE_CODE +#endif + +#if (USE_GRADIENT_UNFILTER == 1) +#define GRAD_PROCESS_LANE(L) do { \ + const uint8x8_t tmp1 = ROTATE_RIGHT_N(pred, 1); /* rotate predictor in */ \ + const int16x8_t tmp2 = vaddq_s16(BC, U8_TO_S16(tmp1)); \ + const uint8x8_t delta = vqmovun_s16(tmp2); \ + pred = vadd_u8(D, delta); \ + out = vext_u8(out, ROTATE_LEFT_N(pred, (L)), 1); \ +} while (0) + +static void GradientPredictInverse_NEON(const uint8_t* const in, + const uint8_t* const top, + uint8_t* const row, int length) { + if (length > 0) { + int i; + uint8x8_t pred = vdup_n_u8(row[-1]); // left sample + uint8x8_t out = vdup_n_u8(0); + for (i = 0; i + 8 <= length; i += 8) { + const int16x8_t B = LOAD_U8_TO_S16(&top[i + 0]); + const int16x8_t C = LOAD_U8_TO_S16(&top[i - 1]); + const int16x8_t BC = vsubq_s16(B, C); // unclipped gradient basis B - C + const uint8x8_t D = vld1_u8(&in[i]); // base input + GRAD_PROCESS_LANE(0); + GRAD_PROCESS_LANE(1); + GRAD_PROCESS_LANE(2); + GRAD_PROCESS_LANE(3); + GRAD_PROCESS_LANE(4); + GRAD_PROCESS_LANE(5); + GRAD_PROCESS_LANE(6); + GRAD_PROCESS_LANE(7); + vst1_u8(&row[i], out); + } + for (; i < length; ++i) { + row[i] = in[i] + GradientPredictor_C(row[i - 1], top[i], top[i - 1]); + } + } +} +#undef GRAD_PROCESS_LANE + +static void GradientUnfilter_NEON(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_NEON(NULL, in, out, width); + } else { + out[0] = in[0] + prev[0]; // predict from above + GradientPredictInverse_NEON(in + 1, prev + 1, out + 1, width - 1); + } +} + +#endif // USE_GRADIENT_UNFILTER + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8FiltersInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitNEON(void) { + WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_NEON; + WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_NEON; +#if (USE_GRADIENT_UNFILTER == 1) + WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_NEON; +#endif + + WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_NEON; + WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_NEON; + WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8FiltersInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/filters_sse2.c b/media/libwebp/src/dsp/filters_sse2.c new file mode 100644 index 0000000000..5c33ec15e2 --- /dev/null +++ b/media/libwebp/src/dsp/filters_sse2.c @@ -0,0 +1,340 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 variant of alpha filters +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +#include <assert.h> +#include <emmintrin.h> +#include <stdlib.h> +#include <string.h> + +//------------------------------------------------------------------------------ +// Helpful macro. + +# define SANITY_CHECK(in, out) \ + assert((in) != NULL); \ + assert((out) != NULL); \ + assert(width > 0); \ + assert(height > 0); \ + assert(stride >= width); \ + assert(row >= 0 && num_rows > 0 && row + num_rows <= height); \ + (void)height; // Silence unused warning. + +static void PredictLineTop_SSE2(const uint8_t* src, const uint8_t* pred, + uint8_t* dst, int length) { + int i; + const int max_pos = length & ~31; + assert(length >= 0); + for (i = 0; i < max_pos; i += 32) { + const __m128i A0 = _mm_loadu_si128((const __m128i*)&src[i + 0]); + const __m128i A1 = _mm_loadu_si128((const __m128i*)&src[i + 16]); + const __m128i B0 = _mm_loadu_si128((const __m128i*)&pred[i + 0]); + const __m128i B1 = _mm_loadu_si128((const __m128i*)&pred[i + 16]); + const __m128i C0 = _mm_sub_epi8(A0, B0); + const __m128i C1 = _mm_sub_epi8(A1, B1); + _mm_storeu_si128((__m128i*)&dst[i + 0], C0); + _mm_storeu_si128((__m128i*)&dst[i + 16], C1); + } + for (; i < length; ++i) dst[i] = src[i] - pred[i]; +} + +// Special case for left-based prediction (when preds==dst-1 or preds==src-1). +static void PredictLineLeft_SSE2(const uint8_t* src, uint8_t* dst, int length) { + int i; + const int max_pos = length & ~31; + assert(length >= 0); + for (i = 0; i < max_pos; i += 32) { + const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + i + 0 )); + const __m128i B0 = _mm_loadu_si128((const __m128i*)(src + i + 0 - 1)); + const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + i + 16 )); + const __m128i B1 = _mm_loadu_si128((const __m128i*)(src + i + 16 - 1)); + const __m128i C0 = _mm_sub_epi8(A0, B0); + const __m128i C1 = _mm_sub_epi8(A1, B1); + _mm_storeu_si128((__m128i*)(dst + i + 0), C0); + _mm_storeu_si128((__m128i*)(dst + i + 16), C1); + } + for (; i < length; ++i) dst[i] = src[i] - src[i - 1]; +} + +//------------------------------------------------------------------------------ +// Horizontal filter. + +static WEBP_INLINE void DoHorizontalFilter_SSE2(const uint8_t* in, + int width, int height, + int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + if (row == 0) { + // Leftmost pixel is the same as input for topmost scanline. + out[0] = in[0]; + PredictLineLeft_SSE2(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + // Leftmost pixel is predicted from above. + out[0] = in[0] - in[-stride]; + PredictLineLeft_SSE2(in + 1, out + 1, width - 1); + ++row; + in += stride; + out += stride; + } +} + +//------------------------------------------------------------------------------ +// Vertical filter. + +static WEBP_INLINE void DoVerticalFilter_SSE2(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + if (row == 0) { + // Very first top-left pixel is copied. + out[0] = in[0]; + // Rest of top scan-line is left-predicted. + PredictLineLeft_SSE2(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + PredictLineTop_SSE2(in, in - stride, out, width); + ++row; + in += stride; + out += stride; + } +} + +//------------------------------------------------------------------------------ +// Gradient filter. + +static WEBP_INLINE int GradientPredictor_SSE2(uint8_t a, uint8_t b, uint8_t c) { + const int g = a + b - c; + return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255; // clip to 8bit +} + +static void GradientPredictDirect_SSE2(const uint8_t* const row, + const uint8_t* const top, + uint8_t* const out, int length) { + const int max_pos = length & ~7; + int i; + const __m128i zero = _mm_setzero_si128(); + for (i = 0; i < max_pos; i += 8) { + const __m128i A0 = _mm_loadl_epi64((const __m128i*)&row[i - 1]); + const __m128i B0 = _mm_loadl_epi64((const __m128i*)&top[i]); + const __m128i C0 = _mm_loadl_epi64((const __m128i*)&top[i - 1]); + const __m128i D = _mm_loadl_epi64((const __m128i*)&row[i]); + const __m128i A1 = _mm_unpacklo_epi8(A0, zero); + const __m128i B1 = _mm_unpacklo_epi8(B0, zero); + const __m128i C1 = _mm_unpacklo_epi8(C0, zero); + const __m128i E = _mm_add_epi16(A1, B1); + const __m128i F = _mm_sub_epi16(E, C1); + const __m128i G = _mm_packus_epi16(F, zero); + const __m128i H = _mm_sub_epi8(D, G); + _mm_storel_epi64((__m128i*)(out + i), H); + } + for (; i < length; ++i) { + const int delta = GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]); + out[i] = (uint8_t)(row[i] - delta); + } +} + +static WEBP_INLINE void DoGradientFilter_SSE2(const uint8_t* in, + int width, int height, int stride, + int row, int num_rows, + uint8_t* out) { + const size_t start_offset = row * stride; + const int last_row = row + num_rows; + SANITY_CHECK(in, out); + in += start_offset; + out += start_offset; + + // left prediction for top scan-line + if (row == 0) { + out[0] = in[0]; + PredictLineLeft_SSE2(in + 1, out + 1, width - 1); + row = 1; + in += stride; + out += stride; + } + + // Filter line-by-line. + while (row < last_row) { + out[0] = (uint8_t)(in[0] - in[-stride]); + GradientPredictDirect_SSE2(in + 1, in + 1 - stride, out + 1, width - 1); + ++row; + in += stride; + out += stride; + } +} + +#undef SANITY_CHECK + +//------------------------------------------------------------------------------ + +static void HorizontalFilter_SSE2(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoHorizontalFilter_SSE2(data, width, height, stride, 0, height, + filtered_data); +} + +static void VerticalFilter_SSE2(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoVerticalFilter_SSE2(data, width, height, stride, 0, height, filtered_data); +} + +static void GradientFilter_SSE2(const uint8_t* data, int width, int height, + int stride, uint8_t* filtered_data) { + DoGradientFilter_SSE2(data, width, height, stride, 0, height, filtered_data); +} + +//------------------------------------------------------------------------------ +// Inverse transforms + +static void HorizontalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + int i; + __m128i last; + out[0] = (uint8_t)(in[0] + (prev == NULL ? 0 : prev[0])); + if (width <= 1) return; + last = _mm_set_epi32(0, 0, 0, out[0]); + for (i = 1; i + 8 <= width; i += 8) { + const __m128i A0 = _mm_loadl_epi64((const __m128i*)(in + i)); + const __m128i A1 = _mm_add_epi8(A0, last); + const __m128i A2 = _mm_slli_si128(A1, 1); + const __m128i A3 = _mm_add_epi8(A1, A2); + const __m128i A4 = _mm_slli_si128(A3, 2); + const __m128i A5 = _mm_add_epi8(A3, A4); + const __m128i A6 = _mm_slli_si128(A5, 4); + const __m128i A7 = _mm_add_epi8(A5, A6); + _mm_storel_epi64((__m128i*)(out + i), A7); + last = _mm_srli_epi64(A7, 56); + } + for (; i < width; ++i) out[i] = (uint8_t)(in[i] + out[i - 1]); +} + +static void VerticalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_SSE2(NULL, in, out, width); + } else { + int i; + const int max_pos = width & ~31; + assert(width >= 0); + for (i = 0; i < max_pos; i += 32) { + const __m128i A0 = _mm_loadu_si128((const __m128i*)&in[i + 0]); + const __m128i A1 = _mm_loadu_si128((const __m128i*)&in[i + 16]); + const __m128i B0 = _mm_loadu_si128((const __m128i*)&prev[i + 0]); + const __m128i B1 = _mm_loadu_si128((const __m128i*)&prev[i + 16]); + const __m128i C0 = _mm_add_epi8(A0, B0); + const __m128i C1 = _mm_add_epi8(A1, B1); + _mm_storeu_si128((__m128i*)&out[i + 0], C0); + _mm_storeu_si128((__m128i*)&out[i + 16], C1); + } + for (; i < width; ++i) out[i] = (uint8_t)(in[i] + prev[i]); + } +} + +static void GradientPredictInverse_SSE2(const uint8_t* const in, + const uint8_t* const top, + uint8_t* const row, int length) { + if (length > 0) { + int i; + const int max_pos = length & ~7; + const __m128i zero = _mm_setzero_si128(); + __m128i A = _mm_set_epi32(0, 0, 0, row[-1]); // left sample + for (i = 0; i < max_pos; i += 8) { + const __m128i tmp0 = _mm_loadl_epi64((const __m128i*)&top[i]); + const __m128i tmp1 = _mm_loadl_epi64((const __m128i*)&top[i - 1]); + const __m128i B = _mm_unpacklo_epi8(tmp0, zero); + const __m128i C = _mm_unpacklo_epi8(tmp1, zero); + const __m128i D = _mm_loadl_epi64((const __m128i*)&in[i]); // base input + const __m128i E = _mm_sub_epi16(B, C); // unclipped gradient basis B - C + __m128i out = zero; // accumulator for output + __m128i mask_hi = _mm_set_epi32(0, 0, 0, 0xff); + int k = 8; + while (1) { + const __m128i tmp3 = _mm_add_epi16(A, E); // delta = A + B - C + const __m128i tmp4 = _mm_packus_epi16(tmp3, zero); // saturate delta + const __m128i tmp5 = _mm_add_epi8(tmp4, D); // add to in[] + A = _mm_and_si128(tmp5, mask_hi); // 1-complement clip + out = _mm_or_si128(out, A); // accumulate output + if (--k == 0) break; + A = _mm_slli_si128(A, 1); // rotate left sample + mask_hi = _mm_slli_si128(mask_hi, 1); // rotate mask + A = _mm_unpacklo_epi8(A, zero); // convert 8b->16b + } + A = _mm_srli_si128(A, 7); // prepare left sample for next iteration + _mm_storel_epi64((__m128i*)&row[i], out); + } + for (; i < length; ++i) { + const int delta = GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]); + row[i] = (uint8_t)(in[i] + delta); + } + } +} + +static void GradientUnfilter_SSE2(const uint8_t* prev, const uint8_t* in, + uint8_t* out, int width) { + if (prev == NULL) { + HorizontalUnfilter_SSE2(NULL, in, out, width); + } else { + out[0] = (uint8_t)(in[0] + prev[0]); // predict from above + GradientPredictInverse_SSE2(in + 1, prev + 1, out + 1, width - 1); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8FiltersInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitSSE2(void) { + WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_SSE2; +#if defined(CHROMIUM) + // TODO(crbug.com/654974) + (void)VerticalUnfilter_SSE2; +#else + WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_SSE2; +#endif + WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_SSE2; + + WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_SSE2; + WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_SSE2; + WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8FiltersInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/lossless.c b/media/libwebp/src/dsp/lossless.c new file mode 100644 index 0000000000..fb86e58d4a --- /dev/null +++ b/media/libwebp/src/dsp/lossless.c @@ -0,0 +1,680 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transforms and color space conversion methods for lossless decoder. +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) +// Urvang Joshi (urvang@google.com) + +#include "src/dsp/dsp.h" + +#include <assert.h> +#include <math.h> +#include <stdlib.h> +#include "src/dec/vp8li_dec.h" +#include "src/utils/endian_inl_utils.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" + +//------------------------------------------------------------------------------ +// Image transforms. + +static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { + return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); +} + +static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { + return Average2(Average2(a0, a2), a1); +} + +static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, + uint32_t a2, uint32_t a3) { + return Average2(Average2(a0, a1), Average2(a2, a3)); +} + +static WEBP_INLINE uint32_t Clip255(uint32_t a) { + if (a < 256) { + return a; + } + // return 0, when a is a negative integer. + // return 255, when a is positive. + return ~a >> 24; +} + +static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) { + return Clip255((uint32_t)(a + b - c)); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, + uint32_t c2) { + const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24); + const int r = AddSubtractComponentFull((c0 >> 16) & 0xff, + (c1 >> 16) & 0xff, + (c2 >> 16) & 0xff); + const int g = AddSubtractComponentFull((c0 >> 8) & 0xff, + (c1 >> 8) & 0xff, + (c2 >> 8) & 0xff); + const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff); + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; +} + +static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) { + return Clip255((uint32_t)(a + (a - b) / 2)); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, + uint32_t c2) { + const uint32_t ave = Average2(c0, c1); + const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24); + const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff); + const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff); + const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff); + return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b; +} + +// gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is +// inlined. +#if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409 +# define LOCAL_INLINE __attribute__ ((noinline)) +#else +# define LOCAL_INLINE WEBP_INLINE +#endif + +static LOCAL_INLINE int Sub3(int a, int b, int c) { + const int pb = b - c; + const int pa = a - c; + return abs(pb) - abs(pa); +} + +#undef LOCAL_INLINE + +static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { + const int pa_minus_pb = + Sub3((a >> 24) , (b >> 24) , (c >> 24) ) + + Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + + Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + + Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); + return (pa_minus_pb <= 0) ? a : b; +} + +//------------------------------------------------------------------------------ +// Predictors + +uint32_t VP8LPredictor0_C(const uint32_t* const left, + const uint32_t* const top) { + (void)top; + (void)left; + return ARGB_BLACK; +} +uint32_t VP8LPredictor1_C(const uint32_t* const left, + const uint32_t* const top) { + (void)top; + return *left; +} +uint32_t VP8LPredictor2_C(const uint32_t* const left, + const uint32_t* const top) { + (void)left; + return top[0]; +} +uint32_t VP8LPredictor3_C(const uint32_t* const left, + const uint32_t* const top) { + (void)left; + return top[1]; +} +uint32_t VP8LPredictor4_C(const uint32_t* const left, + const uint32_t* const top) { + (void)left; + return top[-1]; +} +uint32_t VP8LPredictor5_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average3(*left, top[0], top[1]); + return pred; +} +uint32_t VP8LPredictor6_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2(*left, top[-1]); + return pred; +} +uint32_t VP8LPredictor7_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2(*left, top[0]); + return pred; +} +uint32_t VP8LPredictor8_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2(top[-1], top[0]); + (void)left; + return pred; +} +uint32_t VP8LPredictor9_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2(top[0], top[1]); + (void)left; + return pred; +} +uint32_t VP8LPredictor10_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average4(*left, top[-1], top[0], top[1]); + return pred; +} +uint32_t VP8LPredictor11_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Select(top[0], *left, top[-1]); + return pred; +} +uint32_t VP8LPredictor12_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractFull(*left, top[0], top[-1]); + return pred; +} +uint32_t VP8LPredictor13_C(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractHalf(*left, top[0], top[-1]); + return pred; +} + +static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int x; + (void)upper; + for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK); +} +static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint32_t left = out[-1]; + (void)upper; + for (i = 0; i < num_pixels; ++i) { + out[i] = left = VP8LAddPixels(in[i], left); + } +} +GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C) +GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C) + +//------------------------------------------------------------------------------ + +// Inverse prediction. +static void PredictorInverseTransform_C(const VP8LTransform* const transform, + int y_start, int y_end, + const uint32_t* in, uint32_t* out) { + const int width = transform->xsize_; + if (y_start == 0) { // First Row follows the L (mode=1) mode. + PredictorAdd0_C(in, NULL, 1, out); + PredictorAdd1_C(in + 1, NULL, width - 1, out + 1); + in += width; + out += width; + ++y_start; + } + + { + int y = y_start; + const int tile_width = 1 << transform->bits_; + const int mask = tile_width - 1; + const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); + const uint32_t* pred_mode_base = + transform->data_ + (y >> transform->bits_) * tiles_per_row; + + while (y < y_end) { + const uint32_t* pred_mode_src = pred_mode_base; + int x = 1; + // First pixel follows the T (mode=2) mode. + PredictorAdd2_C(in, out - width, 1, out); + // .. the rest: + while (x < width) { + const VP8LPredictorAddSubFunc pred_func = + VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf]; + int x_end = (x & ~mask) + tile_width; + if (x_end > width) x_end = width; + pred_func(in + x, out + x - width, x_end - x, out + x); + x = x_end; + } + in += width; + out += width; + ++y; + if ((y & mask) == 0) { // Use the same mask, since tiles are squares. + pred_mode_base += tiles_per_row; + } + } + } +} + +// Add green to blue and red channels (i.e. perform the inverse transform of +// 'subtract green'). +void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, + uint32_t* dst) { + int i; + for (i = 0; i < num_pixels; ++i) { + const uint32_t argb = src[i]; + const uint32_t green = ((argb >> 8) & 0xff); + uint32_t red_blue = (argb & 0x00ff00ffu); + red_blue += (green << 16) | green; + red_blue &= 0x00ff00ffu; + dst[i] = (argb & 0xff00ff00u) | red_blue; + } +} + +static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, + int8_t color) { + return ((int)color_pred * color) >> 5; +} + +static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, + VP8LMultipliers* const m) { + m->green_to_red_ = (color_code >> 0) & 0xff; + m->green_to_blue_ = (color_code >> 8) & 0xff; + m->red_to_blue_ = (color_code >> 16) & 0xff; +} + +void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, + const uint32_t* src, int num_pixels, + uint32_t* dst) { + int i; + for (i = 0; i < num_pixels; ++i) { + const uint32_t argb = src[i]; + const int8_t green = (int8_t)(argb >> 8); + const uint32_t red = argb >> 16; + int new_red = red & 0xff; + int new_blue = argb & 0xff; + new_red += ColorTransformDelta((int8_t)m->green_to_red_, green); + new_red &= 0xff; + new_blue += ColorTransformDelta((int8_t)m->green_to_blue_, green); + new_blue += ColorTransformDelta((int8_t)m->red_to_blue_, (int8_t)new_red); + new_blue &= 0xff; + dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); + } +} + +// Color space inverse transform. +static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform, + int y_start, int y_end, + const uint32_t* src, uint32_t* dst) { + const int width = transform->xsize_; + const int tile_width = 1 << transform->bits_; + const int mask = tile_width - 1; + const int safe_width = width & ~mask; + const int remaining_width = width - safe_width; + const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); + int y = y_start; + const uint32_t* pred_row = + transform->data_ + (y >> transform->bits_) * tiles_per_row; + + while (y < y_end) { + const uint32_t* pred = pred_row; + VP8LMultipliers m = { 0, 0, 0 }; + const uint32_t* const src_safe_end = src + safe_width; + const uint32_t* const src_end = src + width; + while (src < src_safe_end) { + ColorCodeToMultipliers(*pred++, &m); + VP8LTransformColorInverse(&m, src, tile_width, dst); + src += tile_width; + dst += tile_width; + } + if (src < src_end) { // Left-overs using C-version. + ColorCodeToMultipliers(*pred++, &m); + VP8LTransformColorInverse(&m, src, remaining_width, dst); + src += remaining_width; + dst += remaining_width; + } + ++y; + if ((y & mask) == 0) pred_row += tiles_per_row; + } +} + +// Separate out pixels packed together using pixel-bundling. +// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). +#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ + GET_INDEX, GET_VALUE) \ +static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ + TYPE* dst, int y_start, int y_end, int width) { \ + int y; \ + for (y = y_start; y < y_end; ++y) { \ + int x; \ + for (x = 0; x < width; ++x) { \ + *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ + } \ + } \ +} \ +STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ + int y_start, int y_end, const TYPE* src, \ + TYPE* dst) { \ + int y; \ + const int bits_per_pixel = 8 >> transform->bits_; \ + const int width = transform->xsize_; \ + const uint32_t* const color_map = transform->data_; \ + if (bits_per_pixel < 8) { \ + const int pixels_per_byte = 1 << transform->bits_; \ + const int count_mask = pixels_per_byte - 1; \ + const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ + for (y = y_start; y < y_end; ++y) { \ + uint32_t packed_pixels = 0; \ + int x; \ + for (x = 0; x < width; ++x) { \ + /* We need to load fresh 'packed_pixels' once every */ \ + /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ + /* is a power of 2, so can just use a mask for that, instead of */ \ + /* decrementing a counter. */ \ + if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ + *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ + packed_pixels >>= bits_per_pixel; \ + } \ + } \ + } else { \ + VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ + } \ +} + +COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static, + uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue) +COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, , + uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue) + +#undef COLOR_INDEX_INVERSE + +void VP8LInverseTransform(const VP8LTransform* const transform, + int row_start, int row_end, + const uint32_t* const in, uint32_t* const out) { + const int width = transform->xsize_; + assert(row_start < row_end); + assert(row_end <= transform->ysize_); + switch (transform->type_) { + case SUBTRACT_GREEN_TRANSFORM: + VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out); + break; + case PREDICTOR_TRANSFORM: + PredictorInverseTransform_C(transform, row_start, row_end, in, out); + if (row_end != transform->ysize_) { + // The last predicted row in this iteration will be the top-pred row + // for the first row in next iteration. + memcpy(out - width, out + (row_end - row_start - 1) * width, + width * sizeof(*out)); + } + break; + case CROSS_COLOR_TRANSFORM: + ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out); + break; + case COLOR_INDEXING_TRANSFORM: + if (in == out && transform->bits_ > 0) { + // Move packed pixels to the end of unpacked region, so that unpacking + // can occur seamlessly. + // Also, note that this is the only transform that applies on + // the effective width of VP8LSubSampleSize(xsize_, bits_). All other + // transforms work on effective width of xsize_. + const int out_stride = (row_end - row_start) * width; + const int in_stride = (row_end - row_start) * + VP8LSubSampleSize(transform->xsize_, transform->bits_); + uint32_t* const src = out + out_stride - in_stride; + memmove(src, out, in_stride * sizeof(*src)); + ColorIndexInverseTransform_C(transform, row_start, row_end, src, out); + } else { + ColorIndexInverseTransform_C(transform, row_start, row_end, in, out); + } + break; + } +} + +//------------------------------------------------------------------------------ +// Color space conversion. + +static int is_big_endian(void) { + static const union { + uint16_t w; + uint8_t b[2]; + } tmp = { 1 }; + return (tmp.b[0] != 1); +} + +void VP8LConvertBGRAToRGB_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 16) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 0) & 0xff; + } +} + +void VP8LConvertBGRAToRGBA_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 16) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 0) & 0xff; + *dst++ = (argb >> 24) & 0xff; + } +} + +void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); + const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); +#if (WEBP_SWAP_16BIT_CSP == 1) + *dst++ = ba; + *dst++ = rg; +#else + *dst++ = rg; + *dst++ = ba; +#endif + } +} + +void VP8LConvertBGRAToRGB565_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); + const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); +#if (WEBP_SWAP_16BIT_CSP == 1) + *dst++ = gb; + *dst++ = rg; +#else + *dst++ = rg; + *dst++ = gb; +#endif + } +} + +void VP8LConvertBGRAToBGR_C(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + *dst++ = (argb >> 0) & 0xff; + *dst++ = (argb >> 8) & 0xff; + *dst++ = (argb >> 16) & 0xff; + } +} + +static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, + int swap_on_big_endian) { + if (is_big_endian() == swap_on_big_endian) { + const uint32_t* const src_end = src + num_pixels; + while (src < src_end) { + const uint32_t argb = *src++; + WebPUint32ToMem(dst, BSwap32(argb)); + dst += sizeof(argb); + } + } else { + memcpy(dst, src, num_pixels * sizeof(*src)); + } +} + +void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, + WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) { + switch (out_colorspace) { + case MODE_RGB: + VP8LConvertBGRAToRGB(in_data, num_pixels, rgba); + break; + case MODE_RGBA: + VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); + break; + case MODE_rgbA: + VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba); + WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); + break; + case MODE_BGR: + VP8LConvertBGRAToBGR(in_data, num_pixels, rgba); + break; + case MODE_BGRA: + CopyOrSwap(in_data, num_pixels, rgba, 1); + break; + case MODE_bgrA: + CopyOrSwap(in_data, num_pixels, rgba, 1); + WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0); + break; + case MODE_ARGB: + CopyOrSwap(in_data, num_pixels, rgba, 0); + break; + case MODE_Argb: + CopyOrSwap(in_data, num_pixels, rgba, 0); + WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0); + break; + case MODE_RGBA_4444: + VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); + break; + case MODE_rgbA_4444: + VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba); + WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0); + break; + case MODE_RGB_565: + VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); + break; + default: + assert(0); // Code flow should not reach here. + } +} + +//------------------------------------------------------------------------------ + +VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; +VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; +VP8LPredictorFunc VP8LPredictors[16]; + +// exposed plain-C implementations +VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; + +VP8LTransformColorInverseFunc VP8LTransformColorInverse; + +VP8LConvertFunc VP8LConvertBGRAToRGB; +VP8LConvertFunc VP8LConvertBGRAToRGBA; +VP8LConvertFunc VP8LConvertBGRAToRGBA4444; +VP8LConvertFunc VP8LConvertBGRAToRGB565; +VP8LConvertFunc VP8LConvertBGRAToBGR; + +VP8LMapARGBFunc VP8LMapColor32b; +VP8LMapAlphaFunc VP8LMapColor8b; + +extern void VP8LDspInitSSE2(void); +extern void VP8LDspInitSSE41(void); +extern void VP8LDspInitNEON(void); +extern void VP8LDspInitMIPSdspR2(void); +extern void VP8LDspInitMSA(void); + +#define COPY_PREDICTOR_ARRAY(IN, OUT) do { \ + (OUT)[0] = IN##0_C; \ + (OUT)[1] = IN##1_C; \ + (OUT)[2] = IN##2_C; \ + (OUT)[3] = IN##3_C; \ + (OUT)[4] = IN##4_C; \ + (OUT)[5] = IN##5_C; \ + (OUT)[6] = IN##6_C; \ + (OUT)[7] = IN##7_C; \ + (OUT)[8] = IN##8_C; \ + (OUT)[9] = IN##9_C; \ + (OUT)[10] = IN##10_C; \ + (OUT)[11] = IN##11_C; \ + (OUT)[12] = IN##12_C; \ + (OUT)[13] = IN##13_C; \ + (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \ + (OUT)[15] = IN##0_C; \ +} while (0); + +WEBP_DSP_INIT_FUNC(VP8LDspInit) { + COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors) + COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd) + COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C) + +#if !WEBP_NEON_OMIT_C_CODE + VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; + + VP8LTransformColorInverse = VP8LTransformColorInverse_C; + + VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; + VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; + VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; +#endif + + VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; + VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; + + VP8LMapColor32b = MapARGB_C; + VP8LMapColor8b = MapAlpha_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8LDspInitSSE2(); +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + VP8LDspInitSSE41(); + } +#endif + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8LDspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8LDspInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8LDspInitNEON(); + } +#endif + + assert(VP8LAddGreenToBlueAndRed != NULL); + assert(VP8LTransformColorInverse != NULL); + assert(VP8LConvertBGRAToRGBA != NULL); + assert(VP8LConvertBGRAToRGB != NULL); + assert(VP8LConvertBGRAToBGR != NULL); + assert(VP8LConvertBGRAToRGBA4444 != NULL); + assert(VP8LConvertBGRAToRGB565 != NULL); + assert(VP8LMapColor32b != NULL); + assert(VP8LMapColor8b != NULL); +} +#undef COPY_PREDICTOR_ARRAY + +//------------------------------------------------------------------------------ diff --git a/media/libwebp/src/dsp/lossless.h b/media/libwebp/src/dsp/lossless.h new file mode 100644 index 0000000000..de60d95d0b --- /dev/null +++ b/media/libwebp/src/dsp/lossless.h @@ -0,0 +1,259 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transforms and color space conversion methods for lossless decoder. +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) + +#ifndef WEBP_DSP_LOSSLESS_H_ +#define WEBP_DSP_LOSSLESS_H_ + +#include "src/webp/types.h" +#include "src/webp/decode.h" + +#include "src/enc/histogram_enc.h" +#include "src/utils/utils.h" + +#ifdef __cplusplus +extern "C" { +#endif + +//------------------------------------------------------------------------------ +// Decoding + +typedef uint32_t (*VP8LPredictorFunc)(const uint32_t* const left, + const uint32_t* const top); +extern VP8LPredictorFunc VP8LPredictors[16]; + +uint32_t VP8LPredictor0_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor1_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor2_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor3_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor4_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor5_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor6_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor7_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor8_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor9_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor10_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor11_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor12_C(const uint32_t* const left, + const uint32_t* const top); +uint32_t VP8LPredictor13_C(const uint32_t* const left, + const uint32_t* const top); + +// These Add/Sub function expects upper[-1] and out[-1] to be readable. +typedef void (*VP8LPredictorAddSubFunc)(const uint32_t* in, + const uint32_t* upper, int num_pixels, + uint32_t* out); +extern VP8LPredictorAddSubFunc VP8LPredictorsAdd[16]; +extern VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16]; + +typedef void (*VP8LProcessDecBlueAndRedFunc)(const uint32_t* src, + int num_pixels, uint32_t* dst); +extern VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed; + +typedef struct { + // Note: the members are uint8_t, so that any negative values are + // automatically converted to "mod 256" values. + uint8_t green_to_red_; + uint8_t green_to_blue_; + uint8_t red_to_blue_; +} VP8LMultipliers; +typedef void (*VP8LTransformColorInverseFunc)(const VP8LMultipliers* const m, + const uint32_t* src, + int num_pixels, uint32_t* dst); +extern VP8LTransformColorInverseFunc VP8LTransformColorInverse; + +struct VP8LTransform; // Defined in dec/vp8li.h. + +// Performs inverse transform of data given transform information, start and end +// rows. Transform will be applied to rows [row_start, row_end[. +// The *in and *out pointers refer to source and destination data respectively +// corresponding to the intermediate row (row_start). +void VP8LInverseTransform(const struct VP8LTransform* const transform, + int row_start, int row_end, + const uint32_t* const in, uint32_t* const out); + +// Color space conversion. +typedef void (*VP8LConvertFunc)(const uint32_t* src, int num_pixels, + uint8_t* dst); +extern VP8LConvertFunc VP8LConvertBGRAToRGB; +extern VP8LConvertFunc VP8LConvertBGRAToRGBA; +extern VP8LConvertFunc VP8LConvertBGRAToRGBA4444; +extern VP8LConvertFunc VP8LConvertBGRAToRGB565; +extern VP8LConvertFunc VP8LConvertBGRAToBGR; + +// Converts from BGRA to other color spaces. +void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels, + WEBP_CSP_MODE out_colorspace, uint8_t* const rgba); + +typedef void (*VP8LMapARGBFunc)(const uint32_t* src, + const uint32_t* const color_map, + uint32_t* dst, int y_start, + int y_end, int width); +typedef void (*VP8LMapAlphaFunc)(const uint8_t* src, + const uint32_t* const color_map, + uint8_t* dst, int y_start, + int y_end, int width); + +extern VP8LMapARGBFunc VP8LMapColor32b; +extern VP8LMapAlphaFunc VP8LMapColor8b; + +// Similar to the static method ColorIndexInverseTransform() that is part of +// lossless.c, but used only for alpha decoding. It takes uint8_t (rather than +// uint32_t) arguments for 'src' and 'dst'. +void VP8LColorIndexInverseTransformAlpha( + const struct VP8LTransform* const transform, int y_start, int y_end, + const uint8_t* src, uint8_t* dst); + +// Expose some C-only fallback functions +void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, + const uint32_t* src, int num_pixels, + uint32_t* dst); + +void VP8LConvertBGRAToRGB_C(const uint32_t* src, int num_pixels, uint8_t* dst); +void VP8LConvertBGRAToRGBA_C(const uint32_t* src, int num_pixels, uint8_t* dst); +void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src, + int num_pixels, uint8_t* dst); +void VP8LConvertBGRAToRGB565_C(const uint32_t* src, + int num_pixels, uint8_t* dst); +void VP8LConvertBGRAToBGR_C(const uint32_t* src, int num_pixels, uint8_t* dst); +void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels, + uint32_t* dst); + +// Must be called before calling any of the above methods. +void VP8LDspInit(void); + +//------------------------------------------------------------------------------ +// Encoding + +typedef void (*VP8LProcessEncBlueAndRedFunc)(uint32_t* dst, int num_pixels); +extern VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed; +typedef void (*VP8LTransformColorFunc)(const VP8LMultipliers* const m, + uint32_t* dst, int num_pixels); +extern VP8LTransformColorFunc VP8LTransformColor; +typedef void (*VP8LCollectColorBlueTransformsFunc)( + const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_blue, int red_to_blue, int histo[]); +extern VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms; + +typedef void (*VP8LCollectColorRedTransformsFunc)( + const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_red, int histo[]); +extern VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms; + +// Expose some C-only fallback functions +void VP8LTransformColor_C(const VP8LMultipliers* const m, + uint32_t* data, int num_pixels); +void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels); +void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_red, int histo[]); +void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_blue, int red_to_blue, + int histo[]); + +extern VP8LPredictorAddSubFunc VP8LPredictorsSub[16]; +extern VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16]; + +// ----------------------------------------------------------------------------- +// Huffman-cost related functions. + +typedef float (*VP8LCostFunc)(const uint32_t* population, int length); +typedef float (*VP8LCostCombinedFunc)(const uint32_t* X, const uint32_t* Y, + int length); +typedef float (*VP8LCombinedShannonEntropyFunc)(const int X[256], + const int Y[256]); + +extern VP8LCostFunc VP8LExtraCost; +extern VP8LCostCombinedFunc VP8LExtraCostCombined; +extern VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy; + +typedef struct { // small struct to hold counters + int counts[2]; // index: 0=zero streak, 1=non-zero streak + int streaks[2][2]; // [zero/non-zero][streak<3 / streak>=3] +} VP8LStreaks; + +typedef struct { // small struct to hold bit entropy results + float entropy; // entropy + uint32_t sum; // sum of the population + int nonzeros; // number of non-zero elements in the population + uint32_t max_val; // maximum value in the population + uint32_t nonzero_code; // index of the last non-zero in the population +} VP8LBitEntropy; + +void VP8LBitEntropyInit(VP8LBitEntropy* const entropy); + +// Get the combined symbol bit entropy and Huffman cost stats for the +// distributions 'X' and 'Y'. Those results can then be refined according to +// codec specific heuristics. +typedef void (*VP8LGetCombinedEntropyUnrefinedFunc)( + const uint32_t X[], const uint32_t Y[], int length, + VP8LBitEntropy* const bit_entropy, VP8LStreaks* const stats); +extern VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined; + +// Get the entropy for the distribution 'X'. +typedef void (*VP8LGetEntropyUnrefinedFunc)(const uint32_t X[], int length, + VP8LBitEntropy* const bit_entropy, + VP8LStreaks* const stats); +extern VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined; + +void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n, + VP8LBitEntropy* const entropy); + +typedef void (*VP8LAddVectorFunc)(const uint32_t* a, const uint32_t* b, + uint32_t* out, int size); +extern VP8LAddVectorFunc VP8LAddVector; +typedef void (*VP8LAddVectorEqFunc)(const uint32_t* a, uint32_t* out, int size); +extern VP8LAddVectorEqFunc VP8LAddVectorEq; +void VP8LHistogramAdd(const VP8LHistogram* const a, + const VP8LHistogram* const b, + VP8LHistogram* const out); + +// ----------------------------------------------------------------------------- +// PrefixEncode() + +typedef int (*VP8LVectorMismatchFunc)(const uint32_t* const array1, + const uint32_t* const array2, int length); +// Returns the first index where array1 and array2 are different. +extern VP8LVectorMismatchFunc VP8LVectorMismatch; + +typedef void (*VP8LBundleColorMapFunc)(const uint8_t* const row, int width, + int xbits, uint32_t* dst); +extern VP8LBundleColorMapFunc VP8LBundleColorMap; +void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits, + uint32_t* dst); + +// Must be called before calling any of the above methods. +void VP8LEncDspInit(void); + +//------------------------------------------------------------------------------ + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_LOSSLESS_H_ diff --git a/media/libwebp/src/dsp/lossless_common.h b/media/libwebp/src/dsp/lossless_common.h new file mode 100644 index 0000000000..6a2f736b5e --- /dev/null +++ b/media/libwebp/src/dsp/lossless_common.h @@ -0,0 +1,191 @@ +// Copyright 2012 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transforms and color space conversion methods for lossless decoder. +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) +// Vincent Rabaud (vrabaud@google.com) + +#ifndef WEBP_DSP_LOSSLESS_COMMON_H_ +#define WEBP_DSP_LOSSLESS_COMMON_H_ + +#include "src/webp/types.h" + +#include "src/utils/utils.h" + +#ifdef __cplusplus +extern "C" { +#endif + +//------------------------------------------------------------------------------ +// Decoding + +// color mapping related functions. +static WEBP_INLINE uint32_t VP8GetARGBIndex(uint32_t idx) { + return (idx >> 8) & 0xff; +} + +static WEBP_INLINE uint8_t VP8GetAlphaIndex(uint8_t idx) { + return idx; +} + +static WEBP_INLINE uint32_t VP8GetARGBValue(uint32_t val) { + return val; +} + +static WEBP_INLINE uint8_t VP8GetAlphaValue(uint32_t val) { + return (val >> 8) & 0xff; +} + +//------------------------------------------------------------------------------ +// Misc methods. + +// Computes sampled size of 'size' when sampling using 'sampling bits'. +static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size, + uint32_t sampling_bits) { + return (size + (1 << sampling_bits) - 1) >> sampling_bits; +} + +// Converts near lossless quality into max number of bits shaved off. +static WEBP_INLINE int VP8LNearLosslessBits(int near_lossless_quality) { + // 100 -> 0 + // 80..99 -> 1 + // 60..79 -> 2 + // 40..59 -> 3 + // 20..39 -> 4 + // 0..19 -> 5 + return 5 - near_lossless_quality / 20; +} + +// ----------------------------------------------------------------------------- +// Faster logarithm for integers. Small values use a look-up table. + +// The threshold till approximate version of log_2 can be used. +// Practically, we can get rid of the call to log() as the two values match to +// very high degree (the ratio of these two is 0.99999x). +// Keeping a high threshold for now. +#define APPROX_LOG_WITH_CORRECTION_MAX 65536 +#define APPROX_LOG_MAX 4096 +#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086 +#define LOG_LOOKUP_IDX_MAX 256 +extern const float kLog2Table[LOG_LOOKUP_IDX_MAX]; +extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX]; +typedef float (*VP8LFastLog2SlowFunc)(uint32_t v); + +extern VP8LFastLog2SlowFunc VP8LFastLog2Slow; +extern VP8LFastLog2SlowFunc VP8LFastSLog2Slow; + +static WEBP_INLINE float VP8LFastLog2(uint32_t v) { + return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v); +} +// Fast calculation of v * log2(v) for integer input. +static WEBP_INLINE float VP8LFastSLog2(uint32_t v) { + return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v); +} + +// ----------------------------------------------------------------------------- +// PrefixEncode() + +// Splitting of distance and length codes into prefixes and +// extra bits. The prefixes are encoded with an entropy code +// while the extra bits are stored just as normal bits. +static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code, + int* const extra_bits) { + const int highest_bit = BitsLog2Floor(--distance); + const int second_highest_bit = (distance >> (highest_bit - 1)) & 1; + *extra_bits = highest_bit - 1; + *code = 2 * highest_bit + second_highest_bit; +} + +static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code, + int* const extra_bits, + int* const extra_bits_value) { + const int highest_bit = BitsLog2Floor(--distance); + const int second_highest_bit = (distance >> (highest_bit - 1)) & 1; + *extra_bits = highest_bit - 1; + *extra_bits_value = distance & ((1 << *extra_bits) - 1); + *code = 2 * highest_bit + second_highest_bit; +} + +#define PREFIX_LOOKUP_IDX_MAX 512 +typedef struct { + int8_t code_; + int8_t extra_bits_; +} VP8LPrefixCode; + +// These tables are derived using VP8LPrefixEncodeNoLUT. +extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX]; +extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX]; +static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code, + int* const extra_bits) { + if (distance < PREFIX_LOOKUP_IDX_MAX) { + const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance]; + *code = prefix_code.code_; + *extra_bits = prefix_code.extra_bits_; + } else { + VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits); + } +} + +static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code, + int* const extra_bits, + int* const extra_bits_value) { + if (distance < PREFIX_LOOKUP_IDX_MAX) { + const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance]; + *code = prefix_code.code_; + *extra_bits = prefix_code.extra_bits_; + *extra_bits_value = kPrefixEncodeExtraBitsValue[distance]; + } else { + VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value); + } +} + +// Sum of each component, mod 256. +static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE +uint32_t VP8LAddPixels(uint32_t a, uint32_t b) { + const uint32_t alpha_and_green = (a & 0xff00ff00u) + (b & 0xff00ff00u); + const uint32_t red_and_blue = (a & 0x00ff00ffu) + (b & 0x00ff00ffu); + return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); +} + +// Difference of each component, mod 256. +static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE +uint32_t VP8LSubPixels(uint32_t a, uint32_t b) { + const uint32_t alpha_and_green = + 0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u); + const uint32_t red_and_blue = + 0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu); + return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); +} + +//------------------------------------------------------------------------------ +// Transform-related functions use din both encoding and decoding. + +// Macros used to create a batch predictor that iteratively uses a +// one-pixel predictor. + +// The predictor is added to the output pixel (which +// is therefore considered as a residual) to get the final prediction. +#define GENERATE_PREDICTOR_ADD(PREDICTOR, PREDICTOR_ADD) \ +static void PREDICTOR_ADD(const uint32_t* in, const uint32_t* upper, \ + int num_pixels, uint32_t* out) { \ + int x; \ + assert(upper != NULL); \ + for (x = 0; x < num_pixels; ++x) { \ + const uint32_t pred = (PREDICTOR)(&out[x - 1], upper + x); \ + out[x] = VP8LAddPixels(in[x], pred); \ + } \ +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_LOSSLESS_COMMON_H_ diff --git a/media/libwebp/src/dsp/lossless_enc.c b/media/libwebp/src/dsp/lossless_enc.c new file mode 100644 index 0000000000..b1f9f26d72 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc.c @@ -0,0 +1,948 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transform methods for lossless encoder. +// +// Authors: Vikas Arora (vikaas.arora@gmail.com) +// Jyrki Alakuijala (jyrki@google.com) +// Urvang Joshi (urvang@google.com) + +#include "src/dsp/dsp.h" + +#include <assert.h> +#include <math.h> +#include <stdlib.h> +#include "src/dec/vp8li_dec.h" +#include "src/utils/endian_inl_utils.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" +#include "src/dsp/yuv.h" + +// lookup table for small values of log2(int) +const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { + 0.0000000000000000f, 0.0000000000000000f, + 1.0000000000000000f, 1.5849625007211560f, + 2.0000000000000000f, 2.3219280948873621f, + 2.5849625007211560f, 2.8073549220576041f, + 3.0000000000000000f, 3.1699250014423121f, + 3.3219280948873621f, 3.4594316186372973f, + 3.5849625007211560f, 3.7004397181410921f, + 3.8073549220576041f, 3.9068905956085187f, + 4.0000000000000000f, 4.0874628412503390f, + 4.1699250014423121f, 4.2479275134435852f, + 4.3219280948873626f, 4.3923174227787606f, + 4.4594316186372973f, 4.5235619560570130f, + 4.5849625007211560f, 4.6438561897747243f, + 4.7004397181410917f, 4.7548875021634682f, + 4.8073549220576037f, 4.8579809951275718f, + 4.9068905956085187f, 4.9541963103868749f, + 5.0000000000000000f, 5.0443941193584533f, + 5.0874628412503390f, 5.1292830169449663f, + 5.1699250014423121f, 5.2094533656289501f, + 5.2479275134435852f, 5.2854022188622487f, + 5.3219280948873626f, 5.3575520046180837f, + 5.3923174227787606f, 5.4262647547020979f, + 5.4594316186372973f, 5.4918530963296747f, + 5.5235619560570130f, 5.5545888516776376f, + 5.5849625007211560f, 5.6147098441152083f, + 5.6438561897747243f, 5.6724253419714951f, + 5.7004397181410917f, 5.7279204545631987f, + 5.7548875021634682f, 5.7813597135246599f, + 5.8073549220576037f, 5.8328900141647412f, + 5.8579809951275718f, 5.8826430493618415f, + 5.9068905956085187f, 5.9307373375628866f, + 5.9541963103868749f, 5.9772799234999167f, + 6.0000000000000000f, 6.0223678130284543f, + 6.0443941193584533f, 6.0660891904577720f, + 6.0874628412503390f, 6.1085244567781691f, + 6.1292830169449663f, 6.1497471195046822f, + 6.1699250014423121f, 6.1898245588800175f, + 6.2094533656289501f, 6.2288186904958804f, + 6.2479275134435852f, 6.2667865406949010f, + 6.2854022188622487f, 6.3037807481771030f, + 6.3219280948873626f, 6.3398500028846243f, + 6.3575520046180837f, 6.3750394313469245f, + 6.3923174227787606f, 6.4093909361377017f, + 6.4262647547020979f, 6.4429434958487279f, + 6.4594316186372973f, 6.4757334309663976f, + 6.4918530963296747f, 6.5077946401986963f, + 6.5235619560570130f, 6.5391588111080309f, + 6.5545888516776376f, 6.5698556083309478f, + 6.5849625007211560f, 6.5999128421871278f, + 6.6147098441152083f, 6.6293566200796094f, + 6.6438561897747243f, 6.6582114827517946f, + 6.6724253419714951f, 6.6865005271832185f, + 6.7004397181410917f, 6.7142455176661224f, + 6.7279204545631987f, 6.7414669864011464f, + 6.7548875021634682f, 6.7681843247769259f, + 6.7813597135246599f, 6.7944158663501061f, + 6.8073549220576037f, 6.8201789624151878f, + 6.8328900141647412f, 6.8454900509443747f, + 6.8579809951275718f, 6.8703647195834047f, + 6.8826430493618415f, 6.8948177633079437f, + 6.9068905956085187f, 6.9188632372745946f, + 6.9307373375628866f, 6.9425145053392398f, + 6.9541963103868749f, 6.9657842846620869f, + 6.9772799234999167f, 6.9886846867721654f, + 7.0000000000000000f, 7.0112272554232539f, + 7.0223678130284543f, 7.0334230015374501f, + 7.0443941193584533f, 7.0552824355011898f, + 7.0660891904577720f, 7.0768155970508308f, + 7.0874628412503390f, 7.0980320829605263f, + 7.1085244567781691f, 7.1189410727235076f, + 7.1292830169449663f, 7.1395513523987936f, + 7.1497471195046822f, 7.1598713367783890f, + 7.1699250014423121f, 7.1799090900149344f, + 7.1898245588800175f, 7.1996723448363644f, + 7.2094533656289501f, 7.2191685204621611f, + 7.2288186904958804f, 7.2384047393250785f, + 7.2479275134435852f, 7.2573878426926521f, + 7.2667865406949010f, 7.2761244052742375f, + 7.2854022188622487f, 7.2946207488916270f, + 7.3037807481771030f, 7.3128829552843557f, + 7.3219280948873626f, 7.3309168781146167f, + 7.3398500028846243f, 7.3487281542310771f, + 7.3575520046180837f, 7.3663222142458160f, + 7.3750394313469245f, 7.3837042924740519f, + 7.3923174227787606f, 7.4008794362821843f, + 7.4093909361377017f, 7.4178525148858982f, + 7.4262647547020979f, 7.4346282276367245f, + 7.4429434958487279f, 7.4512111118323289f, + 7.4594316186372973f, 7.4676055500829976f, + 7.4757334309663976f, 7.4838157772642563f, + 7.4918530963296747f, 7.4998458870832056f, + 7.5077946401986963f, 7.5156998382840427f, + 7.5235619560570130f, 7.5313814605163118f, + 7.5391588111080309f, 7.5468944598876364f, + 7.5545888516776376f, 7.5622424242210728f, + 7.5698556083309478f, 7.5774288280357486f, + 7.5849625007211560f, 7.5924570372680806f, + 7.5999128421871278f, 7.6073303137496104f, + 7.6147098441152083f, 7.6220518194563764f, + 7.6293566200796094f, 7.6366246205436487f, + 7.6438561897747243f, 7.6510516911789281f, + 7.6582114827517946f, 7.6653359171851764f, + 7.6724253419714951f, 7.6794800995054464f, + 7.6865005271832185f, 7.6934869574993252f, + 7.7004397181410917f, 7.7073591320808825f, + 7.7142455176661224f, 7.7210991887071855f, + 7.7279204545631987f, 7.7347096202258383f, + 7.7414669864011464f, 7.7481928495894605f, + 7.7548875021634682f, 7.7615512324444795f, + 7.7681843247769259f, 7.7747870596011736f, + 7.7813597135246599f, 7.7879025593914317f, + 7.7944158663501061f, 7.8008998999203047f, + 7.8073549220576037f, 7.8137811912170374f, + 7.8201789624151878f, 7.8265484872909150f, + 7.8328900141647412f, 7.8392037880969436f, + 7.8454900509443747f, 7.8517490414160571f, + 7.8579809951275718f, 7.8641861446542797f, + 7.8703647195834047f, 7.8765169465649993f, + 7.8826430493618415f, 7.8887432488982591f, + 7.8948177633079437f, 7.9008668079807486f, + 7.9068905956085187f, 7.9128893362299619f, + 7.9188632372745946f, 7.9248125036057812f, + 7.9307373375628866f, 7.9366379390025709f, + 7.9425145053392398f, 7.9483672315846778f, + 7.9541963103868749f, 7.9600019320680805f, + 7.9657842846620869f, 7.9715435539507719f, + 7.9772799234999167f, 7.9829935746943103f, + 7.9886846867721654f, 7.9943534368588577f +}; + +const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = { + 0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f, + 8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f, + 24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f, + 43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f, + 64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f, + 86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f, + 110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f, + 134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f, + 160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f, + 186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f, + 212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f, + 240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f, + 268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f, + 296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f, + 325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f, + 354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f, + 384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f, + 413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f, + 444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f, + 474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f, + 505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f, + 536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f, + 568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f, + 600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f, + 632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f, + 664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f, + 696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f, + 729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f, + 762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f, + 795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f, + 828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f, + 862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f, + 896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f, + 929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f, + 963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f, + 998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f, + 1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f, + 1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f, + 1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f, + 1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f, + 1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f, + 1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f, + 1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f, + 1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f, + 1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f, + 1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f, + 1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f, + 1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f, + 1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f, + 1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f, + 1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f, + 1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f, + 1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f, + 1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f, + 1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f, + 1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f, + 1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f, + 1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f, + 1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f, + 1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f, + 1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f, + 1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f, + 1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f, + 2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f +}; + +const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX] = { + { 0, 0}, { 0, 0}, { 1, 0}, { 2, 0}, { 3, 0}, { 4, 1}, { 4, 1}, { 5, 1}, + { 5, 1}, { 6, 2}, { 6, 2}, { 6, 2}, { 6, 2}, { 7, 2}, { 7, 2}, { 7, 2}, + { 7, 2}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, + { 8, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, + { 9, 3}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, + {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, + {10, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, + {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, + {11, 4}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, + {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, + {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, + {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, + {12, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, + {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, + {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, + {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, + {13, 5}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, + {14, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, + {15, 6}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, + {16, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, + {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, +}; + +const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX] = { + 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, + 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, + 127, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 +}; + +static float FastSLog2Slow_C(uint32_t v) { + assert(v >= LOG_LOOKUP_IDX_MAX); + if (v < APPROX_LOG_WITH_CORRECTION_MAX) { +#if !defined(WEBP_HAVE_SLOW_CLZ_CTZ) + // use clz if available + const int log_cnt = BitsLog2Floor(v) - 7; + const uint32_t y = 1 << log_cnt; + int correction = 0; + const float v_f = (float)v; + const uint32_t orig_v = v; + v >>= log_cnt; +#else + int log_cnt = 0; + uint32_t y = 1; + int correction = 0; + const float v_f = (float)v; + const uint32_t orig_v = v; + do { + ++log_cnt; + v = v >> 1; + y = y << 1; + } while (v >= LOG_LOOKUP_IDX_MAX); +#endif + // vf = (2^log_cnt) * Xf; where y = 2^log_cnt and Xf < 256 + // Xf = floor(Xf) * (1 + (v % y) / v) + // log2(Xf) = log2(floor(Xf)) + log2(1 + (v % y) / v) + // The correction factor: log(1 + d) ~ d; for very small d values, so + // log2(1 + (v % y) / v) ~ LOG_2_RECIPROCAL * (v % y)/v + // LOG_2_RECIPROCAL ~ 23/16 + correction = (23 * (orig_v & (y - 1))) >> 4; + return v_f * (kLog2Table[v] + log_cnt) + correction; + } else { + return (float)(LOG_2_RECIPROCAL * v * log((double)v)); + } +} + +static float FastLog2Slow_C(uint32_t v) { + assert(v >= LOG_LOOKUP_IDX_MAX); + if (v < APPROX_LOG_WITH_CORRECTION_MAX) { +#if !defined(WEBP_HAVE_SLOW_CLZ_CTZ) + // use clz if available + const int log_cnt = BitsLog2Floor(v) - 7; + const uint32_t y = 1 << log_cnt; + const uint32_t orig_v = v; + double log_2; + v >>= log_cnt; +#else + int log_cnt = 0; + uint32_t y = 1; + const uint32_t orig_v = v; + double log_2; + do { + ++log_cnt; + v = v >> 1; + y = y << 1; + } while (v >= LOG_LOOKUP_IDX_MAX); +#endif + log_2 = kLog2Table[v] + log_cnt; + if (orig_v >= APPROX_LOG_MAX) { + // Since the division is still expensive, add this correction factor only + // for large values of 'v'. + const int correction = (23 * (orig_v & (y - 1))) >> 4; + log_2 += (double)correction / orig_v; + } + return (float)log_2; + } else { + return (float)(LOG_2_RECIPROCAL * log((double)v)); + } +} + +//------------------------------------------------------------------------------ +// Methods to calculate Entropy (Shannon). + +// Compute the combined Shanon's entropy for distribution {X} and {X+Y} +static float CombinedShannonEntropy_C(const int X[256], const int Y[256]) { + int i; + float retval = 0.f; + int sumX = 0, sumXY = 0; + for (i = 0; i < 256; ++i) { + const int x = X[i]; + if (x != 0) { + const int xy = x + Y[i]; + sumX += x; + retval -= VP8LFastSLog2(x); + sumXY += xy; + retval -= VP8LFastSLog2(xy); + } else if (Y[i] != 0) { + sumXY += Y[i]; + retval -= VP8LFastSLog2(Y[i]); + } + } + retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); + return retval; +} + +void VP8LBitEntropyInit(VP8LBitEntropy* const entropy) { + entropy->entropy = 0.; + entropy->sum = 0; + entropy->nonzeros = 0; + entropy->max_val = 0; + entropy->nonzero_code = VP8L_NON_TRIVIAL_SYM; +} + +void VP8LBitsEntropyUnrefined(const uint32_t* const array, int n, + VP8LBitEntropy* const entropy) { + int i; + + VP8LBitEntropyInit(entropy); + + for (i = 0; i < n; ++i) { + if (array[i] != 0) { + entropy->sum += array[i]; + entropy->nonzero_code = i; + ++entropy->nonzeros; + entropy->entropy -= VP8LFastSLog2(array[i]); + if (entropy->max_val < array[i]) { + entropy->max_val = array[i]; + } + } + } + entropy->entropy += VP8LFastSLog2(entropy->sum); +} + +static WEBP_INLINE void GetEntropyUnrefinedHelper( + uint32_t val, int i, uint32_t* const val_prev, int* const i_prev, + VP8LBitEntropy* const bit_entropy, VP8LStreaks* const stats) { + const int streak = i - *i_prev; + + // Gather info for the bit entropy. + if (*val_prev != 0) { + bit_entropy->sum += (*val_prev) * streak; + bit_entropy->nonzeros += streak; + bit_entropy->nonzero_code = *i_prev; + bit_entropy->entropy -= VP8LFastSLog2(*val_prev) * streak; + if (bit_entropy->max_val < *val_prev) { + bit_entropy->max_val = *val_prev; + } + } + + // Gather info for the Huffman cost. + stats->counts[*val_prev != 0] += (streak > 3); + stats->streaks[*val_prev != 0][(streak > 3)] += streak; + + *val_prev = val; + *i_prev = i; +} + +static void GetEntropyUnrefined_C(const uint32_t X[], int length, + VP8LBitEntropy* const bit_entropy, + VP8LStreaks* const stats) { + int i; + int i_prev = 0; + uint32_t x_prev = X[0]; + + memset(stats, 0, sizeof(*stats)); + VP8LBitEntropyInit(bit_entropy); + + for (i = 1; i < length; ++i) { + const uint32_t x = X[i]; + if (x != x_prev) { + GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats); + } + } + GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats); + + bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum); +} + +static void GetCombinedEntropyUnrefined_C(const uint32_t X[], + const uint32_t Y[], + int length, + VP8LBitEntropy* const bit_entropy, + VP8LStreaks* const stats) { + int i = 1; + int i_prev = 0; + uint32_t xy_prev = X[0] + Y[0]; + + memset(stats, 0, sizeof(*stats)); + VP8LBitEntropyInit(bit_entropy); + + for (i = 1; i < length; ++i) { + const uint32_t xy = X[i] + Y[i]; + if (xy != xy_prev) { + GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, bit_entropy, stats); + } + } + GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, bit_entropy, stats); + + bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum); +} + +//------------------------------------------------------------------------------ + +void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) { + int i; + for (i = 0; i < num_pixels; ++i) { + const int argb = (int)argb_data[i]; + const int green = (argb >> 8) & 0xff; + const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; + const uint32_t new_b = (((argb >> 0) & 0xff) - green) & 0xff; + argb_data[i] = ((uint32_t)argb & 0xff00ff00u) | (new_r << 16) | new_b; + } +} + +static WEBP_INLINE int ColorTransformDelta(int8_t color_pred, int8_t color) { + return ((int)color_pred * color) >> 5; +} + +static WEBP_INLINE int8_t U32ToS8(uint32_t v) { + return (int8_t)(v & 0xff); +} + +void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data, + int num_pixels) { + int i; + for (i = 0; i < num_pixels; ++i) { + const uint32_t argb = data[i]; + const int8_t green = U32ToS8(argb >> 8); + const int8_t red = U32ToS8(argb >> 16); + int new_red = red & 0xff; + int new_blue = argb & 0xff; + new_red -= ColorTransformDelta((int8_t)m->green_to_red_, green); + new_red &= 0xff; + new_blue -= ColorTransformDelta((int8_t)m->green_to_blue_, green); + new_blue -= ColorTransformDelta((int8_t)m->red_to_blue_, red); + new_blue &= 0xff; + data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); + } +} + +static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, + uint32_t argb) { + const int8_t green = U32ToS8(argb >> 8); + int new_red = argb >> 16; + new_red -= ColorTransformDelta((int8_t)green_to_red, green); + return (new_red & 0xff); +} + +static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, + uint8_t red_to_blue, + uint32_t argb) { + const int8_t green = U32ToS8(argb >> 8); + const int8_t red = U32ToS8(argb >> 16); + int new_blue = argb & 0xff; + new_blue -= ColorTransformDelta((int8_t)green_to_blue, green); + new_blue -= ColorTransformDelta((int8_t)red_to_blue, red); + return (new_blue & 0xff); +} + +void VP8LCollectColorRedTransforms_C(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_red, int histo[]) { + while (tile_height-- > 0) { + int x; + for (x = 0; x < tile_width; ++x) { + ++histo[TransformColorRed((uint8_t)green_to_red, argb[x])]; + } + argb += stride; + } +} + +void VP8LCollectColorBlueTransforms_C(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_blue, int red_to_blue, + int histo[]) { + while (tile_height-- > 0) { + int x; + for (x = 0; x < tile_width; ++x) { + ++histo[TransformColorBlue((uint8_t)green_to_blue, (uint8_t)red_to_blue, + argb[x])]; + } + argb += stride; + } +} + +//------------------------------------------------------------------------------ + +static int VectorMismatch_C(const uint32_t* const array1, + const uint32_t* const array2, int length) { + int match_len = 0; + + while (match_len < length && array1[match_len] == array2[match_len]) { + ++match_len; + } + return match_len; +} + +// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. +void VP8LBundleColorMap_C(const uint8_t* const row, int width, int xbits, + uint32_t* dst) { + int x; + if (xbits > 0) { + const int bit_depth = 1 << (3 - xbits); + const int mask = (1 << xbits) - 1; + uint32_t code = 0xff000000; + for (x = 0; x < width; ++x) { + const int xsub = x & mask; + if (xsub == 0) { + code = 0xff000000; + } + code |= row[x] << (8 + bit_depth * xsub); + dst[x >> xbits] = code; + } + } else { + for (x = 0; x < width; ++x) dst[x] = 0xff000000 | (row[x] << 8); + } +} + +//------------------------------------------------------------------------------ + +static float ExtraCost_C(const uint32_t* population, int length) { + int i; + float cost = 0.f; + for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2]; + return cost; +} + +static float ExtraCostCombined_C(const uint32_t* X, const uint32_t* Y, + int length) { + int i; + float cost = 0.f; + for (i = 2; i < length - 2; ++i) { + const int xy = X[i + 2] + Y[i + 2]; + cost += (i >> 1) * xy; + } + return cost; +} + +//------------------------------------------------------------------------------ + +static void AddVector_C(const uint32_t* a, const uint32_t* b, uint32_t* out, + int size) { + int i; + for (i = 0; i < size; ++i) out[i] = a[i] + b[i]; +} + +static void AddVectorEq_C(const uint32_t* a, uint32_t* out, int size) { + int i; + for (i = 0; i < size; ++i) out[i] += a[i]; +} + +#define ADD(X, ARG, LEN) do { \ + if (a->is_used_[X]) { \ + if (b->is_used_[X]) { \ + VP8LAddVector(a->ARG, b->ARG, out->ARG, (LEN)); \ + } else { \ + memcpy(&out->ARG[0], &a->ARG[0], (LEN) * sizeof(out->ARG[0])); \ + } \ + } else if (b->is_used_[X]) { \ + memcpy(&out->ARG[0], &b->ARG[0], (LEN) * sizeof(out->ARG[0])); \ + } else { \ + memset(&out->ARG[0], 0, (LEN) * sizeof(out->ARG[0])); \ + } \ +} while (0) + +#define ADD_EQ(X, ARG, LEN) do { \ + if (a->is_used_[X]) { \ + if (out->is_used_[X]) { \ + VP8LAddVectorEq(a->ARG, out->ARG, (LEN)); \ + } else { \ + memcpy(&out->ARG[0], &a->ARG[0], (LEN) * sizeof(out->ARG[0])); \ + } \ + } \ +} while (0) + +void VP8LHistogramAdd(const VP8LHistogram* const a, + const VP8LHistogram* const b, VP8LHistogram* const out) { + int i; + const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); + assert(a->palette_code_bits_ == b->palette_code_bits_); + + if (b != out) { + ADD(0, literal_, literal_size); + ADD(1, red_, NUM_LITERAL_CODES); + ADD(2, blue_, NUM_LITERAL_CODES); + ADD(3, alpha_, NUM_LITERAL_CODES); + ADD(4, distance_, NUM_DISTANCE_CODES); + for (i = 0; i < 5; ++i) { + out->is_used_[i] = (a->is_used_[i] | b->is_used_[i]); + } + } else { + ADD_EQ(0, literal_, literal_size); + ADD_EQ(1, red_, NUM_LITERAL_CODES); + ADD_EQ(2, blue_, NUM_LITERAL_CODES); + ADD_EQ(3, alpha_, NUM_LITERAL_CODES); + ADD_EQ(4, distance_, NUM_DISTANCE_CODES); + for (i = 0; i < 5; ++i) out->is_used_[i] |= a->is_used_[i]; + } +} +#undef ADD +#undef ADD_EQ + +//------------------------------------------------------------------------------ +// Image transforms. + +static void PredictorSub0_C(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], ARGB_BLACK); + (void)upper; +} + +static void PredictorSub1_C(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + for (i = 0; i < num_pixels; ++i) out[i] = VP8LSubPixels(in[i], in[i - 1]); + (void)upper; +} + +// It subtracts the prediction from the input pixel and stores the residual +// in the output pixel. +#define GENERATE_PREDICTOR_SUB(PREDICTOR_I) \ +static void PredictorSub##PREDICTOR_I##_C(const uint32_t* in, \ + const uint32_t* upper, \ + int num_pixels, uint32_t* out) { \ + int x; \ + assert(upper != NULL); \ + for (x = 0; x < num_pixels; ++x) { \ + const uint32_t pred = \ + VP8LPredictor##PREDICTOR_I##_C(&in[x - 1], upper + x); \ + out[x] = VP8LSubPixels(in[x], pred); \ + } \ +} + +GENERATE_PREDICTOR_SUB(2) +GENERATE_PREDICTOR_SUB(3) +GENERATE_PREDICTOR_SUB(4) +GENERATE_PREDICTOR_SUB(5) +GENERATE_PREDICTOR_SUB(6) +GENERATE_PREDICTOR_SUB(7) +GENERATE_PREDICTOR_SUB(8) +GENERATE_PREDICTOR_SUB(9) +GENERATE_PREDICTOR_SUB(10) +GENERATE_PREDICTOR_SUB(11) +GENERATE_PREDICTOR_SUB(12) +GENERATE_PREDICTOR_SUB(13) + +//------------------------------------------------------------------------------ + +VP8LProcessEncBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed; + +VP8LTransformColorFunc VP8LTransformColor; + +VP8LCollectColorBlueTransformsFunc VP8LCollectColorBlueTransforms; +VP8LCollectColorRedTransformsFunc VP8LCollectColorRedTransforms; + +VP8LFastLog2SlowFunc VP8LFastLog2Slow; +VP8LFastLog2SlowFunc VP8LFastSLog2Slow; + +VP8LCostFunc VP8LExtraCost; +VP8LCostCombinedFunc VP8LExtraCostCombined; +VP8LCombinedShannonEntropyFunc VP8LCombinedShannonEntropy; + +VP8LGetEntropyUnrefinedFunc VP8LGetEntropyUnrefined; +VP8LGetCombinedEntropyUnrefinedFunc VP8LGetCombinedEntropyUnrefined; + +VP8LAddVectorFunc VP8LAddVector; +VP8LAddVectorEqFunc VP8LAddVectorEq; + +VP8LVectorMismatchFunc VP8LVectorMismatch; +VP8LBundleColorMapFunc VP8LBundleColorMap; + +VP8LPredictorAddSubFunc VP8LPredictorsSub[16]; +VP8LPredictorAddSubFunc VP8LPredictorsSub_C[16]; + +extern void VP8LEncDspInitSSE2(void); +extern void VP8LEncDspInitSSE41(void); +extern void VP8LEncDspInitNEON(void); +extern void VP8LEncDspInitMIPS32(void); +extern void VP8LEncDspInitMIPSdspR2(void); +extern void VP8LEncDspInitMSA(void); + +WEBP_DSP_INIT_FUNC(VP8LEncDspInit) { + VP8LDspInit(); + +#if !WEBP_NEON_OMIT_C_CODE + VP8LSubtractGreenFromBlueAndRed = VP8LSubtractGreenFromBlueAndRed_C; + + VP8LTransformColor = VP8LTransformColor_C; +#endif + + VP8LCollectColorBlueTransforms = VP8LCollectColorBlueTransforms_C; + VP8LCollectColorRedTransforms = VP8LCollectColorRedTransforms_C; + + VP8LFastLog2Slow = FastLog2Slow_C; + VP8LFastSLog2Slow = FastSLog2Slow_C; + + VP8LExtraCost = ExtraCost_C; + VP8LExtraCostCombined = ExtraCostCombined_C; + VP8LCombinedShannonEntropy = CombinedShannonEntropy_C; + + VP8LGetEntropyUnrefined = GetEntropyUnrefined_C; + VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined_C; + + VP8LAddVector = AddVector_C; + VP8LAddVectorEq = AddVectorEq_C; + + VP8LVectorMismatch = VectorMismatch_C; + VP8LBundleColorMap = VP8LBundleColorMap_C; + + VP8LPredictorsSub[0] = PredictorSub0_C; + VP8LPredictorsSub[1] = PredictorSub1_C; + VP8LPredictorsSub[2] = PredictorSub2_C; + VP8LPredictorsSub[3] = PredictorSub3_C; + VP8LPredictorsSub[4] = PredictorSub4_C; + VP8LPredictorsSub[5] = PredictorSub5_C; + VP8LPredictorsSub[6] = PredictorSub6_C; + VP8LPredictorsSub[7] = PredictorSub7_C; + VP8LPredictorsSub[8] = PredictorSub8_C; + VP8LPredictorsSub[9] = PredictorSub9_C; + VP8LPredictorsSub[10] = PredictorSub10_C; + VP8LPredictorsSub[11] = PredictorSub11_C; + VP8LPredictorsSub[12] = PredictorSub12_C; + VP8LPredictorsSub[13] = PredictorSub13_C; + VP8LPredictorsSub[14] = PredictorSub0_C; // <- padding security sentinels + VP8LPredictorsSub[15] = PredictorSub0_C; + + VP8LPredictorsSub_C[0] = PredictorSub0_C; + VP8LPredictorsSub_C[1] = PredictorSub1_C; + VP8LPredictorsSub_C[2] = PredictorSub2_C; + VP8LPredictorsSub_C[3] = PredictorSub3_C; + VP8LPredictorsSub_C[4] = PredictorSub4_C; + VP8LPredictorsSub_C[5] = PredictorSub5_C; + VP8LPredictorsSub_C[6] = PredictorSub6_C; + VP8LPredictorsSub_C[7] = PredictorSub7_C; + VP8LPredictorsSub_C[8] = PredictorSub8_C; + VP8LPredictorsSub_C[9] = PredictorSub9_C; + VP8LPredictorsSub_C[10] = PredictorSub10_C; + VP8LPredictorsSub_C[11] = PredictorSub11_C; + VP8LPredictorsSub_C[12] = PredictorSub12_C; + VP8LPredictorsSub_C[13] = PredictorSub13_C; + VP8LPredictorsSub_C[14] = PredictorSub0_C; // <- padding security sentinels + VP8LPredictorsSub_C[15] = PredictorSub0_C; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8LEncDspInitSSE2(); +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + VP8LEncDspInitSSE41(); + } +#endif + } +#endif +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + VP8LEncDspInitMIPS32(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + VP8LEncDspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + VP8LEncDspInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + VP8LEncDspInitNEON(); + } +#endif + + assert(VP8LSubtractGreenFromBlueAndRed != NULL); + assert(VP8LTransformColor != NULL); + assert(VP8LCollectColorBlueTransforms != NULL); + assert(VP8LCollectColorRedTransforms != NULL); + assert(VP8LFastLog2Slow != NULL); + assert(VP8LFastSLog2Slow != NULL); + assert(VP8LExtraCost != NULL); + assert(VP8LExtraCostCombined != NULL); + assert(VP8LCombinedShannonEntropy != NULL); + assert(VP8LGetEntropyUnrefined != NULL); + assert(VP8LGetCombinedEntropyUnrefined != NULL); + assert(VP8LAddVector != NULL); + assert(VP8LAddVectorEq != NULL); + assert(VP8LVectorMismatch != NULL); + assert(VP8LBundleColorMap != NULL); + assert(VP8LPredictorsSub[0] != NULL); + assert(VP8LPredictorsSub[1] != NULL); + assert(VP8LPredictorsSub[2] != NULL); + assert(VP8LPredictorsSub[3] != NULL); + assert(VP8LPredictorsSub[4] != NULL); + assert(VP8LPredictorsSub[5] != NULL); + assert(VP8LPredictorsSub[6] != NULL); + assert(VP8LPredictorsSub[7] != NULL); + assert(VP8LPredictorsSub[8] != NULL); + assert(VP8LPredictorsSub[9] != NULL); + assert(VP8LPredictorsSub[10] != NULL); + assert(VP8LPredictorsSub[11] != NULL); + assert(VP8LPredictorsSub[12] != NULL); + assert(VP8LPredictorsSub[13] != NULL); + assert(VP8LPredictorsSub[14] != NULL); + assert(VP8LPredictorsSub[15] != NULL); + assert(VP8LPredictorsSub_C[0] != NULL); + assert(VP8LPredictorsSub_C[1] != NULL); + assert(VP8LPredictorsSub_C[2] != NULL); + assert(VP8LPredictorsSub_C[3] != NULL); + assert(VP8LPredictorsSub_C[4] != NULL); + assert(VP8LPredictorsSub_C[5] != NULL); + assert(VP8LPredictorsSub_C[6] != NULL); + assert(VP8LPredictorsSub_C[7] != NULL); + assert(VP8LPredictorsSub_C[8] != NULL); + assert(VP8LPredictorsSub_C[9] != NULL); + assert(VP8LPredictorsSub_C[10] != NULL); + assert(VP8LPredictorsSub_C[11] != NULL); + assert(VP8LPredictorsSub_C[12] != NULL); + assert(VP8LPredictorsSub_C[13] != NULL); + assert(VP8LPredictorsSub_C[14] != NULL); + assert(VP8LPredictorsSub_C[15] != NULL); +} + +//------------------------------------------------------------------------------ diff --git a/media/libwebp/src/dsp/lossless_enc_mips32.c b/media/libwebp/src/dsp/lossless_enc_mips32.c new file mode 100644 index 0000000000..639f786631 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_mips32.c @@ -0,0 +1,397 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of lossless functions +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" + +#if defined(WEBP_USE_MIPS32) + +#include <assert.h> +#include <math.h> +#include <stdlib.h> +#include <string.h> + +static float FastSLog2Slow_MIPS32(uint32_t v) { + assert(v >= LOG_LOOKUP_IDX_MAX); + if (v < APPROX_LOG_WITH_CORRECTION_MAX) { + uint32_t log_cnt, y, correction; + const int c24 = 24; + const float v_f = (float)v; + uint32_t temp; + + // Xf = 256 = 2^8 + // log_cnt is index of leading one in upper 24 bits + __asm__ volatile( + "clz %[log_cnt], %[v] \n\t" + "addiu %[y], $zero, 1 \n\t" + "subu %[log_cnt], %[c24], %[log_cnt] \n\t" + "sllv %[y], %[y], %[log_cnt] \n\t" + "srlv %[temp], %[v], %[log_cnt] \n\t" + : [log_cnt]"=&r"(log_cnt), [y]"=&r"(y), + [temp]"=r"(temp) + : [c24]"r"(c24), [v]"r"(v) + ); + + // vf = (2^log_cnt) * Xf; where y = 2^log_cnt and Xf < 256 + // Xf = floor(Xf) * (1 + (v % y) / v) + // log2(Xf) = log2(floor(Xf)) + log2(1 + (v % y) / v) + // The correction factor: log(1 + d) ~ d; for very small d values, so + // log2(1 + (v % y) / v) ~ LOG_2_RECIPROCAL * (v % y)/v + // LOG_2_RECIPROCAL ~ 23/16 + + // (v % y) = (v % 2^log_cnt) = v & (2^log_cnt - 1) + correction = (23 * (v & (y - 1))) >> 4; + return v_f * (kLog2Table[temp] + log_cnt) + correction; + } else { + return (float)(LOG_2_RECIPROCAL * v * log((double)v)); + } +} + +static float FastLog2Slow_MIPS32(uint32_t v) { + assert(v >= LOG_LOOKUP_IDX_MAX); + if (v < APPROX_LOG_WITH_CORRECTION_MAX) { + uint32_t log_cnt, y; + const int c24 = 24; + double log_2; + uint32_t temp; + + __asm__ volatile( + "clz %[log_cnt], %[v] \n\t" + "addiu %[y], $zero, 1 \n\t" + "subu %[log_cnt], %[c24], %[log_cnt] \n\t" + "sllv %[y], %[y], %[log_cnt] \n\t" + "srlv %[temp], %[v], %[log_cnt] \n\t" + : [log_cnt]"=&r"(log_cnt), [y]"=&r"(y), + [temp]"=r"(temp) + : [c24]"r"(c24), [v]"r"(v) + ); + + log_2 = kLog2Table[temp] + log_cnt; + if (v >= APPROX_LOG_MAX) { + // Since the division is still expensive, add this correction factor only + // for large values of 'v'. + + const uint32_t correction = (23 * (v & (y - 1))) >> 4; + log_2 += (double)correction / v; + } + return (float)log_2; + } else { + return (float)(LOG_2_RECIPROCAL * log((double)v)); + } +} + +// C version of this function: +// int i = 0; +// int64_t cost = 0; +// const uint32_t* pop = &population[4]; +// const uint32_t* LoopEnd = &population[length]; +// while (pop != LoopEnd) { +// ++i; +// cost += i * *pop; +// cost += i * *(pop + 1); +// pop += 2; +// } +// return (float)cost; +static float ExtraCost_MIPS32(const uint32_t* const population, int length) { + int i, temp0, temp1; + const uint32_t* pop = &population[4]; + const uint32_t* const LoopEnd = &population[length]; + + __asm__ volatile( + "mult $zero, $zero \n\t" + "xor %[i], %[i], %[i] \n\t" + "beq %[pop], %[LoopEnd], 2f \n\t" + "1: \n\t" + "lw %[temp0], 0(%[pop]) \n\t" + "lw %[temp1], 4(%[pop]) \n\t" + "addiu %[i], %[i], 1 \n\t" + "addiu %[pop], %[pop], 8 \n\t" + "madd %[i], %[temp0] \n\t" + "madd %[i], %[temp1] \n\t" + "bne %[pop], %[LoopEnd], 1b \n\t" + "2: \n\t" + "mfhi %[temp0] \n\t" + "mflo %[temp1] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [i]"=&r"(i), [pop]"+r"(pop) + : [LoopEnd]"r"(LoopEnd) + : "memory", "hi", "lo" + ); + + return (float)((int64_t)temp0 << 32 | temp1); +} + +// C version of this function: +// int i = 0; +// int64_t cost = 0; +// const uint32_t* pX = &X[4]; +// const uint32_t* pY = &Y[4]; +// const uint32_t* LoopEnd = &X[length]; +// while (pX != LoopEnd) { +// const uint32_t xy0 = *pX + *pY; +// const uint32_t xy1 = *(pX + 1) + *(pY + 1); +// ++i; +// cost += i * xy0; +// cost += i * xy1; +// pX += 2; +// pY += 2; +// } +// return (float)cost; +static float ExtraCostCombined_MIPS32(const uint32_t* const X, + const uint32_t* const Y, int length) { + int i, temp0, temp1, temp2, temp3; + const uint32_t* pX = &X[4]; + const uint32_t* pY = &Y[4]; + const uint32_t* const LoopEnd = &X[length]; + + __asm__ volatile( + "mult $zero, $zero \n\t" + "xor %[i], %[i], %[i] \n\t" + "beq %[pX], %[LoopEnd], 2f \n\t" + "1: \n\t" + "lw %[temp0], 0(%[pX]) \n\t" + "lw %[temp1], 0(%[pY]) \n\t" + "lw %[temp2], 4(%[pX]) \n\t" + "lw %[temp3], 4(%[pY]) \n\t" + "addiu %[i], %[i], 1 \n\t" + "addu %[temp0], %[temp0], %[temp1] \n\t" + "addu %[temp2], %[temp2], %[temp3] \n\t" + "addiu %[pX], %[pX], 8 \n\t" + "addiu %[pY], %[pY], 8 \n\t" + "madd %[i], %[temp0] \n\t" + "madd %[i], %[temp2] \n\t" + "bne %[pX], %[LoopEnd], 1b \n\t" + "2: \n\t" + "mfhi %[temp0] \n\t" + "mflo %[temp1] \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [i]"=&r"(i), [pX]"+r"(pX), [pY]"+r"(pY) + : [LoopEnd]"r"(LoopEnd) + : "memory", "hi", "lo" + ); + + return (float)((int64_t)temp0 << 32 | temp1); +} + +#define HUFFMAN_COST_PASS \ + __asm__ volatile( \ + "sll %[temp1], %[temp0], 3 \n\t" \ + "addiu %[temp3], %[streak], -3 \n\t" \ + "addu %[temp2], %[pstreaks], %[temp1] \n\t" \ + "blez %[temp3], 1f \n\t" \ + "srl %[temp1], %[temp1], 1 \n\t" \ + "addu %[temp3], %[pcnts], %[temp1] \n\t" \ + "lw %[temp0], 4(%[temp2]) \n\t" \ + "lw %[temp1], 0(%[temp3]) \n\t" \ + "addu %[temp0], %[temp0], %[streak] \n\t" \ + "addiu %[temp1], %[temp1], 1 \n\t" \ + "sw %[temp0], 4(%[temp2]) \n\t" \ + "sw %[temp1], 0(%[temp3]) \n\t" \ + "b 2f \n\t" \ + "1: \n\t" \ + "lw %[temp0], 0(%[temp2]) \n\t" \ + "addu %[temp0], %[temp0], %[streak] \n\t" \ + "sw %[temp0], 0(%[temp2]) \n\t" \ + "2: \n\t" \ + : [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), \ + [temp3]"=&r"(temp3), [temp0]"+r"(temp0) \ + : [pstreaks]"r"(pstreaks), [pcnts]"r"(pcnts), \ + [streak]"r"(streak) \ + : "memory" \ + ); + +// Returns the various RLE counts +static WEBP_INLINE void GetEntropyUnrefinedHelper( + uint32_t val, int i, uint32_t* const val_prev, int* const i_prev, + VP8LBitEntropy* const bit_entropy, VP8LStreaks* const stats) { + int* const pstreaks = &stats->streaks[0][0]; + int* const pcnts = &stats->counts[0]; + int temp0, temp1, temp2, temp3; + const int streak = i - *i_prev; + + // Gather info for the bit entropy. + if (*val_prev != 0) { + bit_entropy->sum += (*val_prev) * streak; + bit_entropy->nonzeros += streak; + bit_entropy->nonzero_code = *i_prev; + bit_entropy->entropy -= VP8LFastSLog2(*val_prev) * streak; + if (bit_entropy->max_val < *val_prev) { + bit_entropy->max_val = *val_prev; + } + } + + // Gather info for the Huffman cost. + temp0 = (*val_prev != 0); + HUFFMAN_COST_PASS + + *val_prev = val; + *i_prev = i; +} + +static void GetEntropyUnrefined_MIPS32(const uint32_t X[], int length, + VP8LBitEntropy* const bit_entropy, + VP8LStreaks* const stats) { + int i; + int i_prev = 0; + uint32_t x_prev = X[0]; + + memset(stats, 0, sizeof(*stats)); + VP8LBitEntropyInit(bit_entropy); + + for (i = 1; i < length; ++i) { + const uint32_t x = X[i]; + if (x != x_prev) { + GetEntropyUnrefinedHelper(x, i, &x_prev, &i_prev, bit_entropy, stats); + } + } + GetEntropyUnrefinedHelper(0, i, &x_prev, &i_prev, bit_entropy, stats); + + bit_entropy->entropy += VP8LFastSLog2(bit_entropy->sum); +} + +static void GetCombinedEntropyUnrefined_MIPS32(const uint32_t X[], + const uint32_t Y[], + int length, + VP8LBitEntropy* const entropy, + VP8LStreaks* const stats) { + int i = 1; + int i_prev = 0; + uint32_t xy_prev = X[0] + Y[0]; + + memset(stats, 0, sizeof(*stats)); + VP8LBitEntropyInit(entropy); + + for (i = 1; i < length; ++i) { + const uint32_t xy = X[i] + Y[i]; + if (xy != xy_prev) { + GetEntropyUnrefinedHelper(xy, i, &xy_prev, &i_prev, entropy, stats); + } + } + GetEntropyUnrefinedHelper(0, i, &xy_prev, &i_prev, entropy, stats); + + entropy->entropy += VP8LFastSLog2(entropy->sum); +} + +#define ASM_START \ + __asm__ volatile( \ + ".set push \n\t" \ + ".set at \n\t" \ + ".set macro \n\t" \ + "1: \n\t" + +// P2 = P0 + P1 +// A..D - offsets +// E - temp variable to tell macro +// if pointer should be incremented +// literal_ and successive histograms could be unaligned +// so we must use ulw and usw +#define ADD_TO_OUT(A, B, C, D, E, P0, P1, P2) \ + "ulw %[temp0], " #A "(%[" #P0 "]) \n\t" \ + "ulw %[temp1], " #B "(%[" #P0 "]) \n\t" \ + "ulw %[temp2], " #C "(%[" #P0 "]) \n\t" \ + "ulw %[temp3], " #D "(%[" #P0 "]) \n\t" \ + "ulw %[temp4], " #A "(%[" #P1 "]) \n\t" \ + "ulw %[temp5], " #B "(%[" #P1 "]) \n\t" \ + "ulw %[temp6], " #C "(%[" #P1 "]) \n\t" \ + "ulw %[temp7], " #D "(%[" #P1 "]) \n\t" \ + "addu %[temp4], %[temp4], %[temp0] \n\t" \ + "addu %[temp5], %[temp5], %[temp1] \n\t" \ + "addu %[temp6], %[temp6], %[temp2] \n\t" \ + "addu %[temp7], %[temp7], %[temp3] \n\t" \ + "addiu %[" #P0 "], %[" #P0 "], 16 \n\t" \ + ".if " #E " == 1 \n\t" \ + "addiu %[" #P1 "], %[" #P1 "], 16 \n\t" \ + ".endif \n\t" \ + "usw %[temp4], " #A "(%[" #P2 "]) \n\t" \ + "usw %[temp5], " #B "(%[" #P2 "]) \n\t" \ + "usw %[temp6], " #C "(%[" #P2 "]) \n\t" \ + "usw %[temp7], " #D "(%[" #P2 "]) \n\t" \ + "addiu %[" #P2 "], %[" #P2 "], 16 \n\t" \ + "bne %[" #P0 "], %[LoopEnd], 1b \n\t" \ + ".set pop \n\t" \ + +#define ASM_END_COMMON_0 \ + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), \ + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), \ + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), \ + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7), \ + [pa]"+r"(pa), [pout]"+r"(pout) + +#define ASM_END_COMMON_1 \ + : [LoopEnd]"r"(LoopEnd) \ + : "memory", "at" \ + ); + +#define ASM_END_0 \ + ASM_END_COMMON_0 \ + , [pb]"+r"(pb) \ + ASM_END_COMMON_1 + +#define ASM_END_1 \ + ASM_END_COMMON_0 \ + ASM_END_COMMON_1 + +static void AddVector_MIPS32(const uint32_t* pa, const uint32_t* pb, + uint32_t* pout, int size) { + uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + const int end = ((size) / 4) * 4; + const uint32_t* const LoopEnd = pa + end; + int i; + ASM_START + ADD_TO_OUT(0, 4, 8, 12, 1, pa, pb, pout) + ASM_END_0 + for (i = 0; i < size - end; ++i) pout[i] = pa[i] + pb[i]; +} + +static void AddVectorEq_MIPS32(const uint32_t* pa, uint32_t* pout, int size) { + uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + const int end = ((size) / 4) * 4; + const uint32_t* const LoopEnd = pa + end; + int i; + ASM_START + ADD_TO_OUT(0, 4, 8, 12, 0, pa, pout, pout) + ASM_END_1 + for (i = 0; i < size - end; ++i) pout[i] += pa[i]; +} + +#undef ASM_END_1 +#undef ASM_END_0 +#undef ASM_END_COMMON_1 +#undef ASM_END_COMMON_0 +#undef ADD_TO_OUT +#undef ASM_START + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitMIPS32(void) { + VP8LFastSLog2Slow = FastSLog2Slow_MIPS32; + VP8LFastLog2Slow = FastLog2Slow_MIPS32; + VP8LExtraCost = ExtraCost_MIPS32; + VP8LExtraCostCombined = ExtraCostCombined_MIPS32; + VP8LGetEntropyUnrefined = GetEntropyUnrefined_MIPS32; + VP8LGetCombinedEntropyUnrefined = GetCombinedEntropyUnrefined_MIPS32; + VP8LAddVector = AddVector_MIPS32; + VP8LAddVectorEq = AddVectorEq_MIPS32; +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(VP8LEncDspInitMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/lossless_enc_mips_dsp_r2.c b/media/libwebp/src/dsp/lossless_enc_mips_dsp_r2.c new file mode 100644 index 0000000000..5855e6ae15 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_mips_dsp_r2.c @@ -0,0 +1,281 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transform methods for lossless encoder. +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/lossless.h" + +static void SubtractGreenFromBlueAndRed_MIPSdspR2(uint32_t* argb_data, + int num_pixels) { + uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + uint32_t* const p_loop1_end = argb_data + (num_pixels & ~3); + uint32_t* const p_loop2_end = p_loop1_end + (num_pixels & 3); + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[argb_data], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[argb_data]) \n\t" + "lw %[temp1], 4(%[argb_data]) \n\t" + "lw %[temp2], 8(%[argb_data]) \n\t" + "lw %[temp3], 12(%[argb_data]) \n\t" + "ext %[temp4], %[temp0], 8, 8 \n\t" + "ext %[temp5], %[temp1], 8, 8 \n\t" + "ext %[temp6], %[temp2], 8, 8 \n\t" + "ext %[temp7], %[temp3], 8, 8 \n\t" + "addiu %[argb_data], %[argb_data], 16 \n\t" + "replv.ph %[temp4], %[temp4] \n\t" + "replv.ph %[temp5], %[temp5] \n\t" + "replv.ph %[temp6], %[temp6] \n\t" + "replv.ph %[temp7], %[temp7] \n\t" + "subu.qb %[temp0], %[temp0], %[temp4] \n\t" + "subu.qb %[temp1], %[temp1], %[temp5] \n\t" + "subu.qb %[temp2], %[temp2], %[temp6] \n\t" + "subu.qb %[temp3], %[temp3], %[temp7] \n\t" + "sw %[temp0], -16(%[argb_data]) \n\t" + "sw %[temp1], -12(%[argb_data]) \n\t" + "sw %[temp2], -8(%[argb_data]) \n\t" + "bne %[argb_data], %[p_loop1_end], 0b \n\t" + " sw %[temp3], -4(%[argb_data]) \n\t" + "3: \n\t" + "beq %[argb_data], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[argb_data]) \n\t" + "addiu %[argb_data], %[argb_data], 4 \n\t" + "ext %[temp4], %[temp0], 8, 8 \n\t" + "replv.ph %[temp4], %[temp4] \n\t" + "subu.qb %[temp0], %[temp0], %[temp4] \n\t" + "bne %[argb_data], %[p_loop2_end], 1b \n\t" + " sw %[temp0], -4(%[argb_data]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [argb_data]"+&r"(argb_data), [temp0]"=&r"(temp0), + [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), + [temp7]"=&r"(temp7) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, + int8_t color) { + return (uint32_t)((int)(color_pred) * color) >> 5; +} + +static void TransformColor_MIPSdspR2(const VP8LMultipliers* const m, + uint32_t* data, int num_pixels) { + int temp0, temp1, temp2, temp3, temp4, temp5; + uint32_t argb, argb1, new_red, new_red1; + const uint32_t G_to_R = m->green_to_red_; + const uint32_t G_to_B = m->green_to_blue_; + const uint32_t R_to_B = m->red_to_blue_; + uint32_t* const p_loop_end = data + (num_pixels & ~1); + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[data], %[p_loop_end], 1f \n\t" + " nop \n\t" + "replv.ph %[temp0], %[G_to_R] \n\t" + "replv.ph %[temp1], %[G_to_B] \n\t" + "replv.ph %[temp2], %[R_to_B] \n\t" + "shll.ph %[temp0], %[temp0], 8 \n\t" + "shll.ph %[temp1], %[temp1], 8 \n\t" + "shll.ph %[temp2], %[temp2], 8 \n\t" + "shra.ph %[temp0], %[temp0], 8 \n\t" + "shra.ph %[temp1], %[temp1], 8 \n\t" + "shra.ph %[temp2], %[temp2], 8 \n\t" + "0: \n\t" + "lw %[argb], 0(%[data]) \n\t" + "lw %[argb1], 4(%[data]) \n\t" + "lhu %[new_red], 2(%[data]) \n\t" + "lhu %[new_red1], 6(%[data]) \n\t" + "precrq.qb.ph %[temp3], %[argb], %[argb1] \n\t" + "precr.qb.ph %[temp4], %[argb], %[argb1] \n\t" + "preceu.ph.qbra %[temp3], %[temp3] \n\t" + "preceu.ph.qbla %[temp4], %[temp4] \n\t" + "shll.ph %[temp3], %[temp3], 8 \n\t" + "shll.ph %[temp4], %[temp4], 8 \n\t" + "shra.ph %[temp3], %[temp3], 8 \n\t" + "shra.ph %[temp4], %[temp4], 8 \n\t" + "mul.ph %[temp5], %[temp3], %[temp0] \n\t" + "mul.ph %[temp3], %[temp3], %[temp1] \n\t" + "mul.ph %[temp4], %[temp4], %[temp2] \n\t" + "addiu %[data], %[data], 8 \n\t" + "ins %[new_red1], %[new_red], 16, 16 \n\t" + "ins %[argb1], %[argb], 16, 16 \n\t" + "shra.ph %[temp5], %[temp5], 5 \n\t" + "shra.ph %[temp3], %[temp3], 5 \n\t" + "shra.ph %[temp4], %[temp4], 5 \n\t" + "subu.ph %[new_red1], %[new_red1], %[temp5] \n\t" + "subu.ph %[argb1], %[argb1], %[temp3] \n\t" + "preceu.ph.qbra %[temp5], %[new_red1] \n\t" + "subu.ph %[argb1], %[argb1], %[temp4] \n\t" + "preceu.ph.qbra %[temp3], %[argb1] \n\t" + "sb %[temp5], -2(%[data]) \n\t" + "sb %[temp3], -4(%[data]) \n\t" + "sra %[temp5], %[temp5], 16 \n\t" + "sra %[temp3], %[temp3], 16 \n\t" + "sb %[temp5], -6(%[data]) \n\t" + "bne %[data], %[p_loop_end], 0b \n\t" + " sb %[temp3], -8(%[data]) \n\t" + "1: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [new_red1]"=&r"(new_red1), [new_red]"=&r"(new_red), + [argb]"=&r"(argb), [argb1]"=&r"(argb1), [data]"+&r"(data) + : [G_to_R]"r"(G_to_R), [R_to_B]"r"(R_to_B), + [G_to_B]"r"(G_to_B), [p_loop_end]"r"(p_loop_end) + : "memory", "hi", "lo" + ); + + if (num_pixels & 1) { + const uint32_t argb_ = data[0]; + const uint32_t green = argb_ >> 8; + const uint32_t red = argb_ >> 16; + uint32_t new_blue = argb_; + new_red = red; + new_red -= ColorTransformDelta(m->green_to_red_, green); + new_red &= 0xff; + new_blue -= ColorTransformDelta(m->green_to_blue_, green); + new_blue -= ColorTransformDelta(m->red_to_blue_, red); + new_blue &= 0xff; + data[0] = (argb_ & 0xff00ff00u) | (new_red << 16) | (new_blue); + } +} + +static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, + uint8_t red_to_blue, + uint32_t argb) { + const uint32_t green = argb >> 8; + const uint32_t red = argb >> 16; + uint8_t new_blue = argb; + new_blue -= ColorTransformDelta(green_to_blue, green); + new_blue -= ColorTransformDelta(red_to_blue, red); + return (new_blue & 0xff); +} + +static void CollectColorBlueTransforms_MIPSdspR2(const uint32_t* argb, + int stride, + int tile_width, + int tile_height, + int green_to_blue, + int red_to_blue, + int histo[]) { + const int rtb = (red_to_blue << 16) | (red_to_blue & 0xffff); + const int gtb = (green_to_blue << 16) | (green_to_blue & 0xffff); + const uint32_t mask = 0xff00ffu; + while (tile_height-- > 0) { + int x; + const uint32_t* p_argb = argb; + argb += stride; + for (x = 0; x < (tile_width >> 1); ++x) { + int temp0, temp1, temp2, temp3, temp4, temp5, temp6; + __asm__ volatile ( + "lw %[temp0], 0(%[p_argb]) \n\t" + "lw %[temp1], 4(%[p_argb]) \n\t" + "precr.qb.ph %[temp2], %[temp0], %[temp1] \n\t" + "ins %[temp1], %[temp0], 16, 16 \n\t" + "shra.ph %[temp2], %[temp2], 8 \n\t" + "shra.ph %[temp3], %[temp1], 8 \n\t" + "mul.ph %[temp5], %[temp2], %[rtb] \n\t" + "mul.ph %[temp6], %[temp3], %[gtb] \n\t" + "and %[temp4], %[temp1], %[mask] \n\t" + "addiu %[p_argb], %[p_argb], 8 \n\t" + "shra.ph %[temp5], %[temp5], 5 \n\t" + "shra.ph %[temp6], %[temp6], 5 \n\t" + "subu.qb %[temp2], %[temp4], %[temp5] \n\t" + "subu.qb %[temp2], %[temp2], %[temp6] \n\t" + : [p_argb]"+&r"(p_argb), [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), + [temp5]"=&r"(temp5), [temp6]"=&r"(temp6) + : [rtb]"r"(rtb), [gtb]"r"(gtb), [mask]"r"(mask) + : "memory", "hi", "lo" + ); + ++histo[(uint8_t)(temp2 >> 16)]; + ++histo[(uint8_t)temp2]; + } + if (tile_width & 1) { + ++histo[TransformColorBlue(green_to_blue, red_to_blue, *p_argb)]; + } + } +} + +static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, + uint32_t argb) { + const uint32_t green = argb >> 8; + uint32_t new_red = argb >> 16; + new_red -= ColorTransformDelta(green_to_red, green); + return (new_red & 0xff); +} + +static void CollectColorRedTransforms_MIPSdspR2(const uint32_t* argb, + int stride, + int tile_width, + int tile_height, + int green_to_red, + int histo[]) { + const int gtr = (green_to_red << 16) | (green_to_red & 0xffff); + while (tile_height-- > 0) { + int x; + const uint32_t* p_argb = argb; + argb += stride; + for (x = 0; x < (tile_width >> 1); ++x) { + int temp0, temp1, temp2, temp3, temp4; + __asm__ volatile ( + "lw %[temp0], 0(%[p_argb]) \n\t" + "lw %[temp1], 4(%[p_argb]) \n\t" + "precrq.ph.w %[temp4], %[temp0], %[temp1] \n\t" + "ins %[temp1], %[temp0], 16, 16 \n\t" + "shra.ph %[temp3], %[temp1], 8 \n\t" + "mul.ph %[temp2], %[temp3], %[gtr] \n\t" + "addiu %[p_argb], %[p_argb], 8 \n\t" + "shra.ph %[temp2], %[temp2], 5 \n\t" + "subu.qb %[temp2], %[temp4], %[temp2] \n\t" + : [p_argb]"+&r"(p_argb), [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4) + : [gtr]"r"(gtr) + : "memory", "hi", "lo" + ); + ++histo[(uint8_t)(temp2 >> 16)]; + ++histo[(uint8_t)temp2]; + } + if (tile_width & 1) { + ++histo[TransformColorRed(green_to_red, *p_argb)]; + } + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitMIPSdspR2(void) { + VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_MIPSdspR2; + VP8LTransformColor = TransformColor_MIPSdspR2; + VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_MIPSdspR2; + VP8LCollectColorRedTransforms = CollectColorRedTransforms_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8LEncDspInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/lossless_enc_msa.c b/media/libwebp/src/dsp/lossless_enc_msa.c new file mode 100644 index 0000000000..600dddfb59 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_msa.c @@ -0,0 +1,148 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA variant of Image transform methods for lossless encoder. +// +// Authors: Prashant Patil (Prashant.Patil@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include "src/dsp/lossless.h" +#include "src/dsp/msa_macro.h" + +#define TRANSFORM_COLOR_8(src0, src1, dst0, dst1, c0, c1, mask0, mask1) do { \ + v8i16 g0, g1, t0, t1, t2, t3; \ + v4i32 t4, t5; \ + VSHF_B2_SH(src0, src0, src1, src1, mask0, mask0, g0, g1); \ + DOTP_SB2_SH(g0, g1, c0, c0, t0, t1); \ + SRAI_H2_SH(t0, t1, 5); \ + t0 = __msa_subv_h((v8i16)src0, t0); \ + t1 = __msa_subv_h((v8i16)src1, t1); \ + t4 = __msa_srli_w((v4i32)src0, 16); \ + t5 = __msa_srli_w((v4i32)src1, 16); \ + DOTP_SB2_SH(t4, t5, c1, c1, t2, t3); \ + SRAI_H2_SH(t2, t3, 5); \ + SUB2(t0, t2, t1, t3, t0, t1); \ + VSHF_B2_UB(src0, t0, src1, t1, mask1, mask1, dst0, dst1); \ +} while (0) + +#define TRANSFORM_COLOR_4(src, dst, c0, c1, mask0, mask1) do { \ + const v16i8 g0 = VSHF_SB(src, src, mask0); \ + v8i16 t0 = __msa_dotp_s_h(c0, g0); \ + v8i16 t1; \ + v4i32 t2; \ + t0 = SRAI_H(t0, 5); \ + t0 = __msa_subv_h((v8i16)src, t0); \ + t2 = __msa_srli_w((v4i32)src, 16); \ + t1 = __msa_dotp_s_h(c1, (v16i8)t2); \ + t1 = SRAI_H(t1, 5); \ + t0 = t0 - t1; \ + dst = VSHF_UB(src, t0, mask1); \ +} while (0) + +static void TransformColor_MSA(const VP8LMultipliers* const m, uint32_t* data, + int num_pixels) { + v16u8 src0, dst0; + const v16i8 g2br = (v16i8)__msa_fill_w(m->green_to_blue_ | + (m->green_to_red_ << 16)); + const v16i8 r2b = (v16i8)__msa_fill_w(m->red_to_blue_); + const v16u8 mask0 = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, + 13, 255, 13, 255 }; + const v16u8 mask1 = { 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, + 28, 13, 30, 15 }; + + while (num_pixels >= 8) { + v16u8 src1, dst1; + LD_UB2(data, 4, src0, src1); + TRANSFORM_COLOR_8(src0, src1, dst0, dst1, g2br, r2b, mask0, mask1); + ST_UB2(dst0, dst1, data, 4); + data += 8; + num_pixels -= 8; + } + if (num_pixels > 0) { + if (num_pixels >= 4) { + src0 = LD_UB(data); + TRANSFORM_COLOR_4(src0, dst0, g2br, r2b, mask0, mask1); + ST_UB(dst0, data); + data += 4; + num_pixels -= 4; + } + if (num_pixels > 0) { + src0 = LD_UB(data); + TRANSFORM_COLOR_4(src0, dst0, g2br, r2b, mask0, mask1); + if (num_pixels == 3) { + const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); + const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2); + SD(pix_d, data + 0); + SW(pix_w, data + 2); + } else if (num_pixels == 2) { + const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); + SD(pix_d, data); + } else { + const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 0); + SW(pix_w, data); + } + } + } +} + +static void SubtractGreenFromBlueAndRed_MSA(uint32_t* argb_data, + int num_pixels) { + int i; + uint8_t* ptemp_data = (uint8_t*)argb_data; + v16u8 src0, dst0, tmp0; + const v16u8 mask = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, + 13, 255, 13, 255 }; + + while (num_pixels >= 8) { + v16u8 src1, dst1, tmp1; + LD_UB2(ptemp_data, 16, src0, src1); + VSHF_B2_UB(src0, src1, src1, src0, mask, mask, tmp0, tmp1); + SUB2(src0, tmp0, src1, tmp1, dst0, dst1); + ST_UB2(dst0, dst1, ptemp_data, 16); + ptemp_data += 8 * 4; + num_pixels -= 8; + } + if (num_pixels > 0) { + if (num_pixels >= 4) { + src0 = LD_UB(ptemp_data); + tmp0 = VSHF_UB(src0, src0, mask); + dst0 = src0 - tmp0; + ST_UB(dst0, ptemp_data); + ptemp_data += 4 * 4; + num_pixels -= 4; + } + for (i = 0; i < num_pixels; i++) { + const uint8_t b = ptemp_data[0]; + const uint8_t g = ptemp_data[1]; + const uint8_t r = ptemp_data[2]; + ptemp_data[0] = (b - g) & 0xff; + ptemp_data[2] = (r - g) & 0xff; + ptemp_data += 4; + } + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitMSA(void) { + VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_MSA; + VP8LTransformColor = TransformColor_MSA; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(VP8LEncDspInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/lossless_enc_neon.c b/media/libwebp/src/dsp/lossless_enc_neon.c new file mode 100644 index 0000000000..7c7b73f8b6 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_neon.c @@ -0,0 +1,144 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON variant of methods for lossless encoder +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <arm_neon.h> + +#include "src/dsp/lossless.h" +#include "src/dsp/neon.h" + +//------------------------------------------------------------------------------ +// Subtract-Green Transform + +// vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use +// non-standard versions there. +#if defined(__APPLE__) && defined(__aarch64__) && \ + defined(__apple_build_version__) && (__apple_build_version__< 6020037) +#define USE_VTBLQ +#endif + +#ifdef USE_VTBLQ +// 255 = byte will be zeroed +static const uint8_t kGreenShuffle[16] = { + 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 +}; + +static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, + const uint8x16_t shuffle) { + return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), + vtbl1q_u8(argb, vget_high_u8(shuffle))); +} +#else // !USE_VTBLQ +// 255 = byte will be zeroed +static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; + +static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, + const uint8x8_t shuffle) { + return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), + vtbl1_u8(vget_high_u8(argb), shuffle)); +} +#endif // USE_VTBLQ + +static void SubtractGreenFromBlueAndRed_NEON(uint32_t* argb_data, + int num_pixels) { + const uint32_t* const end = argb_data + (num_pixels & ~3); +#ifdef USE_VTBLQ + const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); +#else + const uint8x8_t shuffle = vld1_u8(kGreenShuffle); +#endif + for (; argb_data < end; argb_data += 4) { + const uint8x16_t argb = vld1q_u8((uint8_t*)argb_data); + const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); + vst1q_u8((uint8_t*)argb_data, vsubq_u8(argb, greens)); + } + // fallthrough and finish off with plain-C + VP8LSubtractGreenFromBlueAndRed_C(argb_data, num_pixels & 3); +} + +//------------------------------------------------------------------------------ +// Color Transform + +static void TransformColor_NEON(const VP8LMultipliers* const m, + uint32_t* argb_data, int num_pixels) { + // sign-extended multiplying constants, pre-shifted by 6. +#define CST(X) (((int16_t)(m->X << 8)) >> 6) + const int16_t rb[8] = { + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_) + }; + const int16x8_t mults_rb = vld1q_s16(rb); + const int16_t b2[8] = { + 0, CST(red_to_blue_), 0, CST(red_to_blue_), + 0, CST(red_to_blue_), 0, CST(red_to_blue_), + }; + const int16x8_t mults_b2 = vld1q_s16(b2); +#undef CST +#ifdef USE_VTBLQ + static const uint8_t kg0g0[16] = { + 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 + }; + const uint8x16_t shuffle = vld1q_u8(kg0g0); +#else + static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; + const uint8x8_t shuffle = vld1_u8(k0g0g); +#endif + const uint32x4_t mask_rb = vdupq_n_u32(0x00ff00ffu); // red-blue masks + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t in = vld1q_u8((uint8_t*)(argb_data + i)); + // 0 g 0 g + const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); + // x dr x db1 + const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); + // r 0 b 0 + const int16x8_t B = vshlq_n_s16(vreinterpretq_s16_u8(in), 8); + // x db2 0 0 + const int16x8_t C = vqdmulhq_s16(B, mults_b2); + // 0 0 x db2 + const uint32x4_t D = vshrq_n_u32(vreinterpretq_u32_s16(C), 16); + // x dr x db + const int8x16_t E = vaddq_s8(vreinterpretq_s8_u32(D), + vreinterpretq_s8_s16(A)); + // 0 dr 0 db + const uint32x4_t F = vandq_u32(vreinterpretq_u32_s8(E), mask_rb); + const int8x16_t out = vsubq_s8(vreinterpretq_s8_u8(in), + vreinterpretq_s8_u32(F)); + vst1q_s8((int8_t*)(argb_data + i), out); + } + // fallthrough and finish off with plain-C + VP8LTransformColor_C(m, argb_data + i, num_pixels - i); +} + +#undef USE_VTBLQ + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitNEON(void) { + VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_NEON; + VP8LTransformColor = TransformColor_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8LEncDspInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/lossless_enc_sse2.c b/media/libwebp/src/dsp/lossless_enc_sse2.c new file mode 100644 index 0000000000..66cbaab772 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_sse2.c @@ -0,0 +1,669 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 variant of methods for lossless encoder +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) +#include <assert.h> +#include <emmintrin.h> +#include "src/dsp/lossless.h" +#include "src/dsp/common_sse2.h" +#include "src/dsp/lossless_common.h" + +// For sign-extended multiplying constants, pre-shifted by 5: +#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5) + +//------------------------------------------------------------------------------ +// Subtract-Green Transform + +static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data, + int num_pixels) { + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb + const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g + const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); + const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g + const __m128i out = _mm_sub_epi8(in, C); + _mm_storeu_si128((__m128i*)&argb_data[i], out); + } + // fallthrough and finish off with plain-C + if (i != num_pixels) { + VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); + } +} + +//------------------------------------------------------------------------------ +// Color Transform + +#define MK_CST_16(HI, LO) \ + _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) + +static void TransformColor_SSE2(const VP8LMultipliers* const m, + uint32_t* argb_data, int num_pixels) { + const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_), + CST_5b(m->green_to_blue_)); + const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0); + const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks + const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb + const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 + const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); + const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 + const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 + const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0 + const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0 + const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2 + const __m128i H = _mm_add_epi8(G, D); // x dr x db + const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db + const __m128i out = _mm_sub_epi8(in, I); + _mm_storeu_si128((__m128i*)&argb_data[i], out); + } + // fallthrough and finish off with plain-C + if (i != num_pixels) { + VP8LTransformColor_C(m, argb_data + i, num_pixels - i); + } +} + +//------------------------------------------------------------------------------ +#define SPAN 8 +static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_blue, int red_to_blue, + int histo[]) { + const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0); + const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue)); + const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask + const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask + int y; + for (y = 0; y < tile_height; ++y) { + const uint32_t* const src = argb + y * stride; + int i, x; + for (x = 0; x + SPAN <= tile_width; x += SPAN) { + uint16_t values[SPAN]; + const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); + const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); + const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0 + const __m128i A1 = _mm_slli_epi16(in1, 8); + const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 + const __m128i B1 = _mm_and_si128(in1, mask_g); + const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0 + const __m128i C1 = _mm_mulhi_epi16(A1, mults_r); + const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db + const __m128i D1 = _mm_mulhi_epi16(B1, mults_g); + const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b' + const __m128i E1 = _mm_sub_epi8(in1, D1); + const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db + const __m128i F1 = _mm_srli_epi32(C1, 16); + const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b' + const __m128i G1 = _mm_sub_epi8(E1, F1); + const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b + const __m128i H1 = _mm_and_si128(G1, mask_b); + const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b' + _mm_storeu_si128((__m128i*)values, I); + for (i = 0; i < SPAN; ++i) ++histo[values[i]]; + } + } + { + const int left_over = tile_width & (SPAN - 1); + if (left_over > 0) { + VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, + left_over, tile_height, + green_to_blue, red_to_blue, histo); + } + } +} + +static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_red, int histo[]) { + const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red)); + const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask + const __m128i mask = _mm_set1_epi32(0xff); + + int y; + for (y = 0; y < tile_height; ++y) { + const uint32_t* const src = argb + y * stride; + int i, x; + for (x = 0; x + SPAN <= tile_width; x += SPAN) { + uint16_t values[SPAN]; + const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]); + const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]); + const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0 + const __m128i A1 = _mm_and_si128(in1, mask_g); + const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r + const __m128i B1 = _mm_srli_epi32(in1, 16); + const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr + const __m128i C1 = _mm_mulhi_epi16(A1, mults_g); + const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r' + const __m128i E1 = _mm_sub_epi8(B1, C1); + const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r' + const __m128i F1 = _mm_and_si128(E1, mask); + const __m128i I = _mm_packs_epi32(F0, F1); + _mm_storeu_si128((__m128i*)values, I); + for (i = 0; i < SPAN; ++i) ++histo[values[i]]; + } + } + { + const int left_over = tile_width & (SPAN - 1); + if (left_over > 0) { + VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, + left_over, tile_height, + green_to_red, histo); + } + } +} +#undef SPAN +#undef MK_CST_16 + +//------------------------------------------------------------------------------ + +// Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But +// that's ok since the histogram values are less than 1<<28 (max picture size). +#define LINE_SIZE 16 // 8 or 16 +static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out, + int size) { + int i; + for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); + const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); +#if (LINE_SIZE == 16) + const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); + const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); +#endif + const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]); + const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]); +#if (LINE_SIZE == 16) + const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]); + const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]); +#endif + _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); + _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); +#if (LINE_SIZE == 16) + _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); + _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); +#endif + } + for (; i < size; ++i) { + out[i] = a[i] + b[i]; + } +} + +static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) { + int i; + for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) { + const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]); + const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]); +#if (LINE_SIZE == 16) + const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]); + const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]); +#endif + const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]); + const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]); +#if (LINE_SIZE == 16) + const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]); + const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]); +#endif + _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0)); + _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1)); +#if (LINE_SIZE == 16) + _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2)); + _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3)); +#endif + } + for (; i < size; ++i) { + out[i] += a[i]; + } +} +#undef LINE_SIZE + +//------------------------------------------------------------------------------ +// Entropy + +// TODO(https://crbug.com/webp/499): this function produces different results +// from the C code due to use of double/float resulting in output differences +// when compared to -noasm. +#if !(defined(WEBP_HAVE_SLOW_CLZ_CTZ) || defined(__i386__) || defined(_M_IX86)) + +static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) { + int i; + float retval = 0.f; + int sumX = 0, sumXY = 0; + const __m128i zero = _mm_setzero_si128(); + + for (i = 0; i < 256; i += 16) { + const __m128i x0 = _mm_loadu_si128((const __m128i*)(X + i + 0)); + const __m128i y0 = _mm_loadu_si128((const __m128i*)(Y + i + 0)); + const __m128i x1 = _mm_loadu_si128((const __m128i*)(X + i + 4)); + const __m128i y1 = _mm_loadu_si128((const __m128i*)(Y + i + 4)); + const __m128i x2 = _mm_loadu_si128((const __m128i*)(X + i + 8)); + const __m128i y2 = _mm_loadu_si128((const __m128i*)(Y + i + 8)); + const __m128i x3 = _mm_loadu_si128((const __m128i*)(X + i + 12)); + const __m128i y3 = _mm_loadu_si128((const __m128i*)(Y + i + 12)); + const __m128i x4 = _mm_packs_epi16(_mm_packs_epi32(x0, x1), + _mm_packs_epi32(x2, x3)); + const __m128i y4 = _mm_packs_epi16(_mm_packs_epi32(y0, y1), + _mm_packs_epi32(y2, y3)); + const int32_t mx = _mm_movemask_epi8(_mm_cmpgt_epi8(x4, zero)); + int32_t my = _mm_movemask_epi8(_mm_cmpgt_epi8(y4, zero)) | mx; + while (my) { + const int32_t j = BitsCtz(my); + int xy; + if ((mx >> j) & 1) { + const int x = X[i + j]; + sumXY += x; + retval -= VP8LFastSLog2(x); + } + xy = X[i + j] + Y[i + j]; + sumX += xy; + retval -= VP8LFastSLog2(xy); + my &= my - 1; + } + } + retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); + return retval; +} + +#else + +#define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC // won't be faster + +#endif + +//------------------------------------------------------------------------------ + +static int VectorMismatch_SSE2(const uint32_t* const array1, + const uint32_t* const array2, int length) { + int match_len; + + if (length >= 12) { + __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]); + __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]); + match_len = 0; + do { + // Loop unrolling and early load both provide a speedup of 10% for the + // current function. Also, max_limit can be MAX_LENGTH=4096 at most. + const __m128i cmpA = _mm_cmpeq_epi32(A0, A1); + const __m128i B0 = + _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); + const __m128i B1 = + _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); + if (_mm_movemask_epi8(cmpA) != 0xffff) break; + match_len += 4; + + { + const __m128i cmpB = _mm_cmpeq_epi32(B0, B1); + A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]); + A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]); + if (_mm_movemask_epi8(cmpB) != 0xffff) break; + match_len += 4; + } + } while (match_len + 12 < length); + } else { + match_len = 0; + // Unroll the potential first two loops. + if (length >= 4 && + _mm_movemask_epi8(_mm_cmpeq_epi32( + _mm_loadu_si128((const __m128i*)&array1[0]), + _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) { + match_len = 4; + if (length >= 8 && + _mm_movemask_epi8(_mm_cmpeq_epi32( + _mm_loadu_si128((const __m128i*)&array1[4]), + _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) { + match_len = 8; + } + } + } + + while (match_len < length && array1[match_len] == array2[match_len]) { + ++match_len; + } + return match_len; +} + +// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. +static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits, + uint32_t* dst) { + int x; + assert(xbits >= 0); + assert(xbits <= 3); + switch (xbits) { + case 0: { + const __m128i ff = _mm_set1_epi16((short)0xff00); + const __m128i zero = _mm_setzero_si128(); + // Store 0xff000000 | (row[x] << 8). + for (x = 0; x + 16 <= width; x += 16, dst += 16) { + const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); + const __m128i in_lo = _mm_unpacklo_epi8(zero, in); + const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff); + const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff); + const __m128i in_hi = _mm_unpackhi_epi8(zero, in); + const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff); + const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff); + _mm_storeu_si128((__m128i*)&dst[0], dst0); + _mm_storeu_si128((__m128i*)&dst[4], dst1); + _mm_storeu_si128((__m128i*)&dst[8], dst2); + _mm_storeu_si128((__m128i*)&dst[12], dst3); + } + break; + } + case 1: { + const __m128i ff = _mm_set1_epi16((short)0xff00); + const __m128i mul = _mm_set1_epi16(0x110); + for (x = 0; x + 16 <= width; x += 16, dst += 8) { + // 0a0b | (where a/b are 4 bits). + const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); + const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0 + const __m128i pack = _mm_and_si128(tmp, ff); // ab00 + const __m128i dst0 = _mm_unpacklo_epi16(pack, ff); + const __m128i dst1 = _mm_unpackhi_epi16(pack, ff); + _mm_storeu_si128((__m128i*)&dst[0], dst0); + _mm_storeu_si128((__m128i*)&dst[4], dst1); + } + break; + } + case 2: { + const __m128i mask_or = _mm_set1_epi32((int)0xff000000); + const __m128i mul_cst = _mm_set1_epi16(0x0104); + const __m128i mask_mul = _mm_set1_epi16(0x0f00); + for (x = 0; x + 16 <= width; x += 16, dst += 4) { + // 000a000b000c000d | (where a/b/c/d are 2 bits). + const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); + const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0 + const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000 + const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000 + const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000 + // Convert to 0xff00**00. + const __m128i res = _mm_or_si128(pack, mask_or); + _mm_storeu_si128((__m128i*)dst, res); + } + break; + } + default: { + assert(xbits == 3); + for (x = 0; x + 16 <= width; x += 16, dst += 2) { + // 0000000a00000000b... | (where a/b are 1 bit). + const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]); + const __m128i shift = _mm_slli_epi64(in, 7); + const uint32_t move = _mm_movemask_epi8(shift); + dst[0] = 0xff000000 | ((move & 0xff) << 8); + dst[1] = 0xff000000 | (move & 0xff00); + } + break; + } + } + if (x != width) { + VP8LBundleColorMap_C(row + x, width - x, xbits, dst); + } +} + +//------------------------------------------------------------------------------ +// Batch version of Predictor Transform subtraction + +static WEBP_INLINE void Average2_m128i(const __m128i* const a0, + const __m128i* const a1, + __m128i* const avg) { + // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) + const __m128i ones = _mm_set1_epi8(1); + const __m128i avg1 = _mm_avg_epu8(*a0, *a1); + const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); + *avg = _mm_sub_epi8(avg1, one); +} + +// Predictor0: ARGB_BLACK. +static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const __m128i black = _mm_set1_epi32((int)ARGB_BLACK); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + const __m128i res = _mm_sub_epi8(src, black); + _mm_storeu_si128((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsSub_C[0](in + i, NULL, num_pixels - i, out + i); + } + (void)upper; +} + +#define GENERATE_PREDICTOR_1(X, IN) \ + static void PredictorSub##X##_SSE2(const uint32_t* const in, \ + const uint32_t* const upper, \ + int num_pixels, uint32_t* const out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ + const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \ + const __m128i res = _mm_sub_epi8(src, pred); \ + _mm_storeu_si128((__m128i*)&out[i], res); \ + } \ + if (i != num_pixels) { \ + VP8LPredictorsSub_C[(X)](in + i, WEBP_OFFSET_PTR(upper, i), \ + num_pixels - i, out + i); \ + } \ + } + +GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L +GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T +GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR +GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL +#undef GENERATE_PREDICTOR_1 + +// Predictor5: avg2(avg2(L, TR), T) +static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + __m128i avg, pred, res; + Average2_m128i(&L, &TR, &avg); + Average2_m128i(&avg, &T, &pred); + res = _mm_sub_epi8(src, pred); + _mm_storeu_si128((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i); + } +} + +#define GENERATE_PREDICTOR_2(X, A, B) \ +static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ + int num_pixels, uint32_t* out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \ + const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \ + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ + __m128i pred, res; \ + Average2_m128i(&tA, &tB, &pred); \ + res = _mm_sub_epi8(src, pred); \ + _mm_storeu_si128((__m128i*)&out[i], res); \ + } \ + if (i != num_pixels) { \ + VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ + } \ +} + +GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL) +GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T) +GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T) +GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR) +#undef GENERATE_PREDICTOR_2 + +// Predictor10: avg(avg(L,TL), avg(T, TR)). +static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); + __m128i avgTTR, avgLTL, avg, res; + Average2_m128i(&T, &TR, &avgTTR); + Average2_m128i(&L, &TL, &avgLTL); + Average2_m128i(&avgTTR, &avgLTL, &avg); + res = _mm_sub_epi8(src, avg); + _mm_storeu_si128((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i); + } +} + +// Predictor11: select. +static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B, + __m128i* const out) { + // We can unpack with any value on the upper 32 bits, provided it's the same + // on both operands (to that their sum of abs diff is zero). Here we use *A. + const __m128i A_lo = _mm_unpacklo_epi32(*A, *A); + const __m128i B_lo = _mm_unpacklo_epi32(*B, *A); + const __m128i A_hi = _mm_unpackhi_epi32(*A, *A); + const __m128i B_hi = _mm_unpackhi_epi32(*B, *A); + const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo); + const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi); + *out = _mm_packs_epi32(s_lo, s_hi); +} + +static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + __m128i pa, pb; + GetSumAbsDiff32_SSE2(&T, &TL, &pa); // pa = sum |T-TL| + GetSumAbsDiff32_SSE2(&L, &TL, &pb); // pb = sum |L-TL| + { + const __m128i mask = _mm_cmpgt_epi32(pb, pa); + const __m128i A = _mm_and_si128(mask, L); + const __m128i B = _mm_andnot_si128(mask, T); + const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T + const __m128i res = _mm_sub_epi8(src, pred); + _mm_storeu_si128((__m128i*)&out[i], res); + } + } + if (i != num_pixels) { + VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i); + } +} + +// Predictor12: ClampedSubSubtractFull. +static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const __m128i zero = _mm_setzero_si128(); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]); + const __m128i L_lo = _mm_unpacklo_epi8(L, zero); + const __m128i L_hi = _mm_unpackhi_epi8(L, zero); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i T_lo = _mm_unpacklo_epi8(T, zero); + const __m128i T_hi = _mm_unpackhi_epi8(T, zero); + const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); + const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); + const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); + const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); + const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo); + const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi); + const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi); + const __m128i res = _mm_sub_epi8(src, pred); + _mm_storeu_si128((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i); + } +} + +// Predictors13: ClampedAddSubtractHalf +static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const __m128i zero = _mm_setzero_si128(); + for (i = 0; i + 2 <= num_pixels; i += 2) { + // we can only process two pixels at a time + const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]); + const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]); + const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]); + const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]); + const __m128i L_lo = _mm_unpacklo_epi8(L, zero); + const __m128i T_lo = _mm_unpacklo_epi8(T, zero); + const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); + const __m128i sum = _mm_add_epi16(T_lo, L_lo); + const __m128i avg = _mm_srli_epi16(sum, 1); + const __m128i A1 = _mm_sub_epi16(avg, TL_lo); + const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg); + const __m128i A2 = _mm_sub_epi16(A1, bit_fix); + const __m128i A3 = _mm_srai_epi16(A2, 1); + const __m128i A4 = _mm_add_epi16(avg, A3); + const __m128i pred = _mm_packus_epi16(A4, A4); + const __m128i res = _mm_sub_epi8(src, pred); + _mm_storel_epi64((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) { + VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2; + VP8LTransformColor = TransformColor_SSE2; + VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2; + VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2; + VP8LAddVector = AddVector_SSE2; + VP8LAddVectorEq = AddVectorEq_SSE2; +#if !defined(DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC) + VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2; +#endif + VP8LVectorMismatch = VectorMismatch_SSE2; + VP8LBundleColorMap = BundleColorMap_SSE2; + + VP8LPredictorsSub[0] = PredictorSub0_SSE2; + VP8LPredictorsSub[1] = PredictorSub1_SSE2; + VP8LPredictorsSub[2] = PredictorSub2_SSE2; + VP8LPredictorsSub[3] = PredictorSub3_SSE2; + VP8LPredictorsSub[4] = PredictorSub4_SSE2; + VP8LPredictorsSub[5] = PredictorSub5_SSE2; + VP8LPredictorsSub[6] = PredictorSub6_SSE2; + VP8LPredictorsSub[7] = PredictorSub7_SSE2; + VP8LPredictorsSub[8] = PredictorSub8_SSE2; + VP8LPredictorsSub[9] = PredictorSub9_SSE2; + VP8LPredictorsSub[10] = PredictorSub10_SSE2; + VP8LPredictorsSub[11] = PredictorSub11_SSE2; + VP8LPredictorsSub[12] = PredictorSub12_SSE2; + VP8LPredictorsSub[13] = PredictorSub13_SSE2; + VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels + VP8LPredictorsSub[15] = PredictorSub0_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/lossless_enc_sse41.c b/media/libwebp/src/dsp/lossless_enc_sse41.c new file mode 100644 index 0000000000..ad358a6f25 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_enc_sse41.c @@ -0,0 +1,155 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE4.1 variant of methods for lossless encoder +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) +#include <assert.h> +#include <smmintrin.h> +#include "src/dsp/lossless.h" + +// For sign-extended multiplying constants, pre-shifted by 5: +#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5) + +//------------------------------------------------------------------------------ +// Subtract-Green Transform + +static void SubtractGreenFromBlueAndRed_SSE41(uint32_t* argb_data, + int num_pixels) { + int i; + const __m128i kCstShuffle = _mm_set_epi8(-1, 13, -1, 13, -1, 9, -1, 9, + -1, 5, -1, 5, -1, 1, -1, 1); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); + const __m128i in_0g0g = _mm_shuffle_epi8(in, kCstShuffle); + const __m128i out = _mm_sub_epi8(in, in_0g0g); + _mm_storeu_si128((__m128i*)&argb_data[i], out); + } + // fallthrough and finish off with plain-C + if (i != num_pixels) { + VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i); + } +} + +//------------------------------------------------------------------------------ +// Color Transform + +#define MK_CST_16(HI, LO) \ + _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) + +static void CollectColorBlueTransforms_SSE41(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_blue, int red_to_blue, + int histo[]) { + const __m128i mult = + MK_CST_16(CST_5b(red_to_blue) + 256,CST_5b(green_to_blue)); + const __m128i perm = + _mm_setr_epi8(-1, 1, -1, 2, -1, 5, -1, 6, -1, 9, -1, 10, -1, 13, -1, 14); + if (tile_width >= 4) { + int y; + for (y = 0; y < tile_height; ++y) { + const uint32_t* const src = argb + y * stride; + const __m128i A1 = _mm_loadu_si128((const __m128i*)src); + const __m128i B1 = _mm_shuffle_epi8(A1, perm); + const __m128i C1 = _mm_mulhi_epi16(B1, mult); + const __m128i D1 = _mm_sub_epi16(A1, C1); + __m128i E = _mm_add_epi16(_mm_srli_epi32(D1, 16), D1); + int x; + for (x = 4; x + 4 <= tile_width; x += 4) { + const __m128i A2 = _mm_loadu_si128((const __m128i*)(src + x)); + __m128i B2, C2, D2; + ++histo[_mm_extract_epi8(E, 0)]; + B2 = _mm_shuffle_epi8(A2, perm); + ++histo[_mm_extract_epi8(E, 4)]; + C2 = _mm_mulhi_epi16(B2, mult); + ++histo[_mm_extract_epi8(E, 8)]; + D2 = _mm_sub_epi16(A2, C2); + ++histo[_mm_extract_epi8(E, 12)]; + E = _mm_add_epi16(_mm_srli_epi32(D2, 16), D2); + } + ++histo[_mm_extract_epi8(E, 0)]; + ++histo[_mm_extract_epi8(E, 4)]; + ++histo[_mm_extract_epi8(E, 8)]; + ++histo[_mm_extract_epi8(E, 12)]; + } + } + { + const int left_over = tile_width & 3; + if (left_over > 0) { + VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride, + left_over, tile_height, + green_to_blue, red_to_blue, histo); + } + } +} + +static void CollectColorRedTransforms_SSE41(const uint32_t* argb, int stride, + int tile_width, int tile_height, + int green_to_red, int histo[]) { + + const __m128i mult = MK_CST_16(0, CST_5b(green_to_red)); + const __m128i mask_g = _mm_set1_epi32(0x0000ff00); + if (tile_width >= 4) { + int y; + for (y = 0; y < tile_height; ++y) { + const uint32_t* const src = argb + y * stride; + const __m128i A1 = _mm_loadu_si128((const __m128i*)src); + const __m128i B1 = _mm_and_si128(A1, mask_g); + const __m128i C1 = _mm_madd_epi16(B1, mult); + __m128i D = _mm_sub_epi16(A1, C1); + int x; + for (x = 4; x + 4 <= tile_width; x += 4) { + const __m128i A2 = _mm_loadu_si128((const __m128i*)(src + x)); + __m128i B2, C2; + ++histo[_mm_extract_epi8(D, 2)]; + B2 = _mm_and_si128(A2, mask_g); + ++histo[_mm_extract_epi8(D, 6)]; + C2 = _mm_madd_epi16(B2, mult); + ++histo[_mm_extract_epi8(D, 10)]; + ++histo[_mm_extract_epi8(D, 14)]; + D = _mm_sub_epi16(A2, C2); + } + ++histo[_mm_extract_epi8(D, 2)]; + ++histo[_mm_extract_epi8(D, 6)]; + ++histo[_mm_extract_epi8(D, 10)]; + ++histo[_mm_extract_epi8(D, 14)]; + } + } + { + const int left_over = tile_width & 3; + if (left_over > 0) { + VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride, + left_over, tile_height, green_to_red, + histo); + } + } +} + +#undef MK_CST_16 + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LEncDspInitSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE41(void) { + VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE41; + VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE41; + VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE41; +} + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE41) + +#endif // WEBP_USE_SSE41 diff --git a/media/libwebp/src/dsp/lossless_mips_dsp_r2.c b/media/libwebp/src/dsp/lossless_mips_dsp_r2.c new file mode 100644 index 0000000000..bfe5ea6b38 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_mips_dsp_r2.c @@ -0,0 +1,701 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Image transforms and color space conversion methods for lossless decoder. +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" + +#define MAP_COLOR_FUNCS(FUNC_NAME, TYPE, GET_INDEX, GET_VALUE) \ +static void FUNC_NAME(const TYPE* src, \ + const uint32_t* const color_map, \ + TYPE* dst, int y_start, int y_end, \ + int width) { \ + int y; \ + for (y = y_start; y < y_end; ++y) { \ + int x; \ + for (x = 0; x < (width >> 2); ++x) { \ + int tmp1, tmp2, tmp3, tmp4; \ + __asm__ volatile ( \ + ".ifc " #TYPE ", uint8_t \n\t" \ + "lbu %[tmp1], 0(%[src]) \n\t" \ + "lbu %[tmp2], 1(%[src]) \n\t" \ + "lbu %[tmp3], 2(%[src]) \n\t" \ + "lbu %[tmp4], 3(%[src]) \n\t" \ + "addiu %[src], %[src], 4 \n\t" \ + ".endif \n\t" \ + ".ifc " #TYPE ", uint32_t \n\t" \ + "lw %[tmp1], 0(%[src]) \n\t" \ + "lw %[tmp2], 4(%[src]) \n\t" \ + "lw %[tmp3], 8(%[src]) \n\t" \ + "lw %[tmp4], 12(%[src]) \n\t" \ + "ext %[tmp1], %[tmp1], 8, 8 \n\t" \ + "ext %[tmp2], %[tmp2], 8, 8 \n\t" \ + "ext %[tmp3], %[tmp3], 8, 8 \n\t" \ + "ext %[tmp4], %[tmp4], 8, 8 \n\t" \ + "addiu %[src], %[src], 16 \n\t" \ + ".endif \n\t" \ + "sll %[tmp1], %[tmp1], 2 \n\t" \ + "sll %[tmp2], %[tmp2], 2 \n\t" \ + "sll %[tmp3], %[tmp3], 2 \n\t" \ + "sll %[tmp4], %[tmp4], 2 \n\t" \ + "lwx %[tmp1], %[tmp1](%[color_map]) \n\t" \ + "lwx %[tmp2], %[tmp2](%[color_map]) \n\t" \ + "lwx %[tmp3], %[tmp3](%[color_map]) \n\t" \ + "lwx %[tmp4], %[tmp4](%[color_map]) \n\t" \ + ".ifc " #TYPE ", uint8_t \n\t" \ + "ext %[tmp1], %[tmp1], 8, 8 \n\t" \ + "ext %[tmp2], %[tmp2], 8, 8 \n\t" \ + "ext %[tmp3], %[tmp3], 8, 8 \n\t" \ + "ext %[tmp4], %[tmp4], 8, 8 \n\t" \ + "sb %[tmp1], 0(%[dst]) \n\t" \ + "sb %[tmp2], 1(%[dst]) \n\t" \ + "sb %[tmp3], 2(%[dst]) \n\t" \ + "sb %[tmp4], 3(%[dst]) \n\t" \ + "addiu %[dst], %[dst], 4 \n\t" \ + ".endif \n\t" \ + ".ifc " #TYPE ", uint32_t \n\t" \ + "sw %[tmp1], 0(%[dst]) \n\t" \ + "sw %[tmp2], 4(%[dst]) \n\t" \ + "sw %[tmp3], 8(%[dst]) \n\t" \ + "sw %[tmp4], 12(%[dst]) \n\t" \ + "addiu %[dst], %[dst], 16 \n\t" \ + ".endif \n\t" \ + : [tmp1]"=&r"(tmp1), [tmp2]"=&r"(tmp2), [tmp3]"=&r"(tmp3), \ + [tmp4]"=&r"(tmp4), [src]"+&r"(src), [dst]"+r"(dst) \ + : [color_map]"r"(color_map) \ + : "memory" \ + ); \ + } \ + for (x = 0; x < (width & 3); ++x) { \ + *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ + } \ + } \ +} + +MAP_COLOR_FUNCS(MapARGB_MIPSdspR2, uint32_t, VP8GetARGBIndex, VP8GetARGBValue) +MAP_COLOR_FUNCS(MapAlpha_MIPSdspR2, uint8_t, VP8GetAlphaIndex, VP8GetAlphaValue) + +#undef MAP_COLOR_FUNCS + +static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, + uint32_t c2) { + int temp0, temp1, temp2, temp3, temp4, temp5; + __asm__ volatile ( + "preceu.ph.qbr %[temp1], %[c0] \n\t" + "preceu.ph.qbl %[temp2], %[c0] \n\t" + "preceu.ph.qbr %[temp3], %[c1] \n\t" + "preceu.ph.qbl %[temp4], %[c1] \n\t" + "preceu.ph.qbr %[temp5], %[c2] \n\t" + "preceu.ph.qbl %[temp0], %[c2] \n\t" + "subq.ph %[temp3], %[temp3], %[temp5] \n\t" + "subq.ph %[temp4], %[temp4], %[temp0] \n\t" + "addq.ph %[temp1], %[temp1], %[temp3] \n\t" + "addq.ph %[temp2], %[temp2], %[temp4] \n\t" + "shll_s.ph %[temp1], %[temp1], 7 \n\t" + "shll_s.ph %[temp2], %[temp2], 7 \n\t" + "precrqu_s.qb.ph %[temp2], %[temp2], %[temp1] \n\t" + : [temp0]"=r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5) + : [c0]"r"(c0), [c1]"r"(c1), [c2]"r"(c2) + : "memory" + ); + return temp2; +} + +static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, + uint32_t c2) { + int temp0, temp1, temp2, temp3, temp4, temp5; + __asm__ volatile ( + "adduh.qb %[temp5], %[c0], %[c1] \n\t" + "preceu.ph.qbr %[temp3], %[c2] \n\t" + "preceu.ph.qbr %[temp1], %[temp5] \n\t" + "preceu.ph.qbl %[temp2], %[temp5] \n\t" + "preceu.ph.qbl %[temp4], %[c2] \n\t" + "subq.ph %[temp3], %[temp1], %[temp3] \n\t" + "subq.ph %[temp4], %[temp2], %[temp4] \n\t" + "shrl.ph %[temp5], %[temp3], 15 \n\t" + "shrl.ph %[temp0], %[temp4], 15 \n\t" + "addq.ph %[temp3], %[temp3], %[temp5] \n\t" + "addq.ph %[temp4], %[temp0], %[temp4] \n\t" + "shra.ph %[temp3], %[temp3], 1 \n\t" + "shra.ph %[temp4], %[temp4], 1 \n\t" + "addq.ph %[temp1], %[temp1], %[temp3] \n\t" + "addq.ph %[temp2], %[temp2], %[temp4] \n\t" + "shll_s.ph %[temp1], %[temp1], 7 \n\t" + "shll_s.ph %[temp2], %[temp2], 7 \n\t" + "precrqu_s.qb.ph %[temp1], %[temp2], %[temp1] \n\t" + : [temp0]"=r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=r"(temp4), [temp5]"=&r"(temp5) + : [c0]"r"(c0), [c1]"r"(c1), [c2]"r"(c2) + : "memory" + ); + return temp1; +} + +static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { + int temp0, temp1, temp2, temp3, temp4, temp5; + __asm__ volatile ( + "cmpgdu.lt.qb %[temp1], %[c], %[b] \n\t" + "pick.qb %[temp1], %[b], %[c] \n\t" + "pick.qb %[temp2], %[c], %[b] \n\t" + "cmpgdu.lt.qb %[temp4], %[c], %[a] \n\t" + "pick.qb %[temp4], %[a], %[c] \n\t" + "pick.qb %[temp5], %[c], %[a] \n\t" + "subu.qb %[temp3], %[temp1], %[temp2] \n\t" + "subu.qb %[temp0], %[temp4], %[temp5] \n\t" + "raddu.w.qb %[temp3], %[temp3] \n\t" + "raddu.w.qb %[temp0], %[temp0] \n\t" + "subu %[temp3], %[temp3], %[temp0] \n\t" + "slti %[temp0], %[temp3], 0x1 \n\t" + "movz %[a], %[b], %[temp0] \n\t" + : [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp0]"=&r"(temp0), + [a]"+&r"(a) + : [b]"r"(b), [c]"r"(c) + ); + return a; +} + +static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { + __asm__ volatile ( + "adduh.qb %[a0], %[a0], %[a1] \n\t" + : [a0]"+r"(a0) + : [a1]"r"(a1) + ); + return a0; +} + +static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { + return Average2(Average2(a0, a2), a1); +} + +static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, + uint32_t a2, uint32_t a3) { + return Average2(Average2(a0, a1), Average2(a2, a3)); +} + +static uint32_t Predictor5_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return Average3(*left, top[0], top[1]); +} + +static uint32_t Predictor6_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return Average2(*left, top[-1]); +} + +static uint32_t Predictor7_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return Average2(*left, top[0]); +} + +static uint32_t Predictor8_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + (void)left; + return Average2(top[-1], top[0]); +} + +static uint32_t Predictor9_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + (void)left; + return Average2(top[0], top[1]); +} + +static uint32_t Predictor10_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return Average4(*left, top[-1], top[0], top[1]); +} + +static uint32_t Predictor11_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return Select(top[0], *left, top[-1]); +} + +static uint32_t Predictor12_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return ClampedAddSubtractFull(*left, top[0], top[-1]); +} + +static uint32_t Predictor13_MIPSdspR2(const uint32_t* const left, + const uint32_t* const top) { + return ClampedAddSubtractHalf(*left, top[0], top[-1]); +} + +// Add green to blue and red channels (i.e. perform the inverse transform of +// 'subtract green'). +static void AddGreenToBlueAndRed_MIPSdspR2(const uint32_t* src, int num_pixels, + uint32_t* dst) { + uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "ext %[temp4], %[temp0], 8, 8 \n\t" + "ext %[temp5], %[temp1], 8, 8 \n\t" + "ext %[temp6], %[temp2], 8, 8 \n\t" + "ext %[temp7], %[temp3], 8, 8 \n\t" + "addiu %[src], %[src], 16 \n\t" + "addiu %[dst], %[dst], 16 \n\t" + "replv.ph %[temp4], %[temp4] \n\t" + "replv.ph %[temp5], %[temp5] \n\t" + "replv.ph %[temp6], %[temp6] \n\t" + "replv.ph %[temp7], %[temp7] \n\t" + "addu.qb %[temp0], %[temp0], %[temp4] \n\t" + "addu.qb %[temp1], %[temp1], %[temp5] \n\t" + "addu.qb %[temp2], %[temp2], %[temp6] \n\t" + "addu.qb %[temp3], %[temp3], %[temp7] \n\t" + "sw %[temp0], -16(%[dst]) \n\t" + "sw %[temp1], -12(%[dst]) \n\t" + "sw %[temp2], -8(%[dst]) \n\t" + "bne %[src], %[p_loop1_end], 0b \n\t" + " sw %[temp3], -4(%[dst]) \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "addiu %[src], %[src], 4 \n\t" + "addiu %[dst], %[dst], 4 \n\t" + "ext %[temp4], %[temp0], 8, 8 \n\t" + "replv.ph %[temp4], %[temp4] \n\t" + "addu.qb %[temp0], %[temp0], %[temp4] \n\t" + "bne %[src], %[p_loop2_end], 1b \n\t" + " sw %[temp0], -4(%[dst]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [dst]"+&r"(dst), [src]"+&r"(src), [temp0]"=&r"(temp0), + [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), + [temp7]"=&r"(temp7) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static void TransformColorInverse_MIPSdspR2(const VP8LMultipliers* const m, + const uint32_t* src, int num_pixels, + uint32_t* dst) { + int temp0, temp1, temp2, temp3, temp4, temp5; + uint32_t argb, argb1, new_red; + const uint32_t G_to_R = m->green_to_red_; + const uint32_t G_to_B = m->green_to_blue_; + const uint32_t R_to_B = m->red_to_blue_; + const uint32_t* const p_loop_end = src + (num_pixels & ~1); + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop_end], 1f \n\t" + " nop \n\t" + "replv.ph %[temp0], %[G_to_R] \n\t" + "replv.ph %[temp1], %[G_to_B] \n\t" + "replv.ph %[temp2], %[R_to_B] \n\t" + "shll.ph %[temp0], %[temp0], 8 \n\t" + "shll.ph %[temp1], %[temp1], 8 \n\t" + "shll.ph %[temp2], %[temp2], 8 \n\t" + "shra.ph %[temp0], %[temp0], 8 \n\t" + "shra.ph %[temp1], %[temp1], 8 \n\t" + "shra.ph %[temp2], %[temp2], 8 \n\t" + "0: \n\t" + "lw %[argb], 0(%[src]) \n\t" + "lw %[argb1], 4(%[src]) \n\t" + "sw %[argb], 0(%[dst]) \n\t" + "sw %[argb1], 4(%[dst]) \n\t" + "addiu %[src], %[src], 8 \n\t" + "addiu %[dst], %[dst], 8 \n\t" + "precrq.qb.ph %[temp3], %[argb], %[argb1] \n\t" + "preceu.ph.qbra %[temp3], %[temp3] \n\t" + "shll.ph %[temp3], %[temp3], 8 \n\t" + "shra.ph %[temp3], %[temp3], 8 \n\t" + "mul.ph %[temp5], %[temp3], %[temp0] \n\t" + "mul.ph %[temp3], %[temp3], %[temp1] \n\t" + "precrq.ph.w %[new_red], %[argb], %[argb1] \n\t" + "ins %[argb1], %[argb], 16, 16 \n\t" + "shra.ph %[temp5], %[temp5], 5 \n\t" + "shra.ph %[temp3], %[temp3], 5 \n\t" + "addu.ph %[new_red], %[new_red], %[temp5] \n\t" + "addu.ph %[argb1], %[argb1], %[temp3] \n\t" + "preceu.ph.qbra %[temp5], %[new_red] \n\t" + "shll.ph %[temp4], %[temp5], 8 \n\t" + "shra.ph %[temp4], %[temp4], 8 \n\t" + "mul.ph %[temp4], %[temp4], %[temp2] \n\t" + "sb %[temp5], -2(%[dst]) \n\t" + "sra %[temp5], %[temp5], 16 \n\t" + "shra.ph %[temp4], %[temp4], 5 \n\t" + "addu.ph %[argb1], %[argb1], %[temp4] \n\t" + "preceu.ph.qbra %[temp3], %[argb1] \n\t" + "sb %[temp5], -6(%[dst]) \n\t" + "sb %[temp3], -4(%[dst]) \n\t" + "sra %[temp3], %[temp3], 16 \n\t" + "bne %[src], %[p_loop_end], 0b \n\t" + " sb %[temp3], -8(%[dst]) \n\t" + "1: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [new_red]"=&r"(new_red), [argb]"=&r"(argb), + [argb1]"=&r"(argb1), [dst]"+&r"(dst), [src]"+&r"(src) + : [G_to_R]"r"(G_to_R), [R_to_B]"r"(R_to_B), + [G_to_B]"r"(G_to_B), [p_loop_end]"r"(p_loop_end) + : "memory", "hi", "lo" + ); + + // Fall-back to C-version for left-overs. + if (num_pixels & 1) VP8LTransformColorInverse_C(m, src, 1, dst); +} + +static void ConvertBGRAToRGB_MIPSdspR2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int temp0, temp1, temp2, temp3; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "ins %[temp3], %[temp2], 24, 8 \n\t" + "sll %[temp2], %[temp2], 8 \n\t" + "rotr %[temp3], %[temp3], 16 \n\t" + "ins %[temp2], %[temp1], 0, 16 \n\t" + "sll %[temp1], %[temp1], 8 \n\t" + "wsbh %[temp3], %[temp3] \n\t" + "balign %[temp0], %[temp1], 1 \n\t" + "wsbh %[temp2], %[temp2] \n\t" + "wsbh %[temp0], %[temp0] \n\t" + "usw %[temp3], 8(%[dst]) \n\t" + "rotr %[temp0], %[temp0], 16 \n\t" + "usw %[temp2], 4(%[dst]) \n\t" + "addiu %[src], %[src], 16 \n\t" + "usw %[temp0], 0(%[dst]) \n\t" + "bne %[src], %[p_loop1_end], 0b \n\t" + " addiu %[dst], %[dst], 12 \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "addiu %[src], %[src], 4 \n\t" + "wsbh %[temp1], %[temp0] \n\t" + "addiu %[dst], %[dst], 3 \n\t" + "ush %[temp1], -2(%[dst]) \n\t" + "sra %[temp0], %[temp0], 16 \n\t" + "bne %[src], %[p_loop2_end], 1b \n\t" + " sb %[temp0], -3(%[dst]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [dst]"+&r"(dst), [src]"+&r"(src) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static void ConvertBGRAToRGBA_MIPSdspR2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int temp0, temp1, temp2, temp3; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "wsbh %[temp0], %[temp0] \n\t" + "wsbh %[temp1], %[temp1] \n\t" + "wsbh %[temp2], %[temp2] \n\t" + "wsbh %[temp3], %[temp3] \n\t" + "addiu %[src], %[src], 16 \n\t" + "balign %[temp0], %[temp0], 1 \n\t" + "balign %[temp1], %[temp1], 1 \n\t" + "balign %[temp2], %[temp2], 1 \n\t" + "balign %[temp3], %[temp3], 1 \n\t" + "usw %[temp0], 0(%[dst]) \n\t" + "usw %[temp1], 4(%[dst]) \n\t" + "usw %[temp2], 8(%[dst]) \n\t" + "usw %[temp3], 12(%[dst]) \n\t" + "bne %[src], %[p_loop1_end], 0b \n\t" + " addiu %[dst], %[dst], 16 \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "wsbh %[temp0], %[temp0] \n\t" + "addiu %[src], %[src], 4 \n\t" + "balign %[temp0], %[temp0], 1 \n\t" + "usw %[temp0], 0(%[dst]) \n\t" + "bne %[src], %[p_loop2_end], 1b \n\t" + " addiu %[dst], %[dst], 4 \n\t" + "2: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [dst]"+&r"(dst), [src]"+&r"(src) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static void ConvertBGRAToRGBA4444_MIPSdspR2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int temp0, temp1, temp2, temp3, temp4, temp5; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "ext %[temp4], %[temp0], 28, 4 \n\t" + "ext %[temp5], %[temp0], 12, 4 \n\t" + "ins %[temp0], %[temp4], 0, 4 \n\t" + "ext %[temp4], %[temp1], 28, 4 \n\t" + "ins %[temp0], %[temp5], 16, 4 \n\t" + "ext %[temp5], %[temp1], 12, 4 \n\t" + "ins %[temp1], %[temp4], 0, 4 \n\t" + "ext %[temp4], %[temp2], 28, 4 \n\t" + "ins %[temp1], %[temp5], 16, 4 \n\t" + "ext %[temp5], %[temp2], 12, 4 \n\t" + "ins %[temp2], %[temp4], 0, 4 \n\t" + "ext %[temp4], %[temp3], 28, 4 \n\t" + "ins %[temp2], %[temp5], 16, 4 \n\t" + "ext %[temp5], %[temp3], 12, 4 \n\t" + "ins %[temp3], %[temp4], 0, 4 \n\t" + "precr.qb.ph %[temp1], %[temp1], %[temp0] \n\t" + "ins %[temp3], %[temp5], 16, 4 \n\t" + "addiu %[src], %[src], 16 \n\t" + "precr.qb.ph %[temp3], %[temp3], %[temp2] \n\t" +#if (WEBP_SWAP_16BIT_CSP == 1) + "usw %[temp1], 0(%[dst]) \n\t" + "usw %[temp3], 4(%[dst]) \n\t" +#else + "wsbh %[temp1], %[temp1] \n\t" + "wsbh %[temp3], %[temp3] \n\t" + "usw %[temp1], 0(%[dst]) \n\t" + "usw %[temp3], 4(%[dst]) \n\t" +#endif + "bne %[src], %[p_loop1_end], 0b \n\t" + " addiu %[dst], %[dst], 8 \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "ext %[temp4], %[temp0], 28, 4 \n\t" + "ext %[temp5], %[temp0], 12, 4 \n\t" + "ins %[temp0], %[temp4], 0, 4 \n\t" + "ins %[temp0], %[temp5], 16, 4 \n\t" + "addiu %[src], %[src], 4 \n\t" + "precr.qb.ph %[temp0], %[temp0], %[temp0] \n\t" +#if (WEBP_SWAP_16BIT_CSP == 1) + "ush %[temp0], 0(%[dst]) \n\t" +#else + "wsbh %[temp0], %[temp0] \n\t" + "ush %[temp0], 0(%[dst]) \n\t" +#endif + "bne %[src], %[p_loop2_end], 1b \n\t" + " addiu %[dst], %[dst], 2 \n\t" + "2: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [dst]"+&r"(dst), [src]"+&r"(src) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static void ConvertBGRAToRGB565_MIPSdspR2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int temp0, temp1, temp2, temp3, temp4, temp5; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "ext %[temp4], %[temp0], 8, 16 \n\t" + "ext %[temp5], %[temp0], 5, 11 \n\t" + "ext %[temp0], %[temp0], 3, 5 \n\t" + "ins %[temp4], %[temp5], 0, 11 \n\t" + "ext %[temp5], %[temp1], 5, 11 \n\t" + "ins %[temp4], %[temp0], 0, 5 \n\t" + "ext %[temp0], %[temp1], 8, 16 \n\t" + "ext %[temp1], %[temp1], 3, 5 \n\t" + "ins %[temp0], %[temp5], 0, 11 \n\t" + "ext %[temp5], %[temp2], 5, 11 \n\t" + "ins %[temp0], %[temp1], 0, 5 \n\t" + "ext %[temp1], %[temp2], 8, 16 \n\t" + "ext %[temp2], %[temp2], 3, 5 \n\t" + "ins %[temp1], %[temp5], 0, 11 \n\t" + "ext %[temp5], %[temp3], 5, 11 \n\t" + "ins %[temp1], %[temp2], 0, 5 \n\t" + "ext %[temp2], %[temp3], 8, 16 \n\t" + "ext %[temp3], %[temp3], 3, 5 \n\t" + "ins %[temp2], %[temp5], 0, 11 \n\t" + "append %[temp0], %[temp4], 16 \n\t" + "ins %[temp2], %[temp3], 0, 5 \n\t" + "addiu %[src], %[src], 16 \n\t" + "append %[temp2], %[temp1], 16 \n\t" +#if (WEBP_SWAP_16BIT_CSP == 1) + "usw %[temp0], 0(%[dst]) \n\t" + "usw %[temp2], 4(%[dst]) \n\t" +#else + "wsbh %[temp0], %[temp0] \n\t" + "wsbh %[temp2], %[temp2] \n\t" + "usw %[temp0], 0(%[dst]) \n\t" + "usw %[temp2], 4(%[dst]) \n\t" +#endif + "bne %[src], %[p_loop1_end], 0b \n\t" + " addiu %[dst], %[dst], 8 \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "ext %[temp4], %[temp0], 8, 16 \n\t" + "ext %[temp5], %[temp0], 5, 11 \n\t" + "ext %[temp0], %[temp0], 3, 5 \n\t" + "ins %[temp4], %[temp5], 0, 11 \n\t" + "addiu %[src], %[src], 4 \n\t" + "ins %[temp4], %[temp0], 0, 5 \n\t" +#if (WEBP_SWAP_16BIT_CSP == 1) + "ush %[temp4], 0(%[dst]) \n\t" +#else + "wsbh %[temp4], %[temp4] \n\t" + "ush %[temp4], 0(%[dst]) \n\t" +#endif + "bne %[src], %[p_loop2_end], 1b \n\t" + " addiu %[dst], %[dst], 2 \n\t" + "2: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), + [dst]"+&r"(dst), [src]"+&r"(src) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +static void ConvertBGRAToBGR_MIPSdspR2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int temp0, temp1, temp2, temp3; + const uint32_t* const p_loop1_end = src + (num_pixels & ~3); + const uint32_t* const p_loop2_end = src + num_pixels; + __asm__ volatile ( + ".set push \n\t" + ".set noreorder \n\t" + "beq %[src], %[p_loop1_end], 3f \n\t" + " nop \n\t" + "0: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "lw %[temp1], 4(%[src]) \n\t" + "lw %[temp2], 8(%[src]) \n\t" + "lw %[temp3], 12(%[src]) \n\t" + "ins %[temp0], %[temp1], 24, 8 \n\t" + "sra %[temp1], %[temp1], 8 \n\t" + "ins %[temp1], %[temp2], 16, 16 \n\t" + "sll %[temp2], %[temp2], 8 \n\t" + "balign %[temp3], %[temp2], 1 \n\t" + "addiu %[src], %[src], 16 \n\t" + "usw %[temp0], 0(%[dst]) \n\t" + "usw %[temp1], 4(%[dst]) \n\t" + "usw %[temp3], 8(%[dst]) \n\t" + "bne %[src], %[p_loop1_end], 0b \n\t" + " addiu %[dst], %[dst], 12 \n\t" + "3: \n\t" + "beq %[src], %[p_loop2_end], 2f \n\t" + " nop \n\t" + "1: \n\t" + "lw %[temp0], 0(%[src]) \n\t" + "addiu %[src], %[src], 4 \n\t" + "addiu %[dst], %[dst], 3 \n\t" + "ush %[temp0], -3(%[dst]) \n\t" + "sra %[temp0], %[temp0], 16 \n\t" + "bne %[src], %[p_loop2_end], 1b \n\t" + " sb %[temp0], -1(%[dst]) \n\t" + "2: \n\t" + ".set pop \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), + [temp3]"=&r"(temp3), [dst]"+&r"(dst), [src]"+&r"(src) + : [p_loop1_end]"r"(p_loop1_end), [p_loop2_end]"r"(p_loop2_end) + : "memory" + ); +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LDspInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitMIPSdspR2(void) { + VP8LMapColor32b = MapARGB_MIPSdspR2; + VP8LMapColor8b = MapAlpha_MIPSdspR2; + + VP8LPredictors[5] = Predictor5_MIPSdspR2; + VP8LPredictors[6] = Predictor6_MIPSdspR2; + VP8LPredictors[7] = Predictor7_MIPSdspR2; + VP8LPredictors[8] = Predictor8_MIPSdspR2; + VP8LPredictors[9] = Predictor9_MIPSdspR2; + VP8LPredictors[10] = Predictor10_MIPSdspR2; + VP8LPredictors[11] = Predictor11_MIPSdspR2; + VP8LPredictors[12] = Predictor12_MIPSdspR2; + VP8LPredictors[13] = Predictor13_MIPSdspR2; + + VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_MIPSdspR2; + VP8LTransformColorInverse = TransformColorInverse_MIPSdspR2; + + VP8LConvertBGRAToRGB = ConvertBGRAToRGB_MIPSdspR2; + VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_MIPSdspR2; + VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_MIPSdspR2; + VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_MIPSdspR2; + VP8LConvertBGRAToBGR = ConvertBGRAToBGR_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(VP8LDspInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/lossless_msa.c b/media/libwebp/src/dsp/lossless_msa.c new file mode 100644 index 0000000000..9f5472078d --- /dev/null +++ b/media/libwebp/src/dsp/lossless_msa.c @@ -0,0 +1,356 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA variant of methods for lossless decoder +// +// Author: Prashant Patil (prashant.patil@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include "src/dsp/lossless.h" +#include "src/dsp/msa_macro.h" + +//------------------------------------------------------------------------------ +// Colorspace conversion functions + +#define CONVERT16_BGRA_XXX(psrc, pdst, m0, m1, m2) do { \ + v16u8 src0, src1, src2, src3, dst0, dst1, dst2; \ + LD_UB4(psrc, 16, src0, src1, src2, src3); \ + VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \ + dst2 = VSHF_UB(src2, src3, m2); \ + ST_UB2(dst0, dst1, pdst, 16); \ + ST_UB(dst2, pdst + 32); \ +} while (0) + +#define CONVERT12_BGRA_XXX(psrc, pdst, m0, m1, m2) do { \ + uint32_t pix_w; \ + v16u8 src0, src1, src2, dst0, dst1, dst2; \ + LD_UB3(psrc, 16, src0, src1, src2); \ + VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \ + dst2 = VSHF_UB(src2, src2, m2); \ + ST_UB2(dst0, dst1, pdst, 16); \ + pix_w = __msa_copy_s_w((v4i32)dst2, 0); \ + SW(pix_w, pdst + 32); \ +} while (0) + +#define CONVERT8_BGRA_XXX(psrc, pdst, m0, m1) do { \ + uint64_t pix_d; \ + v16u8 src0, src1, src2 = { 0 }, dst0, dst1; \ + LD_UB2(psrc, 16, src0, src1); \ + VSHF_B2_UB(src0, src1, src1, src2, m0, m1, dst0, dst1); \ + ST_UB(dst0, pdst); \ + pix_d = __msa_copy_s_d((v2i64)dst1, 0); \ + SD(pix_d, pdst + 16); \ +} while (0) + +#define CONVERT4_BGRA_XXX(psrc, pdst, m) do { \ + const v16u8 src0 = LD_UB(psrc); \ + const v16u8 dst0 = VSHF_UB(src0, src0, m); \ + uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); \ + uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2); \ + SD(pix_d, pdst + 0); \ + SW(pix_w, pdst + 8); \ +} while (0) + +#define CONVERT1_BGRA_BGR(psrc, pdst) do { \ + const int32_t b = (psrc)[0]; \ + const int32_t g = (psrc)[1]; \ + const int32_t r = (psrc)[2]; \ + (pdst)[0] = b; \ + (pdst)[1] = g; \ + (pdst)[2] = r; \ +} while (0) + +#define CONVERT1_BGRA_RGB(psrc, pdst) do { \ + const int32_t b = (psrc)[0]; \ + const int32_t g = (psrc)[1]; \ + const int32_t r = (psrc)[2]; \ + (pdst)[0] = r; \ + (pdst)[1] = g; \ + (pdst)[2] = b; \ +} while (0) + +#define TRANSFORM_COLOR_INVERSE_8(src0, src1, dst0, dst1, \ + c0, c1, mask0, mask1) do { \ + v8i16 g0, g1, t0, t1, t2, t3; \ + v4i32 t4, t5; \ + VSHF_B2_SH(src0, src0, src1, src1, mask0, mask0, g0, g1); \ + DOTP_SB2_SH(g0, g1, c0, c0, t0, t1); \ + SRAI_H2_SH(t0, t1, 5); \ + t0 = __msa_addv_h(t0, (v8i16)src0); \ + t1 = __msa_addv_h(t1, (v8i16)src1); \ + t4 = __msa_srli_w((v4i32)t0, 16); \ + t5 = __msa_srli_w((v4i32)t1, 16); \ + DOTP_SB2_SH(t4, t5, c1, c1, t2, t3); \ + SRAI_H2_SH(t2, t3, 5); \ + ADD2(t0, t2, t1, t3, t0, t1); \ + VSHF_B2_UB(src0, t0, src1, t1, mask1, mask1, dst0, dst1); \ +} while (0) + +#define TRANSFORM_COLOR_INVERSE_4(src, dst, c0, c1, mask0, mask1) do { \ + const v16i8 g0 = VSHF_SB(src, src, mask0); \ + v8i16 t0 = __msa_dotp_s_h(c0, g0); \ + v8i16 t1; \ + v4i32 t2; \ + t0 = SRAI_H(t0, 5); \ + t0 = __msa_addv_h(t0, (v8i16)src); \ + t2 = __msa_srli_w((v4i32)t0, 16); \ + t1 = __msa_dotp_s_h(c1, (v16i8)t2); \ + t1 = SRAI_H(t1, 5); \ + t0 = t0 + t1; \ + dst = VSHF_UB(src, t0, mask1); \ +} while (0) + +static void ConvertBGRAToRGBA_MSA(const uint32_t* src, + int num_pixels, uint8_t* dst) { + int i; + const uint8_t* ptemp_src = (const uint8_t*)src; + uint8_t* ptemp_dst = (uint8_t*)dst; + v16u8 src0, dst0; + const v16u8 mask = { 2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15 }; + + while (num_pixels >= 8) { + v16u8 src1, dst1; + LD_UB2(ptemp_src, 16, src0, src1); + VSHF_B2_UB(src0, src0, src1, src1, mask, mask, dst0, dst1); + ST_UB2(dst0, dst1, ptemp_dst, 16); + ptemp_src += 32; + ptemp_dst += 32; + num_pixels -= 8; + } + if (num_pixels > 0) { + if (num_pixels >= 4) { + src0 = LD_UB(ptemp_src); + dst0 = VSHF_UB(src0, src0, mask); + ST_UB(dst0, ptemp_dst); + ptemp_src += 16; + ptemp_dst += 16; + num_pixels -= 4; + } + for (i = 0; i < num_pixels; i++) { + const uint8_t b = ptemp_src[2]; + const uint8_t g = ptemp_src[1]; + const uint8_t r = ptemp_src[0]; + const uint8_t a = ptemp_src[3]; + ptemp_dst[0] = b; + ptemp_dst[1] = g; + ptemp_dst[2] = r; + ptemp_dst[3] = a; + ptemp_src += 4; + ptemp_dst += 4; + } + } +} + +static void ConvertBGRAToBGR_MSA(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint8_t* ptemp_src = (const uint8_t*)src; + uint8_t* ptemp_dst = (uint8_t*)dst; + const v16u8 mask0 = { 0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14, + 16, 17, 18, 20 }; + const v16u8 mask1 = { 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, + 21, 22, 24, 25 }; + const v16u8 mask2 = { 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, + 26, 28, 29, 30 }; + + while (num_pixels >= 16) { + CONVERT16_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2); + ptemp_src += 64; + ptemp_dst += 48; + num_pixels -= 16; + } + if (num_pixels > 0) { + if (num_pixels >= 12) { + CONVERT12_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2); + ptemp_src += 48; + ptemp_dst += 36; + num_pixels -= 12; + } else if (num_pixels >= 8) { + CONVERT8_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1); + ptemp_src += 32; + ptemp_dst += 24; + num_pixels -= 8; + } else if (num_pixels >= 4) { + CONVERT4_BGRA_XXX(ptemp_src, ptemp_dst, mask0); + ptemp_src += 16; + ptemp_dst += 12; + num_pixels -= 4; + } + if (num_pixels == 3) { + CONVERT1_BGRA_BGR(ptemp_src + 0, ptemp_dst + 0); + CONVERT1_BGRA_BGR(ptemp_src + 4, ptemp_dst + 3); + CONVERT1_BGRA_BGR(ptemp_src + 8, ptemp_dst + 6); + } else if (num_pixels == 2) { + CONVERT1_BGRA_BGR(ptemp_src + 0, ptemp_dst + 0); + CONVERT1_BGRA_BGR(ptemp_src + 4, ptemp_dst + 3); + } else if (num_pixels == 1) { + CONVERT1_BGRA_BGR(ptemp_src, ptemp_dst); + } + } +} + +static void ConvertBGRAToRGB_MSA(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint8_t* ptemp_src = (const uint8_t*)src; + uint8_t* ptemp_dst = (uint8_t*)dst; + const v16u8 mask0 = { 2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, + 18, 17, 16, 22 }; + const v16u8 mask1 = { 5, 4, 10, 9, 8, 14, 13, 12, 18, 17, 16, 22, + 21, 20, 26, 25 }; + const v16u8 mask2 = { 8, 14, 13, 12, 18, 17, 16, 22, 21, 20, 26, 25, + 24, 30, 29, 28 }; + + while (num_pixels >= 16) { + CONVERT16_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2); + ptemp_src += 64; + ptemp_dst += 48; + num_pixels -= 16; + } + if (num_pixels) { + if (num_pixels >= 12) { + CONVERT12_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1, mask2); + ptemp_src += 48; + ptemp_dst += 36; + num_pixels -= 12; + } else if (num_pixels >= 8) { + CONVERT8_BGRA_XXX(ptemp_src, ptemp_dst, mask0, mask1); + ptemp_src += 32; + ptemp_dst += 24; + num_pixels -= 8; + } else if (num_pixels >= 4) { + CONVERT4_BGRA_XXX(ptemp_src, ptemp_dst, mask0); + ptemp_src += 16; + ptemp_dst += 12; + num_pixels -= 4; + } + if (num_pixels == 3) { + CONVERT1_BGRA_RGB(ptemp_src + 0, ptemp_dst + 0); + CONVERT1_BGRA_RGB(ptemp_src + 4, ptemp_dst + 3); + CONVERT1_BGRA_RGB(ptemp_src + 8, ptemp_dst + 6); + } else if (num_pixels == 2) { + CONVERT1_BGRA_RGB(ptemp_src + 0, ptemp_dst + 0); + CONVERT1_BGRA_RGB(ptemp_src + 4, ptemp_dst + 3); + } else if (num_pixels == 1) { + CONVERT1_BGRA_RGB(ptemp_src, ptemp_dst); + } + } +} + +static void AddGreenToBlueAndRed_MSA(const uint32_t* const src, int num_pixels, + uint32_t* dst) { + int i; + const uint8_t* in = (const uint8_t*)src; + uint8_t* out = (uint8_t*)dst; + v16u8 src0, dst0, tmp0; + const v16u8 mask = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, + 13, 255, 13, 255 }; + + while (num_pixels >= 8) { + v16u8 src1, dst1, tmp1; + LD_UB2(in, 16, src0, src1); + VSHF_B2_UB(src0, src1, src1, src0, mask, mask, tmp0, tmp1); + ADD2(src0, tmp0, src1, tmp1, dst0, dst1); + ST_UB2(dst0, dst1, out, 16); + in += 32; + out += 32; + num_pixels -= 8; + } + if (num_pixels > 0) { + if (num_pixels >= 4) { + src0 = LD_UB(in); + tmp0 = VSHF_UB(src0, src0, mask); + dst0 = src0 + tmp0; + ST_UB(dst0, out); + in += 16; + out += 16; + num_pixels -= 4; + } + for (i = 0; i < num_pixels; i++) { + const uint8_t b = in[0]; + const uint8_t g = in[1]; + const uint8_t r = in[2]; + out[0] = (b + g) & 0xff; + out[1] = g; + out[2] = (r + g) & 0xff; + out[4] = in[4]; + out += 4; + } + } +} + +static void TransformColorInverse_MSA(const VP8LMultipliers* const m, + const uint32_t* src, int num_pixels, + uint32_t* dst) { + v16u8 src0, dst0; + const v16i8 g2br = (v16i8)__msa_fill_w(m->green_to_blue_ | + (m->green_to_red_ << 16)); + const v16i8 r2b = (v16i8)__msa_fill_w(m->red_to_blue_); + const v16u8 mask0 = { 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, + 13, 255, 13, 255 }; + const v16u8 mask1 = { 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, + 28, 13, 30, 15 }; + + while (num_pixels >= 8) { + v16u8 src1, dst1; + LD_UB2(src, 4, src0, src1); + TRANSFORM_COLOR_INVERSE_8(src0, src1, dst0, dst1, g2br, r2b, mask0, mask1); + ST_UB2(dst0, dst1, dst, 4); + src += 8; + dst += 8; + num_pixels -= 8; + } + if (num_pixels > 0) { + if (num_pixels >= 4) { + src0 = LD_UB(src); + TRANSFORM_COLOR_INVERSE_4(src0, dst0, g2br, r2b, mask0, mask1); + ST_UB(dst0, dst); + src += 4; + dst += 4; + num_pixels -= 4; + } + if (num_pixels > 0) { + src0 = LD_UB(src); + TRANSFORM_COLOR_INVERSE_4(src0, dst0, g2br, r2b, mask0, mask1); + if (num_pixels == 3) { + const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); + const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 2); + SD(pix_d, dst + 0); + SW(pix_w, dst + 2); + } else if (num_pixels == 2) { + const uint64_t pix_d = __msa_copy_s_d((v2i64)dst0, 0); + SD(pix_d, dst); + } else { + const uint32_t pix_w = __msa_copy_s_w((v4i32)dst0, 0); + SW(pix_w, dst); + } + } + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LDspInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitMSA(void) { + VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_MSA; + VP8LConvertBGRAToBGR = ConvertBGRAToBGR_MSA; + VP8LConvertBGRAToRGB = ConvertBGRAToRGB_MSA; + + VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_MSA; + VP8LTransformColorInverse = TransformColorInverse_MSA; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(VP8LDspInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/lossless_neon.c b/media/libwebp/src/dsp/lossless_neon.c new file mode 100644 index 0000000000..89e3e013a0 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_neon.c @@ -0,0 +1,645 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON variant of methods for lossless decoder +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <arm_neon.h> + +#include "src/dsp/lossless.h" +#include "src/dsp/neon.h" + +//------------------------------------------------------------------------------ +// Colorspace conversion functions + +#if !defined(WORK_AROUND_GCC) +// gcc 4.6.0 had some trouble (NDK-r9) with this code. We only use it for +// gcc-4.8.x at least. +static void ConvertBGRAToRGBA_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~15); + for (; src < end; src += 16) { + uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); + // swap B and R. (VSWP d0,d2 has no intrinsics equivalent!) + const uint8x16_t tmp = pixel.val[0]; + pixel.val[0] = pixel.val[2]; + pixel.val[2] = tmp; + vst4q_u8(dst, pixel); + dst += 64; + } + VP8LConvertBGRAToRGBA_C(src, num_pixels & 15, dst); // left-overs +} + +static void ConvertBGRAToBGR_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~15); + for (; src < end; src += 16) { + const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); + const uint8x16x3_t tmp = { { pixel.val[0], pixel.val[1], pixel.val[2] } }; + vst3q_u8(dst, tmp); + dst += 48; + } + VP8LConvertBGRAToBGR_C(src, num_pixels & 15, dst); // left-overs +} + +static void ConvertBGRAToRGB_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~15); + for (; src < end; src += 16) { + const uint8x16x4_t pixel = vld4q_u8((uint8_t*)src); + const uint8x16x3_t tmp = { { pixel.val[2], pixel.val[1], pixel.val[0] } }; + vst3q_u8(dst, tmp); + dst += 48; + } + VP8LConvertBGRAToRGB_C(src, num_pixels & 15, dst); // left-overs +} + +#else // WORK_AROUND_GCC + +// gcc-4.6.0 fallback + +static const uint8_t kRGBAShuffle[8] = { 2, 1, 0, 3, 6, 5, 4, 7 }; + +static void ConvertBGRAToRGBA_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~1); + const uint8x8_t shuffle = vld1_u8(kRGBAShuffle); + for (; src < end; src += 2) { + const uint8x8_t pixels = vld1_u8((uint8_t*)src); + vst1_u8(dst, vtbl1_u8(pixels, shuffle)); + dst += 8; + } + VP8LConvertBGRAToRGBA_C(src, num_pixels & 1, dst); // left-overs +} + +static const uint8_t kBGRShuffle[3][8] = { + { 0, 1, 2, 4, 5, 6, 8, 9 }, + { 10, 12, 13, 14, 16, 17, 18, 20 }, + { 21, 22, 24, 25, 26, 28, 29, 30 } +}; + +static void ConvertBGRAToBGR_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~7); + const uint8x8_t shuffle0 = vld1_u8(kBGRShuffle[0]); + const uint8x8_t shuffle1 = vld1_u8(kBGRShuffle[1]); + const uint8x8_t shuffle2 = vld1_u8(kBGRShuffle[2]); + for (; src < end; src += 8) { + uint8x8x4_t pixels; + INIT_VECTOR4(pixels, + vld1_u8((const uint8_t*)(src + 0)), + vld1_u8((const uint8_t*)(src + 2)), + vld1_u8((const uint8_t*)(src + 4)), + vld1_u8((const uint8_t*)(src + 6))); + vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); + vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); + vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); + dst += 8 * 3; + } + VP8LConvertBGRAToBGR_C(src, num_pixels & 7, dst); // left-overs +} + +static const uint8_t kRGBShuffle[3][8] = { + { 2, 1, 0, 6, 5, 4, 10, 9 }, + { 8, 14, 13, 12, 18, 17, 16, 22 }, + { 21, 20, 26, 25, 24, 30, 29, 28 } +}; + +static void ConvertBGRAToRGB_NEON(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const uint32_t* const end = src + (num_pixels & ~7); + const uint8x8_t shuffle0 = vld1_u8(kRGBShuffle[0]); + const uint8x8_t shuffle1 = vld1_u8(kRGBShuffle[1]); + const uint8x8_t shuffle2 = vld1_u8(kRGBShuffle[2]); + for (; src < end; src += 8) { + uint8x8x4_t pixels; + INIT_VECTOR4(pixels, + vld1_u8((const uint8_t*)(src + 0)), + vld1_u8((const uint8_t*)(src + 2)), + vld1_u8((const uint8_t*)(src + 4)), + vld1_u8((const uint8_t*)(src + 6))); + vst1_u8(dst + 0, vtbl4_u8(pixels, shuffle0)); + vst1_u8(dst + 8, vtbl4_u8(pixels, shuffle1)); + vst1_u8(dst + 16, vtbl4_u8(pixels, shuffle2)); + dst += 8 * 3; + } + VP8LConvertBGRAToRGB_C(src, num_pixels & 7, dst); // left-overs +} + +#endif // !WORK_AROUND_GCC + +//------------------------------------------------------------------------------ +// Predictor Transform + +#define LOAD_U32_AS_U8(IN) vreinterpret_u8_u32(vdup_n_u32((IN))) +#define LOAD_U32P_AS_U8(IN) vreinterpret_u8_u32(vld1_u32((IN))) +#define LOADQ_U32_AS_U8(IN) vreinterpretq_u8_u32(vdupq_n_u32((IN))) +#define LOADQ_U32P_AS_U8(IN) vreinterpretq_u8_u32(vld1q_u32((IN))) +#define GET_U8_AS_U32(IN) vget_lane_u32(vreinterpret_u32_u8((IN)), 0); +#define GETQ_U8_AS_U32(IN) vgetq_lane_u32(vreinterpretq_u32_u8((IN)), 0); +#define STOREQ_U8_AS_U32P(OUT, IN) vst1q_u32((OUT), vreinterpretq_u32_u8((IN))); +#define ROTATE32_LEFT(L) vextq_u8((L), (L), 12) // D|C|B|A -> C|B|A|D + +static WEBP_INLINE uint8x8_t Average2_u8_NEON(uint32_t a0, uint32_t a1) { + const uint8x8_t A0 = LOAD_U32_AS_U8(a0); + const uint8x8_t A1 = LOAD_U32_AS_U8(a1); + return vhadd_u8(A0, A1); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractHalf_NEON(uint32_t c0, + uint32_t c1, + uint32_t c2) { + const uint8x8_t avg = Average2_u8_NEON(c0, c1); + // Remove one to c2 when bigger than avg. + const uint8x8_t C2 = LOAD_U32_AS_U8(c2); + const uint8x8_t cmp = vcgt_u8(C2, avg); + const uint8x8_t C2_1 = vadd_u8(C2, cmp); + // Compute half of the difference between avg and c2. + const int8x8_t diff_avg = vreinterpret_s8_u8(vhsub_u8(avg, C2_1)); + // Compute the sum with avg and saturate. + const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(avg)); + const uint8x8_t res = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); + const uint32_t output = GET_U8_AS_U32(res); + return output; +} + +static WEBP_INLINE uint32_t Average2_NEON(uint32_t a0, uint32_t a1) { + const uint8x8_t avg_u8x8 = Average2_u8_NEON(a0, a1); + const uint32_t avg = GET_U8_AS_U32(avg_u8x8); + return avg; +} + +static WEBP_INLINE uint32_t Average3_NEON(uint32_t a0, uint32_t a1, + uint32_t a2) { + const uint8x8_t avg0 = Average2_u8_NEON(a0, a2); + const uint8x8_t A1 = LOAD_U32_AS_U8(a1); + const uint32_t avg = GET_U8_AS_U32(vhadd_u8(avg0, A1)); + return avg; +} + +static uint32_t Predictor5_NEON(const uint32_t* const left, + const uint32_t* const top) { + return Average3_NEON(*left, top[0], top[1]); +} +static uint32_t Predictor6_NEON(const uint32_t* const left, + const uint32_t* const top) { + return Average2_NEON(*left, top[-1]); +} +static uint32_t Predictor7_NEON(const uint32_t* const left, + const uint32_t* const top) { + return Average2_NEON(*left, top[0]); +} +static uint32_t Predictor13_NEON(const uint32_t* const left, + const uint32_t* const top) { + return ClampedAddSubtractHalf_NEON(*left, top[0], top[-1]); +} + +// Batch versions of those functions. + +// Predictor0: ARGB_BLACK. +static void PredictorAdd0_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const uint8x16_t black = vreinterpretq_u8_u32(vdupq_n_u32(ARGB_BLACK)); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t res = vaddq_u8(src, black); + STOREQ_U8_AS_U32P(&out[i], res); + } + VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); +} + +// Predictor1: left. +static void PredictorAdd1_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const uint8x16_t zero = LOADQ_U32_AS_U8(0); + for (i = 0; i + 4 <= num_pixels; i += 4) { + // a | b | c | d + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + // 0 | a | b | c + const uint8x16_t shift0 = vextq_u8(zero, src, 12); + // a | a + b | b + c | c + d + const uint8x16_t sum0 = vaddq_u8(src, shift0); + // 0 | 0 | a | a + b + const uint8x16_t shift1 = vextq_u8(zero, sum0, 8); + // a | a + b | a + b + c | a + b + c + d + const uint8x16_t sum1 = vaddq_u8(sum0, shift1); + const uint8x16_t prev = LOADQ_U32_AS_U8(out[i - 1]); + const uint8x16_t res = vaddq_u8(sum1, prev); + STOREQ_U8_AS_U32P(&out[i], res); + } + VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); +} + +// Macro that adds 32-bit integers from IN using mod 256 arithmetic +// per 8 bit channel. +#define GENERATE_PREDICTOR_1(X, IN) \ +static void PredictorAdd##X##_NEON(const uint32_t* in, \ + const uint32_t* upper, int num_pixels, \ + uint32_t* out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ + const uint8x16_t other = LOADQ_U32P_AS_U8(&(IN)); \ + const uint8x16_t res = vaddq_u8(src, other); \ + STOREQ_U8_AS_U32P(&out[i], res); \ + } \ + VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ +} +// Predictor2: Top. +GENERATE_PREDICTOR_1(2, upper[i]) +// Predictor3: Top-right. +GENERATE_PREDICTOR_1(3, upper[i + 1]) +// Predictor4: Top-left. +GENERATE_PREDICTOR_1(4, upper[i - 1]) +#undef GENERATE_PREDICTOR_1 + +// Predictor5: average(average(left, TR), T) +#define DO_PRED5(LANE) do { \ + const uint8x16_t avgLTR = vhaddq_u8(L, TR); \ + const uint8x16_t avg = vhaddq_u8(avgLTR, T); \ + const uint8x16_t res = vaddq_u8(avg, src); \ + vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ + L = ROTATE32_LEFT(res); \ +} while (0) + +static void PredictorAdd5_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i + 0]); + const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); + DO_PRED5(0); + DO_PRED5(1); + DO_PRED5(2); + DO_PRED5(3); + } + VP8LPredictorsAdd_C[5](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED5 + +#define DO_PRED67(LANE) do { \ + const uint8x16_t avg = vhaddq_u8(L, top); \ + const uint8x16_t res = vaddq_u8(avg, src); \ + vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ + L = ROTATE32_LEFT(res); \ +} while (0) + +// Predictor6: average(left, TL) +static void PredictorAdd6_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i - 1]); + DO_PRED67(0); + DO_PRED67(1); + DO_PRED67(2); + DO_PRED67(3); + } + VP8LPredictorsAdd_C[6](in + i, upper + i, num_pixels - i, out + i); +} + +// Predictor7: average(left, T) +static void PredictorAdd7_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t top = LOADQ_U32P_AS_U8(&upper[i]); + DO_PRED67(0); + DO_PRED67(1); + DO_PRED67(2); + DO_PRED67(3); + } + VP8LPredictorsAdd_C[7](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED67 + +#define GENERATE_PREDICTOR_2(X, IN) \ +static void PredictorAdd##X##_NEON(const uint32_t* in, \ + const uint32_t* upper, int num_pixels, \ + uint32_t* out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); \ + const uint8x16_t Tother = LOADQ_U32P_AS_U8(&(IN)); \ + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); \ + const uint8x16_t avg = vhaddq_u8(T, Tother); \ + const uint8x16_t res = vaddq_u8(avg, src); \ + STOREQ_U8_AS_U32P(&out[i], res); \ + } \ + VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ +} +// Predictor8: average TL T. +GENERATE_PREDICTOR_2(8, upper[i - 1]) +// Predictor9: average T TR. +GENERATE_PREDICTOR_2(9, upper[i + 1]) +#undef GENERATE_PREDICTOR_2 + +// Predictor10: average of (average of (L,TL), average of (T, TR)). +#define DO_PRED10(LANE) do { \ + const uint8x16_t avgLTL = vhaddq_u8(L, TL); \ + const uint8x16_t avg = vhaddq_u8(avgTTR, avgLTL); \ + const uint8x16_t res = vaddq_u8(avg, src); \ + vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ + L = ROTATE32_LEFT(res); \ +} while (0) + +static void PredictorAdd10_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); + const uint8x16_t TR = LOADQ_U32P_AS_U8(&upper[i + 1]); + const uint8x16_t avgTTR = vhaddq_u8(T, TR); + DO_PRED10(0); + DO_PRED10(1); + DO_PRED10(2); + DO_PRED10(3); + } + VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED10 + +// Predictor11: select. +#define DO_PRED11(LANE) do { \ + const uint8x16_t sumLin = vaddq_u8(L, src); /* in + L */ \ + const uint8x16_t pLTL = vabdq_u8(L, TL); /* |L - TL| */ \ + const uint16x8_t sum_LTL = vpaddlq_u8(pLTL); \ + const uint32x4_t pa = vpaddlq_u16(sum_LTL); \ + const uint32x4_t mask = vcleq_u32(pa, pb); \ + const uint8x16_t res = vbslq_u8(vreinterpretq_u8_u32(mask), sumTin, sumLin); \ + vst1q_lane_u32(&out[i + (LANE)], vreinterpretq_u32_u8(res), (LANE)); \ + L = ROTATE32_LEFT(res); \ +} while (0) + +static void PredictorAdd11_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); + const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); + const uint8x16_t pTTL = vabdq_u8(T, TL); // |T - TL| + const uint16x8_t sum_TTL = vpaddlq_u8(pTTL); + const uint32x4_t pb = vpaddlq_u16(sum_TTL); + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t sumTin = vaddq_u8(T, src); // in + T + DO_PRED11(0); + DO_PRED11(1); + DO_PRED11(2); + DO_PRED11(3); + } + VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED11 + +// Predictor12: ClampedAddSubtractFull. +#define DO_PRED12(DIFF, LANE) do { \ + const uint8x8_t pred = \ + vqmovun_s16(vaddq_s16(vreinterpretq_s16_u16(L), (DIFF))); \ + const uint8x8_t res = \ + vadd_u8(pred, (LANE <= 1) ? vget_low_u8(src) : vget_high_u8(src)); \ + const uint16x8_t res16 = vmovl_u8(res); \ + vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ + /* rotate in the left predictor for next iteration */ \ + L = vextq_u16(res16, res16, 4); \ +} while (0) + +static void PredictorAdd12_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint16x8_t L = vmovl_u8(LOAD_U32_AS_U8(out[-1])); + for (i = 0; i + 4 <= num_pixels; i += 4) { + // load four pixels of source + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + // precompute the difference T - TL once for all, stored as s16 + const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); + const int16x8_t diff_lo = + vreinterpretq_s16_u16(vsubl_u8(vget_low_u8(T), vget_low_u8(TL))); + const int16x8_t diff_hi = + vreinterpretq_s16_u16(vsubl_u8(vget_high_u8(T), vget_high_u8(TL))); + // loop over the four reconstructed pixels + DO_PRED12(diff_lo, 0); + DO_PRED12(diff_lo, 1); + DO_PRED12(diff_hi, 2); + DO_PRED12(diff_hi, 3); + } + VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED12 + +// Predictor13: ClampedAddSubtractHalf +#define DO_PRED13(LANE, LOW_OR_HI) do { \ + const uint8x16_t avg = vhaddq_u8(L, T); \ + const uint8x16_t cmp = vcgtq_u8(TL, avg); \ + const uint8x16_t TL_1 = vaddq_u8(TL, cmp); \ + /* Compute half of the difference between avg and TL'. */ \ + const int8x8_t diff_avg = \ + vreinterpret_s8_u8(LOW_OR_HI(vhsubq_u8(avg, TL_1))); \ + /* Compute the sum with avg and saturate. */ \ + const int16x8_t avg_16 = vreinterpretq_s16_u16(vmovl_u8(LOW_OR_HI(avg))); \ + const uint8x8_t delta = vqmovun_s16(vaddw_s8(avg_16, diff_avg)); \ + const uint8x8_t res = vadd_u8(LOW_OR_HI(src), delta); \ + const uint8x16_t res2 = vcombine_u8(res, res); \ + vst1_lane_u32(&out[i + (LANE)], vreinterpret_u32_u8(res), (LANE) & 1); \ + L = ROTATE32_LEFT(res2); \ +} while (0) + +static void PredictorAdd13_NEON(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + uint8x16_t L = LOADQ_U32_AS_U8(out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t src = LOADQ_U32P_AS_U8(&in[i]); + const uint8x16_t T = LOADQ_U32P_AS_U8(&upper[i]); + const uint8x16_t TL = LOADQ_U32P_AS_U8(&upper[i - 1]); + DO_PRED13(0, vget_low_u8); + DO_PRED13(1, vget_low_u8); + DO_PRED13(2, vget_high_u8); + DO_PRED13(3, vget_high_u8); + } + VP8LPredictorsAdd_C[13](in + i, upper + i, num_pixels - i, out + i); +} +#undef DO_PRED13 + +#undef LOAD_U32_AS_U8 +#undef LOAD_U32P_AS_U8 +#undef LOADQ_U32_AS_U8 +#undef LOADQ_U32P_AS_U8 +#undef GET_U8_AS_U32 +#undef GETQ_U8_AS_U32 +#undef STOREQ_U8_AS_U32P +#undef ROTATE32_LEFT + +//------------------------------------------------------------------------------ +// Subtract-Green Transform + +// vtbl?_u8 are marked unavailable for iOS arm64 with Xcode < 6.3, use +// non-standard versions there. +#if defined(__APPLE__) && defined(__aarch64__) && \ + defined(__apple_build_version__) && (__apple_build_version__< 6020037) +#define USE_VTBLQ +#endif + +#ifdef USE_VTBLQ +// 255 = byte will be zeroed +static const uint8_t kGreenShuffle[16] = { + 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13, 255 +}; + +static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, + const uint8x16_t shuffle) { + return vcombine_u8(vtbl1q_u8(argb, vget_low_u8(shuffle)), + vtbl1q_u8(argb, vget_high_u8(shuffle))); +} +#else // !USE_VTBLQ +// 255 = byte will be zeroed +static const uint8_t kGreenShuffle[8] = { 1, 255, 1, 255, 5, 255, 5, 255 }; + +static WEBP_INLINE uint8x16_t DoGreenShuffle_NEON(const uint8x16_t argb, + const uint8x8_t shuffle) { + return vcombine_u8(vtbl1_u8(vget_low_u8(argb), shuffle), + vtbl1_u8(vget_high_u8(argb), shuffle)); +} +#endif // USE_VTBLQ + +static void AddGreenToBlueAndRed_NEON(const uint32_t* src, int num_pixels, + uint32_t* dst) { + const uint32_t* const end = src + (num_pixels & ~3); +#ifdef USE_VTBLQ + const uint8x16_t shuffle = vld1q_u8(kGreenShuffle); +#else + const uint8x8_t shuffle = vld1_u8(kGreenShuffle); +#endif + for (; src < end; src += 4, dst += 4) { + const uint8x16_t argb = vld1q_u8((const uint8_t*)src); + const uint8x16_t greens = DoGreenShuffle_NEON(argb, shuffle); + vst1q_u8((uint8_t*)dst, vaddq_u8(argb, greens)); + } + // fallthrough and finish off with plain-C + VP8LAddGreenToBlueAndRed_C(src, num_pixels & 3, dst); +} + +//------------------------------------------------------------------------------ +// Color Transform + +static void TransformColorInverse_NEON(const VP8LMultipliers* const m, + const uint32_t* const src, + int num_pixels, uint32_t* dst) { +// sign-extended multiplying constants, pre-shifted by 6. +#define CST(X) (((int16_t)(m->X << 8)) >> 6) + const int16_t rb[8] = { + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_), + CST(green_to_blue_), CST(green_to_red_) + }; + const int16x8_t mults_rb = vld1q_s16(rb); + const int16_t b2[8] = { + 0, CST(red_to_blue_), 0, CST(red_to_blue_), + 0, CST(red_to_blue_), 0, CST(red_to_blue_), + }; + const int16x8_t mults_b2 = vld1q_s16(b2); +#undef CST +#ifdef USE_VTBLQ + static const uint8_t kg0g0[16] = { + 255, 1, 255, 1, 255, 5, 255, 5, 255, 9, 255, 9, 255, 13, 255, 13 + }; + const uint8x16_t shuffle = vld1q_u8(kg0g0); +#else + static const uint8_t k0g0g[8] = { 255, 1, 255, 1, 255, 5, 255, 5 }; + const uint8x8_t shuffle = vld1_u8(k0g0g); +#endif + const uint32x4_t mask_ag = vdupq_n_u32(0xff00ff00u); + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const uint8x16_t in = vld1q_u8((const uint8_t*)(src + i)); + const uint32x4_t a0g0 = vandq_u32(vreinterpretq_u32_u8(in), mask_ag); + // 0 g 0 g + const uint8x16_t greens = DoGreenShuffle_NEON(in, shuffle); + // x dr x db1 + const int16x8_t A = vqdmulhq_s16(vreinterpretq_s16_u8(greens), mults_rb); + // x r' x b' + const int8x16_t B = vaddq_s8(vreinterpretq_s8_u8(in), + vreinterpretq_s8_s16(A)); + // r' 0 b' 0 + const int16x8_t C = vshlq_n_s16(vreinterpretq_s16_s8(B), 8); + // x db2 0 0 + const int16x8_t D = vqdmulhq_s16(C, mults_b2); + // 0 x db2 0 + const uint32x4_t E = vshrq_n_u32(vreinterpretq_u32_s16(D), 8); + // r' x b'' 0 + const int8x16_t F = vaddq_s8(vreinterpretq_s8_u32(E), + vreinterpretq_s8_s16(C)); + // 0 r' 0 b'' + const uint16x8_t G = vshrq_n_u16(vreinterpretq_u16_s8(F), 8); + const uint32x4_t out = vorrq_u32(vreinterpretq_u32_u16(G), a0g0); + vst1q_u32(dst + i, out); + } + // Fall-back to C-version for left-overs. + VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); +} + +#undef USE_VTBLQ + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LDspInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitNEON(void) { + VP8LPredictors[5] = Predictor5_NEON; + VP8LPredictors[6] = Predictor6_NEON; + VP8LPredictors[7] = Predictor7_NEON; + VP8LPredictors[13] = Predictor13_NEON; + + VP8LPredictorsAdd[0] = PredictorAdd0_NEON; + VP8LPredictorsAdd[1] = PredictorAdd1_NEON; + VP8LPredictorsAdd[2] = PredictorAdd2_NEON; + VP8LPredictorsAdd[3] = PredictorAdd3_NEON; + VP8LPredictorsAdd[4] = PredictorAdd4_NEON; + VP8LPredictorsAdd[5] = PredictorAdd5_NEON; + VP8LPredictorsAdd[6] = PredictorAdd6_NEON; + VP8LPredictorsAdd[7] = PredictorAdd7_NEON; + VP8LPredictorsAdd[8] = PredictorAdd8_NEON; + VP8LPredictorsAdd[9] = PredictorAdd9_NEON; + VP8LPredictorsAdd[10] = PredictorAdd10_NEON; + VP8LPredictorsAdd[11] = PredictorAdd11_NEON; + VP8LPredictorsAdd[12] = PredictorAdd12_NEON; + VP8LPredictorsAdd[13] = PredictorAdd13_NEON; + + VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_NEON; + VP8LConvertBGRAToBGR = ConvertBGRAToBGR_NEON; + VP8LConvertBGRAToRGB = ConvertBGRAToRGB_NEON; + + VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_NEON; + VP8LTransformColorInverse = TransformColorInverse_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(VP8LDspInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/lossless_sse2.c b/media/libwebp/src/dsp/lossless_sse2.c new file mode 100644 index 0000000000..4b6a532c23 --- /dev/null +++ b/media/libwebp/src/dsp/lossless_sse2.c @@ -0,0 +1,712 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 variant of methods for lossless decoder +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +#include "src/dsp/common_sse2.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" +#include <emmintrin.h> + +//------------------------------------------------------------------------------ +// Predictor Transform + +static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, + uint32_t c1, + uint32_t c2) { + const __m128i zero = _mm_setzero_si128(); + const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); + const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); + const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); + const __m128i V1 = _mm_add_epi16(C0, C1); + const __m128i V2 = _mm_sub_epi16(V1, C2); + const __m128i b = _mm_packus_epi16(V2, V2); + return (uint32_t)_mm_cvtsi128_si32(b); +} + +static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, + uint32_t c1, + uint32_t c2) { + const __m128i zero = _mm_setzero_si128(); + const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); + const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); + const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); + const __m128i avg = _mm_add_epi16(C1, C0); + const __m128i A0 = _mm_srli_epi16(avg, 1); + const __m128i A1 = _mm_sub_epi16(A0, B0); + const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); + const __m128i A2 = _mm_sub_epi16(A1, BgtA); + const __m128i A3 = _mm_srai_epi16(A2, 1); + const __m128i A4 = _mm_add_epi16(A0, A3); + const __m128i A5 = _mm_packus_epi16(A4, A4); + return (uint32_t)_mm_cvtsi128_si32(A5); +} + +static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { + int pa_minus_pb; + const __m128i zero = _mm_setzero_si128(); + const __m128i A0 = _mm_cvtsi32_si128((int)a); + const __m128i B0 = _mm_cvtsi32_si128((int)b); + const __m128i C0 = _mm_cvtsi32_si128((int)c); + const __m128i AC0 = _mm_subs_epu8(A0, C0); + const __m128i CA0 = _mm_subs_epu8(C0, A0); + const __m128i BC0 = _mm_subs_epu8(B0, C0); + const __m128i CB0 = _mm_subs_epu8(C0, B0); + const __m128i AC = _mm_or_si128(AC0, CA0); + const __m128i BC = _mm_or_si128(BC0, CB0); + const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| + const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| + const __m128i diff = _mm_sub_epi16(pb, pa); + { + int16_t out[8]; + _mm_storeu_si128((__m128i*)out, diff); + pa_minus_pb = out[0] + out[1] + out[2] + out[3]; + } + return (pa_minus_pb <= 0) ? a : b; +} + +static WEBP_INLINE void Average2_m128i(const __m128i* const a0, + const __m128i* const a1, + __m128i* const avg) { + // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) + const __m128i ones = _mm_set1_epi8(1); + const __m128i avg1 = _mm_avg_epu8(*a0, *a1); + const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); + *avg = _mm_sub_epi8(avg1, one); +} + +static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, + const uint32_t a1, + __m128i* const avg) { + // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) + const __m128i ones = _mm_set1_epi8(1); + const __m128i A0 = _mm_cvtsi32_si128((int)a0); + const __m128i A1 = _mm_cvtsi32_si128((int)a1); + const __m128i avg1 = _mm_avg_epu8(A0, A1); + const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); + *avg = _mm_sub_epi8(avg1, one); +} + +static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { + const __m128i zero = _mm_setzero_si128(); + const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero); + const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); + const __m128i sum = _mm_add_epi16(A1, A0); + return _mm_srli_epi16(sum, 1); +} + +static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { + __m128i output; + Average2_uint32_SSE2(a0, a1, &output); + return (uint32_t)_mm_cvtsi128_si32(output); +} + +static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, + uint32_t a2) { + const __m128i zero = _mm_setzero_si128(); + const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); + const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); + const __m128i sum = _mm_add_epi16(avg1, A1); + const __m128i avg2 = _mm_srli_epi16(sum, 1); + const __m128i A2 = _mm_packus_epi16(avg2, avg2); + return (uint32_t)_mm_cvtsi128_si32(A2); +} + +static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, + uint32_t a2, uint32_t a3) { + const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); + const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); + const __m128i sum = _mm_add_epi16(avg2, avg1); + const __m128i avg3 = _mm_srli_epi16(sum, 1); + const __m128i A0 = _mm_packus_epi16(avg3, avg3); + return (uint32_t)_mm_cvtsi128_si32(A0); +} + +static uint32_t Predictor5_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average3_SSE2(*left, top[0], top[1]); + return pred; +} +static uint32_t Predictor6_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2_SSE2(*left, top[-1]); + return pred; +} +static uint32_t Predictor7_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2_SSE2(*left, top[0]); + return pred; +} +static uint32_t Predictor8_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2_SSE2(top[-1], top[0]); + (void)left; + return pred; +} +static uint32_t Predictor9_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average2_SSE2(top[0], top[1]); + (void)left; + return pred; +} +static uint32_t Predictor10_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]); + return pred; +} +static uint32_t Predictor11_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = Select_SSE2(top[0], *left, top[-1]); + return pred; +} +static uint32_t Predictor12_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]); + return pred; +} +static uint32_t Predictor13_SSE2(const uint32_t* const left, + const uint32_t* const top) { + const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]); + return pred; +} + +// Batch versions of those functions. + +// Predictor0: ARGB_BLACK. +static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const __m128i black = _mm_set1_epi32((int)ARGB_BLACK); + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + const __m128i res = _mm_add_epi8(src, black); + _mm_storeu_si128((__m128i*)&out[i], res); + } + if (i != num_pixels) { + VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i); + } + (void)upper; +} + +// Predictor1: left. +static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + __m128i prev = _mm_set1_epi32((int)out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + // a | b | c | d + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + // 0 | a | b | c + const __m128i shift0 = _mm_slli_si128(src, 4); + // a | a + b | b + c | c + d + const __m128i sum0 = _mm_add_epi8(src, shift0); + // 0 | 0 | a | a + b + const __m128i shift1 = _mm_slli_si128(sum0, 8); + // a | a + b | a + b + c | a + b + c + d + const __m128i sum1 = _mm_add_epi8(sum0, shift1); + const __m128i res = _mm_add_epi8(sum1, prev); + _mm_storeu_si128((__m128i*)&out[i], res); + // replicate prev output on the four lanes + prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); + } + if (i != num_pixels) { + VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); + } +} + +// Macro that adds 32-bit integers from IN using mod 256 arithmetic +// per 8 bit channel. +#define GENERATE_PREDICTOR_1(X, IN) \ +static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ + int num_pixels, uint32_t* out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ + const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ + const __m128i res = _mm_add_epi8(src, other); \ + _mm_storeu_si128((__m128i*)&out[i], res); \ + } \ + if (i != num_pixels) { \ + VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ + } \ +} + +// Predictor2: Top. +GENERATE_PREDICTOR_1(2, upper[i]) +// Predictor3: Top-right. +GENERATE_PREDICTOR_1(3, upper[i + 1]) +// Predictor4: Top-left. +GENERATE_PREDICTOR_1(4, upper[i - 1]) +#undef GENERATE_PREDICTOR_1 + +// Due to averages with integers, values cannot be accumulated in parallel for +// predictors 5 to 7. +GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) +GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) +GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) + +#define GENERATE_PREDICTOR_2(X, IN) \ +static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ + int num_pixels, uint32_t* out) { \ + int i; \ + for (i = 0; i + 4 <= num_pixels; i += 4) { \ + const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ + const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ + __m128i avg, res; \ + Average2_m128i(&T, &Tother, &avg); \ + res = _mm_add_epi8(avg, src); \ + _mm_storeu_si128((__m128i*)&out[i], res); \ + } \ + if (i != num_pixels) { \ + VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ + } \ +} +// Predictor8: average TL T. +GENERATE_PREDICTOR_2(8, upper[i - 1]) +// Predictor9: average T TR. +GENERATE_PREDICTOR_2(9, upper[i + 1]) +#undef GENERATE_PREDICTOR_2 + +// Predictor10: average of (average of (L,TL), average of (T, TR)). +#define DO_PRED10(OUT) do { \ + __m128i avgLTL, avg; \ + Average2_m128i(&L, &TL, &avgLTL); \ + Average2_m128i(&avgTTR, &avgLTL, &avg); \ + L = _mm_add_epi8(avg, src); \ + out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ +} while (0) + +#define DO_PRED10_SHIFT do { \ + /* Rotate the pre-computed values for the next iteration.*/ \ + avgTTR = _mm_srli_si128(avgTTR, 4); \ + TL = _mm_srli_si128(TL, 4); \ + src = _mm_srli_si128(src, 4); \ +} while (0) + +static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + __m128i L = _mm_cvtsi32_si128((int)out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); + __m128i avgTTR; + Average2_m128i(&T, &TR, &avgTTR); + DO_PRED10(0); + DO_PRED10_SHIFT; + DO_PRED10(1); + DO_PRED10_SHIFT; + DO_PRED10(2); + DO_PRED10_SHIFT; + DO_PRED10(3); + } + if (i != num_pixels) { + VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); + } +} +#undef DO_PRED10 +#undef DO_PRED10_SHIFT + +// Predictor11: select. +#define DO_PRED11(OUT) do { \ + const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ + const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ + const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ + const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ + const __m128i A = _mm_and_si128(mask, L); \ + const __m128i B = _mm_andnot_si128(mask, T); \ + const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ + L = _mm_add_epi8(src, pred); \ + out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ +} while (0) + +#define DO_PRED11_SHIFT do { \ + /* Shift the pre-computed value for the next iteration.*/ \ + T = _mm_srli_si128(T, 4); \ + TL = _mm_srli_si128(TL, 4); \ + src = _mm_srli_si128(src, 4); \ + pa = _mm_srli_si128(pa, 4); \ +} while (0) + +static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + __m128i pa; + __m128i L = _mm_cvtsi32_si128((int)out[-1]); + for (i = 0; i + 4 <= num_pixels; i += 4) { + __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + { + // We can unpack with any value on the upper 32 bits, provided it's the + // same on both operands (so that their sum of abs diff is zero). Here we + // use T. + const __m128i T_lo = _mm_unpacklo_epi32(T, T); + const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); + const __m128i T_hi = _mm_unpackhi_epi32(T, T); + const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); + const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); + const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); + pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| + } + DO_PRED11(0); + DO_PRED11_SHIFT; + DO_PRED11(1); + DO_PRED11_SHIFT; + DO_PRED11(2); + DO_PRED11_SHIFT; + DO_PRED11(3); + } + if (i != num_pixels) { + VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); + } +} +#undef DO_PRED11 +#undef DO_PRED11_SHIFT + +// Predictor12: ClampedAddSubtractFull. +#define DO_PRED12(DIFF, LANE, OUT) do { \ + const __m128i all = _mm_add_epi16(L, (DIFF)); \ + const __m128i alls = _mm_packus_epi16(all, all); \ + const __m128i res = _mm_add_epi8(src, alls); \ + out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \ + L = _mm_unpacklo_epi8(res, zero); \ +} while (0) + +#define DO_PRED12_SHIFT(DIFF, LANE) do { \ + /* Shift the pre-computed value for the next iteration.*/ \ + if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ + src = _mm_srli_si128(src, 4); \ +} while (0) + +static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, + int num_pixels, uint32_t* out) { + int i; + const __m128i zero = _mm_setzero_si128(); + const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]); + __m128i L = _mm_unpacklo_epi8(L8, zero); + for (i = 0; i + 4 <= num_pixels; i += 4) { + // Load 4 pixels at a time. + __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); + const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); + const __m128i T_lo = _mm_unpacklo_epi8(T, zero); + const __m128i T_hi = _mm_unpackhi_epi8(T, zero); + const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); + const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); + const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); + __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); + __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); + DO_PRED12(diff_lo, 0, 0); + DO_PRED12_SHIFT(diff_lo, 0); + DO_PRED12(diff_lo, 1, 1); + DO_PRED12_SHIFT(diff_lo, 1); + DO_PRED12(diff_hi, 0, 2); + DO_PRED12_SHIFT(diff_hi, 0); + DO_PRED12(diff_hi, 1, 3); + } + if (i != num_pixels) { + VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); + } +} +#undef DO_PRED12 +#undef DO_PRED12_SHIFT + +// Due to averages with integers, values cannot be accumulated in parallel for +// predictors 13. +GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) + +//------------------------------------------------------------------------------ +// Subtract-Green Transform + +static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, + uint32_t* dst) { + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb + const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g + const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); + const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g + const __m128i out = _mm_add_epi8(in, C); + _mm_storeu_si128((__m128i*)&dst[i], out); + } + // fallthrough and finish off with plain-C + if (i != num_pixels) { + VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); + } +} + +//------------------------------------------------------------------------------ +// Color Transform + +static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, + const uint32_t* const src, + int num_pixels, uint32_t* dst) { +// sign-extended multiplying constants, pre-shifted by 5. +#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend +#define MK_CST_16(HI, LO) \ + _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) + const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); + const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); +#undef MK_CST_16 +#undef CST + const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb + const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 + const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); + const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 + const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 + const __m128i E = _mm_add_epi8(in, D); // x r' x b' + const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 + const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 + const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 + const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 + const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' + const __m128i out = _mm_or_si128(J, A); + _mm_storeu_si128((__m128i*)&dst[i], out); + } + // Fall-back to C-version for left-overs. + if (i != num_pixels) { + VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); + } +} + +//------------------------------------------------------------------------------ +// Color-space conversion functions + +static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, + uint8_t* dst) { + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + + while (num_pixels >= 32) { + // Load the BGRA buffers. + __m128i in0 = _mm_loadu_si128(in + 0); + __m128i in1 = _mm_loadu_si128(in + 1); + __m128i in2 = _mm_loadu_si128(in + 2); + __m128i in3 = _mm_loadu_si128(in + 3); + __m128i in4 = _mm_loadu_si128(in + 4); + __m128i in5 = _mm_loadu_si128(in + 5); + __m128i in6 = _mm_loadu_si128(in + 6); + __m128i in7 = _mm_loadu_si128(in + 7); + VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); + VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); + // At this points, in1/in5 contains red only, in2/in6 green only ... + // Pack the colors in 24b RGB. + VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); + _mm_storeu_si128(out + 0, in1); + _mm_storeu_si128(out + 1, in5); + _mm_storeu_si128(out + 2, in2); + _mm_storeu_si128(out + 3, in6); + _mm_storeu_si128(out + 4, in3); + _mm_storeu_si128(out + 5, in7); + in += 8; + out += 6; + num_pixels -= 32; + } + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff); + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + while (num_pixels >= 8) { + const __m128i A1 = _mm_loadu_si128(in++); + const __m128i A2 = _mm_loadu_si128(in++); + const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 + const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 + const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A + const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A + const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); + const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); + const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); + const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); + const __m128i F1 = _mm_or_si128(E1, C1); + const __m128i F2 = _mm_or_si128(E2, C2); + _mm_storeu_si128(out++, F1); + _mm_storeu_si128(out++, F2); + num_pixels -= 8; + } + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const __m128i mask_0x0f = _mm_set1_epi8(0x0f); + const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0); + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + while (num_pixels >= 8) { + const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 + const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 + const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... + const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... + const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... + const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... + const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 + const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 + const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 + const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 + const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- + const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 + const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- + const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 + const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 +#if (WEBP_SWAP_16BIT_CSP == 1) + const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 +#else + const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 +#endif + _mm_storeu_si128(out++, rgba); + num_pixels -= 8; + } + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0); + const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8); + const __m128i mask_0x07 = _mm_set1_epi8(0x07); + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + while (num_pixels >= 8) { + const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 + const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 + const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... + const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... + const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... + const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... + const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 + const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 + const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 + const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 + const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 + const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); + const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) + const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); + const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) + const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 + const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx + const __m128i b1 = _mm_srli_epi16(b0, 3); + const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx +#if (WEBP_SWAP_16BIT_CSP == 1) + const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 +#else + const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 +#endif + _mm_storeu_si128(out++, rgba); + num_pixels -= 8; + } + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +static void ConvertBGRAToBGR_SSE2(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); + const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); + const __m128i* in = (const __m128i*)src; + const uint8_t* const end = dst + num_pixels * 3; + // the last storel_epi64 below writes 8 bytes starting at offset 18 + while (dst + 26 <= end) { + const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 + const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 + const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 + const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 + const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 + const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 + const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 + const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 + const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 + const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 + const __m128i c2 = _mm_srli_si128(c0, 8); + const __m128i c6 = _mm_srli_si128(c4, 8); + _mm_storel_epi64((__m128i*)(dst + 0), c0); + _mm_storel_epi64((__m128i*)(dst + 6), c2); + _mm_storel_epi64((__m128i*)(dst + 12), c4); + _mm_storel_epi64((__m128i*)(dst + 18), c6); + dst += 24; + num_pixels -= 8; + } + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LDspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { + VP8LPredictors[5] = Predictor5_SSE2; + VP8LPredictors[6] = Predictor6_SSE2; + VP8LPredictors[7] = Predictor7_SSE2; + VP8LPredictors[8] = Predictor8_SSE2; + VP8LPredictors[9] = Predictor9_SSE2; + VP8LPredictors[10] = Predictor10_SSE2; + VP8LPredictors[11] = Predictor11_SSE2; + VP8LPredictors[12] = Predictor12_SSE2; + VP8LPredictors[13] = Predictor13_SSE2; + + VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; + VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; + VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; + VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; + VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; + VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; + VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; + VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; + VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; + VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; + VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; + VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; + VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; + VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; + + VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; + VP8LTransformColorInverse = TransformColorInverse_SSE2; + + VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; + VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; + VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; + VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; + VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/lossless_sse41.c b/media/libwebp/src/dsp/lossless_sse41.c new file mode 100644 index 0000000000..bb7ce7611f --- /dev/null +++ b/media/libwebp/src/dsp/lossless_sse41.c @@ -0,0 +1,133 @@ +// Copyright 2021 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE41 variant of methods for lossless decoder + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) + +#include "src/dsp/common_sse41.h" +#include "src/dsp/lossless.h" +#include "src/dsp/lossless_common.h" + +//------------------------------------------------------------------------------ +// Color-space conversion functions + +static void TransformColorInverse_SSE41(const VP8LMultipliers* const m, + const uint32_t* const src, + int num_pixels, uint32_t* dst) { +// sign-extended multiplying constants, pre-shifted by 5. +#define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend + const __m128i mults_rb = + _mm_set1_epi32((int)((uint32_t)CST(green_to_red_) << 16 | + (CST(green_to_blue_) & 0xffff))); + const __m128i mults_b2 = _mm_set1_epi32(CST(red_to_blue_)); +#undef CST + const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); + const __m128i perm1 = _mm_setr_epi8(-1, 1, -1, 1, -1, 5, -1, 5, + -1, 9, -1, 9, -1, 13, -1, 13); + const __m128i perm2 = _mm_setr_epi8(-1, 2, -1, -1, -1, 6, -1, -1, + -1, 10, -1, -1, -1, 14, -1, -1); + int i; + for (i = 0; i + 4 <= num_pixels; i += 4) { + const __m128i A = _mm_loadu_si128((const __m128i*)(src + i)); + const __m128i B = _mm_shuffle_epi8(A, perm1); // argb -> g0g0 + const __m128i C = _mm_mulhi_epi16(B, mults_rb); + const __m128i D = _mm_add_epi8(A, C); + const __m128i E = _mm_shuffle_epi8(D, perm2); + const __m128i F = _mm_mulhi_epi16(E, mults_b2); + const __m128i G = _mm_add_epi8(D, F); + const __m128i out = _mm_blendv_epi8(G, A, mask_ag); + _mm_storeu_si128((__m128i*)&dst[i], out); + } + // Fall-back to C-version for left-overs. + if (i != num_pixels) { + VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); + } +} + +//------------------------------------------------------------------------------ + +#define ARGB_TO_RGB_SSE41 do { \ + while (num_pixels >= 16) { \ + const __m128i in0 = _mm_loadu_si128(in + 0); \ + const __m128i in1 = _mm_loadu_si128(in + 1); \ + const __m128i in2 = _mm_loadu_si128(in + 2); \ + const __m128i in3 = _mm_loadu_si128(in + 3); \ + const __m128i a0 = _mm_shuffle_epi8(in0, perm0); \ + const __m128i a1 = _mm_shuffle_epi8(in1, perm1); \ + const __m128i a2 = _mm_shuffle_epi8(in2, perm2); \ + const __m128i a3 = _mm_shuffle_epi8(in3, perm3); \ + const __m128i b0 = _mm_blend_epi16(a0, a1, 0xc0); \ + const __m128i b1 = _mm_blend_epi16(a1, a2, 0xf0); \ + const __m128i b2 = _mm_blend_epi16(a2, a3, 0xfc); \ + _mm_storeu_si128(out + 0, b0); \ + _mm_storeu_si128(out + 1, b1); \ + _mm_storeu_si128(out + 2, b2); \ + in += 4; \ + out += 3; \ + num_pixels -= 16; \ + } \ +} while (0) + +static void ConvertBGRAToRGB_SSE41(const uint32_t* src, int num_pixels, + uint8_t* dst) { + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + const __m128i perm0 = _mm_setr_epi8(2, 1, 0, 6, 5, 4, 10, 9, + 8, 14, 13, 12, -1, -1, -1, -1); + const __m128i perm1 = _mm_shuffle_epi32(perm0, 0x39); + const __m128i perm2 = _mm_shuffle_epi32(perm0, 0x4e); + const __m128i perm3 = _mm_shuffle_epi32(perm0, 0x93); + + ARGB_TO_RGB_SSE41; + + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +static void ConvertBGRAToBGR_SSE41(const uint32_t* src, + int num_pixels, uint8_t* dst) { + const __m128i* in = (const __m128i*)src; + __m128i* out = (__m128i*)dst; + const __m128i perm0 = _mm_setr_epi8(0, 1, 2, 4, 5, 6, 8, 9, 10, + 12, 13, 14, -1, -1, -1, -1); + const __m128i perm1 = _mm_shuffle_epi32(perm0, 0x39); + const __m128i perm2 = _mm_shuffle_epi32(perm0, 0x4e); + const __m128i perm3 = _mm_shuffle_epi32(perm0, 0x93); + + ARGB_TO_RGB_SSE41; + + // left-overs + if (num_pixels > 0) { + VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, (uint8_t*)out); + } +} + +#undef ARGB_TO_RGB_SSE41 + +//------------------------------------------------------------------------------ +// Entry point + +extern void VP8LDspInitSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE41(void) { + VP8LTransformColorInverse = TransformColorInverse_SSE41; + VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE41; + VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE41; +} + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(VP8LDspInitSSE41) + +#endif // WEBP_USE_SSE41 diff --git a/media/libwebp/src/dsp/mips_macro.h b/media/libwebp/src/dsp/mips_macro.h new file mode 100644 index 0000000000..44aba9b71d --- /dev/null +++ b/media/libwebp/src/dsp/mips_macro.h @@ -0,0 +1,200 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS common macros + +#ifndef WEBP_DSP_MIPS_MACRO_H_ +#define WEBP_DSP_MIPS_MACRO_H_ + +#if defined(__GNUC__) && defined(__ANDROID__) && LOCAL_GCC_VERSION == 0x409 +#define WORK_AROUND_GCC +#endif + +#define STR(s) #s +#define XSTR(s) STR(s) + +// O0[31..16 | 15..0] = I0[31..16 | 15..0] + I1[31..16 | 15..0] +// O1[31..16 | 15..0] = I0[31..16 | 15..0] - I1[31..16 | 15..0] +// O - output +// I - input (macro doesn't change it) +#define ADD_SUB_HALVES(O0, O1, \ + I0, I1) \ + "addq.ph %[" #O0 "], %[" #I0 "], %[" #I1 "] \n\t" \ + "subq.ph %[" #O1 "], %[" #I0 "], %[" #I1 "] \n\t" + +// O - output +// I - input (macro doesn't change it) +// I[0/1] - offset in bytes +#define LOAD_IN_X2(O0, O1, \ + I0, I1) \ + "lh %[" #O0 "], " #I0 "(%[in]) \n\t" \ + "lh %[" #O1 "], " #I1 "(%[in]) \n\t" + +// I0 - location +// I1..I9 - offsets in bytes +#define LOAD_WITH_OFFSET_X4(O0, O1, O2, O3, \ + I0, I1, I2, I3, I4, I5, I6, I7, I8, I9) \ + "ulw %[" #O0 "], " #I1 "+" XSTR(I9) "*" #I5 "(%[" #I0 "]) \n\t" \ + "ulw %[" #O1 "], " #I2 "+" XSTR(I9) "*" #I6 "(%[" #I0 "]) \n\t" \ + "ulw %[" #O2 "], " #I3 "+" XSTR(I9) "*" #I7 "(%[" #I0 "]) \n\t" \ + "ulw %[" #O3 "], " #I4 "+" XSTR(I9) "*" #I8 "(%[" #I0 "]) \n\t" + +// O - output +// IO - input/output +// I - input (macro doesn't change it) +#define MUL_SHIFT_SUM(O0, O1, O2, O3, O4, O5, O6, O7, \ + IO0, IO1, IO2, IO3, \ + I0, I1, I2, I3, I4, I5, I6, I7) \ + "mul %[" #O0 "], %[" #I0 "], %[kC2] \n\t" \ + "mul %[" #O1 "], %[" #I0 "], %[kC1] \n\t" \ + "mul %[" #O2 "], %[" #I1 "], %[kC2] \n\t" \ + "mul %[" #O3 "], %[" #I1 "], %[kC1] \n\t" \ + "mul %[" #O4 "], %[" #I2 "], %[kC2] \n\t" \ + "mul %[" #O5 "], %[" #I2 "], %[kC1] \n\t" \ + "mul %[" #O6 "], %[" #I3 "], %[kC2] \n\t" \ + "mul %[" #O7 "], %[" #I3 "], %[kC1] \n\t" \ + "sra %[" #O0 "], %[" #O0 "], 16 \n\t" \ + "sra %[" #O1 "], %[" #O1 "], 16 \n\t" \ + "sra %[" #O2 "], %[" #O2 "], 16 \n\t" \ + "sra %[" #O3 "], %[" #O3 "], 16 \n\t" \ + "sra %[" #O4 "], %[" #O4 "], 16 \n\t" \ + "sra %[" #O5 "], %[" #O5 "], 16 \n\t" \ + "sra %[" #O6 "], %[" #O6 "], 16 \n\t" \ + "sra %[" #O7 "], %[" #O7 "], 16 \n\t" \ + "addu %[" #IO0 "], %[" #IO0 "], %[" #I4 "] \n\t" \ + "addu %[" #IO1 "], %[" #IO1 "], %[" #I5 "] \n\t" \ + "subu %[" #IO2 "], %[" #IO2 "], %[" #I6 "] \n\t" \ + "subu %[" #IO3 "], %[" #IO3 "], %[" #I7 "] \n\t" + +// O - output +// I - input (macro doesn't change it) +#define INSERT_HALF_X2(O0, O1, \ + I0, I1) \ + "ins %[" #O0 "], %[" #I0 "], 16, 16 \n\t" \ + "ins %[" #O1 "], %[" #I1 "], 16, 16 \n\t" + +// O - output +// I - input (macro doesn't change it) +#define SRA_16(O0, O1, O2, O3, \ + I0, I1, I2, I3) \ + "sra %[" #O0 "], %[" #I0 "], 16 \n\t" \ + "sra %[" #O1 "], %[" #I1 "], 16 \n\t" \ + "sra %[" #O2 "], %[" #I2 "], 16 \n\t" \ + "sra %[" #O3 "], %[" #I3 "], 16 \n\t" + +// temp0[31..16 | 15..0] = temp8[31..16 | 15..0] + temp12[31..16 | 15..0] +// temp1[31..16 | 15..0] = temp8[31..16 | 15..0] - temp12[31..16 | 15..0] +// temp0[31..16 | 15..0] = temp0[31..16 >> 3 | 15..0 >> 3] +// temp1[31..16 | 15..0] = temp1[31..16 >> 3 | 15..0 >> 3] +// O - output +// I - input (macro doesn't change it) +#define SHIFT_R_SUM_X2(O0, O1, O2, O3, O4, O5, O6, O7, \ + I0, I1, I2, I3, I4, I5, I6, I7) \ + "addq.ph %[" #O0 "], %[" #I0 "], %[" #I4 "] \n\t" \ + "subq.ph %[" #O1 "], %[" #I0 "], %[" #I4 "] \n\t" \ + "addq.ph %[" #O2 "], %[" #I1 "], %[" #I5 "] \n\t" \ + "subq.ph %[" #O3 "], %[" #I1 "], %[" #I5 "] \n\t" \ + "addq.ph %[" #O4 "], %[" #I2 "], %[" #I6 "] \n\t" \ + "subq.ph %[" #O5 "], %[" #I2 "], %[" #I6 "] \n\t" \ + "addq.ph %[" #O6 "], %[" #I3 "], %[" #I7 "] \n\t" \ + "subq.ph %[" #O7 "], %[" #I3 "], %[" #I7 "] \n\t" \ + "shra.ph %[" #O0 "], %[" #O0 "], 3 \n\t" \ + "shra.ph %[" #O1 "], %[" #O1 "], 3 \n\t" \ + "shra.ph %[" #O2 "], %[" #O2 "], 3 \n\t" \ + "shra.ph %[" #O3 "], %[" #O3 "], 3 \n\t" \ + "shra.ph %[" #O4 "], %[" #O4 "], 3 \n\t" \ + "shra.ph %[" #O5 "], %[" #O5 "], 3 \n\t" \ + "shra.ph %[" #O6 "], %[" #O6 "], 3 \n\t" \ + "shra.ph %[" #O7 "], %[" #O7 "], 3 \n\t" + +// precrq.ph.w temp0, temp8, temp2 +// temp0 = temp8[31..16] | temp2[31..16] +// ins temp2, temp8, 16, 16 +// temp2 = temp8[31..16] | temp2[15..0] +// O - output +// IO - input/output +// I - input (macro doesn't change it) +#define PACK_2_HALVES_TO_WORD(O0, O1, O2, O3, \ + IO0, IO1, IO2, IO3, \ + I0, I1, I2, I3) \ + "precrq.ph.w %[" #O0 "], %[" #I0 "], %[" #IO0 "] \n\t" \ + "precrq.ph.w %[" #O1 "], %[" #I1 "], %[" #IO1 "] \n\t" \ + "ins %[" #IO0 "], %[" #I0 "], 16, 16 \n\t" \ + "ins %[" #IO1 "], %[" #I1 "], 16, 16 \n\t" \ + "precrq.ph.w %[" #O2 "], %[" #I2 "], %[" #IO2 "] \n\t" \ + "precrq.ph.w %[" #O3 "], %[" #I3 "], %[" #IO3 "] \n\t" \ + "ins %[" #IO2 "], %[" #I2 "], 16, 16 \n\t" \ + "ins %[" #IO3 "], %[" #I3 "], 16, 16 \n\t" + +// preceu.ph.qbr temp0, temp8 +// temp0 = 0 | 0 | temp8[23..16] | temp8[7..0] +// preceu.ph.qbl temp1, temp8 +// temp1 = temp8[23..16] | temp8[7..0] | 0 | 0 +// O - output +// I - input (macro doesn't change it) +#define CONVERT_2_BYTES_TO_HALF(O0, O1, O2, O3, O4, O5, O6, O7, \ + I0, I1, I2, I3) \ + "preceu.ph.qbr %[" #O0 "], %[" #I0 "] \n\t" \ + "preceu.ph.qbl %[" #O1 "], %[" #I0 "] \n\t" \ + "preceu.ph.qbr %[" #O2 "], %[" #I1 "] \n\t" \ + "preceu.ph.qbl %[" #O3 "], %[" #I1 "] \n\t" \ + "preceu.ph.qbr %[" #O4 "], %[" #I2 "] \n\t" \ + "preceu.ph.qbl %[" #O5 "], %[" #I2 "] \n\t" \ + "preceu.ph.qbr %[" #O6 "], %[" #I3 "] \n\t" \ + "preceu.ph.qbl %[" #O7 "], %[" #I3 "] \n\t" + +// temp0[31..16 | 15..0] = temp0[31..16 | 15..0] + temp8[31..16 | 15..0] +// temp0[31..16 | 15..0] = temp0[31..16 <<(s) 7 | 15..0 <<(s) 7] +// temp1..temp7 same as temp0 +// precrqu_s.qb.ph temp0, temp1, temp0: +// temp0 = temp1[31..24] | temp1[15..8] | temp0[31..24] | temp0[15..8] +// store temp0 to dst +// IO - input/output +// I - input (macro doesn't change it) +#define STORE_SAT_SUM_X2(IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7, \ + I0, I1, I2, I3, I4, I5, I6, I7, \ + I8, I9, I10, I11, I12, I13) \ + "addq.ph %[" #IO0 "], %[" #IO0 "], %[" #I0 "] \n\t" \ + "addq.ph %[" #IO1 "], %[" #IO1 "], %[" #I1 "] \n\t" \ + "addq.ph %[" #IO2 "], %[" #IO2 "], %[" #I2 "] \n\t" \ + "addq.ph %[" #IO3 "], %[" #IO3 "], %[" #I3 "] \n\t" \ + "addq.ph %[" #IO4 "], %[" #IO4 "], %[" #I4 "] \n\t" \ + "addq.ph %[" #IO5 "], %[" #IO5 "], %[" #I5 "] \n\t" \ + "addq.ph %[" #IO6 "], %[" #IO6 "], %[" #I6 "] \n\t" \ + "addq.ph %[" #IO7 "], %[" #IO7 "], %[" #I7 "] \n\t" \ + "shll_s.ph %[" #IO0 "], %[" #IO0 "], 7 \n\t" \ + "shll_s.ph %[" #IO1 "], %[" #IO1 "], 7 \n\t" \ + "shll_s.ph %[" #IO2 "], %[" #IO2 "], 7 \n\t" \ + "shll_s.ph %[" #IO3 "], %[" #IO3 "], 7 \n\t" \ + "shll_s.ph %[" #IO4 "], %[" #IO4 "], 7 \n\t" \ + "shll_s.ph %[" #IO5 "], %[" #IO5 "], 7 \n\t" \ + "shll_s.ph %[" #IO6 "], %[" #IO6 "], 7 \n\t" \ + "shll_s.ph %[" #IO7 "], %[" #IO7 "], 7 \n\t" \ + "precrqu_s.qb.ph %[" #IO0 "], %[" #IO1 "], %[" #IO0 "] \n\t" \ + "precrqu_s.qb.ph %[" #IO2 "], %[" #IO3 "], %[" #IO2 "] \n\t" \ + "precrqu_s.qb.ph %[" #IO4 "], %[" #IO5 "], %[" #IO4 "] \n\t" \ + "precrqu_s.qb.ph %[" #IO6 "], %[" #IO7 "], %[" #IO6 "] \n\t" \ + "usw %[" #IO0 "], " XSTR(I13) "*" #I9 "(%[" #I8 "]) \n\t" \ + "usw %[" #IO2 "], " XSTR(I13) "*" #I10 "(%[" #I8 "]) \n\t" \ + "usw %[" #IO4 "], " XSTR(I13) "*" #I11 "(%[" #I8 "]) \n\t" \ + "usw %[" #IO6 "], " XSTR(I13) "*" #I12 "(%[" #I8 "]) \n\t" + +#define OUTPUT_EARLY_CLOBBER_REGS_10() \ + : [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), \ + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [temp6]"=&r"(temp6), \ + [temp7]"=&r"(temp7), [temp8]"=&r"(temp8), [temp9]"=&r"(temp9), \ + [temp10]"=&r"(temp10) + +#define OUTPUT_EARLY_CLOBBER_REGS_18() \ + OUTPUT_EARLY_CLOBBER_REGS_10(), \ + [temp11]"=&r"(temp11), [temp12]"=&r"(temp12), [temp13]"=&r"(temp13), \ + [temp14]"=&r"(temp14), [temp15]"=&r"(temp15), [temp16]"=&r"(temp16), \ + [temp17]"=&r"(temp17), [temp18]"=&r"(temp18) + +#endif // WEBP_DSP_MIPS_MACRO_H_ diff --git a/media/libwebp/src/dsp/moz.build b/media/libwebp/src/dsp/moz.build new file mode 100644 index 0000000000..eed1facf19 --- /dev/null +++ b/media/libwebp/src/dsp/moz.build @@ -0,0 +1,117 @@ +# -*- Mode: python; indent-tabs-mode: nil; tab-width: 40 -*- +# vim: set filetype=python: +# This Source Code Form is subject to the terms of the Mozilla Public +# License, v. 2.0. If a copy of the MPL was not distributed with this +# file, You can obtain one at http://mozilla.org/MPL/2.0/. + +SOURCES += [ + 'alpha_processing.c', + 'cost.c', + 'dec.c', + 'dec_clip_tables.c', + 'enc.c', + 'filters.c', + 'lossless.c', + 'lossless_enc.c', + 'rescaler.c', + 'ssim.c', + 'upsampling.c', + 'yuv.c', +] + +LOCAL_INCLUDES += [ + '/media/libwebp', +] + +if CONFIG['CPU_ARCH'] == 'arm' and CONFIG['BUILD_ARM_NEON']: + SOURCES += [ + 'alpha_processing_neon.c', + 'cost_neon.c', + 'dec_neon.c', + 'enc_neon.c', + 'filters_neon.c', + 'lossless_enc_neon.c', + 'lossless_neon.c', + 'rescaler_neon.c', + 'upsampling_neon.c', + 'yuv_neon.c', + ] + DEFINES['WEBP_HAVE_NEON'] = 1; + for f in SOURCES: + if f.endswith('neon.c'): + SOURCES[f].flags += CONFIG['NEON_FLAGS'] +elif CONFIG['CPU_ARCH'] == 'aarch64': + SOURCES += [ + 'alpha_processing_neon.c', + 'cost_neon.c', + 'dec_neon.c', + 'enc_neon.c', + 'filters_neon.c', + 'lossless_enc_neon.c', + 'lossless_neon.c', + 'rescaler_neon.c', + 'upsampling_neon.c', + 'yuv_neon.c', + ] + DEFINES['WEBP_HAVE_NEON'] = 1; +elif CONFIG['INTEL_ARCHITECTURE']: + SOURCES += [ + 'alpha_processing_sse2.c', + 'alpha_processing_sse41.c', + 'cost_sse2.c', + 'dec_sse2.c', + 'dec_sse41.c', + 'enc_sse2.c', + 'enc_sse41.c', + 'filters_sse2.c', + 'lossless_enc_sse2.c', + 'lossless_enc_sse41.c', + 'lossless_sse2.c', + 'lossless_sse41.c', + 'rescaler_sse2.c', + 'ssim_sse2.c', + 'upsampling_sse2.c', + 'upsampling_sse41.c', + 'yuv_sse2.c', + 'yuv_sse41.c', + ] + DEFINES['WEBP_HAVE_SSE2'] = 1; + DEFINES['WEBP_HAVE_SSE41'] = 1; + for f in SOURCES: + if f.endswith('sse2.c'): + SOURCES[f].flags += CONFIG['SSE2_FLAGS'] + elif f.endswith('sse41.c'): + SOURCES[f].flags += ['-msse4.1'] +elif CONFIG['CPU_ARCH'].startswith('mips'): + SOURCES += [ + 'alpha_processing_mips_dsp_r2.c', + 'cost_mips32.c', + 'cost_mips_dsp_r2.c', + 'dec_mips32.c', + 'dec_mips_dsp_r2.c', + 'enc_mips32.c', + 'enc_mips_dsp_r2.c', + 'filters_mips_dsp_r2.c', + 'lossless_enc_mips32.c', + 'lossless_enc_mips_dsp_r2.c', + 'lossless_mips_dsp_r2.c', + 'lossless_msa.c', + 'rescaler_mips32.c', + 'rescaler_mips_dsp_r2.c', + 'rescaler_msa.c', + 'upsampling_mips_dsp_r2.c', + 'upsampling_msa.c', + 'yuv_mips32.c', + 'yuv_mips_dsp_r2.c', + ] + +if CONFIG['CC_TYPE'] in ('clang', 'clang-cl'): + CFLAGS += ['-Wno-unreachable-code'] + +# Add libFuzzer configuration directives +include('/tools/fuzzing/libfuzzer-config.mozbuild') + +FINAL_LIBRARY = 'gkmedias' + +# We allow warnings for third-party code that can be updated from upstream. +AllowCompilerWarnings() diff --git a/media/libwebp/src/dsp/msa_macro.h b/media/libwebp/src/dsp/msa_macro.h new file mode 100644 index 0000000000..51f6c643ab --- /dev/null +++ b/media/libwebp/src/dsp/msa_macro.h @@ -0,0 +1,1397 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA common macros +// +// Author(s): Prashant Patil (prashant.patil@imgtec.com) + +#ifndef WEBP_DSP_MSA_MACRO_H_ +#define WEBP_DSP_MSA_MACRO_H_ + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include <stdint.h> +#include <msa.h> + +#if defined(__clang__) + #define CLANG_BUILD +#endif + +#ifdef CLANG_BUILD + #define ALPHAVAL (-1) + #define ADDVI_H(a, b) __msa_addvi_h((v8i16)a, b) + #define ADDVI_W(a, b) __msa_addvi_w((v4i32)a, b) + #define SRAI_B(a, b) __msa_srai_b((v16i8)a, b) + #define SRAI_H(a, b) __msa_srai_h((v8i16)a, b) + #define SRAI_W(a, b) __msa_srai_w((v4i32)a, b) + #define SRLI_H(a, b) __msa_srli_h((v8i16)a, b) + #define SLLI_B(a, b) __msa_slli_b((v4i32)a, b) + #define ANDI_B(a, b) __msa_andi_b((v16u8)a, b) + #define ORI_B(a, b) __msa_ori_b((v16u8)a, b) +#else + #define ALPHAVAL (0xff) + #define ADDVI_H(a, b) (a + b) + #define ADDVI_W(a, b) (a + b) + #define SRAI_B(a, b) (a >> b) + #define SRAI_H(a, b) (a >> b) + #define SRAI_W(a, b) (a >> b) + #define SRLI_H(a, b) (a << b) + #define SLLI_B(a, b) (a << b) + #define ANDI_B(a, b) (a & b) + #define ORI_B(a, b) (a | b) +#endif + +#define LD_B(RTYPE, psrc) *((RTYPE*)(psrc)) +#define LD_UB(...) LD_B(v16u8, __VA_ARGS__) +#define LD_SB(...) LD_B(v16i8, __VA_ARGS__) + +#define LD_H(RTYPE, psrc) *((RTYPE*)(psrc)) +#define LD_UH(...) LD_H(v8u16, __VA_ARGS__) +#define LD_SH(...) LD_H(v8i16, __VA_ARGS__) + +#define LD_W(RTYPE, psrc) *((RTYPE*)(psrc)) +#define LD_UW(...) LD_W(v4u32, __VA_ARGS__) +#define LD_SW(...) LD_W(v4i32, __VA_ARGS__) + +#define ST_B(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in +#define ST_UB(...) ST_B(v16u8, __VA_ARGS__) +#define ST_SB(...) ST_B(v16i8, __VA_ARGS__) + +#define ST_H(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in +#define ST_UH(...) ST_H(v8u16, __VA_ARGS__) +#define ST_SH(...) ST_H(v8i16, __VA_ARGS__) + +#define ST_W(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in +#define ST_UW(...) ST_W(v4u32, __VA_ARGS__) +#define ST_SW(...) ST_W(v4i32, __VA_ARGS__) + +#define MSA_LOAD_FUNC(TYPE, INSTR, FUNC_NAME) \ + static inline TYPE FUNC_NAME(const void* const psrc) { \ + const uint8_t* const psrc_m = (const uint8_t*)psrc; \ + TYPE val_m; \ + asm volatile ( \ + "" #INSTR " %[val_m], %[psrc_m] \n\t" \ + : [val_m] "=r" (val_m) \ + : [psrc_m] "m" (*psrc_m)); \ + return val_m; \ + } + +#define MSA_LOAD(psrc, FUNC_NAME) FUNC_NAME(psrc) + +#define MSA_STORE_FUNC(TYPE, INSTR, FUNC_NAME) \ + static inline void FUNC_NAME(TYPE val, void* const pdst) { \ + uint8_t* const pdst_m = (uint8_t*)pdst; \ + TYPE val_m = val; \ + asm volatile ( \ + " " #INSTR " %[val_m], %[pdst_m] \n\t" \ + : [pdst_m] "=m" (*pdst_m) \ + : [val_m] "r" (val_m)); \ + } + +#define MSA_STORE(val, pdst, FUNC_NAME) FUNC_NAME(val, pdst) + +#if (__mips_isa_rev >= 6) + MSA_LOAD_FUNC(uint16_t, lh, msa_lh); + #define LH(psrc) MSA_LOAD(psrc, msa_lh) + MSA_LOAD_FUNC(uint32_t, lw, msa_lw); + #define LW(psrc) MSA_LOAD(psrc, msa_lw) + #if (__mips == 64) + MSA_LOAD_FUNC(uint64_t, ld, msa_ld); + #define LD(psrc) MSA_LOAD(psrc, msa_ld) + #else // !(__mips == 64) + #define LD(psrc) ((((uint64_t)MSA_LOAD(psrc + 4, msa_lw)) << 32) | \ + MSA_LOAD(psrc, msa_lw)) + #endif // (__mips == 64) + + MSA_STORE_FUNC(uint16_t, sh, msa_sh); + #define SH(val, pdst) MSA_STORE(val, pdst, msa_sh) + MSA_STORE_FUNC(uint32_t, sw, msa_sw); + #define SW(val, pdst) MSA_STORE(val, pdst, msa_sw) + MSA_STORE_FUNC(uint64_t, sd, msa_sd); + #define SD(val, pdst) MSA_STORE(val, pdst, msa_sd) +#else // !(__mips_isa_rev >= 6) + MSA_LOAD_FUNC(uint16_t, ulh, msa_ulh); + #define LH(psrc) MSA_LOAD(psrc, msa_ulh) + MSA_LOAD_FUNC(uint32_t, ulw, msa_ulw); + #define LW(psrc) MSA_LOAD(psrc, msa_ulw) + #if (__mips == 64) + MSA_LOAD_FUNC(uint64_t, uld, msa_uld); + #define LD(psrc) MSA_LOAD(psrc, msa_uld) + #else // !(__mips == 64) + #define LD(psrc) ((((uint64_t)MSA_LOAD(psrc + 4, msa_ulw)) << 32) | \ + MSA_LOAD(psrc, msa_ulw)) + #endif // (__mips == 64) + + MSA_STORE_FUNC(uint16_t, ush, msa_ush); + #define SH(val, pdst) MSA_STORE(val, pdst, msa_ush) + MSA_STORE_FUNC(uint32_t, usw, msa_usw); + #define SW(val, pdst) MSA_STORE(val, pdst, msa_usw) + #define SD(val, pdst) do { \ + uint8_t* const pdst_sd_m = (uint8_t*)(pdst); \ + const uint32_t val0_m = (uint32_t)(val & 0x00000000FFFFFFFF); \ + const uint32_t val1_m = (uint32_t)((val >> 32) & 0x00000000FFFFFFFF); \ + SW(val0_m, pdst_sd_m); \ + SW(val1_m, pdst_sd_m + 4); \ + } while (0) +#endif // (__mips_isa_rev >= 6) + +/* Description : Load 4 words with stride + * Arguments : Inputs - psrc, stride + * Outputs - out0, out1, out2, out3 + * Details : Load word in 'out0' from (psrc) + * Load word in 'out1' from (psrc + stride) + * Load word in 'out2' from (psrc + 2 * stride) + * Load word in 'out3' from (psrc + 3 * stride) + */ +#define LW4(psrc, stride, out0, out1, out2, out3) do { \ + const uint8_t* ptmp = (const uint8_t*)psrc; \ + out0 = LW(ptmp); \ + ptmp += stride; \ + out1 = LW(ptmp); \ + ptmp += stride; \ + out2 = LW(ptmp); \ + ptmp += stride; \ + out3 = LW(ptmp); \ +} while (0) + +/* Description : Store words with stride + * Arguments : Inputs - in0, in1, in2, in3, pdst, stride + * Details : Store word from 'in0' to (pdst) + * Store word from 'in1' to (pdst + stride) + * Store word from 'in2' to (pdst + 2 * stride) + * Store word from 'in3' to (pdst + 3 * stride) + */ +#define SW4(in0, in1, in2, in3, pdst, stride) do { \ + uint8_t* ptmp = (uint8_t*)pdst; \ + SW(in0, ptmp); \ + ptmp += stride; \ + SW(in1, ptmp); \ + ptmp += stride; \ + SW(in2, ptmp); \ + ptmp += stride; \ + SW(in3, ptmp); \ +} while (0) + +#define SW3(in0, in1, in2, pdst, stride) do { \ + uint8_t* ptmp = (uint8_t*)pdst; \ + SW(in0, ptmp); \ + ptmp += stride; \ + SW(in1, ptmp); \ + ptmp += stride; \ + SW(in2, ptmp); \ +} while (0) + +#define SW2(in0, in1, pdst, stride) do { \ + uint8_t* ptmp = (uint8_t*)pdst; \ + SW(in0, ptmp); \ + ptmp += stride; \ + SW(in1, ptmp); \ +} while (0) + +/* Description : Store 4 double words with stride + * Arguments : Inputs - in0, in1, in2, in3, pdst, stride + * Details : Store double word from 'in0' to (pdst) + * Store double word from 'in1' to (pdst + stride) + * Store double word from 'in2' to (pdst + 2 * stride) + * Store double word from 'in3' to (pdst + 3 * stride) + */ +#define SD4(in0, in1, in2, in3, pdst, stride) do { \ + uint8_t* ptmp = (uint8_t*)pdst; \ + SD(in0, ptmp); \ + ptmp += stride; \ + SD(in1, ptmp); \ + ptmp += stride; \ + SD(in2, ptmp); \ + ptmp += stride; \ + SD(in3, ptmp); \ +} while (0) + +/* Description : Load vectors with 16 byte elements with stride + * Arguments : Inputs - psrc, stride + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Load 16 byte elements in 'out0' from (psrc) + * Load 16 byte elements in 'out1' from (psrc + stride) + */ +#define LD_B2(RTYPE, psrc, stride, out0, out1) do { \ + out0 = LD_B(RTYPE, psrc); \ + out1 = LD_B(RTYPE, psrc + stride); \ +} while (0) +#define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__) +#define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__) + +#define LD_B3(RTYPE, psrc, stride, out0, out1, out2) do { \ + LD_B2(RTYPE, psrc, stride, out0, out1); \ + out2 = LD_B(RTYPE, psrc + 2 * stride); \ +} while (0) +#define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__) +#define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__) + +#define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \ + LD_B2(RTYPE, psrc, stride, out0, out1); \ + LD_B2(RTYPE, psrc + 2 * stride , stride, out2, out3); \ +} while (0) +#define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__) +#define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__) + +#define LD_B8(RTYPE, psrc, stride, \ + out0, out1, out2, out3, out4, out5, out6, out7) do { \ + LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3); \ + LD_B4(RTYPE, psrc + 4 * stride, stride, out4, out5, out6, out7); \ +} while (0) +#define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__) +#define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__) + +/* Description : Load vectors with 8 halfword elements with stride + * Arguments : Inputs - psrc, stride + * Outputs - out0, out1 + * Details : Load 8 halfword elements in 'out0' from (psrc) + * Load 8 halfword elements in 'out1' from (psrc + stride) + */ +#define LD_H2(RTYPE, psrc, stride, out0, out1) do { \ + out0 = LD_H(RTYPE, psrc); \ + out1 = LD_H(RTYPE, psrc + stride); \ +} while (0) +#define LD_UH2(...) LD_H2(v8u16, __VA_ARGS__) +#define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__) + +/* Description : Load vectors with 4 word elements with stride + * Arguments : Inputs - psrc, stride + * Outputs - out0, out1, out2, out3 + * Details : Load 4 word elements in 'out0' from (psrc + 0 * stride) + * Load 4 word elements in 'out1' from (psrc + 1 * stride) + * Load 4 word elements in 'out2' from (psrc + 2 * stride) + * Load 4 word elements in 'out3' from (psrc + 3 * stride) + */ +#define LD_W2(RTYPE, psrc, stride, out0, out1) do { \ + out0 = LD_W(RTYPE, psrc); \ + out1 = LD_W(RTYPE, psrc + stride); \ +} while (0) +#define LD_UW2(...) LD_W2(v4u32, __VA_ARGS__) +#define LD_SW2(...) LD_W2(v4i32, __VA_ARGS__) + +#define LD_W3(RTYPE, psrc, stride, out0, out1, out2) do { \ + LD_W2(RTYPE, psrc, stride, out0, out1); \ + out2 = LD_W(RTYPE, psrc + 2 * stride); \ +} while (0) +#define LD_UW3(...) LD_W3(v4u32, __VA_ARGS__) +#define LD_SW3(...) LD_W3(v4i32, __VA_ARGS__) + +#define LD_W4(RTYPE, psrc, stride, out0, out1, out2, out3) do { \ + LD_W2(RTYPE, psrc, stride, out0, out1); \ + LD_W2(RTYPE, psrc + 2 * stride, stride, out2, out3); \ +} while (0) +#define LD_UW4(...) LD_W4(v4u32, __VA_ARGS__) +#define LD_SW4(...) LD_W4(v4i32, __VA_ARGS__) + +/* Description : Store vectors of 16 byte elements with stride + * Arguments : Inputs - in0, in1, pdst, stride + * Details : Store 16 byte elements from 'in0' to (pdst) + * Store 16 byte elements from 'in1' to (pdst + stride) + */ +#define ST_B2(RTYPE, in0, in1, pdst, stride) do { \ + ST_B(RTYPE, in0, pdst); \ + ST_B(RTYPE, in1, pdst + stride); \ +} while (0) +#define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__) +#define ST_SB2(...) ST_B2(v16i8, __VA_ARGS__) + +#define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \ + ST_B2(RTYPE, in0, in1, pdst, stride); \ + ST_B2(RTYPE, in2, in3, pdst + 2 * stride, stride); \ +} while (0) +#define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__) +#define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__) + +#define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ + pdst, stride) do { \ + ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \ + ST_B4(RTYPE, in4, in5, in6, in7, pdst + 4 * stride, stride); \ +} while (0) +#define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__) + +/* Description : Store vectors of 4 word elements with stride + * Arguments : Inputs - in0, in1, in2, in3, pdst, stride + * Details : Store 4 word elements from 'in0' to (pdst + 0 * stride) + * Store 4 word elements from 'in1' to (pdst + 1 * stride) + * Store 4 word elements from 'in2' to (pdst + 2 * stride) + * Store 4 word elements from 'in3' to (pdst + 3 * stride) + */ +#define ST_W2(RTYPE, in0, in1, pdst, stride) do { \ + ST_W(RTYPE, in0, pdst); \ + ST_W(RTYPE, in1, pdst + stride); \ +} while (0) +#define ST_UW2(...) ST_W2(v4u32, __VA_ARGS__) +#define ST_SW2(...) ST_W2(v4i32, __VA_ARGS__) + +#define ST_W3(RTYPE, in0, in1, in2, pdst, stride) do { \ + ST_W2(RTYPE, in0, in1, pdst, stride); \ + ST_W(RTYPE, in2, pdst + 2 * stride); \ +} while (0) +#define ST_UW3(...) ST_W3(v4u32, __VA_ARGS__) +#define ST_SW3(...) ST_W3(v4i32, __VA_ARGS__) + +#define ST_W4(RTYPE, in0, in1, in2, in3, pdst, stride) do { \ + ST_W2(RTYPE, in0, in1, pdst, stride); \ + ST_W2(RTYPE, in2, in3, pdst + 2 * stride, stride); \ +} while (0) +#define ST_UW4(...) ST_W4(v4u32, __VA_ARGS__) +#define ST_SW4(...) ST_W4(v4i32, __VA_ARGS__) + +/* Description : Store vectors of 8 halfword elements with stride + * Arguments : Inputs - in0, in1, pdst, stride + * Details : Store 8 halfword elements from 'in0' to (pdst) + * Store 8 halfword elements from 'in1' to (pdst + stride) + */ +#define ST_H2(RTYPE, in0, in1, pdst, stride) do { \ + ST_H(RTYPE, in0, pdst); \ + ST_H(RTYPE, in1, pdst + stride); \ +} while (0) +#define ST_UH2(...) ST_H2(v8u16, __VA_ARGS__) +#define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__) + +/* Description : Store 2x4 byte block to destination memory from input vector + * Arguments : Inputs - in, stidx, pdst, stride + * Details : Index 'stidx' halfword element from 'in' vector is copied to + * the GP register and stored to (pdst) + * Index 'stidx+1' halfword element from 'in' vector is copied to + * the GP register and stored to (pdst + stride) + * Index 'stidx+2' halfword element from 'in' vector is copied to + * the GP register and stored to (pdst + 2 * stride) + * Index 'stidx+3' halfword element from 'in' vector is copied to + * the GP register and stored to (pdst + 3 * stride) + */ +#define ST2x4_UB(in, stidx, pdst, stride) do { \ + uint8_t* pblk_2x4_m = (uint8_t*)pdst; \ + const uint16_t out0_m = __msa_copy_s_h((v8i16)in, stidx); \ + const uint16_t out1_m = __msa_copy_s_h((v8i16)in, stidx + 1); \ + const uint16_t out2_m = __msa_copy_s_h((v8i16)in, stidx + 2); \ + const uint16_t out3_m = __msa_copy_s_h((v8i16)in, stidx + 3); \ + SH(out0_m, pblk_2x4_m); \ + pblk_2x4_m += stride; \ + SH(out1_m, pblk_2x4_m); \ + pblk_2x4_m += stride; \ + SH(out2_m, pblk_2x4_m); \ + pblk_2x4_m += stride; \ + SH(out3_m, pblk_2x4_m); \ +} while (0) + +/* Description : Store 4x4 byte block to destination memory from input vector + * Arguments : Inputs - in0, in1, pdst, stride + * Details : 'Idx0' word element from input vector 'in0' is copied to the + * GP register and stored to (pdst) + * 'Idx1' word element from input vector 'in0' is copied to the + * GP register and stored to (pdst + stride) + * 'Idx2' word element from input vector 'in0' is copied to the + * GP register and stored to (pdst + 2 * stride) + * 'Idx3' word element from input vector 'in0' is copied to the + * GP register and stored to (pdst + 3 * stride) + */ +#define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) do { \ + uint8_t* const pblk_4x4_m = (uint8_t*)pdst; \ + const uint32_t out0_m = __msa_copy_s_w((v4i32)in0, idx0); \ + const uint32_t out1_m = __msa_copy_s_w((v4i32)in0, idx1); \ + const uint32_t out2_m = __msa_copy_s_w((v4i32)in1, idx2); \ + const uint32_t out3_m = __msa_copy_s_w((v4i32)in1, idx3); \ + SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ +} while (0) + +#define ST4x8_UB(in0, in1, pdst, stride) do { \ + uint8_t* const pblk_4x8 = (uint8_t*)pdst; \ + ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ + ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ +} while (0) + +/* Description : Immediate number of elements to slide + * Arguments : Inputs - in0, in1, slide_val + * Outputs - out + * Return Type - as per RTYPE + * Details : Byte elements from 'in1' vector are slid into 'in0' by + * value specified in the 'slide_val' + */ +#define SLDI_B(RTYPE, in0, in1, slide_val) \ + (RTYPE)__msa_sldi_b((v16i8)in0, (v16i8)in1, slide_val) \ + +#define SLDI_UB(...) SLDI_B(v16u8, __VA_ARGS__) +#define SLDI_SB(...) SLDI_B(v16i8, __VA_ARGS__) +#define SLDI_SH(...) SLDI_B(v8i16, __VA_ARGS__) + +/* Description : Shuffle byte vector elements as per mask vector + * Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Byte elements from 'in0' & 'in1' are copied selectively to + * 'out0' as per control vector 'mask0' + */ +#define VSHF_B(RTYPE, in0, in1, mask) \ + (RTYPE)__msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0) + +#define VSHF_UB(...) VSHF_B(v16u8, __VA_ARGS__) +#define VSHF_SB(...) VSHF_B(v16i8, __VA_ARGS__) +#define VSHF_UH(...) VSHF_B(v8u16, __VA_ARGS__) +#define VSHF_SH(...) VSHF_B(v8i16, __VA_ARGS__) + +#define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \ + out0 = VSHF_B(RTYPE, in0, in1, mask0); \ + out1 = VSHF_B(RTYPE, in2, in3, mask1); \ +} while (0) +#define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) +#define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) +#define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) +#define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__) + +/* Description : Shuffle halfword vector elements as per mask vector + * Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : halfword elements from 'in0' & 'in1' are copied selectively to + * 'out0' as per control vector 'mask0' + */ +#define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do { \ + out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2); \ +} while (0) +#define VSHF_H2_UH(...) VSHF_H2(v8u16, __VA_ARGS__) +#define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__) + +/* Description : Dot product of byte vector elements + * Arguments : Inputs - mult0, mult1, cnst0, cnst1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Signed byte elements from 'mult0' are multiplied with + * signed byte elements from 'cnst0' producing a result + * twice the size of input i.e. signed halfword. + * The multiplication result of adjacent odd-even elements + * are added together and written to the 'out0' vector +*/ +#define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ + out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ +} while (0) +#define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) + +/* Description : Dot product of halfword vector elements + * Arguments : Inputs - mult0, mult1, cnst0, cnst1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Signed halfword elements from 'mult0' are multiplied with + * signed halfword elements from 'cnst0' producing a result + * twice the size of input i.e. signed word. + * The multiplication result of adjacent odd-even elements + * are added together and written to the 'out0' vector + */ +#define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ + out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ +} while (0) +#define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) + +/* Description : Dot product of unsigned word vector elements + * Arguments : Inputs - mult0, mult1, cnst0, cnst1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Unsigned word elements from 'mult0' are multiplied with + * unsigned word elements from 'cnst0' producing a result + * twice the size of input i.e. unsigned double word. + * The multiplication result of adjacent odd-even elements + * are added together and written to the 'out0' vector + */ +#define DOTP_UW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ + out0 = (RTYPE)__msa_dotp_u_d((v4u32)mult0, (v4u32)cnst0); \ + out1 = (RTYPE)__msa_dotp_u_d((v4u32)mult1, (v4u32)cnst1); \ +} while (0) +#define DOTP_UW2_UD(...) DOTP_UW2(v2u64, __VA_ARGS__) + +/* Description : Dot product & addition of halfword vector elements + * Arguments : Inputs - mult0, mult1, cnst0, cnst1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Signed halfword elements from 'mult0' are multiplied with + * signed halfword elements from 'cnst0' producing a result + * twice the size of input i.e. signed word. + * The multiplication result of adjacent odd-even elements + * are added to the 'out0' vector + */ +#define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do { \ + out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ + out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ +} while (0) +#define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) + +/* Description : Clips all signed halfword elements of input vector + * between 0 & 255 + * Arguments : Input/output - val + * Return Type - signed halfword + */ +#define CLIP_SH_0_255(val) do { \ + const v8i16 max_m = __msa_ldi_h(255); \ + val = __msa_maxi_s_h((v8i16)val, 0); \ + val = __msa_min_s_h(max_m, (v8i16)val); \ +} while (0) + +#define CLIP_SH2_0_255(in0, in1) do { \ + CLIP_SH_0_255(in0); \ + CLIP_SH_0_255(in1); \ +} while (0) + +#define CLIP_SH4_0_255(in0, in1, in2, in3) do { \ + CLIP_SH2_0_255(in0, in1); \ + CLIP_SH2_0_255(in2, in3); \ +} while (0) + +/* Description : Clips all unsigned halfword elements of input vector + * between 0 & 255 + * Arguments : Input - in + * Output - out_m + * Return Type - unsigned halfword + */ +#define CLIP_UH_0_255(in) do { \ + const v8u16 max_m = (v8u16)__msa_ldi_h(255); \ + in = __msa_maxi_u_h((v8u16) in, 0); \ + in = __msa_min_u_h((v8u16) max_m, (v8u16) in); \ +} while (0) + +#define CLIP_UH2_0_255(in0, in1) do { \ + CLIP_UH_0_255(in0); \ + CLIP_UH_0_255(in1); \ +} while (0) + +/* Description : Clips all signed word elements of input vector + * between 0 & 255 + * Arguments : Input/output - val + * Return Type - signed word + */ +#define CLIP_SW_0_255(val) do { \ + const v4i32 max_m = __msa_ldi_w(255); \ + val = __msa_maxi_s_w((v4i32)val, 0); \ + val = __msa_min_s_w(max_m, (v4i32)val); \ +} while (0) + +#define CLIP_SW4_0_255(in0, in1, in2, in3) do { \ + CLIP_SW_0_255(in0); \ + CLIP_SW_0_255(in1); \ + CLIP_SW_0_255(in2); \ + CLIP_SW_0_255(in3); \ +} while (0) + +/* Description : Horizontal addition of 4 signed word elements of input vector + * Arguments : Input - in (signed word vector) + * Output - sum_m (i32 sum) + * Return Type - signed word (GP) + * Details : 4 signed word elements of 'in' vector are added together and + * the resulting integer sum is returned + */ +static WEBP_INLINE int32_t func_hadd_sw_s32(v4i32 in) { + const v2i64 res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); + const v2i64 res1_m = __msa_splati_d(res0_m, 1); + const v2i64 out = res0_m + res1_m; + int32_t sum_m = __msa_copy_s_w((v4i32)out, 0); + return sum_m; +} +#define HADD_SW_S32(in) func_hadd_sw_s32(in) + +/* Description : Horizontal addition of 8 signed halfword elements + * Arguments : Input - in (signed halfword vector) + * Output - sum_m (s32 sum) + * Return Type - signed word + * Details : 8 signed halfword elements of input vector are added + * together and the resulting integer sum is returned + */ +static WEBP_INLINE int32_t func_hadd_sh_s32(v8i16 in) { + const v4i32 res = __msa_hadd_s_w(in, in); + const v2i64 res0 = __msa_hadd_s_d(res, res); + const v2i64 res1 = __msa_splati_d(res0, 1); + const v2i64 res2 = res0 + res1; + const int32_t sum_m = __msa_copy_s_w((v4i32)res2, 0); + return sum_m; +} +#define HADD_SH_S32(in) func_hadd_sh_s32(in) + +/* Description : Horizontal addition of 8 unsigned halfword elements + * Arguments : Input - in (unsigned halfword vector) + * Output - sum_m (u32 sum) + * Return Type - unsigned word + * Details : 8 unsigned halfword elements of input vector are added + * together and the resulting integer sum is returned + */ +static WEBP_INLINE uint32_t func_hadd_uh_u32(v8u16 in) { + uint32_t sum_m; + const v4u32 res_m = __msa_hadd_u_w(in, in); + v2u64 res0_m = __msa_hadd_u_d(res_m, res_m); + v2u64 res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); + res0_m = res0_m + res1_m; + sum_m = __msa_copy_s_w((v4i32)res0_m, 0); + return sum_m; +} +#define HADD_UH_U32(in) func_hadd_uh_u32(in) + +/* Description : Horizontal addition of signed half word vector elements + Arguments : Inputs - in0, in1 + Outputs - out0, out1 + Return Type - as per RTYPE + Details : Each signed odd half word element from 'in0' is added to + even signed half word element from 'in0' (pairwise) and the + halfword result is written in 'out0' +*/ +#define HADD_SH2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_hadd_s_w((v8i16)in0, (v8i16)in0); \ + out1 = (RTYPE)__msa_hadd_s_w((v8i16)in1, (v8i16)in1); \ +} while (0) +#define HADD_SH2_SW(...) HADD_SH2(v4i32, __VA_ARGS__) + +#define HADD_SH4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) do { \ + HADD_SH2(RTYPE, in0, in1, out0, out1); \ + HADD_SH2(RTYPE, in2, in3, out2, out3); \ +} while (0) +#define HADD_SH4_SW(...) HADD_SH4(v4i32, __VA_ARGS__) + +/* Description : Horizontal subtraction of unsigned byte vector elements + * Arguments : Inputs - in0, in1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Each unsigned odd byte element from 'in0' is subtracted from + * even unsigned byte element from 'in0' (pairwise) and the + * halfword result is written to 'out0' + */ +#define HSUB_UB2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ + out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ +} while (0) +#define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__) +#define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) +#define HSUB_UB2_SW(...) HSUB_UB2(v4i32, __VA_ARGS__) + +/* Description : Set element n input vector to GPR value + * Arguments : Inputs - in0, in1, in2, in3 + * Output - out + * Return Type - as per RTYPE + * Details : Set element 0 in vector 'out' to value specified in 'in0' + */ +#define INSERT_W2(RTYPE, in0, in1, out) do { \ + out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ +} while (0) +#define INSERT_W2_UB(...) INSERT_W2(v16u8, __VA_ARGS__) +#define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) + +#define INSERT_W4(RTYPE, in0, in1, in2, in3, out) do { \ + out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ + out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ +} while (0) +#define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) +#define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) +#define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__) + +/* Description : Set element n of double word input vector to GPR value + * Arguments : Inputs - in0, in1 + * Output - out + * Return Type - as per RTYPE + * Details : Set element 0 in vector 'out' to GPR value specified in 'in0' + * Set element 1 in vector 'out' to GPR value specified in 'in1' + */ +#define INSERT_D2(RTYPE, in0, in1, out) do { \ + out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ + out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ +} while (0) +#define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) +#define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) + +/* Description : Interleave even byte elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even byte elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ +} while (0) +#define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) +#define ILVEV_B2_SB(...) ILVEV_B2(v16i8, __VA_ARGS__) +#define ILVEV_B2_UH(...) ILVEV_B2(v8u16, __VA_ARGS__) +#define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) +#define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__) + +/* Description : Interleave odd byte elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Odd byte elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVOD_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvod_b((v16i8)in1, (v16i8)in0); \ + out1 = (RTYPE)__msa_ilvod_b((v16i8)in3, (v16i8)in2); \ +} while (0) +#define ILVOD_B2_UB(...) ILVOD_B2(v16u8, __VA_ARGS__) +#define ILVOD_B2_SB(...) ILVOD_B2(v16i8, __VA_ARGS__) +#define ILVOD_B2_UH(...) ILVOD_B2(v8u16, __VA_ARGS__) +#define ILVOD_B2_SH(...) ILVOD_B2(v8i16, __VA_ARGS__) +#define ILVOD_B2_SD(...) ILVOD_B2(v2i64, __VA_ARGS__) + +/* Description : Interleave even halfword elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even halfword elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ +} while (0) +#define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) +#define ILVEV_H2_UH(...) ILVEV_H2(v8u16, __VA_ARGS__) +#define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) +#define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave odd halfword elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Odd halfword elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvod_h((v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \ +} while (0) +#define ILVOD_H2_UB(...) ILVOD_H2(v16u8, __VA_ARGS__) +#define ILVOD_H2_UH(...) ILVOD_H2(v8u16, __VA_ARGS__) +#define ILVOD_H2_SH(...) ILVOD_H2(v8i16, __VA_ARGS__) +#define ILVOD_H2_SW(...) ILVOD_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave even word elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even word elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ + out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ +} while (0) +#define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__) +#define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) +#define ILVEV_W2_UH(...) ILVEV_W2(v8u16, __VA_ARGS__) +#define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__) + +/* Description : Interleave even-odd word elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even word elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + * Odd word elements of 'in2' and 'in3' are interleaved + * and written to 'out1' + */ +#define ILVEVOD_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ + out1 = (RTYPE)__msa_ilvod_w((v4i32)in3, (v4i32)in2); \ +} while (0) +#define ILVEVOD_W2_UB(...) ILVEVOD_W2(v16u8, __VA_ARGS__) +#define ILVEVOD_W2_UH(...) ILVEVOD_W2(v8u16, __VA_ARGS__) +#define ILVEVOD_W2_SH(...) ILVEVOD_W2(v8i16, __VA_ARGS__) +#define ILVEVOD_W2_SW(...) ILVEVOD_W2(v4i32, __VA_ARGS__) + +/* Description : Interleave even-odd half-word elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even half-word elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + * Odd half-word elements of 'in2' and 'in3' are interleaved + * and written to 'out1' + */ +#define ILVEVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ + out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2); \ +} while (0) +#define ILVEVOD_H2_UB(...) ILVEVOD_H2(v16u8, __VA_ARGS__) +#define ILVEVOD_H2_UH(...) ILVEVOD_H2(v8u16, __VA_ARGS__) +#define ILVEVOD_H2_SH(...) ILVEVOD_H2(v8i16, __VA_ARGS__) +#define ILVEVOD_H2_SW(...) ILVEVOD_H2(v4i32, __VA_ARGS__) + +/* Description : Interleave even double word elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even double word elements of 'in0' and 'in1' are interleaved + * and written to 'out0' + */ +#define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ + out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ +} while (0) +#define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) +#define ILVEV_D2_SB(...) ILVEV_D2(v16i8, __VA_ARGS__) +#define ILVEV_D2_SW(...) ILVEV_D2(v4i32, __VA_ARGS__) +#define ILVEV_D2_SD(...) ILVEV_D2(v2i64, __VA_ARGS__) + +/* Description : Interleave left half of byte elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Left half of byte elements of 'in0' and 'in1' are interleaved + * and written to 'out0'. + */ +#define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ +} while (0) +#define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) +#define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) +#define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) +#define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) +#define ILVL_B2_SW(...) ILVL_B2(v4i32, __VA_ARGS__) + +/* Description : Interleave right half of byte elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Right half of byte elements of 'in0' and 'in1' are interleaved + * and written to out0. + */ +#define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ +} while (0) +#define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) +#define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) +#define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) +#define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) +#define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__) + +#define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ +} while (0) +#define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) +#define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) +#define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) +#define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) +#define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__) + +/* Description : Interleave right half of halfword elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Right half of halfword elements of 'in0' and 'in1' are + * interleaved and written to 'out0'. + */ +#define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ +} while (0) +#define ILVR_H2_UB(...) ILVR_H2(v16u8, __VA_ARGS__) +#define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) +#define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) + +#define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ +} while (0) +#define ILVR_H4_UB(...) ILVR_H4(v16u8, __VA_ARGS__) +#define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) +#define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__) + +/* Description : Interleave right half of double word elements from vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Right half of double word elements of 'in0' and 'in1' are + * interleaved and written to 'out0'. + */ +#define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_d((v2i64)in0, (v2i64)in1); \ + out1 = (RTYPE)__msa_ilvr_d((v2i64)in2, (v2i64)in3); \ +} while (0) +#define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) +#define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) +#define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) + +#define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ + ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ +} while (0) +#define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) +#define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) + +/* Description : Interleave both left and right half of input vectors + * Arguments : Inputs - in0, in1 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Right half of byte elements from 'in0' and 'in1' are + * interleaved and written to 'out0' + */ +#define ILVRL_B2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ +} while (0) +#define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) +#define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) +#define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) +#define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) +#define ILVRL_B2_SW(...) ILVRL_B2(v4i32, __VA_ARGS__) + +#define ILVRL_H2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ +} while (0) +#define ILVRL_H2_UB(...) ILVRL_H2(v16u8, __VA_ARGS__) +#define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__) +#define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) +#define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) +#define ILVRL_H2_UW(...) ILVRL_H2(v4u32, __VA_ARGS__) + +#define ILVRL_W2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ +} while (0) +#define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) +#define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) +#define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) +#define ILVRL_W2_UW(...) ILVRL_W2(v4u32, __VA_ARGS__) + +/* Description : Pack even byte elements of vector pairs + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even byte elements of 'in0' are copied to the left half of + * 'out0' & even byte elements of 'in1' are copied to the right + * half of 'out0'. + */ +#define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ + out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ +} while (0) +#define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) +#define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) +#define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) +#define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__) + +#define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ + PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ +} while (0) +#define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) +#define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) +#define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) +#define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__) + +/* Description : Pack even halfword elements of vector pairs + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even halfword elements of 'in0' are copied to the left half of + * 'out0' & even halfword elements of 'in1' are copied to the + * right half of 'out0'. + */ +#define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ +} while (0) +#define PCKEV_H2_UH(...) PCKEV_H2(v8u16, __VA_ARGS__) +#define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) +#define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) +#define PCKEV_H2_UW(...) PCKEV_H2(v4u32, __VA_ARGS__) + +/* Description : Pack even word elements of vector pairs + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Even word elements of 'in0' are copied to the left half of + * 'out0' & even word elements of 'in1' are copied to the + * right half of 'out0'. + */ +#define PCKEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_pckev_w((v4i32)in0, (v4i32)in1); \ + out1 = (RTYPE)__msa_pckev_w((v4i32)in2, (v4i32)in3); \ +} while (0) +#define PCKEV_W2_UH(...) PCKEV_W2(v8u16, __VA_ARGS__) +#define PCKEV_W2_SH(...) PCKEV_W2(v8i16, __VA_ARGS__) +#define PCKEV_W2_SW(...) PCKEV_W2(v4i32, __VA_ARGS__) +#define PCKEV_W2_UW(...) PCKEV_W2(v4u32, __VA_ARGS__) + +/* Description : Pack odd halfword elements of vector pairs + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Odd halfword elements of 'in0' are copied to the left half of + * 'out0' & odd halfword elements of 'in1' are copied to the + * right half of 'out0'. + */ +#define PCKOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_pckod_h((v8i16)in0, (v8i16)in1); \ + out1 = (RTYPE)__msa_pckod_h((v8i16)in2, (v8i16)in3); \ +} while (0) +#define PCKOD_H2_UH(...) PCKOD_H2(v8u16, __VA_ARGS__) +#define PCKOD_H2_SH(...) PCKOD_H2(v8i16, __VA_ARGS__) +#define PCKOD_H2_SW(...) PCKOD_H2(v4i32, __VA_ARGS__) +#define PCKOD_H2_UW(...) PCKOD_H2(v4u32, __VA_ARGS__) + +/* Description : Arithmetic immediate shift right all elements of word vector + * Arguments : Inputs - in0, in1, shift + * Outputs - in place operation + * Return Type - as per input vector RTYPE + * Details : Each element of vector 'in0' is right shifted by 'shift' and + * the result is written in-place. 'shift' is a GP variable. + */ +#define SRAI_W2(RTYPE, in0, in1, shift_val) do { \ + in0 = (RTYPE)SRAI_W(in0, shift_val); \ + in1 = (RTYPE)SRAI_W(in1, shift_val); \ +} while (0) +#define SRAI_W2_SW(...) SRAI_W2(v4i32, __VA_ARGS__) +#define SRAI_W2_UW(...) SRAI_W2(v4u32, __VA_ARGS__) + +#define SRAI_W4(RTYPE, in0, in1, in2, in3, shift_val) do { \ + SRAI_W2(RTYPE, in0, in1, shift_val); \ + SRAI_W2(RTYPE, in2, in3, shift_val); \ +} while (0) +#define SRAI_W4_SW(...) SRAI_W4(v4i32, __VA_ARGS__) +#define SRAI_W4_UW(...) SRAI_W4(v4u32, __VA_ARGS__) + +/* Description : Arithmetic shift right all elements of half-word vector + * Arguments : Inputs - in0, in1, shift + * Outputs - in place operation + * Return Type - as per input vector RTYPE + * Details : Each element of vector 'in0' is right shifted by 'shift' and + * the result is written in-place. 'shift' is a GP variable. + */ +#define SRAI_H2(RTYPE, in0, in1, shift_val) do { \ + in0 = (RTYPE)SRAI_H(in0, shift_val); \ + in1 = (RTYPE)SRAI_H(in1, shift_val); \ +} while (0) +#define SRAI_H2_SH(...) SRAI_H2(v8i16, __VA_ARGS__) +#define SRAI_H2_UH(...) SRAI_H2(v8u16, __VA_ARGS__) + +/* Description : Arithmetic rounded shift right all elements of word vector + * Arguments : Inputs - in0, in1, shift + * Outputs - in place operation + * Return Type - as per input vector RTYPE + * Details : Each element of vector 'in0' is right shifted by 'shift' and + * the result is written in-place. 'shift' is a GP variable. + */ +#define SRARI_W2(RTYPE, in0, in1, shift) do { \ + in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ + in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ +} while (0) +#define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) + +#define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) do { \ + SRARI_W2(RTYPE, in0, in1, shift); \ + SRARI_W2(RTYPE, in2, in3, shift); \ +} while (0) +#define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__) +#define SRARI_W4_UW(...) SRARI_W4(v4u32, __VA_ARGS__) +#define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) + +/* Description : Shift right arithmetic rounded double words + * Arguments : Inputs - in0, in1, shift + * Outputs - in place operation + * Return Type - as per RTYPE + * Details : Each element of vector 'in0' is shifted right arithmetically by + * the number of bits in the corresponding element in the vector + * 'shift'. The last discarded bit is added to shifted value for + * rounding and the result is written in-place. + * 'shift' is a vector. + */ +#define SRAR_D2(RTYPE, in0, in1, shift) do { \ + in0 = (RTYPE)__msa_srar_d((v2i64)in0, (v2i64)shift); \ + in1 = (RTYPE)__msa_srar_d((v2i64)in1, (v2i64)shift); \ +} while (0) +#define SRAR_D2_SW(...) SRAR_D2(v4i32, __VA_ARGS__) +#define SRAR_D2_SD(...) SRAR_D2(v2i64, __VA_ARGS__) +#define SRAR_D2_UD(...) SRAR_D2(v2u64, __VA_ARGS__) + +#define SRAR_D4(RTYPE, in0, in1, in2, in3, shift) do { \ + SRAR_D2(RTYPE, in0, in1, shift); \ + SRAR_D2(RTYPE, in2, in3, shift); \ +} while (0) +#define SRAR_D4_SD(...) SRAR_D4(v2i64, __VA_ARGS__) +#define SRAR_D4_UD(...) SRAR_D4(v2u64, __VA_ARGS__) + +/* Description : Addition of 2 pairs of half-word vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Details : Each element in 'in0' is added to 'in1' and result is written + * to 'out0'. + */ +#define ADDVI_H2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)ADDVI_H(in0, in1); \ + out1 = (RTYPE)ADDVI_H(in2, in3); \ +} while (0) +#define ADDVI_H2_SH(...) ADDVI_H2(v8i16, __VA_ARGS__) +#define ADDVI_H2_UH(...) ADDVI_H2(v8u16, __VA_ARGS__) + +/* Description : Addition of 2 pairs of word vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Details : Each element in 'in0' is added to 'in1' and result is written + * to 'out0'. + */ +#define ADDVI_W2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)ADDVI_W(in0, in1); \ + out1 = (RTYPE)ADDVI_W(in2, in3); \ +} while (0) +#define ADDVI_W2_SW(...) ADDVI_W2(v4i32, __VA_ARGS__) + +/* Description : Fill 2 pairs of word vectors with GP registers + * Arguments : Inputs - in0, in1 + * Outputs - out0, out1 + * Details : GP register in0 is replicated in each word element of out0 + * GP register in1 is replicated in each word element of out1 + */ +#define FILL_W2(RTYPE, in0, in1, out0, out1) do { \ + out0 = (RTYPE)__msa_fill_w(in0); \ + out1 = (RTYPE)__msa_fill_w(in1); \ +} while (0) +#define FILL_W2_SW(...) FILL_W2(v4i32, __VA_ARGS__) + +/* Description : Addition of 2 pairs of vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Details : Each element in 'in0' is added to 'in1' and result is written + * to 'out0'. + */ +#define ADD2(in0, in1, in2, in3, out0, out1) do { \ + out0 = in0 + in1; \ + out1 = in2 + in3; \ +} while (0) + +#define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + ADD2(in0, in1, in2, in3, out0, out1); \ + ADD2(in4, in5, in6, in7, out2, out3); \ +} while (0) + +/* Description : Subtraction of 2 pairs of vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Details : Each element in 'in1' is subtracted from 'in0' and result is + * written to 'out0'. + */ +#define SUB2(in0, in1, in2, in3, out0, out1) do { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ +} while (0) + +#define SUB3(in0, in1, in2, in3, in4, in5, out0, out1, out2) do { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + out2 = in4 - in5; \ +} while (0) + +#define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + out0 = in0 - in1; \ + out1 = in2 - in3; \ + out2 = in4 - in5; \ + out3 = in6 - in7; \ +} while (0) + +/* Description : Addition - Subtraction of input vectors + * Arguments : Inputs - in0, in1 + * Outputs - out0, out1 + * Details : Each element in 'in1' is added to 'in0' and result is + * written to 'out0'. + * Each element in 'in1' is subtracted from 'in0' and result is + * written to 'out1'. + */ +#define ADDSUB2(in0, in1, out0, out1) do { \ + out0 = in0 + in1; \ + out1 = in0 - in1; \ +} while (0) + +/* Description : Multiplication of pairs of vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1 + * Details : Each element from 'in0' is multiplied with elements from 'in1' + * and the result is written to 'out0' + */ +#define MUL2(in0, in1, in2, in3, out0, out1) do { \ + out0 = in0 * in1; \ + out1 = in2 * in3; \ +} while (0) + +#define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, \ + out0, out1, out2, out3) do { \ + MUL2(in0, in1, in2, in3, out0, out1); \ + MUL2(in4, in5, in6, in7, out2, out3); \ +} while (0) + +/* Description : Sign extend halfword elements from right half of the vector + * Arguments : Input - in (halfword vector) + * Output - out (sign extended word vector) + * Return Type - signed word + * Details : Sign bit of halfword elements from input vector 'in' is + * extracted and interleaved with same vector 'in0' to generate + * 4 word elements keeping sign intact + */ +#define UNPCK_R_SH_SW(in, out) do { \ + const v8i16 sign_m = __msa_clti_s_h((v8i16)in, 0); \ + out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ +} while (0) + +/* Description : Sign extend halfword elements from input vector and return + * the result in pair of vectors + * Arguments : Input - in (halfword vector) + * Outputs - out0, out1 (sign extended word vectors) + * Return Type - signed word + * Details : Sign bit of halfword elements from input vector 'in' is + * extracted and interleaved right with same vector 'in0' to + * generate 4 signed word elements in 'out0' + * Then interleaved left with same vector 'in0' to + * generate 4 signed word elements in 'out1' + */ +#define UNPCK_SH_SW(in, out0, out1) do { \ + const v8i16 tmp_m = __msa_clti_s_h((v8i16)in, 0); \ + ILVRL_H2_SW(tmp_m, in, out0, out1); \ +} while (0) + +/* Description : Butterfly of 4 input vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1, out2, out3 + * Details : Butterfly operation + */ +#define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) do { \ + out0 = in0 + in3; \ + out1 = in1 + in2; \ + out2 = in1 - in2; \ + out3 = in0 - in3; \ +} while (0) + +/* Description : Transpose 16x4 block into 4x16 with byte elements in vectors + * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, + * in8, in9, in10, in11, in12, in13, in14, in15 + * Outputs - out0, out1, out2, out3 + * Return Type - unsigned byte + */ +#define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \ + in8, in9, in10, in11, in12, in13, in14, in15, \ + out0, out1, out2, out3) do { \ + v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m, tmp4_m, tmp5_m; \ + ILVEV_W2_SD(in0, in4, in8, in12, tmp2_m, tmp3_m); \ + ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m); \ + ILVEV_D2_UB(tmp2_m, tmp3_m, tmp0_m, tmp1_m, out1, out3); \ + ILVEV_W2_SD(in2, in6, in10, in14, tmp4_m, tmp5_m); \ + ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m); \ + ILVEV_D2_SD(tmp4_m, tmp5_m, tmp0_m, tmp1_m, tmp2_m, tmp3_m); \ + ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \ + ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out0, out2); \ + ILVOD_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m); \ + ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out1, out3); \ +} while (0) + +/* Description : Transpose 16x8 block into 8x16 with byte elements in vectors + * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, + * in8, in9, in10, in11, in12, in13, in14, in15 + * Outputs - out0, out1, out2, out3, out4, out5, out6, out7 + * Return Type - unsigned byte + */ +#define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, \ + in8, in9, in10, in11, in12, in13, in14, in15, \ + out0, out1, out2, out3, out4, out5, \ + out6, out7) do { \ + v8i16 tmp0_m, tmp1_m, tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ + v4i32 tmp2_m, tmp3_m; \ + ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ + ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ + ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ + ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ + ILVEV_B2_SH(out7, out6, out5, out4, tmp0_m, tmp1_m); \ + ILVOD_B2_SH(out7, out6, out5, out4, tmp4_m, tmp5_m); \ + ILVEV_B2_UB(out3, out2, out1, out0, out5, out7); \ + ILVOD_B2_SH(out3, out2, out1, out0, tmp6_m, tmp7_m); \ + ILVEV_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ + ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out0, out4); \ + ILVOD_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ + ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out2, out6); \ + ILVEV_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ + ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out1, out5); \ + ILVOD_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ + ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out3, out7); \ +} while (0) + +/* Description : Transpose 4x4 block with word elements in vectors + * Arguments : Inputs - in0, in1, in2, in3 + * Outputs - out0, out1, out2, out3 + * Return Type - as per RTYPE + */ +#define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3, \ + out0, out1, out2, out3) do { \ + v4i32 s0_m, s1_m, s2_m, s3_m; \ + ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ + ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ + out0 = (RTYPE)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ + out1 = (RTYPE)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ + out2 = (RTYPE)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ + out3 = (RTYPE)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ +} while (0) +#define TRANSPOSE4x4_SW_SW(...) TRANSPOSE4x4_W(v4i32, __VA_ARGS__) + +/* Description : Add block 4x4 + * Arguments : Inputs - in0, in1, in2, in3, pdst, stride + * Details : Least significant 4 bytes from each input vector are added to + * the destination bytes, clipped between 0-255 and stored. + */ +#define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \ + uint32_t src0_m, src1_m, src2_m, src3_m; \ + v8i16 inp0_m, inp1_m, res0_m, res1_m; \ + v16i8 dst0_m = { 0 }; \ + v16i8 dst1_m = { 0 }; \ + const v16i8 zero_m = { 0 }; \ + ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m); \ + LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ + INSERT_W2_SB(src0_m, src1_m, dst0_m); \ + INSERT_W2_SB(src2_m, src3_m, dst1_m); \ + ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ + ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ + CLIP_SH2_0_255(res0_m, res1_m); \ + PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ + ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \ +} while (0) + +/* Description : Pack even byte elements, extract 0 & 2 index words from pair + * of results and store 4 words in destination memory as per + * stride + * Arguments : Inputs - in0, in1, in2, in3, pdst, stride + */ +#define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do { \ + v16i8 tmp0_m, tmp1_m; \ + PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m); \ + ST4x4_UB(tmp0_m, tmp1_m, 0, 2, 0, 2, pdst, stride); \ +} while (0) + +/* Description : average with rounding (in0 + in1 + 1) / 2. + * Arguments : Inputs - in0, in1, in2, in3, + * Outputs - out0, out1 + * Return Type - as per RTYPE + * Details : Each unsigned byte element from 'in0' vector is added with + * each unsigned byte element from 'in1' vector. Then the average + * with rounding is calculated and written to 'out0' + */ +#define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) do { \ + out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ + out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ +} while (0) +#define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) + +#endif // WEBP_USE_MSA +#endif // WEBP_DSP_MSA_MACRO_H_ diff --git a/media/libwebp/src/dsp/neon.h b/media/libwebp/src/dsp/neon.h new file mode 100644 index 0000000000..c591f9b9a7 --- /dev/null +++ b/media/libwebp/src/dsp/neon.h @@ -0,0 +1,104 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON common code. + +#ifndef WEBP_DSP_NEON_H_ +#define WEBP_DSP_NEON_H_ + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <arm_neon.h> + +// Right now, some intrinsics functions seem slower, so we disable them +// everywhere except newer clang/gcc or aarch64 where the inline assembly is +// incompatible. +#if LOCAL_CLANG_PREREQ(3,8) || LOCAL_GCC_PREREQ(4,9) || defined(__aarch64__) +#define WEBP_USE_INTRINSICS // use intrinsics when possible +#endif + +#define INIT_VECTOR2(v, a, b) do { \ + v.val[0] = a; \ + v.val[1] = b; \ +} while (0) + +#define INIT_VECTOR3(v, a, b, c) do { \ + v.val[0] = a; \ + v.val[1] = b; \ + v.val[2] = c; \ +} while (0) + +#define INIT_VECTOR4(v, a, b, c, d) do { \ + v.val[0] = a; \ + v.val[1] = b; \ + v.val[2] = c; \ + v.val[3] = d; \ +} while (0) + +// if using intrinsics, this flag avoids some functions that make gcc-4.6.3 +// crash ("internal compiler error: in immed_double_const, at emit-rtl."). +// (probably similar to gcc.gnu.org/bugzilla/show_bug.cgi?id=48183) +#if !(LOCAL_CLANG_PREREQ(3,8) || LOCAL_GCC_PREREQ(4,8) || defined(__aarch64__)) +#define WORK_AROUND_GCC +#endif + +static WEBP_INLINE int32x4x4_t Transpose4x4_NEON(const int32x4x4_t rows) { + uint64x2x2_t row01, row23; + + row01.val[0] = vreinterpretq_u64_s32(rows.val[0]); + row01.val[1] = vreinterpretq_u64_s32(rows.val[1]); + row23.val[0] = vreinterpretq_u64_s32(rows.val[2]); + row23.val[1] = vreinterpretq_u64_s32(rows.val[3]); + // Transpose 64-bit values (there's no vswp equivalent) + { + const uint64x1_t row0h = vget_high_u64(row01.val[0]); + const uint64x1_t row2l = vget_low_u64(row23.val[0]); + const uint64x1_t row1h = vget_high_u64(row01.val[1]); + const uint64x1_t row3l = vget_low_u64(row23.val[1]); + row01.val[0] = vcombine_u64(vget_low_u64(row01.val[0]), row2l); + row23.val[0] = vcombine_u64(row0h, vget_high_u64(row23.val[0])); + row01.val[1] = vcombine_u64(vget_low_u64(row01.val[1]), row3l); + row23.val[1] = vcombine_u64(row1h, vget_high_u64(row23.val[1])); + } + { + const int32x4x2_t out01 = vtrnq_s32(vreinterpretq_s32_u64(row01.val[0]), + vreinterpretq_s32_u64(row01.val[1])); + const int32x4x2_t out23 = vtrnq_s32(vreinterpretq_s32_u64(row23.val[0]), + vreinterpretq_s32_u64(row23.val[1])); + int32x4x4_t out; + out.val[0] = out01.val[0]; + out.val[1] = out01.val[1]; + out.val[2] = out23.val[0]; + out.val[3] = out23.val[1]; + return out; + } +} + +#if 0 // Useful debug macro. +#include <stdio.h> +#define PRINT_REG(REG, SIZE) do { \ + int i; \ + printf("%s \t[%d]: 0x", #REG, SIZE); \ + if (SIZE == 8) { \ + uint8_t _tmp[8]; \ + vst1_u8(_tmp, (REG)); \ + for (i = 0; i < 8; ++i) printf("%.2x ", _tmp[i]); \ + } else if (SIZE == 16) { \ + uint16_t _tmp[4]; \ + vst1_u16(_tmp, (REG)); \ + for (i = 0; i < 4; ++i) printf("%.4x ", _tmp[i]); \ + } \ + printf("\n"); \ +} while (0) +#endif + +#endif // WEBP_USE_NEON +#endif // WEBP_DSP_NEON_H_ diff --git a/media/libwebp/src/dsp/quant.h b/media/libwebp/src/dsp/quant.h new file mode 100644 index 0000000000..fc099bf9d6 --- /dev/null +++ b/media/libwebp/src/dsp/quant.h @@ -0,0 +1,90 @@ +// Copyright 2018 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- + +#ifndef WEBP_DSP_QUANT_H_ +#define WEBP_DSP_QUANT_H_ + +#include <string.h> + +#include "src/dsp/dsp.h" +#include "src/webp/types.h" + +#if defined(WEBP_USE_NEON) && !defined(WEBP_ANDROID_NEON) && \ + !defined(WEBP_HAVE_NEON_RTCD) +#include <arm_neon.h> + +#define IsFlat IsFlat_NEON + +static uint32_t horizontal_add_uint32x4(const uint32x4_t a) { +#if defined(__aarch64__) + return vaddvq_u32(a); +#else + const uint64x2_t b = vpaddlq_u32(a); + const uint32x2_t c = vadd_u32(vreinterpret_u32_u64(vget_low_u64(b)), + vreinterpret_u32_u64(vget_high_u64(b))); + return vget_lane_u32(c, 0); +#endif +} + +static WEBP_INLINE int IsFlat(const int16_t* levels, int num_blocks, + int thresh) { + const int16x8_t tst_ones = vdupq_n_s16(-1); + uint32x4_t sum = vdupq_n_u32(0); + + for (int i = 0; i < num_blocks; ++i) { + // Set DC to zero. + const int16x8_t a_0 = vsetq_lane_s16(0, vld1q_s16(levels), 0); + const int16x8_t a_1 = vld1q_s16(levels + 8); + + const uint16x8_t b_0 = vshrq_n_u16(vtstq_s16(a_0, tst_ones), 15); + const uint16x8_t b_1 = vshrq_n_u16(vtstq_s16(a_1, tst_ones), 15); + + sum = vpadalq_u16(sum, b_0); + sum = vpadalq_u16(sum, b_1); + + levels += 16; + } + return thresh >= (int)horizontal_add_uint32x4(sum); +} + +#else + +#define IsFlat IsFlat_C + +static WEBP_INLINE int IsFlat(const int16_t* levels, int num_blocks, + int thresh) { + int score = 0; + while (num_blocks-- > 0) { // TODO(skal): refine positional scoring? + int i; + for (i = 1; i < 16; ++i) { // omit DC, we're only interested in AC + score += (levels[i] != 0); + if (score > thresh) return 0; + } + levels += 16; + } + return 1; +} + +#endif // defined(WEBP_USE_NEON) && !defined(WEBP_ANDROID_NEON) && + // !defined(WEBP_HAVE_NEON_RTCD) + +static WEBP_INLINE int IsFlatSource16(const uint8_t* src) { + const uint32_t v = src[0] * 0x01010101u; + int i; + for (i = 0; i < 16; ++i) { + if (memcmp(src + 0, &v, 4) || memcmp(src + 4, &v, 4) || + memcmp(src + 8, &v, 4) || memcmp(src + 12, &v, 4)) { + return 0; + } + src += BPS; + } + return 1; +} + +#endif // WEBP_DSP_QUANT_H_ diff --git a/media/libwebp/src/dsp/rescaler.c b/media/libwebp/src/dsp/rescaler.c new file mode 100644 index 0000000000..14620ce4f1 --- /dev/null +++ b/media/libwebp/src/dsp/rescaler.c @@ -0,0 +1,251 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// Rescaling functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> + +#include "src/dsp/dsp.h" +#include "src/utils/rescaler_utils.h" + +//------------------------------------------------------------------------------ +// Implementations of critical functions ImportRow / ExportRow + +#define ROUNDER (WEBP_RESCALER_ONE >> 1) +#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) +#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) + +//------------------------------------------------------------------------------ +// Row import + +void WebPRescalerImportRowExpand_C(WebPRescaler* const wrk, + const uint8_t* src) { + const int x_stride = wrk->num_channels; + const int x_out_max = wrk->dst_width * wrk->num_channels; + int channel; + assert(!WebPRescalerInputDone(wrk)); + assert(wrk->x_expand); + for (channel = 0; channel < x_stride; ++channel) { + int x_in = channel; + int x_out = channel; + // simple bilinear interpolation + int accum = wrk->x_add; + rescaler_t left = (rescaler_t)src[x_in]; + rescaler_t right = + (wrk->src_width > 1) ? (rescaler_t)src[x_in + x_stride] : left; + x_in += x_stride; + while (1) { + wrk->frow[x_out] = right * wrk->x_add + (left - right) * accum; + x_out += x_stride; + if (x_out >= x_out_max) break; + accum -= wrk->x_sub; + if (accum < 0) { + left = right; + x_in += x_stride; + assert(x_in < wrk->src_width * x_stride); + right = (rescaler_t)src[x_in]; + accum += wrk->x_add; + } + } + assert(wrk->x_sub == 0 /* <- special case for src_width=1 */ || accum == 0); + } +} + +void WebPRescalerImportRowShrink_C(WebPRescaler* const wrk, + const uint8_t* src) { + const int x_stride = wrk->num_channels; + const int x_out_max = wrk->dst_width * wrk->num_channels; + int channel; + assert(!WebPRescalerInputDone(wrk)); + assert(!wrk->x_expand); + for (channel = 0; channel < x_stride; ++channel) { + int x_in = channel; + int x_out = channel; + uint32_t sum = 0; + int accum = 0; + while (x_out < x_out_max) { + uint32_t base = 0; + accum += wrk->x_add; + while (accum > 0) { + accum -= wrk->x_sub; + assert(x_in < wrk->src_width * x_stride); + base = src[x_in]; + sum += base; + x_in += x_stride; + } + { // Emit next horizontal pixel. + const rescaler_t frac = base * (-accum); + wrk->frow[x_out] = sum * wrk->x_sub - frac; + // fresh fractional start for next pixel + sum = (int)MULT_FIX(frac, wrk->fx_scale); + } + x_out += x_stride; + } + assert(accum == 0); + } +} + +//------------------------------------------------------------------------------ +// Row export + +void WebPRescalerExportRowExpand_C(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* const frow = wrk->frow; + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(wrk->y_expand); + assert(wrk->y_sub != 0); + if (wrk->y_accum == 0) { + for (x_out = 0; x_out < x_out_max; ++x_out) { + const uint32_t J = frow[x_out]; + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } else { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + for (x_out = 0; x_out < x_out_max; ++x_out) { + const uint64_t I = (uint64_t)A * frow[x_out] + + (uint64_t)B * irow[x_out]; + const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +void WebPRescalerExportRowShrink_C(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* const frow = wrk->frow; + const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum); + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + if (yscale) { + for (x_out = 0; x_out < x_out_max; ++x_out) { + const uint32_t frac = (uint32_t)MULT_FIX_FLOOR(frow[x_out], yscale); + const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = frac; // new fractional start + } + } else { + for (x_out = 0; x_out < x_out_max; ++x_out) { + const int v = (int)MULT_FIX(irow[x_out], wrk->fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = 0; + } + } +} + +#undef MULT_FIX_FLOOR +#undef MULT_FIX +#undef ROUNDER + +//------------------------------------------------------------------------------ +// Main entry calls + +void WebPRescalerImportRow(WebPRescaler* const wrk, const uint8_t* src) { + assert(!WebPRescalerInputDone(wrk)); + if (!wrk->x_expand) { + WebPRescalerImportRowShrink(wrk, src); + } else { + WebPRescalerImportRowExpand(wrk, src); + } +} + +void WebPRescalerExportRow(WebPRescaler* const wrk) { + if (wrk->y_accum <= 0) { + assert(!WebPRescalerOutputDone(wrk)); + if (wrk->y_expand) { + WebPRescalerExportRowExpand(wrk); + } else if (wrk->fxy_scale) { + WebPRescalerExportRowShrink(wrk); + } else { // special case + int i; + assert(wrk->src_height == wrk->dst_height && wrk->x_add == 1); + assert(wrk->src_width == 1 && wrk->dst_width <= 2); + for (i = 0; i < wrk->num_channels * wrk->dst_width; ++i) { + wrk->dst[i] = wrk->irow[i]; + wrk->irow[i] = 0; + } + } + wrk->y_accum += wrk->y_add; + wrk->dst += wrk->dst_stride; + ++wrk->dst_y; + } +} + +//------------------------------------------------------------------------------ + +WebPRescalerImportRowFunc WebPRescalerImportRowExpand; +WebPRescalerImportRowFunc WebPRescalerImportRowShrink; + +WebPRescalerExportRowFunc WebPRescalerExportRowExpand; +WebPRescalerExportRowFunc WebPRescalerExportRowShrink; + +extern void WebPRescalerDspInitSSE2(void); +extern void WebPRescalerDspInitMIPS32(void); +extern void WebPRescalerDspInitMIPSdspR2(void); +extern void WebPRescalerDspInitMSA(void); +extern void WebPRescalerDspInitNEON(void); + +WEBP_DSP_INIT_FUNC(WebPRescalerDspInit) { +#if !defined(WEBP_REDUCE_SIZE) +#if !WEBP_NEON_OMIT_C_CODE + WebPRescalerExportRowExpand = WebPRescalerExportRowExpand_C; + WebPRescalerExportRowShrink = WebPRescalerExportRowShrink_C; +#endif + + WebPRescalerImportRowExpand = WebPRescalerImportRowExpand_C; + WebPRescalerImportRowShrink = WebPRescalerImportRowShrink_C; + + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPRescalerDspInitSSE2(); + } +#endif +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + WebPRescalerDspInitMIPS32(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + WebPRescalerDspInitMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + WebPRescalerDspInitMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + WebPRescalerDspInitNEON(); + } +#endif + + assert(WebPRescalerExportRowExpand != NULL); + assert(WebPRescalerExportRowShrink != NULL); + assert(WebPRescalerImportRowExpand != NULL); + assert(WebPRescalerImportRowShrink != NULL); +#endif // WEBP_REDUCE_SIZE +} diff --git a/media/libwebp/src/dsp/rescaler_mips32.c b/media/libwebp/src/dsp/rescaler_mips32.c new file mode 100644 index 0000000000..61f63c616c --- /dev/null +++ b/media/libwebp/src/dsp/rescaler_mips32.c @@ -0,0 +1,295 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of rescaling functions +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS32) && !defined(WEBP_REDUCE_SIZE) + +#include <assert.h> +#include "src/utils/rescaler_utils.h" + +//------------------------------------------------------------------------------ +// Row import + +static void ImportRowShrink_MIPS32(WebPRescaler* const wrk, + const uint8_t* src) { + const int x_stride = wrk->num_channels; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const int fx_scale = wrk->fx_scale; + const int x_add = wrk->x_add; + const int x_sub = wrk->x_sub; + const int x_stride1 = x_stride << 2; + int channel; + assert(!wrk->x_expand); + assert(!WebPRescalerInputDone(wrk)); + + for (channel = 0; channel < x_stride; ++channel) { + const uint8_t* src1 = src + channel; + rescaler_t* frow = wrk->frow + channel; + int temp1, temp2, temp3; + int base, frac, sum; + int accum, accum1; + int loop_c = x_out_max - channel; + + __asm__ volatile ( + "li %[temp1], 0x8000 \n\t" + "li %[temp2], 0x10000 \n\t" + "li %[sum], 0 \n\t" + "li %[accum], 0 \n\t" + "1: \n\t" + "addu %[accum], %[accum], %[x_add] \n\t" + "li %[base], 0 \n\t" + "blez %[accum], 3f \n\t" + "2: \n\t" + "lbu %[base], 0(%[src1]) \n\t" + "subu %[accum], %[accum], %[x_sub] \n\t" + "addu %[src1], %[src1], %[x_stride] \n\t" + "addu %[sum], %[sum], %[base] \n\t" + "bgtz %[accum], 2b \n\t" + "3: \n\t" + "negu %[accum1], %[accum] \n\t" + "mul %[frac], %[base], %[accum1] \n\t" + "mul %[temp3], %[sum], %[x_sub] \n\t" + "subu %[loop_c], %[loop_c], %[x_stride] \n\t" + "mult %[temp1], %[temp2] \n\t" + "maddu %[frac], %[fx_scale] \n\t" + "mfhi %[sum] \n\t" + "subu %[temp3], %[temp3], %[frac] \n\t" + "sw %[temp3], 0(%[frow]) \n\t" + "addu %[frow], %[frow], %[x_stride1] \n\t" + "bgtz %[loop_c], 1b \n\t" + : [accum]"=&r"(accum), [src1]"+r"(src1), [temp3]"=&r"(temp3), + [sum]"=&r"(sum), [base]"=&r"(base), [frac]"=&r"(frac), + [frow]"+r"(frow), [accum1]"=&r"(accum1), + [temp2]"=&r"(temp2), [temp1]"=&r"(temp1) + : [x_stride]"r"(x_stride), [fx_scale]"r"(fx_scale), + [x_sub]"r"(x_sub), [x_add]"r"(x_add), + [loop_c]"r"(loop_c), [x_stride1]"r"(x_stride1) + : "memory", "hi", "lo" + ); + assert(accum == 0); + } +} + +static void ImportRowExpand_MIPS32(WebPRescaler* const wrk, + const uint8_t* src) { + const int x_stride = wrk->num_channels; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const int x_add = wrk->x_add; + const int x_sub = wrk->x_sub; + const int src_width = wrk->src_width; + const int x_stride1 = x_stride << 2; + int channel; + assert(wrk->x_expand); + assert(!WebPRescalerInputDone(wrk)); + + for (channel = 0; channel < x_stride; ++channel) { + const uint8_t* src1 = src + channel; + rescaler_t* frow = wrk->frow + channel; + int temp1, temp2, temp3, temp4; + int frac; + int accum; + int x_out = channel; + + __asm__ volatile ( + "addiu %[temp3], %[src_width], -1 \n\t" + "lbu %[temp2], 0(%[src1]) \n\t" + "addu %[src1], %[src1], %[x_stride] \n\t" + "bgtz %[temp3], 0f \n\t" + "addiu %[temp1], %[temp2], 0 \n\t" + "b 3f \n\t" + "0: \n\t" + "lbu %[temp1], 0(%[src1]) \n\t" + "3: \n\t" + "addiu %[accum], %[x_add], 0 \n\t" + "1: \n\t" + "subu %[temp3], %[temp2], %[temp1] \n\t" + "mul %[temp3], %[temp3], %[accum] \n\t" + "mul %[temp4], %[temp1], %[x_add] \n\t" + "addu %[temp3], %[temp4], %[temp3] \n\t" + "sw %[temp3], 0(%[frow]) \n\t" + "addu %[frow], %[frow], %[x_stride1] \n\t" + "addu %[x_out], %[x_out], %[x_stride] \n\t" + "subu %[temp3], %[x_out], %[x_out_max] \n\t" + "bgez %[temp3], 2f \n\t" + "subu %[accum], %[accum], %[x_sub] \n\t" + "bgez %[accum], 4f \n\t" + "addiu %[temp2], %[temp1], 0 \n\t" + "addu %[src1], %[src1], %[x_stride] \n\t" + "lbu %[temp1], 0(%[src1]) \n\t" + "addu %[accum], %[accum], %[x_add] \n\t" + "4: \n\t" + "b 1b \n\t" + "2: \n\t" + : [src1]"+r"(src1), [accum]"=&r"(accum), [temp1]"=&r"(temp1), + [temp2]"=&r"(temp2), [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), + [x_out]"+r"(x_out), [frac]"=&r"(frac), [frow]"+r"(frow) + : [x_stride]"r"(x_stride), [x_add]"r"(x_add), [x_sub]"r"(x_sub), + [x_stride1]"r"(x_stride1), [src_width]"r"(src_width), + [x_out_max]"r"(x_out_max) + : "memory", "hi", "lo" + ); + assert(wrk->x_sub == 0 /* <- special case for src_width=1 */ || accum == 0); + } +} + +//------------------------------------------------------------------------------ +// Row export + +static void ExportRowExpand_MIPS32(WebPRescaler* const wrk) { + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* frow = wrk->frow; + int temp0, temp1, temp3, temp4, temp5, loop_end; + const int temp2 = (int)wrk->fy_scale; + const int temp6 = x_out_max << 2; + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(wrk->y_expand); + assert(wrk->y_sub != 0); + if (wrk->y_accum == 0) { + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "addiu %[dst], %[dst], 1 \n\t" + "addiu %[frow], %[frow], 4 \n\t" + "mult %[temp3], %[temp4] \n\t" + "maddu %[temp0], %[temp2] \n\t" + "mfhi %[temp5] \n\t" + "sb %[temp5], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [dst]"+r"(dst), [loop_end]"=&r"(loop_end) + : [temp2]"r"(temp2), [temp6]"r"(temp6) + : "memory", "hi", "lo" + ); + } else { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "lw %[temp1], 0(%[irow]) \n\t" + "addiu %[dst], %[dst], 1 \n\t" + "mult %[temp3], %[temp4] \n\t" + "maddu %[A], %[temp0] \n\t" + "maddu %[B], %[temp1] \n\t" + "addiu %[frow], %[frow], 4 \n\t" + "addiu %[irow], %[irow], 4 \n\t" + "mfhi %[temp5] \n\t" + "mult %[temp3], %[temp4] \n\t" + "maddu %[temp5], %[temp2] \n\t" + "mfhi %[temp5] \n\t" + "sb %[temp5], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [irow]"+r"(irow), [dst]"+r"(dst), [loop_end]"=&r"(loop_end) + : [temp2]"r"(temp2), [temp6]"r"(temp6), [A]"r"(A), [B]"r"(B) + : "memory", "hi", "lo" + ); + } +} + +#if 0 // disabled for now. TODO(skal): make match the C-code +static void ExportRowShrink_MIPS32(WebPRescaler* const wrk) { + const int x_out_max = wrk->dst_width * wrk->num_channels; + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const rescaler_t* frow = wrk->frow; + const int yscale = wrk->fy_scale * (-wrk->y_accum); + int temp0, temp1, temp3, temp4, temp5, loop_end; + const int temp2 = (int)wrk->fxy_scale; + const int temp6 = x_out_max << 2; + + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + assert(wrk->fxy_scale != 0); + if (yscale) { + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "mult %[temp3], %[temp4] \n\t" + "addiu %[frow], %[frow], 4 \n\t" + "maddu %[temp0], %[yscale] \n\t" + "mfhi %[temp1] \n\t" + "lw %[temp0], 0(%[irow]) \n\t" + "addiu %[dst], %[dst], 1 \n\t" + "addiu %[irow], %[irow], 4 \n\t" + "subu %[temp0], %[temp0], %[temp1] \n\t" + "mult %[temp3], %[temp4] \n\t" + "maddu %[temp0], %[temp2] \n\t" + "mfhi %[temp5] \n\t" + "sw %[temp1], -4(%[irow]) \n\t" + "sb %[temp5], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [irow]"+r"(irow), [dst]"+r"(dst), [loop_end]"=&r"(loop_end) + : [temp2]"r"(temp2), [yscale]"r"(yscale), [temp6]"r"(temp6) + : "memory", "hi", "lo" + ); + } else { + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[irow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[irow]) \n\t" + "addiu %[dst], %[dst], 1 \n\t" + "addiu %[irow], %[irow], 4 \n\t" + "mult %[temp3], %[temp4] \n\t" + "maddu %[temp0], %[temp2] \n\t" + "mfhi %[temp5] \n\t" + "sw $zero, -4(%[irow]) \n\t" + "sb %[temp5], -1(%[dst]) \n\t" + "bne %[irow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [irow]"+r"(irow), + [dst]"+r"(dst), [loop_end]"=&r"(loop_end) + : [temp2]"r"(temp2), [temp6]"r"(temp6) + : "memory", "hi", "lo" + ); + } +} +#endif // 0 + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPRescalerDspInitMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitMIPS32(void) { + WebPRescalerImportRowExpand = ImportRowExpand_MIPS32; + WebPRescalerImportRowShrink = ImportRowShrink_MIPS32; + WebPRescalerExportRowExpand = ExportRowExpand_MIPS32; +// WebPRescalerExportRowShrink = ExportRowShrink_MIPS32; +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(WebPRescalerDspInitMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/rescaler_mips_dsp_r2.c b/media/libwebp/src/dsp/rescaler_mips_dsp_r2.c new file mode 100644 index 0000000000..419b741fa5 --- /dev/null +++ b/media/libwebp/src/dsp/rescaler_mips_dsp_r2.c @@ -0,0 +1,314 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of rescaling functions +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) && !defined(WEBP_REDUCE_SIZE) + +#include <assert.h> +#include "src/utils/rescaler_utils.h" + +#define ROUNDER (WEBP_RESCALER_ONE >> 1) +#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) +#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) + +//------------------------------------------------------------------------------ +// Row export + +#if 0 // disabled for now. TODO(skal): make match the C-code +static void ExportRowShrink_MIPSdspR2(WebPRescaler* const wrk) { + int i; + const int x_out_max = wrk->dst_width * wrk->num_channels; + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const rescaler_t* frow = wrk->frow; + const int yscale = wrk->fy_scale * (-wrk->y_accum); + int temp0, temp1, temp2, temp3, temp4, temp5, loop_end; + const int temp7 = (int)wrk->fxy_scale; + const int temp6 = (x_out_max & ~0x3) << 2; + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + assert(wrk->fxy_scale != 0); + if (yscale) { + if (x_out_max >= 4) { + int temp8, temp9, temp10, temp11; + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "lw %[temp1], 4(%[frow]) \n\t" + "lw %[temp2], 8(%[frow]) \n\t" + "lw %[temp5], 12(%[frow]) \n\t" + "mult $ac0, %[temp3], %[temp4] \n\t" + "maddu $ac0, %[temp0], %[yscale] \n\t" + "mult $ac1, %[temp3], %[temp4] \n\t" + "maddu $ac1, %[temp1], %[yscale] \n\t" + "mult $ac2, %[temp3], %[temp4] \n\t" + "maddu $ac2, %[temp2], %[yscale] \n\t" + "mult $ac3, %[temp3], %[temp4] \n\t" + "maddu $ac3, %[temp5], %[yscale] \n\t" + "addiu %[frow], %[frow], 16 \n\t" + "mfhi %[temp0], $ac0 \n\t" + "mfhi %[temp1], $ac1 \n\t" + "mfhi %[temp2], $ac2 \n\t" + "mfhi %[temp5], $ac3 \n\t" + "lw %[temp8], 0(%[irow]) \n\t" + "lw %[temp9], 4(%[irow]) \n\t" + "lw %[temp10], 8(%[irow]) \n\t" + "lw %[temp11], 12(%[irow]) \n\t" + "addiu %[dst], %[dst], 4 \n\t" + "addiu %[irow], %[irow], 16 \n\t" + "subu %[temp8], %[temp8], %[temp0] \n\t" + "subu %[temp9], %[temp9], %[temp1] \n\t" + "subu %[temp10], %[temp10], %[temp2] \n\t" + "subu %[temp11], %[temp11], %[temp5] \n\t" + "mult $ac0, %[temp3], %[temp4] \n\t" + "maddu $ac0, %[temp8], %[temp7] \n\t" + "mult $ac1, %[temp3], %[temp4] \n\t" + "maddu $ac1, %[temp9], %[temp7] \n\t" + "mult $ac2, %[temp3], %[temp4] \n\t" + "maddu $ac2, %[temp10], %[temp7] \n\t" + "mult $ac3, %[temp3], %[temp4] \n\t" + "maddu $ac3, %[temp11], %[temp7] \n\t" + "mfhi %[temp8], $ac0 \n\t" + "mfhi %[temp9], $ac1 \n\t" + "mfhi %[temp10], $ac2 \n\t" + "mfhi %[temp11], $ac3 \n\t" + "sw %[temp0], -16(%[irow]) \n\t" + "sw %[temp1], -12(%[irow]) \n\t" + "sw %[temp2], -8(%[irow]) \n\t" + "sw %[temp5], -4(%[irow]) \n\t" + "sb %[temp8], -4(%[dst]) \n\t" + "sb %[temp9], -3(%[dst]) \n\t" + "sb %[temp10], -2(%[dst]) \n\t" + "sb %[temp11], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [irow]"+r"(irow), [dst]"+r"(dst), [loop_end]"=&r"(loop_end), + [temp8]"=&r"(temp8), [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), + [temp11]"=&r"(temp11), [temp2]"=&r"(temp2) + : [temp7]"r"(temp7), [yscale]"r"(yscale), [temp6]"r"(temp6) + : "memory", "hi", "lo", "$ac1hi", "$ac1lo", + "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo" + ); + } + for (i = 0; i < (x_out_max & 0x3); ++i) { + const uint32_t frac = (uint32_t)MULT_FIX_FLOOR(*frow++, yscale); + const int v = (int)MULT_FIX(*irow - frac, wrk->fxy_scale); + *dst++ = (v > 255) ? 255u : (uint8_t)v; + *irow++ = frac; // new fractional start + } + } else { + if (x_out_max >= 4) { + __asm__ volatile ( + "li %[temp3], 0x10000 \n\t" + "li %[temp4], 0x8000 \n\t" + "addu %[loop_end], %[irow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[irow]) \n\t" + "lw %[temp1], 4(%[irow]) \n\t" + "lw %[temp2], 8(%[irow]) \n\t" + "lw %[temp5], 12(%[irow]) \n\t" + "addiu %[dst], %[dst], 4 \n\t" + "addiu %[irow], %[irow], 16 \n\t" + "mult $ac0, %[temp3], %[temp4] \n\t" + "maddu $ac0, %[temp0], %[temp7] \n\t" + "mult $ac1, %[temp3], %[temp4] \n\t" + "maddu $ac1, %[temp1], %[temp7] \n\t" + "mult $ac2, %[temp3], %[temp4] \n\t" + "maddu $ac2, %[temp2], %[temp7] \n\t" + "mult $ac3, %[temp3], %[temp4] \n\t" + "maddu $ac3, %[temp5], %[temp7] \n\t" + "mfhi %[temp0], $ac0 \n\t" + "mfhi %[temp1], $ac1 \n\t" + "mfhi %[temp2], $ac2 \n\t" + "mfhi %[temp5], $ac3 \n\t" + "sw $zero, -16(%[irow]) \n\t" + "sw $zero, -12(%[irow]) \n\t" + "sw $zero, -8(%[irow]) \n\t" + "sw $zero, -4(%[irow]) \n\t" + "sb %[temp0], -4(%[dst]) \n\t" + "sb %[temp1], -3(%[dst]) \n\t" + "sb %[temp2], -2(%[dst]) \n\t" + "sb %[temp5], -1(%[dst]) \n\t" + "bne %[irow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [irow]"+r"(irow), + [dst]"+r"(dst), [loop_end]"=&r"(loop_end), [temp2]"=&r"(temp2) + : [temp7]"r"(temp7), [temp6]"r"(temp6) + : "memory", "hi", "lo", "$ac1hi", "$ac1lo", + "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo" + ); + } + for (i = 0; i < (x_out_max & 0x3); ++i) { + const int v = (int)MULT_FIX_FLOOR(*irow, wrk->fxy_scale); + *dst++ = (v > 255) ? 255u : (uint8_t)v; + *irow++ = 0; + } + } +} +#endif // 0 + +static void ExportRowExpand_MIPSdspR2(WebPRescaler* const wrk) { + int i; + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* frow = wrk->frow; + int temp0, temp1, temp2, temp3, temp4, temp5, loop_end; + const int temp6 = (x_out_max & ~0x3) << 2; + const int temp7 = (int)wrk->fy_scale; + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(wrk->y_expand); + assert(wrk->y_sub != 0); + if (wrk->y_accum == 0) { + if (x_out_max >= 4) { + __asm__ volatile ( + "li %[temp4], 0x10000 \n\t" + "li %[temp5], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "lw %[temp1], 4(%[frow]) \n\t" + "lw %[temp2], 8(%[frow]) \n\t" + "lw %[temp3], 12(%[frow]) \n\t" + "addiu %[dst], %[dst], 4 \n\t" + "addiu %[frow], %[frow], 16 \n\t" + "mult $ac0, %[temp4], %[temp5] \n\t" + "maddu $ac0, %[temp0], %[temp7] \n\t" + "mult $ac1, %[temp4], %[temp5] \n\t" + "maddu $ac1, %[temp1], %[temp7] \n\t" + "mult $ac2, %[temp4], %[temp5] \n\t" + "maddu $ac2, %[temp2], %[temp7] \n\t" + "mult $ac3, %[temp4], %[temp5] \n\t" + "maddu $ac3, %[temp3], %[temp7] \n\t" + "mfhi %[temp0], $ac0 \n\t" + "mfhi %[temp1], $ac1 \n\t" + "mfhi %[temp2], $ac2 \n\t" + "mfhi %[temp3], $ac3 \n\t" + "sb %[temp0], -4(%[dst]) \n\t" + "sb %[temp1], -3(%[dst]) \n\t" + "sb %[temp2], -2(%[dst]) \n\t" + "sb %[temp3], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [dst]"+r"(dst), [loop_end]"=&r"(loop_end), [temp2]"=&r"(temp2) + : [temp7]"r"(temp7), [temp6]"r"(temp6) + : "memory", "hi", "lo", "$ac1hi", "$ac1lo", + "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo" + ); + } + for (i = 0; i < (x_out_max & 0x3); ++i) { + const uint32_t J = *frow++; + const int v = (int)MULT_FIX(J, wrk->fy_scale); + *dst++ = (v > 255) ? 255u : (uint8_t)v; + } + } else { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + if (x_out_max >= 4) { + int temp8, temp9, temp10, temp11; + __asm__ volatile ( + "li %[temp8], 0x10000 \n\t" + "li %[temp9], 0x8000 \n\t" + "addu %[loop_end], %[frow], %[temp6] \n\t" + "1: \n\t" + "lw %[temp0], 0(%[frow]) \n\t" + "lw %[temp1], 4(%[frow]) \n\t" + "lw %[temp2], 8(%[frow]) \n\t" + "lw %[temp3], 12(%[frow]) \n\t" + "lw %[temp4], 0(%[irow]) \n\t" + "lw %[temp5], 4(%[irow]) \n\t" + "lw %[temp10], 8(%[irow]) \n\t" + "lw %[temp11], 12(%[irow]) \n\t" + "addiu %[dst], %[dst], 4 \n\t" + "mult $ac0, %[temp8], %[temp9] \n\t" + "maddu $ac0, %[A], %[temp0] \n\t" + "maddu $ac0, %[B], %[temp4] \n\t" + "mult $ac1, %[temp8], %[temp9] \n\t" + "maddu $ac1, %[A], %[temp1] \n\t" + "maddu $ac1, %[B], %[temp5] \n\t" + "mult $ac2, %[temp8], %[temp9] \n\t" + "maddu $ac2, %[A], %[temp2] \n\t" + "maddu $ac2, %[B], %[temp10] \n\t" + "mult $ac3, %[temp8], %[temp9] \n\t" + "maddu $ac3, %[A], %[temp3] \n\t" + "maddu $ac3, %[B], %[temp11] \n\t" + "addiu %[frow], %[frow], 16 \n\t" + "addiu %[irow], %[irow], 16 \n\t" + "mfhi %[temp0], $ac0 \n\t" + "mfhi %[temp1], $ac1 \n\t" + "mfhi %[temp2], $ac2 \n\t" + "mfhi %[temp3], $ac3 \n\t" + "mult $ac0, %[temp8], %[temp9] \n\t" + "maddu $ac0, %[temp0], %[temp7] \n\t" + "mult $ac1, %[temp8], %[temp9] \n\t" + "maddu $ac1, %[temp1], %[temp7] \n\t" + "mult $ac2, %[temp8], %[temp9] \n\t" + "maddu $ac2, %[temp2], %[temp7] \n\t" + "mult $ac3, %[temp8], %[temp9] \n\t" + "maddu $ac3, %[temp3], %[temp7] \n\t" + "mfhi %[temp0], $ac0 \n\t" + "mfhi %[temp1], $ac1 \n\t" + "mfhi %[temp2], $ac2 \n\t" + "mfhi %[temp3], $ac3 \n\t" + "sb %[temp0], -4(%[dst]) \n\t" + "sb %[temp1], -3(%[dst]) \n\t" + "sb %[temp2], -2(%[dst]) \n\t" + "sb %[temp3], -1(%[dst]) \n\t" + "bne %[frow], %[loop_end], 1b \n\t" + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp3]"=&r"(temp3), + [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), [frow]"+r"(frow), + [irow]"+r"(irow), [dst]"+r"(dst), [loop_end]"=&r"(loop_end), + [temp8]"=&r"(temp8), [temp9]"=&r"(temp9), [temp10]"=&r"(temp10), + [temp11]"=&r"(temp11), [temp2]"=&r"(temp2) + : [temp7]"r"(temp7), [temp6]"r"(temp6), [A]"r"(A), [B]"r"(B) + : "memory", "hi", "lo", "$ac1hi", "$ac1lo", + "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo" + ); + } + for (i = 0; i < (x_out_max & 0x3); ++i) { + const uint64_t I = (uint64_t)A * *frow++ + + (uint64_t)B * *irow++; + const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); + const int v = (int)MULT_FIX(J, wrk->fy_scale); + *dst++ = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +#undef MULT_FIX_FLOOR +#undef MULT_FIX +#undef ROUNDER + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPRescalerDspInitMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitMIPSdspR2(void) { + WebPRescalerExportRowExpand = ExportRowExpand_MIPSdspR2; +// WebPRescalerExportRowShrink = ExportRowShrink_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(WebPRescalerDspInitMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/rescaler_msa.c b/media/libwebp/src/dsp/rescaler_msa.c new file mode 100644 index 0000000000..256dbdd437 --- /dev/null +++ b/media/libwebp/src/dsp/rescaler_msa.c @@ -0,0 +1,443 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA version of rescaling functions +// +// Author: Prashant Patil (prashant.patil@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) && !defined(WEBP_REDUCE_SIZE) + +#include <assert.h> + +#include "src/utils/rescaler_utils.h" +#include "src/dsp/msa_macro.h" + +#define ROUNDER (WEBP_RESCALER_ONE >> 1) +#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) +#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) + +#define CALC_MULT_FIX_16(in0, in1, in2, in3, scale, shift, dst) do { \ + v4u32 tmp0, tmp1, tmp2, tmp3; \ + v16u8 t0, t1, t2, t3, t4, t5; \ + v2u64 out0, out1, out2, out3; \ + ILVRL_W2_UW(zero, in0, tmp0, tmp1); \ + ILVRL_W2_UW(zero, in1, tmp2, tmp3); \ + DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \ + DOTP_UW2_UD(tmp2, tmp3, scale, scale, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + PCKEV_B2_UB(out1, out0, out3, out2, t0, t1); \ + ILVRL_W2_UW(zero, in2, tmp0, tmp1); \ + ILVRL_W2_UW(zero, in3, tmp2, tmp3); \ + DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \ + DOTP_UW2_UD(tmp2, tmp3, scale, scale, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + PCKEV_B2_UB(out1, out0, out3, out2, t2, t3); \ + PCKEV_B2_UB(t1, t0, t3, t2, t4, t5); \ + dst = (v16u8)__msa_pckev_b((v16i8)t5, (v16i8)t4); \ +} while (0) + +#define CALC_MULT_FIX_4(in0, scale, shift, dst) do { \ + v4u32 tmp0, tmp1; \ + v16i8 t0, t1; \ + v2u64 out0, out1; \ + ILVRL_W2_UW(zero, in0, tmp0, tmp1); \ + DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \ + SRAR_D2_UD(out0, out1, shift); \ + t0 = __msa_pckev_b((v16i8)out1, (v16i8)out0); \ + t1 = __msa_pckev_b(t0, t0); \ + t0 = __msa_pckev_b(t1, t1); \ + dst = __msa_copy_s_w((v4i32)t0, 0); \ +} while (0) + +#define CALC_MULT_FIX1_16(in0, in1, in2, in3, fyscale, shift, \ + dst0, dst1, dst2, dst3) do { \ + v4u32 tmp0, tmp1, tmp2, tmp3; \ + v2u64 out0, out1, out2, out3; \ + ILVRL_W2_UW(zero, in0, tmp0, tmp1); \ + ILVRL_W2_UW(zero, in1, tmp2, tmp3); \ + DOTP_UW2_UD(tmp0, tmp1, fyscale, fyscale, out0, out1); \ + DOTP_UW2_UD(tmp2, tmp3, fyscale, fyscale, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + PCKEV_W2_UW(out1, out0, out3, out2, dst0, dst1); \ + ILVRL_W2_UW(zero, in2, tmp0, tmp1); \ + ILVRL_W2_UW(zero, in3, tmp2, tmp3); \ + DOTP_UW2_UD(tmp0, tmp1, fyscale, fyscale, out0, out1); \ + DOTP_UW2_UD(tmp2, tmp3, fyscale, fyscale, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + PCKEV_W2_UW(out1, out0, out3, out2, dst2, dst3); \ +} while (0) + +#define CALC_MULT_FIX1_4(in0, scale, shift, dst) do { \ + v4u32 tmp0, tmp1; \ + v2u64 out0, out1; \ + ILVRL_W2_UW(zero, in0, tmp0, tmp1); \ + DOTP_UW2_UD(tmp0, tmp1, scale, scale, out0, out1); \ + SRAR_D2_UD(out0, out1, shift); \ + dst = (v4u32)__msa_pckev_w((v4i32)out1, (v4i32)out0); \ +} while (0) + +#define CALC_MULT_FIX2_16(in0, in1, in2, in3, mult, scale, shift, \ + dst0, dst1) do { \ + v4u32 tmp0, tmp1, tmp2, tmp3; \ + v2u64 out0, out1, out2, out3; \ + ILVRL_W2_UW(in0, in2, tmp0, tmp1); \ + ILVRL_W2_UW(in1, in3, tmp2, tmp3); \ + DOTP_UW2_UD(tmp0, tmp1, mult, mult, out0, out1); \ + DOTP_UW2_UD(tmp2, tmp3, mult, mult, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + DOTP_UW2_UD(out0, out1, scale, scale, out0, out1); \ + DOTP_UW2_UD(out2, out3, scale, scale, out2, out3); \ + SRAR_D4_UD(out0, out1, out2, out3, shift); \ + PCKEV_B2_UB(out1, out0, out3, out2, dst0, dst1); \ +} while (0) + +#define CALC_MULT_FIX2_4(in0, in1, mult, scale, shift, dst) do { \ + v4u32 tmp0, tmp1; \ + v2u64 out0, out1; \ + v16i8 t0, t1; \ + ILVRL_W2_UW(in0, in1, tmp0, tmp1); \ + DOTP_UW2_UD(tmp0, tmp1, mult, mult, out0, out1); \ + SRAR_D2_UD(out0, out1, shift); \ + DOTP_UW2_UD(out0, out1, scale, scale, out0, out1); \ + SRAR_D2_UD(out0, out1, shift); \ + t0 = __msa_pckev_b((v16i8)out1, (v16i8)out0); \ + t1 = __msa_pckev_b(t0, t0); \ + t0 = __msa_pckev_b(t1, t1); \ + dst = __msa_copy_s_w((v4i32)t0, 0); \ +} while (0) + +static WEBP_INLINE void ExportRowExpand_0(const uint32_t* frow, uint8_t* dst, + int length, + WebPRescaler* const wrk) { + const v4u32 scale = (v4u32)__msa_fill_w(wrk->fy_scale); + const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX); + const v4i32 zero = { 0 }; + + while (length >= 16) { + v4u32 src0, src1, src2, src3; + v16u8 out; + LD_UW4(frow, 4, src0, src1, src2, src3); + CALC_MULT_FIX_16(src0, src1, src2, src3, scale, shift, out); + ST_UB(out, dst); + length -= 16; + frow += 16; + dst += 16; + } + if (length > 0) { + int x_out; + if (length >= 12) { + uint32_t val0_m, val1_m, val2_m; + v4u32 src0, src1, src2; + LD_UW3(frow, 4, src0, src1, src2); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + CALC_MULT_FIX_4(src1, scale, shift, val1_m); + CALC_MULT_FIX_4(src2, scale, shift, val2_m); + SW3(val0_m, val1_m, val2_m, dst, 4); + length -= 12; + frow += 12; + dst += 12; + } else if (length >= 8) { + uint32_t val0_m, val1_m; + v4u32 src0, src1; + LD_UW2(frow, 4, src0, src1); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + CALC_MULT_FIX_4(src1, scale, shift, val1_m); + SW2(val0_m, val1_m, dst, 4); + length -= 8; + frow += 8; + dst += 8; + } else if (length >= 4) { + uint32_t val0_m; + const v4u32 src0 = LD_UW(frow); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + SW(val0_m, dst); + length -= 4; + frow += 4; + dst += 4; + } + for (x_out = 0; x_out < length; ++x_out) { + const uint32_t J = frow[x_out]; + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +static WEBP_INLINE void ExportRowExpand_1(const uint32_t* frow, uint32_t* irow, + uint8_t* dst, int length, + WebPRescaler* const wrk) { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + const v4i32 B1 = __msa_fill_w(B); + const v4i32 A1 = __msa_fill_w(A); + const v4i32 AB = __msa_ilvr_w(A1, B1); + const v4u32 scale = (v4u32)__msa_fill_w(wrk->fy_scale); + const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX); + + while (length >= 16) { + v4u32 frow0, frow1, frow2, frow3, irow0, irow1, irow2, irow3; + v16u8 t0, t1, t2, t3, t4, t5; + LD_UW4(frow, 4, frow0, frow1, frow2, frow3); + LD_UW4(irow, 4, irow0, irow1, irow2, irow3); + CALC_MULT_FIX2_16(frow0, frow1, irow0, irow1, AB, scale, shift, t0, t1); + CALC_MULT_FIX2_16(frow2, frow3, irow2, irow3, AB, scale, shift, t2, t3); + PCKEV_B2_UB(t1, t0, t3, t2, t4, t5); + t0 = (v16u8)__msa_pckev_b((v16i8)t5, (v16i8)t4); + ST_UB(t0, dst); + frow += 16; + irow += 16; + dst += 16; + length -= 16; + } + if (length > 0) { + int x_out; + if (length >= 12) { + uint32_t val0_m, val1_m, val2_m; + v4u32 frow0, frow1, frow2, irow0, irow1, irow2; + LD_UW3(frow, 4, frow0, frow1, frow2); + LD_UW3(irow, 4, irow0, irow1, irow2); + CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m); + CALC_MULT_FIX2_4(frow1, irow1, AB, scale, shift, val1_m); + CALC_MULT_FIX2_4(frow2, irow2, AB, scale, shift, val2_m); + SW3(val0_m, val1_m, val2_m, dst, 4); + frow += 12; + irow += 12; + dst += 12; + length -= 12; + } else if (length >= 8) { + uint32_t val0_m, val1_m; + v4u32 frow0, frow1, irow0, irow1; + LD_UW2(frow, 4, frow0, frow1); + LD_UW2(irow, 4, irow0, irow1); + CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m); + CALC_MULT_FIX2_4(frow1, irow1, AB, scale, shift, val1_m); + SW2(val0_m, val1_m, dst, 4); + frow += 4; + irow += 4; + dst += 4; + length -= 4; + } else if (length >= 4) { + uint32_t val0_m; + const v4u32 frow0 = LD_UW(frow + 0); + const v4u32 irow0 = LD_UW(irow + 0); + CALC_MULT_FIX2_4(frow0, irow0, AB, scale, shift, val0_m); + SW(val0_m, dst); + frow += 4; + irow += 4; + dst += 4; + length -= 4; + } + for (x_out = 0; x_out < length; ++x_out) { + const uint64_t I = (uint64_t)A * frow[x_out] + + (uint64_t)B * irow[x_out]; + const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +static void RescalerExportRowExpand_MIPSdspR2(WebPRescaler* const wrk) { + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* frow = wrk->frow; + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(wrk->y_expand); + assert(wrk->y_sub != 0); + if (wrk->y_accum == 0) { + ExportRowExpand_0(frow, dst, x_out_max, wrk); + } else { + ExportRowExpand_1(frow, irow, dst, x_out_max, wrk); + } +} + +#if 0 // disabled for now. TODO(skal): make match the C-code +static WEBP_INLINE void ExportRowShrink_0(const uint32_t* frow, uint32_t* irow, + uint8_t* dst, int length, + const uint32_t yscale, + WebPRescaler* const wrk) { + const v4u32 y_scale = (v4u32)__msa_fill_w(yscale); + const v4u32 fxyscale = (v4u32)__msa_fill_w(wrk->fxy_scale); + const v4u32 shiftval = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX); + const v4i32 zero = { 0 }; + + while (length >= 16) { + v4u32 src0, src1, src2, src3, frac0, frac1, frac2, frac3; + v16u8 out; + LD_UW4(frow, 4, src0, src1, src2, src3); + CALC_MULT_FIX1_16(src0, src1, src2, src3, y_scale, shiftval, + frac0, frac1, frac2, frac3); + LD_UW4(irow, 4, src0, src1, src2, src3); + SUB4(src0, frac0, src1, frac1, src2, frac2, src3, frac3, + src0, src1, src2, src3); + CALC_MULT_FIX_16(src0, src1, src2, src3, fxyscale, shiftval, out); + ST_UB(out, dst); + ST_UW4(frac0, frac1, frac2, frac3, irow, 4); + frow += 16; + irow += 16; + dst += 16; + length -= 16; + } + if (length > 0) { + int x_out; + if (length >= 12) { + uint32_t val0_m, val1_m, val2_m; + v4u32 src0, src1, src2, frac0, frac1, frac2; + LD_UW3(frow, 4, src0, src1, src2); + CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0); + CALC_MULT_FIX1_4(src1, y_scale, shiftval, frac1); + CALC_MULT_FIX1_4(src2, y_scale, shiftval, frac2); + LD_UW3(irow, 4, src0, src1, src2); + SUB3(src0, frac0, src1, frac1, src2, frac2, src0, src1, src2); + CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m); + CALC_MULT_FIX_4(src1, fxyscale, shiftval, val1_m); + CALC_MULT_FIX_4(src2, fxyscale, shiftval, val2_m); + SW3(val0_m, val1_m, val2_m, dst, 4); + ST_UW3(frac0, frac1, frac2, irow, 4); + frow += 12; + irow += 12; + dst += 12; + length -= 12; + } else if (length >= 8) { + uint32_t val0_m, val1_m; + v4u32 src0, src1, frac0, frac1; + LD_UW2(frow, 4, src0, src1); + CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0); + CALC_MULT_FIX1_4(src1, y_scale, shiftval, frac1); + LD_UW2(irow, 4, src0, src1); + SUB2(src0, frac0, src1, frac1, src0, src1); + CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m); + CALC_MULT_FIX_4(src1, fxyscale, shiftval, val1_m); + SW2(val0_m, val1_m, dst, 4); + ST_UW2(frac0, frac1, irow, 4); + frow += 8; + irow += 8; + dst += 8; + length -= 8; + } else if (length >= 4) { + uint32_t val0_m; + v4u32 frac0; + v4u32 src0 = LD_UW(frow); + CALC_MULT_FIX1_4(src0, y_scale, shiftval, frac0); + src0 = LD_UW(irow); + src0 = src0 - frac0; + CALC_MULT_FIX_4(src0, fxyscale, shiftval, val0_m); + SW(val0_m, dst); + ST_UW(frac0, irow); + frow += 4; + irow += 4; + dst += 4; + length -= 4; + } + for (x_out = 0; x_out < length; ++x_out) { + const uint32_t frac = (uint32_t)MULT_FIX_FLOOR(frow[x_out], yscale); + const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = frac; + } + } +} + +static WEBP_INLINE void ExportRowShrink_1(uint32_t* irow, uint8_t* dst, + int length, + WebPRescaler* const wrk) { + const v4u32 scale = (v4u32)__msa_fill_w(wrk->fxy_scale); + const v4u32 shift = (v4u32)__msa_fill_w(WEBP_RESCALER_RFIX); + const v4i32 zero = { 0 }; + + while (length >= 16) { + v4u32 src0, src1, src2, src3; + v16u8 dst0; + LD_UW4(irow, 4, src0, src1, src2, src3); + CALC_MULT_FIX_16(src0, src1, src2, src3, scale, shift, dst0); + ST_UB(dst0, dst); + ST_SW4(zero, zero, zero, zero, irow, 4); + length -= 16; + irow += 16; + dst += 16; + } + if (length > 0) { + int x_out; + if (length >= 12) { + uint32_t val0_m, val1_m, val2_m; + v4u32 src0, src1, src2; + LD_UW3(irow, 4, src0, src1, src2); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + CALC_MULT_FIX_4(src1, scale, shift, val1_m); + CALC_MULT_FIX_4(src2, scale, shift, val2_m); + SW3(val0_m, val1_m, val2_m, dst, 4); + ST_SW3(zero, zero, zero, irow, 4); + length -= 12; + irow += 12; + dst += 12; + } else if (length >= 8) { + uint32_t val0_m, val1_m; + v4u32 src0, src1; + LD_UW2(irow, 4, src0, src1); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + CALC_MULT_FIX_4(src1, scale, shift, val1_m); + SW2(val0_m, val1_m, dst, 4); + ST_SW2(zero, zero, irow, 4); + length -= 8; + irow += 8; + dst += 8; + } else if (length >= 4) { + uint32_t val0_m; + const v4u32 src0 = LD_UW(irow + 0); + CALC_MULT_FIX_4(src0, scale, shift, val0_m); + SW(val0_m, dst); + ST_SW(zero, irow); + length -= 4; + irow += 4; + dst += 4; + } + for (x_out = 0; x_out < length; ++x_out) { + const int v = (int)MULT_FIX(irow[x_out], wrk->fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = 0; + } + } +} + +static void RescalerExportRowShrink_MIPSdspR2(WebPRescaler* const wrk) { + uint8_t* dst = wrk->dst; + rescaler_t* irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* frow = wrk->frow; + const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum); + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + if (yscale) { + ExportRowShrink_0(frow, irow, dst, x_out_max, yscale, wrk); + } else { + ExportRowShrink_1(irow, dst, x_out_max, wrk); + } +} +#endif // 0 + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPRescalerDspInitMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitMSA(void) { + WebPRescalerExportRowExpand = RescalerExportRowExpand_MIPSdspR2; +// WebPRescalerExportRowShrink = RescalerExportRowShrink_MIPSdspR2; +} + +#else // !WEBP_USE_MSA + +WEBP_DSP_INIT_STUB(WebPRescalerDspInitMSA) + +#endif // WEBP_USE_MSA diff --git a/media/libwebp/src/dsp/rescaler_neon.c b/media/libwebp/src/dsp/rescaler_neon.c new file mode 100644 index 0000000000..b976a852cf --- /dev/null +++ b/media/libwebp/src/dsp/rescaler_neon.c @@ -0,0 +1,192 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON version of rescaling functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) && !defined(WEBP_REDUCE_SIZE) + +#include <arm_neon.h> +#include <assert.h> +#include "src/dsp/neon.h" +#include "src/utils/rescaler_utils.h" + +#define ROUNDER (WEBP_RESCALER_ONE >> 1) +#define MULT_FIX_C(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) +#define MULT_FIX_FLOOR_C(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) + +#define LOAD_32x4(SRC, DST) const uint32x4_t DST = vld1q_u32((SRC)) +#define LOAD_32x8(SRC, DST0, DST1) \ + LOAD_32x4(SRC + 0, DST0); \ + LOAD_32x4(SRC + 4, DST1) + +#define STORE_32x8(SRC0, SRC1, DST) do { \ + vst1q_u32((DST) + 0, SRC0); \ + vst1q_u32((DST) + 4, SRC1); \ +} while (0); + +#if (WEBP_RESCALER_RFIX == 32) +#define MAKE_HALF_CST(C) vdupq_n_s32((int32_t)((C) >> 1)) +// note: B is actualy scale>>1. See MAKE_HALF_CST +#define MULT_FIX(A, B) \ + vreinterpretq_u32_s32(vqrdmulhq_s32(vreinterpretq_s32_u32((A)), (B))) +#define MULT_FIX_FLOOR(A, B) \ + vreinterpretq_u32_s32(vqdmulhq_s32(vreinterpretq_s32_u32((A)), (B))) +#else +#error "MULT_FIX/WEBP_RESCALER_RFIX need some more work" +#endif + +static uint32x4_t Interpolate_NEON(const rescaler_t* const frow, + const rescaler_t* const irow, + uint32_t A, uint32_t B) { + LOAD_32x4(frow, A0); + LOAD_32x4(irow, B0); + const uint64x2_t C0 = vmull_n_u32(vget_low_u32(A0), A); + const uint64x2_t C1 = vmull_n_u32(vget_high_u32(A0), A); + const uint64x2_t D0 = vmlal_n_u32(C0, vget_low_u32(B0), B); + const uint64x2_t D1 = vmlal_n_u32(C1, vget_high_u32(B0), B); + const uint32x4_t E = vcombine_u32( + vrshrn_n_u64(D0, WEBP_RESCALER_RFIX), + vrshrn_n_u64(D1, WEBP_RESCALER_RFIX)); + return E; +} + +static void RescalerExportRowExpand_NEON(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const int max_span = x_out_max & ~7; + const rescaler_t* const frow = wrk->frow; + const uint32_t fy_scale = wrk->fy_scale; + const int32x4_t fy_scale_half = MAKE_HALF_CST(fy_scale); + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(wrk->y_expand); + assert(wrk->y_sub != 0); + if (wrk->y_accum == 0) { + for (x_out = 0; x_out < max_span; x_out += 8) { + LOAD_32x4(frow + x_out + 0, A0); + LOAD_32x4(frow + x_out + 4, A1); + const uint32x4_t B0 = MULT_FIX(A0, fy_scale_half); + const uint32x4_t B1 = MULT_FIX(A1, fy_scale_half); + const uint16x4_t C0 = vmovn_u32(B0); + const uint16x4_t C1 = vmovn_u32(B1); + const uint8x8_t D = vqmovn_u16(vcombine_u16(C0, C1)); + vst1_u8(dst + x_out, D); + } + for (; x_out < x_out_max; ++x_out) { + const uint32_t J = frow[x_out]; + const int v = (int)MULT_FIX_C(J, fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } else { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + for (x_out = 0; x_out < max_span; x_out += 8) { + const uint32x4_t C0 = + Interpolate_NEON(frow + x_out + 0, irow + x_out + 0, A, B); + const uint32x4_t C1 = + Interpolate_NEON(frow + x_out + 4, irow + x_out + 4, A, B); + const uint32x4_t D0 = MULT_FIX(C0, fy_scale_half); + const uint32x4_t D1 = MULT_FIX(C1, fy_scale_half); + const uint16x4_t E0 = vmovn_u32(D0); + const uint16x4_t E1 = vmovn_u32(D1); + const uint8x8_t F = vqmovn_u16(vcombine_u16(E0, E1)); + vst1_u8(dst + x_out, F); + } + for (; x_out < x_out_max; ++x_out) { + const uint64_t I = (uint64_t)A * frow[x_out] + + (uint64_t)B * irow[x_out]; + const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); + const int v = (int)MULT_FIX_C(J, fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +static void RescalerExportRowShrink_NEON(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const int max_span = x_out_max & ~7; + const rescaler_t* const frow = wrk->frow; + const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum); + const uint32_t fxy_scale = wrk->fxy_scale; + const uint32x4_t zero = vdupq_n_u32(0); + const int32x4_t yscale_half = MAKE_HALF_CST(yscale); + const int32x4_t fxy_scale_half = MAKE_HALF_CST(fxy_scale); + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + if (yscale) { + for (x_out = 0; x_out < max_span; x_out += 8) { + LOAD_32x8(frow + x_out, in0, in1); + LOAD_32x8(irow + x_out, in2, in3); + const uint32x4_t A0 = MULT_FIX_FLOOR(in0, yscale_half); + const uint32x4_t A1 = MULT_FIX_FLOOR(in1, yscale_half); + const uint32x4_t B0 = vqsubq_u32(in2, A0); + const uint32x4_t B1 = vqsubq_u32(in3, A1); + const uint32x4_t C0 = MULT_FIX(B0, fxy_scale_half); + const uint32x4_t C1 = MULT_FIX(B1, fxy_scale_half); + const uint16x4_t D0 = vmovn_u32(C0); + const uint16x4_t D1 = vmovn_u32(C1); + const uint8x8_t E = vqmovn_u16(vcombine_u16(D0, D1)); + vst1_u8(dst + x_out, E); + STORE_32x8(A0, A1, irow + x_out); + } + for (; x_out < x_out_max; ++x_out) { + const uint32_t frac = (uint32_t)MULT_FIX_FLOOR_C(frow[x_out], yscale); + const int v = (int)MULT_FIX_C(irow[x_out] - frac, fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = frac; // new fractional start + } + } else { + for (x_out = 0; x_out < max_span; x_out += 8) { + LOAD_32x8(irow + x_out, in0, in1); + const uint32x4_t A0 = MULT_FIX(in0, fxy_scale_half); + const uint32x4_t A1 = MULT_FIX(in1, fxy_scale_half); + const uint16x4_t B0 = vmovn_u32(A0); + const uint16x4_t B1 = vmovn_u32(A1); + const uint8x8_t C = vqmovn_u16(vcombine_u16(B0, B1)); + vst1_u8(dst + x_out, C); + STORE_32x8(zero, zero, irow + x_out); + } + for (; x_out < x_out_max; ++x_out) { + const int v = (int)MULT_FIX_C(irow[x_out], fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = 0; + } + } +} + +#undef MULT_FIX_FLOOR_C +#undef MULT_FIX_C +#undef MULT_FIX_FLOOR +#undef MULT_FIX +#undef ROUNDER + +//------------------------------------------------------------------------------ + +extern void WebPRescalerDspInitNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitNEON(void) { + WebPRescalerExportRowExpand = RescalerExportRowExpand_NEON; + WebPRescalerExportRowShrink = RescalerExportRowShrink_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(WebPRescalerDspInitNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/rescaler_sse2.c b/media/libwebp/src/dsp/rescaler_sse2.c new file mode 100644 index 0000000000..3f18e94e93 --- /dev/null +++ b/media/libwebp/src/dsp/rescaler_sse2.c @@ -0,0 +1,366 @@ +// Copyright 2015 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 Rescaling functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) && !defined(WEBP_REDUCE_SIZE) +#include <emmintrin.h> + +#include <assert.h> +#include "src/utils/rescaler_utils.h" +#include "src/utils/utils.h" + +//------------------------------------------------------------------------------ +// Implementations of critical functions ImportRow / ExportRow + +#define ROUNDER (WEBP_RESCALER_ONE >> 1) +#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX) +#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX) + +// input: 8 bytes ABCDEFGH -> output: A0E0B0F0C0G0D0H0 +static void LoadTwoPixels_SSE2(const uint8_t* const src, __m128i* out) { + const __m128i zero = _mm_setzero_si128(); + const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH + const __m128i B = _mm_unpacklo_epi8(A, zero); // A0B0C0D0E0F0G0H0 + const __m128i C = _mm_srli_si128(B, 8); // E0F0G0H0 + *out = _mm_unpacklo_epi16(B, C); +} + +// input: 8 bytes ABCDEFGH -> output: A0B0C0D0E0F0G0H0 +static void LoadEightPixels_SSE2(const uint8_t* const src, __m128i* out) { + const __m128i zero = _mm_setzero_si128(); + const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH + *out = _mm_unpacklo_epi8(A, zero); +} + +static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk, + const uint8_t* src) { + rescaler_t* frow = wrk->frow; + const rescaler_t* const frow_end = frow + wrk->dst_width * wrk->num_channels; + const int x_add = wrk->x_add; + int accum = x_add; + __m128i cur_pixels; + + // SSE2 implementation only works with 16b signed arithmetic at max. + if (wrk->src_width < 8 || accum >= (1 << 15)) { + WebPRescalerImportRowExpand_C(wrk, src); + return; + } + + assert(!WebPRescalerInputDone(wrk)); + assert(wrk->x_expand); + if (wrk->num_channels == 4) { + LoadTwoPixels_SSE2(src, &cur_pixels); + src += 4; + while (1) { + const __m128i mult = _mm_set1_epi32(((x_add - accum) << 16) | accum); + const __m128i out = _mm_madd_epi16(cur_pixels, mult); + _mm_storeu_si128((__m128i*)frow, out); + frow += 4; + if (frow >= frow_end) break; + accum -= wrk->x_sub; + if (accum < 0) { + LoadTwoPixels_SSE2(src, &cur_pixels); + src += 4; + accum += x_add; + } + } + } else { + int left; + const uint8_t* const src_limit = src + wrk->src_width - 8; + LoadEightPixels_SSE2(src, &cur_pixels); + src += 7; + left = 7; + while (1) { + const __m128i mult = _mm_cvtsi32_si128(((x_add - accum) << 16) | accum); + const __m128i out = _mm_madd_epi16(cur_pixels, mult); + assert(sizeof(*frow) == sizeof(uint32_t)); + WebPInt32ToMem((uint8_t*)frow, _mm_cvtsi128_si32(out)); + frow += 1; + if (frow >= frow_end) break; + accum -= wrk->x_sub; + if (accum < 0) { + if (--left) { + cur_pixels = _mm_srli_si128(cur_pixels, 2); + } else if (src <= src_limit) { + LoadEightPixels_SSE2(src, &cur_pixels); + src += 7; + left = 7; + } else { // tail + cur_pixels = _mm_srli_si128(cur_pixels, 2); + cur_pixels = _mm_insert_epi16(cur_pixels, src[1], 1); + src += 1; + left = 1; + } + accum += x_add; + } + } + } + assert(accum == 0); +} + +static void RescalerImportRowShrink_SSE2(WebPRescaler* const wrk, + const uint8_t* src) { + const int x_sub = wrk->x_sub; + int accum = 0; + const __m128i zero = _mm_setzero_si128(); + const __m128i mult0 = _mm_set1_epi16(x_sub); + const __m128i mult1 = _mm_set1_epi32(wrk->fx_scale); + const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); + __m128i sum = zero; + rescaler_t* frow = wrk->frow; + const rescaler_t* const frow_end = wrk->frow + 4 * wrk->dst_width; + + if (wrk->num_channels != 4 || wrk->x_add > (x_sub << 7)) { + WebPRescalerImportRowShrink_C(wrk, src); + return; + } + assert(!WebPRescalerInputDone(wrk)); + assert(!wrk->x_expand); + + for (; frow < frow_end; frow += 4) { + __m128i base = zero; + accum += wrk->x_add; + while (accum > 0) { + const __m128i A = _mm_cvtsi32_si128(WebPMemToInt32(src)); + src += 4; + base = _mm_unpacklo_epi8(A, zero); + // To avoid overflow, we need: base * x_add / x_sub < 32768 + // => x_add < x_sub << 7. That's a 1/128 reduction ratio limit. + sum = _mm_add_epi16(sum, base); + accum -= x_sub; + } + { // Emit next horizontal pixel. + const __m128i mult = _mm_set1_epi16(-accum); + const __m128i frac0 = _mm_mullo_epi16(base, mult); // 16b x 16b -> 32b + const __m128i frac1 = _mm_mulhi_epu16(base, mult); + const __m128i frac = _mm_unpacklo_epi16(frac0, frac1); // frac is 32b + const __m128i A0 = _mm_mullo_epi16(sum, mult0); + const __m128i A1 = _mm_mulhi_epu16(sum, mult0); + const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // sum * x_sub + const __m128i frow_out = _mm_sub_epi32(B0, frac); // sum * x_sub - frac + const __m128i D0 = _mm_srli_epi64(frac, 32); + const __m128i D1 = _mm_mul_epu32(frac, mult1); // 32b x 16b -> 64b + const __m128i D2 = _mm_mul_epu32(D0, mult1); + const __m128i E1 = _mm_add_epi64(D1, rounder); + const __m128i E2 = _mm_add_epi64(D2, rounder); + const __m128i F1 = _mm_shuffle_epi32(E1, 1 | (3 << 2)); + const __m128i F2 = _mm_shuffle_epi32(E2, 1 | (3 << 2)); + const __m128i G = _mm_unpacklo_epi32(F1, F2); + sum = _mm_packs_epi32(G, zero); + _mm_storeu_si128((__m128i*)frow, frow_out); + } + } + assert(accum == 0); +} + +//------------------------------------------------------------------------------ +// Row export + +// load *src as epi64, multiply by mult and store result in [out0 ... out3] +static WEBP_INLINE void LoadDispatchAndMult_SSE2(const rescaler_t* const src, + const __m128i* const mult, + __m128i* const out0, + __m128i* const out1, + __m128i* const out2, + __m128i* const out3) { + const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + 0)); + const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + 4)); + const __m128i A2 = _mm_srli_epi64(A0, 32); + const __m128i A3 = _mm_srli_epi64(A1, 32); + if (mult != NULL) { + *out0 = _mm_mul_epu32(A0, *mult); + *out1 = _mm_mul_epu32(A1, *mult); + *out2 = _mm_mul_epu32(A2, *mult); + *out3 = _mm_mul_epu32(A3, *mult); + } else { + *out0 = A0; + *out1 = A1; + *out2 = A2; + *out3 = A3; + } +} + +static WEBP_INLINE void ProcessRow_SSE2(const __m128i* const A0, + const __m128i* const A1, + const __m128i* const A2, + const __m128i* const A3, + const __m128i* const mult, + uint8_t* const dst) { + const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); + const __m128i mask = _mm_set_epi32(~0, 0, ~0, 0); + const __m128i B0 = _mm_mul_epu32(*A0, *mult); + const __m128i B1 = _mm_mul_epu32(*A1, *mult); + const __m128i B2 = _mm_mul_epu32(*A2, *mult); + const __m128i B3 = _mm_mul_epu32(*A3, *mult); + const __m128i C0 = _mm_add_epi64(B0, rounder); + const __m128i C1 = _mm_add_epi64(B1, rounder); + const __m128i C2 = _mm_add_epi64(B2, rounder); + const __m128i C3 = _mm_add_epi64(B3, rounder); + const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX); + const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX); +#if (WEBP_RESCALER_RFIX < 32) + const __m128i D2 = + _mm_and_si128(_mm_slli_epi64(C2, 32 - WEBP_RESCALER_RFIX), mask); + const __m128i D3 = + _mm_and_si128(_mm_slli_epi64(C3, 32 - WEBP_RESCALER_RFIX), mask); +#else + const __m128i D2 = _mm_and_si128(C2, mask); + const __m128i D3 = _mm_and_si128(C3, mask); +#endif + const __m128i E0 = _mm_or_si128(D0, D2); + const __m128i E1 = _mm_or_si128(D1, D3); + const __m128i F = _mm_packs_epi32(E0, E1); + const __m128i G = _mm_packus_epi16(F, F); + _mm_storel_epi64((__m128i*)dst, G); +} + +static void RescalerExportRowExpand_SSE2(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* const frow = wrk->frow; + const __m128i mult = _mm_set_epi32(0, wrk->fy_scale, 0, wrk->fy_scale); + + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0 && wrk->y_sub + wrk->y_accum >= 0); + assert(wrk->y_expand); + if (wrk->y_accum == 0) { + for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { + __m128i A0, A1, A2, A3; + LoadDispatchAndMult_SSE2(frow + x_out, NULL, &A0, &A1, &A2, &A3); + ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out); + } + for (; x_out < x_out_max; ++x_out) { + const uint32_t J = frow[x_out]; + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } else { + const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub); + const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B); + const __m128i mA = _mm_set_epi32(0, A, 0, A); + const __m128i mB = _mm_set_epi32(0, B, 0, B); + const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER); + for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { + __m128i A0, A1, A2, A3, B0, B1, B2, B3; + LoadDispatchAndMult_SSE2(frow + x_out, &mA, &A0, &A1, &A2, &A3); + LoadDispatchAndMult_SSE2(irow + x_out, &mB, &B0, &B1, &B2, &B3); + { + const __m128i C0 = _mm_add_epi64(A0, B0); + const __m128i C1 = _mm_add_epi64(A1, B1); + const __m128i C2 = _mm_add_epi64(A2, B2); + const __m128i C3 = _mm_add_epi64(A3, B3); + const __m128i D0 = _mm_add_epi64(C0, rounder); + const __m128i D1 = _mm_add_epi64(C1, rounder); + const __m128i D2 = _mm_add_epi64(C2, rounder); + const __m128i D3 = _mm_add_epi64(C3, rounder); + const __m128i E0 = _mm_srli_epi64(D0, WEBP_RESCALER_RFIX); + const __m128i E1 = _mm_srli_epi64(D1, WEBP_RESCALER_RFIX); + const __m128i E2 = _mm_srli_epi64(D2, WEBP_RESCALER_RFIX); + const __m128i E3 = _mm_srli_epi64(D3, WEBP_RESCALER_RFIX); + ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult, dst + x_out); + } + } + for (; x_out < x_out_max; ++x_out) { + const uint64_t I = (uint64_t)A * frow[x_out] + + (uint64_t)B * irow[x_out]; + const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX); + const int v = (int)MULT_FIX(J, wrk->fy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + } + } +} + +static void RescalerExportRowShrink_SSE2(WebPRescaler* const wrk) { + int x_out; + uint8_t* const dst = wrk->dst; + rescaler_t* const irow = wrk->irow; + const int x_out_max = wrk->dst_width * wrk->num_channels; + const rescaler_t* const frow = wrk->frow; + const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum); + assert(!WebPRescalerOutputDone(wrk)); + assert(wrk->y_accum <= 0); + assert(!wrk->y_expand); + if (yscale) { + const int scale_xy = wrk->fxy_scale; + const __m128i mult_xy = _mm_set_epi32(0, scale_xy, 0, scale_xy); + const __m128i mult_y = _mm_set_epi32(0, yscale, 0, yscale); + for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { + __m128i A0, A1, A2, A3, B0, B1, B2, B3; + LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3); + LoadDispatchAndMult_SSE2(frow + x_out, &mult_y, &B0, &B1, &B2, &B3); + { + const __m128i D0 = _mm_srli_epi64(B0, WEBP_RESCALER_RFIX); // = frac + const __m128i D1 = _mm_srli_epi64(B1, WEBP_RESCALER_RFIX); + const __m128i D2 = _mm_srli_epi64(B2, WEBP_RESCALER_RFIX); + const __m128i D3 = _mm_srli_epi64(B3, WEBP_RESCALER_RFIX); + const __m128i E0 = _mm_sub_epi64(A0, D0); // irow[x] - frac + const __m128i E1 = _mm_sub_epi64(A1, D1); + const __m128i E2 = _mm_sub_epi64(A2, D2); + const __m128i E3 = _mm_sub_epi64(A3, D3); + const __m128i F2 = _mm_slli_epi64(D2, 32); + const __m128i F3 = _mm_slli_epi64(D3, 32); + const __m128i G0 = _mm_or_si128(D0, F2); + const __m128i G1 = _mm_or_si128(D1, F3); + _mm_storeu_si128((__m128i*)(irow + x_out + 0), G0); + _mm_storeu_si128((__m128i*)(irow + x_out + 4), G1); + ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult_xy, dst + x_out); + } + } + for (; x_out < x_out_max; ++x_out) { + const uint32_t frac = (int)MULT_FIX_FLOOR(frow[x_out], yscale); + const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = frac; // new fractional start + } + } else { + const uint32_t scale = wrk->fxy_scale; + const __m128i mult = _mm_set_epi32(0, scale, 0, scale); + const __m128i zero = _mm_setzero_si128(); + for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) { + __m128i A0, A1, A2, A3; + LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3); + _mm_storeu_si128((__m128i*)(irow + x_out + 0), zero); + _mm_storeu_si128((__m128i*)(irow + x_out + 4), zero); + ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out); + } + for (; x_out < x_out_max; ++x_out) { + const int v = (int)MULT_FIX(irow[x_out], scale); + dst[x_out] = (v > 255) ? 255u : (uint8_t)v; + irow[x_out] = 0; + } + } +} + +#undef MULT_FIX_FLOOR +#undef MULT_FIX +#undef ROUNDER + +//------------------------------------------------------------------------------ + +extern void WebPRescalerDspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitSSE2(void) { + WebPRescalerImportRowExpand = RescalerImportRowExpand_SSE2; + WebPRescalerImportRowShrink = RescalerImportRowShrink_SSE2; + WebPRescalerExportRowExpand = RescalerExportRowExpand_SSE2; + WebPRescalerExportRowShrink = RescalerExportRowShrink_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(WebPRescalerDspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/ssim.c b/media/libwebp/src/dsp/ssim.c new file mode 100644 index 0000000000..f85c2e6e5b --- /dev/null +++ b/media/libwebp/src/dsp/ssim.c @@ -0,0 +1,159 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// distortion calculation +// +// Author: Skal (pascal.massimino@gmail.com) + +#include <assert.h> +#include <stdlib.h> // for abs() + +#include "src/dsp/dsp.h" + +#if !defined(WEBP_REDUCE_SIZE) + +//------------------------------------------------------------------------------ +// SSIM / PSNR + +// hat-shaped filter. Sum of coefficients is equal to 16. +static const uint32_t kWeight[2 * VP8_SSIM_KERNEL + 1] = { + 1, 2, 3, 4, 3, 2, 1 +}; +static const uint32_t kWeightSum = 16 * 16; // sum{kWeight}^2 + +static WEBP_INLINE double SSIMCalculation( + const VP8DistoStats* const stats, uint32_t N /*num samples*/) { + const uint32_t w2 = N * N; + const uint32_t C1 = 20 * w2; + const uint32_t C2 = 60 * w2; + const uint32_t C3 = 8 * 8 * w2; // 'dark' limit ~= 6 + const uint64_t xmxm = (uint64_t)stats->xm * stats->xm; + const uint64_t ymym = (uint64_t)stats->ym * stats->ym; + if (xmxm + ymym >= C3) { + const int64_t xmym = (int64_t)stats->xm * stats->ym; + const int64_t sxy = (int64_t)stats->xym * N - xmym; // can be negative + const uint64_t sxx = (uint64_t)stats->xxm * N - xmxm; + const uint64_t syy = (uint64_t)stats->yym * N - ymym; + // we descale by 8 to prevent overflow during the fnum/fden multiply. + const uint64_t num_S = (2 * (uint64_t)(sxy < 0 ? 0 : sxy) + C2) >> 8; + const uint64_t den_S = (sxx + syy + C2) >> 8; + const uint64_t fnum = (2 * xmym + C1) * num_S; + const uint64_t fden = (xmxm + ymym + C1) * den_S; + const double r = (double)fnum / fden; + assert(r >= 0. && r <= 1.0); + return r; + } + return 1.; // area is too dark to contribute meaningfully +} + +double VP8SSIMFromStats(const VP8DistoStats* const stats) { + return SSIMCalculation(stats, kWeightSum); +} + +double VP8SSIMFromStatsClipped(const VP8DistoStats* const stats) { + return SSIMCalculation(stats, stats->w); +} + +static double SSIMGetClipped_C(const uint8_t* src1, int stride1, + const uint8_t* src2, int stride2, + int xo, int yo, int W, int H) { + VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; + const int ymin = (yo - VP8_SSIM_KERNEL < 0) ? 0 : yo - VP8_SSIM_KERNEL; + const int ymax = (yo + VP8_SSIM_KERNEL > H - 1) ? H - 1 + : yo + VP8_SSIM_KERNEL; + const int xmin = (xo - VP8_SSIM_KERNEL < 0) ? 0 : xo - VP8_SSIM_KERNEL; + const int xmax = (xo + VP8_SSIM_KERNEL > W - 1) ? W - 1 + : xo + VP8_SSIM_KERNEL; + int x, y; + src1 += ymin * stride1; + src2 += ymin * stride2; + for (y = ymin; y <= ymax; ++y, src1 += stride1, src2 += stride2) { + for (x = xmin; x <= xmax; ++x) { + const uint32_t w = kWeight[VP8_SSIM_KERNEL + x - xo] + * kWeight[VP8_SSIM_KERNEL + y - yo]; + const uint32_t s1 = src1[x]; + const uint32_t s2 = src2[x]; + stats.w += w; + stats.xm += w * s1; + stats.ym += w * s2; + stats.xxm += w * s1 * s1; + stats.xym += w * s1 * s2; + stats.yym += w * s2 * s2; + } + } + return VP8SSIMFromStatsClipped(&stats); +} + +static double SSIMGet_C(const uint8_t* src1, int stride1, + const uint8_t* src2, int stride2) { + VP8DistoStats stats = { 0, 0, 0, 0, 0, 0 }; + int x, y; + for (y = 0; y <= 2 * VP8_SSIM_KERNEL; ++y, src1 += stride1, src2 += stride2) { + for (x = 0; x <= 2 * VP8_SSIM_KERNEL; ++x) { + const uint32_t w = kWeight[x] * kWeight[y]; + const uint32_t s1 = src1[x]; + const uint32_t s2 = src2[x]; + stats.xm += w * s1; + stats.ym += w * s2; + stats.xxm += w * s1 * s1; + stats.xym += w * s1 * s2; + stats.yym += w * s2 * s2; + } + } + return VP8SSIMFromStats(&stats); +} + +#endif // !defined(WEBP_REDUCE_SIZE) + +//------------------------------------------------------------------------------ + +#if !defined(WEBP_DISABLE_STATS) +static uint32_t AccumulateSSE_C(const uint8_t* src1, + const uint8_t* src2, int len) { + int i; + uint32_t sse2 = 0; + assert(len <= 65535); // to ensure that accumulation fits within uint32_t + for (i = 0; i < len; ++i) { + const int32_t diff = src1[i] - src2[i]; + sse2 += diff * diff; + } + return sse2; +} +#endif + +//------------------------------------------------------------------------------ + +#if !defined(WEBP_REDUCE_SIZE) +VP8SSIMGetFunc VP8SSIMGet; +VP8SSIMGetClippedFunc VP8SSIMGetClipped; +#endif +#if !defined(WEBP_DISABLE_STATS) +VP8AccumulateSSEFunc VP8AccumulateSSE; +#endif + +extern void VP8SSIMDspInitSSE2(void); + +WEBP_DSP_INIT_FUNC(VP8SSIMDspInit) { +#if !defined(WEBP_REDUCE_SIZE) + VP8SSIMGetClipped = SSIMGetClipped_C; + VP8SSIMGet = SSIMGet_C; +#endif + +#if !defined(WEBP_DISABLE_STATS) + VP8AccumulateSSE = AccumulateSSE_C; +#endif + + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + VP8SSIMDspInitSSE2(); + } +#endif + } +} diff --git a/media/libwebp/src/dsp/ssim_sse2.c b/media/libwebp/src/dsp/ssim_sse2.c new file mode 100644 index 0000000000..1dcb0eb0ec --- /dev/null +++ b/media/libwebp/src/dsp/ssim_sse2.c @@ -0,0 +1,165 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of distortion calculation +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +#include <assert.h> +#include <emmintrin.h> + +#include "src/dsp/common_sse2.h" + +#if !defined(WEBP_DISABLE_STATS) + +// Helper function +static WEBP_INLINE void SubtractAndSquare_SSE2(const __m128i a, const __m128i b, + __m128i* const sum) { + // take abs(a-b) in 8b + const __m128i a_b = _mm_subs_epu8(a, b); + const __m128i b_a = _mm_subs_epu8(b, a); + const __m128i abs_a_b = _mm_or_si128(a_b, b_a); + // zero-extend to 16b + const __m128i zero = _mm_setzero_si128(); + const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); + const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); + // multiply with self + const __m128i sum1 = _mm_madd_epi16(C0, C0); + const __m128i sum2 = _mm_madd_epi16(C1, C1); + *sum = _mm_add_epi32(sum1, sum2); +} + +//------------------------------------------------------------------------------ +// SSIM / PSNR entry point + +static uint32_t AccumulateSSE_SSE2(const uint8_t* src1, + const uint8_t* src2, int len) { + int i = 0; + uint32_t sse2 = 0; + if (len >= 16) { + const int limit = len - 32; + int32_t tmp[4]; + __m128i sum1; + __m128i sum = _mm_setzero_si128(); + __m128i a0 = _mm_loadu_si128((const __m128i*)&src1[i]); + __m128i b0 = _mm_loadu_si128((const __m128i*)&src2[i]); + i += 16; + while (i <= limit) { + const __m128i a1 = _mm_loadu_si128((const __m128i*)&src1[i]); + const __m128i b1 = _mm_loadu_si128((const __m128i*)&src2[i]); + __m128i sum2; + i += 16; + SubtractAndSquare_SSE2(a0, b0, &sum1); + sum = _mm_add_epi32(sum, sum1); + a0 = _mm_loadu_si128((const __m128i*)&src1[i]); + b0 = _mm_loadu_si128((const __m128i*)&src2[i]); + i += 16; + SubtractAndSquare_SSE2(a1, b1, &sum2); + sum = _mm_add_epi32(sum, sum2); + } + SubtractAndSquare_SSE2(a0, b0, &sum1); + sum = _mm_add_epi32(sum, sum1); + _mm_storeu_si128((__m128i*)tmp, sum); + sse2 += (tmp[3] + tmp[2] + tmp[1] + tmp[0]); + } + + for (; i < len; ++i) { + const int32_t diff = src1[i] - src2[i]; + sse2 += diff * diff; + } + return sse2; +} +#endif // !defined(WEBP_DISABLE_STATS) + +#if !defined(WEBP_REDUCE_SIZE) + +static uint32_t HorizontalAdd16b_SSE2(const __m128i* const m) { + uint16_t tmp[8]; + const __m128i a = _mm_srli_si128(*m, 8); + const __m128i b = _mm_add_epi16(*m, a); + _mm_storeu_si128((__m128i*)tmp, b); + return (uint32_t)tmp[3] + tmp[2] + tmp[1] + tmp[0]; +} + +static uint32_t HorizontalAdd32b_SSE2(const __m128i* const m) { + const __m128i a = _mm_srli_si128(*m, 8); + const __m128i b = _mm_add_epi32(*m, a); + const __m128i c = _mm_add_epi32(b, _mm_srli_si128(b, 4)); + return (uint32_t)_mm_cvtsi128_si32(c); +} + +static const uint16_t kWeight[] = { 1, 2, 3, 4, 3, 2, 1, 0 }; + +#define ACCUMULATE_ROW(WEIGHT) do { \ + /* compute row weight (Wx * Wy) */ \ + const __m128i Wy = _mm_set1_epi16((WEIGHT)); \ + const __m128i W = _mm_mullo_epi16(Wx, Wy); \ + /* process 8 bytes at a time (7 bytes, actually) */ \ + const __m128i a0 = _mm_loadl_epi64((const __m128i*)src1); \ + const __m128i b0 = _mm_loadl_epi64((const __m128i*)src2); \ + /* convert to 16b and multiply by weight */ \ + const __m128i a1 = _mm_unpacklo_epi8(a0, zero); \ + const __m128i b1 = _mm_unpacklo_epi8(b0, zero); \ + const __m128i wa1 = _mm_mullo_epi16(a1, W); \ + const __m128i wb1 = _mm_mullo_epi16(b1, W); \ + /* accumulate */ \ + xm = _mm_add_epi16(xm, wa1); \ + ym = _mm_add_epi16(ym, wb1); \ + xxm = _mm_add_epi32(xxm, _mm_madd_epi16(a1, wa1)); \ + xym = _mm_add_epi32(xym, _mm_madd_epi16(a1, wb1)); \ + yym = _mm_add_epi32(yym, _mm_madd_epi16(b1, wb1)); \ + src1 += stride1; \ + src2 += stride2; \ +} while (0) + +static double SSIMGet_SSE2(const uint8_t* src1, int stride1, + const uint8_t* src2, int stride2) { + VP8DistoStats stats; + const __m128i zero = _mm_setzero_si128(); + __m128i xm = zero, ym = zero; // 16b accums + __m128i xxm = zero, yym = zero, xym = zero; // 32b accum + const __m128i Wx = _mm_loadu_si128((const __m128i*)kWeight); + assert(2 * VP8_SSIM_KERNEL + 1 == 7); + ACCUMULATE_ROW(1); + ACCUMULATE_ROW(2); + ACCUMULATE_ROW(3); + ACCUMULATE_ROW(4); + ACCUMULATE_ROW(3); + ACCUMULATE_ROW(2); + ACCUMULATE_ROW(1); + stats.xm = HorizontalAdd16b_SSE2(&xm); + stats.ym = HorizontalAdd16b_SSE2(&ym); + stats.xxm = HorizontalAdd32b_SSE2(&xxm); + stats.xym = HorizontalAdd32b_SSE2(&xym); + stats.yym = HorizontalAdd32b_SSE2(&yym); + return VP8SSIMFromStats(&stats); +} + +#endif // !defined(WEBP_REDUCE_SIZE) + +extern void VP8SSIMDspInitSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void VP8SSIMDspInitSSE2(void) { +#if !defined(WEBP_DISABLE_STATS) + VP8AccumulateSSE = AccumulateSSE_SSE2; +#endif +#if !defined(WEBP_REDUCE_SIZE) + VP8SSIMGet = SSIMGet_SSE2; +#endif +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(VP8SSIMDspInitSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/upsampling.c b/media/libwebp/src/dsp/upsampling.c new file mode 100644 index 0000000000..87f771f3eb --- /dev/null +++ b/media/libwebp/src/dsp/upsampling.c @@ -0,0 +1,327 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV to RGB upsampling functions. +// +// Author: somnath@google.com (Somnath Banerjee) + +#include "src/dsp/dsp.h" +#include "src/dsp/yuv.h" + +#include <assert.h> + +//------------------------------------------------------------------------------ +// Fancy upsampler + +#ifdef FANCY_UPSAMPLING + +// Fancy upsampling functions to convert YUV to RGB +WebPUpsampleLinePairFunc WebPUpsamplers[MODE_LAST]; + +// Given samples laid out in a square as: +// [a b] +// [c d] +// we interpolate u/v as: +// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16 +// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16 + +// We process u and v together stashed into 32bit (16bit each). +#define LOAD_UV(u, v) ((u) | ((v) << 16)) + +#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ + int x; \ + const int last_pixel_pair = (len - 1) >> 1; \ + uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \ + uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \ + assert(top_y != NULL); \ + { \ + const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ + FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ + FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \ + } \ + for (x = 1; x <= last_pixel_pair; ++x) { \ + const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \ + const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \ + /* precompute invariant values associated with first and second diagonals*/\ + const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \ + const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \ + const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \ + { \ + const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \ + const uint32_t uv1 = (diag_03 + t_uv) >> 1; \ + FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ + top_dst + (2 * x - 1) * (XSTEP)); \ + FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \ + top_dst + (2 * x - 0) * (XSTEP)); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (diag_03 + l_uv) >> 1; \ + const uint32_t uv1 = (diag_12 + uv) >> 1; \ + FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ + bottom_dst + (2 * x - 1) * (XSTEP)); \ + FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \ + bottom_dst + (2 * x + 0) * (XSTEP)); \ + } \ + tl_uv = t_uv; \ + l_uv = uv; \ + } \ + if (!(len & 1)) { \ + { \ + const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ + FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ + top_dst + (len - 1) * (XSTEP)); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ + FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ + bottom_dst + (len - 1) * (XSTEP)); \ + } \ + } \ +} + +// All variants implemented. +#if !WEBP_NEON_OMIT_C_CODE +UPSAMPLE_FUNC(UpsampleRgbaLinePair_C, VP8YuvToRgba, 4) +UPSAMPLE_FUNC(UpsampleBgraLinePair_C, VP8YuvToBgra, 4) +#if !defined(WEBP_REDUCE_CSP) +UPSAMPLE_FUNC(UpsampleArgbLinePair_C, VP8YuvToArgb, 4) +UPSAMPLE_FUNC(UpsampleRgbLinePair_C, VP8YuvToRgb, 3) +UPSAMPLE_FUNC(UpsampleBgrLinePair_C, VP8YuvToBgr, 3) +UPSAMPLE_FUNC(UpsampleRgba4444LinePair_C, VP8YuvToRgba4444, 2) +UPSAMPLE_FUNC(UpsampleRgb565LinePair_C, VP8YuvToRgb565, 2) +#else +static void EmptyUpsampleFunc(const uint8_t* top_y, const uint8_t* bottom_y, + const uint8_t* top_u, const uint8_t* top_v, + const uint8_t* cur_u, const uint8_t* cur_v, + uint8_t* top_dst, uint8_t* bottom_dst, int len) { + (void)top_y; + (void)bottom_y; + (void)top_u; + (void)top_v; + (void)cur_u; + (void)cur_v; + (void)top_dst; + (void)bottom_dst; + (void)len; + assert(0); // COLORSPACE SUPPORT NOT COMPILED +} +#define UpsampleArgbLinePair_C EmptyUpsampleFunc +#define UpsampleRgbLinePair_C EmptyUpsampleFunc +#define UpsampleBgrLinePair_C EmptyUpsampleFunc +#define UpsampleRgba4444LinePair_C EmptyUpsampleFunc +#define UpsampleRgb565LinePair_C EmptyUpsampleFunc +#endif // WEBP_REDUCE_CSP + +#endif + +#undef LOAD_UV +#undef UPSAMPLE_FUNC + +#endif // FANCY_UPSAMPLING + +//------------------------------------------------------------------------------ + +#if !defined(FANCY_UPSAMPLING) +#define DUAL_SAMPLE_FUNC(FUNC_NAME, FUNC) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bot_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* bot_u, const uint8_t* bot_v, \ + uint8_t* top_dst, uint8_t* bot_dst, int len) { \ + const int half_len = len >> 1; \ + int x; \ + assert(top_dst != NULL); \ + { \ + for (x = 0; x < half_len; ++x) { \ + FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x + 0); \ + FUNC(top_y[2 * x + 1], top_u[x], top_v[x], top_dst + 8 * x + 4); \ + } \ + if (len & 1) FUNC(top_y[2 * x + 0], top_u[x], top_v[x], top_dst + 8 * x); \ + } \ + if (bot_dst != NULL) { \ + for (x = 0; x < half_len; ++x) { \ + FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x + 0); \ + FUNC(bot_y[2 * x + 1], bot_u[x], bot_v[x], bot_dst + 8 * x + 4); \ + } \ + if (len & 1) FUNC(bot_y[2 * x + 0], bot_u[x], bot_v[x], bot_dst + 8 * x); \ + } \ +} + +DUAL_SAMPLE_FUNC(DualLineSamplerBGRA, VP8YuvToBgra) +DUAL_SAMPLE_FUNC(DualLineSamplerARGB, VP8YuvToArgb) +#undef DUAL_SAMPLE_FUNC + +#endif // !FANCY_UPSAMPLING + +WebPUpsampleLinePairFunc WebPGetLinePairConverter(int alpha_is_last) { + WebPInitUpsamplers(); +#ifdef FANCY_UPSAMPLING + return WebPUpsamplers[alpha_is_last ? MODE_BGRA : MODE_ARGB]; +#else + return (alpha_is_last ? DualLineSamplerBGRA : DualLineSamplerARGB); +#endif +} + +//------------------------------------------------------------------------------ +// YUV444 converter + +#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \ +extern void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len); \ +void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i; \ + for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * (XSTEP)]); \ +} + +YUV444_FUNC(WebPYuv444ToRgba_C, VP8YuvToRgba, 4) +YUV444_FUNC(WebPYuv444ToBgra_C, VP8YuvToBgra, 4) +#if !defined(WEBP_REDUCE_CSP) +YUV444_FUNC(WebPYuv444ToRgb_C, VP8YuvToRgb, 3) +YUV444_FUNC(WebPYuv444ToBgr_C, VP8YuvToBgr, 3) +YUV444_FUNC(WebPYuv444ToArgb_C, VP8YuvToArgb, 4) +YUV444_FUNC(WebPYuv444ToRgba4444_C, VP8YuvToRgba4444, 2) +YUV444_FUNC(WebPYuv444ToRgb565_C, VP8YuvToRgb565, 2) +#else +static void EmptyYuv444Func(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + (void)y; + (void)u; + (void)v; + (void)dst; + (void)len; +} +#define WebPYuv444ToRgb_C EmptyYuv444Func +#define WebPYuv444ToBgr_C EmptyYuv444Func +#define WebPYuv444ToArgb_C EmptyYuv444Func +#define WebPYuv444ToRgba4444_C EmptyYuv444Func +#define WebPYuv444ToRgb565_C EmptyYuv444Func +#endif // WEBP_REDUCE_CSP + +#undef YUV444_FUNC + +WebPYUV444Converter WebPYUV444Converters[MODE_LAST]; + +extern void WebPInitYUV444ConvertersMIPSdspR2(void); +extern void WebPInitYUV444ConvertersSSE2(void); +extern void WebPInitYUV444ConvertersSSE41(void); + +WEBP_DSP_INIT_FUNC(WebPInitYUV444Converters) { + WebPYUV444Converters[MODE_RGBA] = WebPYuv444ToRgba_C; + WebPYUV444Converters[MODE_BGRA] = WebPYuv444ToBgra_C; + WebPYUV444Converters[MODE_RGB] = WebPYuv444ToRgb_C; + WebPYUV444Converters[MODE_BGR] = WebPYuv444ToBgr_C; + WebPYUV444Converters[MODE_ARGB] = WebPYuv444ToArgb_C; + WebPYUV444Converters[MODE_RGBA_4444] = WebPYuv444ToRgba4444_C; + WebPYUV444Converters[MODE_RGB_565] = WebPYuv444ToRgb565_C; + WebPYUV444Converters[MODE_rgbA] = WebPYuv444ToRgba_C; + WebPYUV444Converters[MODE_bgrA] = WebPYuv444ToBgra_C; + WebPYUV444Converters[MODE_Argb] = WebPYuv444ToArgb_C; + WebPYUV444Converters[MODE_rgbA_4444] = WebPYuv444ToRgba4444_C; + + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPInitYUV444ConvertersSSE2(); + } +#endif +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + WebPInitYUV444ConvertersSSE41(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + WebPInitYUV444ConvertersMIPSdspR2(); + } +#endif + } +} + +//------------------------------------------------------------------------------ +// Main calls + +extern void WebPInitUpsamplersSSE2(void); +extern void WebPInitUpsamplersSSE41(void); +extern void WebPInitUpsamplersNEON(void); +extern void WebPInitUpsamplersMIPSdspR2(void); +extern void WebPInitUpsamplersMSA(void); + +WEBP_DSP_INIT_FUNC(WebPInitUpsamplers) { +#ifdef FANCY_UPSAMPLING +#if !WEBP_NEON_OMIT_C_CODE + WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair_C; + WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair_C; + WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair_C; + WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair_C; + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair_C; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair_C; + WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair_C; + WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair_C; + WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair_C; + WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair_C; + WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair_C; +#endif + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPInitUpsamplersSSE2(); + } +#endif +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + WebPInitUpsamplersSSE41(); + } +#endif +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + WebPInitUpsamplersMIPSdspR2(); + } +#endif +#if defined(WEBP_USE_MSA) + if (VP8GetCPUInfo(kMSA)) { + WebPInitUpsamplersMSA(); + } +#endif + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + WebPInitUpsamplersNEON(); + } +#endif + + assert(WebPUpsamplers[MODE_RGBA] != NULL); + assert(WebPUpsamplers[MODE_BGRA] != NULL); + assert(WebPUpsamplers[MODE_rgbA] != NULL); + assert(WebPUpsamplers[MODE_bgrA] != NULL); +#if !defined(WEBP_REDUCE_CSP) || !WEBP_NEON_OMIT_C_CODE + assert(WebPUpsamplers[MODE_RGB] != NULL); + assert(WebPUpsamplers[MODE_BGR] != NULL); + assert(WebPUpsamplers[MODE_ARGB] != NULL); + assert(WebPUpsamplers[MODE_RGBA_4444] != NULL); + assert(WebPUpsamplers[MODE_RGB_565] != NULL); + assert(WebPUpsamplers[MODE_Argb] != NULL); + assert(WebPUpsamplers[MODE_rgbA_4444] != NULL); +#endif + +#endif // FANCY_UPSAMPLING +} + +//------------------------------------------------------------------------------ diff --git a/media/libwebp/src/dsp/upsampling_mips_dsp_r2.c b/media/libwebp/src/dsp/upsampling_mips_dsp_r2.c new file mode 100644 index 0000000000..10d499d771 --- /dev/null +++ b/media/libwebp/src/dsp/upsampling_mips_dsp_r2.c @@ -0,0 +1,291 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV to RGB upsampling functions. +// +// Author(s): Branimir Vasic (branimir.vasic@imgtec.com) +// Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include <assert.h> +#include "src/dsp/yuv.h" + +#define YUV_TO_RGB(Y, U, V, R, G, B) do { \ + const int t1 = MultHi(Y, 19077); \ + const int t2 = MultHi(V, 13320); \ + R = MultHi(V, 26149); \ + G = MultHi(U, 6419); \ + B = MultHi(U, 33050); \ + R = t1 + R; \ + G = t1 - G; \ + B = t1 + B; \ + R = R - 14234; \ + G = G - t2 + 8708; \ + B = B - 17685; \ + __asm__ volatile ( \ + "shll_s.w %[" #R "], %[" #R "], 17 \n\t" \ + "shll_s.w %[" #G "], %[" #G "], 17 \n\t" \ + "shll_s.w %[" #B "], %[" #B "], 17 \n\t" \ + "precrqu_s.qb.ph %[" #R "], %[" #R "], $zero \n\t" \ + "precrqu_s.qb.ph %[" #G "], %[" #G "], $zero \n\t" \ + "precrqu_s.qb.ph %[" #B "], %[" #B "], $zero \n\t" \ + "srl %[" #R "], %[" #R "], 24 \n\t" \ + "srl %[" #G "], %[" #G "], 24 \n\t" \ + "srl %[" #B "], %[" #B "], 24 \n\t" \ + : [R]"+r"(R), [G]"+r"(G), [B]"+r"(B) \ + : \ + ); \ + } while (0) + +#if !defined(WEBP_REDUCE_CSP) +static WEBP_INLINE void YuvToRgb(int y, int u, int v, uint8_t* const rgb) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + rgb[0] = r; + rgb[1] = g; + rgb[2] = b; +} +static WEBP_INLINE void YuvToBgr(int y, int u, int v, uint8_t* const bgr) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + bgr[0] = b; + bgr[1] = g; + bgr[2] = r; +} +static WEBP_INLINE void YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + { + const int rg = (r & 0xf8) | (g >> 5); + const int gb = ((g << 3) & 0xe0) | (b >> 3); +#if (WEBP_SWAP_16BIT_CSP == 1) + rgb[0] = gb; + rgb[1] = rg; +#else + rgb[0] = rg; + rgb[1] = gb; +#endif + } +} +static WEBP_INLINE void YuvToRgba4444(int y, int u, int v, + uint8_t* const argb) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + { + const int rg = (r & 0xf0) | (g >> 4); + const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits +#if (WEBP_SWAP_16BIT_CSP == 1) + argb[0] = ba; + argb[1] = rg; +#else + argb[0] = rg; + argb[1] = ba; +#endif + } +} +#endif // WEBP_REDUCE_CSP + +//----------------------------------------------------------------------------- +// Alpha handling variants + +#if !defined(WEBP_REDUCE_CSP) +static WEBP_INLINE void YuvToArgb(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const argb) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + argb[0] = 0xff; + argb[1] = r; + argb[2] = g; + argb[3] = b; +} +#endif // WEBP_REDUCE_CSP +static WEBP_INLINE void YuvToBgra(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const bgra) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + bgra[0] = b; + bgra[1] = g; + bgra[2] = r; + bgra[3] = 0xff; +} +static WEBP_INLINE void YuvToRgba(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const rgba) { + int r, g, b; + YUV_TO_RGB(y, u, v, r, g, b); + rgba[0] = r; + rgba[1] = g; + rgba[2] = b; + rgba[3] = 0xff; +} + +//------------------------------------------------------------------------------ +// Fancy upsampler + +#ifdef FANCY_UPSAMPLING + +// Given samples laid out in a square as: +// [a b] +// [c d] +// we interpolate u/v as: +// ([9*a + 3*b + 3*c + d 3*a + 9*b + 3*c + d] + [8 8]) / 16 +// ([3*a + b + 9*c + 3*d a + 3*b + 3*c + 9*d] [8 8]) / 16 + +// We process u and v together stashed into 32bit (16bit each). +#define LOAD_UV(u, v) ((u) | ((v) << 16)) + +#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ + int x; \ + const int last_pixel_pair = (len - 1) >> 1; \ + uint32_t tl_uv = LOAD_UV(top_u[0], top_v[0]); /* top-left sample */ \ + uint32_t l_uv = LOAD_UV(cur_u[0], cur_v[0]); /* left-sample */ \ + assert(top_y != NULL); \ + { \ + const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ + FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ + FUNC(bottom_y[0], uv0 & 0xff, (uv0 >> 16), bottom_dst); \ + } \ + for (x = 1; x <= last_pixel_pair; ++x) { \ + const uint32_t t_uv = LOAD_UV(top_u[x], top_v[x]); /* top sample */ \ + const uint32_t uv = LOAD_UV(cur_u[x], cur_v[x]); /* sample */ \ + /* precompute invariant values associated with first and second diagonals*/\ + const uint32_t avg = tl_uv + t_uv + l_uv + uv + 0x00080008u; \ + const uint32_t diag_12 = (avg + 2 * (t_uv + l_uv)) >> 3; \ + const uint32_t diag_03 = (avg + 2 * (tl_uv + uv)) >> 3; \ + { \ + const uint32_t uv0 = (diag_12 + tl_uv) >> 1; \ + const uint32_t uv1 = (diag_03 + t_uv) >> 1; \ + FUNC(top_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ + top_dst + (2 * x - 1) * XSTEP); \ + FUNC(top_y[2 * x - 0], uv1 & 0xff, (uv1 >> 16), \ + top_dst + (2 * x - 0) * XSTEP); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (diag_03 + l_uv) >> 1; \ + const uint32_t uv1 = (diag_12 + uv) >> 1; \ + FUNC(bottom_y[2 * x - 1], uv0 & 0xff, (uv0 >> 16), \ + bottom_dst + (2 * x - 1) * XSTEP); \ + FUNC(bottom_y[2 * x + 0], uv1 & 0xff, (uv1 >> 16), \ + bottom_dst + (2 * x + 0) * XSTEP); \ + } \ + tl_uv = t_uv; \ + l_uv = uv; \ + } \ + if (!(len & 1)) { \ + { \ + const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ + FUNC(top_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ + top_dst + (len - 1) * XSTEP); \ + } \ + if (bottom_y != NULL) { \ + const uint32_t uv0 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ + FUNC(bottom_y[len - 1], uv0 & 0xff, (uv0 >> 16), \ + bottom_dst + (len - 1) * XSTEP); \ + } \ + } \ +} + +// All variants implemented. +UPSAMPLE_FUNC(UpsampleRgbaLinePair, YuvToRgba, 4) +UPSAMPLE_FUNC(UpsampleBgraLinePair, YuvToBgra, 4) +#if !defined(WEBP_REDUCE_CSP) +UPSAMPLE_FUNC(UpsampleRgbLinePair, YuvToRgb, 3) +UPSAMPLE_FUNC(UpsampleBgrLinePair, YuvToBgr, 3) +UPSAMPLE_FUNC(UpsampleArgbLinePair, YuvToArgb, 4) +UPSAMPLE_FUNC(UpsampleRgba4444LinePair, YuvToRgba4444, 2) +UPSAMPLE_FUNC(UpsampleRgb565LinePair, YuvToRgb565, 2) +#endif // WEBP_REDUCE_CSP + +#undef LOAD_UV +#undef UPSAMPLE_FUNC + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitUpsamplersMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersMIPSdspR2(void) { + WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair; + WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair; + WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair; + WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair; +#if !defined(WEBP_REDUCE_CSP) + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair; + WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair; + WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair; + WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair; + WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair; + WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair; +#endif // WEBP_REDUCE_CSP +} + +#endif // FANCY_UPSAMPLING + +//------------------------------------------------------------------------------ +// YUV444 converter + +#define YUV444_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i; \ + for (i = 0; i < len; ++i) FUNC(y[i], u[i], v[i], &dst[i * XSTEP]); \ +} + +YUV444_FUNC(Yuv444ToRgba, YuvToRgba, 4) +YUV444_FUNC(Yuv444ToBgra, YuvToBgra, 4) +#if !defined(WEBP_REDUCE_CSP) +YUV444_FUNC(Yuv444ToRgb, YuvToRgb, 3) +YUV444_FUNC(Yuv444ToBgr, YuvToBgr, 3) +YUV444_FUNC(Yuv444ToArgb, YuvToArgb, 4) +YUV444_FUNC(Yuv444ToRgba4444, YuvToRgba4444, 2) +YUV444_FUNC(Yuv444ToRgb565, YuvToRgb565, 2) +#endif // WEBP_REDUCE_CSP + +#undef YUV444_FUNC + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitYUV444ConvertersMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444ConvertersMIPSdspR2(void) { + WebPYUV444Converters[MODE_RGBA] = Yuv444ToRgba; + WebPYUV444Converters[MODE_BGRA] = Yuv444ToBgra; + WebPYUV444Converters[MODE_rgbA] = Yuv444ToRgba; + WebPYUV444Converters[MODE_bgrA] = Yuv444ToBgra; +#if !defined(WEBP_REDUCE_CSP) + WebPYUV444Converters[MODE_RGB] = Yuv444ToRgb; + WebPYUV444Converters[MODE_BGR] = Yuv444ToBgr; + WebPYUV444Converters[MODE_ARGB] = Yuv444ToArgb; + WebPYUV444Converters[MODE_RGBA_4444] = Yuv444ToRgba4444; + WebPYUV444Converters[MODE_RGB_565] = Yuv444ToRgb565; + WebPYUV444Converters[MODE_Argb] = Yuv444ToArgb; + WebPYUV444Converters[MODE_rgbA_4444] = Yuv444ToRgba4444; +#endif // WEBP_REDUCE_CSP +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(WebPInitYUV444ConvertersMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 + +#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_MIPS_DSP_R2)) +WEBP_DSP_INIT_STUB(WebPInitUpsamplersMIPSdspR2) +#endif diff --git a/media/libwebp/src/dsp/upsampling_msa.c b/media/libwebp/src/dsp/upsampling_msa.c new file mode 100644 index 0000000000..f2e03e85e9 --- /dev/null +++ b/media/libwebp/src/dsp/upsampling_msa.c @@ -0,0 +1,688 @@ +// Copyright 2016 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MSA version of YUV to RGB upsampling functions. +// +// Author: Prashant Patil (prashant.patil@imgtec.com) + +#include <string.h> +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MSA) + +#include "src/dsp/msa_macro.h" +#include "src/dsp/yuv.h" + +#ifdef FANCY_UPSAMPLING + +#define ILVR_UW2(in, out0, out1) do { \ + const v8i16 t0 = (v8i16)__msa_ilvr_b((v16i8)zero, (v16i8)in); \ + out0 = (v4u32)__msa_ilvr_h((v8i16)zero, t0); \ + out1 = (v4u32)__msa_ilvl_h((v8i16)zero, t0); \ +} while (0) + +#define ILVRL_UW4(in, out0, out1, out2, out3) do { \ + v16u8 t0, t1; \ + ILVRL_B2_UB(zero, in, t0, t1); \ + ILVRL_H2_UW(zero, t0, out0, out1); \ + ILVRL_H2_UW(zero, t1, out2, out3); \ +} while (0) + +#define MULTHI_16(in0, in1, in2, in3, cnst, out0, out1) do { \ + const v4i32 const0 = (v4i32)__msa_fill_w(cnst * 256); \ + v4u32 temp0, temp1, temp2, temp3; \ + MUL4(in0, const0, in1, const0, in2, const0, in3, const0, \ + temp0, temp1, temp2, temp3); \ + PCKOD_H2_UH(temp1, temp0, temp3, temp2, out0, out1); \ +} while (0) + +#define MULTHI_8(in0, in1, cnst, out0) do { \ + const v4i32 const0 = (v4i32)__msa_fill_w(cnst * 256); \ + v4u32 temp0, temp1; \ + MUL2(in0, const0, in1, const0, temp0, temp1); \ + out0 = (v8u16)__msa_pckod_h((v8i16)temp1, (v8i16)temp0); \ +} while (0) + +#define CALC_R16(y0, y1, v0, v1, dst) do { \ + const v8i16 const_a = (v8i16)__msa_fill_h(14234); \ + const v8i16 a0 = __msa_adds_s_h((v8i16)y0, (v8i16)v0); \ + const v8i16 a1 = __msa_adds_s_h((v8i16)y1, (v8i16)v1); \ + v8i16 b0 = __msa_subs_s_h(a0, const_a); \ + v8i16 b1 = __msa_subs_s_h(a1, const_a); \ + SRAI_H2_SH(b0, b1, 6); \ + CLIP_SH2_0_255(b0, b1); \ + dst = (v16u8)__msa_pckev_b((v16i8)b1, (v16i8)b0); \ +} while (0) + +#define CALC_R8(y0, v0, dst) do { \ + const v8i16 const_a = (v8i16)__msa_fill_h(14234); \ + const v8i16 a0 = __msa_adds_s_h((v8i16)y0, (v8i16)v0); \ + v8i16 b0 = __msa_subs_s_h(a0, const_a); \ + b0 = SRAI_H(b0, 6); \ + CLIP_SH_0_255(b0); \ + dst = (v16u8)__msa_pckev_b((v16i8)b0, (v16i8)b0); \ +} while (0) + +#define CALC_G16(y0, y1, u0, u1, v0, v1, dst) do { \ + const v8i16 const_a = (v8i16)__msa_fill_h(8708); \ + v8i16 a0 = __msa_subs_s_h((v8i16)y0, (v8i16)u0); \ + v8i16 a1 = __msa_subs_s_h((v8i16)y1, (v8i16)u1); \ + const v8i16 b0 = __msa_subs_s_h(a0, (v8i16)v0); \ + const v8i16 b1 = __msa_subs_s_h(a1, (v8i16)v1); \ + a0 = __msa_adds_s_h(b0, const_a); \ + a1 = __msa_adds_s_h(b1, const_a); \ + SRAI_H2_SH(a0, a1, 6); \ + CLIP_SH2_0_255(a0, a1); \ + dst = (v16u8)__msa_pckev_b((v16i8)a1, (v16i8)a0); \ +} while (0) + +#define CALC_G8(y0, u0, v0, dst) do { \ + const v8i16 const_a = (v8i16)__msa_fill_h(8708); \ + v8i16 a0 = __msa_subs_s_h((v8i16)y0, (v8i16)u0); \ + const v8i16 b0 = __msa_subs_s_h(a0, (v8i16)v0); \ + a0 = __msa_adds_s_h(b0, const_a); \ + a0 = SRAI_H(a0, 6); \ + CLIP_SH_0_255(a0); \ + dst = (v16u8)__msa_pckev_b((v16i8)a0, (v16i8)a0); \ +} while (0) + +#define CALC_B16(y0, y1, u0, u1, dst) do { \ + const v8u16 const_a = (v8u16)__msa_fill_h(17685); \ + const v8u16 a0 = __msa_adds_u_h((v8u16)y0, u0); \ + const v8u16 a1 = __msa_adds_u_h((v8u16)y1, u1); \ + v8u16 b0 = __msa_subs_u_h(a0, const_a); \ + v8u16 b1 = __msa_subs_u_h(a1, const_a); \ + SRAI_H2_UH(b0, b1, 6); \ + CLIP_UH2_0_255(b0, b1); \ + dst = (v16u8)__msa_pckev_b((v16i8)b1, (v16i8)b0); \ +} while (0) + +#define CALC_B8(y0, u0, dst) do { \ + const v8u16 const_a = (v8u16)__msa_fill_h(17685); \ + const v8u16 a0 = __msa_adds_u_h((v8u16)y0, u0); \ + v8u16 b0 = __msa_subs_u_h(a0, const_a); \ + b0 = SRAI_H(b0, 6); \ + CLIP_UH_0_255(b0); \ + dst = (v16u8)__msa_pckev_b((v16i8)b0, (v16i8)b0); \ +} while (0) + +#define CALC_RGB16(y, u, v, R, G, B) do { \ + const v16u8 zero = { 0 }; \ + v8u16 y0, y1, u0, u1, v0, v1; \ + v4u32 p0, p1, p2, p3; \ + const v16u8 in_y = LD_UB(y); \ + const v16u8 in_u = LD_UB(u); \ + const v16u8 in_v = LD_UB(v); \ + ILVRL_UW4(in_y, p0, p1, p2, p3); \ + MULTHI_16(p0, p1, p2, p3, 19077, y0, y1); \ + ILVRL_UW4(in_v, p0, p1, p2, p3); \ + MULTHI_16(p0, p1, p2, p3, 26149, v0, v1); \ + CALC_R16(y0, y1, v0, v1, R); \ + MULTHI_16(p0, p1, p2, p3, 13320, v0, v1); \ + ILVRL_UW4(in_u, p0, p1, p2, p3); \ + MULTHI_16(p0, p1, p2, p3, 6419, u0, u1); \ + CALC_G16(y0, y1, u0, u1, v0, v1, G); \ + MULTHI_16(p0, p1, p2, p3, 33050, u0, u1); \ + CALC_B16(y0, y1, u0, u1, B); \ +} while (0) + +#define CALC_RGB8(y, u, v, R, G, B) do { \ + const v16u8 zero = { 0 }; \ + v8u16 y0, u0, v0; \ + v4u32 p0, p1; \ + const v16u8 in_y = LD_UB(y); \ + const v16u8 in_u = LD_UB(u); \ + const v16u8 in_v = LD_UB(v); \ + ILVR_UW2(in_y, p0, p1); \ + MULTHI_8(p0, p1, 19077, y0); \ + ILVR_UW2(in_v, p0, p1); \ + MULTHI_8(p0, p1, 26149, v0); \ + CALC_R8(y0, v0, R); \ + MULTHI_8(p0, p1, 13320, v0); \ + ILVR_UW2(in_u, p0, p1); \ + MULTHI_8(p0, p1, 6419, u0); \ + CALC_G8(y0, u0, v0, G); \ + MULTHI_8(p0, p1, 33050, u0); \ + CALC_B8(y0, u0, B); \ +} while (0) + +#define STORE16_3(a0, a1, a2, dst) do { \ + const v16u8 mask0 = { 0, 1, 16, 2, 3, 17, 4, 5, 18, 6, 7, 19, \ + 8, 9, 20, 10 }; \ + const v16u8 mask1 = { 0, 21, 1, 2, 22, 3, 4, 23, 5, 6, 24, 7, \ + 8, 25, 9, 10 }; \ + const v16u8 mask2 = { 26, 0, 1, 27, 2, 3, 28, 4, 5, 29, 6, 7, \ + 30, 8, 9, 31 }; \ + v16u8 out0, out1, out2, tmp0, tmp1, tmp2; \ + ILVRL_B2_UB(a1, a0, tmp0, tmp1); \ + out0 = VSHF_UB(tmp0, a2, mask0); \ + tmp2 = SLDI_UB(tmp1, tmp0, 11); \ + out1 = VSHF_UB(tmp2, a2, mask1); \ + tmp2 = SLDI_UB(tmp1, tmp1, 6); \ + out2 = VSHF_UB(tmp2, a2, mask2); \ + ST_UB(out0, dst + 0); \ + ST_UB(out1, dst + 16); \ + ST_UB(out2, dst + 32); \ +} while (0) + +#define STORE8_3(a0, a1, a2, dst) do { \ + int64_t out_m; \ + const v16u8 mask0 = { 0, 1, 16, 2, 3, 17, 4, 5, 18, 6, 7, 19, \ + 8, 9, 20, 10 }; \ + const v16u8 mask1 = { 11, 21, 12, 13, 22, 14, 15, 23, \ + 255, 255, 255, 255, 255, 255, 255, 255 }; \ + const v16u8 tmp0 = (v16u8)__msa_ilvr_b((v16i8)a1, (v16i8)a0); \ + v16u8 out0, out1; \ + VSHF_B2_UB(tmp0, a2, tmp0, a2, mask0, mask1, out0, out1); \ + ST_UB(out0, dst); \ + out_m = __msa_copy_s_d((v2i64)out1, 0); \ + SD(out_m, dst + 16); \ +} while (0) + +#define STORE16_4(a0, a1, a2, a3, dst) do { \ + v16u8 tmp0, tmp1, tmp2, tmp3; \ + v16u8 out0, out1, out2, out3; \ + ILVRL_B2_UB(a1, a0, tmp0, tmp1); \ + ILVRL_B2_UB(a3, a2, tmp2, tmp3); \ + ILVRL_H2_UB(tmp2, tmp0, out0, out1); \ + ILVRL_H2_UB(tmp3, tmp1, out2, out3); \ + ST_UB(out0, dst + 0); \ + ST_UB(out1, dst + 16); \ + ST_UB(out2, dst + 32); \ + ST_UB(out3, dst + 48); \ +} while (0) + +#define STORE8_4(a0, a1, a2, a3, dst) do { \ + v16u8 tmp0, tmp1, tmp2, tmp3; \ + ILVR_B2_UB(a1, a0, a3, a2, tmp0, tmp1); \ + ILVRL_H2_UB(tmp1, tmp0, tmp2, tmp3); \ + ST_UB(tmp2, dst + 0); \ + ST_UB(tmp3, dst + 16); \ +} while (0) + +#define STORE2_16(a0, a1, dst) do { \ + v16u8 out0, out1; \ + ILVRL_B2_UB(a1, a0, out0, out1); \ + ST_UB(out0, dst + 0); \ + ST_UB(out1, dst + 16); \ +} while (0) + +#define STORE2_8(a0, a1, dst) do { \ + const v16u8 out0 = (v16u8)__msa_ilvr_b((v16i8)a1, (v16i8)a0); \ + ST_UB(out0, dst); \ +} while (0) + +#define CALC_RGBA4444(y, u, v, out0, out1, N, dst) do { \ + CALC_RGB##N(y, u, v, R, G, B); \ + tmp0 = ANDI_B(R, 0xf0); \ + tmp1 = SRAI_B(G, 4); \ + RG = tmp0 | tmp1; \ + tmp0 = ANDI_B(B, 0xf0); \ + BA = ORI_B(tmp0, 0x0f); \ + STORE2_##N(out0, out1, dst); \ +} while (0) + +#define CALC_RGB565(y, u, v, out0, out1, N, dst) do { \ + CALC_RGB##N(y, u, v, R, G, B); \ + tmp0 = ANDI_B(R, 0xf8); \ + tmp1 = SRAI_B(G, 5); \ + RG = tmp0 | tmp1; \ + tmp0 = SLLI_B(G, 3); \ + tmp1 = ANDI_B(tmp0, 0xe0); \ + tmp0 = SRAI_B(B, 3); \ + GB = tmp0 | tmp1; \ + STORE2_##N(out0, out1, dst); \ +} while (0) + +static WEBP_INLINE int Clip8(int v) { + return v < 0 ? 0 : v > 255 ? 255 : v; +} + +static void YuvToRgb(int y, int u, int v, uint8_t* const rgb) { + const int y1 = MultHi(y, 19077); + const int r1 = y1 + MultHi(v, 26149) - 14234; + const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708; + const int b1 = y1 + MultHi(u, 33050) - 17685; + rgb[0] = Clip8(r1 >> 6); + rgb[1] = Clip8(g1 >> 6); + rgb[2] = Clip8(b1 >> 6); +} + +static void YuvToBgr(int y, int u, int v, uint8_t* const bgr) { + const int y1 = MultHi(y, 19077); + const int r1 = y1 + MultHi(v, 26149) - 14234; + const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708; + const int b1 = y1 + MultHi(u, 33050) - 17685; + bgr[0] = Clip8(b1 >> 6); + bgr[1] = Clip8(g1 >> 6); + bgr[2] = Clip8(r1 >> 6); +} + +#if !defined(WEBP_REDUCE_CSP) +static void YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { + const int y1 = MultHi(y, 19077); + const int r1 = y1 + MultHi(v, 26149) - 14234; + const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708; + const int b1 = y1 + MultHi(u, 33050) - 17685; + const int r = Clip8(r1 >> 6); + const int g = Clip8(g1 >> 6); + const int b = Clip8(b1 >> 6); + const int rg = (r & 0xf8) | (g >> 5); + const int gb = ((g << 3) & 0xe0) | (b >> 3); +#if (WEBP_SWAP_16BIT_CSP == 1) + rgb[0] = gb; + rgb[1] = rg; +#else + rgb[0] = rg; + rgb[1] = gb; +#endif +} + +static void YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { + const int y1 = MultHi(y, 19077); + const int r1 = y1 + MultHi(v, 26149) - 14234; + const int g1 = y1 - MultHi(u, 6419) - MultHi(v, 13320) + 8708; + const int b1 = y1 + MultHi(u, 33050) - 17685; + const int r = Clip8(r1 >> 6); + const int g = Clip8(g1 >> 6); + const int b = Clip8(b1 >> 6); + const int rg = (r & 0xf0) | (g >> 4); + const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits +#if (WEBP_SWAP_16BIT_CSP == 1) + argb[0] = ba; + argb[1] = rg; +#else + argb[0] = rg; + argb[1] = ba; +#endif +} + +static void YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { + argb[0] = 0xff; + YuvToRgb(y, u, v, argb + 1); +} +#endif // WEBP_REDUCE_CSP + +static void YuvToBgra(uint8_t y, uint8_t u, uint8_t v, uint8_t* const bgra) { + YuvToBgr(y, u, v, bgra); + bgra[3] = 0xff; +} + +static void YuvToRgba(uint8_t y, uint8_t u, uint8_t v, uint8_t* const rgba) { + YuvToRgb(y, u, v, rgba); + rgba[3] = 0xff; +} + +#if !defined(WEBP_REDUCE_CSP) +static void YuvToRgbLine(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B; + while (length >= 16) { + CALC_RGB16(y, u, v, R, G, B); + STORE16_3(R, G, B, dst); + y += 16; + u += 16; + v += 16; + dst += 16 * 3; + length -= 16; + } + if (length > 8) { + uint8_t temp[3 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB16(temp, u, v, R, G, B); + STORE16_3(R, G, B, temp); + memcpy(dst, temp, length * 3 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[3 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB8(temp, u, v, R, G, B); + STORE8_3(R, G, B, temp); + memcpy(dst, temp, length * 3 * sizeof(*dst)); + } +} + +static void YuvToBgrLine(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B; + while (length >= 16) { + CALC_RGB16(y, u, v, R, G, B); + STORE16_3(B, G, R, dst); + y += 16; + u += 16; + v += 16; + dst += 16 * 3; + length -= 16; + } + if (length > 8) { + uint8_t temp[3 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB16(temp, u, v, R, G, B); + STORE16_3(B, G, R, temp); + memcpy(dst, temp, length * 3 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[3 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB8(temp, u, v, R, G, B); + STORE8_3(B, G, R, temp); + memcpy(dst, temp, length * 3 * sizeof(*dst)); + } +} +#endif // WEBP_REDUCE_CSP + +static void YuvToRgbaLine(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B; + const v16u8 A = (v16u8)__msa_ldi_b(ALPHAVAL); + while (length >= 16) { + CALC_RGB16(y, u, v, R, G, B); + STORE16_4(R, G, B, A, dst); + y += 16; + u += 16; + v += 16; + dst += 16 * 4; + length -= 16; + } + if (length > 8) { + uint8_t temp[4 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB16(&temp[0], u, v, R, G, B); + STORE16_4(R, G, B, A, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[4 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB8(temp, u, v, R, G, B); + STORE8_4(R, G, B, A, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } +} + +static void YuvToBgraLine(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B; + const v16u8 A = (v16u8)__msa_ldi_b(ALPHAVAL); + while (length >= 16) { + CALC_RGB16(y, u, v, R, G, B); + STORE16_4(B, G, R, A, dst); + y += 16; + u += 16; + v += 16; + dst += 16 * 4; + length -= 16; + } + if (length > 8) { + uint8_t temp[4 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB16(temp, u, v, R, G, B); + STORE16_4(B, G, R, A, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[4 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB8(temp, u, v, R, G, B); + STORE8_4(B, G, R, A, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } +} + +#if !defined(WEBP_REDUCE_CSP) +static void YuvToArgbLine(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B; + const v16u8 A = (v16u8)__msa_ldi_b(ALPHAVAL); + while (length >= 16) { + CALC_RGB16(y, u, v, R, G, B); + STORE16_4(A, R, G, B, dst); + y += 16; + u += 16; + v += 16; + dst += 16 * 4; + length -= 16; + } + if (length > 8) { + uint8_t temp[4 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB16(temp, u, v, R, G, B); + STORE16_4(A, R, G, B, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[4 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); + CALC_RGB8(temp, u, v, R, G, B); + STORE8_4(A, R, G, B, temp); + memcpy(dst, temp, length * 4 * sizeof(*dst)); + } +} + +static void YuvToRgba4444Line(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B, RG, BA, tmp0, tmp1; + while (length >= 16) { +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGBA4444(y, u, v, BA, RG, 16, dst); +#else + CALC_RGBA4444(y, u, v, RG, BA, 16, dst); +#endif + y += 16; + u += 16; + v += 16; + dst += 16 * 2; + length -= 16; + } + if (length > 8) { + uint8_t temp[2 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGBA4444(temp, u, v, BA, RG, 16, temp); +#else + CALC_RGBA4444(temp, u, v, RG, BA, 16, temp); +#endif + memcpy(dst, temp, length * 2 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[2 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGBA4444(temp, u, v, BA, RG, 8, temp); +#else + CALC_RGBA4444(temp, u, v, RG, BA, 8, temp); +#endif + memcpy(dst, temp, length * 2 * sizeof(*dst)); + } +} + +static void YuvToRgb565Line(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst, int length) { + v16u8 R, G, B, RG, GB, tmp0, tmp1; + while (length >= 16) { +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGB565(y, u, v, GB, RG, 16, dst); +#else + CALC_RGB565(y, u, v, RG, GB, 16, dst); +#endif + y += 16; + u += 16; + v += 16; + dst += 16 * 2; + length -= 16; + } + if (length > 8) { + uint8_t temp[2 * 16] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGB565(temp, u, v, GB, RG, 16, temp); +#else + CALC_RGB565(temp, u, v, RG, GB, 16, temp); +#endif + memcpy(dst, temp, length * 2 * sizeof(*dst)); + } else if (length > 0) { + uint8_t temp[2 * 8] = { 0 }; + memcpy(temp, y, length * sizeof(*temp)); +#if (WEBP_SWAP_16BIT_CSP == 1) + CALC_RGB565(temp, u, v, GB, RG, 8, temp); +#else + CALC_RGB565(temp, u, v, RG, GB, 8, temp); +#endif + memcpy(dst, temp, length * 2 * sizeof(*dst)); + } +} +#endif // WEBP_REDUCE_CSP + +#define UPSAMPLE_32PIXELS(a, b, c, d) do { \ + v16u8 s = __msa_aver_u_b(a, d); \ + v16u8 t = __msa_aver_u_b(b, c); \ + const v16u8 st = s ^ t; \ + v16u8 ad = a ^ d; \ + v16u8 bc = b ^ c; \ + v16u8 t0 = ad | bc; \ + v16u8 t1 = t0 | st; \ + v16u8 t2 = ANDI_B(t1, 1); \ + v16u8 t3 = __msa_aver_u_b(s, t); \ + const v16u8 k = t3 - t2; \ + v16u8 diag1, diag2; \ + AVER_UB2_UB(t, k, s, k, t0, t1); \ + bc = bc & st; \ + ad = ad & st; \ + t = t ^ k; \ + s = s ^ k; \ + t2 = bc | t; \ + t3 = ad | s; \ + t2 = ANDI_B(t2, 1); \ + t3 = ANDI_B(t3, 1); \ + SUB2(t0, t2, t1, t3, diag1, diag2); \ + AVER_UB2_UB(a, diag1, b, diag2, t0, t1); \ + ILVRL_B2_UB(t1, t0, a, b); \ + if (pbot_y != NULL) { \ + AVER_UB2_UB(c, diag2, d, diag1, t0, t1); \ + ILVRL_B2_UB(t1, t0, c, d); \ + } \ +} while (0) + +#define UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bot_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bot_dst, int len) \ +{ \ + int size = (len - 1) >> 1; \ + uint8_t temp_u[64]; \ + uint8_t temp_v[64]; \ + const uint32_t tl_uv = ((top_u[0]) | ((top_v[0]) << 16)); \ + const uint32_t l_uv = ((cur_u[0]) | ((cur_v[0]) << 16)); \ + const uint32_t uv0 = (3 * tl_uv + l_uv + 0x00020002u) >> 2; \ + const uint8_t* ptop_y = &top_y[1]; \ + uint8_t* ptop_dst = top_dst + XSTEP; \ + const uint8_t* pbot_y = &bot_y[1]; \ + uint8_t* pbot_dst = bot_dst + XSTEP; \ + \ + FUNC(top_y[0], uv0 & 0xff, (uv0 >> 16), top_dst); \ + if (bot_y != NULL) { \ + const uint32_t uv1 = (3 * l_uv + tl_uv + 0x00020002u) >> 2; \ + FUNC(bot_y[0], uv1 & 0xff, (uv1 >> 16), bot_dst); \ + } \ + while (size >= 16) { \ + v16u8 tu0, tu1, tv0, tv1, cu0, cu1, cv0, cv1; \ + LD_UB2(top_u, 1, tu0, tu1); \ + LD_UB2(cur_u, 1, cu0, cu1); \ + LD_UB2(top_v, 1, tv0, tv1); \ + LD_UB2(cur_v, 1, cv0, cv1); \ + UPSAMPLE_32PIXELS(tu0, tu1, cu0, cu1); \ + UPSAMPLE_32PIXELS(tv0, tv1, cv0, cv1); \ + ST_UB4(tu0, tu1, cu0, cu1, &temp_u[0], 16); \ + ST_UB4(tv0, tv1, cv0, cv1, &temp_v[0], 16); \ + FUNC##Line(ptop_y, &temp_u[ 0], &temp_v[0], ptop_dst, 32); \ + if (bot_y != NULL) { \ + FUNC##Line(pbot_y, &temp_u[32], &temp_v[32], pbot_dst, 32); \ + } \ + ptop_y += 32; \ + pbot_y += 32; \ + ptop_dst += XSTEP * 32; \ + pbot_dst += XSTEP * 32; \ + top_u += 16; \ + top_v += 16; \ + cur_u += 16; \ + cur_v += 16; \ + size -= 16; \ + } \ + if (size > 0) { \ + v16u8 tu0, tu1, tv0, tv1, cu0, cu1, cv0, cv1; \ + memcpy(&temp_u[ 0], top_u, 17 * sizeof(uint8_t)); \ + memcpy(&temp_u[32], cur_u, 17 * sizeof(uint8_t)); \ + memcpy(&temp_v[ 0], top_v, 17 * sizeof(uint8_t)); \ + memcpy(&temp_v[32], cur_v, 17 * sizeof(uint8_t)); \ + LD_UB2(&temp_u[ 0], 1, tu0, tu1); \ + LD_UB2(&temp_u[32], 1, cu0, cu1); \ + LD_UB2(&temp_v[ 0], 1, tv0, tv1); \ + LD_UB2(&temp_v[32], 1, cv0, cv1); \ + UPSAMPLE_32PIXELS(tu0, tu1, cu0, cu1); \ + UPSAMPLE_32PIXELS(tv0, tv1, cv0, cv1); \ + ST_UB4(tu0, tu1, cu0, cu1, &temp_u[0], 16); \ + ST_UB4(tv0, tv1, cv0, cv1, &temp_v[0], 16); \ + FUNC##Line(ptop_y, &temp_u[ 0], &temp_v[0], ptop_dst, size * 2); \ + if (bot_y != NULL) { \ + FUNC##Line(pbot_y, &temp_u[32], &temp_v[32], pbot_dst, size * 2); \ + } \ + top_u += size; \ + top_v += size; \ + cur_u += size; \ + cur_v += size; \ + } \ + if (!(len & 1)) { \ + const uint32_t t0 = ((top_u[0]) | ((top_v[0]) << 16)); \ + const uint32_t c0 = ((cur_u[0]) | ((cur_v[0]) << 16)); \ + const uint32_t tmp0 = (3 * t0 + c0 + 0x00020002u) >> 2; \ + FUNC(top_y[len - 1], tmp0 & 0xff, (tmp0 >> 16), \ + top_dst + (len - 1) * XSTEP); \ + if (bot_y != NULL) { \ + const uint32_t tmp1 = (3 * c0 + t0 + 0x00020002u) >> 2; \ + FUNC(bot_y[len - 1], tmp1 & 0xff, (tmp1 >> 16), \ + bot_dst + (len - 1) * XSTEP); \ + } \ + } \ +} + +UPSAMPLE_FUNC(UpsampleRgbaLinePair, YuvToRgba, 4) +UPSAMPLE_FUNC(UpsampleBgraLinePair, YuvToBgra, 4) +#if !defined(WEBP_REDUCE_CSP) +UPSAMPLE_FUNC(UpsampleRgbLinePair, YuvToRgb, 3) +UPSAMPLE_FUNC(UpsampleBgrLinePair, YuvToBgr, 3) +UPSAMPLE_FUNC(UpsampleArgbLinePair, YuvToArgb, 4) +UPSAMPLE_FUNC(UpsampleRgba4444LinePair, YuvToRgba4444, 2) +UPSAMPLE_FUNC(UpsampleRgb565LinePair, YuvToRgb565, 2) +#endif // WEBP_REDUCE_CSP + +//------------------------------------------------------------------------------ +// Entry point + +extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */]; + +extern void WebPInitUpsamplersMSA(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersMSA(void) { + WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair; + WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair; + WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair; + WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair; +#if !defined(WEBP_REDUCE_CSP) + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair; + WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair; + WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair; + WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair; + WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair; + WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair; +#endif // WEBP_REDUCE_CSP +} + +#endif // FANCY_UPSAMPLING + +#endif // WEBP_USE_MSA + +#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_MSA)) +WEBP_DSP_INIT_STUB(WebPInitUpsamplersMSA) +#endif diff --git a/media/libwebp/src/dsp/upsampling_neon.c b/media/libwebp/src/dsp/upsampling_neon.c new file mode 100644 index 0000000000..6ba71a7de5 --- /dev/null +++ b/media/libwebp/src/dsp/upsampling_neon.c @@ -0,0 +1,285 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// NEON version of YUV to RGB upsampling functions. +// +// Author: mans@mansr.com (Mans Rullgard) +// Based on SSE code by: somnath@google.com (Somnath Banerjee) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_NEON) + +#include <assert.h> +#include <arm_neon.h> +#include <string.h> +#include "src/dsp/neon.h" +#include "src/dsp/yuv.h" + +#ifdef FANCY_UPSAMPLING + +//----------------------------------------------------------------------------- +// U/V upsampling + +// Loads 9 pixels each from rows r1 and r2 and generates 16 pixels. +#define UPSAMPLE_16PIXELS(r1, r2, out) do { \ + const uint8x8_t a = vld1_u8(r1 + 0); \ + const uint8x8_t b = vld1_u8(r1 + 1); \ + const uint8x8_t c = vld1_u8(r2 + 0); \ + const uint8x8_t d = vld1_u8(r2 + 1); \ + /* a + b + c + d */ \ + const uint16x8_t ad = vaddl_u8(a, d); \ + const uint16x8_t bc = vaddl_u8(b, c); \ + const uint16x8_t abcd = vaddq_u16(ad, bc); \ + /* 3a + b + c + 3d */ \ + const uint16x8_t al = vaddq_u16(abcd, vshlq_n_u16(ad, 1)); \ + /* a + 3b + 3c + d */ \ + const uint16x8_t bl = vaddq_u16(abcd, vshlq_n_u16(bc, 1)); \ + \ + const uint8x8_t diag2 = vshrn_n_u16(al, 3); \ + const uint8x8_t diag1 = vshrn_n_u16(bl, 3); \ + \ + const uint8x8_t A = vrhadd_u8(a, diag1); \ + const uint8x8_t B = vrhadd_u8(b, diag2); \ + const uint8x8_t C = vrhadd_u8(c, diag2); \ + const uint8x8_t D = vrhadd_u8(d, diag1); \ + \ + uint8x8x2_t A_B, C_D; \ + INIT_VECTOR2(A_B, A, B); \ + INIT_VECTOR2(C_D, C, D); \ + vst2_u8(out + 0, A_B); \ + vst2_u8(out + 32, C_D); \ +} while (0) + +// Turn the macro into a function for reducing code-size when non-critical +static void Upsample16Pixels_NEON(const uint8_t* r1, const uint8_t* r2, + uint8_t* out) { + UPSAMPLE_16PIXELS(r1, r2, out); +} + +#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \ + uint8_t r1[9], r2[9]; \ + memcpy(r1, (tb), (num_pixels)); \ + memcpy(r2, (bb), (num_pixels)); \ + /* replicate last byte */ \ + memset(r1 + (num_pixels), r1[(num_pixels) - 1], 9 - (num_pixels)); \ + memset(r2 + (num_pixels), r2[(num_pixels) - 1], 9 - (num_pixels)); \ + Upsample16Pixels_NEON(r1, r2, out); \ +} + +//----------------------------------------------------------------------------- +// YUV->RGB conversion + +// note: we represent the 33050 large constant as 32768 + 282 +static const int16_t kCoeffs1[4] = { 19077, 26149, 6419, 13320 }; + +#define v255 vdup_n_u8(255) + +#define STORE_Rgb(out, r, g, b) do { \ + uint8x8x3_t r_g_b; \ + INIT_VECTOR3(r_g_b, r, g, b); \ + vst3_u8(out, r_g_b); \ +} while (0) + +#define STORE_Bgr(out, r, g, b) do { \ + uint8x8x3_t b_g_r; \ + INIT_VECTOR3(b_g_r, b, g, r); \ + vst3_u8(out, b_g_r); \ +} while (0) + +#define STORE_Rgba(out, r, g, b) do { \ + uint8x8x4_t r_g_b_v255; \ + INIT_VECTOR4(r_g_b_v255, r, g, b, v255); \ + vst4_u8(out, r_g_b_v255); \ +} while (0) + +#define STORE_Bgra(out, r, g, b) do { \ + uint8x8x4_t b_g_r_v255; \ + INIT_VECTOR4(b_g_r_v255, b, g, r, v255); \ + vst4_u8(out, b_g_r_v255); \ +} while (0) + +#define STORE_Argb(out, r, g, b) do { \ + uint8x8x4_t v255_r_g_b; \ + INIT_VECTOR4(v255_r_g_b, v255, r, g, b); \ + vst4_u8(out, v255_r_g_b); \ +} while (0) + +#if !defined(WEBP_SWAP_16BIT_CSP) +#define ZIP_U8(lo, hi) vzip_u8((lo), (hi)) +#else +#define ZIP_U8(lo, hi) vzip_u8((hi), (lo)) +#endif + +#define STORE_Rgba4444(out, r, g, b) do { \ + const uint8x8_t rg = vsri_n_u8(r, g, 4); /* shift g, insert r */ \ + const uint8x8_t ba = vsri_n_u8(b, v255, 4); /* shift a, insert b */ \ + const uint8x8x2_t rgba4444 = ZIP_U8(rg, ba); \ + vst1q_u8(out, vcombine_u8(rgba4444.val[0], rgba4444.val[1])); \ +} while (0) + +#define STORE_Rgb565(out, r, g, b) do { \ + const uint8x8_t rg = vsri_n_u8(r, g, 5); /* shift g and insert r */ \ + const uint8x8_t g1 = vshl_n_u8(g, 3); /* pre-shift g: 3bits */ \ + const uint8x8_t gb = vsri_n_u8(g1, b, 3); /* shift b and insert g */ \ + const uint8x8x2_t rgb565 = ZIP_U8(rg, gb); \ + vst1q_u8(out, vcombine_u8(rgb565.val[0], rgb565.val[1])); \ +} while (0) + +#define CONVERT8(FMT, XSTEP, N, src_y, src_uv, out, cur_x) do { \ + int i; \ + for (i = 0; i < N; i += 8) { \ + const int off = ((cur_x) + i) * XSTEP; \ + const uint8x8_t y = vld1_u8((src_y) + (cur_x) + i); \ + const uint8x8_t u = vld1_u8((src_uv) + i + 0); \ + const uint8x8_t v = vld1_u8((src_uv) + i + 16); \ + const int16x8_t Y0 = vreinterpretq_s16_u16(vshll_n_u8(y, 7)); \ + const int16x8_t U0 = vreinterpretq_s16_u16(vshll_n_u8(u, 7)); \ + const int16x8_t V0 = vreinterpretq_s16_u16(vshll_n_u8(v, 7)); \ + const int16x8_t Y1 = vqdmulhq_lane_s16(Y0, coeff1, 0); \ + const int16x8_t R0 = vqdmulhq_lane_s16(V0, coeff1, 1); \ + const int16x8_t G0 = vqdmulhq_lane_s16(U0, coeff1, 2); \ + const int16x8_t G1 = vqdmulhq_lane_s16(V0, coeff1, 3); \ + const int16x8_t B0 = vqdmulhq_n_s16(U0, 282); \ + const int16x8_t R1 = vqaddq_s16(Y1, R_Rounder); \ + const int16x8_t G2 = vqaddq_s16(Y1, G_Rounder); \ + const int16x8_t B1 = vqaddq_s16(Y1, B_Rounder); \ + const int16x8_t R2 = vqaddq_s16(R0, R1); \ + const int16x8_t G3 = vqaddq_s16(G0, G1); \ + const int16x8_t B2 = vqaddq_s16(B0, B1); \ + const int16x8_t G4 = vqsubq_s16(G2, G3); \ + const int16x8_t B3 = vqaddq_s16(B2, U0); \ + const uint8x8_t R = vqshrun_n_s16(R2, YUV_FIX2); \ + const uint8x8_t G = vqshrun_n_s16(G4, YUV_FIX2); \ + const uint8x8_t B = vqshrun_n_s16(B3, YUV_FIX2); \ + STORE_ ## FMT(out + off, R, G, B); \ + } \ +} while (0) + +#define CONVERT1(FUNC, XSTEP, N, src_y, src_uv, rgb, cur_x) { \ + int i; \ + for (i = 0; i < N; i++) { \ + const int off = ((cur_x) + i) * XSTEP; \ + const int y = src_y[(cur_x) + i]; \ + const int u = (src_uv)[i]; \ + const int v = (src_uv)[i + 16]; \ + FUNC(y, u, v, rgb + off); \ + } \ +} + +#define CONVERT2RGB_8(FMT, XSTEP, top_y, bottom_y, uv, \ + top_dst, bottom_dst, cur_x, len) { \ + CONVERT8(FMT, XSTEP, len, top_y, uv, top_dst, cur_x); \ + if (bottom_y != NULL) { \ + CONVERT8(FMT, XSTEP, len, bottom_y, (uv) + 32, bottom_dst, cur_x); \ + } \ +} + +#define CONVERT2RGB_1(FUNC, XSTEP, top_y, bottom_y, uv, \ + top_dst, bottom_dst, cur_x, len) { \ + CONVERT1(FUNC, XSTEP, len, top_y, uv, top_dst, cur_x); \ + if (bottom_y != NULL) { \ + CONVERT1(FUNC, XSTEP, len, bottom_y, (uv) + 32, bottom_dst, cur_x); \ + } \ +} + +#define NEON_UPSAMPLE_FUNC(FUNC_NAME, FMT, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ + int block; \ + /* 16 byte aligned array to cache reconstructed u and v */ \ + uint8_t uv_buf[2 * 32 + 15]; \ + uint8_t* const r_uv = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \ + const int uv_len = (len + 1) >> 1; \ + /* 9 pixels must be read-able for each block */ \ + const int num_blocks = (uv_len - 1) >> 3; \ + const int leftover = uv_len - num_blocks * 8; \ + const int last_pos = 1 + 16 * num_blocks; \ + \ + const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \ + const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \ + \ + const int16x4_t coeff1 = vld1_s16(kCoeffs1); \ + const int16x8_t R_Rounder = vdupq_n_s16(-14234); \ + const int16x8_t G_Rounder = vdupq_n_s16(8708); \ + const int16x8_t B_Rounder = vdupq_n_s16(-17685); \ + \ + /* Treat the first pixel in regular way */ \ + assert(top_y != NULL); \ + { \ + const int u0 = (top_u[0] + u_diag) >> 1; \ + const int v0 = (top_v[0] + v_diag) >> 1; \ + VP8YuvTo ## FMT(top_y[0], u0, v0, top_dst); \ + } \ + if (bottom_y != NULL) { \ + const int u0 = (cur_u[0] + u_diag) >> 1; \ + const int v0 = (cur_v[0] + v_diag) >> 1; \ + VP8YuvTo ## FMT(bottom_y[0], u0, v0, bottom_dst); \ + } \ + \ + for (block = 0; block < num_blocks; ++block) { \ + UPSAMPLE_16PIXELS(top_u, cur_u, r_uv); \ + UPSAMPLE_16PIXELS(top_v, cur_v, r_uv + 16); \ + CONVERT2RGB_8(FMT, XSTEP, top_y, bottom_y, r_uv, \ + top_dst, bottom_dst, 16 * block + 1, 16); \ + top_u += 8; \ + cur_u += 8; \ + top_v += 8; \ + cur_v += 8; \ + } \ + \ + UPSAMPLE_LAST_BLOCK(top_u, cur_u, leftover, r_uv); \ + UPSAMPLE_LAST_BLOCK(top_v, cur_v, leftover, r_uv + 16); \ + CONVERT2RGB_1(VP8YuvTo ## FMT, XSTEP, top_y, bottom_y, r_uv, \ + top_dst, bottom_dst, last_pos, len - last_pos); \ +} + +// NEON variants of the fancy upsampler. +NEON_UPSAMPLE_FUNC(UpsampleRgbaLinePair_NEON, Rgba, 4) +NEON_UPSAMPLE_FUNC(UpsampleBgraLinePair_NEON, Bgra, 4) +#if !defined(WEBP_REDUCE_CSP) +NEON_UPSAMPLE_FUNC(UpsampleRgbLinePair_NEON, Rgb, 3) +NEON_UPSAMPLE_FUNC(UpsampleBgrLinePair_NEON, Bgr, 3) +NEON_UPSAMPLE_FUNC(UpsampleArgbLinePair_NEON, Argb, 4) +NEON_UPSAMPLE_FUNC(UpsampleRgba4444LinePair_NEON, Rgba4444, 2) +NEON_UPSAMPLE_FUNC(UpsampleRgb565LinePair_NEON, Rgb565, 2) +#endif // WEBP_REDUCE_CSP + +//------------------------------------------------------------------------------ +// Entry point + +extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */]; + +extern void WebPInitUpsamplersNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersNEON(void) { + WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair_NEON; + WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair_NEON; + WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair_NEON; + WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair_NEON; +#if !defined(WEBP_REDUCE_CSP) + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair_NEON; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair_NEON; + WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair_NEON; + WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair_NEON; + WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair_NEON; + WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair_NEON; + WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair_NEON; +#endif // WEBP_REDUCE_CSP +} + +#endif // FANCY_UPSAMPLING + +#endif // WEBP_USE_NEON + +#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_NEON)) +WEBP_DSP_INIT_STUB(WebPInitUpsamplersNEON) +#endif diff --git a/media/libwebp/src/dsp/upsampling_sse2.c b/media/libwebp/src/dsp/upsampling_sse2.c new file mode 100644 index 0000000000..08b6d0b1cf --- /dev/null +++ b/media/libwebp/src/dsp/upsampling_sse2.c @@ -0,0 +1,267 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE2 version of YUV to RGB upsampling functions. +// +// Author: somnath@google.com (Somnath Banerjee) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE2) + +#include <assert.h> +#include <emmintrin.h> +#include <string.h> +#include "src/dsp/yuv.h" + +#ifdef FANCY_UPSAMPLING + +// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows +// u = (9*a + 3*b + 3*c + d + 8) / 16 +// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2 +// = (a + m + 1) / 2 +// where m = (a + 3*b + 3*c + d) / 8 +// = ((a + b + c + d) / 2 + b + c) / 4 +// +// Let's say k = (a + b + c + d) / 4. +// We can compute k as +// k = (s + t + 1) / 2 - ((a^d) | (b^c) | (s^t)) & 1 +// where s = (a + d + 1) / 2 and t = (b + c + 1) / 2 +// +// Then m can be written as +// m = (k + t + 1) / 2 - (((b^c) & (s^t)) | (k^t)) & 1 + +// Computes out = (k + in + 1) / 2 - ((ij & (s^t)) | (k^in)) & 1 +#define GET_M(ij, in, out) do { \ + const __m128i tmp0 = _mm_avg_epu8(k, (in)); /* (k + in + 1) / 2 */ \ + const __m128i tmp1 = _mm_and_si128((ij), st); /* (ij) & (s^t) */ \ + const __m128i tmp2 = _mm_xor_si128(k, (in)); /* (k^in) */ \ + const __m128i tmp3 = _mm_or_si128(tmp1, tmp2); /* ((ij) & (s^t)) | (k^in) */\ + const __m128i tmp4 = _mm_and_si128(tmp3, one); /* & 1 -> lsb_correction */ \ + (out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \ +} while (0) + +// pack and store two alternating pixel rows +#define PACK_AND_STORE(a, b, da, db, out) do { \ + const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \ + const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \ + const __m128i t_1 = _mm_unpacklo_epi8(t_a, t_b); \ + const __m128i t_2 = _mm_unpackhi_epi8(t_a, t_b); \ + _mm_store_si128(((__m128i*)(out)) + 0, t_1); \ + _mm_store_si128(((__m128i*)(out)) + 1, t_2); \ +} while (0) + +// Loads 17 pixels each from rows r1 and r2 and generates 32 pixels. +#define UPSAMPLE_32PIXELS(r1, r2, out) { \ + const __m128i one = _mm_set1_epi8(1); \ + const __m128i a = _mm_loadu_si128((const __m128i*)&(r1)[0]); \ + const __m128i b = _mm_loadu_si128((const __m128i*)&(r1)[1]); \ + const __m128i c = _mm_loadu_si128((const __m128i*)&(r2)[0]); \ + const __m128i d = _mm_loadu_si128((const __m128i*)&(r2)[1]); \ + \ + const __m128i s = _mm_avg_epu8(a, d); /* s = (a + d + 1) / 2 */ \ + const __m128i t = _mm_avg_epu8(b, c); /* t = (b + c + 1) / 2 */ \ + const __m128i st = _mm_xor_si128(s, t); /* st = s^t */ \ + \ + const __m128i ad = _mm_xor_si128(a, d); /* ad = a^d */ \ + const __m128i bc = _mm_xor_si128(b, c); /* bc = b^c */ \ + \ + const __m128i t1 = _mm_or_si128(ad, bc); /* (a^d) | (b^c) */ \ + const __m128i t2 = _mm_or_si128(t1, st); /* (a^d) | (b^c) | (s^t) */ \ + const __m128i t3 = _mm_and_si128(t2, one); /* (a^d) | (b^c) | (s^t) & 1 */ \ + const __m128i t4 = _mm_avg_epu8(s, t); \ + const __m128i k = _mm_sub_epi8(t4, t3); /* k = (a + b + c + d) / 4 */ \ + __m128i diag1, diag2; \ + \ + GET_M(bc, t, diag1); /* diag1 = (a + 3b + 3c + d) / 8 */ \ + GET_M(ad, s, diag2); /* diag2 = (3a + b + c + 3d) / 8 */ \ + \ + /* pack the alternate pixels */ \ + PACK_AND_STORE(a, b, diag1, diag2, (out) + 0); /* store top */ \ + PACK_AND_STORE(c, d, diag2, diag1, (out) + 2 * 32); /* store bottom */ \ +} + +// Turn the macro into a function for reducing code-size when non-critical +static void Upsample32Pixels_SSE2(const uint8_t r1[], const uint8_t r2[], + uint8_t* const out) { + UPSAMPLE_32PIXELS(r1, r2, out); +} + +#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \ + uint8_t r1[17], r2[17]; \ + memcpy(r1, (tb), (num_pixels)); \ + memcpy(r2, (bb), (num_pixels)); \ + /* replicate last byte */ \ + memset(r1 + (num_pixels), r1[(num_pixels) - 1], 17 - (num_pixels)); \ + memset(r2 + (num_pixels), r2[(num_pixels) - 1], 17 - (num_pixels)); \ + /* using the shared function instead of the macro saves ~3k code size */ \ + Upsample32Pixels_SSE2(r1, r2, out); \ +} + +#define CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, \ + top_dst, bottom_dst, cur_x) do { \ + FUNC##32_SSE2((top_y) + (cur_x), r_u, r_v, (top_dst) + (cur_x) * (XSTEP)); \ + if ((bottom_y) != NULL) { \ + FUNC##32_SSE2((bottom_y) + (cur_x), r_u + 64, r_v + 64, \ + (bottom_dst) + (cur_x) * (XSTEP)); \ + } \ +} while (0) + +#define SSE2_UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ + int uv_pos, pos; \ + /* 16byte-aligned array to cache reconstructed u and v */ \ + uint8_t uv_buf[14 * 32 + 15] = { 0 }; \ + uint8_t* const r_u = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~(uintptr_t)15); \ + uint8_t* const r_v = r_u + 32; \ + \ + assert(top_y != NULL); \ + { /* Treat the first pixel in regular way */ \ + const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \ + const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \ + const int u0_t = (top_u[0] + u_diag) >> 1; \ + const int v0_t = (top_v[0] + v_diag) >> 1; \ + FUNC(top_y[0], u0_t, v0_t, top_dst); \ + if (bottom_y != NULL) { \ + const int u0_b = (cur_u[0] + u_diag) >> 1; \ + const int v0_b = (cur_v[0] + v_diag) >> 1; \ + FUNC(bottom_y[0], u0_b, v0_b, bottom_dst); \ + } \ + } \ + /* For UPSAMPLE_32PIXELS, 17 u/v values must be read-able for each block */ \ + for (pos = 1, uv_pos = 0; pos + 32 + 1 <= len; pos += 32, uv_pos += 16) { \ + UPSAMPLE_32PIXELS(top_u + uv_pos, cur_u + uv_pos, r_u); \ + UPSAMPLE_32PIXELS(top_v + uv_pos, cur_v + uv_pos, r_v); \ + CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, pos); \ + } \ + if (len > 1) { \ + const int left_over = ((len + 1) >> 1) - (pos >> 1); \ + uint8_t* const tmp_top_dst = r_u + 4 * 32; \ + uint8_t* const tmp_bottom_dst = tmp_top_dst + 4 * 32; \ + uint8_t* const tmp_top = tmp_bottom_dst + 4 * 32; \ + uint8_t* const tmp_bottom = (bottom_y == NULL) ? NULL : tmp_top + 32; \ + assert(left_over > 0); \ + UPSAMPLE_LAST_BLOCK(top_u + uv_pos, cur_u + uv_pos, left_over, r_u); \ + UPSAMPLE_LAST_BLOCK(top_v + uv_pos, cur_v + uv_pos, left_over, r_v); \ + memcpy(tmp_top, top_y + pos, len - pos); \ + if (bottom_y != NULL) memcpy(tmp_bottom, bottom_y + pos, len - pos); \ + CONVERT2RGB_32(FUNC, XSTEP, tmp_top, tmp_bottom, tmp_top_dst, \ + tmp_bottom_dst, 0); \ + memcpy(top_dst + pos * (XSTEP), tmp_top_dst, (len - pos) * (XSTEP)); \ + if (bottom_y != NULL) { \ + memcpy(bottom_dst + pos * (XSTEP), tmp_bottom_dst, \ + (len - pos) * (XSTEP)); \ + } \ + } \ +} + +// SSE2 variants of the fancy upsampler. +SSE2_UPSAMPLE_FUNC(UpsampleRgbaLinePair_SSE2, VP8YuvToRgba, 4) +SSE2_UPSAMPLE_FUNC(UpsampleBgraLinePair_SSE2, VP8YuvToBgra, 4) + +#if !defined(WEBP_REDUCE_CSP) +SSE2_UPSAMPLE_FUNC(UpsampleRgbLinePair_SSE2, VP8YuvToRgb, 3) +SSE2_UPSAMPLE_FUNC(UpsampleBgrLinePair_SSE2, VP8YuvToBgr, 3) +SSE2_UPSAMPLE_FUNC(UpsampleArgbLinePair_SSE2, VP8YuvToArgb, 4) +SSE2_UPSAMPLE_FUNC(UpsampleRgba4444LinePair_SSE2, VP8YuvToRgba4444, 2) +SSE2_UPSAMPLE_FUNC(UpsampleRgb565LinePair_SSE2, VP8YuvToRgb565, 2) +#endif // WEBP_REDUCE_CSP + +#undef GET_M +#undef PACK_AND_STORE +#undef UPSAMPLE_32PIXELS +#undef UPSAMPLE_LAST_BLOCK +#undef CONVERT2RGB +#undef CONVERT2RGB_32 +#undef SSE2_UPSAMPLE_FUNC + +//------------------------------------------------------------------------------ +// Entry point + +extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */]; + +extern void WebPInitUpsamplersSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersSSE2(void) { + WebPUpsamplers[MODE_RGBA] = UpsampleRgbaLinePair_SSE2; + WebPUpsamplers[MODE_BGRA] = UpsampleBgraLinePair_SSE2; + WebPUpsamplers[MODE_rgbA] = UpsampleRgbaLinePair_SSE2; + WebPUpsamplers[MODE_bgrA] = UpsampleBgraLinePair_SSE2; +#if !defined(WEBP_REDUCE_CSP) + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair_SSE2; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair_SSE2; + WebPUpsamplers[MODE_ARGB] = UpsampleArgbLinePair_SSE2; + WebPUpsamplers[MODE_Argb] = UpsampleArgbLinePair_SSE2; + WebPUpsamplers[MODE_RGB_565] = UpsampleRgb565LinePair_SSE2; + WebPUpsamplers[MODE_RGBA_4444] = UpsampleRgba4444LinePair_SSE2; + WebPUpsamplers[MODE_rgbA_4444] = UpsampleRgba4444LinePair_SSE2; +#endif // WEBP_REDUCE_CSP +} + +#endif // FANCY_UPSAMPLING + +//------------------------------------------------------------------------------ + +extern WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */]; +extern void WebPInitYUV444ConvertersSSE2(void); + +#define YUV444_FUNC(FUNC_NAME, CALL, CALL_C, XSTEP) \ +extern void CALL_C(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len); \ +static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i; \ + const int max_len = len & ~31; \ + for (i = 0; i < max_len; i += 32) { \ + CALL(y + i, u + i, v + i, dst + i * (XSTEP)); \ + } \ + if (i < len) { /* C-fallback */ \ + CALL_C(y + i, u + i, v + i, dst + i * (XSTEP), len - i); \ + } \ +} + +YUV444_FUNC(Yuv444ToRgba_SSE2, VP8YuvToRgba32_SSE2, WebPYuv444ToRgba_C, 4); +YUV444_FUNC(Yuv444ToBgra_SSE2, VP8YuvToBgra32_SSE2, WebPYuv444ToBgra_C, 4); +#if !defined(WEBP_REDUCE_CSP) +YUV444_FUNC(Yuv444ToRgb_SSE2, VP8YuvToRgb32_SSE2, WebPYuv444ToRgb_C, 3); +YUV444_FUNC(Yuv444ToBgr_SSE2, VP8YuvToBgr32_SSE2, WebPYuv444ToBgr_C, 3); +YUV444_FUNC(Yuv444ToArgb_SSE2, VP8YuvToArgb32_SSE2, WebPYuv444ToArgb_C, 4) +YUV444_FUNC(Yuv444ToRgba4444_SSE2, VP8YuvToRgba444432_SSE2, \ + WebPYuv444ToRgba4444_C, 2) +YUV444_FUNC(Yuv444ToRgb565_SSE2, VP8YuvToRgb56532_SSE2, WebPYuv444ToRgb565_C, 2) +#endif // WEBP_REDUCE_CSP + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444ConvertersSSE2(void) { + WebPYUV444Converters[MODE_RGBA] = Yuv444ToRgba_SSE2; + WebPYUV444Converters[MODE_BGRA] = Yuv444ToBgra_SSE2; + WebPYUV444Converters[MODE_rgbA] = Yuv444ToRgba_SSE2; + WebPYUV444Converters[MODE_bgrA] = Yuv444ToBgra_SSE2; +#if !defined(WEBP_REDUCE_CSP) + WebPYUV444Converters[MODE_RGB] = Yuv444ToRgb_SSE2; + WebPYUV444Converters[MODE_BGR] = Yuv444ToBgr_SSE2; + WebPYUV444Converters[MODE_ARGB] = Yuv444ToArgb_SSE2; + WebPYUV444Converters[MODE_RGBA_4444] = Yuv444ToRgba4444_SSE2; + WebPYUV444Converters[MODE_RGB_565] = Yuv444ToRgb565_SSE2; + WebPYUV444Converters[MODE_Argb] = Yuv444ToArgb_SSE2; + WebPYUV444Converters[MODE_rgbA_4444] = Yuv444ToRgba4444_SSE2; +#endif // WEBP_REDUCE_CSP +} + +#else + +WEBP_DSP_INIT_STUB(WebPInitYUV444ConvertersSSE2) + +#endif // WEBP_USE_SSE2 + +#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_SSE2)) +WEBP_DSP_INIT_STUB(WebPInitUpsamplersSSE2) +#endif diff --git a/media/libwebp/src/dsp/upsampling_sse41.c b/media/libwebp/src/dsp/upsampling_sse41.c new file mode 100644 index 0000000000..648d456027 --- /dev/null +++ b/media/libwebp/src/dsp/upsampling_sse41.c @@ -0,0 +1,239 @@ +// Copyright 2011 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// SSE41 version of YUV to RGB upsampling functions. +// +// Author: somnath@google.com (Somnath Banerjee) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_SSE41) + +#include <assert.h> +#include <smmintrin.h> +#include <string.h> +#include "src/dsp/yuv.h" + +#ifdef FANCY_UPSAMPLING + +#if !defined(WEBP_REDUCE_CSP) + +// We compute (9*a + 3*b + 3*c + d + 8) / 16 as follows +// u = (9*a + 3*b + 3*c + d + 8) / 16 +// = (a + (a + 3*b + 3*c + d) / 8 + 1) / 2 +// = (a + m + 1) / 2 +// where m = (a + 3*b + 3*c + d) / 8 +// = ((a + b + c + d) / 2 + b + c) / 4 +// +// Let's say k = (a + b + c + d) / 4. +// We can compute k as +// k = (s + t + 1) / 2 - ((a^d) | (b^c) | (s^t)) & 1 +// where s = (a + d + 1) / 2 and t = (b + c + 1) / 2 +// +// Then m can be written as +// m = (k + t + 1) / 2 - (((b^c) & (s^t)) | (k^t)) & 1 + +// Computes out = (k + in + 1) / 2 - ((ij & (s^t)) | (k^in)) & 1 +#define GET_M(ij, in, out) do { \ + const __m128i tmp0 = _mm_avg_epu8(k, (in)); /* (k + in + 1) / 2 */ \ + const __m128i tmp1 = _mm_and_si128((ij), st); /* (ij) & (s^t) */ \ + const __m128i tmp2 = _mm_xor_si128(k, (in)); /* (k^in) */ \ + const __m128i tmp3 = _mm_or_si128(tmp1, tmp2); /* ((ij) & (s^t)) | (k^in) */\ + const __m128i tmp4 = _mm_and_si128(tmp3, one); /* & 1 -> lsb_correction */ \ + (out) = _mm_sub_epi8(tmp0, tmp4); /* (k + in + 1) / 2 - lsb_correction */ \ +} while (0) + +// pack and store two alternating pixel rows +#define PACK_AND_STORE(a, b, da, db, out) do { \ + const __m128i t_a = _mm_avg_epu8(a, da); /* (9a + 3b + 3c + d + 8) / 16 */ \ + const __m128i t_b = _mm_avg_epu8(b, db); /* (3a + 9b + c + 3d + 8) / 16 */ \ + const __m128i t_1 = _mm_unpacklo_epi8(t_a, t_b); \ + const __m128i t_2 = _mm_unpackhi_epi8(t_a, t_b); \ + _mm_store_si128(((__m128i*)(out)) + 0, t_1); \ + _mm_store_si128(((__m128i*)(out)) + 1, t_2); \ +} while (0) + +// Loads 17 pixels each from rows r1 and r2 and generates 32 pixels. +#define UPSAMPLE_32PIXELS(r1, r2, out) { \ + const __m128i one = _mm_set1_epi8(1); \ + const __m128i a = _mm_loadu_si128((const __m128i*)&(r1)[0]); \ + const __m128i b = _mm_loadu_si128((const __m128i*)&(r1)[1]); \ + const __m128i c = _mm_loadu_si128((const __m128i*)&(r2)[0]); \ + const __m128i d = _mm_loadu_si128((const __m128i*)&(r2)[1]); \ + \ + const __m128i s = _mm_avg_epu8(a, d); /* s = (a + d + 1) / 2 */ \ + const __m128i t = _mm_avg_epu8(b, c); /* t = (b + c + 1) / 2 */ \ + const __m128i st = _mm_xor_si128(s, t); /* st = s^t */ \ + \ + const __m128i ad = _mm_xor_si128(a, d); /* ad = a^d */ \ + const __m128i bc = _mm_xor_si128(b, c); /* bc = b^c */ \ + \ + const __m128i t1 = _mm_or_si128(ad, bc); /* (a^d) | (b^c) */ \ + const __m128i t2 = _mm_or_si128(t1, st); /* (a^d) | (b^c) | (s^t) */ \ + const __m128i t3 = _mm_and_si128(t2, one); /* (a^d) | (b^c) | (s^t) & 1 */ \ + const __m128i t4 = _mm_avg_epu8(s, t); \ + const __m128i k = _mm_sub_epi8(t4, t3); /* k = (a + b + c + d) / 4 */ \ + __m128i diag1, diag2; \ + \ + GET_M(bc, t, diag1); /* diag1 = (a + 3b + 3c + d) / 8 */ \ + GET_M(ad, s, diag2); /* diag2 = (3a + b + c + 3d) / 8 */ \ + \ + /* pack the alternate pixels */ \ + PACK_AND_STORE(a, b, diag1, diag2, (out) + 0); /* store top */ \ + PACK_AND_STORE(c, d, diag2, diag1, (out) + 2 * 32); /* store bottom */ \ +} + +// Turn the macro into a function for reducing code-size when non-critical +static void Upsample32Pixels_SSE41(const uint8_t r1[], const uint8_t r2[], + uint8_t* const out) { + UPSAMPLE_32PIXELS(r1, r2, out); +} + +#define UPSAMPLE_LAST_BLOCK(tb, bb, num_pixels, out) { \ + uint8_t r1[17], r2[17]; \ + memcpy(r1, (tb), (num_pixels)); \ + memcpy(r2, (bb), (num_pixels)); \ + /* replicate last byte */ \ + memset(r1 + (num_pixels), r1[(num_pixels) - 1], 17 - (num_pixels)); \ + memset(r2 + (num_pixels), r2[(num_pixels) - 1], 17 - (num_pixels)); \ + /* using the shared function instead of the macro saves ~3k code size */ \ + Upsample32Pixels_SSE41(r1, r2, out); \ +} + +#define CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, \ + top_dst, bottom_dst, cur_x) do { \ + FUNC##32_SSE41((top_y) + (cur_x), r_u, r_v, (top_dst) + (cur_x) * (XSTEP)); \ + if ((bottom_y) != NULL) { \ + FUNC##32_SSE41((bottom_y) + (cur_x), r_u + 64, r_v + 64, \ + (bottom_dst) + (cur_x) * (XSTEP)); \ + } \ +} while (0) + +#define SSE4_UPSAMPLE_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* top_y, const uint8_t* bottom_y, \ + const uint8_t* top_u, const uint8_t* top_v, \ + const uint8_t* cur_u, const uint8_t* cur_v, \ + uint8_t* top_dst, uint8_t* bottom_dst, int len) { \ + int uv_pos, pos; \ + /* 16byte-aligned array to cache reconstructed u and v */ \ + uint8_t uv_buf[14 * 32 + 15] = { 0 }; \ + uint8_t* const r_u = (uint8_t*)((uintptr_t)(uv_buf + 15) & ~15); \ + uint8_t* const r_v = r_u + 32; \ + \ + assert(top_y != NULL); \ + { /* Treat the first pixel in regular way */ \ + const int u_diag = ((top_u[0] + cur_u[0]) >> 1) + 1; \ + const int v_diag = ((top_v[0] + cur_v[0]) >> 1) + 1; \ + const int u0_t = (top_u[0] + u_diag) >> 1; \ + const int v0_t = (top_v[0] + v_diag) >> 1; \ + FUNC(top_y[0], u0_t, v0_t, top_dst); \ + if (bottom_y != NULL) { \ + const int u0_b = (cur_u[0] + u_diag) >> 1; \ + const int v0_b = (cur_v[0] + v_diag) >> 1; \ + FUNC(bottom_y[0], u0_b, v0_b, bottom_dst); \ + } \ + } \ + /* For UPSAMPLE_32PIXELS, 17 u/v values must be read-able for each block */ \ + for (pos = 1, uv_pos = 0; pos + 32 + 1 <= len; pos += 32, uv_pos += 16) { \ + UPSAMPLE_32PIXELS(top_u + uv_pos, cur_u + uv_pos, r_u); \ + UPSAMPLE_32PIXELS(top_v + uv_pos, cur_v + uv_pos, r_v); \ + CONVERT2RGB_32(FUNC, XSTEP, top_y, bottom_y, top_dst, bottom_dst, pos); \ + } \ + if (len > 1) { \ + const int left_over = ((len + 1) >> 1) - (pos >> 1); \ + uint8_t* const tmp_top_dst = r_u + 4 * 32; \ + uint8_t* const tmp_bottom_dst = tmp_top_dst + 4 * 32; \ + uint8_t* const tmp_top = tmp_bottom_dst + 4 * 32; \ + uint8_t* const tmp_bottom = (bottom_y == NULL) ? NULL : tmp_top + 32; \ + assert(left_over > 0); \ + UPSAMPLE_LAST_BLOCK(top_u + uv_pos, cur_u + uv_pos, left_over, r_u); \ + UPSAMPLE_LAST_BLOCK(top_v + uv_pos, cur_v + uv_pos, left_over, r_v); \ + memcpy(tmp_top, top_y + pos, len - pos); \ + if (bottom_y != NULL) memcpy(tmp_bottom, bottom_y + pos, len - pos); \ + CONVERT2RGB_32(FUNC, XSTEP, tmp_top, tmp_bottom, tmp_top_dst, \ + tmp_bottom_dst, 0); \ + memcpy(top_dst + pos * (XSTEP), tmp_top_dst, (len - pos) * (XSTEP)); \ + if (bottom_y != NULL) { \ + memcpy(bottom_dst + pos * (XSTEP), tmp_bottom_dst, \ + (len - pos) * (XSTEP)); \ + } \ + } \ +} + +// SSE4 variants of the fancy upsampler. +SSE4_UPSAMPLE_FUNC(UpsampleRgbLinePair_SSE41, VP8YuvToRgb, 3) +SSE4_UPSAMPLE_FUNC(UpsampleBgrLinePair_SSE41, VP8YuvToBgr, 3) + +#undef GET_M +#undef PACK_AND_STORE +#undef UPSAMPLE_32PIXELS +#undef UPSAMPLE_LAST_BLOCK +#undef CONVERT2RGB +#undef CONVERT2RGB_32 +#undef SSE4_UPSAMPLE_FUNC + +#endif // WEBP_REDUCE_CSP + +//------------------------------------------------------------------------------ +// Entry point + +extern WebPUpsampleLinePairFunc WebPUpsamplers[/* MODE_LAST */]; + +extern void WebPInitUpsamplersSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitUpsamplersSSE41(void) { +#if !defined(WEBP_REDUCE_CSP) + WebPUpsamplers[MODE_RGB] = UpsampleRgbLinePair_SSE41; + WebPUpsamplers[MODE_BGR] = UpsampleBgrLinePair_SSE41; +#endif // WEBP_REDUCE_CSP +} + +#endif // FANCY_UPSAMPLING + +//------------------------------------------------------------------------------ + +extern WebPYUV444Converter WebPYUV444Converters[/* MODE_LAST */]; +extern void WebPInitYUV444ConvertersSSE41(void); + +#define YUV444_FUNC(FUNC_NAME, CALL, CALL_C, XSTEP) \ +extern void CALL_C(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len); \ +static void FUNC_NAME(const uint8_t* y, const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i; \ + const int max_len = len & ~31; \ + for (i = 0; i < max_len; i += 32) { \ + CALL(y + i, u + i, v + i, dst + i * (XSTEP)); \ + } \ + if (i < len) { /* C-fallback */ \ + CALL_C(y + i, u + i, v + i, dst + i * (XSTEP), len - i); \ + } \ +} + +#if !defined(WEBP_REDUCE_CSP) +YUV444_FUNC(Yuv444ToRgb_SSE41, VP8YuvToRgb32_SSE41, WebPYuv444ToRgb_C, 3); +YUV444_FUNC(Yuv444ToBgr_SSE41, VP8YuvToBgr32_SSE41, WebPYuv444ToBgr_C, 3); +#endif // WEBP_REDUCE_CSP + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitYUV444ConvertersSSE41(void) { +#if !defined(WEBP_REDUCE_CSP) + WebPYUV444Converters[MODE_RGB] = Yuv444ToRgb_SSE41; + WebPYUV444Converters[MODE_BGR] = Yuv444ToBgr_SSE41; +#endif // WEBP_REDUCE_CSP +} + +#else + +WEBP_DSP_INIT_STUB(WebPInitYUV444ConvertersSSE41) + +#endif // WEBP_USE_SSE41 + +#if !(defined(FANCY_UPSAMPLING) && defined(WEBP_USE_SSE41)) +WEBP_DSP_INIT_STUB(WebPInitUpsamplersSSE41) +#endif diff --git a/media/libwebp/src/dsp/yuv.c b/media/libwebp/src/dsp/yuv.c new file mode 100644 index 0000000000..d16c13d3ca --- /dev/null +++ b/media/libwebp/src/dsp/yuv.c @@ -0,0 +1,244 @@ +// Copyright 2010 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV->RGB conversion functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/yuv.h" + +#include <assert.h> +#include <stdlib.h> + +//----------------------------------------------------------------------------- +// Plain-C version + +#define ROW_FUNC(FUNC_NAME, FUNC, XSTEP) \ +static void FUNC_NAME(const uint8_t* y, \ + const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + const uint8_t* const end = dst + (len & ~1) * (XSTEP); \ + while (dst != end) { \ + FUNC(y[0], u[0], v[0], dst); \ + FUNC(y[1], u[0], v[0], dst + (XSTEP)); \ + y += 2; \ + ++u; \ + ++v; \ + dst += 2 * (XSTEP); \ + } \ + if (len & 1) { \ + FUNC(y[0], u[0], v[0], dst); \ + } \ +} \ + +// All variants implemented. +ROW_FUNC(YuvToRgbRow, VP8YuvToRgb, 3) +ROW_FUNC(YuvToBgrRow, VP8YuvToBgr, 3) +ROW_FUNC(YuvToRgbaRow, VP8YuvToRgba, 4) +ROW_FUNC(YuvToBgraRow, VP8YuvToBgra, 4) +ROW_FUNC(YuvToArgbRow, VP8YuvToArgb, 4) +ROW_FUNC(YuvToRgba4444Row, VP8YuvToRgba4444, 2) +ROW_FUNC(YuvToRgb565Row, VP8YuvToRgb565, 2) + +#undef ROW_FUNC + +// Main call for processing a plane with a WebPSamplerRowFunc function: +void WebPSamplerProcessPlane(const uint8_t* y, int y_stride, + const uint8_t* u, const uint8_t* v, int uv_stride, + uint8_t* dst, int dst_stride, + int width, int height, WebPSamplerRowFunc func) { + int j; + for (j = 0; j < height; ++j) { + func(y, u, v, dst, width); + y += y_stride; + if (j & 1) { + u += uv_stride; + v += uv_stride; + } + dst += dst_stride; + } +} + +//----------------------------------------------------------------------------- +// Main call + +WebPSamplerRowFunc WebPSamplers[MODE_LAST]; + +extern void WebPInitSamplersSSE2(void); +extern void WebPInitSamplersSSE41(void); +extern void WebPInitSamplersMIPS32(void); +extern void WebPInitSamplersMIPSdspR2(void); + +WEBP_DSP_INIT_FUNC(WebPInitSamplers) { + WebPSamplers[MODE_RGB] = YuvToRgbRow; + WebPSamplers[MODE_RGBA] = YuvToRgbaRow; + WebPSamplers[MODE_BGR] = YuvToBgrRow; + WebPSamplers[MODE_BGRA] = YuvToBgraRow; + WebPSamplers[MODE_ARGB] = YuvToArgbRow; + WebPSamplers[MODE_RGBA_4444] = YuvToRgba4444Row; + WebPSamplers[MODE_RGB_565] = YuvToRgb565Row; + WebPSamplers[MODE_rgbA] = YuvToRgbaRow; + WebPSamplers[MODE_bgrA] = YuvToBgraRow; + WebPSamplers[MODE_Argb] = YuvToArgbRow; + WebPSamplers[MODE_rgbA_4444] = YuvToRgba4444Row; + + // If defined, use CPUInfo() to overwrite some pointers with faster versions. + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPInitSamplersSSE2(); + } +#endif // WEBP_HAVE_SSE2 +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + WebPInitSamplersSSE41(); + } +#endif // WEBP_HAVE_SSE41 +#if defined(WEBP_USE_MIPS32) + if (VP8GetCPUInfo(kMIPS32)) { + WebPInitSamplersMIPS32(); + } +#endif // WEBP_USE_MIPS32 +#if defined(WEBP_USE_MIPS_DSP_R2) + if (VP8GetCPUInfo(kMIPSdspR2)) { + WebPInitSamplersMIPSdspR2(); + } +#endif // WEBP_USE_MIPS_DSP_R2 + } +} + +//----------------------------------------------------------------------------- +// ARGB -> YUV converters + +static void ConvertARGBToY_C(const uint32_t* argb, uint8_t* y, int width) { + int i; + for (i = 0; i < width; ++i) { + const uint32_t p = argb[i]; + y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, + YUV_HALF); + } +} + +void WebPConvertARGBToUV_C(const uint32_t* argb, uint8_t* u, uint8_t* v, + int src_width, int do_store) { + // No rounding. Last pixel is dealt with separately. + const int uv_width = src_width >> 1; + int i; + for (i = 0; i < uv_width; ++i) { + const uint32_t v0 = argb[2 * i + 0]; + const uint32_t v1 = argb[2 * i + 1]; + // VP8RGBToU/V expects four accumulated pixels. Hence we need to + // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. + const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); + const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); + const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); + const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); + const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); + if (do_store) { + u[i] = tmp_u; + v[i] = tmp_v; + } else { + // Approximated average-of-four. But it's an acceptable diff. + u[i] = (u[i] + tmp_u + 1) >> 1; + v[i] = (v[i] + tmp_v + 1) >> 1; + } + } + if (src_width & 1) { // last pixel + const uint32_t v0 = argb[2 * i + 0]; + const int r = (v0 >> 14) & 0x3fc; + const int g = (v0 >> 6) & 0x3fc; + const int b = (v0 << 2) & 0x3fc; + const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); + const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); + if (do_store) { + u[i] = tmp_u; + v[i] = tmp_v; + } else { + u[i] = (u[i] + tmp_u + 1) >> 1; + v[i] = (v[i] + tmp_v + 1) >> 1; + } + } +} + +//----------------------------------------------------------------------------- + +static void ConvertRGB24ToY_C(const uint8_t* rgb, uint8_t* y, int width) { + int i; + for (i = 0; i < width; ++i, rgb += 3) { + y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); + } +} + +static void ConvertBGR24ToY_C(const uint8_t* bgr, uint8_t* y, int width) { + int i; + for (i = 0; i < width; ++i, bgr += 3) { + y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); + } +} + +void WebPConvertRGBA32ToUV_C(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width) { + int i; + for (i = 0; i < width; i += 1, rgb += 4) { + const int r = rgb[0], g = rgb[1], b = rgb[2]; + u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); + v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); + } +} + +//----------------------------------------------------------------------------- + +void (*WebPConvertRGB24ToY)(const uint8_t* rgb, uint8_t* y, int width); +void (*WebPConvertBGR24ToY)(const uint8_t* bgr, uint8_t* y, int width); +void (*WebPConvertRGBA32ToUV)(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width); + +void (*WebPConvertARGBToY)(const uint32_t* argb, uint8_t* y, int width); +void (*WebPConvertARGBToUV)(const uint32_t* argb, uint8_t* u, uint8_t* v, + int src_width, int do_store); + +extern void WebPInitConvertARGBToYUVSSE2(void); +extern void WebPInitConvertARGBToYUVSSE41(void); +extern void WebPInitConvertARGBToYUVNEON(void); + +WEBP_DSP_INIT_FUNC(WebPInitConvertARGBToYUV) { + WebPConvertARGBToY = ConvertARGBToY_C; + WebPConvertARGBToUV = WebPConvertARGBToUV_C; + + WebPConvertRGB24ToY = ConvertRGB24ToY_C; + WebPConvertBGR24ToY = ConvertBGR24ToY_C; + + WebPConvertRGBA32ToUV = WebPConvertRGBA32ToUV_C; + + if (VP8GetCPUInfo != NULL) { +#if defined(WEBP_HAVE_SSE2) + if (VP8GetCPUInfo(kSSE2)) { + WebPInitConvertARGBToYUVSSE2(); + } +#endif // WEBP_HAVE_SSE2 +#if defined(WEBP_HAVE_SSE41) + if (VP8GetCPUInfo(kSSE4_1)) { + WebPInitConvertARGBToYUVSSE41(); + } +#endif // WEBP_HAVE_SSE41 + } + +#if defined(WEBP_HAVE_NEON) + if (WEBP_NEON_OMIT_C_CODE || + (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) { + WebPInitConvertARGBToYUVNEON(); + } +#endif // WEBP_HAVE_NEON + + assert(WebPConvertARGBToY != NULL); + assert(WebPConvertARGBToUV != NULL); + assert(WebPConvertRGB24ToY != NULL); + assert(WebPConvertBGR24ToY != NULL); + assert(WebPConvertRGBA32ToUV != NULL); +} diff --git a/media/libwebp/src/dsp/yuv.h b/media/libwebp/src/dsp/yuv.h new file mode 100644 index 0000000000..66a397d117 --- /dev/null +++ b/media/libwebp/src/dsp/yuv.h @@ -0,0 +1,210 @@ +// Copyright 2010 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// inline YUV<->RGB conversion function +// +// The exact naming is Y'CbCr, following the ITU-R BT.601 standard. +// More information at: https://en.wikipedia.org/wiki/YCbCr +// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 +// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 +// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 +// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). +// +// For the Y'CbCr to RGB conversion, the BT.601 specification reads: +// R = 1.164 * (Y-16) + 1.596 * (V-128) +// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) +// B = 1.164 * (Y-16) + 2.018 * (U-128) +// where Y is in the [16,235] range, and U/V in the [16,240] range. +// +// The fixed-point implementation used here is: +// R = (19077 . y + 26149 . v - 14234) >> 6 +// G = (19077 . y - 6419 . u - 13320 . v + 8708) >> 6 +// B = (19077 . y + 33050 . u - 17685) >> 6 +// where the '.' operator is the mulhi_epu16 variant: +// a . b = ((a << 8) * b) >> 16 +// that preserves 8 bits of fractional precision before final descaling. + +// Author: Skal (pascal.massimino@gmail.com) + +#ifndef WEBP_DSP_YUV_H_ +#define WEBP_DSP_YUV_H_ + +#include "src/dsp/dsp.h" +#include "src/dec/vp8_dec.h" + +//------------------------------------------------------------------------------ +// YUV -> RGB conversion + +#ifdef __cplusplus +extern "C" { +#endif + +enum { + YUV_FIX = 16, // fixed-point precision for RGB->YUV + YUV_HALF = 1 << (YUV_FIX - 1), + + YUV_FIX2 = 6, // fixed-point precision for YUV->RGB + YUV_MASK2 = (256 << YUV_FIX2) - 1 +}; + +//------------------------------------------------------------------------------ +// slower on x86 by ~7-8%, but bit-exact with the SSE2/NEON version + +static WEBP_INLINE int MultHi(int v, int coeff) { // _mm_mulhi_epu16 emulation + return (v * coeff) >> 8; +} + +static WEBP_INLINE int VP8Clip8(int v) { + return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; +} + +static WEBP_INLINE int VP8YUVToR(int y, int v) { + return VP8Clip8(MultHi(y, 19077) + MultHi(v, 26149) - 14234); +} + +static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { + return VP8Clip8(MultHi(y, 19077) - MultHi(u, 6419) - MultHi(v, 13320) + 8708); +} + +static WEBP_INLINE int VP8YUVToB(int y, int u) { + return VP8Clip8(MultHi(y, 19077) + MultHi(u, 33050) - 17685); +} + +static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, + uint8_t* const rgb) { + rgb[0] = VP8YUVToR(y, v); + rgb[1] = VP8YUVToG(y, u, v); + rgb[2] = VP8YUVToB(y, u); +} + +static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, + uint8_t* const bgr) { + bgr[0] = VP8YUVToB(y, u); + bgr[1] = VP8YUVToG(y, u, v); + bgr[2] = VP8YUVToR(y, v); +} + +static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, + uint8_t* const rgb) { + const int r = VP8YUVToR(y, v); // 5 usable bits + const int g = VP8YUVToG(y, u, v); // 6 usable bits + const int b = VP8YUVToB(y, u); // 5 usable bits + const int rg = (r & 0xf8) | (g >> 5); + const int gb = ((g << 3) & 0xe0) | (b >> 3); +#if (WEBP_SWAP_16BIT_CSP == 1) + rgb[0] = gb; + rgb[1] = rg; +#else + rgb[0] = rg; + rgb[1] = gb; +#endif +} + +static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, + uint8_t* const argb) { + const int r = VP8YUVToR(y, v); // 4 usable bits + const int g = VP8YUVToG(y, u, v); // 4 usable bits + const int b = VP8YUVToB(y, u); // 4 usable bits + const int rg = (r & 0xf0) | (g >> 4); + const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits +#if (WEBP_SWAP_16BIT_CSP == 1) + argb[0] = ba; + argb[1] = rg; +#else + argb[0] = rg; + argb[1] = ba; +#endif +} + +//----------------------------------------------------------------------------- +// Alpha handling variants + +static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const argb) { + argb[0] = 0xff; + VP8YuvToRgb(y, u, v, argb + 1); +} + +static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const bgra) { + VP8YuvToBgr(y, u, v, bgra); + bgra[3] = 0xff; +} + +static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, + uint8_t* const rgba) { + VP8YuvToRgb(y, u, v, rgba); + rgba[3] = 0xff; +} + +//----------------------------------------------------------------------------- +// SSE2 extra functions (mostly for upsampling_sse2.c) + +#if defined(WEBP_USE_SSE2) + +// Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst. +void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst); +void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); + +#endif // WEBP_USE_SSE2 + +//----------------------------------------------------------------------------- +// SSE41 extra functions (mostly for upsampling_sse41.c) + +#if defined(WEBP_USE_SSE41) + +// Process 32 pixels and store the result (16b, 24b or 32b per pixel) in *dst. +void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); + +#endif // WEBP_USE_SSE41 + +//------------------------------------------------------------------------------ +// RGB -> YUV conversion + +// Stub functions that can be called with various rounding values: +static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { + uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); + return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; +} + +static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { + const int luma = 16839 * r + 33059 * g + 6420 * b; + return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip +} + +static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { + const int u = -9719 * r - 19081 * g + 28800 * b; + return VP8ClipUV(u, rounding); +} + +static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { + const int v = +28800 * r - 24116 * g - 4684 * b; + return VP8ClipUV(v, rounding); +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // WEBP_DSP_YUV_H_ diff --git a/media/libwebp/src/dsp/yuv_mips32.c b/media/libwebp/src/dsp/yuv_mips32.c new file mode 100644 index 0000000000..9d0a887824 --- /dev/null +++ b/media/libwebp/src/dsp/yuv_mips32.c @@ -0,0 +1,103 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS version of YUV to RGB upsampling functions. +// +// Author(s): Djordje Pesut (djordje.pesut@imgtec.com) +// Jovan Zelincevic (jovan.zelincevic@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS32) + +#include "src/dsp/yuv.h" + +//------------------------------------------------------------------------------ +// simple point-sampling + +#define ROW_FUNC(FUNC_NAME, XSTEP, R, G, B, A) \ +static void FUNC_NAME(const uint8_t* y, \ + const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i, r, g, b; \ + int temp0, temp1, temp2, temp3, temp4; \ + for (i = 0; i < (len >> 1); i++) { \ + temp1 = MultHi(v[0], 26149); \ + temp3 = MultHi(v[0], 13320); \ + temp2 = MultHi(u[0], 6419); \ + temp4 = MultHi(u[0], 33050); \ + temp0 = MultHi(y[0], 19077); \ + temp1 -= 14234; \ + temp3 -= 8708; \ + temp2 += temp3; \ + temp4 -= 17685; \ + r = VP8Clip8(temp0 + temp1); \ + g = VP8Clip8(temp0 - temp2); \ + b = VP8Clip8(temp0 + temp4); \ + temp0 = MultHi(y[1], 19077); \ + dst[R] = r; \ + dst[G] = g; \ + dst[B] = b; \ + if (A) dst[A] = 0xff; \ + r = VP8Clip8(temp0 + temp1); \ + g = VP8Clip8(temp0 - temp2); \ + b = VP8Clip8(temp0 + temp4); \ + dst[R + XSTEP] = r; \ + dst[G + XSTEP] = g; \ + dst[B + XSTEP] = b; \ + if (A) dst[A + XSTEP] = 0xff; \ + y += 2; \ + ++u; \ + ++v; \ + dst += 2 * XSTEP; \ + } \ + if (len & 1) { \ + temp1 = MultHi(v[0], 26149); \ + temp3 = MultHi(v[0], 13320); \ + temp2 = MultHi(u[0], 6419); \ + temp4 = MultHi(u[0], 33050); \ + temp0 = MultHi(y[0], 19077); \ + temp1 -= 14234; \ + temp3 -= 8708; \ + temp2 += temp3; \ + temp4 -= 17685; \ + r = VP8Clip8(temp0 + temp1); \ + g = VP8Clip8(temp0 - temp2); \ + b = VP8Clip8(temp0 + temp4); \ + dst[R] = r; \ + dst[G] = g; \ + dst[B] = b; \ + if (A) dst[A] = 0xff; \ + } \ +} + +ROW_FUNC(YuvToRgbRow_MIPS32, 3, 0, 1, 2, 0) +ROW_FUNC(YuvToRgbaRow_MIPS32, 4, 0, 1, 2, 3) +ROW_FUNC(YuvToBgrRow_MIPS32, 3, 2, 1, 0, 0) +ROW_FUNC(YuvToBgraRow_MIPS32, 4, 2, 1, 0, 3) + +#undef ROW_FUNC + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitSamplersMIPS32(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersMIPS32(void) { + WebPSamplers[MODE_RGB] = YuvToRgbRow_MIPS32; + WebPSamplers[MODE_RGBA] = YuvToRgbaRow_MIPS32; + WebPSamplers[MODE_BGR] = YuvToBgrRow_MIPS32; + WebPSamplers[MODE_BGRA] = YuvToBgraRow_MIPS32; +} + +#else // !WEBP_USE_MIPS32 + +WEBP_DSP_INIT_STUB(WebPInitSamplersMIPS32) + +#endif // WEBP_USE_MIPS32 diff --git a/media/libwebp/src/dsp/yuv_mips_dsp_r2.c b/media/libwebp/src/dsp/yuv_mips_dsp_r2.c new file mode 100644 index 0000000000..cc8afcc756 --- /dev/null +++ b/media/libwebp/src/dsp/yuv_mips_dsp_r2.c @@ -0,0 +1,134 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// MIPS DSPr2 version of YUV to RGB upsampling functions. +// +// Author(s): Branimir Vasic (branimir.vasic@imgtec.com) +// Djordje Pesut (djordje.pesut@imgtec.com) + +#include "src/dsp/dsp.h" + +#if defined(WEBP_USE_MIPS_DSP_R2) + +#include "src/dsp/yuv.h" + +//------------------------------------------------------------------------------ +// simple point-sampling + +#define ROW_FUNC_PART_1() \ + "lbu %[temp3], 0(%[v]) \n\t" \ + "lbu %[temp4], 0(%[u]) \n\t" \ + "lbu %[temp0], 0(%[y]) \n\t" \ + "mul %[temp1], %[t_con_1], %[temp3] \n\t" \ + "mul %[temp3], %[t_con_2], %[temp3] \n\t" \ + "mul %[temp2], %[t_con_3], %[temp4] \n\t" \ + "mul %[temp4], %[t_con_4], %[temp4] \n\t" \ + "mul %[temp0], %[t_con_5], %[temp0] \n\t" \ + "subu %[temp1], %[temp1], %[t_con_6] \n\t" \ + "subu %[temp3], %[temp3], %[t_con_7] \n\t" \ + "addu %[temp2], %[temp2], %[temp3] \n\t" \ + "subu %[temp4], %[temp4], %[t_con_8] \n\t" \ + +#define ROW_FUNC_PART_2(R, G, B, K) \ + "addu %[temp5], %[temp0], %[temp1] \n\t" \ + "subu %[temp6], %[temp0], %[temp2] \n\t" \ + "addu %[temp7], %[temp0], %[temp4] \n\t" \ +".if " #K " \n\t" \ + "lbu %[temp0], 1(%[y]) \n\t" \ +".endif \n\t" \ + "shll_s.w %[temp5], %[temp5], 17 \n\t" \ + "shll_s.w %[temp6], %[temp6], 17 \n\t" \ +".if " #K " \n\t" \ + "mul %[temp0], %[t_con_5], %[temp0] \n\t" \ +".endif \n\t" \ + "shll_s.w %[temp7], %[temp7], 17 \n\t" \ + "precrqu_s.qb.ph %[temp5], %[temp5], $zero \n\t" \ + "precrqu_s.qb.ph %[temp6], %[temp6], $zero \n\t" \ + "precrqu_s.qb.ph %[temp7], %[temp7], $zero \n\t" \ + "srl %[temp5], %[temp5], 24 \n\t" \ + "srl %[temp6], %[temp6], 24 \n\t" \ + "srl %[temp7], %[temp7], 24 \n\t" \ + "sb %[temp5], " #R "(%[dst]) \n\t" \ + "sb %[temp6], " #G "(%[dst]) \n\t" \ + "sb %[temp7], " #B "(%[dst]) \n\t" \ + +#define ASM_CLOBBER_LIST() \ + : [temp0]"=&r"(temp0), [temp1]"=&r"(temp1), [temp2]"=&r"(temp2), \ + [temp3]"=&r"(temp3), [temp4]"=&r"(temp4), [temp5]"=&r"(temp5), \ + [temp6]"=&r"(temp6), [temp7]"=&r"(temp7) \ + : [t_con_1]"r"(t_con_1), [t_con_2]"r"(t_con_2), [t_con_3]"r"(t_con_3), \ + [t_con_4]"r"(t_con_4), [t_con_5]"r"(t_con_5), [t_con_6]"r"(t_con_6), \ + [u]"r"(u), [v]"r"(v), [y]"r"(y), [dst]"r"(dst), \ + [t_con_7]"r"(t_con_7), [t_con_8]"r"(t_con_8) \ + : "memory", "hi", "lo" \ + +#define ROW_FUNC(FUNC_NAME, XSTEP, R, G, B, A) \ +static void FUNC_NAME(const uint8_t* y, \ + const uint8_t* u, const uint8_t* v, \ + uint8_t* dst, int len) { \ + int i; \ + uint32_t temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7; \ + const int t_con_1 = 26149; \ + const int t_con_2 = 13320; \ + const int t_con_3 = 6419; \ + const int t_con_4 = 33050; \ + const int t_con_5 = 19077; \ + const int t_con_6 = 14234; \ + const int t_con_7 = 8708; \ + const int t_con_8 = 17685; \ + for (i = 0; i < (len >> 1); i++) { \ + __asm__ volatile ( \ + ROW_FUNC_PART_1() \ + ROW_FUNC_PART_2(R, G, B, 1) \ + ROW_FUNC_PART_2(R + XSTEP, G + XSTEP, B + XSTEP, 0) \ + ASM_CLOBBER_LIST() \ + ); \ + if (A) dst[A] = dst[A + XSTEP] = 0xff; \ + y += 2; \ + ++u; \ + ++v; \ + dst += 2 * XSTEP; \ + } \ + if (len & 1) { \ + __asm__ volatile ( \ + ROW_FUNC_PART_1() \ + ROW_FUNC_PART_2(R, G, B, 0) \ + ASM_CLOBBER_LIST() \ + ); \ + if (A) dst[A] = 0xff; \ + } \ +} + +ROW_FUNC(YuvToRgbRow_MIPSdspR2, 3, 0, 1, 2, 0) +ROW_FUNC(YuvToRgbaRow_MIPSdspR2, 4, 0, 1, 2, 3) +ROW_FUNC(YuvToBgrRow_MIPSdspR2, 3, 2, 1, 0, 0) +ROW_FUNC(YuvToBgraRow_MIPSdspR2, 4, 2, 1, 0, 3) + +#undef ROW_FUNC +#undef ASM_CLOBBER_LIST +#undef ROW_FUNC_PART_2 +#undef ROW_FUNC_PART_1 + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitSamplersMIPSdspR2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersMIPSdspR2(void) { + WebPSamplers[MODE_RGB] = YuvToRgbRow_MIPSdspR2; + WebPSamplers[MODE_RGBA] = YuvToRgbaRow_MIPSdspR2; + WebPSamplers[MODE_BGR] = YuvToBgrRow_MIPSdspR2; + WebPSamplers[MODE_BGRA] = YuvToBgraRow_MIPSdspR2; +} + +#else // !WEBP_USE_MIPS_DSP_R2 + +WEBP_DSP_INIT_STUB(WebPInitSamplersMIPSdspR2) + +#endif // WEBP_USE_MIPS_DSP_R2 diff --git a/media/libwebp/src/dsp/yuv_neon.c b/media/libwebp/src/dsp/yuv_neon.c new file mode 100644 index 0000000000..ff77b00980 --- /dev/null +++ b/media/libwebp/src/dsp/yuv_neon.c @@ -0,0 +1,180 @@ +// Copyright 2017 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV->RGB conversion functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/yuv.h" + +#if defined(WEBP_USE_NEON) + +#include <assert.h> +#include <stdlib.h> + +#include "src/dsp/neon.h" + +//----------------------------------------------------------------------------- + +static uint8x8_t ConvertRGBToY_NEON(const uint8x8_t R, + const uint8x8_t G, + const uint8x8_t B) { + const uint16x8_t r = vmovl_u8(R); + const uint16x8_t g = vmovl_u8(G); + const uint16x8_t b = vmovl_u8(B); + const uint16x4_t r_lo = vget_low_u16(r); + const uint16x4_t r_hi = vget_high_u16(r); + const uint16x4_t g_lo = vget_low_u16(g); + const uint16x4_t g_hi = vget_high_u16(g); + const uint16x4_t b_lo = vget_low_u16(b); + const uint16x4_t b_hi = vget_high_u16(b); + const uint32x4_t tmp0_lo = vmull_n_u16( r_lo, 16839u); + const uint32x4_t tmp0_hi = vmull_n_u16( r_hi, 16839u); + const uint32x4_t tmp1_lo = vmlal_n_u16(tmp0_lo, g_lo, 33059u); + const uint32x4_t tmp1_hi = vmlal_n_u16(tmp0_hi, g_hi, 33059u); + const uint32x4_t tmp2_lo = vmlal_n_u16(tmp1_lo, b_lo, 6420u); + const uint32x4_t tmp2_hi = vmlal_n_u16(tmp1_hi, b_hi, 6420u); + const uint16x8_t Y1 = vcombine_u16(vrshrn_n_u32(tmp2_lo, 16), + vrshrn_n_u32(tmp2_hi, 16)); + const uint16x8_t Y2 = vaddq_u16(Y1, vdupq_n_u16(16)); + return vqmovn_u16(Y2); +} + +static void ConvertRGB24ToY_NEON(const uint8_t* rgb, uint8_t* y, int width) { + int i; + for (i = 0; i + 8 <= width; i += 8, rgb += 3 * 8) { + const uint8x8x3_t RGB = vld3_u8(rgb); + const uint8x8_t Y = ConvertRGBToY_NEON(RGB.val[0], RGB.val[1], RGB.val[2]); + vst1_u8(y + i, Y); + } + for (; i < width; ++i, rgb += 3) { // left-over + y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); + } +} + +static void ConvertBGR24ToY_NEON(const uint8_t* bgr, uint8_t* y, int width) { + int i; + for (i = 0; i + 8 <= width; i += 8, bgr += 3 * 8) { + const uint8x8x3_t BGR = vld3_u8(bgr); + const uint8x8_t Y = ConvertRGBToY_NEON(BGR.val[2], BGR.val[1], BGR.val[0]); + vst1_u8(y + i, Y); + } + for (; i < width; ++i, bgr += 3) { // left-over + y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); + } +} + +static void ConvertARGBToY_NEON(const uint32_t* argb, uint8_t* y, int width) { + int i; + for (i = 0; i + 8 <= width; i += 8) { + const uint8x8x4_t RGB = vld4_u8((const uint8_t*)&argb[i]); + const uint8x8_t Y = ConvertRGBToY_NEON(RGB.val[2], RGB.val[1], RGB.val[0]); + vst1_u8(y + i, Y); + } + for (; i < width; ++i) { // left-over + const uint32_t p = argb[i]; + y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, + YUV_HALF); + } +} + +//----------------------------------------------------------------------------- + +// computes: DST_s16 = [(C0 * r + C1 * g + C2 * b) >> 16] + CST +#define MULTIPLY_16b_PREAMBLE(r, g, b) \ + const int16x4_t r_lo = vreinterpret_s16_u16(vget_low_u16(r)); \ + const int16x4_t r_hi = vreinterpret_s16_u16(vget_high_u16(r)); \ + const int16x4_t g_lo = vreinterpret_s16_u16(vget_low_u16(g)); \ + const int16x4_t g_hi = vreinterpret_s16_u16(vget_high_u16(g)); \ + const int16x4_t b_lo = vreinterpret_s16_u16(vget_low_u16(b)); \ + const int16x4_t b_hi = vreinterpret_s16_u16(vget_high_u16(b)) + +#define MULTIPLY_16b(C0, C1, C2, CST, DST_s16) do { \ + const int32x4_t tmp0_lo = vmull_n_s16( r_lo, C0); \ + const int32x4_t tmp0_hi = vmull_n_s16( r_hi, C0); \ + const int32x4_t tmp1_lo = vmlal_n_s16(tmp0_lo, g_lo, C1); \ + const int32x4_t tmp1_hi = vmlal_n_s16(tmp0_hi, g_hi, C1); \ + const int32x4_t tmp2_lo = vmlal_n_s16(tmp1_lo, b_lo, C2); \ + const int32x4_t tmp2_hi = vmlal_n_s16(tmp1_hi, b_hi, C2); \ + const int16x8_t tmp3 = vcombine_s16(vshrn_n_s32(tmp2_lo, 16), \ + vshrn_n_s32(tmp2_hi, 16)); \ + DST_s16 = vaddq_s16(tmp3, vdupq_n_s16(CST)); \ +} while (0) + +// This needs to be a macro, since (128 << SHIFT) needs to be an immediate. +#define CONVERT_RGB_TO_UV(r, g, b, SHIFT, U_DST, V_DST) do { \ + MULTIPLY_16b_PREAMBLE(r, g, b); \ + MULTIPLY_16b(-9719, -19081, 28800, 128 << SHIFT, U_DST); \ + MULTIPLY_16b(28800, -24116, -4684, 128 << SHIFT, V_DST); \ +} while (0) + +static void ConvertRGBA32ToUV_NEON(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width) { + int i; + for (i = 0; i + 8 <= width; i += 8, rgb += 4 * 8) { + const uint16x8x4_t RGB = vld4q_u16((const uint16_t*)rgb); + int16x8_t U, V; + CONVERT_RGB_TO_UV(RGB.val[0], RGB.val[1], RGB.val[2], 2, U, V); + vst1_u8(u + i, vqrshrun_n_s16(U, 2)); + vst1_u8(v + i, vqrshrun_n_s16(V, 2)); + } + for (; i < width; i += 1, rgb += 4) { + const int r = rgb[0], g = rgb[1], b = rgb[2]; + u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); + v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); + } +} + +static void ConvertARGBToUV_NEON(const uint32_t* argb, uint8_t* u, uint8_t* v, + int src_width, int do_store) { + int i; + for (i = 0; i + 16 <= src_width; i += 16, u += 8, v += 8) { + const uint8x16x4_t RGB = vld4q_u8((const uint8_t*)&argb[i]); + const uint16x8_t R = vpaddlq_u8(RGB.val[2]); // pair-wise adds + const uint16x8_t G = vpaddlq_u8(RGB.val[1]); + const uint16x8_t B = vpaddlq_u8(RGB.val[0]); + int16x8_t U_tmp, V_tmp; + CONVERT_RGB_TO_UV(R, G, B, 1, U_tmp, V_tmp); + { + const uint8x8_t U = vqrshrun_n_s16(U_tmp, 1); + const uint8x8_t V = vqrshrun_n_s16(V_tmp, 1); + if (do_store) { + vst1_u8(u, U); + vst1_u8(v, V); + } else { + const uint8x8_t prev_u = vld1_u8(u); + const uint8x8_t prev_v = vld1_u8(v); + vst1_u8(u, vrhadd_u8(U, prev_u)); + vst1_u8(v, vrhadd_u8(V, prev_v)); + } + } + } + if (i < src_width) { // left-over + WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); + } +} + + +//------------------------------------------------------------------------------ + +extern void WebPInitConvertARGBToYUVNEON(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVNEON(void) { + WebPConvertRGB24ToY = ConvertRGB24ToY_NEON; + WebPConvertBGR24ToY = ConvertBGR24ToY_NEON; + WebPConvertARGBToY = ConvertARGBToY_NEON; + WebPConvertARGBToUV = ConvertARGBToUV_NEON; + WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_NEON; +} + +#else // !WEBP_USE_NEON + +WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVNEON) + +#endif // WEBP_USE_NEON diff --git a/media/libwebp/src/dsp/yuv_sse2.c b/media/libwebp/src/dsp/yuv_sse2.c new file mode 100644 index 0000000000..01a48f9af2 --- /dev/null +++ b/media/libwebp/src/dsp/yuv_sse2.c @@ -0,0 +1,758 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV->RGB conversion functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/yuv.h" + +#if defined(WEBP_USE_SSE2) + +#include <stdlib.h> +#include <emmintrin.h> + +#include "src/dsp/common_sse2.h" +#include "src/utils/utils.h" + +//----------------------------------------------------------------------------- +// Convert spans of 32 pixels to various RGB formats for the fancy upsampler. + +// These constants are 14b fixed-point version of ITU-R BT.601 constants. +// R = (19077 * y + 26149 * v - 14234) >> 6 +// G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 +// B = (19077 * y + 33050 * u - 17685) >> 6 +static void ConvertYUV444ToRGB_SSE2(const __m128i* const Y0, + const __m128i* const U0, + const __m128i* const V0, + __m128i* const R, + __m128i* const G, + __m128i* const B) { + const __m128i k19077 = _mm_set1_epi16(19077); + const __m128i k26149 = _mm_set1_epi16(26149); + const __m128i k14234 = _mm_set1_epi16(14234); + // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic + const __m128i k33050 = _mm_set1_epi16((short)33050); + const __m128i k17685 = _mm_set1_epi16(17685); + const __m128i k6419 = _mm_set1_epi16(6419); + const __m128i k13320 = _mm_set1_epi16(13320); + const __m128i k8708 = _mm_set1_epi16(8708); + + const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); + + const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); + const __m128i R1 = _mm_sub_epi16(Y1, k14234); + const __m128i R2 = _mm_add_epi16(R1, R0); + + const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); + const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); + const __m128i G2 = _mm_add_epi16(Y1, k8708); + const __m128i G3 = _mm_add_epi16(G0, G1); + const __m128i G4 = _mm_sub_epi16(G2, G3); + + // be careful with the saturated *unsigned* arithmetic here! + const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); + const __m128i B1 = _mm_adds_epu16(B0, Y1); + const __m128i B2 = _mm_subs_epu16(B1, k17685); + + // use logical shift for B2, which can be larger than 32767 + *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] + *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] + *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] +} + +// Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. +static WEBP_INLINE __m128i Load_HI_16_SSE2(const uint8_t* src) { + const __m128i zero = _mm_setzero_si128(); + return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); +} + +// Load and replicate the U/V samples +static WEBP_INLINE __m128i Load_UV_HI_8_SSE2(const uint8_t* src) { + const __m128i zero = _mm_setzero_si128(); + const __m128i tmp0 = _mm_cvtsi32_si128(WebPMemToInt32(src)); + const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); + return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples +} + +// Convert 32 samples of YUV444 to R/G/B +static void YUV444ToRGB_SSE2(const uint8_t* const y, + const uint8_t* const u, + const uint8_t* const v, + __m128i* const R, __m128i* const G, + __m128i* const B) { + const __m128i Y0 = Load_HI_16_SSE2(y), U0 = Load_HI_16_SSE2(u), + V0 = Load_HI_16_SSE2(v); + ConvertYUV444ToRGB_SSE2(&Y0, &U0, &V0, R, G, B); +} + +// Convert 32 samples of YUV420 to R/G/B +static void YUV420ToRGB_SSE2(const uint8_t* const y, + const uint8_t* const u, + const uint8_t* const v, + __m128i* const R, __m128i* const G, + __m128i* const B) { + const __m128i Y0 = Load_HI_16_SSE2(y), U0 = Load_UV_HI_8_SSE2(u), + V0 = Load_UV_HI_8_SSE2(v); + ConvertYUV444ToRGB_SSE2(&Y0, &U0, &V0, R, G, B); +} + +// Pack R/G/B/A results into 32b output. +static WEBP_INLINE void PackAndStore4_SSE2(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + const __m128i* const A, + uint8_t* const dst) { + const __m128i rb = _mm_packus_epi16(*R, *B); + const __m128i ga = _mm_packus_epi16(*G, *A); + const __m128i rg = _mm_unpacklo_epi8(rb, ga); + const __m128i ba = _mm_unpackhi_epi8(rb, ga); + const __m128i RGBA_lo = _mm_unpacklo_epi16(rg, ba); + const __m128i RGBA_hi = _mm_unpackhi_epi16(rg, ba); + _mm_storeu_si128((__m128i*)(dst + 0), RGBA_lo); + _mm_storeu_si128((__m128i*)(dst + 16), RGBA_hi); +} + +// Pack R/G/B/A results into 16b output. +static WEBP_INLINE void PackAndStore4444_SSE2(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + const __m128i* const A, + uint8_t* const dst) { +#if (WEBP_SWAP_16BIT_CSP == 0) + const __m128i rg0 = _mm_packus_epi16(*R, *G); + const __m128i ba0 = _mm_packus_epi16(*B, *A); +#else + const __m128i rg0 = _mm_packus_epi16(*B, *A); + const __m128i ba0 = _mm_packus_epi16(*R, *G); +#endif + const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0); + const __m128i rb1 = _mm_unpacklo_epi8(rg0, ba0); // rbrbrbrbrb... + const __m128i ga1 = _mm_unpackhi_epi8(rg0, ba0); // gagagagaga... + const __m128i rb2 = _mm_and_si128(rb1, mask_0xf0); + const __m128i ga2 = _mm_srli_epi16(_mm_and_si128(ga1, mask_0xf0), 4); + const __m128i rgba4444 = _mm_or_si128(rb2, ga2); + _mm_storeu_si128((__m128i*)dst, rgba4444); +} + +// Pack R/G/B results into 16b output. +static WEBP_INLINE void PackAndStore565_SSE2(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + uint8_t* const dst) { + const __m128i r0 = _mm_packus_epi16(*R, *R); + const __m128i g0 = _mm_packus_epi16(*G, *G); + const __m128i b0 = _mm_packus_epi16(*B, *B); + const __m128i r1 = _mm_and_si128(r0, _mm_set1_epi8((char)0xf8)); + const __m128i b1 = _mm_and_si128(_mm_srli_epi16(b0, 3), _mm_set1_epi8(0x1f)); + const __m128i g1 = + _mm_srli_epi16(_mm_and_si128(g0, _mm_set1_epi8((char)0xe0)), 5); + const __m128i g2 = _mm_slli_epi16(_mm_and_si128(g0, _mm_set1_epi8(0x1c)), 3); + const __m128i rg = _mm_or_si128(r1, g1); + const __m128i gb = _mm_or_si128(g2, b1); +#if (WEBP_SWAP_16BIT_CSP == 0) + const __m128i rgb565 = _mm_unpacklo_epi8(rg, gb); +#else + const __m128i rgb565 = _mm_unpacklo_epi8(gb, rg); +#endif + _mm_storeu_si128((__m128i*)dst, rgb565); +} + +// Pack the planar buffers +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... +static WEBP_INLINE void PlanarTo24b_SSE2(__m128i* const in0, __m128i* const in1, + __m128i* const in2, __m128i* const in3, + __m128i* const in4, __m128i* const in5, + uint8_t* const rgb) { + // The input is 6 registers of sixteen 8b but for the sake of explanation, + // let's take 6 registers of four 8b values. + // To pack, we will keep taking one every two 8b integer and move it + // around as follows: + // Input: + // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 + // Split the 6 registers in two sets of 3 registers: the first set as the even + // 8b bytes, the second the odd ones: + // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 + // Repeat the same permutations twice more: + // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 + // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 + VP8PlanarTo24b_SSE2(in0, in1, in2, in3, in4, in5); + + _mm_storeu_si128((__m128i*)(rgb + 0), *in0); + _mm_storeu_si128((__m128i*)(rgb + 16), *in1); + _mm_storeu_si128((__m128i*)(rgb + 32), *in2); + _mm_storeu_si128((__m128i*)(rgb + 48), *in3); + _mm_storeu_si128((__m128i*)(rgb + 64), *in4); + _mm_storeu_si128((__m128i*)(rgb + 80), *in5); +} + +void VP8YuvToRgba32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n < 32; n += 8, dst += 32) { + __m128i R, G, B; + YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); + PackAndStore4_SSE2(&R, &G, &B, &kAlpha, dst); + } +} + +void VP8YuvToBgra32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n < 32; n += 8, dst += 32) { + __m128i R, G, B; + YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); + PackAndStore4_SSE2(&B, &G, &R, &kAlpha, dst); + } +} + +void VP8YuvToArgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n < 32; n += 8, dst += 32) { + __m128i R, G, B; + YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); + PackAndStore4_SSE2(&kAlpha, &R, &G, &B, dst); + } +} + +void VP8YuvToRgba444432_SSE2(const uint8_t* y, const uint8_t* u, + const uint8_t* v, uint8_t* dst) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n < 32; n += 8, dst += 16) { + __m128i R, G, B; + YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); + PackAndStore4444_SSE2(&R, &G, &B, &kAlpha, dst); + } +} + +void VP8YuvToRgb56532_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + int n; + for (n = 0; n < 32; n += 8, dst += 16) { + __m128i R, G, B; + YUV444ToRGB_SSE2(y + n, u + n, v + n, &R, &G, &B); + PackAndStore565_SSE2(&R, &G, &B, dst); + } +} + +void VP8YuvToRgb32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; + + YUV444ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV444ToRGB_SSE2(y + 8, u + 8, v + 8, &R1, &G1, &B1); + YUV444ToRGB_SSE2(y + 16, u + 16, v + 16, &R2, &G2, &B2); + YUV444ToRGB_SSE2(y + 24, u + 24, v + 24, &R3, &G3, &B3); + + // Cast to 8b and store as RRRRGGGGBBBB. + rgb0 = _mm_packus_epi16(R0, R1); + rgb1 = _mm_packus_epi16(R2, R3); + rgb2 = _mm_packus_epi16(G0, G1); + rgb3 = _mm_packus_epi16(G2, G3); + rgb4 = _mm_packus_epi16(B0, B1); + rgb5 = _mm_packus_epi16(B2, B3); + + // Pack as RGBRGBRGBRGB. + PlanarTo24b_SSE2(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); +} + +void VP8YuvToBgr32_SSE2(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; + + YUV444ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV444ToRGB_SSE2(y + 8, u + 8, v + 8, &R1, &G1, &B1); + YUV444ToRGB_SSE2(y + 16, u + 16, v + 16, &R2, &G2, &B2); + YUV444ToRGB_SSE2(y + 24, u + 24, v + 24, &R3, &G3, &B3); + + // Cast to 8b and store as BBBBGGGGRRRR. + bgr0 = _mm_packus_epi16(B0, B1); + bgr1 = _mm_packus_epi16(B2, B3); + bgr2 = _mm_packus_epi16(G0, G1); + bgr3 = _mm_packus_epi16(G2, G3); + bgr4 = _mm_packus_epi16(R0, R1); + bgr5= _mm_packus_epi16(R2, R3); + + // Pack as BGRBGRBGRBGR. + PlanarTo24b_SSE2(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); +} + +//----------------------------------------------------------------------------- +// Arbitrary-length row conversion functions + +static void YuvToRgbaRow_SSE2(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n + 8 <= len; n += 8, dst += 32) { + __m128i R, G, B; + YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); + PackAndStore4_SSE2(&R, &G, &B, &kAlpha, dst); + y += 8; + u += 4; + v += 4; + } + for (; n < len; ++n) { // Finish off + VP8YuvToRgba(y[0], u[0], v[0], dst); + dst += 4; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +static void YuvToBgraRow_SSE2(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n + 8 <= len; n += 8, dst += 32) { + __m128i R, G, B; + YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); + PackAndStore4_SSE2(&B, &G, &R, &kAlpha, dst); + y += 8; + u += 4; + v += 4; + } + for (; n < len; ++n) { // Finish off + VP8YuvToBgra(y[0], u[0], v[0], dst); + dst += 4; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +static void YuvToArgbRow_SSE2(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + const __m128i kAlpha = _mm_set1_epi16(255); + int n; + for (n = 0; n + 8 <= len; n += 8, dst += 32) { + __m128i R, G, B; + YUV420ToRGB_SSE2(y, u, v, &R, &G, &B); + PackAndStore4_SSE2(&kAlpha, &R, &G, &B, dst); + y += 8; + u += 4; + v += 4; + } + for (; n < len; ++n) { // Finish off + VP8YuvToArgb(y[0], u[0], v[0], dst); + dst += 4; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +static void YuvToRgbRow_SSE2(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + int n; + for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; + + YUV420ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV420ToRGB_SSE2(y + 8, u + 4, v + 4, &R1, &G1, &B1); + YUV420ToRGB_SSE2(y + 16, u + 8, v + 8, &R2, &G2, &B2); + YUV420ToRGB_SSE2(y + 24, u + 12, v + 12, &R3, &G3, &B3); + + // Cast to 8b and store as RRRRGGGGBBBB. + rgb0 = _mm_packus_epi16(R0, R1); + rgb1 = _mm_packus_epi16(R2, R3); + rgb2 = _mm_packus_epi16(G0, G1); + rgb3 = _mm_packus_epi16(G2, G3); + rgb4 = _mm_packus_epi16(B0, B1); + rgb5 = _mm_packus_epi16(B2, B3); + + // Pack as RGBRGBRGBRGB. + PlanarTo24b_SSE2(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); + + y += 32; + u += 16; + v += 16; + } + for (; n < len; ++n) { // Finish off + VP8YuvToRgb(y[0], u[0], v[0], dst); + dst += 3; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +static void YuvToBgrRow_SSE2(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + int n; + for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; + + YUV420ToRGB_SSE2(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV420ToRGB_SSE2(y + 8, u + 4, v + 4, &R1, &G1, &B1); + YUV420ToRGB_SSE2(y + 16, u + 8, v + 8, &R2, &G2, &B2); + YUV420ToRGB_SSE2(y + 24, u + 12, v + 12, &R3, &G3, &B3); + + // Cast to 8b and store as BBBBGGGGRRRR. + bgr0 = _mm_packus_epi16(B0, B1); + bgr1 = _mm_packus_epi16(B2, B3); + bgr2 = _mm_packus_epi16(G0, G1); + bgr3 = _mm_packus_epi16(G2, G3); + bgr4 = _mm_packus_epi16(R0, R1); + bgr5 = _mm_packus_epi16(R2, R3); + + // Pack as BGRBGRBGRBGR. + PlanarTo24b_SSE2(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); + + y += 32; + u += 16; + v += 16; + } + for (; n < len; ++n) { // Finish off + VP8YuvToBgr(y[0], u[0], v[0], dst); + dst += 3; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitSamplersSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE2(void) { + WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE2; + WebPSamplers[MODE_RGBA] = YuvToRgbaRow_SSE2; + WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE2; + WebPSamplers[MODE_BGRA] = YuvToBgraRow_SSE2; + WebPSamplers[MODE_ARGB] = YuvToArgbRow_SSE2; +} + +//------------------------------------------------------------------------------ +// RGB24/32 -> YUV converters + +// Load eight 16b-words from *src. +#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) +// Store either 16b-words into *dst +#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) + +// Function that inserts a value of the second half of the in buffer in between +// every two char of the first half. +static WEBP_INLINE void RGB24PackedToPlanarHelper_SSE2( + const __m128i* const in /*in[6]*/, __m128i* const out /*out[6]*/) { + out[0] = _mm_unpacklo_epi8(in[0], in[3]); + out[1] = _mm_unpackhi_epi8(in[0], in[3]); + out[2] = _mm_unpacklo_epi8(in[1], in[4]); + out[3] = _mm_unpackhi_epi8(in[1], in[4]); + out[4] = _mm_unpacklo_epi8(in[2], in[5]); + out[5] = _mm_unpackhi_epi8(in[2], in[5]); +} + +// Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// Similar to PlanarTo24bHelper(), but in reverse order. +static WEBP_INLINE void RGB24PackedToPlanar_SSE2( + const uint8_t* const rgb, __m128i* const out /*out[6]*/) { + __m128i tmp[6]; + tmp[0] = _mm_loadu_si128((const __m128i*)(rgb + 0)); + tmp[1] = _mm_loadu_si128((const __m128i*)(rgb + 16)); + tmp[2] = _mm_loadu_si128((const __m128i*)(rgb + 32)); + tmp[3] = _mm_loadu_si128((const __m128i*)(rgb + 48)); + tmp[4] = _mm_loadu_si128((const __m128i*)(rgb + 64)); + tmp[5] = _mm_loadu_si128((const __m128i*)(rgb + 80)); + + RGB24PackedToPlanarHelper_SSE2(tmp, out); + RGB24PackedToPlanarHelper_SSE2(out, tmp); + RGB24PackedToPlanarHelper_SSE2(tmp, out); + RGB24PackedToPlanarHelper_SSE2(out, tmp); + RGB24PackedToPlanarHelper_SSE2(tmp, out); +} + +// Convert 8 packed ARGB to r[], g[], b[] +static WEBP_INLINE void RGB32PackedToPlanar_SSE2(const uint32_t* const argb, + __m128i* const rgb /*in[6]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i a0 = LOAD_16(argb + 0); + __m128i a1 = LOAD_16(argb + 4); + __m128i a2 = LOAD_16(argb + 8); + __m128i a3 = LOAD_16(argb + 12); + VP8L32bToPlanar_SSE2(&a0, &a1, &a2, &a3); + rgb[0] = _mm_unpacklo_epi8(a1, zero); + rgb[1] = _mm_unpackhi_epi8(a1, zero); + rgb[2] = _mm_unpacklo_epi8(a2, zero); + rgb[3] = _mm_unpackhi_epi8(a2, zero); + rgb[4] = _mm_unpacklo_epi8(a3, zero); + rgb[5] = _mm_unpackhi_epi8(a3, zero); +} + +// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX +// It's a macro and not a function because we need to use immediate values with +// srai_epi32, e.g. +#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ + ROUNDER, DESCALE_FIX, OUT) do { \ + const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ + const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ + const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ + const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ + const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ + const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ + const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ + const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ + const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ + const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ + (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ +} while (0) + +#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) +static WEBP_INLINE void ConvertRGBToY_SSE2(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + __m128i* const Y) { + const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); + const __m128i kGB_y = MK_CST_16(16384, 6420); + const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); + + const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); + const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); + const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); + const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); +} + +static WEBP_INLINE void ConvertRGBToUV_SSE2(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + __m128i* const U, + __m128i* const V) { + const __m128i kRG_u = MK_CST_16(-9719, -19081); + const __m128i kGB_u = MK_CST_16(0, 28800); + const __m128i kRG_v = MK_CST_16(28800, 0); + const __m128i kGB_v = MK_CST_16(-24116, -4684); + const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); + + const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); + const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); + const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); + const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, + kHALF_UV, YUV_FIX + 2, *U); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, + kHALF_UV, YUV_FIX + 2, *V); +} + +#undef MK_CST_16 +#undef TRANSFORM + +static void ConvertRGB24ToY_SSE2(const uint8_t* rgb, uint8_t* y, int width) { + const int max_width = width & ~31; + int i; + for (i = 0; i < max_width; rgb += 3 * 16 * 2) { + __m128i rgb_plane[6]; + int j; + + RGB24PackedToPlanar_SSE2(rgb, rgb_plane); + + for (j = 0; j < 2; ++j, i += 16) { + const __m128i zero = _mm_setzero_si128(); + __m128i r, g, b, Y0, Y1; + + // Convert to 16-bit Y. + r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); + g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); + b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); + ConvertRGBToY_SSE2(&r, &g, &b, &Y0); + + // Convert to 16-bit Y. + r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); + g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); + b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); + ConvertRGBToY_SSE2(&r, &g, &b, &Y1); + + // Cast to 8-bit and store. + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + } + for (; i < width; ++i, rgb += 3) { // left-over + y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); + } +} + +static void ConvertBGR24ToY_SSE2(const uint8_t* bgr, uint8_t* y, int width) { + const int max_width = width & ~31; + int i; + for (i = 0; i < max_width; bgr += 3 * 16 * 2) { + __m128i bgr_plane[6]; + int j; + + RGB24PackedToPlanar_SSE2(bgr, bgr_plane); + + for (j = 0; j < 2; ++j, i += 16) { + const __m128i zero = _mm_setzero_si128(); + __m128i r, g, b, Y0, Y1; + + // Convert to 16-bit Y. + b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); + g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); + r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); + ConvertRGBToY_SSE2(&r, &g, &b, &Y0); + + // Convert to 16-bit Y. + b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); + g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); + r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); + ConvertRGBToY_SSE2(&r, &g, &b, &Y1); + + // Cast to 8-bit and store. + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + } + for (; i < width; ++i, bgr += 3) { // left-over + y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); + } +} + +static void ConvertARGBToY_SSE2(const uint32_t* argb, uint8_t* y, int width) { + const int max_width = width & ~15; + int i; + for (i = 0; i < max_width; i += 16) { + __m128i Y0, Y1, rgb[6]; + RGB32PackedToPlanar_SSE2(&argb[i], rgb); + ConvertRGBToY_SSE2(&rgb[0], &rgb[2], &rgb[4], &Y0); + ConvertRGBToY_SSE2(&rgb[1], &rgb[3], &rgb[5], &Y1); + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + for (; i < width; ++i) { // left-over + const uint32_t p = argb[i]; + y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, + YUV_HALF); + } +} + +// Horizontal add (doubled) of two 16b values, result is 16b. +// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... +static void HorizontalAddPack_SSE2(const __m128i* const A, + const __m128i* const B, + __m128i* const out) { + const __m128i k2 = _mm_set1_epi16(2); + const __m128i C = _mm_madd_epi16(*A, k2); + const __m128i D = _mm_madd_epi16(*B, k2); + *out = _mm_packs_epi32(C, D); +} + +static void ConvertARGBToUV_SSE2(const uint32_t* argb, + uint8_t* u, uint8_t* v, + int src_width, int do_store) { + const int max_width = src_width & ~31; + int i; + for (i = 0; i < max_width; i += 32, u += 16, v += 16) { + __m128i rgb[6], U0, V0, U1, V1; + RGB32PackedToPlanar_SSE2(&argb[i], rgb); + HorizontalAddPack_SSE2(&rgb[0], &rgb[1], &rgb[0]); + HorizontalAddPack_SSE2(&rgb[2], &rgb[3], &rgb[2]); + HorizontalAddPack_SSE2(&rgb[4], &rgb[5], &rgb[4]); + ConvertRGBToUV_SSE2(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); + + RGB32PackedToPlanar_SSE2(&argb[i + 16], rgb); + HorizontalAddPack_SSE2(&rgb[0], &rgb[1], &rgb[0]); + HorizontalAddPack_SSE2(&rgb[2], &rgb[3], &rgb[2]); + HorizontalAddPack_SSE2(&rgb[4], &rgb[5], &rgb[4]); + ConvertRGBToUV_SSE2(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); + + U0 = _mm_packus_epi16(U0, U1); + V0 = _mm_packus_epi16(V0, V1); + if (!do_store) { + const __m128i prev_u = LOAD_16(u); + const __m128i prev_v = LOAD_16(v); + U0 = _mm_avg_epu8(U0, prev_u); + V0 = _mm_avg_epu8(V0, prev_v); + } + STORE_16(U0, u); + STORE_16(V0, v); + } + if (i < src_width) { // left-over + WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); + } +} + +// Convert 16 packed ARGB 16b-values to r[], g[], b[] +static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE2( + const uint16_t* const rgbx, + __m128i* const r, __m128i* const g, __m128i* const b) { + const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x + const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x + const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... + const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... + // column-wise transpose + const __m128i A0 = _mm_unpacklo_epi16(in0, in1); + const __m128i A1 = _mm_unpackhi_epi16(in0, in1); + const __m128i A2 = _mm_unpacklo_epi16(in2, in3); + const __m128i A3 = _mm_unpackhi_epi16(in2, in3); + const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // r0 r1 r2 r3 | g0 g1 .. + const __m128i B1 = _mm_unpackhi_epi16(A0, A1); // b0 b1 b2 b3 | x x x x + const __m128i B2 = _mm_unpacklo_epi16(A2, A3); // r4 r5 r6 r7 | g4 g5 .. + const __m128i B3 = _mm_unpackhi_epi16(A2, A3); // b4 b5 b6 b7 | x x x x + *r = _mm_unpacklo_epi64(B0, B2); + *g = _mm_unpackhi_epi64(B0, B2); + *b = _mm_unpacklo_epi64(B1, B3); +} + +static void ConvertRGBA32ToUV_SSE2(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width) { + const int max_width = width & ~15; + const uint16_t* const last_rgb = rgb + 4 * max_width; + while (rgb < last_rgb) { + __m128i r, g, b, U0, V0, U1, V1; + RGBA32PackedToPlanar_16b_SSE2(rgb + 0, &r, &g, &b); + ConvertRGBToUV_SSE2(&r, &g, &b, &U0, &V0); + RGBA32PackedToPlanar_16b_SSE2(rgb + 32, &r, &g, &b); + ConvertRGBToUV_SSE2(&r, &g, &b, &U1, &V1); + STORE_16(_mm_packus_epi16(U0, U1), u); + STORE_16(_mm_packus_epi16(V0, V1), v); + u += 16; + v += 16; + rgb += 2 * 32; + } + if (max_width < width) { // left-over + WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); + } +} + +//------------------------------------------------------------------------------ + +extern void WebPInitConvertARGBToYUVSSE2(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE2(void) { + WebPConvertARGBToY = ConvertARGBToY_SSE2; + WebPConvertARGBToUV = ConvertARGBToUV_SSE2; + + WebPConvertRGB24ToY = ConvertRGB24ToY_SSE2; + WebPConvertBGR24ToY = ConvertBGR24ToY_SSE2; + + WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE2; +} + +#else // !WEBP_USE_SSE2 + +WEBP_DSP_INIT_STUB(WebPInitSamplersSSE2) +WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE2) + +#endif // WEBP_USE_SSE2 diff --git a/media/libwebp/src/dsp/yuv_sse41.c b/media/libwebp/src/dsp/yuv_sse41.c new file mode 100644 index 0000000000..f79b802e47 --- /dev/null +++ b/media/libwebp/src/dsp/yuv_sse41.c @@ -0,0 +1,615 @@ +// Copyright 2014 Google Inc. All Rights Reserved. +// +// Use of this source code is governed by a BSD-style license +// that can be found in the COPYING file in the root of the source +// tree. An additional intellectual property rights grant can be found +// in the file PATENTS. All contributing project authors may +// be found in the AUTHORS file in the root of the source tree. +// ----------------------------------------------------------------------------- +// +// YUV->RGB conversion functions +// +// Author: Skal (pascal.massimino@gmail.com) + +#include "src/dsp/yuv.h" + +#if defined(WEBP_USE_SSE41) + +#include <stdlib.h> +#include <smmintrin.h> + +#include "src/dsp/common_sse41.h" +#include "src/utils/utils.h" + +//----------------------------------------------------------------------------- +// Convert spans of 32 pixels to various RGB formats for the fancy upsampler. + +// These constants are 14b fixed-point version of ITU-R BT.601 constants. +// R = (19077 * y + 26149 * v - 14234) >> 6 +// G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 +// B = (19077 * y + 33050 * u - 17685) >> 6 +static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0, + const __m128i* const U0, + const __m128i* const V0, + __m128i* const R, + __m128i* const G, + __m128i* const B) { + const __m128i k19077 = _mm_set1_epi16(19077); + const __m128i k26149 = _mm_set1_epi16(26149); + const __m128i k14234 = _mm_set1_epi16(14234); + // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic + const __m128i k33050 = _mm_set1_epi16((short)33050); + const __m128i k17685 = _mm_set1_epi16(17685); + const __m128i k6419 = _mm_set1_epi16(6419); + const __m128i k13320 = _mm_set1_epi16(13320); + const __m128i k8708 = _mm_set1_epi16(8708); + + const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); + + const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); + const __m128i R1 = _mm_sub_epi16(Y1, k14234); + const __m128i R2 = _mm_add_epi16(R1, R0); + + const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); + const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); + const __m128i G2 = _mm_add_epi16(Y1, k8708); + const __m128i G3 = _mm_add_epi16(G0, G1); + const __m128i G4 = _mm_sub_epi16(G2, G3); + + // be careful with the saturated *unsigned* arithmetic here! + const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); + const __m128i B1 = _mm_adds_epu16(B0, Y1); + const __m128i B2 = _mm_subs_epu16(B1, k17685); + + // use logical shift for B2, which can be larger than 32767 + *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] + *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] + *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] +} + +// Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. +static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) { + const __m128i zero = _mm_setzero_si128(); + return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); +} + +// Load and replicate the U/V samples +static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) { + const __m128i zero = _mm_setzero_si128(); + const __m128i tmp0 = _mm_cvtsi32_si128(WebPMemToInt32(src)); + const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); + return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples +} + +// Convert 32 samples of YUV444 to R/G/B +static void YUV444ToRGB_SSE41(const uint8_t* const y, + const uint8_t* const u, + const uint8_t* const v, + __m128i* const R, __m128i* const G, + __m128i* const B) { + const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u), + V0 = Load_HI_16_SSE41(v); + ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); +} + +// Convert 32 samples of YUV420 to R/G/B +static void YUV420ToRGB_SSE41(const uint8_t* const y, + const uint8_t* const u, + const uint8_t* const v, + __m128i* const R, __m128i* const G, + __m128i* const B) { + const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u), + V0 = Load_UV_HI_8_SSE41(v); + ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); +} + +// Pack the planar buffers +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... +static WEBP_INLINE void PlanarTo24b_SSE41( + __m128i* const in0, __m128i* const in1, __m128i* const in2, + __m128i* const in3, __m128i* const in4, __m128i* const in5, + uint8_t* const rgb) { + // The input is 6 registers of sixteen 8b but for the sake of explanation, + // let's take 6 registers of four 8b values. + // To pack, we will keep taking one every two 8b integer and move it + // around as follows: + // Input: + // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 + // Split the 6 registers in two sets of 3 registers: the first set as the even + // 8b bytes, the second the odd ones: + // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 + // Repeat the same permutations twice more: + // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 + // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 + VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5); + + _mm_storeu_si128((__m128i*)(rgb + 0), *in0); + _mm_storeu_si128((__m128i*)(rgb + 16), *in1); + _mm_storeu_si128((__m128i*)(rgb + 32), *in2); + _mm_storeu_si128((__m128i*)(rgb + 48), *in3); + _mm_storeu_si128((__m128i*)(rgb + 64), *in4); + _mm_storeu_si128((__m128i*)(rgb + 80), *in5); +} + +void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; + + YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); + YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); + YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); + + // Cast to 8b and store as RRRRGGGGBBBB. + rgb0 = _mm_packus_epi16(R0, R1); + rgb1 = _mm_packus_epi16(R2, R3); + rgb2 = _mm_packus_epi16(G0, G1); + rgb3 = _mm_packus_epi16(G2, G3); + rgb4 = _mm_packus_epi16(B0, B1); + rgb5 = _mm_packus_epi16(B2, B3); + + // Pack as RGBRGBRGBRGB. + PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); +} + +void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; + + YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); + YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); + YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); + + // Cast to 8b and store as BBBBGGGGRRRR. + bgr0 = _mm_packus_epi16(B0, B1); + bgr1 = _mm_packus_epi16(B2, B3); + bgr2 = _mm_packus_epi16(G0, G1); + bgr3 = _mm_packus_epi16(G2, G3); + bgr4 = _mm_packus_epi16(R0, R1); + bgr5= _mm_packus_epi16(R2, R3); + + // Pack as BGRBGRBGRBGR. + PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); +} + +//----------------------------------------------------------------------------- +// Arbitrary-length row conversion functions + +static void YuvToRgbRow_SSE41(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + int n; + for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; + + YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); + YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); + YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); + + // Cast to 8b and store as RRRRGGGGBBBB. + rgb0 = _mm_packus_epi16(R0, R1); + rgb1 = _mm_packus_epi16(R2, R3); + rgb2 = _mm_packus_epi16(G0, G1); + rgb3 = _mm_packus_epi16(G2, G3); + rgb4 = _mm_packus_epi16(B0, B1); + rgb5 = _mm_packus_epi16(B2, B3); + + // Pack as RGBRGBRGBRGB. + PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); + + y += 32; + u += 16; + v += 16; + } + for (; n < len; ++n) { // Finish off + VP8YuvToRgb(y[0], u[0], v[0], dst); + dst += 3; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +static void YuvToBgrRow_SSE41(const uint8_t* y, + const uint8_t* u, const uint8_t* v, + uint8_t* dst, int len) { + int n; + for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { + __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; + __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; + + YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); + YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); + YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); + YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); + + // Cast to 8b and store as BBBBGGGGRRRR. + bgr0 = _mm_packus_epi16(B0, B1); + bgr1 = _mm_packus_epi16(B2, B3); + bgr2 = _mm_packus_epi16(G0, G1); + bgr3 = _mm_packus_epi16(G2, G3); + bgr4 = _mm_packus_epi16(R0, R1); + bgr5 = _mm_packus_epi16(R2, R3); + + // Pack as BGRBGRBGRBGR. + PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); + + y += 32; + u += 16; + v += 16; + } + for (; n < len; ++n) { // Finish off + VP8YuvToBgr(y[0], u[0], v[0], dst); + dst += 3; + y += 1; + u += (n & 1); + v += (n & 1); + } +} + +//------------------------------------------------------------------------------ +// Entry point + +extern void WebPInitSamplersSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE41(void) { + WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE41; + WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE41; +} + +//------------------------------------------------------------------------------ +// RGB24/32 -> YUV converters + +// Load eight 16b-words from *src. +#define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) +// Store either 16b-words into *dst +#define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) + +#define WEBP_SSE41_SHUFF(OUT) do { \ + const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \ + const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \ + const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \ + const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \ + const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \ + const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \ + \ + /* OR everything to get one channel */ \ + const __m128i tmp6 = _mm_or_si128(tmp0, tmp1); \ + const __m128i tmp7 = _mm_or_si128(tmp3, tmp4); \ + out[OUT + 0] = _mm_or_si128(tmp6, tmp2); \ + out[OUT + 1] = _mm_or_si128(tmp7, tmp5); \ +} while (0); + +// Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: +// rrrr... rrrr... gggg... gggg... bbbb... bbbb.... +// Similar to PlanarTo24bHelper(), but in reverse order. +static WEBP_INLINE void RGB24PackedToPlanar_SSE41( + const uint8_t* const rgb, __m128i* const out /*out[6]*/) { + const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb + 0)); + const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16)); + const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32)); + const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48)); + const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64)); + const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80)); + + // Compute RR. + { + const __m128i shuff0 = _mm_set_epi8( + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0); + const __m128i shuff1 = _mm_set_epi8( + -1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1); + const __m128i shuff2 = _mm_set_epi8( + 13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); + WEBP_SSE41_SHUFF(0) + } + // Compute GG. + { + const __m128i shuff0 = _mm_set_epi8( + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1); + const __m128i shuff1 = _mm_set_epi8( + -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1); + const __m128i shuff2 = _mm_set_epi8( + 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); + WEBP_SSE41_SHUFF(2) + } + // Compute BB. + { + const __m128i shuff0 = _mm_set_epi8( + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2); + const __m128i shuff1 = _mm_set_epi8( + -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1); + const __m128i shuff2 = _mm_set_epi8( + 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); + WEBP_SSE41_SHUFF(4) + } +} + +#undef WEBP_SSE41_SHUFF + +// Convert 8 packed ARGB to r[], g[], b[] +static WEBP_INLINE void RGB32PackedToPlanar_SSE41( + const uint32_t* const argb, __m128i* const rgb /*in[6]*/) { + const __m128i zero = _mm_setzero_si128(); + __m128i a0 = LOAD_16(argb + 0); + __m128i a1 = LOAD_16(argb + 4); + __m128i a2 = LOAD_16(argb + 8); + __m128i a3 = LOAD_16(argb + 12); + VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3); + rgb[0] = _mm_unpacklo_epi8(a1, zero); + rgb[1] = _mm_unpackhi_epi8(a1, zero); + rgb[2] = _mm_unpacklo_epi8(a2, zero); + rgb[3] = _mm_unpackhi_epi8(a2, zero); + rgb[4] = _mm_unpacklo_epi8(a3, zero); + rgb[5] = _mm_unpackhi_epi8(a3, zero); +} + +// This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX +// It's a macro and not a function because we need to use immediate values with +// srai_epi32, e.g. +#define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ + ROUNDER, DESCALE_FIX, OUT) do { \ + const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ + const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ + const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ + const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ + const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ + const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ + const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ + const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ + const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ + const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ + (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ +} while (0) + +#define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) +static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + __m128i* const Y) { + const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); + const __m128i kGB_y = MK_CST_16(16384, 6420); + const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); + + const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); + const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); + const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); + const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); +} + +static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R, + const __m128i* const G, + const __m128i* const B, + __m128i* const U, + __m128i* const V) { + const __m128i kRG_u = MK_CST_16(-9719, -19081); + const __m128i kGB_u = MK_CST_16(0, 28800); + const __m128i kRG_v = MK_CST_16(28800, 0); + const __m128i kGB_v = MK_CST_16(-24116, -4684); + const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); + + const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); + const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); + const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); + const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, + kHALF_UV, YUV_FIX + 2, *U); + TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, + kHALF_UV, YUV_FIX + 2, *V); +} + +#undef MK_CST_16 +#undef TRANSFORM + +static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) { + const int max_width = width & ~31; + int i; + for (i = 0; i < max_width; rgb += 3 * 16 * 2) { + __m128i rgb_plane[6]; + int j; + + RGB24PackedToPlanar_SSE41(rgb, rgb_plane); + + for (j = 0; j < 2; ++j, i += 16) { + const __m128i zero = _mm_setzero_si128(); + __m128i r, g, b, Y0, Y1; + + // Convert to 16-bit Y. + r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); + g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); + b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); + ConvertRGBToY_SSE41(&r, &g, &b, &Y0); + + // Convert to 16-bit Y. + r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); + g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); + b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); + ConvertRGBToY_SSE41(&r, &g, &b, &Y1); + + // Cast to 8-bit and store. + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + } + for (; i < width; ++i, rgb += 3) { // left-over + y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); + } +} + +static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) { + const int max_width = width & ~31; + int i; + for (i = 0; i < max_width; bgr += 3 * 16 * 2) { + __m128i bgr_plane[6]; + int j; + + RGB24PackedToPlanar_SSE41(bgr, bgr_plane); + + for (j = 0; j < 2; ++j, i += 16) { + const __m128i zero = _mm_setzero_si128(); + __m128i r, g, b, Y0, Y1; + + // Convert to 16-bit Y. + b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); + g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); + r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); + ConvertRGBToY_SSE41(&r, &g, &b, &Y0); + + // Convert to 16-bit Y. + b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); + g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); + r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); + ConvertRGBToY_SSE41(&r, &g, &b, &Y1); + + // Cast to 8-bit and store. + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + } + for (; i < width; ++i, bgr += 3) { // left-over + y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); + } +} + +static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) { + const int max_width = width & ~15; + int i; + for (i = 0; i < max_width; i += 16) { + __m128i Y0, Y1, rgb[6]; + RGB32PackedToPlanar_SSE41(&argb[i], rgb); + ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0); + ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1); + STORE_16(_mm_packus_epi16(Y0, Y1), y + i); + } + for (; i < width; ++i) { // left-over + const uint32_t p = argb[i]; + y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, + YUV_HALF); + } +} + +// Horizontal add (doubled) of two 16b values, result is 16b. +// in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... +static void HorizontalAddPack_SSE41(const __m128i* const A, + const __m128i* const B, + __m128i* const out) { + const __m128i k2 = _mm_set1_epi16(2); + const __m128i C = _mm_madd_epi16(*A, k2); + const __m128i D = _mm_madd_epi16(*B, k2); + *out = _mm_packs_epi32(C, D); +} + +static void ConvertARGBToUV_SSE41(const uint32_t* argb, + uint8_t* u, uint8_t* v, + int src_width, int do_store) { + const int max_width = src_width & ~31; + int i; + for (i = 0; i < max_width; i += 32, u += 16, v += 16) { + __m128i rgb[6], U0, V0, U1, V1; + RGB32PackedToPlanar_SSE41(&argb[i], rgb); + HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); + HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); + HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); + ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); + + RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb); + HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); + HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); + HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); + ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); + + U0 = _mm_packus_epi16(U0, U1); + V0 = _mm_packus_epi16(V0, V1); + if (!do_store) { + const __m128i prev_u = LOAD_16(u); + const __m128i prev_v = LOAD_16(v); + U0 = _mm_avg_epu8(U0, prev_u); + V0 = _mm_avg_epu8(V0, prev_v); + } + STORE_16(U0, u); + STORE_16(V0, v); + } + if (i < src_width) { // left-over + WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); + } +} + +// Convert 16 packed ARGB 16b-values to r[], g[], b[] +static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41( + const uint16_t* const rgbx, + __m128i* const r, __m128i* const g, __m128i* const b) { + const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x + const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x + const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... + const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... + // aarrggbb as 16-bit. + const __m128i shuff0 = + _mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0); + const __m128i shuff1 = + _mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0); + const __m128i A0 = _mm_shuffle_epi8(in0, shuff0); + const __m128i A1 = _mm_shuffle_epi8(in1, shuff1); + const __m128i A2 = _mm_shuffle_epi8(in2, shuff0); + const __m128i A3 = _mm_shuffle_epi8(in3, shuff1); + // R0R1G0G1 + // B0B1**** + // R2R3G2G3 + // B2B3**** + // (OR is used to free port 5 for the unpack) + const __m128i B0 = _mm_unpacklo_epi32(A0, A1); + const __m128i B1 = _mm_or_si128(A0, A1); + const __m128i B2 = _mm_unpacklo_epi32(A2, A3); + const __m128i B3 = _mm_or_si128(A2, A3); + // Gather the channels. + *r = _mm_unpacklo_epi64(B0, B2); + *g = _mm_unpackhi_epi64(B0, B2); + *b = _mm_unpackhi_epi64(B1, B3); +} + +static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb, + uint8_t* u, uint8_t* v, int width) { + const int max_width = width & ~15; + const uint16_t* const last_rgb = rgb + 4 * max_width; + while (rgb < last_rgb) { + __m128i r, g, b, U0, V0, U1, V1; + RGBA32PackedToPlanar_16b_SSE41(rgb + 0, &r, &g, &b); + ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0); + RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b); + ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1); + STORE_16(_mm_packus_epi16(U0, U1), u); + STORE_16(_mm_packus_epi16(V0, V1), v); + u += 16; + v += 16; + rgb += 2 * 32; + } + if (max_width < width) { // left-over + WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); + } +} + +//------------------------------------------------------------------------------ + +extern void WebPInitConvertARGBToYUVSSE41(void); + +WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) { + WebPConvertARGBToY = ConvertARGBToY_SSE41; + WebPConvertARGBToUV = ConvertARGBToUV_SSE41; + + WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41; + WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41; + + WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41; +} + +//------------------------------------------------------------------------------ + +#else // !WEBP_USE_SSE41 + +WEBP_DSP_INIT_STUB(WebPInitSamplersSSE41) +WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41) + +#endif // WEBP_USE_SSE41 |