diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/aom/av1/common/restoration.c | |
parent | Initial commit. (diff) | |
download | thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.tar.xz thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/restoration.c')
-rw-r--r-- | third_party/aom/av1/common/restoration.c | 1556 |
1 files changed, 1556 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/restoration.c b/third_party/aom/av1/common/restoration.c new file mode 100644 index 0000000000..d276a915b5 --- /dev/null +++ b/third_party/aom/av1/common/restoration.c @@ -0,0 +1,1556 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + * + */ + +#include <math.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_mem/aom_mem.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/resize.h" +#include "av1/common/restoration.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" + +#include "aom_ports/mem.h" + +// The 's' values are calculated based on original 'r' and 'e' values in the +// spec using GenSgrprojVtable(). +// Note: Setting r = 0 skips the filter; with corresponding s = -1 (invalid). +const sgr_params_type sgr_params[SGRPROJ_PARAMS] = { + { { 2, 1 }, { 140, 3236 } }, { { 2, 1 }, { 112, 2158 } }, + { { 2, 1 }, { 93, 1618 } }, { { 2, 1 }, { 80, 1438 } }, + { { 2, 1 }, { 70, 1295 } }, { { 2, 1 }, { 58, 1177 } }, + { { 2, 1 }, { 47, 1079 } }, { { 2, 1 }, { 37, 996 } }, + { { 2, 1 }, { 30, 925 } }, { { 2, 1 }, { 25, 863 } }, + { { 0, 1 }, { -1, 2589 } }, { { 0, 1 }, { -1, 1618 } }, + { { 0, 1 }, { -1, 1177 } }, { { 0, 1 }, { -1, 925 } }, + { { 2, 0 }, { 56, -1 } }, { { 2, 0 }, { 22, -1 } }, +}; + +AV1PixelRect av1_whole_frame_rect(const AV1_COMMON *cm, int is_uv) { + AV1PixelRect rect; + + int ss_x = is_uv && cm->seq_params.subsampling_x; + int ss_y = is_uv && cm->seq_params.subsampling_y; + + rect.top = 0; + rect.bottom = ROUND_POWER_OF_TWO(cm->height, ss_y); + rect.left = 0; + rect.right = ROUND_POWER_OF_TWO(cm->superres_upscaled_width, ss_x); + return rect; +} + +// Count horizontal or vertical units per tile (use a width or height for +// tile_size, respectively). We basically want to divide the tile size by the +// size of a restoration unit. Rather than rounding up unconditionally as you +// might expect, we round to nearest, which models the way a right or bottom +// restoration unit can extend to up to 150% its normal width or height. The +// max with 1 is to deal with tiles that are smaller than half of a restoration +// unit. +int av1_lr_count_units_in_tile(int unit_size, int tile_size) { + return AOMMAX((tile_size + (unit_size >> 1)) / unit_size, 1); +} + +void av1_alloc_restoration_struct(AV1_COMMON *cm, RestorationInfo *rsi, + int is_uv) { + // We need to allocate enough space for restoration units to cover the + // largest tile. Without CONFIG_MAX_TILE, this is always the tile at the + // top-left and we can use av1_get_tile_rect(). With CONFIG_MAX_TILE, we have + // to do the computation ourselves, iterating over the tiles and keeping + // track of the largest width and height, then upscaling. + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int max_tile_w = tile_rect.right - tile_rect.left; + const int max_tile_h = tile_rect.bottom - tile_rect.top; + + // To calculate hpertile and vpertile (horizontal and vertical units per + // tile), we basically want to divide the largest tile width or height by the + // size of a restoration unit. Rather than rounding up unconditionally as you + // might expect, we round to nearest, which models the way a right or bottom + // restoration unit can extend to up to 150% its normal width or height. The + // max with 1 is to deal with tiles that are smaller than half of a + // restoration unit. + const int unit_size = rsi->restoration_unit_size; + const int hpertile = av1_lr_count_units_in_tile(unit_size, max_tile_w); + const int vpertile = av1_lr_count_units_in_tile(unit_size, max_tile_h); + + rsi->units_per_tile = hpertile * vpertile; + rsi->horz_units_per_tile = hpertile; + rsi->vert_units_per_tile = vpertile; + + const int ntiles = 1; + const int nunits = ntiles * rsi->units_per_tile; + + aom_free(rsi->unit_info); + CHECK_MEM_ERROR(cm, rsi->unit_info, + (RestorationUnitInfo *)aom_memalign( + 16, sizeof(*rsi->unit_info) * nunits)); +} + +void av1_free_restoration_struct(RestorationInfo *rst_info) { + aom_free(rst_info->unit_info); + rst_info->unit_info = NULL; +} + +#if 0 +// Pair of values for each sgrproj parameter: +// Index 0 corresponds to r[0], e[0] +// Index 1 corresponds to r[1], e[1] +int sgrproj_mtable[SGRPROJ_PARAMS][2]; + +static void GenSgrprojVtable() { + for (int i = 0; i < SGRPROJ_PARAMS; ++i) { + const sgr_params_type *const params = &sgr_params[i]; + for (int j = 0; j < 2; ++j) { + const int e = params->e[j]; + const int r = params->r[j]; + if (r == 0) { // filter is disabled + sgrproj_mtable[i][j] = -1; // mark invalid + } else { // filter is enabled + const int n = (2 * r + 1) * (2 * r + 1); + const int n2e = n * n * e; + assert(n2e != 0); + sgrproj_mtable[i][j] = (((1 << SGRPROJ_MTABLE_BITS) + n2e / 2) / n2e); + } + } + } +} +#endif + +void av1_loop_restoration_precal() { +#if 0 + GenSgrprojVtable(); +#endif +} + +static void extend_frame_lowbd(uint8_t *data, int width, int height, int stride, + int border_horz, int border_vert) { + uint8_t *data_p; + int i; + for (i = 0; i < height; ++i) { + data_p = data + i * stride; + memset(data_p - border_horz, data_p[0], border_horz); + memset(data_p + width, data_p[width - 1], border_horz); + } + data_p = data - border_horz; + for (i = -border_vert; i < 0; ++i) { + memcpy(data_p + i * stride, data_p, width + 2 * border_horz); + } + for (i = height; i < height + border_vert; ++i) { + memcpy(data_p + i * stride, data_p + (height - 1) * stride, + width + 2 * border_horz); + } +} + +static void extend_frame_highbd(uint16_t *data, int width, int height, + int stride, int border_horz, int border_vert) { + uint16_t *data_p; + int i, j; + for (i = 0; i < height; ++i) { + data_p = data + i * stride; + for (j = -border_horz; j < 0; ++j) data_p[j] = data_p[0]; + for (j = width; j < width + border_horz; ++j) data_p[j] = data_p[width - 1]; + } + data_p = data - border_horz; + for (i = -border_vert; i < 0; ++i) { + memcpy(data_p + i * stride, data_p, + (width + 2 * border_horz) * sizeof(uint16_t)); + } + for (i = height; i < height + border_vert; ++i) { + memcpy(data_p + i * stride, data_p + (height - 1) * stride, + (width + 2 * border_horz) * sizeof(uint16_t)); + } +} + +void extend_frame(uint8_t *data, int width, int height, int stride, + int border_horz, int border_vert, int highbd) { + if (highbd) + extend_frame_highbd(CONVERT_TO_SHORTPTR(data), width, height, stride, + border_horz, border_vert); + else + extend_frame_lowbd(data, width, height, stride, border_horz, border_vert); +} + +static void copy_tile_lowbd(int width, int height, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride) { + for (int i = 0; i < height; ++i) + memcpy(dst + i * dst_stride, src + i * src_stride, width); +} + +static void copy_tile_highbd(int width, int height, const uint16_t *src, + int src_stride, uint16_t *dst, int dst_stride) { + for (int i = 0; i < height; ++i) + memcpy(dst + i * dst_stride, src + i * src_stride, width * sizeof(*dst)); +} + +static void copy_tile(int width, int height, const uint8_t *src, int src_stride, + uint8_t *dst, int dst_stride, int highbd) { + if (highbd) + copy_tile_highbd(width, height, CONVERT_TO_SHORTPTR(src), src_stride, + CONVERT_TO_SHORTPTR(dst), dst_stride); + else + copy_tile_lowbd(width, height, src, src_stride, dst, dst_stride); +} + +#define REAL_PTR(hbd, d) ((hbd) ? (uint8_t *)CONVERT_TO_SHORTPTR(d) : (d)) + +// With striped loop restoration, the filtering for each 64-pixel stripe gets +// most of its input from the output of CDEF (stored in data8), but we need to +// fill out a border of 3 pixels above/below the stripe according to the +// following +// rules: +// +// * At a frame boundary, we copy the outermost row of CDEF pixels three times. +// This extension is done by a call to extend_frame() at the start of the loop +// restoration process, so the value of copy_above/copy_below doesn't strictly +// matter. +// However, by setting *copy_above = *copy_below = 1 whenever loop filtering +// across tiles is disabled, we can allow +// {setup,restore}_processing_stripe_boundary to assume that the top/bottom +// data has always been copied, simplifying the behaviour at the left and +// right edges of tiles. +// +// * If we're at a tile boundary and loop filtering across tiles is enabled, +// then there is a logical stripe which is 64 pixels high, but which is split +// into an 8px high and a 56px high stripe so that the processing (and +// coefficient set usage) can be aligned to tiles. +// In this case, we use the 3 rows of CDEF output across the boundary for +// context; this corresponds to leaving the frame buffer as-is. +// +// * If we're at a tile boundary and loop filtering across tiles is disabled, +// then we take the outermost row of CDEF pixels *within the current tile* +// and copy it three times. Thus we behave exactly as if the tile were a full +// frame. +// +// * Otherwise, we're at a stripe boundary within a tile. In that case, we +// take 2 rows of deblocked pixels and extend them to 3 rows of context. +// +// The distinction between the latter two cases is handled by the +// av1_loop_restoration_save_boundary_lines() function, so here we just need +// to decide if we're overwriting the above/below boundary pixels or not. +static void get_stripe_boundary_info(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, int ss_y, + int *copy_above, int *copy_below) { + *copy_above = 1; + *copy_below = 1; + + const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; + + const int first_stripe_in_tile = (limits->v_start == tile_rect->top); + const int this_stripe_height = + full_stripe_height - (first_stripe_in_tile ? runit_offset : 0); + const int last_stripe_in_tile = + (limits->v_start + this_stripe_height >= tile_rect->bottom); + + if (first_stripe_in_tile) *copy_above = 0; + if (last_stripe_in_tile) *copy_below = 0; +} + +// Overwrite the border pixels around a processing stripe so that the conditions +// listed above get_stripe_boundary_info() are preserved. +// We save the pixels which get overwritten into a temporary buffer, so that +// they can be restored by restore_processing_stripe_boundary() after we've +// processed the stripe. +// +// limits gives the rectangular limits of the remaining stripes for the current +// restoration unit. rsb is the stored stripe boundaries (taken from either +// deblock or CDEF output as necessary). +// +// tile_rect is the limits of the current tile and tile_stripe0 is the index of +// the first stripe in this tile (needed to convert the tile-relative stripe +// index we get from limits into something we can look up in rsb). +static void setup_processing_stripe_boundary( + const RestorationTileLimits *limits, const RestorationStripeBoundaries *rsb, + int rsb_row, int use_highbd, int h, uint8_t *data8, int data_stride, + RestorationLineBuffers *rlbs, int copy_above, int copy_below, int opt) { + // Offsets within the line buffers. The buffer logically starts at column + // -RESTORATION_EXTRA_HORZ so the 1st column (at x0 - RESTORATION_EXTRA_HORZ) + // has column x0 in the buffer. + const int buf_stride = rsb->stripe_boundary_stride; + const int buf_x0_off = limits->h_start; + const int line_width = + (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; + const int line_size = line_width << use_highbd; + + const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; + + // Replace RESTORATION_BORDER pixels above the top of the stripe + // We expand RESTORATION_CTX_VERT=2 lines from rsb->stripe_boundary_above + // to fill RESTORATION_BORDER=3 lines of above pixels. This is done by + // duplicating the topmost of the 2 lines (see the AOMMAX call when + // calculating src_row, which gets the values 0, 0, 1 for i = -3, -2, -1). + // + // Special case: If we're at the top of a tile, which isn't on the topmost + // tile row, and we're allowed to loop filter across tiles, then we have a + // logical 64-pixel-high stripe which has been split into an 8-pixel high + // stripe and a 56-pixel high stripe (the current one). So, in this case, + // we want to leave the boundary alone! + if (!opt) { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + for (int i = -RESTORATION_BORDER; i < 0; ++i) { + const int buf_row = rsb_row + AOMMAX(i + RESTORATION_CTX_VERT, 0); + const int buf_off = buf_x0_off + buf_row * buf_stride; + const uint8_t *buf = + rsb->stripe_boundary_above + (buf_off << use_highbd); + uint8_t *dst8 = data8_tl + i * data_stride; + // Save old pixels, then replace with data from stripe_boundary_above + memcpy(rlbs->tmp_save_above[i + RESTORATION_BORDER], + REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), buf, line_size); + } + } + + // Replace RESTORATION_BORDER pixels below the bottom of the stripe. + // The second buffer row is repeated, so src_row gets the values 0, 1, 1 + // for i = 0, 1, 2. + if (copy_below) { + const int stripe_end = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride; + + for (int i = 0; i < RESTORATION_BORDER; ++i) { + const int buf_row = rsb_row + AOMMIN(i, RESTORATION_CTX_VERT - 1); + const int buf_off = buf_x0_off + buf_row * buf_stride; + const uint8_t *src = + rsb->stripe_boundary_below + (buf_off << use_highbd); + + uint8_t *dst8 = data8_bl + i * data_stride; + // Save old pixels, then replace with data from stripe_boundary_below + memcpy(rlbs->tmp_save_below[i], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), src, line_size); + } + } + } else { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + // Only save and overwrite i=-RESTORATION_BORDER line. + uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride; + // Save old pixels, then replace with data from stripe_boundary_above + memcpy(rlbs->tmp_save_above[0], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), + REAL_PTR(use_highbd, + data8_tl + (-RESTORATION_BORDER + 1) * data_stride), + line_size); + } + + if (copy_below) { + const int stripe_end = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_end * data_stride; + + // Only save and overwrite i=2 line. + uint8_t *dst8 = data8_bl + 2 * data_stride; + // Save old pixels, then replace with data from stripe_boundary_below + memcpy(rlbs->tmp_save_below[2], REAL_PTR(use_highbd, dst8), line_size); + memcpy(REAL_PTR(use_highbd, dst8), + REAL_PTR(use_highbd, data8_bl + (2 - 1) * data_stride), line_size); + } + } +} + +// This function restores the boundary lines modified by +// setup_processing_stripe_boundary. +// +// Note: We need to be careful when handling the corners of the processing +// unit, because (eg.) the top-left corner is considered to be part of +// both the left and top borders. This means that, depending on the +// loop_filter_across_tiles_enabled flag, the corner pixels might get +// overwritten twice, once as part of the "top" border and once as part +// of the "left" border (or similar for other corners). +// +// Everything works out fine as long as we make sure to reverse the order +// when restoring, ie. we need to restore the left/right borders followed +// by the top/bottom borders. +static void restore_processing_stripe_boundary( + const RestorationTileLimits *limits, const RestorationLineBuffers *rlbs, + int use_highbd, int h, uint8_t *data8, int data_stride, int copy_above, + int copy_below, int opt) { + const int line_width = + (limits->h_end - limits->h_start) + 2 * RESTORATION_EXTRA_HORZ; + const int line_size = line_width << use_highbd; + + const int data_x0 = limits->h_start - RESTORATION_EXTRA_HORZ; + + if (!opt) { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + for (int i = -RESTORATION_BORDER; i < 0; ++i) { + uint8_t *dst8 = data8_tl + i * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), + rlbs->tmp_save_above[i + RESTORATION_BORDER], line_size); + } + } + + if (copy_below) { + const int stripe_bottom = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride; + + for (int i = 0; i < RESTORATION_BORDER; ++i) { + if (stripe_bottom + i >= limits->v_end + RESTORATION_BORDER) break; + + uint8_t *dst8 = data8_bl + i * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[i], line_size); + } + } + } else { + if (copy_above) { + uint8_t *data8_tl = data8 + data_x0 + limits->v_start * data_stride; + + // Only restore i=-RESTORATION_BORDER line. + uint8_t *dst8 = data8_tl + (-RESTORATION_BORDER) * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_above[0], line_size); + } + + if (copy_below) { + const int stripe_bottom = limits->v_start + h; + uint8_t *data8_bl = data8 + data_x0 + stripe_bottom * data_stride; + + // Only restore i=2 line. + if (stripe_bottom + 2 < limits->v_end + RESTORATION_BORDER) { + uint8_t *dst8 = data8_bl + 2 * data_stride; + memcpy(REAL_PTR(use_highbd, dst8), rlbs->tmp_save_below[2], line_size); + } + } + } +} + +static void wiener_filter_stripe(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + (void)tmpbuf; + (void)bit_depth; + assert(bit_depth == 8); + const ConvolveParams conv_params = get_conv_params_wiener(8); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15); + const uint8_t *src_p = src + j; + uint8_t *dst_p = dst + j; + av1_wiener_convolve_add_src( + src_p, src_stride, dst_p, dst_stride, rui->wiener_info.hfilter, 16, + rui->wiener_info.vfilter, 16, w, stripe_height, &conv_params); + } +} + +/* Calculate windowed sums (if sqr=0) or sums of squares (if sqr=1) + over the input. The window is of size (2r + 1)x(2r + 1), and we + specialize to r = 1, 2, 3. A default function is used for r > 3. + + Each loop follows the same format: We keep a window's worth of input + in individual variables and select data out of that as appropriate. +*/ +static void boxsum1(int32_t *src, int width, int height, int src_stride, + int sqr, int32_t *dst, int dst_stride) { + int i, j, a, b, c; + assert(width > 2 * SGRPROJ_BORDER_HORZ); + assert(height > 2 * SGRPROJ_BORDER_VERT); + + // Vertical sum over 3-pixel regions, from src into dst. + if (!sqr) { + for (j = 0; j < width; ++j) { + a = src[j]; + b = src[src_stride + j]; + c = src[2 * src_stride + j]; + + dst[j] = a + b; + for (i = 1; i < height - 2; ++i) { + // Loop invariant: At the start of each iteration, + // a = src[(i - 1) * src_stride + j] + // b = src[(i ) * src_stride + j] + // c = src[(i + 1) * src_stride + j] + dst[i * dst_stride + j] = a + b + c; + a = b; + b = c; + c = src[(i + 2) * src_stride + j]; + } + dst[i * dst_stride + j] = a + b + c; + dst[(i + 1) * dst_stride + j] = b + c; + } + } else { + for (j = 0; j < width; ++j) { + a = src[j] * src[j]; + b = src[src_stride + j] * src[src_stride + j]; + c = src[2 * src_stride + j] * src[2 * src_stride + j]; + + dst[j] = a + b; + for (i = 1; i < height - 2; ++i) { + dst[i * dst_stride + j] = a + b + c; + a = b; + b = c; + c = src[(i + 2) * src_stride + j] * src[(i + 2) * src_stride + j]; + } + dst[i * dst_stride + j] = a + b + c; + dst[(i + 1) * dst_stride + j] = b + c; + } + } + + // Horizontal sum over 3-pixel regions of dst + for (i = 0; i < height; ++i) { + a = dst[i * dst_stride]; + b = dst[i * dst_stride + 1]; + c = dst[i * dst_stride + 2]; + + dst[i * dst_stride] = a + b; + for (j = 1; j < width - 2; ++j) { + // Loop invariant: At the start of each iteration, + // a = src[i * src_stride + (j - 1)] + // b = src[i * src_stride + (j )] + // c = src[i * src_stride + (j + 1)] + dst[i * dst_stride + j] = a + b + c; + a = b; + b = c; + c = dst[i * dst_stride + (j + 2)]; + } + dst[i * dst_stride + j] = a + b + c; + dst[i * dst_stride + (j + 1)] = b + c; + } +} + +static void boxsum2(int32_t *src, int width, int height, int src_stride, + int sqr, int32_t *dst, int dst_stride) { + int i, j, a, b, c, d, e; + assert(width > 2 * SGRPROJ_BORDER_HORZ); + assert(height > 2 * SGRPROJ_BORDER_VERT); + + // Vertical sum over 5-pixel regions, from src into dst. + if (!sqr) { + for (j = 0; j < width; ++j) { + a = src[j]; + b = src[src_stride + j]; + c = src[2 * src_stride + j]; + d = src[3 * src_stride + j]; + e = src[4 * src_stride + j]; + + dst[j] = a + b + c; + dst[dst_stride + j] = a + b + c + d; + for (i = 2; i < height - 3; ++i) { + // Loop invariant: At the start of each iteration, + // a = src[(i - 2) * src_stride + j] + // b = src[(i - 1) * src_stride + j] + // c = src[(i ) * src_stride + j] + // d = src[(i + 1) * src_stride + j] + // e = src[(i + 2) * src_stride + j] + dst[i * dst_stride + j] = a + b + c + d + e; + a = b; + b = c; + c = d; + d = e; + e = src[(i + 3) * src_stride + j]; + } + dst[i * dst_stride + j] = a + b + c + d + e; + dst[(i + 1) * dst_stride + j] = b + c + d + e; + dst[(i + 2) * dst_stride + j] = c + d + e; + } + } else { + for (j = 0; j < width; ++j) { + a = src[j] * src[j]; + b = src[src_stride + j] * src[src_stride + j]; + c = src[2 * src_stride + j] * src[2 * src_stride + j]; + d = src[3 * src_stride + j] * src[3 * src_stride + j]; + e = src[4 * src_stride + j] * src[4 * src_stride + j]; + + dst[j] = a + b + c; + dst[dst_stride + j] = a + b + c + d; + for (i = 2; i < height - 3; ++i) { + dst[i * dst_stride + j] = a + b + c + d + e; + a = b; + b = c; + c = d; + d = e; + e = src[(i + 3) * src_stride + j] * src[(i + 3) * src_stride + j]; + } + dst[i * dst_stride + j] = a + b + c + d + e; + dst[(i + 1) * dst_stride + j] = b + c + d + e; + dst[(i + 2) * dst_stride + j] = c + d + e; + } + } + + // Horizontal sum over 5-pixel regions of dst + for (i = 0; i < height; ++i) { + a = dst[i * dst_stride]; + b = dst[i * dst_stride + 1]; + c = dst[i * dst_stride + 2]; + d = dst[i * dst_stride + 3]; + e = dst[i * dst_stride + 4]; + + dst[i * dst_stride] = a + b + c; + dst[i * dst_stride + 1] = a + b + c + d; + for (j = 2; j < width - 3; ++j) { + // Loop invariant: At the start of each iteration, + // a = src[i * src_stride + (j - 2)] + // b = src[i * src_stride + (j - 1)] + // c = src[i * src_stride + (j )] + // d = src[i * src_stride + (j + 1)] + // e = src[i * src_stride + (j + 2)] + dst[i * dst_stride + j] = a + b + c + d + e; + a = b; + b = c; + c = d; + d = e; + e = dst[i * dst_stride + (j + 3)]; + } + dst[i * dst_stride + j] = a + b + c + d + e; + dst[i * dst_stride + (j + 1)] = b + c + d + e; + dst[i * dst_stride + (j + 2)] = c + d + e; + } +} + +static void boxsum(int32_t *src, int width, int height, int src_stride, int r, + int sqr, int32_t *dst, int dst_stride) { + if (r == 1) + boxsum1(src, width, height, src_stride, sqr, dst, dst_stride); + else if (r == 2) + boxsum2(src, width, height, src_stride, sqr, dst, dst_stride); + else + assert(0 && "Invalid value of r in self-guided filter"); +} + +void decode_xq(const int *xqd, int *xq, const sgr_params_type *params) { + if (params->r[0] == 0) { + xq[0] = 0; + xq[1] = (1 << SGRPROJ_PRJ_BITS) - xqd[1]; + } else if (params->r[1] == 0) { + xq[0] = xqd[0]; + xq[1] = 0; + } else { + xq[0] = xqd[0]; + xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0] - xqd[1]; + } +} + +const int32_t x_by_xplus1[256] = { + // Special case: Map 0 -> 1 (corresponding to a value of 1/256) + // instead of 0. See comments in selfguided_restoration_internal() for why + 1, 128, 171, 192, 205, 213, 219, 224, 228, 230, 233, 235, 236, 238, 239, + 240, 241, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 247, 247, + 248, 248, 248, 248, 249, 249, 249, 249, 249, 250, 250, 250, 250, 250, 250, + 250, 251, 251, 251, 251, 251, 251, 251, 251, 251, 251, 252, 252, 252, 252, + 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 252, 253, 253, + 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, + 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 253, 254, 254, 254, + 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, + 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, + 256, +}; + +const int32_t one_by_x[MAX_NELEM] = { + 4096, 2048, 1365, 1024, 819, 683, 585, 512, 455, 410, 372, 341, 315, + 293, 273, 256, 241, 228, 216, 205, 195, 186, 178, 171, 164, +}; + +static void calculate_intermediate_result(int32_t *dgd, int width, int height, + int dgd_stride, int bit_depth, + int sgr_params_idx, int radius_idx, + int pass, int32_t *A, int32_t *B) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + const int height_ext = height + 2 * SGRPROJ_BORDER_VERT; + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 16 bytes, for consistency + // with the SIMD version of this function. + int buf_stride = ((width_ext + 3) & ~3) + 16; + const int step = pass == 0 ? 1 : 2; + int i, j; + + assert(r <= MAX_RADIUS && "Need MAX_RADIUS >= r"); + assert(r <= SGRPROJ_BORDER_VERT - 1 && r <= SGRPROJ_BORDER_HORZ - 1 && + "Need SGRPROJ_BORDER_* >= r+1"); + + boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, + width_ext, height_ext, dgd_stride, r, 0, B, buf_stride); + boxsum(dgd - dgd_stride * SGRPROJ_BORDER_VERT - SGRPROJ_BORDER_HORZ, + width_ext, height_ext, dgd_stride, r, 1, A, buf_stride); + A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + // Calculate the eventual A[] and B[] arrays. Include a 1-pixel border - ie, + // for a 64x64 processing unit, we calculate 66x66 pixels of A[] and B[]. + for (i = -1; i < height + 1; i += step) { + for (j = -1; j < width + 1; ++j) { + const int k = i * buf_stride + j; + const int n = (2 * r + 1) * (2 * r + 1); + + // a < 2^16 * n < 2^22 regardless of bit depth + uint32_t a = ROUND_POWER_OF_TWO(A[k], 2 * (bit_depth - 8)); + // b < 2^8 * n < 2^14 regardless of bit depth + uint32_t b = ROUND_POWER_OF_TWO(B[k], bit_depth - 8); + + // Each term in calculating p = a * n - b * b is < 2^16 * n^2 < 2^28, + // and p itself satisfies p < 2^14 * n^2 < 2^26. + // This bound on p is due to: + // https://en.wikipedia.org/wiki/Popoviciu's_inequality_on_variances + // + // Note: Sometimes, in high bit depth, we can end up with a*n < b*b. + // This is an artefact of rounding, and can only happen if all pixels + // are (almost) identical, so in this case we saturate to p=0. + uint32_t p = (a * n < b * b) ? 0 : a * n - b * b; + + const uint32_t s = params->s[radius_idx]; + + // p * s < (2^14 * n^2) * round(2^20 / n^2 eps) < 2^34 / eps < 2^32 + // as long as eps >= 4. So p * s fits into a uint32_t, and z < 2^12 + // (this holds even after accounting for the rounding in s) + const uint32_t z = ROUND_POWER_OF_TWO(p * s, SGRPROJ_MTABLE_BITS); + + // Note: We have to be quite careful about the value of A[k]. + // This is used as a blend factor between individual pixel values and the + // local mean. So it logically has a range of [0, 256], including both + // endpoints. + // + // This is a pain for hardware, as we'd like something which can be stored + // in exactly 8 bits. + // Further, in the calculation of B[k] below, if z == 0 and r == 2, + // then A[k] "should be" 0. But then we can end up setting B[k] to a value + // slightly above 2^(8 + bit depth), due to rounding in the value of + // one_by_x[25-1]. + // + // Thus we saturate so that, when z == 0, A[k] is set to 1 instead of 0. + // This fixes the above issues (256 - A[k] fits in a uint8, and we can't + // overflow), without significantly affecting the final result: z == 0 + // implies that the image is essentially "flat", so the local mean and + // individual pixel values are very similar. + // + // Note that saturating on the other side, ie. requring A[k] <= 255, + // would be a bad idea, as that corresponds to the case where the image + // is very variable, when we want to preserve the local pixel value as + // much as possible. + A[k] = x_by_xplus1[AOMMIN(z, 255)]; // in range [1, 256] + + // SGRPROJ_SGR - A[k] < 2^8 (from above), B[k] < 2^(bit_depth) * n, + // one_by_x[n - 1] = round(2^12 / n) + // => the product here is < 2^(20 + bit_depth) <= 2^32, + // and B[k] is set to a value < 2^(8 + bit depth) + // This holds even with the rounding in one_by_x and in the overall + // result, as long as SGRPROJ_SGR - A[k] is strictly less than 2^8. + B[k] = (int32_t)ROUND_POWER_OF_TWO((uint32_t)(SGRPROJ_SGR - A[k]) * + (uint32_t)B[k] * + (uint32_t)one_by_x[n - 1], + SGRPROJ_RECIP_BITS); + } + } +} + +static void selfguided_restoration_fast_internal( + int32_t *dgd, int width, int height, int dgd_stride, int32_t *dst, + int dst_stride, int bit_depth, int sgr_params_idx, int radius_idx) { + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + const int r = params->r[radius_idx]; + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 16 bytes, for consistency + // with the SIMD version of this function. + int buf_stride = ((width_ext + 3) & ~3) + 16; + int32_t A_[RESTORATION_PROC_UNIT_PELS]; + int32_t B_[RESTORATION_PROC_UNIT_PELS]; + int32_t *A = A_; + int32_t *B = B_; + int i, j; + calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, + sgr_params_idx, radius_idx, 1, A, B); + A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + + // Use the A[] and B[] arrays to calculate the filtered image + (void)r; + assert(r == 2); + for (i = 0; i < height; ++i) { + if (!(i & 1)) { // even row + for (j = 0; j < width; ++j) { + const int k = i * buf_stride + j; + const int l = i * dgd_stride + j; + const int m = i * dst_stride + j; + const int nb = 5; + const int32_t a = (A[k - buf_stride] + A[k + buf_stride]) * 6 + + (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + + A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * + 5; + const int32_t b = (B[k - buf_stride] + B[k + buf_stride]) * 6 + + (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + + B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * + 5; + const int32_t v = a * dgd[l] + b; + dst[m] = + ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + } + } else { // odd row + for (j = 0; j < width; ++j) { + const int k = i * buf_stride + j; + const int l = i * dgd_stride + j; + const int m = i * dst_stride + j; + const int nb = 4; + const int32_t a = A[k] * 6 + (A[k - 1] + A[k + 1]) * 5; + const int32_t b = B[k] * 6 + (B[k - 1] + B[k + 1]) * 5; + const int32_t v = a * dgd[l] + b; + dst[m] = + ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + } + } + } +} + +static void selfguided_restoration_internal(int32_t *dgd, int width, int height, + int dgd_stride, int32_t *dst, + int dst_stride, int bit_depth, + int sgr_params_idx, + int radius_idx) { + const int width_ext = width + 2 * SGRPROJ_BORDER_HORZ; + // Adjusting the stride of A and B here appears to avoid bad cache effects, + // leading to a significant speed improvement. + // We also align the stride to a multiple of 16 bytes, for consistency + // with the SIMD version of this function. + int buf_stride = ((width_ext + 3) & ~3) + 16; + int32_t A_[RESTORATION_PROC_UNIT_PELS]; + int32_t B_[RESTORATION_PROC_UNIT_PELS]; + int32_t *A = A_; + int32_t *B = B_; + int i, j; + calculate_intermediate_result(dgd, width, height, dgd_stride, bit_depth, + sgr_params_idx, radius_idx, 0, A, B); + A += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + B += SGRPROJ_BORDER_VERT * buf_stride + SGRPROJ_BORDER_HORZ; + + // Use the A[] and B[] arrays to calculate the filtered image + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int k = i * buf_stride + j; + const int l = i * dgd_stride + j; + const int m = i * dst_stride + j; + const int nb = 5; + const int32_t a = + (A[k] + A[k - 1] + A[k + 1] + A[k - buf_stride] + A[k + buf_stride]) * + 4 + + (A[k - 1 - buf_stride] + A[k - 1 + buf_stride] + + A[k + 1 - buf_stride] + A[k + 1 + buf_stride]) * + 3; + const int32_t b = + (B[k] + B[k - 1] + B[k + 1] + B[k - buf_stride] + B[k + buf_stride]) * + 4 + + (B[k - 1 - buf_stride] + B[k - 1 + buf_stride] + + B[k + 1 - buf_stride] + B[k + 1 + buf_stride]) * + 3; + const int32_t v = a * dgd[l] + b; + dst[m] = ROUND_POWER_OF_TWO(v, SGRPROJ_SGR_BITS + nb - SGRPROJ_RST_BITS); + } + } +} + +int av1_selfguided_restoration_c(const uint8_t *dgd8, int width, int height, + int dgd_stride, int32_t *flt0, int32_t *flt1, + int flt_stride, int sgr_params_idx, + int bit_depth, int highbd) { + int32_t dgd32_[RESTORATION_PROC_UNIT_PELS]; + const int dgd32_stride = width + 2 * SGRPROJ_BORDER_HORZ; + int32_t *dgd32 = + dgd32_ + dgd32_stride * SGRPROJ_BORDER_VERT + SGRPROJ_BORDER_HORZ; + + if (highbd) { + const uint16_t *dgd16 = CONVERT_TO_SHORTPTR(dgd8); + for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { + for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { + dgd32[i * dgd32_stride + j] = dgd16[i * dgd_stride + j]; + } + } + } else { + for (int i = -SGRPROJ_BORDER_VERT; i < height + SGRPROJ_BORDER_VERT; ++i) { + for (int j = -SGRPROJ_BORDER_HORZ; j < width + SGRPROJ_BORDER_HORZ; ++j) { + dgd32[i * dgd32_stride + j] = dgd8[i * dgd_stride + j]; + } + } + } + + const sgr_params_type *const params = &sgr_params[sgr_params_idx]; + // If params->r == 0 we skip the corresponding filter. We only allow one of + // the radii to be 0, as having both equal to 0 would be equivalent to + // skipping SGR entirely. + assert(!(params->r[0] == 0 && params->r[1] == 0)); + + if (params->r[0] > 0) + selfguided_restoration_fast_internal(dgd32, width, height, dgd32_stride, + flt0, flt_stride, bit_depth, + sgr_params_idx, 0); + if (params->r[1] > 0) + selfguided_restoration_internal(dgd32, width, height, dgd32_stride, flt1, + flt_stride, bit_depth, sgr_params_idx, 1); + return 0; +} + +void apply_selfguided_restoration_c(const uint8_t *dat8, int width, int height, + int stride, int eps, const int *xqd, + uint8_t *dst8, int dst_stride, + int32_t *tmpbuf, int bit_depth, + int highbd) { + int32_t *flt0 = tmpbuf; + int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; + assert(width * height <= RESTORATION_UNITPELS_MAX); + + const int ret = av1_selfguided_restoration_c( + dat8, width, height, stride, flt0, flt1, width, eps, bit_depth, highbd); + (void)ret; + assert(!ret); + const sgr_params_type *const params = &sgr_params[eps]; + int xq[2]; + decode_xq(xqd, xq, params); + for (int i = 0; i < height; ++i) { + for (int j = 0; j < width; ++j) { + const int k = i * width + j; + uint8_t *dst8ij = dst8 + i * dst_stride + j; + const uint8_t *dat8ij = dat8 + i * stride + j; + + const uint16_t pre_u = highbd ? *CONVERT_TO_SHORTPTR(dat8ij) : *dat8ij; + const int32_t u = (int32_t)pre_u << SGRPROJ_RST_BITS; + int32_t v = u << SGRPROJ_PRJ_BITS; + // If params->r == 0 then we skipped the filtering in + // av1_selfguided_restoration_c, i.e. flt[k] == u + if (params->r[0] > 0) v += xq[0] * (flt0[k] - u); + if (params->r[1] > 0) v += xq[1] * (flt1[k] - u); + const int16_t w = + (int16_t)ROUND_POWER_OF_TWO(v, SGRPROJ_PRJ_BITS + SGRPROJ_RST_BITS); + + const uint16_t out = clip_pixel_highbd(w, bit_depth); + if (highbd) + *CONVERT_TO_SHORTPTR(dst8ij) = out; + else + *dst8ij = (uint8_t)out; + } + } +} + +static void sgrproj_filter_stripe(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + (void)bit_depth; + assert(bit_depth == 8); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, stripe_width - j); + apply_selfguided_restoration(src + j, w, stripe_height, src_stride, + rui->sgrproj_info.ep, rui->sgrproj_info.xqd, + dst + j, dst_stride, tmpbuf, bit_depth, 0); + } +} + +static void wiener_filter_stripe_highbd(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src8, + int src_stride, uint8_t *dst8, + int dst_stride, int32_t *tmpbuf, + int bit_depth) { + (void)tmpbuf; + const ConvolveParams conv_params = get_conv_params_wiener(bit_depth); + + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, (stripe_width - j + 15) & ~15); + const uint8_t *src8_p = src8 + j; + uint8_t *dst8_p = dst8 + j; + av1_highbd_wiener_convolve_add_src(src8_p, src_stride, dst8_p, dst_stride, + rui->wiener_info.hfilter, 16, + rui->wiener_info.vfilter, 16, w, + stripe_height, &conv_params, bit_depth); + } +} + +static void sgrproj_filter_stripe_highbd(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, + const uint8_t *src8, int src_stride, + uint8_t *dst8, int dst_stride, + int32_t *tmpbuf, int bit_depth) { + for (int j = 0; j < stripe_width; j += procunit_width) { + int w = AOMMIN(procunit_width, stripe_width - j); + apply_selfguided_restoration(src8 + j, w, stripe_height, src_stride, + rui->sgrproj_info.ep, rui->sgrproj_info.xqd, + dst8 + j, dst_stride, tmpbuf, bit_depth, 1); + } +} + +typedef void (*stripe_filter_fun)(const RestorationUnitInfo *rui, + int stripe_width, int stripe_height, + int procunit_width, const uint8_t *src, + int src_stride, uint8_t *dst, int dst_stride, + int32_t *tmpbuf, int bit_depth); + +#define NUM_STRIPE_FILTERS 4 + +static const stripe_filter_fun stripe_filters[NUM_STRIPE_FILTERS] = { + wiener_filter_stripe, sgrproj_filter_stripe, wiener_filter_stripe_highbd, + sgrproj_filter_stripe_highbd +}; + +// Filter one restoration unit +void av1_loop_restoration_filter_unit( + const RestorationTileLimits *limits, const RestorationUnitInfo *rui, + const RestorationStripeBoundaries *rsb, RestorationLineBuffers *rlbs, + const AV1PixelRect *tile_rect, int tile_stripe0, int ss_x, int ss_y, + int highbd, int bit_depth, uint8_t *data8, int stride, uint8_t *dst8, + int dst_stride, int32_t *tmpbuf, int optimized_lr) { + RestorationType unit_rtype = rui->restoration_type; + + int unit_h = limits->v_end - limits->v_start; + int unit_w = limits->h_end - limits->h_start; + uint8_t *data8_tl = data8 + limits->v_start * stride + limits->h_start; + uint8_t *dst8_tl = dst8 + limits->v_start * dst_stride + limits->h_start; + + if (unit_rtype == RESTORE_NONE) { + copy_tile(unit_w, unit_h, data8_tl, stride, dst8_tl, dst_stride, highbd); + return; + } + + const int filter_idx = 2 * highbd + (unit_rtype == RESTORE_SGRPROJ); + assert(filter_idx < NUM_STRIPE_FILTERS); + const stripe_filter_fun stripe_filter = stripe_filters[filter_idx]; + + const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; + + // Convolve the whole tile one stripe at a time + RestorationTileLimits remaining_stripes = *limits; + int i = 0; + while (i < unit_h) { + int copy_above, copy_below; + remaining_stripes.v_start = limits->v_start + i; + + get_stripe_boundary_info(&remaining_stripes, tile_rect, ss_y, ©_above, + ©_below); + + const int full_stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int runit_offset = RESTORATION_UNIT_OFFSET >> ss_y; + + // Work out where this stripe's boundaries are within + // rsb->stripe_boundary_{above,below} + const int tile_stripe = + (remaining_stripes.v_start - tile_rect->top + runit_offset) / + full_stripe_height; + const int frame_stripe = tile_stripe0 + tile_stripe; + const int rsb_row = RESTORATION_CTX_VERT * frame_stripe; + + // Calculate this stripe's height, based on two rules: + // * The topmost stripe in each tile is 8 luma pixels shorter than usual. + // * We can't extend past the end of the current restoration unit + const int nominal_stripe_height = + full_stripe_height - ((tile_stripe == 0) ? runit_offset : 0); + const int h = AOMMIN(nominal_stripe_height, + remaining_stripes.v_end - remaining_stripes.v_start); + + setup_processing_stripe_boundary(&remaining_stripes, rsb, rsb_row, highbd, + h, data8, stride, rlbs, copy_above, + copy_below, optimized_lr); + + stripe_filter(rui, unit_w, h, procunit_width, data8_tl + i * stride, stride, + dst8_tl + i * dst_stride, dst_stride, tmpbuf, bit_depth); + + restore_processing_stripe_boundary(&remaining_stripes, rlbs, highbd, h, + data8, stride, copy_above, copy_below, + optimized_lr); + + i += h; + } +} + +static void filter_frame_on_tile(int tile_row, int tile_col, void *priv, + AV1_COMMON *cm) { + (void)tile_col; + FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv; + ctxt->tile_stripe0 = (tile_row == 0) ? 0 : cm->rst_end_stripe[tile_row - 1]; +} + +static void filter_frame_on_unit(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, + int rest_unit_idx, void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + FilterFrameCtxt *ctxt = (FilterFrameCtxt *)priv; + const RestorationInfo *rsi = ctxt->rsi; + + av1_loop_restoration_filter_unit( + limits, &rsi->unit_info[rest_unit_idx], &rsi->boundaries, rlbs, tile_rect, + ctxt->tile_stripe0, ctxt->ss_x, ctxt->ss_y, ctxt->highbd, ctxt->bit_depth, + ctxt->data8, ctxt->data_stride, ctxt->dst8, ctxt->dst_stride, tmpbuf, + rsi->optimized_lr); +} + +void av1_loop_restoration_filter_frame_init(AV1LrStruct *lr_ctxt, + YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int optimized_lr, + int num_planes) { + const SequenceHeader *const seq_params = &cm->seq_params; + const int bit_depth = seq_params->bit_depth; + const int highbd = seq_params->use_highbitdepth; + lr_ctxt->dst = &cm->rst_frame; + + const int frame_width = frame->crop_widths[0]; + const int frame_height = frame->crop_heights[0]; + if (aom_realloc_frame_buffer( + lr_ctxt->dst, frame_width, frame_height, seq_params->subsampling_x, + seq_params->subsampling_y, highbd, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL) < 0) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate restoration dst buffer"); + + lr_ctxt->on_rest_unit = filter_frame_on_unit; + lr_ctxt->frame = frame; + for (int plane = 0; plane < num_planes; ++plane) { + RestorationInfo *rsi = &cm->rst_info[plane]; + RestorationType rtype = rsi->frame_restoration_type; + rsi->optimized_lr = optimized_lr; + + if (rtype == RESTORE_NONE) { + continue; + } + + const int is_uv = plane > 0; + const int plane_width = frame->crop_widths[is_uv]; + const int plane_height = frame->crop_heights[is_uv]; + FilterFrameCtxt *lr_plane_ctxt = &lr_ctxt->ctxt[plane]; + + extend_frame(frame->buffers[plane], plane_width, plane_height, + frame->strides[is_uv], RESTORATION_BORDER, RESTORATION_BORDER, + highbd); + + lr_plane_ctxt->rsi = rsi; + lr_plane_ctxt->ss_x = is_uv && seq_params->subsampling_x; + lr_plane_ctxt->ss_y = is_uv && seq_params->subsampling_y; + lr_plane_ctxt->highbd = highbd; + lr_plane_ctxt->bit_depth = bit_depth; + lr_plane_ctxt->data8 = frame->buffers[plane]; + lr_plane_ctxt->dst8 = lr_ctxt->dst->buffers[plane]; + lr_plane_ctxt->data_stride = frame->strides[is_uv]; + lr_plane_ctxt->dst_stride = lr_ctxt->dst->strides[is_uv]; + lr_plane_ctxt->tile_rect = av1_whole_frame_rect(cm, is_uv); + filter_frame_on_tile(LR_TILE_ROW, LR_TILE_COL, lr_plane_ctxt, cm); + } +} + +void av1_loop_restoration_copy_planes(AV1LrStruct *loop_rest_ctxt, + AV1_COMMON *cm, int num_planes) { + typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, + YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, + int vstart, int vend); + static const copy_fun copy_funs[3] = { + aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v + }; + + for (int plane = 0; plane < num_planes; ++plane) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; + AV1PixelRect tile_rect = loop_rest_ctxt->ctxt[plane].tile_rect; + copy_funs[plane](loop_rest_ctxt->dst, loop_rest_ctxt->frame, tile_rect.left, + tile_rect.right, tile_rect.top, tile_rect.bottom); + } +} + +static void foreach_rest_unit_in_planes(AV1LrStruct *lr_ctxt, AV1_COMMON *cm, + int num_planes) { + FilterFrameCtxt *ctxt = lr_ctxt->ctxt; + + for (int plane = 0; plane < num_planes; ++plane) { + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) { + continue; + } + + av1_foreach_rest_unit_in_plane(cm, plane, lr_ctxt->on_rest_unit, + &ctxt[plane], &ctxt[plane].tile_rect, + cm->rst_tmpbuf, cm->rlbs); + } +} + +void av1_loop_restoration_filter_frame(YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int optimized_lr, + void *lr_ctxt) { + assert(!cm->all_lossless); + const int num_planes = av1_num_planes(cm); + + AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; + + av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, + optimized_lr, num_planes); + + foreach_rest_unit_in_planes(loop_rest_ctxt, cm, num_planes); + + av1_loop_restoration_copy_planes(loop_rest_ctxt, cm, num_planes); +} + +void av1_foreach_rest_unit_in_row( + RestorationTileLimits *limits, const AV1PixelRect *tile_rect, + rest_unit_visitor_t on_rest_unit, int row_number, int unit_size, + int unit_idx0, int hunits_per_tile, int vunits_per_tile, int plane, + void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, + sync_read_fn_t on_sync_read, sync_write_fn_t on_sync_write, + struct AV1LrSyncData *const lr_sync) { + const int tile_w = tile_rect->right - tile_rect->left; + const int ext_size = unit_size * 3 / 2; + int x0 = 0, j = 0; + while (x0 < tile_w) { + int remaining_w = tile_w - x0; + int w = (remaining_w < ext_size) ? remaining_w : unit_size; + + limits->h_start = tile_rect->left + x0; + limits->h_end = tile_rect->left + x0 + w; + assert(limits->h_end <= tile_rect->right); + + const int unit_idx = unit_idx0 + row_number * hunits_per_tile + j; + + // No sync for even numbered rows + // For odd numbered rows, Loop Restoration of current block requires the LR + // of top-right and bottom-right blocks to be completed + + // top-right sync + on_sync_read(lr_sync, row_number, j, plane); + if ((row_number + 1) < vunits_per_tile) + // bottom-right sync + on_sync_read(lr_sync, row_number + 2, j, plane); + + on_rest_unit(limits, tile_rect, unit_idx, priv, tmpbuf, rlbs); + + on_sync_write(lr_sync, row_number, j, hunits_per_tile, plane); + + x0 += w; + ++j; + } +} + +void av1_lr_sync_read_dummy(void *const lr_sync, int r, int c, int plane) { + (void)lr_sync; + (void)r; + (void)c; + (void)plane; +} + +void av1_lr_sync_write_dummy(void *const lr_sync, int r, int c, + const int sb_cols, int plane) { + (void)lr_sync; + (void)r; + (void)c; + (void)sb_cols; + (void)plane; +} + +static void foreach_rest_unit_in_tile( + const AV1PixelRect *tile_rect, int tile_row, int tile_col, int tile_cols, + int hunits_per_tile, int vunits_per_tile, int units_per_tile, int unit_size, + int ss_y, int plane, rest_unit_visitor_t on_rest_unit, void *priv, + int32_t *tmpbuf, RestorationLineBuffers *rlbs) { + const int tile_h = tile_rect->bottom - tile_rect->top; + const int ext_size = unit_size * 3 / 2; + + const int tile_idx = tile_col + tile_row * tile_cols; + const int unit_idx0 = tile_idx * units_per_tile; + + int y0 = 0, i = 0; + while (y0 < tile_h) { + int remaining_h = tile_h - y0; + int h = (remaining_h < ext_size) ? remaining_h : unit_size; + + RestorationTileLimits limits; + limits.v_start = tile_rect->top + y0; + limits.v_end = tile_rect->top + y0 + h; + assert(limits.v_end <= tile_rect->bottom); + // Offset the tile upwards to align with the restoration processing stripe + const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; + limits.v_start = AOMMAX(tile_rect->top, limits.v_start - voffset); + if (limits.v_end < tile_rect->bottom) limits.v_end -= voffset; + + av1_foreach_rest_unit_in_row( + &limits, tile_rect, on_rest_unit, i, unit_size, unit_idx0, + hunits_per_tile, vunits_per_tile, plane, priv, tmpbuf, rlbs, + av1_lr_sync_read_dummy, av1_lr_sync_write_dummy, NULL); + + y0 += h; + ++i; + } +} + +void av1_foreach_rest_unit_in_plane(const struct AV1Common *cm, int plane, + rest_unit_visitor_t on_rest_unit, + void *priv, AV1PixelRect *tile_rect, + int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + const int is_uv = plane > 0; + const int ss_y = is_uv && cm->seq_params.subsampling_y; + + const RestorationInfo *rsi = &cm->rst_info[plane]; + + foreach_rest_unit_in_tile(tile_rect, LR_TILE_ROW, LR_TILE_COL, LR_TILE_COLS, + rsi->horz_units_per_tile, rsi->vert_units_per_tile, + rsi->units_per_tile, rsi->restoration_unit_size, + ss_y, plane, on_rest_unit, priv, tmpbuf, rlbs); +} + +int av1_loop_restoration_corners_in_sb(const struct AV1Common *cm, int plane, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int *rcol0, int *rcol1, int *rrow0, + int *rrow1) { + assert(rcol0 && rcol1 && rrow0 && rrow1); + + if (bsize != cm->seq_params.sb_size) return 0; + if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) return 0; + + assert(!cm->all_lossless); + + const int is_uv = plane > 0; + + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int tile_w = tile_rect.right - tile_rect.left; + const int tile_h = tile_rect.bottom - tile_rect.top; + + const int mi_top = 0; + const int mi_left = 0; + + // Compute the mi-unit corners of the superblock relative to the top-left of + // the tile + const int mi_rel_row0 = mi_row - mi_top; + const int mi_rel_col0 = mi_col - mi_left; + const int mi_rel_row1 = mi_rel_row0 + mi_size_high[bsize]; + const int mi_rel_col1 = mi_rel_col0 + mi_size_wide[bsize]; + + const RestorationInfo *rsi = &cm->rst_info[plane]; + const int size = rsi->restoration_unit_size; + + // Calculate the number of restoration units in this tile (which might be + // strictly less than rsi->horz_units_per_tile and rsi->vert_units_per_tile) + const int horz_units = av1_lr_count_units_in_tile(size, tile_w); + const int vert_units = av1_lr_count_units_in_tile(size, tile_h); + + // The size of an MI-unit on this plane of the image + const int ss_x = is_uv && cm->seq_params.subsampling_x; + const int ss_y = is_uv && cm->seq_params.subsampling_y; + const int mi_size_x = MI_SIZE >> ss_x; + const int mi_size_y = MI_SIZE >> ss_y; + + // Write m for the relative mi column or row, D for the superres denominator + // and N for the superres numerator. If u is the upscaled pixel offset then + // we can write the downscaled pixel offset in two ways as: + // + // MI_SIZE * m = N / D u + // + // from which we get u = D * MI_SIZE * m / N + const int mi_to_num_x = av1_superres_scaled(cm) + ? mi_size_x * cm->superres_scale_denominator + : mi_size_x; + const int mi_to_num_y = mi_size_y; + const int denom_x = av1_superres_scaled(cm) ? size * SCALE_NUMERATOR : size; + const int denom_y = size; + + const int rnd_x = denom_x - 1; + const int rnd_y = denom_y - 1; + + // rcol0/rrow0 should be the first column/row of restoration units (relative + // to the top-left of the tile) that doesn't start left/below of + // mi_col/mi_row. For this calculation, we need to round up the division (if + // the sb starts at runit column 10.1, the first matching runit has column + // index 11) + *rcol0 = (mi_rel_col0 * mi_to_num_x + rnd_x) / denom_x; + *rrow0 = (mi_rel_row0 * mi_to_num_y + rnd_y) / denom_y; + + // rel_col1/rel_row1 is the equivalent calculation, but for the superblock + // below-right. If we're at the bottom or right of the tile, this restoration + // unit might not exist, in which case we'll clamp accordingly. + *rcol1 = AOMMIN((mi_rel_col1 * mi_to_num_x + rnd_x) / denom_x, horz_units); + *rrow1 = AOMMIN((mi_rel_row1 * mi_to_num_y + rnd_y) / denom_y, vert_units); + + return *rcol0 < *rcol1 && *rrow0 < *rrow1; +} + +// Extend to left and right +static void extend_lines(uint8_t *buf, int width, int height, int stride, + int extend, int use_highbitdepth) { + for (int i = 0; i < height; ++i) { + if (use_highbitdepth) { + uint16_t *buf16 = (uint16_t *)buf; + aom_memset16(buf16 - extend, buf16[0], extend); + aom_memset16(buf16 + width, buf16[width - 1], extend); + } else { + memset(buf - extend, buf[0], extend); + memset(buf + width, buf[width - 1], extend); + } + buf += stride; + } +} + +static void save_deblock_boundary_lines( + const YV12_BUFFER_CONFIG *frame, const AV1_COMMON *cm, int plane, int row, + int stripe, int use_highbd, int is_above, + RestorationStripeBoundaries *boundaries) { + const int is_uv = plane > 0; + const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]); + const int src_stride = frame->strides[is_uv] << use_highbd; + const uint8_t *src_rows = src_buf + row * src_stride; + + uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above + : boundaries->stripe_boundary_below; + uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd); + const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd; + uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; + + // There is a rare case in which a processing stripe can end 1px above the + // crop border. In this case, we do want to use deblocked pixels from below + // the stripe (hence why we ended up in this function), but instead of + // fetching 2 "below" rows we need to fetch one and duplicate it. + // This is equivalent to clamping the sample locations against the crop border + const int lines_to_save = + AOMMIN(RESTORATION_CTX_VERT, frame->crop_heights[is_uv] - row); + assert(lines_to_save == 1 || lines_to_save == 2); + + int upscaled_width; + int line_bytes; + if (av1_superres_scaled(cm)) { + const int ss_x = is_uv && cm->seq_params.subsampling_x; + upscaled_width = (cm->superres_upscaled_width + ss_x) >> ss_x; + line_bytes = upscaled_width << use_highbd; + if (use_highbd) + av1_upscale_normative_rows( + cm, CONVERT_TO_BYTEPTR(src_rows), frame->strides[is_uv], + CONVERT_TO_BYTEPTR(bdry_rows), boundaries->stripe_boundary_stride, + plane, lines_to_save); + else + av1_upscale_normative_rows(cm, src_rows, frame->strides[is_uv], bdry_rows, + boundaries->stripe_boundary_stride, plane, + lines_to_save); + } else { + upscaled_width = frame->crop_widths[is_uv]; + line_bytes = upscaled_width << use_highbd; + for (int i = 0; i < lines_to_save; i++) { + memcpy(bdry_rows + i * bdry_stride, src_rows + i * src_stride, + line_bytes); + } + } + // If we only saved one line, then copy it into the second line buffer + if (lines_to_save == 1) + memcpy(bdry_rows + bdry_stride, bdry_rows, line_bytes); + + extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, + RESTORATION_EXTRA_HORZ, use_highbd); +} + +static void save_cdef_boundary_lines(const YV12_BUFFER_CONFIG *frame, + const AV1_COMMON *cm, int plane, int row, + int stripe, int use_highbd, int is_above, + RestorationStripeBoundaries *boundaries) { + const int is_uv = plane > 0; + const uint8_t *src_buf = REAL_PTR(use_highbd, frame->buffers[plane]); + const int src_stride = frame->strides[is_uv] << use_highbd; + const uint8_t *src_rows = src_buf + row * src_stride; + + uint8_t *bdry_buf = is_above ? boundaries->stripe_boundary_above + : boundaries->stripe_boundary_below; + uint8_t *bdry_start = bdry_buf + (RESTORATION_EXTRA_HORZ << use_highbd); + const int bdry_stride = boundaries->stripe_boundary_stride << use_highbd; + uint8_t *bdry_rows = bdry_start + RESTORATION_CTX_VERT * stripe * bdry_stride; + const int src_width = frame->crop_widths[is_uv]; + + // At the point where this function is called, we've already applied + // superres. So we don't need to extend the lines here, we can just + // pull directly from the topmost row of the upscaled frame. + const int ss_x = is_uv && cm->seq_params.subsampling_x; + const int upscaled_width = av1_superres_scaled(cm) + ? (cm->superres_upscaled_width + ss_x) >> ss_x + : src_width; + const int line_bytes = upscaled_width << use_highbd; + for (int i = 0; i < RESTORATION_CTX_VERT; i++) { + // Copy the line at 'row' into both context lines. This is because + // we want to (effectively) extend the outermost row of CDEF data + // from this tile to produce a border, rather than using deblocked + // pixels from the tile above/below. + memcpy(bdry_rows + i * bdry_stride, src_rows, line_bytes); + } + extend_lines(bdry_rows, upscaled_width, RESTORATION_CTX_VERT, bdry_stride, + RESTORATION_EXTRA_HORZ, use_highbd); +} + +static void save_tile_row_boundary_lines(const YV12_BUFFER_CONFIG *frame, + int use_highbd, int plane, + AV1_COMMON *cm, int after_cdef) { + const int is_uv = plane > 0; + const int ss_y = is_uv && cm->seq_params.subsampling_y; + const int stripe_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + const int stripe_off = RESTORATION_UNIT_OFFSET >> ss_y; + + // Get the tile rectangle, with height rounded up to the next multiple of 8 + // luma pixels (only relevant for the bottom tile of the frame) + const AV1PixelRect tile_rect = av1_whole_frame_rect(cm, is_uv); + const int stripe0 = 0; + + RestorationStripeBoundaries *boundaries = &cm->rst_info[plane].boundaries; + + const int plane_height = ROUND_POWER_OF_TWO(cm->height, ss_y); + + int tile_stripe; + for (tile_stripe = 0;; ++tile_stripe) { + const int rel_y0 = AOMMAX(0, tile_stripe * stripe_height - stripe_off); + const int y0 = tile_rect.top + rel_y0; + if (y0 >= tile_rect.bottom) break; + + const int rel_y1 = (tile_stripe + 1) * stripe_height - stripe_off; + const int y1 = AOMMIN(tile_rect.top + rel_y1, tile_rect.bottom); + + const int frame_stripe = stripe0 + tile_stripe; + + // In this case, we should only use CDEF pixels at the top + // and bottom of the frame as a whole; internal tile boundaries + // can use deblocked pixels from adjacent tiles for context. + const int use_deblock_above = (frame_stripe > 0); + const int use_deblock_below = (y1 < plane_height); + + if (!after_cdef) { + // Save deblocked context where needed. + if (use_deblock_above) { + save_deblock_boundary_lines(frame, cm, plane, y0 - RESTORATION_CTX_VERT, + frame_stripe, use_highbd, 1, boundaries); + } + if (use_deblock_below) { + save_deblock_boundary_lines(frame, cm, plane, y1, frame_stripe, + use_highbd, 0, boundaries); + } + } else { + // Save CDEF context where needed. Note that we need to save the CDEF + // context for a particular boundary iff we *didn't* save deblocked + // context for that boundary. + // + // In addition, we need to save copies of the outermost line within + // the tile, rather than using data from outside the tile. + if (!use_deblock_above) { + save_cdef_boundary_lines(frame, cm, plane, y0, frame_stripe, use_highbd, + 1, boundaries); + } + if (!use_deblock_below) { + save_cdef_boundary_lines(frame, cm, plane, y1 - 1, frame_stripe, + use_highbd, 0, boundaries); + } + } + } +} + +// For each RESTORATION_PROC_UNIT_SIZE pixel high stripe, save 4 scan +// lines to be used as boundary in the loop restoration process. The +// lines are saved in rst_internal.stripe_boundary_lines +void av1_loop_restoration_save_boundary_lines(const YV12_BUFFER_CONFIG *frame, + AV1_COMMON *cm, int after_cdef) { + const int num_planes = av1_num_planes(cm); + const int use_highbd = cm->seq_params.use_highbitdepth; + for (int p = 0; p < num_planes; ++p) { + save_tile_row_boundary_lines(frame, use_highbd, p, cm, after_cdef); + } +} |