summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/common/thread_common.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:44:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:44:51 +0000
commit9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch)
treea68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/aom/av1/common/thread_common.c
parentInitial commit. (diff)
downloadthunderbird-upstream.tar.xz
thunderbird-upstream.zip
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/common/thread_common.c')
-rw-r--r--third_party/aom/av1/common/thread_common.c786
1 files changed, 786 insertions, 0 deletions
diff --git a/third_party/aom/av1/common/thread_common.c b/third_party/aom/av1/common/thread_common.c
new file mode 100644
index 0000000000..8df4c9a09d
--- /dev/null
+++ b/third_party/aom/av1/common/thread_common.c
@@ -0,0 +1,786 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include "config/aom_config.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "av1/common/av1_loopfilter.h"
+#include "av1/common/entropymode.h"
+#include "av1/common/thread_common.h"
+#include "av1/common/reconinter.h"
+
+// Set up nsync by width.
+static INLINE int get_sync_range(int width) {
+ // nsync numbers are picked by testing. For example, for 4k
+ // video, using 4 gives best performance.
+ if (width < 640)
+ return 1;
+ else if (width <= 1280)
+ return 2;
+ else if (width <= 4096)
+ return 4;
+ else
+ return 8;
+}
+
+static INLINE int get_lr_sync_range(int width) {
+#if 0
+ // nsync numbers are picked by testing. For example, for 4k
+ // video, using 4 gives best performance.
+ if (width < 640)
+ return 1;
+ else if (width <= 1280)
+ return 2;
+ else if (width <= 4096)
+ return 4;
+ else
+ return 8;
+#else
+ (void)width;
+ return 1;
+#endif
+}
+
+// Allocate memory for lf row synchronization
+static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
+ int width, int num_workers) {
+ lf_sync->rows = rows;
+#if CONFIG_MULTITHREAD
+ {
+ int i, j;
+
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
+ aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
+ if (lf_sync->mutex_[j]) {
+ for (i = 0; i < rows; ++i) {
+ pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
+ }
+ }
+
+ CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
+ aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
+ if (lf_sync->cond_[j]) {
+ for (i = 0; i < rows; ++i) {
+ pthread_cond_init(&lf_sync->cond_[j][i], NULL);
+ }
+ }
+ }
+
+ CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
+ aom_malloc(sizeof(*(lf_sync->job_mutex))));
+ if (lf_sync->job_mutex) {
+ pthread_mutex_init(lf_sync->job_mutex, NULL);
+ }
+ }
+#endif // CONFIG_MULTITHREAD
+ CHECK_MEM_ERROR(cm, lf_sync->lfdata,
+ aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
+ lf_sync->num_workers = num_workers;
+
+ for (int j = 0; j < MAX_MB_PLANE; j++) {
+ CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
+ aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
+ }
+ CHECK_MEM_ERROR(
+ cm, lf_sync->job_queue,
+ aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
+ // Set up nsync.
+ lf_sync->sync_range = get_sync_range(width);
+}
+
+// Deallocate lf synchronization related mutex and data
+void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
+ if (lf_sync != NULL) {
+ int j;
+#if CONFIG_MULTITHREAD
+ int i;
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ if (lf_sync->mutex_[j] != NULL) {
+ for (i = 0; i < lf_sync->rows; ++i) {
+ pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
+ }
+ aom_free(lf_sync->mutex_[j]);
+ }
+ if (lf_sync->cond_[j] != NULL) {
+ for (i = 0; i < lf_sync->rows; ++i) {
+ pthread_cond_destroy(&lf_sync->cond_[j][i]);
+ }
+ aom_free(lf_sync->cond_[j]);
+ }
+ }
+ if (lf_sync->job_mutex != NULL) {
+ pthread_mutex_destroy(lf_sync->job_mutex);
+ aom_free(lf_sync->job_mutex);
+ }
+#endif // CONFIG_MULTITHREAD
+ aom_free(lf_sync->lfdata);
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ aom_free(lf_sync->cur_sb_col[j]);
+ }
+
+ aom_free(lf_sync->job_queue);
+ // clear the structure as the source of this call may be a resize in which
+ // case this call will be followed by an _alloc() which may fail.
+ av1_zero(*lf_sync);
+ }
+}
+
+static void loop_filter_data_reset(LFWorkerData *lf_data,
+ YV12_BUFFER_CONFIG *frame_buffer,
+ struct AV1Common *cm, MACROBLOCKD *xd) {
+ struct macroblockd_plane *pd = xd->plane;
+ lf_data->frame_buffer = frame_buffer;
+ lf_data->cm = cm;
+ lf_data->xd = xd;
+ for (int i = 0; i < MAX_MB_PLANE; i++) {
+ memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
+ lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
+ lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
+ }
+}
+
+static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
+ int plane) {
+#if CONFIG_MULTITHREAD
+ const int nsync = lf_sync->sync_range;
+
+ if (r && !(c & (nsync - 1))) {
+ pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
+ pthread_mutex_lock(mutex);
+
+ while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
+ pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
+ }
+ pthread_mutex_unlock(mutex);
+ }
+#else
+ (void)lf_sync;
+ (void)r;
+ (void)c;
+ (void)plane;
+#endif // CONFIG_MULTITHREAD
+}
+
+static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
+ const int sb_cols, int plane) {
+#if CONFIG_MULTITHREAD
+ const int nsync = lf_sync->sync_range;
+ int cur;
+ // Only signal when there are enough filtered SB for next row to run.
+ int sig = 1;
+
+ if (c < sb_cols - 1) {
+ cur = c;
+ if (c % nsync) sig = 0;
+ } else {
+ cur = sb_cols + nsync;
+ }
+
+ if (sig) {
+ pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
+
+ lf_sync->cur_sb_col[plane][r] = cur;
+
+ pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
+ pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
+ }
+#else
+ (void)lf_sync;
+ (void)r;
+ (void)c;
+ (void)sb_cols;
+ (void)plane;
+#endif // CONFIG_MULTITHREAD
+}
+
+static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start,
+ int stop, int plane_start, int plane_end) {
+ int mi_row, plane, dir;
+ AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
+ lf_sync->jobs_enqueued = 0;
+ lf_sync->jobs_dequeued = 0;
+
+ for (dir = 0; dir < 2; dir++) {
+ for (plane = plane_start; plane < plane_end; plane++) {
+ if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
+ break;
+ else if (plane == 1 && !(cm->lf.filter_level_u))
+ continue;
+ else if (plane == 2 && !(cm->lf.filter_level_v))
+ continue;
+ for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) {
+ lf_job_queue->mi_row = mi_row;
+ lf_job_queue->plane = plane;
+ lf_job_queue->dir = dir;
+ lf_job_queue++;
+ lf_sync->jobs_enqueued++;
+ }
+ }
+ }
+}
+
+AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
+ AV1LfMTInfo *cur_job_info = NULL;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(lf_sync->job_mutex);
+
+ if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
+ cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
+ lf_sync->jobs_dequeued++;
+ }
+
+ pthread_mutex_unlock(lf_sync->job_mutex);
+#else
+ (void)lf_sync;
+#endif
+
+ return cur_job_info;
+}
+
+// Implement row loopfiltering for each thread.
+static INLINE void thread_loop_filter_rows(
+ const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
+ struct macroblockd_plane *planes, MACROBLOCKD *xd,
+ AV1LfSync *const lf_sync) {
+ const int sb_cols =
+ ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
+ int mi_row, mi_col, plane, dir;
+ int r, c;
+
+ while (1) {
+ AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
+
+ if (cur_job_info != NULL) {
+ mi_row = cur_job_info->mi_row;
+ plane = cur_job_info->plane;
+ dir = cur_job_info->dir;
+ r = mi_row >> MAX_MIB_SIZE_LOG2;
+
+ if (dir == 0) {
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
+ c = mi_col >> MAX_MIB_SIZE_LOG2;
+
+ av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
+ mi_row, mi_col, plane, plane + 1);
+
+ av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
+ mi_col);
+ sync_write(lf_sync, r, c, sb_cols, plane);
+ }
+ } else if (dir == 1) {
+ for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
+ c = mi_col >> MAX_MIB_SIZE_LOG2;
+
+ // Wait for vertical edge filtering of the top-right block to be
+ // completed
+ sync_read(lf_sync, r, c, plane);
+
+ // Wait for vertical edge filtering of the right block to be
+ // completed
+ sync_read(lf_sync, r + 1, c, plane);
+
+ av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
+ mi_row, mi_col, plane, plane + 1);
+ av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
+ mi_col);
+ }
+ }
+ } else {
+ break;
+ }
+ }
+}
+
+// Row-based multi-threaded loopfilter hook
+static int loop_filter_row_worker(void *arg1, void *arg2) {
+ AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
+ LFWorkerData *const lf_data = (LFWorkerData *)arg2;
+ thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
+ lf_data->xd, lf_sync);
+ return 1;
+}
+
+static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
+ MACROBLOCKD *xd, int start, int stop,
+ int plane_start, int plane_end,
+ AVxWorker *workers, int nworkers,
+ AV1LfSync *lf_sync) {
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ // Number of superblock rows and cols
+ const int sb_rows =
+ ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
+ const int num_workers = nworkers;
+ int i;
+
+ if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
+ num_workers > lf_sync->num_workers) {
+ av1_loop_filter_dealloc(lf_sync);
+ loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
+ }
+
+ // Initialize cur_sb_col to -1 for all SB rows.
+ for (i = 0; i < MAX_MB_PLANE; i++) {
+ memset(lf_sync->cur_sb_col[i], -1,
+ sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
+ }
+
+ enqueue_lf_jobs(lf_sync, cm, start, stop, plane_start, plane_end);
+
+ // Set up loopfilter thread data.
+ for (i = 0; i < num_workers; ++i) {
+ AVxWorker *const worker = &workers[i];
+ LFWorkerData *const lf_data = &lf_sync->lfdata[i];
+
+ worker->hook = loop_filter_row_worker;
+ worker->data1 = lf_sync;
+ worker->data2 = lf_data;
+
+ // Loopfilter data
+ loop_filter_data_reset(lf_data, frame, cm, xd);
+
+ // Start loopfiltering
+ if (i == num_workers - 1) {
+ winterface->execute(worker);
+ } else {
+ winterface->launch(worker);
+ }
+ }
+
+ // Wait till all rows are finished
+ for (i = 0; i < num_workers; ++i) {
+ winterface->sync(&workers[i]);
+ }
+}
+
+void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
+ MACROBLOCKD *xd, int plane_start, int plane_end,
+ int partial_frame, AVxWorker *workers,
+ int num_workers, AV1LfSync *lf_sync) {
+ int start_mi_row, end_mi_row, mi_rows_to_filter;
+
+ start_mi_row = 0;
+ mi_rows_to_filter = cm->mi_rows;
+ if (partial_frame && cm->mi_rows > 8) {
+ start_mi_row = cm->mi_rows >> 1;
+ start_mi_row &= 0xfffffff8;
+ mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
+ }
+ end_mi_row = start_mi_row + mi_rows_to_filter;
+ av1_loop_filter_frame_init(cm, plane_start, plane_end);
+
+ loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
+ plane_end, workers, num_workers, lf_sync);
+}
+
+static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
+#if CONFIG_MULTITHREAD
+ AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
+ const int nsync = loop_res_sync->sync_range;
+
+ if (r && !(c & (nsync - 1))) {
+ pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
+ pthread_mutex_lock(mutex);
+
+ while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
+ pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
+ }
+ pthread_mutex_unlock(mutex);
+ }
+#else
+ (void)lr_sync;
+ (void)r;
+ (void)c;
+ (void)plane;
+#endif // CONFIG_MULTITHREAD
+}
+
+static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
+ const int sb_cols, int plane) {
+#if CONFIG_MULTITHREAD
+ AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
+ const int nsync = loop_res_sync->sync_range;
+ int cur;
+ // Only signal when there are enough filtered SB for next row to run.
+ int sig = 1;
+
+ if (c < sb_cols - 1) {
+ cur = c;
+ if (c % nsync) sig = 0;
+ } else {
+ cur = sb_cols + nsync;
+ }
+
+ if (sig) {
+ pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
+
+ loop_res_sync->cur_sb_col[plane][r] = cur;
+
+ pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
+ pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
+ }
+#else
+ (void)lr_sync;
+ (void)r;
+ (void)c;
+ (void)sb_cols;
+ (void)plane;
+#endif // CONFIG_MULTITHREAD
+}
+
+// Allocate memory for loop restoration row synchronization
+static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
+ int num_workers, int num_rows_lr,
+ int num_planes, int width) {
+ lr_sync->rows = num_rows_lr;
+ lr_sync->num_planes = num_planes;
+#if CONFIG_MULTITHREAD
+ {
+ int i, j;
+
+ for (j = 0; j < num_planes; j++) {
+ CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
+ aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
+ if (lr_sync->mutex_[j]) {
+ for (i = 0; i < num_rows_lr; ++i) {
+ pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
+ }
+ }
+
+ CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
+ aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
+ if (lr_sync->cond_[j]) {
+ for (i = 0; i < num_rows_lr; ++i) {
+ pthread_cond_init(&lr_sync->cond_[j][i], NULL);
+ }
+ }
+ }
+
+ CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
+ aom_malloc(sizeof(*(lr_sync->job_mutex))));
+ if (lr_sync->job_mutex) {
+ pthread_mutex_init(lr_sync->job_mutex, NULL);
+ }
+ }
+#endif // CONFIG_MULTITHREAD
+ CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
+ aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
+
+ for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
+ if (worker_idx < num_workers - 1) {
+ CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
+ (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
+ CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
+ aom_malloc(sizeof(RestorationLineBuffers)));
+
+ } else {
+ lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
+ lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
+ }
+ }
+
+ lr_sync->num_workers = num_workers;
+
+ for (int j = 0; j < num_planes; j++) {
+ CHECK_MEM_ERROR(
+ cm, lr_sync->cur_sb_col[j],
+ aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
+ }
+ CHECK_MEM_ERROR(
+ cm, lr_sync->job_queue,
+ aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
+ // Set up nsync.
+ lr_sync->sync_range = get_lr_sync_range(width);
+}
+
+// Deallocate loop restoration synchronization related mutex and data
+void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
+ if (lr_sync != NULL) {
+ int j;
+#if CONFIG_MULTITHREAD
+ int i;
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ if (lr_sync->mutex_[j] != NULL) {
+ for (i = 0; i < lr_sync->rows; ++i) {
+ pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
+ }
+ aom_free(lr_sync->mutex_[j]);
+ }
+ if (lr_sync->cond_[j] != NULL) {
+ for (i = 0; i < lr_sync->rows; ++i) {
+ pthread_cond_destroy(&lr_sync->cond_[j][i]);
+ }
+ aom_free(lr_sync->cond_[j]);
+ }
+ }
+ if (lr_sync->job_mutex != NULL) {
+ pthread_mutex_destroy(lr_sync->job_mutex);
+ aom_free(lr_sync->job_mutex);
+ }
+#endif // CONFIG_MULTITHREAD
+ for (j = 0; j < MAX_MB_PLANE; j++) {
+ aom_free(lr_sync->cur_sb_col[j]);
+ }
+
+ aom_free(lr_sync->job_queue);
+
+ if (lr_sync->lrworkerdata) {
+ for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
+ LRWorkerData *const workerdata_data =
+ lr_sync->lrworkerdata + worker_idx;
+
+ aom_free(workerdata_data->rst_tmpbuf);
+ aom_free(workerdata_data->rlbs);
+ }
+ aom_free(lr_sync->lrworkerdata);
+ }
+
+ // clear the structure as the source of this call may be a resize in which
+ // case this call will be followed by an _alloc() which may fail.
+ av1_zero(*lr_sync);
+ }
+}
+
+static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
+ AV1_COMMON *cm) {
+ FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
+
+ const int num_planes = av1_num_planes(cm);
+ AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
+ int32_t lr_job_counter[2], num_even_lr_jobs = 0;
+ lr_sync->jobs_enqueued = 0;
+ lr_sync->jobs_dequeued = 0;
+
+ for (int plane = 0; plane < num_planes; plane++) {
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
+ num_even_lr_jobs =
+ num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
+ }
+ lr_job_counter[0] = 0;
+ lr_job_counter[1] = num_even_lr_jobs;
+
+ for (int plane = 0; plane < num_planes; plane++) {
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
+ const int is_uv = plane > 0;
+ const int ss_y = is_uv && cm->seq_params.subsampling_y;
+
+ AV1PixelRect tile_rect = ctxt[plane].tile_rect;
+ const int unit_size = ctxt[plane].rsi->restoration_unit_size;
+
+ const int tile_h = tile_rect.bottom - tile_rect.top;
+ const int ext_size = unit_size * 3 / 2;
+
+ int y0 = 0, i = 0;
+ while (y0 < tile_h) {
+ int remaining_h = tile_h - y0;
+ int h = (remaining_h < ext_size) ? remaining_h : unit_size;
+
+ RestorationTileLimits limits;
+ limits.v_start = tile_rect.top + y0;
+ limits.v_end = tile_rect.top + y0 + h;
+ assert(limits.v_end <= tile_rect.bottom);
+ // Offset the tile upwards to align with the restoration processing stripe
+ const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
+ limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
+ if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
+
+ assert(lr_job_counter[0] <= num_even_lr_jobs);
+
+ lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
+ lr_job_queue[lr_job_counter[i & 1]].plane = plane;
+ lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
+ lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
+ lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
+ if ((i & 1) == 0) {
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
+ limits.v_start + RESTORATION_BORDER;
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
+ limits.v_end - RESTORATION_BORDER;
+ if (i == 0) {
+ assert(limits.v_start == tile_rect.top);
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
+ }
+ if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
+ assert(limits.v_end == tile_rect.bottom);
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
+ }
+ } else {
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
+ AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
+ lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
+ AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
+ }
+ lr_job_counter[i & 1]++;
+ lr_sync->jobs_enqueued++;
+
+ y0 += h;
+ ++i;
+ }
+ }
+}
+
+AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
+ AV1LrMTInfo *cur_job_info = NULL;
+
+#if CONFIG_MULTITHREAD
+ pthread_mutex_lock(lr_sync->job_mutex);
+
+ if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
+ cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
+ lr_sync->jobs_dequeued++;
+ }
+
+ pthread_mutex_unlock(lr_sync->job_mutex);
+#else
+ (void)lr_sync;
+#endif
+
+ return cur_job_info;
+}
+
+// Implement row loop restoration for each thread.
+static int loop_restoration_row_worker(void *arg1, void *arg2) {
+ AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
+ LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
+ AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
+ FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
+ int lr_unit_row;
+ int plane;
+ const int tile_row = LR_TILE_ROW;
+ const int tile_col = LR_TILE_COL;
+ const int tile_cols = LR_TILE_COLS;
+ const int tile_idx = tile_col + tile_row * tile_cols;
+ typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
+ YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
+ int vstart, int vend);
+ static const copy_fun copy_funs[3] = {
+ aom_yv12_partial_copy_y, aom_yv12_partial_copy_u, aom_yv12_partial_copy_v
+ };
+
+ while (1) {
+ AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
+ if (cur_job_info != NULL) {
+ RestorationTileLimits limits;
+ sync_read_fn_t on_sync_read;
+ sync_write_fn_t on_sync_write;
+ limits.v_start = cur_job_info->v_start;
+ limits.v_end = cur_job_info->v_end;
+ lr_unit_row = cur_job_info->lr_unit_row;
+ plane = cur_job_info->plane;
+ const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
+
+ // sync_mode == 1 implies only sync read is required in LR Multi-threading
+ // sync_mode == 0 implies only sync write is required.
+ on_sync_read =
+ cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
+ on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
+ : av1_lr_sync_write_dummy;
+
+ av1_foreach_rest_unit_in_row(
+ &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
+ ctxt[plane].rsi->restoration_unit_size, unit_idx0,
+ ctxt[plane].rsi->horz_units_per_tile,
+ ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
+ lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
+ on_sync_write, lr_sync);
+
+ copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
+ ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
+ cur_job_info->v_copy_end);
+ } else {
+ break;
+ }
+ }
+ return 1;
+}
+
+static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
+ AVxWorker *workers, int nworkers,
+ AV1LrSync *lr_sync, AV1_COMMON *cm) {
+ FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
+
+ const int num_planes = av1_num_planes(cm);
+
+ const AVxWorkerInterface *const winterface = aom_get_worker_interface();
+ int num_rows_lr = 0;
+
+ for (int plane = 0; plane < num_planes; plane++) {
+ if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
+
+ const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
+ const int max_tile_h = tile_rect.bottom - tile_rect.top;
+
+ const int unit_size = cm->rst_info[plane].restoration_unit_size;
+
+ num_rows_lr =
+ AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
+ }
+
+ const int num_workers = nworkers;
+ int i;
+ assert(MAX_MB_PLANE == 3);
+
+ if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows ||
+ num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) {
+ av1_loop_restoration_dealloc(lr_sync, num_workers);
+ loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes,
+ cm->width);
+ }
+
+ // Initialize cur_sb_col to -1 for all SB rows.
+ for (i = 0; i < num_planes; i++) {
+ memset(lr_sync->cur_sb_col[i], -1,
+ sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
+ }
+
+ enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
+
+ // Set up looprestoration thread data.
+ for (i = 0; i < num_workers; ++i) {
+ AVxWorker *const worker = &workers[i];
+ lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
+ worker->hook = loop_restoration_row_worker;
+ worker->data1 = lr_sync;
+ worker->data2 = &lr_sync->lrworkerdata[i];
+
+ // Start loopfiltering
+ if (i == num_workers - 1) {
+ winterface->execute(worker);
+ } else {
+ winterface->launch(worker);
+ }
+ }
+
+ // Wait till all rows are finished
+ for (i = 0; i < num_workers; ++i) {
+ winterface->sync(&workers[i]);
+ }
+}
+
+void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
+ AV1_COMMON *cm, int optimized_lr,
+ AVxWorker *workers, int num_workers,
+ AV1LrSync *lr_sync, void *lr_ctxt) {
+ assert(!cm->all_lossless);
+
+ const int num_planes = av1_num_planes(cm);
+
+ AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
+
+ av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
+ optimized_lr, num_planes);
+
+ foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
+ cm);
+}