diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/aom/av1/encoder | |
parent | Initial commit. (diff) | |
download | thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.tar.xz thunderbird-9e3c08db40b8916968b9f30096c7be3f00ce9647.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/encoder')
124 files changed, 78381 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/aq_complexity.c b/third_party/aom/av1/encoder/aq_complexity.c new file mode 100644 index 0000000000..80f8e2e66d --- /dev/null +++ b/third_party/aom/av1/encoder/aq_complexity.c @@ -0,0 +1,172 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> + +#include "av1/encoder/aq_complexity.h" +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/encodeframe.h" +#include "av1/common/seg_common.h" +#include "av1/encoder/segmentation.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_ports/system_state.h" + +#define AQ_C_SEGMENTS 5 +#define DEFAULT_AQ2_SEG 3 // Neutral Q segment +#define AQ_C_STRENGTHS 3 +static const double aq_c_q_adj_factor[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { 1.75, 1.25, 1.05, 1.00, 0.90 }, + { 2.00, 1.50, 1.15, 1.00, 0.85 }, + { 2.50, 1.75, 1.25, 1.00, 0.80 } +}; +static const double aq_c_transitions[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { 0.15, 0.30, 0.55, 2.00, 100.0 }, + { 0.20, 0.40, 0.65, 2.00, 100.0 }, + { 0.25, 0.50, 0.75, 2.00, 100.0 } +}; +static const double aq_c_var_thresholds[AQ_C_STRENGTHS][AQ_C_SEGMENTS] = { + { -4.0, -3.0, -2.0, 100.00, 100.0 }, + { -3.5, -2.5, -1.5, 100.00, 100.0 }, + { -3.0, -2.0, -1.0, 100.00, 100.0 } +}; + +static int get_aq_c_strength(int q_index, aom_bit_depth_t bit_depth) { + // Approximate base quatizer (truncated to int) + const int base_quant = av1_ac_quant_Q3(q_index, 0, bit_depth) / 4; + return (base_quant > 10) + (base_quant > 25); +} + +void av1_setup_in_frame_q_adj(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + struct segmentation *const seg = &cm->seg; + int resolution_change = + cm->prev_frame && (cm->width != cm->prev_frame->width || + cm->height != cm->prev_frame->height); + + // Make SURE use of floating point in this function is safe. + aom_clear_system_state(); + + if (resolution_change) { + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + av1_clearall_segfeatures(seg); + av1_disable_segmentation(seg); + return; + } + + if (frame_is_intra_only(cm) || cm->error_resilient_mode || + cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { + int segment; + const int aq_strength = + get_aq_c_strength(cm->base_qindex, cm->seq_params.bit_depth); + + // Clear down the segment map. + memset(cpi->segmentation_map, DEFAULT_AQ2_SEG, cm->mi_rows * cm->mi_cols); + + av1_clearall_segfeatures(seg); + + // Segmentation only makes sense if the target bits per SB is above a + // threshold. Below this the overheads will usually outweigh any benefit. + if (cpi->rc.sb64_target_rate < 256) { + av1_disable_segmentation(seg); + return; + } + + av1_enable_segmentation(seg); + + // Default segment "Q" feature is disabled so it defaults to the baseline Q. + av1_disable_segfeature(seg, DEFAULT_AQ2_SEG, SEG_LVL_ALT_Q); + + // Use some of the segments for in frame Q adjustment. + for (segment = 0; segment < AQ_C_SEGMENTS; ++segment) { + int qindex_delta; + + if (segment == DEFAULT_AQ2_SEG) continue; + + qindex_delta = av1_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, cm->base_qindex, + aq_c_q_adj_factor[aq_strength][segment], cm->seq_params.bit_depth); + + // For AQ complexity mode, we dont allow Q0 in a segment if the base + // Q is not 0. Q0 (lossless) implies 4x4 only and in AQ mode 2 a segment + // Q delta is sometimes applied without going back around the rd loop. + // This could lead to an illegal combination of partition size and q. + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + if ((cm->base_qindex + qindex_delta) > 0) { + av1_enable_segfeature(seg, segment, SEG_LVL_ALT_Q); + av1_set_segdata(seg, segment, SEG_LVL_ALT_Q, qindex_delta); + } + } + } +} + +#define DEFAULT_LV_THRESH 10.0 +#define MIN_DEFAULT_LV_THRESH 8.0 +// Select a segment for the current block. +// The choice of segment for a block depends on the ratio of the projected +// bits for the block vs a target average and its spatial complexity. +void av1_caq_select_segment(const AV1_COMP *cpi, MACROBLOCK *mb, BLOCK_SIZE bs, + int mi_row, int mi_col, int projected_rate) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + + const int mi_offset = mi_row * cm->mi_cols + mi_col; + const int xmis = AOMMIN(cm->mi_cols - mi_col, mi_size_wide[bs]); + const int ymis = AOMMIN(cm->mi_rows - mi_row, mi_size_high[bs]); + int x, y; + int i; + unsigned char segment; + + if (0) { + segment = DEFAULT_AQ2_SEG; + } else { + // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh). + // It is converted to bits << AV1_PROB_COST_SHIFT units. + const int64_t num = (int64_t)(cpi->rc.sb64_target_rate * xmis * ymis) + << AV1_PROB_COST_SHIFT; + const int denom = cm->seq_params.mib_size * cm->seq_params.mib_size; + const int target_rate = (int)(num / denom); + double logvar; + double low_var_thresh; + const int aq_strength = + get_aq_c_strength(cm->base_qindex, cm->seq_params.bit_depth); + + aom_clear_system_state(); + low_var_thresh = + (cpi->oxcf.pass == 2) + ? AOMMAX(exp(cpi->twopass.mb_av_energy), MIN_DEFAULT_LV_THRESH) + : DEFAULT_LV_THRESH; + + av1_setup_src_planes(mb, cpi->source, mi_row, mi_col, num_planes); + logvar = av1_log_block_var(cpi, mb, bs); + + segment = AQ_C_SEGMENTS - 1; // Just in case no break out below. + for (i = 0; i < AQ_C_SEGMENTS; ++i) { + // Test rate against a threshold value and variance against a threshold. + // Increasing segment number (higher variance and complexity) = higher Q. + if ((projected_rate < target_rate * aq_c_transitions[aq_strength][i]) && + (logvar < (low_var_thresh + aq_c_var_thresholds[aq_strength][i]))) { + segment = i; + break; + } + } + } + + // Fill in the entires in the segment map corresponding to this SB64. + for (y = 0; y < ymis; y++) { + for (x = 0; x < xmis; x++) { + cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment; + } + } +} diff --git a/third_party/aom/av1/encoder/aq_complexity.h b/third_party/aom/av1/encoder/aq_complexity.h new file mode 100644 index 0000000000..3421d74c93 --- /dev/null +++ b/third_party/aom/av1/encoder/aq_complexity.h @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AQ_COMPLEXITY_H_ +#define AOM_AV1_ENCODER_AQ_COMPLEXITY_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/common/enums.h" + +struct AV1_COMP; +struct macroblock; + +// Select a segment for the current Block. +void av1_caq_select_segment(const struct AV1_COMP *cpi, struct macroblock *, + BLOCK_SIZE bs, int mi_row, int mi_col, + int projected_rate); + +// This function sets up a set of segments with delta Q values around +// the baseline frame quantizer. +void av1_setup_in_frame_q_adj(struct AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_AQ_COMPLEXITY_H_ diff --git a/third_party/aom/av1/encoder/aq_cyclicrefresh.c b/third_party/aom/av1/encoder/aq_cyclicrefresh.c new file mode 100644 index 0000000000..f532d48da5 --- /dev/null +++ b/third_party/aom/av1/encoder/aq_cyclicrefresh.c @@ -0,0 +1,580 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> + +#include "av1/common/seg_common.h" +#include "av1/encoder/aq_cyclicrefresh.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/segmentation.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_ports/system_state.h" + +struct CYCLIC_REFRESH { + // Percentage of blocks per frame that are targeted as candidates + // for cyclic refresh. + int percent_refresh; + // Maximum q-delta as percentage of base q. + int max_qdelta_perc; + // Superblock starting index for cycling through the frame. + int sb_index; + // Controls how long block will need to wait to be refreshed again, in + // excess of the cycle time, i.e., in the case of all zero motion, block + // will be refreshed every (100/percent_refresh + time_for_refresh) frames. + int time_for_refresh; + // Target number of (8x8) blocks that are set for delta-q. + int target_num_seg_blocks; + // Actual number of (8x8) blocks that were applied delta-q. + int actual_num_seg1_blocks; + int actual_num_seg2_blocks; + // RD mult. parameters for segment 1. + int rdmult; + // Cyclic refresh map. + int8_t *map; + // Map of the last q a block was coded at. + uint8_t *last_coded_q_map; + // Thresholds applied to the projected rate/distortion of the coding block, + // when deciding whether block should be refreshed. + int64_t thresh_rate_sb; + int64_t thresh_dist_sb; + // Threshold applied to the motion vector (in units of 1/8 pel) of the + // coding block, when deciding whether block should be refreshed. + int16_t motion_thresh; + // Rate target ratio to set q delta. + double rate_ratio_qdelta; + // Boost factor for rate target ratio, for segment CR_SEGMENT_ID_BOOST2. + int rate_boost_fac; + double low_content_avg; + int qindex_delta[3]; +}; + +CYCLIC_REFRESH *av1_cyclic_refresh_alloc(int mi_rows, int mi_cols) { + size_t last_coded_q_map_size; + CYCLIC_REFRESH *const cr = aom_calloc(1, sizeof(*cr)); + if (cr == NULL) return NULL; + + cr->map = aom_calloc(mi_rows * mi_cols, sizeof(*cr->map)); + if (cr->map == NULL) { + av1_cyclic_refresh_free(cr); + return NULL; + } + last_coded_q_map_size = mi_rows * mi_cols * sizeof(*cr->last_coded_q_map); + cr->last_coded_q_map = aom_malloc(last_coded_q_map_size); + if (cr->last_coded_q_map == NULL) { + av1_cyclic_refresh_free(cr); + return NULL; + } + assert(MAXQ <= 255); + memset(cr->last_coded_q_map, MAXQ, last_coded_q_map_size); + + return cr; +} + +void av1_cyclic_refresh_free(CYCLIC_REFRESH *cr) { + if (cr != NULL) { + aom_free(cr->map); + aom_free(cr->last_coded_q_map); + aom_free(cr); + } +} + +// Check if we should turn off cyclic refresh based on bitrate condition. +static int apply_cyclic_refresh_bitrate(const AV1_COMMON *cm, + const RATE_CONTROL *rc) { + // Turn off cyclic refresh if bits available per frame is not sufficiently + // larger than bit cost of segmentation. Segment map bit cost should scale + // with number of seg blocks, so compare available bits to number of blocks. + // Average bits available per frame = avg_frame_bandwidth + // Number of (8x8) blocks in frame = mi_rows * mi_cols; + const float factor = 0.25; + const int number_blocks = cm->mi_rows * cm->mi_cols; + // The condition below corresponds to turning off at target bitrates: + // (at 30fps), ~12kbps for CIF, 36kbps for VGA, 100kps for HD/720p. + // Also turn off at very small frame sizes, to avoid too large fraction of + // superblocks to be refreshed per frame. Threshold below is less than QCIF. + if (rc->avg_frame_bandwidth < factor * number_blocks || + number_blocks / 64 < 5) + return 0; + else + return 1; +} + +// Check if this coding block, of size bsize, should be considered for refresh +// (lower-qp coding). Decision can be based on various factors, such as +// size of the coding block (i.e., below min_block size rejected), coding +// mode, and rate/distortion. +static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, + const MB_MODE_INFO *mbmi, int64_t rate, + int64_t dist, int bsize) { + MV mv = mbmi->mv[0].as_mv; + // Reject the block for lower-qp coding if projected distortion + // is above the threshold, and any of the following is true: + // 1) mode uses large mv + // 2) mode is an intra-mode + // Otherwise accept for refresh. + if (dist > cr->thresh_dist_sb && + (mv.row > cr->motion_thresh || mv.row < -cr->motion_thresh || + mv.col > cr->motion_thresh || mv.col < -cr->motion_thresh || + !is_inter_block(mbmi))) + return CR_SEGMENT_ID_BASE; + else if (bsize >= BLOCK_16X16 && rate < cr->thresh_rate_sb && + is_inter_block(mbmi) && mbmi->mv[0].as_int == 0 && + cr->rate_boost_fac > 10) + // More aggressive delta-q for bigger blocks with zero motion. + return CR_SEGMENT_ID_BOOST2; + else + return CR_SEGMENT_ID_BOOST1; +} + +// Compute delta-q for the segment. +static int compute_deltaq(const AV1_COMP *cpi, int q, double rate_factor) { + const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + const RATE_CONTROL *const rc = &cpi->rc; + int deltaq = + av1_compute_qdelta_by_rate(rc, cpi->common.frame_type, q, rate_factor, + cpi->common.seq_params.bit_depth); + if ((-deltaq) > cr->max_qdelta_perc * q / 100) { + deltaq = -cr->max_qdelta_perc * q / 100; + } + return deltaq; +} + +// For the just encoded frame, estimate the bits, incorporating the delta-q +// from non-base segment. For now ignore effect of multiple segments +// (with different delta-q). Note this function is called in the postencode +// (called from rc_update_rate_correction_factors()). +int av1_cyclic_refresh_estimate_bits_at_q(const AV1_COMP *cpi, + double correction_factor) { + const AV1_COMMON *const cm = &cpi->common; + const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int estimated_bits; + int mbs = cm->MBs; + int num8x8bl = mbs << 2; + // Weight for non-base segments: use actual number of blocks refreshed in + // previous/just encoded frame. Note number of blocks here is in 8x8 units. + double weight_segment1 = (double)cr->actual_num_seg1_blocks / num8x8bl; + double weight_segment2 = (double)cr->actual_num_seg2_blocks / num8x8bl; + // Take segment weighted average for estimated bits. + estimated_bits = + (int)((1.0 - weight_segment1 - weight_segment2) * + av1_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs, + correction_factor, + cm->seq_params.bit_depth) + + weight_segment1 * av1_estimate_bits_at_q( + cm->frame_type, + cm->base_qindex + cr->qindex_delta[1], mbs, + correction_factor, cm->seq_params.bit_depth) + + weight_segment2 * av1_estimate_bits_at_q( + cm->frame_type, + cm->base_qindex + cr->qindex_delta[2], mbs, + correction_factor, cm->seq_params.bit_depth)); + return estimated_bits; +} + +// Prior to encoding the frame, estimate the bits per mb, for a given q = i and +// a corresponding delta-q (for segment 1). This function is called in the +// rc_regulate_q() to set the base qp index. +// Note: the segment map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or +// to 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock, prior to encoding. +int av1_cyclic_refresh_rc_bits_per_mb(const AV1_COMP *cpi, int i, + double correction_factor) { + const AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int bits_per_mb; + int num8x8bl = cm->MBs << 2; + // Weight for segment prior to encoding: take the average of the target + // number for the frame to be encoded and the actual from the previous frame. + double weight_segment = + (double)((cr->target_num_seg_blocks + cr->actual_num_seg1_blocks + + cr->actual_num_seg2_blocks) >> + 1) / + num8x8bl; + // Compute delta-q corresponding to qindex i. + int deltaq = compute_deltaq(cpi, i, cr->rate_ratio_qdelta); + // Take segment weighted average for bits per mb. + bits_per_mb = + (int)((1.0 - weight_segment) * + av1_rc_bits_per_mb(cm->frame_type, i, correction_factor, + cm->seq_params.bit_depth) + + weight_segment * av1_rc_bits_per_mb(cm->frame_type, i + deltaq, + correction_factor, + cm->seq_params.bit_depth)); + return bits_per_mb; +} + +// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), +// check if we should reset the segment_id, and update the cyclic_refresh map +// and segmentation map. +void av1_cyclic_refresh_update_segment(const AV1_COMP *cpi, + MB_MODE_INFO *const mbmi, int mi_row, + int mi_col, BLOCK_SIZE bsize, + int64_t rate, int64_t dist, int skip) { + const AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); + const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); + const int block_index = mi_row * cm->mi_cols + mi_col; + const int refresh_this_block = + candidate_refresh_aq(cr, mbmi, rate, dist, bsize); + // Default is to not update the refresh map. + int new_map_value = cr->map[block_index]; + int x = 0; + int y = 0; + + // If this block is labeled for refresh, check if we should reset the + // segment_id. + if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) { + mbmi->segment_id = refresh_this_block; + // Reset segment_id if will be skipped. + if (skip) mbmi->segment_id = CR_SEGMENT_ID_BASE; + } + + // Update the cyclic refresh map, to be used for setting segmentation map + // for the next frame. If the block will be refreshed this frame, mark it + // as clean. The magnitude of the -ve influences how long before we consider + // it for refresh again. + if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) { + new_map_value = -cr->time_for_refresh; + } else if (refresh_this_block) { + // Else if it is accepted as candidate for refresh, and has not already + // been refreshed (marked as 1) then mark it as a candidate for cleanup + // for future time (marked as 0), otherwise don't update it. + if (cr->map[block_index] == 1) new_map_value = 0; + } else { + // Leave it marked as block that is not candidate for refresh. + new_map_value = 1; + } + + // Update entries in the cyclic refresh map with new_map_value, and + // copy mbmi->segment_id into global segmentation map. + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + int map_offset = block_index + y * cm->mi_cols + x; + cr->map[map_offset] = new_map_value; + cpi->segmentation_map[map_offset] = mbmi->segment_id; + // Inter skip blocks were clearly not coded at the current qindex, so + // don't update the map for them. For cases where motion is non-zero or + // the reference frame isn't the previous frame, the previous value in + // the map for this spatial location is not entirely correct. + if ((!is_inter_block(mbmi) || !skip) && + mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) { + cr->last_coded_q_map[map_offset] = clamp( + cm->base_qindex + cr->qindex_delta[mbmi->segment_id], 0, MAXQ); + } else if (is_inter_block(mbmi) && skip && + mbmi->segment_id <= CR_SEGMENT_ID_BOOST2) { + cr->last_coded_q_map[map_offset] = + AOMMIN(clamp(cm->base_qindex + cr->qindex_delta[mbmi->segment_id], + 0, MAXQ), + cr->last_coded_q_map[map_offset]); + } + } +} + +// Update the actual number of blocks that were applied the segment delta q. +void av1_cyclic_refresh_postencode(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + unsigned char *const seg_map = cpi->segmentation_map; + int mi_row, mi_col; + cr->actual_num_seg1_blocks = 0; + cr->actual_num_seg2_blocks = 0; + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + if (cyclic_refresh_segment_id(seg_map[mi_row * cm->mi_cols + mi_col]) == + CR_SEGMENT_ID_BOOST1) + cr->actual_num_seg1_blocks++; + else if (cyclic_refresh_segment_id( + seg_map[mi_row * cm->mi_cols + mi_col]) == + CR_SEGMENT_ID_BOOST2) + cr->actual_num_seg2_blocks++; + } +} + +// Set golden frame update interval, for 1 pass CBR mode. +void av1_cyclic_refresh_set_golden_update(AV1_COMP *const cpi) { + RATE_CONTROL *const rc = &cpi->rc; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + // Set minimum gf_interval for GF update to a multiple (== 2) of refresh + // period. Depending on past encoding stats, GF flag may be reset and update + // may not occur until next baseline_gf_interval. + if (cr->percent_refresh > 0) + rc->baseline_gf_interval = 4 * (100 / cr->percent_refresh); + else + rc->baseline_gf_interval = 40; +} + +// Update some encoding stats (from the just encoded frame). If this frame's +// background has high motion, refresh the golden frame. Otherwise, if the +// golden reference is to be updated check if we should NOT update the golden +// ref. +void av1_cyclic_refresh_check_golden_update(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + int mi_row, mi_col; + double fraction_low = 0.0; + int low_content_frame = 0; + + MB_MODE_INFO **mi; + RATE_CONTROL *const rc = &cpi->rc; + const int rows = cm->mi_rows, cols = cm->mi_cols; + int cnt1 = 0, cnt2 = 0; + int force_gf_refresh = 0; + + for (mi_row = 0; mi_row < rows; mi_row++) { + mi = cm->mi_grid_visible + mi_row * cm->mi_stride; + + for (mi_col = 0; mi_col < cols; mi_col++) { + int16_t abs_mvr = mi[0]->mv[0].as_mv.row >= 0 + ? mi[0]->mv[0].as_mv.row + : -1 * mi[0]->mv[0].as_mv.row; + int16_t abs_mvc = mi[0]->mv[0].as_mv.col >= 0 + ? mi[0]->mv[0].as_mv.col + : -1 * mi[0]->mv[0].as_mv.col; + + // Calculate the motion of the background. + if (abs_mvr <= 16 && abs_mvc <= 16) { + cnt1++; + if (abs_mvr == 0 && abs_mvc == 0) cnt2++; + } + mi++; + + // Accumulate low_content_frame. + if (cr->map[mi_row * cols + mi_col] < 1) low_content_frame++; + } + } + + // For video conference clips, if the background has high motion in current + // frame because of the camera movement, set this frame as the golden frame. + // Use 70% and 5% as the thresholds for golden frame refreshing. + if (cnt1 * 10 > (70 * rows * cols) && cnt2 * 20 < cnt1) { + av1_cyclic_refresh_set_golden_update(cpi); + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + + if (rc->frames_till_gf_update_due > rc->frames_to_key) + rc->frames_till_gf_update_due = rc->frames_to_key; + cpi->refresh_golden_frame = 1; + force_gf_refresh = 1; + } + + fraction_low = (double)low_content_frame / (rows * cols); + // Update average. + cr->low_content_avg = (fraction_low + 3 * cr->low_content_avg) / 4; + if (!force_gf_refresh && cpi->refresh_golden_frame == 1) { + // Don't update golden reference if the amount of low_content for the + // current encoded frame is small, or if the recursive average of the + // low_content over the update interval window falls below threshold. + if (fraction_low < 0.8 || cr->low_content_avg < 0.7) + cpi->refresh_golden_frame = 0; + // Reset for next internal. + cr->low_content_avg = fraction_low; + } +} + +// Update the segmentation map, and related quantities: cyclic refresh map, +// refresh sb_index, and target number of blocks to be refreshed. +// The map is set to either 0/CR_SEGMENT_ID_BASE (no refresh) or to +// 1/CR_SEGMENT_ID_BOOST1 (refresh) for each superblock. +// Blocks labeled as BOOST1 may later get set to BOOST2 (during the +// encoding of the superblock). +static void cyclic_refresh_update_map(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + unsigned char *const seg_map = cpi->segmentation_map; + int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; + int xmis, ymis, x, y; + memset(seg_map, CR_SEGMENT_ID_BASE, cm->mi_rows * cm->mi_cols); + sb_cols = + (cm->mi_cols + cm->seq_params.mib_size - 1) / cm->seq_params.mib_size; + sb_rows = + (cm->mi_rows + cm->seq_params.mib_size - 1) / cm->seq_params.mib_size; + sbs_in_frame = sb_cols * sb_rows; + // Number of target blocks to get the q delta (segment 1). + block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; + // Set the segmentation map: cycle through the superblocks, starting at + // cr->mb_index, and stopping when either block_count blocks have been found + // to be refreshed, or we have passed through whole frame. + if (cr->sb_index >= sbs_in_frame) cr->sb_index = 0; + assert(cr->sb_index < sbs_in_frame); + i = cr->sb_index; + cr->target_num_seg_blocks = 0; + do { + int sum_map = 0; + // Get the mi_row/mi_col corresponding to superblock index i. + int sb_row_index = (i / sb_cols); + int sb_col_index = i - sb_row_index * sb_cols; + int mi_row = sb_row_index * cm->seq_params.mib_size; + int mi_col = sb_col_index * cm->seq_params.mib_size; + int qindex_thresh = + cpi->oxcf.content == AOM_CONTENT_SCREEN + ? av1_get_qindex(&cm->seg, CR_SEGMENT_ID_BOOST2, cm->base_qindex) + : 0; + assert(mi_row >= 0 && mi_row < cm->mi_rows); + assert(mi_col >= 0 && mi_col < cm->mi_cols); + bl_index = mi_row * cm->mi_cols + mi_col; + // Loop through all MI blocks in superblock and update map. + xmis = AOMMIN(cm->mi_cols - mi_col, cm->seq_params.mib_size); + ymis = AOMMIN(cm->mi_rows - mi_row, cm->seq_params.mib_size); + for (y = 0; y < ymis; y++) { + for (x = 0; x < xmis; x++) { + const int bl_index2 = bl_index + y * cm->mi_cols + x; + // If the block is as a candidate for clean up then mark it + // for possible boost/refresh (segment 1). The segment id may get + // reset to 0 later if block gets coded anything other than GLOBALMV. + if (cr->map[bl_index2] == 0) { + if (cr->last_coded_q_map[bl_index2] > qindex_thresh) sum_map++; + } else if (cr->map[bl_index2] < 0) { + cr->map[bl_index2]++; + } + } + } + // Enforce constant segment over superblock. + // If segment is at least half of superblock, set to 1. + if (sum_map >= xmis * ymis / 2) { + for (y = 0; y < ymis; y++) + for (x = 0; x < xmis; x++) { + seg_map[bl_index + y * cm->mi_cols + x] = CR_SEGMENT_ID_BOOST1; + } + cr->target_num_seg_blocks += xmis * ymis; + } + i++; + if (i == sbs_in_frame) { + i = 0; + } + } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index); + cr->sb_index = i; +} + +// Set cyclic refresh parameters. +void av1_cyclic_refresh_update_parameters(AV1_COMP *const cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + cr->percent_refresh = 10; + cr->max_qdelta_perc = 50; + cr->time_for_refresh = 0; + // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4) + // periods of the refresh cycle, after a key frame. + if (rc->frames_since_key < 4 * cr->percent_refresh) + cr->rate_ratio_qdelta = 3.0; + else + cr->rate_ratio_qdelta = 2.0; + // Adjust some parameters for low resolutions at low bitrates. + if (cm->width <= 352 && cm->height <= 288 && rc->avg_frame_bandwidth < 3400) { + cr->motion_thresh = 4; + cr->rate_boost_fac = 10; + } else { + cr->motion_thresh = 32; + cr->rate_boost_fac = 17; + } +} + +// Setup cyclic background refresh: set delta q and segmentation map. +void av1_cyclic_refresh_setup(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + struct segmentation *const seg = &cm->seg; + const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc); + int resolution_change = + cm->prev_frame && (cm->width != cm->prev_frame->width || + cm->height != cm->prev_frame->height); + if (resolution_change) { + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + av1_clearall_segfeatures(seg); + aom_clear_system_state(); + av1_disable_segmentation(seg); + return; + } + if (cm->current_video_frame == 0) cr->low_content_avg = 0.0; + // Don't apply refresh on key frame or enhancement layer frames. + if (!apply_cyclic_refresh || cm->frame_type == KEY_FRAME) { + // Set segmentation map to 0 and disable. + unsigned char *const seg_map = cpi->segmentation_map; + memset(seg_map, 0, cm->mi_rows * cm->mi_cols); + av1_disable_segmentation(&cm->seg); + if (cm->frame_type == KEY_FRAME) { + memset(cr->last_coded_q_map, MAXQ, + cm->mi_rows * cm->mi_cols * sizeof(*cr->last_coded_q_map)); + cr->sb_index = 0; + } + return; + } else { + int qindex_delta = 0; + int qindex2; + const double q = + av1_convert_qindex_to_q(cm->base_qindex, cm->seq_params.bit_depth); + aom_clear_system_state(); + // Set rate threshold to some multiple (set to 2 for now) of the target + // rate (target is given by sb64_target_rate and scaled by 256). + cr->thresh_rate_sb = ((int64_t)(rc->sb64_target_rate) << 8) << 2; + // Distortion threshold, quadratic in Q, scale factor to be adjusted. + // q will not exceed 457, so (q * q) is within 32bit; see: + // av1_convert_qindex_to_q(), av1_ac_quant(), ac_qlookup*[]. + cr->thresh_dist_sb = ((int64_t)(q * q)) << 2; + + // Set up segmentation. + // Clear down the segment map. + av1_enable_segmentation(&cm->seg); + av1_clearall_segfeatures(seg); + + // Note: setting temporal_update has no effect, as the seg-map coding method + // (temporal or spatial) is determined in + // av1_choose_segmap_coding_method(), + // based on the coding cost of each method. For error_resilient mode on the + // last_frame_seg_map is set to 0, so if temporal coding is used, it is + // relative to 0 previous map. + // seg->temporal_update = 0; + + // Segment BASE "Q" feature is disabled so it defaults to the baseline Q. + av1_disable_segfeature(seg, CR_SEGMENT_ID_BASE, SEG_LVL_ALT_Q); + // Use segment BOOST1 for in-frame Q adjustment. + av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q); + // Use segment BOOST2 for more aggressive in-frame Q adjustment. + av1_enable_segfeature(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q); + + // Set the q delta for segment BOOST1. + qindex_delta = compute_deltaq(cpi, cm->base_qindex, cr->rate_ratio_qdelta); + cr->qindex_delta[1] = qindex_delta; + + // Compute rd-mult for segment BOOST1. + qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ); + + cr->rdmult = av1_compute_rd_mult(cpi, qindex2); + + av1_set_segdata(seg, CR_SEGMENT_ID_BOOST1, SEG_LVL_ALT_Q, qindex_delta); + + // Set a more aggressive (higher) q delta for segment BOOST2. + qindex_delta = compute_deltaq( + cpi, cm->base_qindex, + AOMMIN(CR_MAX_RATE_TARGET_RATIO, + 0.1 * cr->rate_boost_fac * cr->rate_ratio_qdelta)); + cr->qindex_delta[2] = qindex_delta; + av1_set_segdata(seg, CR_SEGMENT_ID_BOOST2, SEG_LVL_ALT_Q, qindex_delta); + + // Update the segmentation and refresh map. + cyclic_refresh_update_map(cpi); + } +} + +int av1_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { + return cr->rdmult; +} + +void av1_cyclic_refresh_reset_resize(AV1_COMP *const cpi) { + const AV1_COMMON *const cm = &cpi->common; + CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; + memset(cr->map, 0, cm->mi_rows * cm->mi_cols); + cr->sb_index = 0; + cpi->refresh_golden_frame = 1; +} diff --git a/third_party/aom/av1/encoder/aq_cyclicrefresh.h b/third_party/aom/av1/encoder/aq_cyclicrefresh.h new file mode 100644 index 0000000000..b45781983d --- /dev/null +++ b/third_party/aom/av1/encoder/aq_cyclicrefresh.h @@ -0,0 +1,98 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AQ_CYCLICREFRESH_H_ +#define AOM_AV1_ENCODER_AQ_CYCLICREFRESH_H_ + +#include "av1/common/blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// The segment ids used in cyclic refresh: from base (no boost) to increasing +// boost (higher delta-qp). +#define CR_SEGMENT_ID_BASE 0 +#define CR_SEGMENT_ID_BOOST1 1 +#define CR_SEGMENT_ID_BOOST2 2 + +// Maximum rate target ratio for setting segment delta-qp. +#define CR_MAX_RATE_TARGET_RATIO 4.0 + +struct AV1_COMP; + +struct CYCLIC_REFRESH; +typedef struct CYCLIC_REFRESH CYCLIC_REFRESH; + +CYCLIC_REFRESH *av1_cyclic_refresh_alloc(int mi_rows, int mi_cols); + +void av1_cyclic_refresh_free(CYCLIC_REFRESH *cr); + +// Estimate the bits, incorporating the delta-q from segment 1, after encoding +// the frame. +int av1_cyclic_refresh_estimate_bits_at_q(const struct AV1_COMP *cpi, + double correction_factor); + +// Estimate the bits per mb, for a given q = i and a corresponding delta-q +// (for segment 1), prior to encoding the frame. +int av1_cyclic_refresh_rc_bits_per_mb(const struct AV1_COMP *cpi, int i, + double correction_factor); + +// Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), +// check if we should reset the segment_id, and update the cyclic_refresh map +// and segmentation map. +void av1_cyclic_refresh_update_segment(const struct AV1_COMP *cpi, + MB_MODE_INFO *const mbmi, int mi_row, + int mi_col, BLOCK_SIZE bsize, + int64_t rate, int64_t dist, int skip); + +// Update the segmentation map, and related quantities: cyclic refresh map, +// refresh sb_index, and target number of blocks to be refreshed. +void av1_cyclic_refresh_update__map(struct AV1_COMP *const cpi); + +// Update the actual number of blocks that were applied the segment delta q. +void av1_cyclic_refresh_postencode(struct AV1_COMP *const cpi); + +// Set golden frame update interval, for 1 pass CBR mode. +void av1_cyclic_refresh_set_golden_update(struct AV1_COMP *const cpi); + +// Check if we should not update golden reference, based on past refresh stats. +void av1_cyclic_refresh_check_golden_update(struct AV1_COMP *const cpi); + +// Set/update global/frame level refresh parameters. +void av1_cyclic_refresh_update_parameters(struct AV1_COMP *const cpi); + +// Setup cyclic background refresh: set delta q and segmentation map. +void av1_cyclic_refresh_setup(struct AV1_COMP *const cpi); + +int av1_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr); + +void av1_cyclic_refresh_reset_resize(struct AV1_COMP *const cpi); + +static INLINE int cyclic_refresh_segment_id_boosted(int segment_id) { + return segment_id == CR_SEGMENT_ID_BOOST1 || + segment_id == CR_SEGMENT_ID_BOOST2; +} + +static INLINE int cyclic_refresh_segment_id(int segment_id) { + if (segment_id == CR_SEGMENT_ID_BOOST1) + return CR_SEGMENT_ID_BOOST1; + else if (segment_id == CR_SEGMENT_ID_BOOST2) + return CR_SEGMENT_ID_BOOST2; + else + return CR_SEGMENT_ID_BASE; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_AQ_CYCLICREFRESH_H_ diff --git a/third_party/aom/av1/encoder/aq_variance.c b/third_party/aom/av1/encoder/aq_variance.c new file mode 100644 index 0000000000..58f906bdc0 --- /dev/null +++ b/third_party/aom/av1/encoder/aq_variance.c @@ -0,0 +1,202 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> + +#include "aom_ports/mem.h" + +#include "av1/encoder/aq_variance.h" +#include "av1/common/seg_common.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/dwt.h" +#include "aom_ports/system_state.h" + +static const double rate_ratio[MAX_SEGMENTS] = { 2.2, 1.7, 1.3, 1.0, + 0.9, .8, .7, .6 }; + +static const double deltaq_rate_ratio[MAX_SEGMENTS] = { 2.5, 2.0, 1.5, 1.0, + 0.75, 1.0, 1.0, 1.0 }; +#define ENERGY_MIN (-4) +#define ENERGY_MAX (1) +#define ENERGY_SPAN (ENERGY_MAX - ENERGY_MIN + 1) +#define ENERGY_IN_BOUNDS(energy) \ + assert((energy) >= ENERGY_MIN && (energy) <= ENERGY_MAX) + +DECLARE_ALIGNED(16, static const uint8_t, av1_all_zeros[MAX_SB_SIZE]) = { 0 }; + +DECLARE_ALIGNED(16, static const uint16_t, + av1_highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; + +static const int segment_id[ENERGY_SPAN] = { 0, 1, 1, 2, 3, 4 }; + +#define SEGMENT_ID(i) segment_id[(i)-ENERGY_MIN] + +void av1_vaq_frame_setup(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + struct segmentation *seg = &cm->seg; + int i; + + int resolution_change = + cm->prev_frame && (cm->width != cm->prev_frame->width || + cm->height != cm->prev_frame->height); + int avg_energy = (int)(cpi->twopass.mb_av_energy - 2); + double avg_ratio; + if (avg_energy > 7) avg_energy = 7; + if (avg_energy < 0) avg_energy = 0; + avg_ratio = rate_ratio[avg_energy]; + + if (resolution_change) { + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + av1_clearall_segfeatures(seg); + aom_clear_system_state(); + av1_disable_segmentation(seg); + return; + } + if (frame_is_intra_only(cm) || cm->error_resilient_mode || + cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { + cpi->vaq_refresh = 1; + + av1_enable_segmentation(seg); + av1_clearall_segfeatures(seg); + + aom_clear_system_state(); + + for (i = 0; i < MAX_SEGMENTS; ++i) { + // Set up avg segment id to be 1.0 and adjust the other segments around + // it. + int qindex_delta = av1_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, cm->base_qindex, rate_ratio[i] / avg_ratio, + cm->seq_params.bit_depth); + + // We don't allow qindex 0 in a segment if the base value is not 0. + // Q index 0 (lossless) implies 4x4 encoding only and in AQ mode a segment + // Q delta is sometimes applied without going back around the rd loop. + // This could lead to an illegal combination of partition size and q. + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + + av1_set_segdata(seg, i, SEG_LVL_ALT_Q, qindex_delta); + av1_enable_segfeature(seg, i, SEG_LVL_ALT_Q); + } + } +} + +int av1_log_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { + // This functions returns a score for the blocks local variance as calculated + // by: sum of the log of the (4x4 variances) of each subblock to the current + // block (x,bs) + // * 32 / number of pixels in the block_size. + // This is used for segmentation because to avoid situations in which a large + // block with a gentle gradient gets marked high variance even though each + // subblock has a low variance. This allows us to assign the same segment + // number for the same sorts of area regardless of how the partitioning goes. + + MACROBLOCKD *xd = &x->e_mbd; + double var = 0; + unsigned int sse; + int i, j; + + int right_overflow = + (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; + int bottom_overflow = + (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; + + const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; + const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; + + aom_clear_system_state(); + + for (i = 0; i < bh; i += 4) { + for (j = 0; j < bw; j += 4) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + var += + log(1.0 + cpi->fn_ptr[BLOCK_4X4].vf( + x->plane[0].src.buf + i * x->plane[0].src.stride + j, + x->plane[0].src.stride, + CONVERT_TO_BYTEPTR(av1_highbd_all_zeros), 0, &sse) / + 16); + } else { + var += + log(1.0 + cpi->fn_ptr[BLOCK_4X4].vf( + x->plane[0].src.buf + i * x->plane[0].src.stride + j, + x->plane[0].src.stride, av1_all_zeros, 0, &sse) / + 16); + } + } + } + // Use average of 4x4 log variance. The range for 8 bit 0 - 9.704121561. + var /= (bw / 4 * bh / 4); + if (var > 7) var = 7; + + aom_clear_system_state(); + return (int)(var); +} + +#define DEFAULT_E_MIDPOINT 10.0 + +unsigned int haar_ac_energy(MACROBLOCK *x, BLOCK_SIZE bs) { + MACROBLOCKD *xd = &x->e_mbd; + int stride = x->plane[0].src.stride; + uint8_t *buf = x->plane[0].src.buf; + const int bw = MI_SIZE * mi_size_wide[bs]; + const int bh = MI_SIZE * mi_size_high[bs]; + int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + + int var = 0; + for (int r = 0; r < bh; r += 8) + for (int c = 0; c < bw; c += 8) { + var += av1_haar_ac_sad_8x8_uint8_input(buf + c + r * stride, stride, hbd); + } + + return (unsigned int)((uint64_t)var * 256) >> num_pels_log2_lookup[bs]; +} + +double av1_log_block_wavelet_energy(MACROBLOCK *x, BLOCK_SIZE bs) { + unsigned int haar_sad = haar_ac_energy(x, bs); + aom_clear_system_state(); + return log(haar_sad + 1.0); +} + +int av1_block_wavelet_energy_level(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bs) { + double energy, energy_midpoint; + aom_clear_system_state(); + energy_midpoint = (cpi->oxcf.pass == 2) ? cpi->twopass.frame_avg_haar_energy + : DEFAULT_E_MIDPOINT; + energy = av1_log_block_wavelet_energy(x, bs) - energy_midpoint; + return clamp((int)round(energy), ENERGY_MIN, ENERGY_MAX); +} + +int av1_compute_deltaq_from_energy_level(const AV1_COMP *const cpi, + int block_var_level) { + int rate_level; + const AV1_COMMON *const cm = &cpi->common; + + if (DELTAQ_MODULATION == 1) { + ENERGY_IN_BOUNDS(block_var_level); + rate_level = SEGMENT_ID(block_var_level); + } else { + rate_level = block_var_level; + } + int qindex_delta = av1_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, cm->base_qindex, deltaq_rate_ratio[rate_level], + cm->seq_params.bit_depth); + + if ((cm->base_qindex != 0) && ((cm->base_qindex + qindex_delta) == 0)) { + qindex_delta = -cm->base_qindex + 1; + } + return qindex_delta; +} diff --git a/third_party/aom/av1/encoder/aq_variance.h b/third_party/aom/av1/encoder/aq_variance.h new file mode 100644 index 0000000000..2d22b663e5 --- /dev/null +++ b/third_party/aom/av1/encoder/aq_variance.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AQ_VARIANCE_H_ +#define AOM_AV1_ENCODER_AQ_VARIANCE_H_ + +#include "av1/encoder/encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_vaq_frame_setup(AV1_COMP *cpi); + +int av1_log_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs); +int av1_compute_deltaq_from_energy_level(const AV1_COMP *const cpi, + int block_var_level); +int av1_block_wavelet_energy_level(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bs); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_AQ_VARIANCE_H_ diff --git a/third_party/aom/av1/encoder/arm/neon/quantize_neon.c b/third_party/aom/av1/encoder/arm/neon/quantize_neon.c new file mode 100644 index 0000000000..36e7d33702 --- /dev/null +++ b/third_party/aom/av1/encoder/arm/neon/quantize_neon.c @@ -0,0 +1,118 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <arm_neon.h> + +#include <math.h> + +#include "aom_mem/aom_mem.h" + +#include "av1/common/quant_common.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/rd.h" + +void av1_quantize_fp_neon(const int16_t *coeff_ptr, intptr_t count, + int skip_block, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, int16_t *qcoeff_ptr, + int16_t *dqcoeff_ptr, const int16_t *dequant_ptr, + uint16_t *eob_ptr, const int16_t *scan, + const int16_t *iscan) { + // TODO(jingning) Decide the need of these arguments after the + // quantization process is completed. + (void)zbin_ptr; + (void)quant_shift_ptr; + (void)scan; + + if (!skip_block) { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + int i; + const int16x8_t v_zero = vdupq_n_s16(0); + const int16x8_t v_one = vdupq_n_s16(1); + int16x8_t v_eobmax_76543210 = vdupq_n_s16(-1); + int16x8_t v_round = vmovq_n_s16(round_ptr[1]); + int16x8_t v_quant = vmovq_n_s16(quant_ptr[1]); + int16x8_t v_dequant = vmovq_n_s16(dequant_ptr[1]); + // adjust for dc + v_round = vsetq_lane_s16(round_ptr[0], v_round, 0); + v_quant = vsetq_lane_s16(quant_ptr[0], v_quant, 0); + v_dequant = vsetq_lane_s16(dequant_ptr[0], v_dequant, 0); + // process dc and the first seven ac coeffs + { + const int16x8_t v_iscan = vld1q_s16(&iscan[0]); + const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[0]); + const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); + const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); + const int32x4_t v_tmp_lo = + vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); + const int32x4_t v_tmp_hi = + vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); + const int16x8_t v_tmp2 = + vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); + const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); + const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); + const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); + const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); + const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); + const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); + v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); + vst1q_s16(&qcoeff_ptr[0], v_qcoeff); + vst1q_s16(&dqcoeff_ptr[0], v_dqcoeff); + v_round = vmovq_n_s16(round_ptr[1]); + v_quant = vmovq_n_s16(quant_ptr[1]); + v_dequant = vmovq_n_s16(dequant_ptr[1]); + } + // now process the rest of the ac coeffs + for (i = 8; i < count; i += 8) { + const int16x8_t v_iscan = vld1q_s16(&iscan[i]); + const int16x8_t v_coeff = vld1q_s16(&coeff_ptr[i]); + const int16x8_t v_coeff_sign = vshrq_n_s16(v_coeff, 15); + const int16x8_t v_tmp = vabaq_s16(v_round, v_coeff, v_zero); + const int32x4_t v_tmp_lo = + vmull_s16(vget_low_s16(v_tmp), vget_low_s16(v_quant)); + const int32x4_t v_tmp_hi = + vmull_s16(vget_high_s16(v_tmp), vget_high_s16(v_quant)); + const int16x8_t v_tmp2 = + vcombine_s16(vshrn_n_s32(v_tmp_lo, 16), vshrn_n_s32(v_tmp_hi, 16)); + const uint16x8_t v_nz_mask = vceqq_s16(v_tmp2, v_zero); + const int16x8_t v_iscan_plus1 = vaddq_s16(v_iscan, v_one); + const int16x8_t v_nz_iscan = vbslq_s16(v_nz_mask, v_zero, v_iscan_plus1); + const int16x8_t v_qcoeff_a = veorq_s16(v_tmp2, v_coeff_sign); + const int16x8_t v_qcoeff = vsubq_s16(v_qcoeff_a, v_coeff_sign); + const int16x8_t v_dqcoeff = vmulq_s16(v_qcoeff, v_dequant); + v_eobmax_76543210 = vmaxq_s16(v_eobmax_76543210, v_nz_iscan); + vst1q_s16(&qcoeff_ptr[i], v_qcoeff); + vst1q_s16(&dqcoeff_ptr[i], v_dqcoeff); + } + { + const int16x4_t v_eobmax_3210 = vmax_s16( + vget_low_s16(v_eobmax_76543210), vget_high_s16(v_eobmax_76543210)); + const int64x1_t v_eobmax_xx32 = + vshr_n_s64(vreinterpret_s64_s16(v_eobmax_3210), 32); + const int16x4_t v_eobmax_tmp = + vmax_s16(v_eobmax_3210, vreinterpret_s16_s64(v_eobmax_xx32)); + const int64x1_t v_eobmax_xxx3 = + vshr_n_s64(vreinterpret_s64_s16(v_eobmax_tmp), 16); + const int16x4_t v_eobmax_final = + vmax_s16(v_eobmax_tmp, vreinterpret_s16_s64(v_eobmax_xxx3)); + + *eob_ptr = (uint16_t)vget_lane_s16(v_eobmax_final, 0); + } + } else { + memset(qcoeff_ptr, 0, count * sizeof(int16_t)); + memset(dqcoeff_ptr, 0, count * sizeof(int16_t)); + *eob_ptr = 0; + } +} diff --git a/third_party/aom/av1/encoder/av1_fwd_txfm1d.c b/third_party/aom/av1/encoder/av1_fwd_txfm1d.c new file mode 100644 index 0000000000..98505e0b1a --- /dev/null +++ b/third_party/aom/av1/encoder/av1_fwd_txfm1d.c @@ -0,0 +1,1885 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdlib.h> +#include "av1/encoder/av1_fwd_txfm1d.h" +#include "av1/common/av1_txfm.h" + +void av1_fdct4_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 4; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[4]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + bf1 = output; + bf1[0] = input[0] + input[3]; + bf1[1] = input[1] + input[2]; + bf1[2] = -input[2] + input[1]; + bf1[3] = -input[3] + input[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = half_btf(cospi[32], bf0[0], cospi[32], bf0[1], cos_bit); + bf1[1] = half_btf(-cospi[32], bf0[1], cospi[32], bf0[0], cos_bit); + bf1[2] = half_btf(cospi[48], bf0[2], cospi[16], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[48], bf0[3], -cospi[16], bf0[2], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[2]; + bf1[2] = bf0[1]; + bf1[3] = bf0[3]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fdct8_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 8; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[8]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + bf1 = output; + bf1[0] = input[0] + input[7]; + bf1[1] = input[1] + input[6]; + bf1[2] = input[2] + input[5]; + bf1[3] = input[3] + input[4]; + bf1[4] = -input[4] + input[3]; + bf1[5] = -input[5] + input[2]; + bf1[6] = -input[6] + input[1]; + bf1[7] = -input[7] + input[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[3]; + bf1[1] = bf0[1] + bf0[2]; + bf1[2] = -bf0[2] + bf0[1]; + bf1[3] = -bf0[3] + bf0[0]; + bf1[4] = bf0[4]; + bf1[5] = half_btf(-cospi[32], bf0[5], cospi[32], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[5], cos_bit); + bf1[7] = bf0[7]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = half_btf(cospi[32], bf0[0], cospi[32], bf0[1], cos_bit); + bf1[1] = half_btf(-cospi[32], bf0[1], cospi[32], bf0[0], cos_bit); + bf1[2] = half_btf(cospi[48], bf0[2], cospi[16], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[48], bf0[3], -cospi[16], bf0[2], cos_bit); + bf1[4] = bf0[4] + bf0[5]; + bf1[5] = -bf0[5] + bf0[4]; + bf1[6] = -bf0[6] + bf0[7]; + bf1[7] = bf0[7] + bf0[6]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[56], bf0[4], cospi[8], bf0[7], cos_bit); + bf1[5] = half_btf(cospi[24], bf0[5], cospi[40], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[24], bf0[6], -cospi[40], bf0[5], cos_bit); + bf1[7] = half_btf(cospi[56], bf0[7], -cospi[8], bf0[4], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[4]; + bf1[2] = bf0[2]; + bf1[3] = bf0[6]; + bf1[4] = bf0[1]; + bf1[5] = bf0[5]; + bf1[6] = bf0[3]; + bf1[7] = bf0[7]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fdct16_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 16; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[16]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + bf1 = output; + bf1[0] = input[0] + input[15]; + bf1[1] = input[1] + input[14]; + bf1[2] = input[2] + input[13]; + bf1[3] = input[3] + input[12]; + bf1[4] = input[4] + input[11]; + bf1[5] = input[5] + input[10]; + bf1[6] = input[6] + input[9]; + bf1[7] = input[7] + input[8]; + bf1[8] = -input[8] + input[7]; + bf1[9] = -input[9] + input[6]; + bf1[10] = -input[10] + input[5]; + bf1[11] = -input[11] + input[4]; + bf1[12] = -input[12] + input[3]; + bf1[13] = -input[13] + input[2]; + bf1[14] = -input[14] + input[1]; + bf1[15] = -input[15] + input[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[7]; + bf1[1] = bf0[1] + bf0[6]; + bf1[2] = bf0[2] + bf0[5]; + bf1[3] = bf0[3] + bf0[4]; + bf1[4] = -bf0[4] + bf0[3]; + bf1[5] = -bf0[5] + bf0[2]; + bf1[6] = -bf0[6] + bf0[1]; + bf1[7] = -bf0[7] + bf0[0]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = half_btf(-cospi[32], bf0[10], cospi[32], bf0[13], cos_bit); + bf1[11] = half_btf(-cospi[32], bf0[11], cospi[32], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[32], bf0[12], cospi[32], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[32], bf0[13], cospi[32], bf0[10], cos_bit); + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[3]; + bf1[1] = bf0[1] + bf0[2]; + bf1[2] = -bf0[2] + bf0[1]; + bf1[3] = -bf0[3] + bf0[0]; + bf1[4] = bf0[4]; + bf1[5] = half_btf(-cospi[32], bf0[5], cospi[32], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[5], cos_bit); + bf1[7] = bf0[7]; + bf1[8] = bf0[8] + bf0[11]; + bf1[9] = bf0[9] + bf0[10]; + bf1[10] = -bf0[10] + bf0[9]; + bf1[11] = -bf0[11] + bf0[8]; + bf1[12] = -bf0[12] + bf0[15]; + bf1[13] = -bf0[13] + bf0[14]; + bf1[14] = bf0[14] + bf0[13]; + bf1[15] = bf0[15] + bf0[12]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = half_btf(cospi[32], bf0[0], cospi[32], bf0[1], cos_bit); + bf1[1] = half_btf(-cospi[32], bf0[1], cospi[32], bf0[0], cos_bit); + bf1[2] = half_btf(cospi[48], bf0[2], cospi[16], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[48], bf0[3], -cospi[16], bf0[2], cos_bit); + bf1[4] = bf0[4] + bf0[5]; + bf1[5] = -bf0[5] + bf0[4]; + bf1[6] = -bf0[6] + bf0[7]; + bf1[7] = bf0[7] + bf0[6]; + bf1[8] = bf0[8]; + bf1[9] = half_btf(-cospi[16], bf0[9], cospi[48], bf0[14], cos_bit); + bf1[10] = half_btf(-cospi[48], bf0[10], -cospi[16], bf0[13], cos_bit); + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = half_btf(cospi[48], bf0[13], -cospi[16], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[16], bf0[14], cospi[48], bf0[9], cos_bit); + bf1[15] = bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[56], bf0[4], cospi[8], bf0[7], cos_bit); + bf1[5] = half_btf(cospi[24], bf0[5], cospi[40], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[24], bf0[6], -cospi[40], bf0[5], cos_bit); + bf1[7] = half_btf(cospi[56], bf0[7], -cospi[8], bf0[4], cos_bit); + bf1[8] = bf0[8] + bf0[9]; + bf1[9] = -bf0[9] + bf0[8]; + bf1[10] = -bf0[10] + bf0[11]; + bf1[11] = bf0[11] + bf0[10]; + bf1[12] = bf0[12] + bf0[13]; + bf1[13] = -bf0[13] + bf0[12]; + bf1[14] = -bf0[14] + bf0[15]; + bf1[15] = bf0[15] + bf0[14]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 6 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = half_btf(cospi[60], bf0[8], cospi[4], bf0[15], cos_bit); + bf1[9] = half_btf(cospi[28], bf0[9], cospi[36], bf0[14], cos_bit); + bf1[10] = half_btf(cospi[44], bf0[10], cospi[20], bf0[13], cos_bit); + bf1[11] = half_btf(cospi[12], bf0[11], cospi[52], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[12], bf0[12], -cospi[52], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[44], bf0[13], -cospi[20], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[28], bf0[14], -cospi[36], bf0[9], cos_bit); + bf1[15] = half_btf(cospi[60], bf0[15], -cospi[4], bf0[8], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 7 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[8]; + bf1[2] = bf0[4]; + bf1[3] = bf0[12]; + bf1[4] = bf0[2]; + bf1[5] = bf0[10]; + bf1[6] = bf0[6]; + bf1[7] = bf0[14]; + bf1[8] = bf0[1]; + bf1[9] = bf0[9]; + bf1[10] = bf0[5]; + bf1[11] = bf0[13]; + bf1[12] = bf0[3]; + bf1[13] = bf0[11]; + bf1[14] = bf0[7]; + bf1[15] = bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fdct32_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 32; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[32]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + bf1 = output; + bf1[0] = input[0] + input[31]; + bf1[1] = input[1] + input[30]; + bf1[2] = input[2] + input[29]; + bf1[3] = input[3] + input[28]; + bf1[4] = input[4] + input[27]; + bf1[5] = input[5] + input[26]; + bf1[6] = input[6] + input[25]; + bf1[7] = input[7] + input[24]; + bf1[8] = input[8] + input[23]; + bf1[9] = input[9] + input[22]; + bf1[10] = input[10] + input[21]; + bf1[11] = input[11] + input[20]; + bf1[12] = input[12] + input[19]; + bf1[13] = input[13] + input[18]; + bf1[14] = input[14] + input[17]; + bf1[15] = input[15] + input[16]; + bf1[16] = -input[16] + input[15]; + bf1[17] = -input[17] + input[14]; + bf1[18] = -input[18] + input[13]; + bf1[19] = -input[19] + input[12]; + bf1[20] = -input[20] + input[11]; + bf1[21] = -input[21] + input[10]; + bf1[22] = -input[22] + input[9]; + bf1[23] = -input[23] + input[8]; + bf1[24] = -input[24] + input[7]; + bf1[25] = -input[25] + input[6]; + bf1[26] = -input[26] + input[5]; + bf1[27] = -input[27] + input[4]; + bf1[28] = -input[28] + input[3]; + bf1[29] = -input[29] + input[2]; + bf1[30] = -input[30] + input[1]; + bf1[31] = -input[31] + input[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[15]; + bf1[1] = bf0[1] + bf0[14]; + bf1[2] = bf0[2] + bf0[13]; + bf1[3] = bf0[3] + bf0[12]; + bf1[4] = bf0[4] + bf0[11]; + bf1[5] = bf0[5] + bf0[10]; + bf1[6] = bf0[6] + bf0[9]; + bf1[7] = bf0[7] + bf0[8]; + bf1[8] = -bf0[8] + bf0[7]; + bf1[9] = -bf0[9] + bf0[6]; + bf1[10] = -bf0[10] + bf0[5]; + bf1[11] = -bf0[11] + bf0[4]; + bf1[12] = -bf0[12] + bf0[3]; + bf1[13] = -bf0[13] + bf0[2]; + bf1[14] = -bf0[14] + bf0[1]; + bf1[15] = -bf0[15] + bf0[0]; + bf1[16] = bf0[16]; + bf1[17] = bf0[17]; + bf1[18] = bf0[18]; + bf1[19] = bf0[19]; + bf1[20] = half_btf(-cospi[32], bf0[20], cospi[32], bf0[27], cos_bit); + bf1[21] = half_btf(-cospi[32], bf0[21], cospi[32], bf0[26], cos_bit); + bf1[22] = half_btf(-cospi[32], bf0[22], cospi[32], bf0[25], cos_bit); + bf1[23] = half_btf(-cospi[32], bf0[23], cospi[32], bf0[24], cos_bit); + bf1[24] = half_btf(cospi[32], bf0[24], cospi[32], bf0[23], cos_bit); + bf1[25] = half_btf(cospi[32], bf0[25], cospi[32], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[32], bf0[26], cospi[32], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[32], bf0[27], cospi[32], bf0[20], cos_bit); + bf1[28] = bf0[28]; + bf1[29] = bf0[29]; + bf1[30] = bf0[30]; + bf1[31] = bf0[31]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[7]; + bf1[1] = bf0[1] + bf0[6]; + bf1[2] = bf0[2] + bf0[5]; + bf1[3] = bf0[3] + bf0[4]; + bf1[4] = -bf0[4] + bf0[3]; + bf1[5] = -bf0[5] + bf0[2]; + bf1[6] = -bf0[6] + bf0[1]; + bf1[7] = -bf0[7] + bf0[0]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = half_btf(-cospi[32], bf0[10], cospi[32], bf0[13], cos_bit); + bf1[11] = half_btf(-cospi[32], bf0[11], cospi[32], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[32], bf0[12], cospi[32], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[32], bf0[13], cospi[32], bf0[10], cos_bit); + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + bf1[16] = bf0[16] + bf0[23]; + bf1[17] = bf0[17] + bf0[22]; + bf1[18] = bf0[18] + bf0[21]; + bf1[19] = bf0[19] + bf0[20]; + bf1[20] = -bf0[20] + bf0[19]; + bf1[21] = -bf0[21] + bf0[18]; + bf1[22] = -bf0[22] + bf0[17]; + bf1[23] = -bf0[23] + bf0[16]; + bf1[24] = -bf0[24] + bf0[31]; + bf1[25] = -bf0[25] + bf0[30]; + bf1[26] = -bf0[26] + bf0[29]; + bf1[27] = -bf0[27] + bf0[28]; + bf1[28] = bf0[28] + bf0[27]; + bf1[29] = bf0[29] + bf0[26]; + bf1[30] = bf0[30] + bf0[25]; + bf1[31] = bf0[31] + bf0[24]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[3]; + bf1[1] = bf0[1] + bf0[2]; + bf1[2] = -bf0[2] + bf0[1]; + bf1[3] = -bf0[3] + bf0[0]; + bf1[4] = bf0[4]; + bf1[5] = half_btf(-cospi[32], bf0[5], cospi[32], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[5], cos_bit); + bf1[7] = bf0[7]; + bf1[8] = bf0[8] + bf0[11]; + bf1[9] = bf0[9] + bf0[10]; + bf1[10] = -bf0[10] + bf0[9]; + bf1[11] = -bf0[11] + bf0[8]; + bf1[12] = -bf0[12] + bf0[15]; + bf1[13] = -bf0[13] + bf0[14]; + bf1[14] = bf0[14] + bf0[13]; + bf1[15] = bf0[15] + bf0[12]; + bf1[16] = bf0[16]; + bf1[17] = bf0[17]; + bf1[18] = half_btf(-cospi[16], bf0[18], cospi[48], bf0[29], cos_bit); + bf1[19] = half_btf(-cospi[16], bf0[19], cospi[48], bf0[28], cos_bit); + bf1[20] = half_btf(-cospi[48], bf0[20], -cospi[16], bf0[27], cos_bit); + bf1[21] = half_btf(-cospi[48], bf0[21], -cospi[16], bf0[26], cos_bit); + bf1[22] = bf0[22]; + bf1[23] = bf0[23]; + bf1[24] = bf0[24]; + bf1[25] = bf0[25]; + bf1[26] = half_btf(cospi[48], bf0[26], -cospi[16], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[48], bf0[27], -cospi[16], bf0[20], cos_bit); + bf1[28] = half_btf(cospi[16], bf0[28], cospi[48], bf0[19], cos_bit); + bf1[29] = half_btf(cospi[16], bf0[29], cospi[48], bf0[18], cos_bit); + bf1[30] = bf0[30]; + bf1[31] = bf0[31]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = half_btf(cospi[32], bf0[0], cospi[32], bf0[1], cos_bit); + bf1[1] = half_btf(-cospi[32], bf0[1], cospi[32], bf0[0], cos_bit); + bf1[2] = half_btf(cospi[48], bf0[2], cospi[16], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[48], bf0[3], -cospi[16], bf0[2], cos_bit); + bf1[4] = bf0[4] + bf0[5]; + bf1[5] = -bf0[5] + bf0[4]; + bf1[6] = -bf0[6] + bf0[7]; + bf1[7] = bf0[7] + bf0[6]; + bf1[8] = bf0[8]; + bf1[9] = half_btf(-cospi[16], bf0[9], cospi[48], bf0[14], cos_bit); + bf1[10] = half_btf(-cospi[48], bf0[10], -cospi[16], bf0[13], cos_bit); + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = half_btf(cospi[48], bf0[13], -cospi[16], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[16], bf0[14], cospi[48], bf0[9], cos_bit); + bf1[15] = bf0[15]; + bf1[16] = bf0[16] + bf0[19]; + bf1[17] = bf0[17] + bf0[18]; + bf1[18] = -bf0[18] + bf0[17]; + bf1[19] = -bf0[19] + bf0[16]; + bf1[20] = -bf0[20] + bf0[23]; + bf1[21] = -bf0[21] + bf0[22]; + bf1[22] = bf0[22] + bf0[21]; + bf1[23] = bf0[23] + bf0[20]; + bf1[24] = bf0[24] + bf0[27]; + bf1[25] = bf0[25] + bf0[26]; + bf1[26] = -bf0[26] + bf0[25]; + bf1[27] = -bf0[27] + bf0[24]; + bf1[28] = -bf0[28] + bf0[31]; + bf1[29] = -bf0[29] + bf0[30]; + bf1[30] = bf0[30] + bf0[29]; + bf1[31] = bf0[31] + bf0[28]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 6 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[56], bf0[4], cospi[8], bf0[7], cos_bit); + bf1[5] = half_btf(cospi[24], bf0[5], cospi[40], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[24], bf0[6], -cospi[40], bf0[5], cos_bit); + bf1[7] = half_btf(cospi[56], bf0[7], -cospi[8], bf0[4], cos_bit); + bf1[8] = bf0[8] + bf0[9]; + bf1[9] = -bf0[9] + bf0[8]; + bf1[10] = -bf0[10] + bf0[11]; + bf1[11] = bf0[11] + bf0[10]; + bf1[12] = bf0[12] + bf0[13]; + bf1[13] = -bf0[13] + bf0[12]; + bf1[14] = -bf0[14] + bf0[15]; + bf1[15] = bf0[15] + bf0[14]; + bf1[16] = bf0[16]; + bf1[17] = half_btf(-cospi[8], bf0[17], cospi[56], bf0[30], cos_bit); + bf1[18] = half_btf(-cospi[56], bf0[18], -cospi[8], bf0[29], cos_bit); + bf1[19] = bf0[19]; + bf1[20] = bf0[20]; + bf1[21] = half_btf(-cospi[40], bf0[21], cospi[24], bf0[26], cos_bit); + bf1[22] = half_btf(-cospi[24], bf0[22], -cospi[40], bf0[25], cos_bit); + bf1[23] = bf0[23]; + bf1[24] = bf0[24]; + bf1[25] = half_btf(cospi[24], bf0[25], -cospi[40], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[40], bf0[26], cospi[24], bf0[21], cos_bit); + bf1[27] = bf0[27]; + bf1[28] = bf0[28]; + bf1[29] = half_btf(cospi[56], bf0[29], -cospi[8], bf0[18], cos_bit); + bf1[30] = half_btf(cospi[8], bf0[30], cospi[56], bf0[17], cos_bit); + bf1[31] = bf0[31]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 7 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = half_btf(cospi[60], bf0[8], cospi[4], bf0[15], cos_bit); + bf1[9] = half_btf(cospi[28], bf0[9], cospi[36], bf0[14], cos_bit); + bf1[10] = half_btf(cospi[44], bf0[10], cospi[20], bf0[13], cos_bit); + bf1[11] = half_btf(cospi[12], bf0[11], cospi[52], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[12], bf0[12], -cospi[52], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[44], bf0[13], -cospi[20], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[28], bf0[14], -cospi[36], bf0[9], cos_bit); + bf1[15] = half_btf(cospi[60], bf0[15], -cospi[4], bf0[8], cos_bit); + bf1[16] = bf0[16] + bf0[17]; + bf1[17] = -bf0[17] + bf0[16]; + bf1[18] = -bf0[18] + bf0[19]; + bf1[19] = bf0[19] + bf0[18]; + bf1[20] = bf0[20] + bf0[21]; + bf1[21] = -bf0[21] + bf0[20]; + bf1[22] = -bf0[22] + bf0[23]; + bf1[23] = bf0[23] + bf0[22]; + bf1[24] = bf0[24] + bf0[25]; + bf1[25] = -bf0[25] + bf0[24]; + bf1[26] = -bf0[26] + bf0[27]; + bf1[27] = bf0[27] + bf0[26]; + bf1[28] = bf0[28] + bf0[29]; + bf1[29] = -bf0[29] + bf0[28]; + bf1[30] = -bf0[30] + bf0[31]; + bf1[31] = bf0[31] + bf0[30]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 8 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = bf0[10]; + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = bf0[13]; + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + bf1[16] = half_btf(cospi[62], bf0[16], cospi[2], bf0[31], cos_bit); + bf1[17] = half_btf(cospi[30], bf0[17], cospi[34], bf0[30], cos_bit); + bf1[18] = half_btf(cospi[46], bf0[18], cospi[18], bf0[29], cos_bit); + bf1[19] = half_btf(cospi[14], bf0[19], cospi[50], bf0[28], cos_bit); + bf1[20] = half_btf(cospi[54], bf0[20], cospi[10], bf0[27], cos_bit); + bf1[21] = half_btf(cospi[22], bf0[21], cospi[42], bf0[26], cos_bit); + bf1[22] = half_btf(cospi[38], bf0[22], cospi[26], bf0[25], cos_bit); + bf1[23] = half_btf(cospi[6], bf0[23], cospi[58], bf0[24], cos_bit); + bf1[24] = half_btf(cospi[6], bf0[24], -cospi[58], bf0[23], cos_bit); + bf1[25] = half_btf(cospi[38], bf0[25], -cospi[26], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[22], bf0[26], -cospi[42], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[54], bf0[27], -cospi[10], bf0[20], cos_bit); + bf1[28] = half_btf(cospi[14], bf0[28], -cospi[50], bf0[19], cos_bit); + bf1[29] = half_btf(cospi[46], bf0[29], -cospi[18], bf0[18], cos_bit); + bf1[30] = half_btf(cospi[30], bf0[30], -cospi[34], bf0[17], cos_bit); + bf1[31] = half_btf(cospi[62], bf0[31], -cospi[2], bf0[16], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 9 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[16]; + bf1[2] = bf0[8]; + bf1[3] = bf0[24]; + bf1[4] = bf0[4]; + bf1[5] = bf0[20]; + bf1[6] = bf0[12]; + bf1[7] = bf0[28]; + bf1[8] = bf0[2]; + bf1[9] = bf0[18]; + bf1[10] = bf0[10]; + bf1[11] = bf0[26]; + bf1[12] = bf0[6]; + bf1[13] = bf0[22]; + bf1[14] = bf0[14]; + bf1[15] = bf0[30]; + bf1[16] = bf0[1]; + bf1[17] = bf0[17]; + bf1[18] = bf0[9]; + bf1[19] = bf0[25]; + bf1[20] = bf0[5]; + bf1[21] = bf0[21]; + bf1[22] = bf0[13]; + bf1[23] = bf0[29]; + bf1[24] = bf0[3]; + bf1[25] = bf0[19]; + bf1[26] = bf0[11]; + bf1[27] = bf0[27]; + bf1[28] = bf0[7]; + bf1[29] = bf0[23]; + bf1[30] = bf0[15]; + bf1[31] = bf0[31]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fadst4_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + int bit = cos_bit; + const int32_t *sinpi = sinpi_arr(bit); + int32_t x0, x1, x2, x3; + int32_t s0, s1, s2, s3, s4, s5, s6, s7; + + // stage 0 + av1_range_check_buf(0, input, input, 4, stage_range[0]); + x0 = input[0]; + x1 = input[1]; + x2 = input[2]; + x3 = input[3]; + + if (!(x0 | x1 | x2 | x3)) { + output[0] = output[1] = output[2] = output[3] = 0; + return; + } + + // stage 1 + s0 = range_check_value(sinpi[1] * x0, bit + stage_range[1]); + s1 = range_check_value(sinpi[4] * x0, bit + stage_range[1]); + s2 = range_check_value(sinpi[2] * x1, bit + stage_range[1]); + s3 = range_check_value(sinpi[1] * x1, bit + stage_range[1]); + s4 = range_check_value(sinpi[3] * x2, bit + stage_range[1]); + s5 = range_check_value(sinpi[4] * x3, bit + stage_range[1]); + s6 = range_check_value(sinpi[2] * x3, bit + stage_range[1]); + s7 = range_check_value(x0 + x1, stage_range[1]); + + // stage 2 + s7 = range_check_value(s7 - x3, stage_range[2]); + + // stage 3 + x0 = range_check_value(s0 + s2, bit + stage_range[3]); + x1 = range_check_value(sinpi[3] * s7, bit + stage_range[3]); + x2 = range_check_value(s1 - s3, bit + stage_range[3]); + x3 = range_check_value(s4, bit + stage_range[3]); + + // stage 4 + x0 = range_check_value(x0 + s5, bit + stage_range[4]); + x2 = range_check_value(x2 + s6, bit + stage_range[4]); + + // stage 5 + s0 = range_check_value(x0 + x3, bit + stage_range[5]); + s1 = range_check_value(x1, bit + stage_range[5]); + s2 = range_check_value(x2 - x3, bit + stage_range[5]); + s3 = range_check_value(x2 - x0, bit + stage_range[5]); + + // stage 6 + s3 = range_check_value(s3 + x3, bit + stage_range[6]); + + // 1-D transform scaling factor is sqrt(2). + output[0] = round_shift(s0, bit); + output[1] = round_shift(s1, bit); + output[2] = round_shift(s2, bit); + output[3] = round_shift(s3, bit); + av1_range_check_buf(6, input, output, 4, stage_range[6]); +} + +void av1_fadst8_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 8; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[8]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + assert(output != input); + bf1 = output; + bf1[0] = input[0]; + bf1[1] = -input[7]; + bf1[2] = -input[3]; + bf1[3] = input[4]; + bf1[4] = -input[1]; + bf1[5] = input[6]; + bf1[6] = input[2]; + bf1[7] = -input[5]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = half_btf(cospi[32], bf0[2], cospi[32], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[32], bf0[2], -cospi[32], bf0[3], cos_bit); + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[32], bf0[6], -cospi[32], bf0[7], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[2]; + bf1[1] = bf0[1] + bf0[3]; + bf1[2] = bf0[0] - bf0[2]; + bf1[3] = bf0[1] - bf0[3]; + bf1[4] = bf0[4] + bf0[6]; + bf1[5] = bf0[5] + bf0[7]; + bf1[6] = bf0[4] - bf0[6]; + bf1[7] = bf0[5] - bf0[7]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[16], bf0[4], cospi[48], bf0[5], cos_bit); + bf1[5] = half_btf(cospi[48], bf0[4], -cospi[16], bf0[5], cos_bit); + bf1[6] = half_btf(-cospi[48], bf0[6], cospi[16], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[16], bf0[6], cospi[48], bf0[7], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[4]; + bf1[1] = bf0[1] + bf0[5]; + bf1[2] = bf0[2] + bf0[6]; + bf1[3] = bf0[3] + bf0[7]; + bf1[4] = bf0[0] - bf0[4]; + bf1[5] = bf0[1] - bf0[5]; + bf1[6] = bf0[2] - bf0[6]; + bf1[7] = bf0[3] - bf0[7]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 6 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = half_btf(cospi[4], bf0[0], cospi[60], bf0[1], cos_bit); + bf1[1] = half_btf(cospi[60], bf0[0], -cospi[4], bf0[1], cos_bit); + bf1[2] = half_btf(cospi[20], bf0[2], cospi[44], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[44], bf0[2], -cospi[20], bf0[3], cos_bit); + bf1[4] = half_btf(cospi[36], bf0[4], cospi[28], bf0[5], cos_bit); + bf1[5] = half_btf(cospi[28], bf0[4], -cospi[36], bf0[5], cos_bit); + bf1[6] = half_btf(cospi[52], bf0[6], cospi[12], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[12], bf0[6], -cospi[52], bf0[7], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 7 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[1]; + bf1[1] = bf0[6]; + bf1[2] = bf0[3]; + bf1[3] = bf0[4]; + bf1[4] = bf0[5]; + bf1[5] = bf0[2]; + bf1[6] = bf0[7]; + bf1[7] = bf0[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fadst16_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 16; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[16]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + assert(output != input); + bf1 = output; + bf1[0] = input[0]; + bf1[1] = -input[15]; + bf1[2] = -input[7]; + bf1[3] = input[8]; + bf1[4] = -input[3]; + bf1[5] = input[12]; + bf1[6] = input[4]; + bf1[7] = -input[11]; + bf1[8] = -input[1]; + bf1[9] = input[14]; + bf1[10] = input[6]; + bf1[11] = -input[9]; + bf1[12] = input[2]; + bf1[13] = -input[13]; + bf1[14] = -input[5]; + bf1[15] = input[10]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = half_btf(cospi[32], bf0[2], cospi[32], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[32], bf0[2], -cospi[32], bf0[3], cos_bit); + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[32], bf0[6], -cospi[32], bf0[7], cos_bit); + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = half_btf(cospi[32], bf0[10], cospi[32], bf0[11], cos_bit); + bf1[11] = half_btf(cospi[32], bf0[10], -cospi[32], bf0[11], cos_bit); + bf1[12] = bf0[12]; + bf1[13] = bf0[13]; + bf1[14] = half_btf(cospi[32], bf0[14], cospi[32], bf0[15], cos_bit); + bf1[15] = half_btf(cospi[32], bf0[14], -cospi[32], bf0[15], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[2]; + bf1[1] = bf0[1] + bf0[3]; + bf1[2] = bf0[0] - bf0[2]; + bf1[3] = bf0[1] - bf0[3]; + bf1[4] = bf0[4] + bf0[6]; + bf1[5] = bf0[5] + bf0[7]; + bf1[6] = bf0[4] - bf0[6]; + bf1[7] = bf0[5] - bf0[7]; + bf1[8] = bf0[8] + bf0[10]; + bf1[9] = bf0[9] + bf0[11]; + bf1[10] = bf0[8] - bf0[10]; + bf1[11] = bf0[9] - bf0[11]; + bf1[12] = bf0[12] + bf0[14]; + bf1[13] = bf0[13] + bf0[15]; + bf1[14] = bf0[12] - bf0[14]; + bf1[15] = bf0[13] - bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[16], bf0[4], cospi[48], bf0[5], cos_bit); + bf1[5] = half_btf(cospi[48], bf0[4], -cospi[16], bf0[5], cos_bit); + bf1[6] = half_btf(-cospi[48], bf0[6], cospi[16], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[16], bf0[6], cospi[48], bf0[7], cos_bit); + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = bf0[10]; + bf1[11] = bf0[11]; + bf1[12] = half_btf(cospi[16], bf0[12], cospi[48], bf0[13], cos_bit); + bf1[13] = half_btf(cospi[48], bf0[12], -cospi[16], bf0[13], cos_bit); + bf1[14] = half_btf(-cospi[48], bf0[14], cospi[16], bf0[15], cos_bit); + bf1[15] = half_btf(cospi[16], bf0[14], cospi[48], bf0[15], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[4]; + bf1[1] = bf0[1] + bf0[5]; + bf1[2] = bf0[2] + bf0[6]; + bf1[3] = bf0[3] + bf0[7]; + bf1[4] = bf0[0] - bf0[4]; + bf1[5] = bf0[1] - bf0[5]; + bf1[6] = bf0[2] - bf0[6]; + bf1[7] = bf0[3] - bf0[7]; + bf1[8] = bf0[8] + bf0[12]; + bf1[9] = bf0[9] + bf0[13]; + bf1[10] = bf0[10] + bf0[14]; + bf1[11] = bf0[11] + bf0[15]; + bf1[12] = bf0[8] - bf0[12]; + bf1[13] = bf0[9] - bf0[13]; + bf1[14] = bf0[10] - bf0[14]; + bf1[15] = bf0[11] - bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 6 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = half_btf(cospi[8], bf0[8], cospi[56], bf0[9], cos_bit); + bf1[9] = half_btf(cospi[56], bf0[8], -cospi[8], bf0[9], cos_bit); + bf1[10] = half_btf(cospi[40], bf0[10], cospi[24], bf0[11], cos_bit); + bf1[11] = half_btf(cospi[24], bf0[10], -cospi[40], bf0[11], cos_bit); + bf1[12] = half_btf(-cospi[56], bf0[12], cospi[8], bf0[13], cos_bit); + bf1[13] = half_btf(cospi[8], bf0[12], cospi[56], bf0[13], cos_bit); + bf1[14] = half_btf(-cospi[24], bf0[14], cospi[40], bf0[15], cos_bit); + bf1[15] = half_btf(cospi[40], bf0[14], cospi[24], bf0[15], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 7 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[8]; + bf1[1] = bf0[1] + bf0[9]; + bf1[2] = bf0[2] + bf0[10]; + bf1[3] = bf0[3] + bf0[11]; + bf1[4] = bf0[4] + bf0[12]; + bf1[5] = bf0[5] + bf0[13]; + bf1[6] = bf0[6] + bf0[14]; + bf1[7] = bf0[7] + bf0[15]; + bf1[8] = bf0[0] - bf0[8]; + bf1[9] = bf0[1] - bf0[9]; + bf1[10] = bf0[2] - bf0[10]; + bf1[11] = bf0[3] - bf0[11]; + bf1[12] = bf0[4] - bf0[12]; + bf1[13] = bf0[5] - bf0[13]; + bf1[14] = bf0[6] - bf0[14]; + bf1[15] = bf0[7] - bf0[15]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 8 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = half_btf(cospi[2], bf0[0], cospi[62], bf0[1], cos_bit); + bf1[1] = half_btf(cospi[62], bf0[0], -cospi[2], bf0[1], cos_bit); + bf1[2] = half_btf(cospi[10], bf0[2], cospi[54], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[54], bf0[2], -cospi[10], bf0[3], cos_bit); + bf1[4] = half_btf(cospi[18], bf0[4], cospi[46], bf0[5], cos_bit); + bf1[5] = half_btf(cospi[46], bf0[4], -cospi[18], bf0[5], cos_bit); + bf1[6] = half_btf(cospi[26], bf0[6], cospi[38], bf0[7], cos_bit); + bf1[7] = half_btf(cospi[38], bf0[6], -cospi[26], bf0[7], cos_bit); + bf1[8] = half_btf(cospi[34], bf0[8], cospi[30], bf0[9], cos_bit); + bf1[9] = half_btf(cospi[30], bf0[8], -cospi[34], bf0[9], cos_bit); + bf1[10] = half_btf(cospi[42], bf0[10], cospi[22], bf0[11], cos_bit); + bf1[11] = half_btf(cospi[22], bf0[10], -cospi[42], bf0[11], cos_bit); + bf1[12] = half_btf(cospi[50], bf0[12], cospi[14], bf0[13], cos_bit); + bf1[13] = half_btf(cospi[14], bf0[12], -cospi[50], bf0[13], cos_bit); + bf1[14] = half_btf(cospi[58], bf0[14], cospi[6], bf0[15], cos_bit); + bf1[15] = half_btf(cospi[6], bf0[14], -cospi[58], bf0[15], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 9 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[1]; + bf1[1] = bf0[14]; + bf1[2] = bf0[3]; + bf1[3] = bf0[12]; + bf1[4] = bf0[5]; + bf1[5] = bf0[10]; + bf1[6] = bf0[7]; + bf1[7] = bf0[8]; + bf1[8] = bf0[9]; + bf1[9] = bf0[6]; + bf1[10] = bf0[11]; + bf1[11] = bf0[4]; + bf1[12] = bf0[13]; + bf1[13] = bf0[2]; + bf1[14] = bf0[15]; + bf1[15] = bf0[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} + +void av1_fidentity4_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + (void)cos_bit; + for (int i = 0; i < 4; ++i) + output[i] = round_shift((int64_t)input[i] * NewSqrt2, NewSqrt2Bits); + assert(stage_range[0] + NewSqrt2Bits <= 32); + av1_range_check_buf(0, input, output, 4, stage_range[0]); +} + +void av1_fidentity8_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + (void)cos_bit; + for (int i = 0; i < 8; ++i) output[i] = input[i] * 2; + av1_range_check_buf(0, input, output, 8, stage_range[0]); +} + +void av1_fidentity16_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + (void)cos_bit; + for (int i = 0; i < 16; ++i) + output[i] = round_shift((int64_t)input[i] * 2 * NewSqrt2, NewSqrt2Bits); + assert(stage_range[0] + NewSqrt2Bits <= 32); + av1_range_check_buf(0, input, output, 16, stage_range[0]); +} + +void av1_fidentity32_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + (void)cos_bit; + for (int i = 0; i < 32; ++i) output[i] = input[i] * 4; + av1_range_check_buf(0, input, output, 32, stage_range[0]); +} + +void av1_fdct64_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range) { + const int32_t size = 64; + const int32_t *cospi; + + int32_t stage = 0; + int32_t *bf0, *bf1; + int32_t step[64]; + + // stage 0; + av1_range_check_buf(stage, input, input, size, stage_range[stage]); + + // stage 1; + stage++; + bf1 = output; + bf1[0] = input[0] + input[63]; + bf1[1] = input[1] + input[62]; + bf1[2] = input[2] + input[61]; + bf1[3] = input[3] + input[60]; + bf1[4] = input[4] + input[59]; + bf1[5] = input[5] + input[58]; + bf1[6] = input[6] + input[57]; + bf1[7] = input[7] + input[56]; + bf1[8] = input[8] + input[55]; + bf1[9] = input[9] + input[54]; + bf1[10] = input[10] + input[53]; + bf1[11] = input[11] + input[52]; + bf1[12] = input[12] + input[51]; + bf1[13] = input[13] + input[50]; + bf1[14] = input[14] + input[49]; + bf1[15] = input[15] + input[48]; + bf1[16] = input[16] + input[47]; + bf1[17] = input[17] + input[46]; + bf1[18] = input[18] + input[45]; + bf1[19] = input[19] + input[44]; + bf1[20] = input[20] + input[43]; + bf1[21] = input[21] + input[42]; + bf1[22] = input[22] + input[41]; + bf1[23] = input[23] + input[40]; + bf1[24] = input[24] + input[39]; + bf1[25] = input[25] + input[38]; + bf1[26] = input[26] + input[37]; + bf1[27] = input[27] + input[36]; + bf1[28] = input[28] + input[35]; + bf1[29] = input[29] + input[34]; + bf1[30] = input[30] + input[33]; + bf1[31] = input[31] + input[32]; + bf1[32] = -input[32] + input[31]; + bf1[33] = -input[33] + input[30]; + bf1[34] = -input[34] + input[29]; + bf1[35] = -input[35] + input[28]; + bf1[36] = -input[36] + input[27]; + bf1[37] = -input[37] + input[26]; + bf1[38] = -input[38] + input[25]; + bf1[39] = -input[39] + input[24]; + bf1[40] = -input[40] + input[23]; + bf1[41] = -input[41] + input[22]; + bf1[42] = -input[42] + input[21]; + bf1[43] = -input[43] + input[20]; + bf1[44] = -input[44] + input[19]; + bf1[45] = -input[45] + input[18]; + bf1[46] = -input[46] + input[17]; + bf1[47] = -input[47] + input[16]; + bf1[48] = -input[48] + input[15]; + bf1[49] = -input[49] + input[14]; + bf1[50] = -input[50] + input[13]; + bf1[51] = -input[51] + input[12]; + bf1[52] = -input[52] + input[11]; + bf1[53] = -input[53] + input[10]; + bf1[54] = -input[54] + input[9]; + bf1[55] = -input[55] + input[8]; + bf1[56] = -input[56] + input[7]; + bf1[57] = -input[57] + input[6]; + bf1[58] = -input[58] + input[5]; + bf1[59] = -input[59] + input[4]; + bf1[60] = -input[60] + input[3]; + bf1[61] = -input[61] + input[2]; + bf1[62] = -input[62] + input[1]; + bf1[63] = -input[63] + input[0]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 2 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[31]; + bf1[1] = bf0[1] + bf0[30]; + bf1[2] = bf0[2] + bf0[29]; + bf1[3] = bf0[3] + bf0[28]; + bf1[4] = bf0[4] + bf0[27]; + bf1[5] = bf0[5] + bf0[26]; + bf1[6] = bf0[6] + bf0[25]; + bf1[7] = bf0[7] + bf0[24]; + bf1[8] = bf0[8] + bf0[23]; + bf1[9] = bf0[9] + bf0[22]; + bf1[10] = bf0[10] + bf0[21]; + bf1[11] = bf0[11] + bf0[20]; + bf1[12] = bf0[12] + bf0[19]; + bf1[13] = bf0[13] + bf0[18]; + bf1[14] = bf0[14] + bf0[17]; + bf1[15] = bf0[15] + bf0[16]; + bf1[16] = -bf0[16] + bf0[15]; + bf1[17] = -bf0[17] + bf0[14]; + bf1[18] = -bf0[18] + bf0[13]; + bf1[19] = -bf0[19] + bf0[12]; + bf1[20] = -bf0[20] + bf0[11]; + bf1[21] = -bf0[21] + bf0[10]; + bf1[22] = -bf0[22] + bf0[9]; + bf1[23] = -bf0[23] + bf0[8]; + bf1[24] = -bf0[24] + bf0[7]; + bf1[25] = -bf0[25] + bf0[6]; + bf1[26] = -bf0[26] + bf0[5]; + bf1[27] = -bf0[27] + bf0[4]; + bf1[28] = -bf0[28] + bf0[3]; + bf1[29] = -bf0[29] + bf0[2]; + bf1[30] = -bf0[30] + bf0[1]; + bf1[31] = -bf0[31] + bf0[0]; + bf1[32] = bf0[32]; + bf1[33] = bf0[33]; + bf1[34] = bf0[34]; + bf1[35] = bf0[35]; + bf1[36] = bf0[36]; + bf1[37] = bf0[37]; + bf1[38] = bf0[38]; + bf1[39] = bf0[39]; + bf1[40] = half_btf(-cospi[32], bf0[40], cospi[32], bf0[55], cos_bit); + bf1[41] = half_btf(-cospi[32], bf0[41], cospi[32], bf0[54], cos_bit); + bf1[42] = half_btf(-cospi[32], bf0[42], cospi[32], bf0[53], cos_bit); + bf1[43] = half_btf(-cospi[32], bf0[43], cospi[32], bf0[52], cos_bit); + bf1[44] = half_btf(-cospi[32], bf0[44], cospi[32], bf0[51], cos_bit); + bf1[45] = half_btf(-cospi[32], bf0[45], cospi[32], bf0[50], cos_bit); + bf1[46] = half_btf(-cospi[32], bf0[46], cospi[32], bf0[49], cos_bit); + bf1[47] = half_btf(-cospi[32], bf0[47], cospi[32], bf0[48], cos_bit); + bf1[48] = half_btf(cospi[32], bf0[48], cospi[32], bf0[47], cos_bit); + bf1[49] = half_btf(cospi[32], bf0[49], cospi[32], bf0[46], cos_bit); + bf1[50] = half_btf(cospi[32], bf0[50], cospi[32], bf0[45], cos_bit); + bf1[51] = half_btf(cospi[32], bf0[51], cospi[32], bf0[44], cos_bit); + bf1[52] = half_btf(cospi[32], bf0[52], cospi[32], bf0[43], cos_bit); + bf1[53] = half_btf(cospi[32], bf0[53], cospi[32], bf0[42], cos_bit); + bf1[54] = half_btf(cospi[32], bf0[54], cospi[32], bf0[41], cos_bit); + bf1[55] = half_btf(cospi[32], bf0[55], cospi[32], bf0[40], cos_bit); + bf1[56] = bf0[56]; + bf1[57] = bf0[57]; + bf1[58] = bf0[58]; + bf1[59] = bf0[59]; + bf1[60] = bf0[60]; + bf1[61] = bf0[61]; + bf1[62] = bf0[62]; + bf1[63] = bf0[63]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 3 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[15]; + bf1[1] = bf0[1] + bf0[14]; + bf1[2] = bf0[2] + bf0[13]; + bf1[3] = bf0[3] + bf0[12]; + bf1[4] = bf0[4] + bf0[11]; + bf1[5] = bf0[5] + bf0[10]; + bf1[6] = bf0[6] + bf0[9]; + bf1[7] = bf0[7] + bf0[8]; + bf1[8] = -bf0[8] + bf0[7]; + bf1[9] = -bf0[9] + bf0[6]; + bf1[10] = -bf0[10] + bf0[5]; + bf1[11] = -bf0[11] + bf0[4]; + bf1[12] = -bf0[12] + bf0[3]; + bf1[13] = -bf0[13] + bf0[2]; + bf1[14] = -bf0[14] + bf0[1]; + bf1[15] = -bf0[15] + bf0[0]; + bf1[16] = bf0[16]; + bf1[17] = bf0[17]; + bf1[18] = bf0[18]; + bf1[19] = bf0[19]; + bf1[20] = half_btf(-cospi[32], bf0[20], cospi[32], bf0[27], cos_bit); + bf1[21] = half_btf(-cospi[32], bf0[21], cospi[32], bf0[26], cos_bit); + bf1[22] = half_btf(-cospi[32], bf0[22], cospi[32], bf0[25], cos_bit); + bf1[23] = half_btf(-cospi[32], bf0[23], cospi[32], bf0[24], cos_bit); + bf1[24] = half_btf(cospi[32], bf0[24], cospi[32], bf0[23], cos_bit); + bf1[25] = half_btf(cospi[32], bf0[25], cospi[32], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[32], bf0[26], cospi[32], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[32], bf0[27], cospi[32], bf0[20], cos_bit); + bf1[28] = bf0[28]; + bf1[29] = bf0[29]; + bf1[30] = bf0[30]; + bf1[31] = bf0[31]; + bf1[32] = bf0[32] + bf0[47]; + bf1[33] = bf0[33] + bf0[46]; + bf1[34] = bf0[34] + bf0[45]; + bf1[35] = bf0[35] + bf0[44]; + bf1[36] = bf0[36] + bf0[43]; + bf1[37] = bf0[37] + bf0[42]; + bf1[38] = bf0[38] + bf0[41]; + bf1[39] = bf0[39] + bf0[40]; + bf1[40] = -bf0[40] + bf0[39]; + bf1[41] = -bf0[41] + bf0[38]; + bf1[42] = -bf0[42] + bf0[37]; + bf1[43] = -bf0[43] + bf0[36]; + bf1[44] = -bf0[44] + bf0[35]; + bf1[45] = -bf0[45] + bf0[34]; + bf1[46] = -bf0[46] + bf0[33]; + bf1[47] = -bf0[47] + bf0[32]; + bf1[48] = -bf0[48] + bf0[63]; + bf1[49] = -bf0[49] + bf0[62]; + bf1[50] = -bf0[50] + bf0[61]; + bf1[51] = -bf0[51] + bf0[60]; + bf1[52] = -bf0[52] + bf0[59]; + bf1[53] = -bf0[53] + bf0[58]; + bf1[54] = -bf0[54] + bf0[57]; + bf1[55] = -bf0[55] + bf0[56]; + bf1[56] = bf0[56] + bf0[55]; + bf1[57] = bf0[57] + bf0[54]; + bf1[58] = bf0[58] + bf0[53]; + bf1[59] = bf0[59] + bf0[52]; + bf1[60] = bf0[60] + bf0[51]; + bf1[61] = bf0[61] + bf0[50]; + bf1[62] = bf0[62] + bf0[49]; + bf1[63] = bf0[63] + bf0[48]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 4 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0] + bf0[7]; + bf1[1] = bf0[1] + bf0[6]; + bf1[2] = bf0[2] + bf0[5]; + bf1[3] = bf0[3] + bf0[4]; + bf1[4] = -bf0[4] + bf0[3]; + bf1[5] = -bf0[5] + bf0[2]; + bf1[6] = -bf0[6] + bf0[1]; + bf1[7] = -bf0[7] + bf0[0]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = half_btf(-cospi[32], bf0[10], cospi[32], bf0[13], cos_bit); + bf1[11] = half_btf(-cospi[32], bf0[11], cospi[32], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[32], bf0[12], cospi[32], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[32], bf0[13], cospi[32], bf0[10], cos_bit); + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + bf1[16] = bf0[16] + bf0[23]; + bf1[17] = bf0[17] + bf0[22]; + bf1[18] = bf0[18] + bf0[21]; + bf1[19] = bf0[19] + bf0[20]; + bf1[20] = -bf0[20] + bf0[19]; + bf1[21] = -bf0[21] + bf0[18]; + bf1[22] = -bf0[22] + bf0[17]; + bf1[23] = -bf0[23] + bf0[16]; + bf1[24] = -bf0[24] + bf0[31]; + bf1[25] = -bf0[25] + bf0[30]; + bf1[26] = -bf0[26] + bf0[29]; + bf1[27] = -bf0[27] + bf0[28]; + bf1[28] = bf0[28] + bf0[27]; + bf1[29] = bf0[29] + bf0[26]; + bf1[30] = bf0[30] + bf0[25]; + bf1[31] = bf0[31] + bf0[24]; + bf1[32] = bf0[32]; + bf1[33] = bf0[33]; + bf1[34] = bf0[34]; + bf1[35] = bf0[35]; + bf1[36] = half_btf(-cospi[16], bf0[36], cospi[48], bf0[59], cos_bit); + bf1[37] = half_btf(-cospi[16], bf0[37], cospi[48], bf0[58], cos_bit); + bf1[38] = half_btf(-cospi[16], bf0[38], cospi[48], bf0[57], cos_bit); + bf1[39] = half_btf(-cospi[16], bf0[39], cospi[48], bf0[56], cos_bit); + bf1[40] = half_btf(-cospi[48], bf0[40], -cospi[16], bf0[55], cos_bit); + bf1[41] = half_btf(-cospi[48], bf0[41], -cospi[16], bf0[54], cos_bit); + bf1[42] = half_btf(-cospi[48], bf0[42], -cospi[16], bf0[53], cos_bit); + bf1[43] = half_btf(-cospi[48], bf0[43], -cospi[16], bf0[52], cos_bit); + bf1[44] = bf0[44]; + bf1[45] = bf0[45]; + bf1[46] = bf0[46]; + bf1[47] = bf0[47]; + bf1[48] = bf0[48]; + bf1[49] = bf0[49]; + bf1[50] = bf0[50]; + bf1[51] = bf0[51]; + bf1[52] = half_btf(cospi[48], bf0[52], -cospi[16], bf0[43], cos_bit); + bf1[53] = half_btf(cospi[48], bf0[53], -cospi[16], bf0[42], cos_bit); + bf1[54] = half_btf(cospi[48], bf0[54], -cospi[16], bf0[41], cos_bit); + bf1[55] = half_btf(cospi[48], bf0[55], -cospi[16], bf0[40], cos_bit); + bf1[56] = half_btf(cospi[16], bf0[56], cospi[48], bf0[39], cos_bit); + bf1[57] = half_btf(cospi[16], bf0[57], cospi[48], bf0[38], cos_bit); + bf1[58] = half_btf(cospi[16], bf0[58], cospi[48], bf0[37], cos_bit); + bf1[59] = half_btf(cospi[16], bf0[59], cospi[48], bf0[36], cos_bit); + bf1[60] = bf0[60]; + bf1[61] = bf0[61]; + bf1[62] = bf0[62]; + bf1[63] = bf0[63]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 5 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0] + bf0[3]; + bf1[1] = bf0[1] + bf0[2]; + bf1[2] = -bf0[2] + bf0[1]; + bf1[3] = -bf0[3] + bf0[0]; + bf1[4] = bf0[4]; + bf1[5] = half_btf(-cospi[32], bf0[5], cospi[32], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[32], bf0[6], cospi[32], bf0[5], cos_bit); + bf1[7] = bf0[7]; + bf1[8] = bf0[8] + bf0[11]; + bf1[9] = bf0[9] + bf0[10]; + bf1[10] = -bf0[10] + bf0[9]; + bf1[11] = -bf0[11] + bf0[8]; + bf1[12] = -bf0[12] + bf0[15]; + bf1[13] = -bf0[13] + bf0[14]; + bf1[14] = bf0[14] + bf0[13]; + bf1[15] = bf0[15] + bf0[12]; + bf1[16] = bf0[16]; + bf1[17] = bf0[17]; + bf1[18] = half_btf(-cospi[16], bf0[18], cospi[48], bf0[29], cos_bit); + bf1[19] = half_btf(-cospi[16], bf0[19], cospi[48], bf0[28], cos_bit); + bf1[20] = half_btf(-cospi[48], bf0[20], -cospi[16], bf0[27], cos_bit); + bf1[21] = half_btf(-cospi[48], bf0[21], -cospi[16], bf0[26], cos_bit); + bf1[22] = bf0[22]; + bf1[23] = bf0[23]; + bf1[24] = bf0[24]; + bf1[25] = bf0[25]; + bf1[26] = half_btf(cospi[48], bf0[26], -cospi[16], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[48], bf0[27], -cospi[16], bf0[20], cos_bit); + bf1[28] = half_btf(cospi[16], bf0[28], cospi[48], bf0[19], cos_bit); + bf1[29] = half_btf(cospi[16], bf0[29], cospi[48], bf0[18], cos_bit); + bf1[30] = bf0[30]; + bf1[31] = bf0[31]; + bf1[32] = bf0[32] + bf0[39]; + bf1[33] = bf0[33] + bf0[38]; + bf1[34] = bf0[34] + bf0[37]; + bf1[35] = bf0[35] + bf0[36]; + bf1[36] = -bf0[36] + bf0[35]; + bf1[37] = -bf0[37] + bf0[34]; + bf1[38] = -bf0[38] + bf0[33]; + bf1[39] = -bf0[39] + bf0[32]; + bf1[40] = -bf0[40] + bf0[47]; + bf1[41] = -bf0[41] + bf0[46]; + bf1[42] = -bf0[42] + bf0[45]; + bf1[43] = -bf0[43] + bf0[44]; + bf1[44] = bf0[44] + bf0[43]; + bf1[45] = bf0[45] + bf0[42]; + bf1[46] = bf0[46] + bf0[41]; + bf1[47] = bf0[47] + bf0[40]; + bf1[48] = bf0[48] + bf0[55]; + bf1[49] = bf0[49] + bf0[54]; + bf1[50] = bf0[50] + bf0[53]; + bf1[51] = bf0[51] + bf0[52]; + bf1[52] = -bf0[52] + bf0[51]; + bf1[53] = -bf0[53] + bf0[50]; + bf1[54] = -bf0[54] + bf0[49]; + bf1[55] = -bf0[55] + bf0[48]; + bf1[56] = -bf0[56] + bf0[63]; + bf1[57] = -bf0[57] + bf0[62]; + bf1[58] = -bf0[58] + bf0[61]; + bf1[59] = -bf0[59] + bf0[60]; + bf1[60] = bf0[60] + bf0[59]; + bf1[61] = bf0[61] + bf0[58]; + bf1[62] = bf0[62] + bf0[57]; + bf1[63] = bf0[63] + bf0[56]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 6 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = half_btf(cospi[32], bf0[0], cospi[32], bf0[1], cos_bit); + bf1[1] = half_btf(-cospi[32], bf0[1], cospi[32], bf0[0], cos_bit); + bf1[2] = half_btf(cospi[48], bf0[2], cospi[16], bf0[3], cos_bit); + bf1[3] = half_btf(cospi[48], bf0[3], -cospi[16], bf0[2], cos_bit); + bf1[4] = bf0[4] + bf0[5]; + bf1[5] = -bf0[5] + bf0[4]; + bf1[6] = -bf0[6] + bf0[7]; + bf1[7] = bf0[7] + bf0[6]; + bf1[8] = bf0[8]; + bf1[9] = half_btf(-cospi[16], bf0[9], cospi[48], bf0[14], cos_bit); + bf1[10] = half_btf(-cospi[48], bf0[10], -cospi[16], bf0[13], cos_bit); + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = half_btf(cospi[48], bf0[13], -cospi[16], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[16], bf0[14], cospi[48], bf0[9], cos_bit); + bf1[15] = bf0[15]; + bf1[16] = bf0[16] + bf0[19]; + bf1[17] = bf0[17] + bf0[18]; + bf1[18] = -bf0[18] + bf0[17]; + bf1[19] = -bf0[19] + bf0[16]; + bf1[20] = -bf0[20] + bf0[23]; + bf1[21] = -bf0[21] + bf0[22]; + bf1[22] = bf0[22] + bf0[21]; + bf1[23] = bf0[23] + bf0[20]; + bf1[24] = bf0[24] + bf0[27]; + bf1[25] = bf0[25] + bf0[26]; + bf1[26] = -bf0[26] + bf0[25]; + bf1[27] = -bf0[27] + bf0[24]; + bf1[28] = -bf0[28] + bf0[31]; + bf1[29] = -bf0[29] + bf0[30]; + bf1[30] = bf0[30] + bf0[29]; + bf1[31] = bf0[31] + bf0[28]; + bf1[32] = bf0[32]; + bf1[33] = bf0[33]; + bf1[34] = half_btf(-cospi[8], bf0[34], cospi[56], bf0[61], cos_bit); + bf1[35] = half_btf(-cospi[8], bf0[35], cospi[56], bf0[60], cos_bit); + bf1[36] = half_btf(-cospi[56], bf0[36], -cospi[8], bf0[59], cos_bit); + bf1[37] = half_btf(-cospi[56], bf0[37], -cospi[8], bf0[58], cos_bit); + bf1[38] = bf0[38]; + bf1[39] = bf0[39]; + bf1[40] = bf0[40]; + bf1[41] = bf0[41]; + bf1[42] = half_btf(-cospi[40], bf0[42], cospi[24], bf0[53], cos_bit); + bf1[43] = half_btf(-cospi[40], bf0[43], cospi[24], bf0[52], cos_bit); + bf1[44] = half_btf(-cospi[24], bf0[44], -cospi[40], bf0[51], cos_bit); + bf1[45] = half_btf(-cospi[24], bf0[45], -cospi[40], bf0[50], cos_bit); + bf1[46] = bf0[46]; + bf1[47] = bf0[47]; + bf1[48] = bf0[48]; + bf1[49] = bf0[49]; + bf1[50] = half_btf(cospi[24], bf0[50], -cospi[40], bf0[45], cos_bit); + bf1[51] = half_btf(cospi[24], bf0[51], -cospi[40], bf0[44], cos_bit); + bf1[52] = half_btf(cospi[40], bf0[52], cospi[24], bf0[43], cos_bit); + bf1[53] = half_btf(cospi[40], bf0[53], cospi[24], bf0[42], cos_bit); + bf1[54] = bf0[54]; + bf1[55] = bf0[55]; + bf1[56] = bf0[56]; + bf1[57] = bf0[57]; + bf1[58] = half_btf(cospi[56], bf0[58], -cospi[8], bf0[37], cos_bit); + bf1[59] = half_btf(cospi[56], bf0[59], -cospi[8], bf0[36], cos_bit); + bf1[60] = half_btf(cospi[8], bf0[60], cospi[56], bf0[35], cos_bit); + bf1[61] = half_btf(cospi[8], bf0[61], cospi[56], bf0[34], cos_bit); + bf1[62] = bf0[62]; + bf1[63] = bf0[63]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 7 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = half_btf(cospi[56], bf0[4], cospi[8], bf0[7], cos_bit); + bf1[5] = half_btf(cospi[24], bf0[5], cospi[40], bf0[6], cos_bit); + bf1[6] = half_btf(cospi[24], bf0[6], -cospi[40], bf0[5], cos_bit); + bf1[7] = half_btf(cospi[56], bf0[7], -cospi[8], bf0[4], cos_bit); + bf1[8] = bf0[8] + bf0[9]; + bf1[9] = -bf0[9] + bf0[8]; + bf1[10] = -bf0[10] + bf0[11]; + bf1[11] = bf0[11] + bf0[10]; + bf1[12] = bf0[12] + bf0[13]; + bf1[13] = -bf0[13] + bf0[12]; + bf1[14] = -bf0[14] + bf0[15]; + bf1[15] = bf0[15] + bf0[14]; + bf1[16] = bf0[16]; + bf1[17] = half_btf(-cospi[8], bf0[17], cospi[56], bf0[30], cos_bit); + bf1[18] = half_btf(-cospi[56], bf0[18], -cospi[8], bf0[29], cos_bit); + bf1[19] = bf0[19]; + bf1[20] = bf0[20]; + bf1[21] = half_btf(-cospi[40], bf0[21], cospi[24], bf0[26], cos_bit); + bf1[22] = half_btf(-cospi[24], bf0[22], -cospi[40], bf0[25], cos_bit); + bf1[23] = bf0[23]; + bf1[24] = bf0[24]; + bf1[25] = half_btf(cospi[24], bf0[25], -cospi[40], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[40], bf0[26], cospi[24], bf0[21], cos_bit); + bf1[27] = bf0[27]; + bf1[28] = bf0[28]; + bf1[29] = half_btf(cospi[56], bf0[29], -cospi[8], bf0[18], cos_bit); + bf1[30] = half_btf(cospi[8], bf0[30], cospi[56], bf0[17], cos_bit); + bf1[31] = bf0[31]; + bf1[32] = bf0[32] + bf0[35]; + bf1[33] = bf0[33] + bf0[34]; + bf1[34] = -bf0[34] + bf0[33]; + bf1[35] = -bf0[35] + bf0[32]; + bf1[36] = -bf0[36] + bf0[39]; + bf1[37] = -bf0[37] + bf0[38]; + bf1[38] = bf0[38] + bf0[37]; + bf1[39] = bf0[39] + bf0[36]; + bf1[40] = bf0[40] + bf0[43]; + bf1[41] = bf0[41] + bf0[42]; + bf1[42] = -bf0[42] + bf0[41]; + bf1[43] = -bf0[43] + bf0[40]; + bf1[44] = -bf0[44] + bf0[47]; + bf1[45] = -bf0[45] + bf0[46]; + bf1[46] = bf0[46] + bf0[45]; + bf1[47] = bf0[47] + bf0[44]; + bf1[48] = bf0[48] + bf0[51]; + bf1[49] = bf0[49] + bf0[50]; + bf1[50] = -bf0[50] + bf0[49]; + bf1[51] = -bf0[51] + bf0[48]; + bf1[52] = -bf0[52] + bf0[55]; + bf1[53] = -bf0[53] + bf0[54]; + bf1[54] = bf0[54] + bf0[53]; + bf1[55] = bf0[55] + bf0[52]; + bf1[56] = bf0[56] + bf0[59]; + bf1[57] = bf0[57] + bf0[58]; + bf1[58] = -bf0[58] + bf0[57]; + bf1[59] = -bf0[59] + bf0[56]; + bf1[60] = -bf0[60] + bf0[63]; + bf1[61] = -bf0[61] + bf0[62]; + bf1[62] = bf0[62] + bf0[61]; + bf1[63] = bf0[63] + bf0[60]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 8 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = half_btf(cospi[60], bf0[8], cospi[4], bf0[15], cos_bit); + bf1[9] = half_btf(cospi[28], bf0[9], cospi[36], bf0[14], cos_bit); + bf1[10] = half_btf(cospi[44], bf0[10], cospi[20], bf0[13], cos_bit); + bf1[11] = half_btf(cospi[12], bf0[11], cospi[52], bf0[12], cos_bit); + bf1[12] = half_btf(cospi[12], bf0[12], -cospi[52], bf0[11], cos_bit); + bf1[13] = half_btf(cospi[44], bf0[13], -cospi[20], bf0[10], cos_bit); + bf1[14] = half_btf(cospi[28], bf0[14], -cospi[36], bf0[9], cos_bit); + bf1[15] = half_btf(cospi[60], bf0[15], -cospi[4], bf0[8], cos_bit); + bf1[16] = bf0[16] + bf0[17]; + bf1[17] = -bf0[17] + bf0[16]; + bf1[18] = -bf0[18] + bf0[19]; + bf1[19] = bf0[19] + bf0[18]; + bf1[20] = bf0[20] + bf0[21]; + bf1[21] = -bf0[21] + bf0[20]; + bf1[22] = -bf0[22] + bf0[23]; + bf1[23] = bf0[23] + bf0[22]; + bf1[24] = bf0[24] + bf0[25]; + bf1[25] = -bf0[25] + bf0[24]; + bf1[26] = -bf0[26] + bf0[27]; + bf1[27] = bf0[27] + bf0[26]; + bf1[28] = bf0[28] + bf0[29]; + bf1[29] = -bf0[29] + bf0[28]; + bf1[30] = -bf0[30] + bf0[31]; + bf1[31] = bf0[31] + bf0[30]; + bf1[32] = bf0[32]; + bf1[33] = half_btf(-cospi[4], bf0[33], cospi[60], bf0[62], cos_bit); + bf1[34] = half_btf(-cospi[60], bf0[34], -cospi[4], bf0[61], cos_bit); + bf1[35] = bf0[35]; + bf1[36] = bf0[36]; + bf1[37] = half_btf(-cospi[36], bf0[37], cospi[28], bf0[58], cos_bit); + bf1[38] = half_btf(-cospi[28], bf0[38], -cospi[36], bf0[57], cos_bit); + bf1[39] = bf0[39]; + bf1[40] = bf0[40]; + bf1[41] = half_btf(-cospi[20], bf0[41], cospi[44], bf0[54], cos_bit); + bf1[42] = half_btf(-cospi[44], bf0[42], -cospi[20], bf0[53], cos_bit); + bf1[43] = bf0[43]; + bf1[44] = bf0[44]; + bf1[45] = half_btf(-cospi[52], bf0[45], cospi[12], bf0[50], cos_bit); + bf1[46] = half_btf(-cospi[12], bf0[46], -cospi[52], bf0[49], cos_bit); + bf1[47] = bf0[47]; + bf1[48] = bf0[48]; + bf1[49] = half_btf(cospi[12], bf0[49], -cospi[52], bf0[46], cos_bit); + bf1[50] = half_btf(cospi[52], bf0[50], cospi[12], bf0[45], cos_bit); + bf1[51] = bf0[51]; + bf1[52] = bf0[52]; + bf1[53] = half_btf(cospi[44], bf0[53], -cospi[20], bf0[42], cos_bit); + bf1[54] = half_btf(cospi[20], bf0[54], cospi[44], bf0[41], cos_bit); + bf1[55] = bf0[55]; + bf1[56] = bf0[56]; + bf1[57] = half_btf(cospi[28], bf0[57], -cospi[36], bf0[38], cos_bit); + bf1[58] = half_btf(cospi[36], bf0[58], cospi[28], bf0[37], cos_bit); + bf1[59] = bf0[59]; + bf1[60] = bf0[60]; + bf1[61] = half_btf(cospi[60], bf0[61], -cospi[4], bf0[34], cos_bit); + bf1[62] = half_btf(cospi[4], bf0[62], cospi[60], bf0[33], cos_bit); + bf1[63] = bf0[63]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 9 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = bf0[10]; + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = bf0[13]; + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + bf1[16] = half_btf(cospi[62], bf0[16], cospi[2], bf0[31], cos_bit); + bf1[17] = half_btf(cospi[30], bf0[17], cospi[34], bf0[30], cos_bit); + bf1[18] = half_btf(cospi[46], bf0[18], cospi[18], bf0[29], cos_bit); + bf1[19] = half_btf(cospi[14], bf0[19], cospi[50], bf0[28], cos_bit); + bf1[20] = half_btf(cospi[54], bf0[20], cospi[10], bf0[27], cos_bit); + bf1[21] = half_btf(cospi[22], bf0[21], cospi[42], bf0[26], cos_bit); + bf1[22] = half_btf(cospi[38], bf0[22], cospi[26], bf0[25], cos_bit); + bf1[23] = half_btf(cospi[6], bf0[23], cospi[58], bf0[24], cos_bit); + bf1[24] = half_btf(cospi[6], bf0[24], -cospi[58], bf0[23], cos_bit); + bf1[25] = half_btf(cospi[38], bf0[25], -cospi[26], bf0[22], cos_bit); + bf1[26] = half_btf(cospi[22], bf0[26], -cospi[42], bf0[21], cos_bit); + bf1[27] = half_btf(cospi[54], bf0[27], -cospi[10], bf0[20], cos_bit); + bf1[28] = half_btf(cospi[14], bf0[28], -cospi[50], bf0[19], cos_bit); + bf1[29] = half_btf(cospi[46], bf0[29], -cospi[18], bf0[18], cos_bit); + bf1[30] = half_btf(cospi[30], bf0[30], -cospi[34], bf0[17], cos_bit); + bf1[31] = half_btf(cospi[62], bf0[31], -cospi[2], bf0[16], cos_bit); + bf1[32] = bf0[32] + bf0[33]; + bf1[33] = -bf0[33] + bf0[32]; + bf1[34] = -bf0[34] + bf0[35]; + bf1[35] = bf0[35] + bf0[34]; + bf1[36] = bf0[36] + bf0[37]; + bf1[37] = -bf0[37] + bf0[36]; + bf1[38] = -bf0[38] + bf0[39]; + bf1[39] = bf0[39] + bf0[38]; + bf1[40] = bf0[40] + bf0[41]; + bf1[41] = -bf0[41] + bf0[40]; + bf1[42] = -bf0[42] + bf0[43]; + bf1[43] = bf0[43] + bf0[42]; + bf1[44] = bf0[44] + bf0[45]; + bf1[45] = -bf0[45] + bf0[44]; + bf1[46] = -bf0[46] + bf0[47]; + bf1[47] = bf0[47] + bf0[46]; + bf1[48] = bf0[48] + bf0[49]; + bf1[49] = -bf0[49] + bf0[48]; + bf1[50] = -bf0[50] + bf0[51]; + bf1[51] = bf0[51] + bf0[50]; + bf1[52] = bf0[52] + bf0[53]; + bf1[53] = -bf0[53] + bf0[52]; + bf1[54] = -bf0[54] + bf0[55]; + bf1[55] = bf0[55] + bf0[54]; + bf1[56] = bf0[56] + bf0[57]; + bf1[57] = -bf0[57] + bf0[56]; + bf1[58] = -bf0[58] + bf0[59]; + bf1[59] = bf0[59] + bf0[58]; + bf1[60] = bf0[60] + bf0[61]; + bf1[61] = -bf0[61] + bf0[60]; + bf1[62] = -bf0[62] + bf0[63]; + bf1[63] = bf0[63] + bf0[62]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 10 + stage++; + cospi = cospi_arr(cos_bit); + bf0 = output; + bf1 = step; + bf1[0] = bf0[0]; + bf1[1] = bf0[1]; + bf1[2] = bf0[2]; + bf1[3] = bf0[3]; + bf1[4] = bf0[4]; + bf1[5] = bf0[5]; + bf1[6] = bf0[6]; + bf1[7] = bf0[7]; + bf1[8] = bf0[8]; + bf1[9] = bf0[9]; + bf1[10] = bf0[10]; + bf1[11] = bf0[11]; + bf1[12] = bf0[12]; + bf1[13] = bf0[13]; + bf1[14] = bf0[14]; + bf1[15] = bf0[15]; + bf1[16] = bf0[16]; + bf1[17] = bf0[17]; + bf1[18] = bf0[18]; + bf1[19] = bf0[19]; + bf1[20] = bf0[20]; + bf1[21] = bf0[21]; + bf1[22] = bf0[22]; + bf1[23] = bf0[23]; + bf1[24] = bf0[24]; + bf1[25] = bf0[25]; + bf1[26] = bf0[26]; + bf1[27] = bf0[27]; + bf1[28] = bf0[28]; + bf1[29] = bf0[29]; + bf1[30] = bf0[30]; + bf1[31] = bf0[31]; + bf1[32] = half_btf(cospi[63], bf0[32], cospi[1], bf0[63], cos_bit); + bf1[33] = half_btf(cospi[31], bf0[33], cospi[33], bf0[62], cos_bit); + bf1[34] = half_btf(cospi[47], bf0[34], cospi[17], bf0[61], cos_bit); + bf1[35] = half_btf(cospi[15], bf0[35], cospi[49], bf0[60], cos_bit); + bf1[36] = half_btf(cospi[55], bf0[36], cospi[9], bf0[59], cos_bit); + bf1[37] = half_btf(cospi[23], bf0[37], cospi[41], bf0[58], cos_bit); + bf1[38] = half_btf(cospi[39], bf0[38], cospi[25], bf0[57], cos_bit); + bf1[39] = half_btf(cospi[7], bf0[39], cospi[57], bf0[56], cos_bit); + bf1[40] = half_btf(cospi[59], bf0[40], cospi[5], bf0[55], cos_bit); + bf1[41] = half_btf(cospi[27], bf0[41], cospi[37], bf0[54], cos_bit); + bf1[42] = half_btf(cospi[43], bf0[42], cospi[21], bf0[53], cos_bit); + bf1[43] = half_btf(cospi[11], bf0[43], cospi[53], bf0[52], cos_bit); + bf1[44] = half_btf(cospi[51], bf0[44], cospi[13], bf0[51], cos_bit); + bf1[45] = half_btf(cospi[19], bf0[45], cospi[45], bf0[50], cos_bit); + bf1[46] = half_btf(cospi[35], bf0[46], cospi[29], bf0[49], cos_bit); + bf1[47] = half_btf(cospi[3], bf0[47], cospi[61], bf0[48], cos_bit); + bf1[48] = half_btf(cospi[3], bf0[48], -cospi[61], bf0[47], cos_bit); + bf1[49] = half_btf(cospi[35], bf0[49], -cospi[29], bf0[46], cos_bit); + bf1[50] = half_btf(cospi[19], bf0[50], -cospi[45], bf0[45], cos_bit); + bf1[51] = half_btf(cospi[51], bf0[51], -cospi[13], bf0[44], cos_bit); + bf1[52] = half_btf(cospi[11], bf0[52], -cospi[53], bf0[43], cos_bit); + bf1[53] = half_btf(cospi[43], bf0[53], -cospi[21], bf0[42], cos_bit); + bf1[54] = half_btf(cospi[27], bf0[54], -cospi[37], bf0[41], cos_bit); + bf1[55] = half_btf(cospi[59], bf0[55], -cospi[5], bf0[40], cos_bit); + bf1[56] = half_btf(cospi[7], bf0[56], -cospi[57], bf0[39], cos_bit); + bf1[57] = half_btf(cospi[39], bf0[57], -cospi[25], bf0[38], cos_bit); + bf1[58] = half_btf(cospi[23], bf0[58], -cospi[41], bf0[37], cos_bit); + bf1[59] = half_btf(cospi[55], bf0[59], -cospi[9], bf0[36], cos_bit); + bf1[60] = half_btf(cospi[15], bf0[60], -cospi[49], bf0[35], cos_bit); + bf1[61] = half_btf(cospi[47], bf0[61], -cospi[17], bf0[34], cos_bit); + bf1[62] = half_btf(cospi[31], bf0[62], -cospi[33], bf0[33], cos_bit); + bf1[63] = half_btf(cospi[63], bf0[63], -cospi[1], bf0[32], cos_bit); + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); + + // stage 11 + stage++; + bf0 = step; + bf1 = output; + bf1[0] = bf0[0]; + bf1[1] = bf0[32]; + bf1[2] = bf0[16]; + bf1[3] = bf0[48]; + bf1[4] = bf0[8]; + bf1[5] = bf0[40]; + bf1[6] = bf0[24]; + bf1[7] = bf0[56]; + bf1[8] = bf0[4]; + bf1[9] = bf0[36]; + bf1[10] = bf0[20]; + bf1[11] = bf0[52]; + bf1[12] = bf0[12]; + bf1[13] = bf0[44]; + bf1[14] = bf0[28]; + bf1[15] = bf0[60]; + bf1[16] = bf0[2]; + bf1[17] = bf0[34]; + bf1[18] = bf0[18]; + bf1[19] = bf0[50]; + bf1[20] = bf0[10]; + bf1[21] = bf0[42]; + bf1[22] = bf0[26]; + bf1[23] = bf0[58]; + bf1[24] = bf0[6]; + bf1[25] = bf0[38]; + bf1[26] = bf0[22]; + bf1[27] = bf0[54]; + bf1[28] = bf0[14]; + bf1[29] = bf0[46]; + bf1[30] = bf0[30]; + bf1[31] = bf0[62]; + bf1[32] = bf0[1]; + bf1[33] = bf0[33]; + bf1[34] = bf0[17]; + bf1[35] = bf0[49]; + bf1[36] = bf0[9]; + bf1[37] = bf0[41]; + bf1[38] = bf0[25]; + bf1[39] = bf0[57]; + bf1[40] = bf0[5]; + bf1[41] = bf0[37]; + bf1[42] = bf0[21]; + bf1[43] = bf0[53]; + bf1[44] = bf0[13]; + bf1[45] = bf0[45]; + bf1[46] = bf0[29]; + bf1[47] = bf0[61]; + bf1[48] = bf0[3]; + bf1[49] = bf0[35]; + bf1[50] = bf0[19]; + bf1[51] = bf0[51]; + bf1[52] = bf0[11]; + bf1[53] = bf0[43]; + bf1[54] = bf0[27]; + bf1[55] = bf0[59]; + bf1[56] = bf0[7]; + bf1[57] = bf0[39]; + bf1[58] = bf0[23]; + bf1[59] = bf0[55]; + bf1[60] = bf0[15]; + bf1[61] = bf0[47]; + bf1[62] = bf0[31]; + bf1[63] = bf0[63]; + av1_range_check_buf(stage, input, bf1, size, stage_range[stage]); +} diff --git a/third_party/aom/av1/encoder/av1_fwd_txfm1d.h b/third_party/aom/av1/encoder/av1_fwd_txfm1d.h new file mode 100644 index 0000000000..9dcf16552c --- /dev/null +++ b/third_party/aom/av1/encoder/av1_fwd_txfm1d.h @@ -0,0 +1,49 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AV1_FWD_TXFM1D_H_ +#define AOM_AV1_ENCODER_AV1_FWD_TXFM1D_H_ + +#include "av1/common/av1_txfm.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_fdct4_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fdct8_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fdct16_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fdct32_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fdct64_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fadst4_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fadst8_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fadst16_new(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fidentity4_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fidentity8_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fidentity16_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +void av1_fidentity32_c(const int32_t *input, int32_t *output, int8_t cos_bit, + const int8_t *stage_range); +#ifdef __cplusplus +} +#endif + +#endif // AOM_AV1_ENCODER_AV1_FWD_TXFM1D_H_ diff --git a/third_party/aom/av1/encoder/av1_fwd_txfm1d_cfg.h b/third_party/aom/av1/encoder/av1_fwd_txfm1d_cfg.h new file mode 100644 index 0000000000..98b6530db1 --- /dev/null +++ b/third_party/aom/av1/encoder/av1_fwd_txfm1d_cfg.h @@ -0,0 +1,19 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AV1_FWD_TXFM1D_CFG_H_ +#define AOM_AV1_ENCODER_AV1_FWD_TXFM1D_CFG_H_ +#include "av1/common/enums.h" +#include "av1/encoder/av1_fwd_txfm1d.h" +extern const int8_t *fwd_txfm_shift_ls[TX_SIZES_ALL]; +extern const int8_t fwd_cos_bit_col[5][5]; +extern const int8_t fwd_cos_bit_row[5][5]; +#endif // AOM_AV1_ENCODER_AV1_FWD_TXFM1D_CFG_H_ diff --git a/third_party/aom/av1/encoder/av1_fwd_txfm2d.c b/third_party/aom/av1/encoder/av1_fwd_txfm2d.c new file mode 100644 index 0000000000..f25a667cf4 --- /dev/null +++ b/third_party/aom/av1/encoder/av1_fwd_txfm2d.c @@ -0,0 +1,431 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/txfm_common.h" +#include "av1/common/enums.h" +#include "av1/common/av1_txfm.h" +#include "av1/encoder/av1_fwd_txfm1d.h" +#include "av1/encoder/av1_fwd_txfm1d_cfg.h" + +static INLINE TxfmFunc fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { + switch (txfm_type) { + case TXFM_TYPE_DCT4: return av1_fdct4_new; + case TXFM_TYPE_DCT8: return av1_fdct8_new; + case TXFM_TYPE_DCT16: return av1_fdct16_new; + case TXFM_TYPE_DCT32: return av1_fdct32_new; + case TXFM_TYPE_DCT64: return av1_fdct64_new; + case TXFM_TYPE_ADST4: return av1_fadst4_new; + case TXFM_TYPE_ADST8: return av1_fadst8_new; + case TXFM_TYPE_ADST16: return av1_fadst16_new; + case TXFM_TYPE_IDENTITY4: return av1_fidentity4_c; + case TXFM_TYPE_IDENTITY8: return av1_fidentity8_c; + case TXFM_TYPE_IDENTITY16: return av1_fidentity16_c; + case TXFM_TYPE_IDENTITY32: return av1_fidentity32_c; + default: assert(0); return NULL; + } +} + +void av1_gen_fwd_stage_range(int8_t *stage_range_col, int8_t *stage_range_row, + const TXFM_2D_FLIP_CFG *cfg, int bd) { + // Take the shift from the larger dimension in the rectangular case. + const int8_t *shift = cfg->shift; + // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning + for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) { + stage_range_col[i] = cfg->stage_range_col[i] + shift[0] + bd + 1; + } + + // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning + for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) { + stage_range_row[i] = cfg->stage_range_row[i] + shift[0] + shift[1] + bd + 1; + } +} + +static INLINE void fwd_txfm2d_c(const int16_t *input, int32_t *output, + const int stride, const TXFM_2D_FLIP_CFG *cfg, + int32_t *buf, int bd) { + int c, r; + // Note when assigning txfm_size_col, we use the txfm_size from the + // row configuration and vice versa. This is intentionally done to + // accurately perform rectangular transforms. When the transform is + // rectangular, the number of columns will be the same as the + // txfm_size stored in the row cfg struct. It will make no difference + // for square transforms. + const int txfm_size_col = tx_size_wide[cfg->tx_size]; + const int txfm_size_row = tx_size_high[cfg->tx_size]; + // Take the shift from the larger dimension in the rectangular case. + const int8_t *shift = cfg->shift; + const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row); + int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; + int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; + assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM); + assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM); + av1_gen_fwd_stage_range(stage_range_col, stage_range_row, cfg, bd); + + const int8_t cos_bit_col = cfg->cos_bit_col; + const int8_t cos_bit_row = cfg->cos_bit_row; + const TxfmFunc txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); + const TxfmFunc txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); + + // use output buffer as temp buffer + int32_t *temp_in = output; + int32_t *temp_out = output + txfm_size_row; + + // Columns + for (c = 0; c < txfm_size_col; ++c) { + if (cfg->ud_flip == 0) { + for (r = 0; r < txfm_size_row; ++r) temp_in[r] = input[r * stride + c]; + } else { + for (r = 0; r < txfm_size_row; ++r) + // flip upside down + temp_in[r] = input[(txfm_size_row - r - 1) * stride + c]; + } + av1_round_shift_array(temp_in, txfm_size_row, -shift[0]); + txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); + av1_round_shift_array(temp_out, txfm_size_row, -shift[1]); + if (cfg->lr_flip == 0) { + for (r = 0; r < txfm_size_row; ++r) + buf[r * txfm_size_col + c] = temp_out[r]; + } else { + for (r = 0; r < txfm_size_row; ++r) + // flip from left to right + buf[r * txfm_size_col + (txfm_size_col - c - 1)] = temp_out[r]; + } + } + + // Rows + for (r = 0; r < txfm_size_row; ++r) { + txfm_func_row(buf + r * txfm_size_col, output + r * txfm_size_col, + cos_bit_row, stage_range_row); + av1_round_shift_array(output + r * txfm_size_col, txfm_size_col, -shift[2]); + if (abs(rect_type) == 1) { + // Multiply everything by Sqrt2 if the transform is rectangular and the + // size difference is a factor of 2. + for (c = 0; c < txfm_size_col; ++c) { + output[r * txfm_size_col + c] = round_shift( + (int64_t)output[r * txfm_size_col + c] * NewSqrt2, NewSqrt2Bits); + } + } + } +} + +void av1_fwd_txfm2d_4x8_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 8]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_4X8, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_8x4_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[8 * 4]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_8X4, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_8x16_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[8 * 16]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_8X16, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_16x8_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[16 * 8]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_16X8, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_16x32_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[16 * 32]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_16X32, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_32x16_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[32 * 16]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_32X16, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_4x16_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[4 * 16]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_4X16, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_16x4_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[16 * 4]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_16X4, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_8x32_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 8]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_8X32, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_32x8_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[32 * 8]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_32X8, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_4x4_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[4 * 4]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_4X4, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_8x8_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[8 * 8]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_8X8, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_16x16_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[16 * 16]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_16X16, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_32x32_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[32 * 32]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); +} + +void av1_fwd_txfm2d_64x64_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[64 * 64]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); + + // Zero out top-right 32x32 area. + for (int row = 0; row < 32; ++row) { + memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); + } + // Zero out the bottom 64x32 area. + memset(output + 32 * 64, 0, 32 * 64 * sizeof(*output)); + // Re-pack non-zero coeffs in the first 32x32 indices. + for (int row = 1; row < 32; ++row) { + memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); + } +} + +void av1_fwd_txfm2d_32x64_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[32 * 64]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_32X64, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); + // Zero out the bottom 32x32 area. + memset(output + 32 * 32, 0, 32 * 32 * sizeof(*output)); + // Note: no repacking needed here. +} + +void av1_fwd_txfm2d_64x32_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[64 * 32]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_64X32, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); + + // Zero out right 32x32 area. + for (int row = 0; row < 32; ++row) { + memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); + } + // Re-pack non-zero coeffs in the first 32x32 indices. + for (int row = 1; row < 32; ++row) { + memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); + } +} + +void av1_fwd_txfm2d_16x64_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(32, int32_t, txfm_buf[64 * 16]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_16X64, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); + // Zero out the bottom 16x32 area. + memset(output + 16 * 32, 0, 16 * 32 * sizeof(*output)); + // Note: no repacking needed here. +} + +void av1_fwd_txfm2d_64x16_c(const int16_t *input, int32_t *output, int stride, + TX_TYPE tx_type, int bd) { + int32_t txfm_buf[64 * 16]; + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_64X16, &cfg); + fwd_txfm2d_c(input, output, stride, &cfg, txfm_buf, bd); + // Zero out right 32x16 area. + for (int row = 0; row < 16; ++row) { + memset(output + row * 64 + 32, 0, 32 * sizeof(*output)); + } + // Re-pack non-zero coeffs in the first 32x16 indices. + for (int row = 1; row < 16; ++row) { + memcpy(output + row * 32, output + row * 64, 32 * sizeof(*output)); + } +} + +static const int8_t fwd_shift_4x4[3] = { 2, 0, 0 }; +static const int8_t fwd_shift_8x8[3] = { 2, -1, 0 }; +static const int8_t fwd_shift_16x16[3] = { 2, -2, 0 }; +static const int8_t fwd_shift_32x32[3] = { 2, -4, 0 }; +static const int8_t fwd_shift_64x64[3] = { 0, -2, -2 }; +static const int8_t fwd_shift_4x8[3] = { 2, -1, 0 }; +static const int8_t fwd_shift_8x4[3] = { 2, -1, 0 }; +static const int8_t fwd_shift_8x16[3] = { 2, -2, 0 }; +static const int8_t fwd_shift_16x8[3] = { 2, -2, 0 }; +static const int8_t fwd_shift_16x32[3] = { 2, -4, 0 }; +static const int8_t fwd_shift_32x16[3] = { 2, -4, 0 }; +static const int8_t fwd_shift_32x64[3] = { 0, -2, -2 }; +static const int8_t fwd_shift_64x32[3] = { 2, -4, -2 }; +static const int8_t fwd_shift_4x16[3] = { 2, -1, 0 }; +static const int8_t fwd_shift_16x4[3] = { 2, -1, 0 }; +static const int8_t fwd_shift_8x32[3] = { 2, -2, 0 }; +static const int8_t fwd_shift_32x8[3] = { 2, -2, 0 }; +static const int8_t fwd_shift_16x64[3] = { 0, -2, 0 }; +static const int8_t fwd_shift_64x16[3] = { 2, -4, 0 }; + +const int8_t *fwd_txfm_shift_ls[TX_SIZES_ALL] = { + fwd_shift_4x4, fwd_shift_8x8, fwd_shift_16x16, fwd_shift_32x32, + fwd_shift_64x64, fwd_shift_4x8, fwd_shift_8x4, fwd_shift_8x16, + fwd_shift_16x8, fwd_shift_16x32, fwd_shift_32x16, fwd_shift_32x64, + fwd_shift_64x32, fwd_shift_4x16, fwd_shift_16x4, fwd_shift_8x32, + fwd_shift_32x8, fwd_shift_16x64, fwd_shift_64x16, +}; + +const int8_t fwd_cos_bit_col[MAX_TXWH_IDX /*txw_idx*/] + [MAX_TXWH_IDX /*txh_idx*/] = { + { 13, 13, 13, 0, 0 }, + { 13, 13, 13, 12, 0 }, + { 13, 13, 13, 12, 13 }, + { 0, 13, 13, 12, 13 }, + { 0, 0, 13, 12, 13 } + }; + +const int8_t fwd_cos_bit_row[MAX_TXWH_IDX /*txw_idx*/] + [MAX_TXWH_IDX /*txh_idx*/] = { + { 13, 13, 12, 0, 0 }, + { 13, 13, 13, 12, 0 }, + { 13, 13, 12, 13, 12 }, + { 0, 12, 13, 12, 11 }, + { 0, 0, 12, 11, 10 } + }; + +static const int8_t fdct4_range_mult2[4] = { 0, 2, 3, 3 }; +static const int8_t fdct8_range_mult2[6] = { 0, 2, 4, 5, 5, 5 }; +static const int8_t fdct16_range_mult2[8] = { 0, 2, 4, 6, 7, 7, 7, 7 }; +static const int8_t fdct32_range_mult2[10] = { 0, 2, 4, 6, 8, 9, 9, 9, 9, 9 }; +static const int8_t fdct64_range_mult2[12] = { 0, 2, 4, 6, 8, 10, + 11, 11, 11, 11, 11, 11 }; + +static const int8_t fadst4_range_mult2[7] = { 0, 2, 4, 3, 3, 3, 3 }; +static const int8_t fadst8_range_mult2[8] = { 0, 0, 1, 3, 3, 5, 5, 5 }; +static const int8_t fadst16_range_mult2[10] = { 0, 0, 1, 3, 3, 5, 5, 7, 7, 7 }; + +static const int8_t max_fwd_range_mult2_col[5] = { 3, 5, 7, 9, 11 }; + +static const int8_t fidtx4_range_mult2[1] = { 1 }; +static const int8_t fidtx8_range_mult2[1] = { 2 }; +static const int8_t fidtx16_range_mult2[1] = { 3 }; +static const int8_t fidtx32_range_mult2[1] = { 4 }; + +#if 0 +const int8_t fwd_idtx_range_row[MAX_TXWH_IDX /*txw_idx*/] + [MAX_TXWH_IDX /*txh_idx*/] = { { 2, 4, 5, 0, 0 }, + { 3, 4, 5, 6, 0 }, + { 4, 5, 6, 7, 8 }, + { 0, 5, 6, 7, 8 }, + { 0, 0, 7, 8, + 9 } }; +#endif + +const int8_t *fwd_txfm_range_mult2_list[TXFM_TYPES] = { + fdct4_range_mult2, fdct8_range_mult2, fdct16_range_mult2, + fdct32_range_mult2, fdct64_range_mult2, fadst4_range_mult2, + fadst8_range_mult2, fadst16_range_mult2, fidtx4_range_mult2, + fidtx8_range_mult2, fidtx16_range_mult2, fidtx32_range_mult2 +}; + +static INLINE void set_fwd_txfm_non_scale_range(TXFM_2D_FLIP_CFG *cfg) { + const int txh_idx = get_txh_idx(cfg->tx_size); + av1_zero(cfg->stage_range_col); + av1_zero(cfg->stage_range_row); + + if (cfg->txfm_type_col != TXFM_TYPE_INVALID) { + int stage_num_col = cfg->stage_num_col; + const int8_t *range_mult2_col = + fwd_txfm_range_mult2_list[cfg->txfm_type_col]; + for (int i = 0; i < stage_num_col; ++i) + cfg->stage_range_col[i] = (range_mult2_col[i] + 1) >> 1; + } + + if (cfg->txfm_type_row != TXFM_TYPE_INVALID) { + int stage_num_row = cfg->stage_num_row; + const int8_t *range_mult2_row = + fwd_txfm_range_mult2_list[cfg->txfm_type_row]; + for (int i = 0; i < stage_num_row; ++i) + cfg->stage_range_row[i] = + (max_fwd_range_mult2_col[txh_idx] + range_mult2_row[i] + 1) >> 1; + } +} + +void av1_get_fwd_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size, + TXFM_2D_FLIP_CFG *cfg) { + assert(cfg != NULL); + cfg->tx_size = tx_size; + set_flip_cfg(tx_type, cfg); + const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; + const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; + const int txw_idx = tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]; + const int txh_idx = tx_size_high_log2[tx_size] - tx_size_high_log2[0]; + cfg->shift = fwd_txfm_shift_ls[tx_size]; + cfg->cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + cfg->cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col]; + cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row]; + cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col]; + cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row]; + set_fwd_txfm_non_scale_range(cfg); +} diff --git a/third_party/aom/av1/encoder/av1_quantize.c b/third_party/aom/av1/encoder/av1_quantize.c new file mode 100644 index 0000000000..a0a9260052 --- /dev/null +++ b/third_party/aom/av1/encoder/av1_quantize.c @@ -0,0 +1,738 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> + +#include "config/aom_dsp_rtcd.h" + +#include "aom_dsp/quantize.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" + +#include "av1/common/idct.h" +#include "av1/common/quant_common.h" +#include "av1/common/scan.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/rd.h" + +void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr) { + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + *eob_ptr = 0; +} + +static void quantize_fp_helper_c( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr, + const qm_val_t *iqm_ptr, int log_scale) { + int i, eob = -1; + // TODO(jingning) Decide the need of these arguments after the + // quantization process is completed. + (void)zbin_ptr; + (void)quant_shift_ptr; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (qm_ptr == NULL && iqm_ptr == NULL) { + const int rounding0 = ROUND_POWER_OF_TWO(round_ptr[0], log_scale); + { // rc == 0 + const int coeff = coeff_ptr[0]; + const int coeff_sign = (coeff >> 31); + int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + if ((abs_coeff << (1 + log_scale)) >= (int32_t)(dequant_ptr[0])) { + abs_coeff = clamp64(abs_coeff + rounding0, INT16_MIN, INT16_MAX); + const int tmp32 = (int)((abs_coeff * quant_ptr[0]) >> (16 - log_scale)); + if (tmp32) { + qcoeff_ptr[0] = (tmp32 ^ coeff_sign) - coeff_sign; + const tran_low_t abs_dqcoeff = (tmp32 * dequant_ptr[0]) >> log_scale; + dqcoeff_ptr[0] = (abs_dqcoeff ^ coeff_sign) - coeff_sign; + eob = 0; + } + } + } + const int rounding1 = ROUND_POWER_OF_TWO(round_ptr[1], log_scale); + const int32_t thresh1 = (int32_t)(dequant_ptr[1]); + for (i = 1; i < n_coeffs; i++) { + const int coeff = coeff_ptr[i]; + const int coeff_sign = (coeff >> 31); + int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + if ((abs_coeff << (1 + log_scale)) >= thresh1) { + abs_coeff = clamp64(abs_coeff + rounding1, INT16_MIN, INT16_MAX); + const int tmp32 = (int)((abs_coeff * quant_ptr[1]) >> (16 - log_scale)); + if (tmp32) { + qcoeff_ptr[i] = (tmp32 ^ coeff_sign) - coeff_sign; + const tran_low_t abs_dqcoeff = (tmp32 * dequant_ptr[1]) >> log_scale; + dqcoeff_ptr[i] = (abs_dqcoeff ^ coeff_sign) - coeff_sign; + eob = AOMMAX(iscan[i], eob); + } + } + } + } else { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < n_coeffs; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const qm_val_t wt = qm_ptr ? qm_ptr[rc] : (1 << AOM_QM_BITS); + const qm_val_t iwt = iqm_ptr ? iqm_ptr[rc] : (1 << AOM_QM_BITS); + const int dequant = + (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> + AOM_QM_BITS; + const int coeff_sign = (coeff >> 31); + int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + int tmp32 = 0; + if (abs_coeff * wt >= + (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) { + abs_coeff += ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale); + abs_coeff = clamp64(abs_coeff, INT16_MIN, INT16_MAX); + tmp32 = (int)((abs_coeff * wt * quant_ptr[rc != 0]) >> + (16 - log_scale + AOM_QM_BITS)); + qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; + const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale; + dqcoeff_ptr[rc] = (abs_dqcoeff ^ coeff_sign) - coeff_sign; + } + + if (tmp32) eob = i; + } + } + *eob_ptr = eob + 1; +} + +static void highbd_quantize_fp_helper_c( + const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr, + const qm_val_t *iqm_ptr, int log_scale) { + int i; + int eob = -1; + const int shift = 16 - log_scale; + // TODO(jingning) Decide the need of these arguments after the + // quantization process is completed. + (void)zbin_ptr; + (void)quant_shift_ptr; + (void)iscan; + + if (qm_ptr || iqm_ptr) { + // Quantization pass: All coefficients with index >= zero_flag are + // skippable. Note: zero_flag can be zero. + for (i = 0; i < count; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS); + const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS); + const int dequant = + (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> + AOM_QM_BITS; + const int coeff_sign = (coeff >> 31); + const int64_t abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + int abs_qcoeff = 0; + if (abs_coeff * wt >= + (dequant_ptr[rc != 0] << (AOM_QM_BITS - (1 + log_scale)))) { + const int64_t tmp = + abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale); + abs_qcoeff = + (int)((tmp * quant_ptr[rc != 0] * wt) >> (shift + AOM_QM_BITS)); + qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; + dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); + if (abs_qcoeff) eob = i; + } else { + qcoeff_ptr[rc] = 0; + dqcoeff_ptr[rc] = 0; + } + } + } else { + const int log_scaled_round_arr[2] = { + ROUND_POWER_OF_TWO(round_ptr[0], log_scale), + ROUND_POWER_OF_TWO(round_ptr[1], log_scale), + }; + for (i = 0; i < count; i++) { + const int rc = scan[i]; + const int coeff = coeff_ptr[rc]; + const int rc01 = (rc != 0); + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int log_scaled_round = log_scaled_round_arr[rc01]; + if ((abs_coeff << (1 + log_scale)) >= dequant_ptr[rc01]) { + const int quant = quant_ptr[rc01]; + const int dequant = dequant_ptr[rc01]; + const int64_t tmp = (int64_t)abs_coeff + log_scaled_round; + const int abs_qcoeff = (int)((tmp * quant) >> shift); + qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; + if (abs_qcoeff) eob = i; + dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); + } else { + qcoeff_ptr[rc] = 0; + dqcoeff_ptr[rc] = 0; + } + } + } + *eob_ptr = eob + 1; +} + +void av1_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, + quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, + eob_ptr, scan, iscan, NULL, NULL, 0); +} + +void av1_quantize_fp_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, + quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, + eob_ptr, scan, iscan, NULL, NULL, 1); +} + +void av1_quantize_fp_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan) { + quantize_fp_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr, + quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, + eob_ptr, scan, iscan, NULL, NULL, 2); +} + +void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + if (qm_ptr != NULL && iqm_ptr != NULL) { + quantize_fp_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); + } else { + switch (qparam->log_scale) { + case 0: + if (n_coeffs < 16) { + // TODO(jingning): Need SIMD implementation for smaller block size + // quantization. + quantize_fp_helper_c( + coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, + p->dequant_QTX, eob_ptr, sc->scan, sc->iscan, NULL, NULL, 0); + } else { + av1_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + } + break; + case 1: + av1_quantize_fp_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + break; + case 2: + av1_quantize_fp_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + break; + default: assert(0); + } + } +} + +void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + if (qm_ptr != NULL && iqm_ptr != NULL) { + quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); + } else { + switch (qparam->log_scale) { + case 0: + aom_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + break; + case 1: + aom_quantize_b_32x32(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + break; + case 2: + aom_quantize_b_64x64(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + break; + default: assert(0); + } + } +} + +static void quantize_dc(const tran_low_t *coeff_ptr, int n_coeffs, + int skip_block, const int16_t *round_ptr, + const int16_t quant, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, + uint16_t *eob_ptr, const qm_val_t *qm_ptr, + const qm_val_t *iqm_ptr, const int log_scale) { + const int rc = 0; + const int coeff = coeff_ptr[rc]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + int64_t tmp; + int eob = -1; + int32_t tmp32; + int dequant; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + const int wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS); + const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS); + tmp = clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale), + INT16_MIN, INT16_MAX); + tmp32 = (int32_t)((tmp * wt * quant) >> (16 - log_scale + AOM_QM_BITS)); + qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; + dequant = (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; + const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale; + dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); + if (tmp32) eob = 0; + } + *eob_ptr = eob + 1; +} + +void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam) { + // obsolete skip_block + const int skip_block = 0; + (void)sc; + assert(qparam->log_scale >= 0 && qparam->log_scale < (3)); + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX, + p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX[0], + eob_ptr, qm_ptr, iqm_ptr, qparam->log_scale); +} + +void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam) { + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + if (qm_ptr != NULL && iqm_ptr != NULL) { + highbd_quantize_fp_helper_c( + coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, + p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, + sc->scan, sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); + } else { + if (n_coeffs < 16) { + // TODO(jingning): Need SIMD implementation for smaller block size + // quantization. + av1_highbd_quantize_fp_c( + coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, + p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, eob_ptr, + sc->scan, sc->iscan, qparam->log_scale); + return; + } + av1_highbd_quantize_fp(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_fp_QTX, + p->quant_fp_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan, qparam->log_scale); + } +} + +void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam) { + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + if (qm_ptr != NULL && iqm_ptr != NULL) { + highbd_quantize_b_helper_c(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan, qm_ptr, iqm_ptr, qparam->log_scale); + } else { + switch (qparam->log_scale) { + case 0: + if (LIKELY(n_coeffs >= 8)) { + aom_highbd_quantize_b(coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, + p->quant_QTX, p->quant_shift_QTX, qcoeff_ptr, + dqcoeff_ptr, p->dequant_QTX, eob_ptr, sc->scan, + sc->iscan); + } else { + // TODO(luoyi): Need SIMD (e.g. sse2) for smaller block size + // quantization + aom_highbd_quantize_b_c(coeff_ptr, n_coeffs, p->zbin_QTX, + p->round_QTX, p->quant_QTX, + p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, + p->dequant_QTX, eob_ptr, sc->scan, sc->iscan); + } + break; + case 1: + aom_highbd_quantize_b_32x32( + coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, + p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, + eob_ptr, sc->scan, sc->iscan); + break; + case 2: + aom_highbd_quantize_b_64x64( + coeff_ptr, n_coeffs, p->zbin_QTX, p->round_QTX, p->quant_QTX, + p->quant_shift_QTX, qcoeff_ptr, dqcoeff_ptr, p->dequant_QTX, + eob_ptr, sc->scan, sc->iscan); + break; + default: assert(0); + } + } +} + +static INLINE void highbd_quantize_dc( + const tran_low_t *coeff_ptr, int n_coeffs, int skip_block, + const int16_t *round_ptr, const int16_t quant, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t dequant_ptr, uint16_t *eob_ptr, + const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr, const int log_scale) { + int eob = -1; + + memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); + memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); + + if (!skip_block) { + const qm_val_t wt = qm_ptr != NULL ? qm_ptr[0] : (1 << AOM_QM_BITS); + const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[0] : (1 << AOM_QM_BITS); + const int coeff = coeff_ptr[0]; + const int coeff_sign = (coeff >> 31); + const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; + const int64_t tmp = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[0], log_scale); + const int64_t tmpw = tmp * wt; + const int abs_qcoeff = + (int)((tmpw * quant) >> (16 - log_scale + AOM_QM_BITS)); + qcoeff_ptr[0] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign); + const int dequant = + (dequant_ptr * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; + + const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale; + dqcoeff_ptr[0] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign); + if (abs_qcoeff) eob = 0; + } + *eob_ptr = eob + 1; +} + +void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam) { + // obsolete skip_block + const int skip_block = 0; + const qm_val_t *qm_ptr = qparam->qmatrix; + const qm_val_t *iqm_ptr = qparam->iqmatrix; + (void)sc; + + highbd_quantize_dc(coeff_ptr, (int)n_coeffs, skip_block, p->round_QTX, + p->quant_fp_QTX[0], qcoeff_ptr, dqcoeff_ptr, + p->dequant_QTX[0], eob_ptr, qm_ptr, iqm_ptr, + qparam->log_scale); +} + +void av1_highbd_quantize_fp_c(const tran_low_t *coeff_ptr, intptr_t count, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan, + int log_scale) { + highbd_quantize_fp_helper_c(coeff_ptr, count, zbin_ptr, round_ptr, quant_ptr, + quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, + dequant_ptr, eob_ptr, scan, iscan, NULL, NULL, + log_scale); +} + +static void invert_quant(int16_t *quant, int16_t *shift, int d) { + uint32_t t; + int l, m; + t = d; + for (l = 0; t > 1; l++) t >>= 1; + m = 1 + (1 << (16 + l)) / d; + *quant = (int16_t)(m - (1 << 16)); + *shift = 1 << (16 - l); +} + +static int get_qzbin_factor(int q, aom_bit_depth_t bit_depth) { + const int quant = av1_dc_quant_Q3(q, 0, bit_depth); + switch (bit_depth) { + case AOM_BITS_8: return q == 0 ? 64 : (quant < 148 ? 84 : 80); + case AOM_BITS_10: return q == 0 ? 64 : (quant < 592 ? 84 : 80); + case AOM_BITS_12: return q == 0 ? 64 : (quant < 2368 ? 84 : 80); + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } +} + +void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q, + int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q, + int v_ac_delta_q, QUANTS *const quants, + Dequants *const deq) { + int i, q, quant_Q3, quant_QTX; + + for (q = 0; q < QINDEX_RANGE; q++) { + const int qzbin_factor = get_qzbin_factor(q, bit_depth); + const int qrounding_factor = q == 0 ? 64 : 48; + + for (i = 0; i < 2; ++i) { + int qrounding_factor_fp = 64; + // y quantizer setup with original coeff shift of Q3 + quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, y_dc_delta_q, bit_depth) + : av1_ac_quant_Q3(q, 0, bit_depth); + // y quantizer with TX scale + quant_QTX = i == 0 ? av1_dc_quant_QTX(q, y_dc_delta_q, bit_depth) + : av1_ac_quant_QTX(q, 0, bit_depth); + invert_quant(&quants->y_quant[q][i], &quants->y_quant_shift[q][i], + quant_QTX); + quants->y_quant_fp[q][i] = (1 << 16) / quant_QTX; + quants->y_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; + quants->y_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); + quants->y_round[q][i] = (qrounding_factor * quant_QTX) >> 7; + deq->y_dequant_QTX[q][i] = quant_QTX; + deq->y_dequant_Q3[q][i] = quant_Q3; + + // u quantizer setup with original coeff shift of Q3 + quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, u_dc_delta_q, bit_depth) + : av1_ac_quant_Q3(q, u_ac_delta_q, bit_depth); + // u quantizer with TX scale + quant_QTX = i == 0 ? av1_dc_quant_QTX(q, u_dc_delta_q, bit_depth) + : av1_ac_quant_QTX(q, u_ac_delta_q, bit_depth); + invert_quant(&quants->u_quant[q][i], &quants->u_quant_shift[q][i], + quant_QTX); + quants->u_quant_fp[q][i] = (1 << 16) / quant_QTX; + quants->u_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; + quants->u_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); + quants->u_round[q][i] = (qrounding_factor * quant_QTX) >> 7; + deq->u_dequant_QTX[q][i] = quant_QTX; + deq->u_dequant_Q3[q][i] = quant_Q3; + + // v quantizer setup with original coeff shift of Q3 + quant_Q3 = i == 0 ? av1_dc_quant_Q3(q, v_dc_delta_q, bit_depth) + : av1_ac_quant_Q3(q, v_ac_delta_q, bit_depth); + // v quantizer with TX scale + quant_QTX = i == 0 ? av1_dc_quant_QTX(q, v_dc_delta_q, bit_depth) + : av1_ac_quant_QTX(q, v_ac_delta_q, bit_depth); + invert_quant(&quants->v_quant[q][i], &quants->v_quant_shift[q][i], + quant_QTX); + quants->v_quant_fp[q][i] = (1 << 16) / quant_QTX; + quants->v_round_fp[q][i] = (qrounding_factor_fp * quant_QTX) >> 7; + quants->v_zbin[q][i] = ROUND_POWER_OF_TWO(qzbin_factor * quant_QTX, 7); + quants->v_round[q][i] = (qrounding_factor * quant_QTX) >> 7; + deq->v_dequant_QTX[q][i] = quant_QTX; + deq->v_dequant_Q3[q][i] = quant_Q3; + } + + for (i = 2; i < 8; i++) { // 8: SIMD width + quants->y_quant[q][i] = quants->y_quant[q][1]; + quants->y_quant_fp[q][i] = quants->y_quant_fp[q][1]; + quants->y_round_fp[q][i] = quants->y_round_fp[q][1]; + quants->y_quant_shift[q][i] = quants->y_quant_shift[q][1]; + quants->y_zbin[q][i] = quants->y_zbin[q][1]; + quants->y_round[q][i] = quants->y_round[q][1]; + deq->y_dequant_QTX[q][i] = deq->y_dequant_QTX[q][1]; + deq->y_dequant_Q3[q][i] = deq->y_dequant_Q3[q][1]; + + quants->u_quant[q][i] = quants->u_quant[q][1]; + quants->u_quant_fp[q][i] = quants->u_quant_fp[q][1]; + quants->u_round_fp[q][i] = quants->u_round_fp[q][1]; + quants->u_quant_shift[q][i] = quants->u_quant_shift[q][1]; + quants->u_zbin[q][i] = quants->u_zbin[q][1]; + quants->u_round[q][i] = quants->u_round[q][1]; + deq->u_dequant_QTX[q][i] = deq->u_dequant_QTX[q][1]; + deq->u_dequant_Q3[q][i] = deq->u_dequant_Q3[q][1]; + quants->v_quant[q][i] = quants->u_quant[q][1]; + quants->v_quant_fp[q][i] = quants->v_quant_fp[q][1]; + quants->v_round_fp[q][i] = quants->v_round_fp[q][1]; + quants->v_quant_shift[q][i] = quants->v_quant_shift[q][1]; + quants->v_zbin[q][i] = quants->v_zbin[q][1]; + quants->v_round[q][i] = quants->v_round[q][1]; + deq->v_dequant_QTX[q][i] = deq->v_dequant_QTX[q][1]; + deq->v_dequant_Q3[q][i] = deq->v_dequant_Q3[q][1]; + } + } +} + +void av1_init_quantizer(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + QUANTS *const quants = &cpi->quants; + Dequants *const dequants = &cpi->dequants; + av1_build_quantizer(cm->seq_params.bit_depth, cm->y_dc_delta_q, + cm->u_dc_delta_q, cm->u_ac_delta_q, cm->v_dc_delta_q, + cm->v_ac_delta_q, quants, dequants); +} + +void av1_init_plane_quantizers(const AV1_COMP *cpi, MACROBLOCK *x, + int segment_id) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + const QUANTS *const quants = &cpi->quants; + + int current_qindex = AOMMAX( + 0, AOMMIN(QINDEX_RANGE - 1, cpi->oxcf.deltaq_mode != NO_DELTA_Q + ? cm->base_qindex + xd->delta_qindex + : cm->base_qindex)); + const int qindex = av1_get_qindex(&cm->seg, segment_id, current_qindex); + const int rdmult = av1_compute_rd_mult(cpi, qindex + cm->y_dc_delta_q); + int qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0) + ? NUM_QM_LEVELS - 1 + : cm->qm_y; + + // Y + x->plane[0].quant_QTX = quants->y_quant[qindex]; + x->plane[0].quant_fp_QTX = quants->y_quant_fp[qindex]; + x->plane[0].round_fp_QTX = quants->y_round_fp[qindex]; + x->plane[0].quant_shift_QTX = quants->y_quant_shift[qindex]; + x->plane[0].zbin_QTX = quants->y_zbin[qindex]; + x->plane[0].round_QTX = quants->y_round[qindex]; + x->plane[0].dequant_QTX = cpi->dequants.y_dequant_QTX[qindex]; + memcpy(&xd->plane[0].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][0], + sizeof(cm->gqmatrix[qmlevel][0])); + memcpy(&xd->plane[0].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][0], + sizeof(cm->giqmatrix[qmlevel][0])); + xd->plane[0].dequant_Q3 = cpi->dequants.y_dequant_Q3[qindex]; + + // U + qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0) + ? NUM_QM_LEVELS - 1 + : cm->qm_u; + { + x->plane[1].quant_QTX = quants->u_quant[qindex]; + x->plane[1].quant_fp_QTX = quants->u_quant_fp[qindex]; + x->plane[1].round_fp_QTX = quants->u_round_fp[qindex]; + x->plane[1].quant_shift_QTX = quants->u_quant_shift[qindex]; + x->plane[1].zbin_QTX = quants->u_zbin[qindex]; + x->plane[1].round_QTX = quants->u_round[qindex]; + x->plane[1].dequant_QTX = cpi->dequants.u_dequant_QTX[qindex]; + memcpy(&xd->plane[1].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][1], + sizeof(cm->gqmatrix[qmlevel][1])); + memcpy(&xd->plane[1].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][1], + sizeof(cm->giqmatrix[qmlevel][1])); + x->plane[1].dequant_QTX = cpi->dequants.u_dequant_QTX[qindex]; + xd->plane[1].dequant_Q3 = cpi->dequants.u_dequant_Q3[qindex]; + } + // V + qmlevel = (xd->lossless[segment_id] || cm->using_qmatrix == 0) + ? NUM_QM_LEVELS - 1 + : cm->qm_v; + { + x->plane[2].quant_QTX = quants->v_quant[qindex]; + x->plane[2].quant_fp_QTX = quants->v_quant_fp[qindex]; + x->plane[2].round_fp_QTX = quants->v_round_fp[qindex]; + x->plane[2].quant_shift_QTX = quants->v_quant_shift[qindex]; + x->plane[2].zbin_QTX = quants->v_zbin[qindex]; + x->plane[2].round_QTX = quants->v_round[qindex]; + x->plane[2].dequant_QTX = cpi->dequants.v_dequant_QTX[qindex]; + memcpy(&xd->plane[2].seg_qmatrix[segment_id], cm->gqmatrix[qmlevel][2], + sizeof(cm->gqmatrix[qmlevel][2])); + memcpy(&xd->plane[2].seg_iqmatrix[segment_id], cm->giqmatrix[qmlevel][2], + sizeof(cm->giqmatrix[qmlevel][2])); + x->plane[2].dequant_QTX = cpi->dequants.v_dequant_QTX[qindex]; + xd->plane[2].dequant_Q3 = cpi->dequants.v_dequant_Q3[qindex]; + } + x->skip_block = segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP); + x->qindex = qindex; + + set_error_per_bit(x, rdmult); + + av1_initialize_me_consts(cpi, x, qindex); +} + +void av1_frame_init_quantizer(AV1_COMP *cpi) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); +} + +void av1_set_quantizer(AV1_COMMON *cm, int q) { + // quantizer has to be reinitialized with av1_init_quantizer() if any + // delta_q changes. + cm->base_qindex = AOMMAX(cm->delta_q_present_flag, q); + cm->y_dc_delta_q = 0; + cm->u_dc_delta_q = 0; + cm->u_ac_delta_q = 0; + cm->v_dc_delta_q = 0; + cm->v_ac_delta_q = 0; + cm->qm_y = aom_get_qmlevel(cm->base_qindex, cm->min_qmlevel, cm->max_qmlevel); + cm->qm_u = aom_get_qmlevel(cm->base_qindex + cm->u_ac_delta_q, + cm->min_qmlevel, cm->max_qmlevel); + + if (!cm->seq_params.separate_uv_delta_q) + cm->qm_v = cm->qm_u; + else + cm->qm_v = aom_get_qmlevel(cm->base_qindex + cm->v_ac_delta_q, + cm->min_qmlevel, cm->max_qmlevel); +} + +// Table that converts 0-63 Q-range values passed in outside to the Qindex +// range used internally. +static const int quantizer_to_qindex[] = { + 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, + 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, + 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, + 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, + 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, +}; + +int av1_quantizer_to_qindex(int quantizer) { + return quantizer_to_qindex[quantizer]; +} + +int av1_qindex_to_quantizer(int qindex) { + int quantizer; + + for (quantizer = 0; quantizer < 64; ++quantizer) + if (quantizer_to_qindex[quantizer] >= qindex) return quantizer; + + return 63; +} diff --git a/third_party/aom/av1/encoder/av1_quantize.h b/third_party/aom/av1/encoder/av1_quantize.h new file mode 100644 index 0000000000..35af9a67ae --- /dev/null +++ b/third_party/aom/av1/encoder/av1_quantize.h @@ -0,0 +1,148 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_AV1_QUANTIZE_H_ +#define AOM_AV1_ENCODER_AV1_QUANTIZE_H_ + +#include "config/aom_config.h" + +#include "av1/common/quant_common.h" +#include "av1/common/scan.h" +#include "av1/encoder/block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct QUANT_PARAM { + int log_scale; + TX_SIZE tx_size; + const qm_val_t *qmatrix; + const qm_val_t *iqmatrix; +} QUANT_PARAM; + +typedef void (*AV1_QUANT_FACADE)(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam); + +// The QUANTS structure is used only for internal quantizer setup in +// av1_quantize.c. +// All of its fields use the same coefficient shift/scaling at TX. +typedef struct { + // 0: dc 1: ac 2-8: ac repeated to SIMD width + DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]); + + // TODO(jingning): in progress of re-working the quantization. will decide + // if we want to deprecate the current use of y_quant. + DECLARE_ALIGNED(16, int16_t, y_quant_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, u_quant_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_quant_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, y_round_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, u_round_fp[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_round_fp[QINDEX_RANGE][8]); + + DECLARE_ALIGNED(16, int16_t, u_quant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_quant[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, u_quant_shift[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_quant_shift[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, u_zbin[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_zbin[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, u_round[QINDEX_RANGE][8]); + DECLARE_ALIGNED(16, int16_t, v_round[QINDEX_RANGE][8]); +} QUANTS; + +// The Dequants structure is used only for internal quantizer setup in +// av1_quantize.c. +// Fields are sufffixed according to whether or not they're expressed in +// the same coefficient shift/precision as TX or a fixed Q3 format. +typedef struct { + DECLARE_ALIGNED(16, int16_t, + y_dequant_QTX[QINDEX_RANGE][8]); // 8: SIMD width + DECLARE_ALIGNED(16, int16_t, + u_dequant_QTX[QINDEX_RANGE][8]); // 8: SIMD width + DECLARE_ALIGNED(16, int16_t, + v_dequant_QTX[QINDEX_RANGE][8]); // 8: SIMD width + DECLARE_ALIGNED(16, int16_t, y_dequant_Q3[QINDEX_RANGE][8]); // 8: SIMD width + DECLARE_ALIGNED(16, int16_t, u_dequant_Q3[QINDEX_RANGE][8]); // 8: SIMD width + DECLARE_ALIGNED(16, int16_t, v_dequant_Q3[QINDEX_RANGE][8]); // 8: SIMD width +} Dequants; + +struct AV1_COMP; +struct AV1Common; + +void av1_frame_init_quantizer(struct AV1_COMP *cpi); + +void av1_init_plane_quantizers(const struct AV1_COMP *cpi, MACROBLOCK *x, + int segment_id); + +void av1_build_quantizer(aom_bit_depth_t bit_depth, int y_dc_delta_q, + int u_dc_delta_q, int u_ac_delta_q, int v_dc_delta_q, + int v_ac_delta_q, QUANTS *const quants, + Dequants *const deq); + +void av1_init_quantizer(struct AV1_COMP *cpi); + +void av1_set_quantizer(struct AV1Common *cm, int q); + +int av1_quantizer_to_qindex(int quantizer); + +int av1_qindex_to_quantizer(int qindex); + +void av1_quantize_skip(intptr_t n_coeffs, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr); + +void av1_quantize_fp_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam); + +void av1_quantize_b_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam); + +void av1_quantize_dc_facade(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const MACROBLOCK_PLANE *p, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, const QUANT_PARAM *qparam); + +void av1_highbd_quantize_fp_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam); + +void av1_highbd_quantize_b_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam); + +void av1_highbd_quantize_dc_facade(const tran_low_t *coeff_ptr, + intptr_t n_coeffs, const MACROBLOCK_PLANE *p, + tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, uint16_t *eob_ptr, + const SCAN_ORDER *sc, + const QUANT_PARAM *qparam); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_AV1_QUANTIZE_H_ diff --git a/third_party/aom/av1/encoder/bitstream.c b/third_party/aom/av1/encoder/bitstream.c new file mode 100644 index 0000000000..2c4acdb021 --- /dev/null +++ b/third_party/aom/av1/encoder/bitstream.c @@ -0,0 +1,3999 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <limits.h> +#include <stdio.h> + +#include "aom/aom_encoder.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_writer.h" +#include "aom_dsp/bitwriter_buffer.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/bitops.h" +#include "aom_ports/mem_ops.h" +#include "aom_ports/system_state.h" +#if CONFIG_BITSTREAM_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG + +#include "av1/common/cdef.h" +#include "av1/common/cfl.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/entropymv.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/seg_common.h" +#include "av1/common/tile_common.h" + +#include "av1/encoder/bitstream.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/palette.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/tokenize.h" + +#define ENC_MISMATCH_DEBUG 0 + +static INLINE void write_uniform(aom_writer *w, int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return; + if (v < m) { + aom_write_literal(w, v, l - 1); + } else { + aom_write_literal(w, m + ((v - m) >> 1), l - 1); + aom_write_literal(w, (v - m) & 1, 1); + } +} + +static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + const RestorationUnitInfo *rui, + aom_writer *const w, int plane, + FRAME_COUNTS *counts); + +static void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, + const MB_MODE_INFO *mi, + const MB_MODE_INFO *above_mi, + const MB_MODE_INFO *left_mi, + PREDICTION_MODE mode, aom_writer *w) { + assert(!is_intrabc_block(mi)); + (void)mi; + aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), + INTRA_MODES); +} + +static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, + FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { + const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; + + aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); + + if (mode != NEWMV) { + const int16_t zeromv_ctx = + (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); + + if (mode != GLOBALMV) { + int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); + } + } +} + +static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, + const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) { + uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + + assert(mbmi->ref_mv_idx < 3); + + const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; + if (new_mv) { + int idx; + for (idx = 0; idx < 2; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + + aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], + 2); + if (mbmi->ref_mv_idx == idx) return; + } + } + return; + } + + if (have_nearmv_in_inter_mode(mbmi->mode)) { + int idx; + // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. + for (idx = 1; idx < 3; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), + ec_ctx->drl_cdf[drl_ctx], 2); + if (mbmi->ref_mv_idx == (idx - 1)) return; + } + } + return; + } +} + +static void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, + PREDICTION_MODE mode, + const int16_t mode_ctx) { + assert(is_inter_compound_mode(mode)); + aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), + xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], + INTER_COMPOUND_MODES); +} + +static void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, + TX_SIZE tx_size, int depth, int blk_row, + int blk_col, aom_writer *w) { + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); + const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + if (depth == MAX_VARTX_DEPTH) { + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + return; + } + + const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, + mbmi->sb_type, tx_size); + const int txb_size_index = + av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col); + const int write_txfm_partition = + tx_size == mbmi->inter_tx_size[txb_size_index]; + if (write_txfm_partition) { + aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); + + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + // TODO(yuec): set correct txfm partition update for qttx + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + + aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); + + if (sub_txs == TX_4X4) { + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, sub_txs, tx_size); + return; + } + + assert(bsw > 0 && bsh > 0); + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + int offsetr = blk_row + row; + int offsetc = blk_col + col; + write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); + } + } +} + +static void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + if (block_signals_txsize(bsize)) { + const TX_SIZE tx_size = mbmi->tx_size; + const int tx_size_ctx = get_tx_size_context(xd); + const int depth = tx_size_to_depth(tx_size, bsize); + const int max_depths = bsize_to_max_depth(bsize); + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + + assert(depth >= 0 && depth <= max_depths); + assert(!is_inter_block(mbmi)); + assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); + + aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], + max_depths + 1); + } +} + +static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 1; + } else { + const int skip = mi->skip; + const int ctx = av1_get_skip_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2); + return skip; + } +} + +static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, const MB_MODE_INFO *mi, + aom_writer *w) { + if (!cm->skip_mode_flag) return 0; + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { + return 0; + } + const int skip_mode = mi->skip_mode; + if (!is_comp_ref_allowed(mi->sb_type)) { + assert(!skip_mode); + return 0; + } + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + // These features imply single-reference mode, while skip mode implies + // compound reference. Hence, the two are mutually exclusive. + // In other words, skip_mode is implicitly 0 here. + assert(!skip_mode); + return 0; + } + const int ctx = av1_get_skip_mode_context(xd); + aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); + return skip_mode; +} + +static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int segment_id, aom_writer *w, const int is_inter) { + if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + assert(is_inter); + return; + } + const int ctx = av1_get_intra_inter_context(xd); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); + } +} + +static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi, aom_writer *w) { + MOTION_MODE last_motion_mode_allowed = + cm->switchable_motion_mode + ? motion_mode_allowed(cm->global_motion, xd, mbmi, + cm->allow_warped_motion) + : SIMPLE_TRANSLATION; + assert(mbmi->motion_mode <= last_motion_mode_allowed); + switch (last_motion_mode_allowed) { + case SIMPLE_TRANSLATION: break; + case OBMC_CAUSAL: + aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, + xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2); + break; + default: + aom_write_symbol(w, mbmi->motion_mode, + xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], + MOTION_MODES); + } +} + +static void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex, + aom_writer *w) { + int sign = delta_qindex < 0; + int abs = sign ? -delta_qindex : delta_qindex; + int rem_bits, thr; + int smallval = abs < DELTA_Q_SMALL ? 1 : 0; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, + DELTA_Q_PROBS + 1); + + if (!smallval) { + rem_bits = get_msb(abs - 1); + thr = (1 << rem_bits) + 1; + aom_write_literal(w, rem_bits - 1, 3); + aom_write_literal(w, abs - thr, rem_bits); + } + if (abs > 0) { + aom_write_bit(w, sign); + } +} + +static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, + int lf_id, int delta_lflevel, aom_writer *w) { + int sign = delta_lflevel < 0; + int abs = sign ? -delta_lflevel : delta_lflevel; + int rem_bits, thr; + int smallval = abs < DELTA_LF_SMALL ? 1 : 0; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (cm->delta_lf_multi) { + assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT + : FRAME_LF_COUNT - 2)); + aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), + ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); + } else { + aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, + DELTA_LF_PROBS + 1); + } + + if (!smallval) { + rem_bits = get_msb(abs - 1); + thr = (1 << rem_bits) + 1; + aom_write_literal(w, rem_bits - 1, 3); + aom_write_literal(w, abs - thr, rem_bits); + } + if (abs > 0) { + aom_write_bit(w, sign); + } +} + +static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n, + int num) { + const TOKENEXTRA *p = *tp; + write_uniform(w, n, p->token); // The first color index. + ++p; + --num; + for (int i = 0; i < num; ++i) { + aom_write_symbol(w, p->token, p->color_map_cdf, n); + ++p; + } + *tp = p; +} + +static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, + const TOKENEXTRA **tp, + const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, + MB_MODE_INFO *mbmi, int plane, + BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, + int block, int blk_row, int blk_col, + TX_SIZE tx_size, TOKEN_STATS *token_stats) { + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + + if (tx_size == plane_tx_size || plane) { + tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); + const uint16_t eob = x->mbmi_ext->eobs[plane][block]; + TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], + x->mbmi_ext->dc_sign_ctx[plane][block] }; + av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, + eob, &txb_ctx); +#if CONFIG_RD_DEBUG + TOKEN_STATS tmp_token_stats; + init_token_stats(&tmp_token_stats); + token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; + token_stats->cost += tmp_token_stats.cost; +#endif + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsh * bsw; + + assert(bsw > 0 && bsh > 0); + + for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { + for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { + const int offsetr = blk_row + r; + const int offsetc = blk_col + c; + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, + bit_depth, block, offsetr, offsetc, sub_txs, + token_stats); + block += step; + } + } + } +} + +static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm, + uint8_t *segment_ids, + BLOCK_SIZE bsize, int mi_row, + int mi_col, int segment_id) { + const int mi_offset = mi_row * cm->mi_cols + mi_col; + const int bw = mi_size_wide[bsize]; + const int bh = mi_size_high[bsize]; + const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); + const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); + int x, y; + + for (y = 0; y < ymis; ++y) + for (x = 0; x < xmis; ++x) + segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id; +} + +int av1_neg_interleave(int x, int ref, int max) { + assert(x < max); + const int diff = x - ref; + if (!ref) return x; + if (ref >= (max - 1)) return -x + max - 1; + if (2 * ref < max) { + if (abs(diff) <= ref) { + if (diff > 0) + return (diff << 1) - 1; + else + return ((-diff) << 1); + } + return x; + } else { + if (abs(diff) < (max - ref)) { + if (diff > 0) + return (diff << 1) - 1; + else + return ((-diff) << 1); + } + return (max - x) - 1; + } +} + +static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, + aom_writer *w, const struct segmentation *seg, + struct segmentation_probs *segp, int mi_row, + int mi_col, int skip) { + if (!seg->enabled || !seg->update_map) return; + + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + int cdf_num; + const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num); + + if (skip) { + // Still need to transmit tx size for intra blocks even if skip is + // true. Changing segment_id may make the tx size become invalid, e.g + // changing from lossless to lossy. + assert(is_inter_block(mbmi) || !cpi->has_lossless_segment); + + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, + mi_col, pred); + set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row, + mi_col, pred); + /* mbmi is read only but we need to update segment_id */ + ((MB_MODE_INFO *)mbmi)->segment_id = pred; + return; + } + + const int coded_id = + av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); + aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; + aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, + mi_col, mbmi->segment_id); +} + +#define WRITE_REF_BIT(bname, pname) \ + aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) + +// This function encodes the reference frame +static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, + aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_compound = has_second_ref(mbmi); + const int segment_id = mbmi->segment_id; + + // If segment level coding of this signal is disabled... + // or the segment allows multiple reference frame options + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { + assert(!is_compound); + assert(mbmi->ref_frame[0] == + get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); + } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || + segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { + assert(!is_compound); + assert(mbmi->ref_frame[0] == LAST_FRAME); + } else { + // does the feature use compound prediction or not + // (if not specified at the frame/segment level) + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + if (is_comp_ref_allowed(mbmi->sb_type)) + aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2); + } else { + assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); + } + + if (is_compound) { + const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) + ? UNIDIR_COMP_REFERENCE + : BIDIR_COMP_REFERENCE; + aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), + 2); + + if (comp_ref_type == UNIDIR_COMP_REFERENCE) { + const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; + WRITE_REF_BIT(bit, uni_comp_ref_p); + + if (!bit) { + assert(mbmi->ref_frame[0] == LAST_FRAME); + const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || + mbmi->ref_frame[1] == GOLDEN_FRAME; + WRITE_REF_BIT(bit1, uni_comp_ref_p1); + if (bit1) { + const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; + WRITE_REF_BIT(bit2, uni_comp_ref_p2); + } + } else { + assert(mbmi->ref_frame[1] == ALTREF_FRAME); + } + + return; + } + + assert(comp_ref_type == BIDIR_COMP_REFERENCE); + + const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || + mbmi->ref_frame[0] == LAST3_FRAME); + WRITE_REF_BIT(bit, comp_ref_p); + + if (!bit) { + const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; + WRITE_REF_BIT(bit1, comp_ref_p1); + } else { + const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; + WRITE_REF_BIT(bit2, comp_ref_p2); + } + + const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; + WRITE_REF_BIT(bit_bwd, comp_bwdref_p); + + if (!bit_bwd) { + WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); + } + + } else { + const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && + mbmi->ref_frame[0] >= BWDREF_FRAME); + WRITE_REF_BIT(bit0, single_ref_p1); + + if (bit0) { + const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; + WRITE_REF_BIT(bit1, single_ref_p2); + + if (!bit1) { + WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); + } + } else { + const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || + mbmi->ref_frame[0] == GOLDEN_FRAME); + WRITE_REF_BIT(bit2, single_ref_p3); + + if (!bit2) { + const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; + WRITE_REF_BIT(bit3, single_ref_p4); + } else { + const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; + WRITE_REF_BIT(bit4, single_ref_p5); + } + } + } + } +} + +static void write_filter_intra_mode_info(const AV1_COMMON *cm, + const MACROBLOCKD *xd, + const MB_MODE_INFO *const mbmi, + aom_writer *w) { + if (av1_filter_intra_allowed(cm, mbmi)) { + aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, + xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2); + if (mbmi->filter_intra_mode_info.use_filter_intra) { + const FILTER_INTRA_MODE mode = + mbmi->filter_intra_mode_info.filter_intra_mode; + aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, + FILTER_INTRA_MODES); + } + } +} + +static void write_angle_delta(aom_writer *w, int angle_delta, + aom_cdf_prob *cdf) { + aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, + 2 * MAX_ANGLE_DELTA + 1); +} + +static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd, + aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!av1_is_interp_needed(xd)) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter))); + return; + } + if (cm->interp_filter == SWITCHABLE) { + int dir; + for (dir = 0; dir < 2; ++dir) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + InterpFilter filter = + av1_extract_interp_filter(mbmi->interp_filters, dir); + aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], + SWITCHABLE_FILTERS); + ++cpi->interp_filter_selected[0][filter]; + if (cm->seq_params.enable_dual_filter == 0) return; + } + } +} + +// Transmit color values with delta encoding. Write the first value as +// literal, and the deltas between each value and the previous one. "min_val" is +// the smallest possible value of the deltas. +static void delta_encode_palette_colors(const int *colors, int num, + int bit_depth, int min_val, + aom_writer *w) { + if (num <= 0) return; + assert(colors[0] < (1 << bit_depth)); + aom_write_literal(w, colors[0], bit_depth); + if (num == 1) return; + int max_delta = 0; + int deltas[PALETTE_MAX_SIZE]; + memset(deltas, 0, sizeof(deltas)); + for (int i = 1; i < num; ++i) { + assert(colors[i] < (1 << bit_depth)); + const int delta = colors[i] - colors[i - 1]; + deltas[i - 1] = delta; + assert(delta >= min_val); + if (delta > max_delta) max_delta = delta; + } + const int min_bits = bit_depth - 3; + int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); + assert(bits <= bit_depth); + int range = (1 << bit_depth) - colors[0] - min_val; + aom_write_literal(w, bits - min_bits, 2); + for (int i = 0; i < num - 1; ++i) { + aom_write_literal(w, deltas[i] - min_val, bits); + range -= deltas[i]; + bits = AOMMIN(bits, av1_ceil_log2(range)); + } +} + +// Transmit luma palette color values. First signal if each color in the color +// cache is used. Those colors that are not in the cache are transmitted with +// delta encoding. +static void write_palette_colors_y(const MACROBLOCKD *const xd, + const PALETTE_MODE_INFO *const pmi, + int bit_depth, aom_writer *w) { + const int n = pmi->palette_size[0]; + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = + av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, + cache_color_found, out_cache_colors); + int n_in_cache = 0; + for (int i = 0; i < n_cache && n_in_cache < n; ++i) { + const int found = cache_color_found[i]; + aom_write_bit(w, found); + n_in_cache += found; + } + assert(n_in_cache + n_out_cache == n); + delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); +} + +// Write chroma palette color values. U channel is handled similarly to the luma +// channel. For v channel, either use delta encoding or transmit raw values +// directly, whichever costs less. +static void write_palette_colors_uv(const MACROBLOCKD *const xd, + const PALETTE_MODE_INFO *const pmi, + int bit_depth, aom_writer *w) { + const int n = pmi->palette_size[1]; + const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; + const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; + // U channel colors. + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = av1_index_color_cache( + color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); + int n_in_cache = 0; + for (int i = 0; i < n_cache && n_in_cache < n; ++i) { + const int found = cache_color_found[i]; + aom_write_bit(w, found); + n_in_cache += found; + } + delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); + + // V channel colors. Don't use color cache as the colors are not sorted. + const int max_val = 1 << bit_depth; + int zero_count = 0, min_bits_v = 0; + int bits_v = + av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); + const int rate_using_delta = + 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; + const int rate_using_raw = bit_depth * n; + if (rate_using_delta < rate_using_raw) { // delta encoding + assert(colors_v[0] < (1 << bit_depth)); + aom_write_bit(w, 1); + aom_write_literal(w, bits_v - min_bits_v, 2); + aom_write_literal(w, colors_v[0], bit_depth); + for (int i = 1; i < n; ++i) { + assert(colors_v[i] < (1 << bit_depth)); + if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. + aom_write_literal(w, 0, bits_v); + continue; + } + const int delta = abs((int)colors_v[i] - colors_v[i - 1]); + const int sign_bit = colors_v[i] < colors_v[i - 1]; + if (delta <= max_val - delta) { + aom_write_literal(w, delta, bits_v); + aom_write_bit(w, sign_bit); + } else { + aom_write_literal(w, max_val - delta, bits_v); + aom_write_bit(w, !sign_bit); + } + } + } else { // Transmit raw values. + aom_write_bit(w, 0); + for (int i = 0; i < n; ++i) { + assert(colors_v[i] < (1 << bit_depth)); + aom_write_literal(w, colors_v[i], bit_depth); + } + } +} + +static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, + const MB_MODE_INFO *const mbmi, int mi_row, + int mi_col, aom_writer *w) { + const int num_planes = av1_num_planes(cm); + const BLOCK_SIZE bsize = mbmi->sb_type; + assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + + if (mbmi->mode == DC_PRED) { + const int n = pmi->palette_size[0]; + const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); + aom_write_symbol( + w, n > 0, + xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); + if (n > 0) { + aom_write_symbol(w, n - PALETTE_MIN_SIZE, + xd->tile_ctx->palette_y_size_cdf[bsize_ctx], + PALETTE_SIZES); + write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); + } + } + + const int uv_dc_pred = + num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && + is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, + xd->plane[1].subsampling_y); + if (uv_dc_pred) { + const int n = pmi->palette_size[1]; + const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); + aom_write_symbol(w, n > 0, + xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); + if (n > 0) { + aom_write_symbol(w, n - PALETTE_MIN_SIZE, + xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], + PALETTE_SIZES); + write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); + } + } +} + +void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, + int blk_row, int blk_col, int plane, TX_SIZE tx_size, + aom_writer *w) { + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + // Only y plane's tx_type is transmitted + if (plane > 0) return; + PLANE_TYPE plane_type = get_plane_type(plane); + TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, + cm->reduced_tx_set_used); + + const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; + if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && + ((!cm->seg.enabled && cm->base_qindex > 0) || + (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && + !mbmi->skip && + !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); + const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); + // eset == 0 should correspond to a set with only DCT_DCT and there + // is no need to send the tx_type + assert(eset > 0); + assert(av1_ext_tx_used[tx_set_type][tx_type]); + if (is_inter) { + aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], + ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], + av1_num_ext_tx_set[tx_set_type]); + } else { + PREDICTION_MODE intra_dir; + if (mbmi->filter_intra_mode_info.use_filter_intra) + intra_dir = + fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; + else + intra_dir = mbmi->mode; + aom_write_symbol( + w, av1_ext_tx_ind[tx_set_type][tx_type], + ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], + av1_num_ext_tx_set[tx_set_type]); + } + } +} + +static void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, + PREDICTION_MODE mode, aom_writer *w) { + aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], + INTRA_MODES); +} + +static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, + UV_PREDICTION_MODE uv_mode, + PREDICTION_MODE y_mode, + CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) { + aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], + UV_INTRA_MODES - !cfl_allowed); +} + +static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx, + int joint_sign, aom_writer *w) { + aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); + // Magnitudes are only signaled for nonzero codes. + if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; + aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); + } + if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; + aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); + } +} + +static void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_writer *w, + int skip, int mi_col, int mi_row) { + if (cm->coded_lossless || cm->allow_intrabc) { + // Initialize to indicate no CDEF for safety. + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->nb_cdef_strengths = 1; + cm->cdef_uv_strengths[0] = 0; + return; + } + + const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1); + const MB_MODE_INFO *mbmi = + cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)]; + // Initialise when at top left part of the superblock + if (!(mi_row & (cm->seq_params.mib_size - 1)) && + !(mi_col & (cm->seq_params.mib_size - 1))) { // Top left? + xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] = + xd->cdef_preset[3] = -1; + } + + // Emit CDEF param at first non-skip coding block + const int mask = 1 << (6 - MI_SIZE_LOG2); + const int index = cm->seq_params.sb_size == BLOCK_128X128 + ? !!(mi_col & mask) + 2 * !!(mi_row & mask) + : 0; + if (xd->cdef_preset[index] == -1 && !skip) { + aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); + xd->cdef_preset[index] = mbmi->cdef_strength; + } +} + +static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w, + const struct segmentation *const seg, + struct segmentation_probs *const segp, + int mi_row, int mi_col, int skip, + int preskip) { + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + AV1_COMMON *const cm = &cpi->common; + + if (seg->update_map) { + if (preskip) { + if (!seg->segid_preskip) return; + } else { + if (seg->segid_preskip) return; + if (skip) { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1); + if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0; + return; + } + } + if (seg->temporal_update) { + const int pred_flag = mbmi->seg_id_predicted; + aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); + aom_write_symbol(w, pred_flag, pred_cdf, 2); + if (!pred_flag) { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + } + if (pred_flag) { + set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, + mi_row, mi_col, mbmi->segment_id); + } + } else { + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + } + } +} + +// If delta q is present, writes delta_q index. +// Also writes delta_q loop filter levels, if present. +static void write_delta_q_params(AV1_COMP *cpi, const int mi_row, + const int mi_col, int skip, aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + if (cm->delta_q_present_flag) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int super_block_upper_left = + ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && + ((mi_col & (cm->seq_params.mib_size - 1)) == 0); + + if ((bsize != cm->seq_params.sb_size || skip == 0) && + super_block_upper_left) { + assert(mbmi->current_qindex > 0); + const int reduced_delta_qindex = + (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; + write_delta_qindex(xd, reduced_delta_qindex, w); + xd->current_qindex = mbmi->current_qindex; + if (cm->delta_lf_present_flag) { + if (cm->delta_lf_multi) { + const int frame_lf_count = + av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { + int reduced_delta_lflevel = + (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / + cm->delta_lf_res; + write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); + xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; + } + } else { + int reduced_delta_lflevel = + (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / + cm->delta_lf_res; + write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); + xd->delta_lf_from_base = mbmi->delta_lf_from_base; + } + } + } + } +} + +static void write_intra_prediction_modes(AV1_COMP *cpi, const int mi_row, + const int mi_col, int is_keyframe, + aom_writer *w) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const PREDICTION_MODE mode = mbmi->mode; + const BLOCK_SIZE bsize = mbmi->sb_type; + + // Y mode. + if (is_keyframe) { + const MB_MODE_INFO *const above_mi = xd->above_mbmi; + const MB_MODE_INFO *const left_mi = xd->left_mbmi; + write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w); + } else { + write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); + } + + // Y angle delta. + const int use_angle_delta = av1_use_angle_delta(bsize); + if (use_angle_delta && av1_is_directional_mode(mode)) { + write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], + ec_ctx->angle_delta_cdf[mode - V_PRED]); + } + + // UV mode and UV angle delta. + if (!cm->seq_params.monochrome && + is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, + xd->plane[1].subsampling_y)) { + const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; + write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); + if (uv_mode == UV_CFL_PRED) + write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); + if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { + write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], + ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); + } + } + + // Palette. + if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { + write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w); + } + + // Filter intra. + write_filter_intra_mode_info(cm, xd, mbmi, w); +} + +static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row, + const int mi_col, aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const struct segmentation *const seg = &cm->seg; + struct segmentation_probs *const segp = &ec_ctx->seg; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const PREDICTION_MODE mode = mbmi->mode; + const int segment_id = mbmi->segment_id; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int allow_hp = cm->allow_high_precision_mv; + const int is_inter = is_inter_block(mbmi); + const int is_compound = has_second_ref(mbmi); + int ref; + + write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1); + + write_skip_mode(cm, xd, segment_id, mbmi, w); + + assert(IMPLIES(mbmi->skip_mode, mbmi->skip)); + const int skip = + mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); + + write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0); + + write_cdef(cm, xd, w, skip, mi_col, mi_row); + + write_delta_q_params(cpi, mi_row, mi_col, skip, w); + + if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); + + if (mbmi->skip_mode) return; + + if (!is_inter) { + write_intra_prediction_modes(cpi, mi_row, mi_col, 0, w); + } else { + int16_t mode_ctx; + + av1_collect_neighbors_ref_counts(xd); + + write_ref_frames(cm, xd, w); + + mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); + + // If segment skip is not enabled code the mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { + if (is_inter_compound_mode(mode)) + write_inter_compound_mode(xd, w, mode, mode_ctx); + else if (is_inter_singleref_mode(mode)) + write_inter_mode(w, mode, ec_ctx, mode_ctx); + + if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) + write_drl_idx(ec_ctx, mbmi, mbmi_ext, w); + else + assert(mbmi->ref_mv_idx == 0); + } + + if (mode == NEWMV || mode == NEW_NEWMV) { + for (ref = 0; ref < 1 + is_compound; ++ref) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, ref); + av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, + allow_hp); + } + } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, 1); + av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp); + } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { + nmv_context *nmvc = &ec_ctx->nmvc; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp); + } + + if (cpi->common.reference_mode != COMPOUND_REFERENCE && + cpi->common.seq_params.enable_interintra_compound && + is_interintra_allowed(mbmi)) { + const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; + const int bsize_group = size_group_lookup[bsize]; + aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); + if (interintra) { + aom_write_symbol(w, mbmi->interintra_mode, + ec_ctx->interintra_mode_cdf[bsize_group], + INTERINTRA_MODES); + if (is_interintra_wedge_used(bsize)) { + aom_write_symbol(w, mbmi->use_wedge_interintra, + ec_ctx->wedge_interintra_cdf[bsize], 2); + if (mbmi->use_wedge_interintra) { + aom_write_symbol(w, mbmi->interintra_wedge_index, + ec_ctx->wedge_idx_cdf[bsize], 16); + assert(mbmi->interintra_wedge_sign == 0); + } + } + } + } + + if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w); + + // First write idx to indicate current compound inter prediction mode group + // Group A (0): jnt_comp, compound_average + // Group B (1): interintra, compound_diffwtd, wedge + if (has_second_ref(mbmi)) { + const int masked_compound_used = is_any_masked_compound_used(bsize) && + cm->seq_params.enable_masked_compound; + + if (masked_compound_used) { + const int ctx_comp_group_idx = get_comp_group_idx_context(xd); + aom_write_symbol(w, mbmi->comp_group_idx, + ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); + } else { + assert(mbmi->comp_group_idx == 0); + } + + if (mbmi->comp_group_idx == 0) { + if (mbmi->compound_idx) + assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); + + if (cm->seq_params.enable_jnt_comp) { + const int comp_index_ctx = get_comp_index_context(cm, xd); + aom_write_symbol(w, mbmi->compound_idx, + ec_ctx->compound_index_cdf[comp_index_ctx], 2); + } else { + assert(mbmi->compound_idx == 1); + } + } else { + assert(cpi->common.reference_mode != SINGLE_REFERENCE && + is_inter_compound_mode(mbmi->mode) && + mbmi->motion_mode == SIMPLE_TRANSLATION); + assert(masked_compound_used); + // compound_diffwtd, wedge + assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || + mbmi->interinter_comp.type == COMPOUND_DIFFWTD); + + if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) + aom_write_symbol(w, mbmi->interinter_comp.type - 1, + ec_ctx->compound_type_cdf[bsize], + COMPOUND_TYPES - 1); + + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); + aom_write_symbol(w, mbmi->interinter_comp.wedge_index, + ec_ctx->wedge_idx_cdf[bsize], 16); + aom_write_bit(w, mbmi->interinter_comp.wedge_sign); + } else { + assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); + aom_write_literal(w, mbmi->interinter_comp.mask_type, + MAX_DIFFWTD_MASK_BITS); + } + } + } + + write_mb_interp_filter(cpi, xd, w); + } +} + +static void write_intrabc_info(MACROBLOCKD *xd, + const MB_MODE_INFO_EXT *mbmi_ext, + aom_writer *w) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + int use_intrabc = is_intrabc_block(mbmi); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); + if (use_intrabc) { + assert(mbmi->mode == DC_PRED); + assert(mbmi->uv_mode == UV_DC_PRED); + assert(mbmi->motion_mode == SIMPLE_TRANSLATION); + int_mv dv_ref = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv; + av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); + } +} + +static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd, + const MB_MODE_INFO_EXT *mbmi_ext, + const int mi_row, const int mi_col, + aom_writer *w) { + AV1_COMMON *const cm = &cpi->common; + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + const struct segmentation *const seg = &cm->seg; + struct segmentation_probs *const segp = &ec_ctx->seg; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + + if (seg->segid_preskip && seg->update_map) + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); + + const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); + + if (!seg->segid_preskip && seg->update_map) + write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip); + + write_cdef(cm, xd, w, skip, mi_col, mi_row); + + write_delta_q_params(cpi, mi_row, mi_col, skip, w); + + if (av1_allow_intrabc(cm)) { + write_intrabc_info(xd, mbmi_ext, w); + if (is_intrabc_block(mbmi)) return; + } + + write_intra_prediction_modes(cpi, mi_row, mi_col, 1, w); +} + +#if CONFIG_RD_DEBUG +static void dump_mode_info(MODE_INFO *mi) { + printf("\nmi->mi_row == %d\n", mi->mi_row); + printf("&& mi->mi_col == %d\n", mi->mi_col); + printf("&& mi->sb_type == %d\n", mi->sb_type); + printf("&& mi->tx_size == %d\n", mi->tx_size); + printf("&& mi->mode == %d\n", mi->mode); +} +static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, + int plane) { + if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { + int r, c; + printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", + plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); + printf("rd txb_coeff_cost_map\n"); + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { + printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); + } + printf("\n"); + } + + printf("pack txb_coeff_cost_map\n"); + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { + printf("%d ", token_stats->txb_coeff_cost_map[r][c]); + } + printf("\n"); + } + return 1; + } + return 0; +} +#endif + +#if ENC_MISMATCH_DEBUG +static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + const MB_MODE_INFO *const *mbmi = xd->mi[0]; + if (is_inter_block(mbmi)) { +#define FRAME_TO_CHECK 11 + if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { + const BLOCK_SIZE bsize = mbmi->sb_type; + + int_mv mv[2]; + int is_comp_ref = has_second_ref(mbmi); + int ref; + + for (ref = 0; ref < 1 + is_comp_ref; ++ref) + mv[ref].as_mv = mbmi->mv[ref].as_mv; + + if (!is_comp_ref) { + mv[1].as_int = 0; + } + + MACROBLOCK *const x = &cpi->td.mb; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int16_t mode_ctx = + is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]] + : av1_mode_context_analyzer(mbmi_ext->mode_context, + mbmi->ref_frame); + + const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; + int16_t zeromv_ctx = -1; + int16_t refmv_ctx = -1; + + if (mbmi->mode != NEWMV) { + zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + if (mbmi->mode != GLOBALMV) + refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; + } + + printf( + "=== ENCODER ===: " + "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " + "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " + "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " + "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", + cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, + bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, + mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], + mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, + zeromv_ctx, refmv_ctx, mbmi->tx_size); + } + } +} +#endif // ENC_MISMATCH_DEBUG + +static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, int mi_row, int mi_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + int bh, bw; + xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); + MB_MODE_INFO *m = xd->mi[0]; + + assert(m->sb_type <= cm->seq_params.sb_size || + (m->sb_type >= BLOCK_SIZES && m->sb_type < BLOCK_SIZES_ALL)); + + bh = mi_size_high[m->sb_type]; + bw = mi_size_wide[m->sb_type]; + + cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + if (frame_is_intra_only(cm)) { + write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext, mi_row, mi_col, w); + } else { + // has_subpel_mv_component needs the ref frame buffers set up to look + // up if they are scaled. has_subpel_mv_component is in turn needed by + // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. + set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); + +#if ENC_MISMATCH_DEBUG + enc_dump_logs(cpi, mi_row, mi_col); +#endif // ENC_MISMATCH_DEBUG + + pack_inter_mode_mvs(cpi, mi_row, mi_col, w); + } +} + +static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x, + MB_MODE_INFO *const mbmi, aom_writer *w, + const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, + TOKEN_STATS *token_stats, const int row, + const int col, int *block, const int plane) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const BLOCK_SIZE bsizec = + scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + const int step = + tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + const int bkw = tx_size_wide_unit[max_tx_size]; + const int bkh = tx_size_high_unit[max_tx_size]; + + const BLOCK_SIZE max_unit_bsize = + get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); + int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + int blk_row, blk_col; + + const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + + const int unit_height = + AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h); + const int unit_width = + AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w); + for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += bkh) { + for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += bkw) { + pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, + cm->seq_params.bit_depth, *block, blk_row, blk_col, + max_tx_size, token_stats); + *block += step; + } + } +} + +static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int mi_offset = mi_row * cm->mi_stride + mi_col; + MB_MODE_INFO *const mbmi = *(cm->mi_grid_visible + mi_offset); + int plane; + int bh, bw; + MACROBLOCK *const x = &cpi->td.mb; + (void)tok; + (void)tok_end; + xd->mi = cm->mi_grid_visible + mi_offset; + + assert(mbmi->sb_type <= cm->seq_params.sb_size || + (mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL)); + + bh = mi_size_high[mbmi->sb_type]; + bw = mi_size_wide[mbmi->sb_type]; + cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + if (!mbmi->skip) { + if (!is_inter_block(mbmi)) + av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type); + + if (is_inter_block(mbmi)) { + int block[MAX_MB_PLANE] = { 0 }; + const BLOCK_SIZE plane_bsize = mbmi->sb_type; + assert(plane_bsize == get_plane_block_size(mbmi->sb_type, + xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + const int num_4x4_w = + block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = + block_size_high[plane_bsize] >> tx_size_high_log2[0]; + int row, col; + TOKEN_STATS token_stats; + init_token_stats(&token_stats); + + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + assert(max_unit_bsize == + get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); + mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); + + for (row = 0; row < num_4x4_h; row += mu_blocks_high) { + for (col = 0; col < num_4x4_w; col += mu_blocks_wide) { + for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, + pd->subsampling_x, pd->subsampling_y)) { + continue; + } + write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, + row, col, &block[plane], plane); + } + } +#if CONFIG_RD_DEBUG + if (mbmi->sb_type >= BLOCK_8X8 && + rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { + dump_mode_info(m); + assert(0); + } +#endif // CONFIG_RD_DEBUG + } + } + } +} + +static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, + aom_writer *w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col) { + write_mbmi_b(cpi, tile, w, mi_row, mi_col); + + AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &cpi->td.mb.e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) { + const uint8_t palette_size_plane = + mbmi->palette_mode_info.palette_size[plane]; + assert(!mbmi->skip_mode || !palette_size_plane); + if (palette_size_plane > 0) { + assert(mbmi->use_intrabc == 0); + assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type)); + int rows, cols; + av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows, + &cols); + assert(*tok < tok_end); + pack_map_tokens(w, tok, palette_size_plane, rows * cols); + } + } + + BLOCK_SIZE bsize = mbmi->sb_type; + int is_inter_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); + int skip = mbmi->skip; + int segment_id = mbmi->segment_id; + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && + !(is_inter_tx && skip) && !xd->lossless[segment_id]) { + if (is_inter_tx) { // This implies skip flag is 0. + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); + const int txbh = tx_size_high_unit[max_tx_size]; + const int txbw = tx_size_wide_unit[max_tx_size]; + const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; + const int height = block_size_high[bsize] >> tx_size_high_log2[0]; + int idx, idy; + for (idy = 0; idy < height; idy += txbh) + for (idx = 0; idx < width; idx += txbw) + write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); + } else { + write_selected_tx_size(xd, w); + set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, 0, xd); + } + } else { + set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, + skip && is_inter_block(mbmi), xd); + } + + write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); +} + +static void write_partition(const AV1_COMMON *const cm, + const MACROBLOCKD *const xd, int hbs, int mi_row, + int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, + aom_writer *w) { + const int is_partition_point = bsize >= BLOCK_8X8; + + if (!is_partition_point) return; + + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + + if (!has_rows && !has_cols) { + assert(p == PARTITION_SPLIT); + return; + } + + if (has_rows && has_cols) { + aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], + partition_cdf_length(bsize)); + } else if (!has_rows && has_cols) { + assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); + aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); + } else { + assert(has_rows && !has_cols); + assert(p == PARTITION_SPLIT || p == PARTITION_VERT); + assert(bsize > BLOCK_8X8); + aom_cdf_prob cdf[2]; + partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); + aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); + } +} + +static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile, + aom_writer *const w, const TOKENEXTRA **tok, + const TOKENEXTRA *const tok_end, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int hbs = mi_size_wide[bsize] / 2; + const int quarter_step = mi_size_wide[bsize] / 4; + int i; + const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); + const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + const int num_planes = av1_num_planes(cm); + for (int plane = 0; plane < num_planes; ++plane) { + int rcol0, rcol1, rrow0, rrow1; + if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, + &rcol0, &rcol1, &rrow0, &rrow1)) { + const int rstride = cm->rst_info[plane].horz_units_per_tile; + for (int rrow = rrow0; rrow < rrow1; ++rrow) { + for (int rcol = rcol0; rcol < rcol1; ++rcol) { + const int runit_idx = rcol + rrow * rstride; + const RestorationUnitInfo *rui = + &cm->rst_info[plane].unit_info[runit_idx]; + loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, + cpi->td.counts); + } + } + } + } + + write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); + switch (partition) { + case PARTITION_NONE: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + break; + case PARTITION_HORZ: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + if (mi_row + hbs < cm->mi_rows) + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + break; + case PARTITION_VERT: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + if (mi_col + hbs < cm->mi_cols) + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + break; + case PARTITION_SPLIT: + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); + write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, + subsize); + break; + case PARTITION_HORZ_A: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + break; + case PARTITION_HORZ_B: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); + break; + case PARTITION_VERT_A: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + break; + case PARTITION_VERT_B: + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); + write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); + break; + case PARTITION_HORZ_4: + for (i = 0; i < 4; ++i) { + int this_mi_row = mi_row + i * quarter_step; + if (i > 0 && this_mi_row >= cm->mi_rows) break; + + write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); + } + break; + case PARTITION_VERT_4: + for (i = 0; i < 4; ++i) { + int this_mi_col = mi_col + i * quarter_step; + if (i > 0 && this_mi_col >= cm->mi_cols) break; + + write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); + } + break; + default: assert(0); + } + + // update partition context + update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); +} + +static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile, + aom_writer *const w, int tile_row, int tile_col) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + const int mi_row_start = tile->mi_row_start; + const int mi_row_end = tile->mi_row_end; + const int mi_col_start = tile->mi_col_start; + const int mi_col_end = tile->mi_col_end; + int mi_row, mi_col, sb_row_in_tile; + + av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); + av1_init_above_context(cm, xd, tile->tile_row); + + if (cpi->common.delta_q_present_flag) { + xd->current_qindex = cpi->common.base_qindex; + if (cpi->common.delta_lf_present_flag) { + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + + for (mi_row = mi_row_start; mi_row < mi_row_end; + mi_row += cm->seq_params.mib_size) { + sb_row_in_tile = + (mi_row - tile->mi_row_start) >> cm->seq_params.mib_size_log2; + const TOKENEXTRA *tok = + cpi->tplist[tile_row][tile_col][sb_row_in_tile].start; + const TOKENEXTRA *tok_end = + tok + cpi->tplist[tile_row][tile_col][sb_row_in_tile].count; + + av1_zero_left_context(xd); + + for (mi_col = mi_col_start; mi_col < mi_col_end; + mi_col += cm->seq_params.mib_size) { + write_modes_sb(cpi, tile, w, &tok, tok_end, mi_row, mi_col, + cm->seq_params.sb_size); + } + assert(tok == cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop); + } +} + +static void encode_restoration_mode(AV1_COMMON *cm, + struct aom_write_bit_buffer *wb) { + assert(!cm->all_lossless); + if (!cm->seq_params.enable_restoration) return; + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int all_none = 1, chroma_none = 1; + for (int p = 0; p < num_planes; ++p) { + RestorationInfo *rsi = &cm->rst_info[p]; + if (rsi->frame_restoration_type != RESTORE_NONE) { + all_none = 0; + chroma_none &= p == 0; + } + switch (rsi->frame_restoration_type) { + case RESTORE_NONE: + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, 0); + break; + case RESTORE_WIENER: + aom_wb_write_bit(wb, 1); + aom_wb_write_bit(wb, 0); + break; + case RESTORE_SGRPROJ: + aom_wb_write_bit(wb, 1); + aom_wb_write_bit(wb, 1); + break; + case RESTORE_SWITCHABLE: + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, 1); + break; + default: assert(0); + } + } + if (!all_none) { + assert(cm->seq_params.sb_size == BLOCK_64X64 || + cm->seq_params.sb_size == BLOCK_128X128); + const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; + + RestorationInfo *rsi = &cm->rst_info[0]; + + assert(rsi->restoration_unit_size >= sb_size); + assert(RESTORATION_UNITSIZE_MAX == 256); + + if (sb_size == 64) { + aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); + } + if (rsi->restoration_unit_size > 64) { + aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); + } + } + + if (num_planes > 1) { + int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); + if (s && !chroma_none) { + aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != + cm->rst_info[0].restoration_unit_size); + assert(cm->rst_info[1].restoration_unit_size == + cm->rst_info[0].restoration_unit_size || + cm->rst_info[1].restoration_unit_size == + (cm->rst_info[0].restoration_unit_size >> s)); + assert(cm->rst_info[2].restoration_unit_size == + cm->rst_info[1].restoration_unit_size); + } else if (!s) { + assert(cm->rst_info[1].restoration_unit_size == + cm->rst_info[0].restoration_unit_size); + assert(cm->rst_info[2].restoration_unit_size == + cm->rst_info[1].restoration_unit_size); + } + } +} + +static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, + WienerInfo *ref_wiener_info, aom_writer *wb) { + if (wiener_win == WIENER_WIN) + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); + else + assert(wiener_info->vfilter[0] == 0 && + wiener_info->vfilter[WIENER_WIN - 1] == 0); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); + if (wiener_win == WIENER_WIN) + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); + else + assert(wiener_info->hfilter[0] == 0 && + wiener_info->hfilter[WIENER_WIN - 1] == 0); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); + aom_write_primitive_refsubexpfin( + wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); + memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); +} + +static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, + SgrprojInfo *ref_sgrproj_info, + aom_writer *wb) { + aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); + const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; + + if (params->r[0] == 0) { + assert(sgrproj_info->xqd[0] == 0); + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, + sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); + } else if (params->r[1] == 0) { + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, + sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); + } else { + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, + sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); + aom_write_primitive_refsubexpfin( + wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, + sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); + } + + memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); +} + +static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, + MACROBLOCKD *xd, + const RestorationUnitInfo *rui, + aom_writer *const w, int plane, + FRAME_COUNTS *counts) { + const RestorationInfo *rsi = cm->rst_info + plane; + RestorationType frame_rtype = rsi->frame_restoration_type; + if (frame_rtype == RESTORE_NONE) return; + + (void)counts; + assert(!cm->all_lossless); + + const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; + WienerInfo *wiener_info = xd->wiener_info + plane; + SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; + RestorationType unit_rtype = rui->restoration_type; + + if (frame_rtype == RESTORE_SWITCHABLE) { + aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, + RESTORE_SWITCHABLE_TYPES); +#if CONFIG_ENTROPY_STATS + ++counts->switchable_restore[unit_rtype]; +#endif + switch (unit_rtype) { + case RESTORE_WIENER: + write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); + break; + case RESTORE_SGRPROJ: + write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); + break; + default: assert(unit_rtype == RESTORE_NONE); break; + } + } else if (frame_rtype == RESTORE_WIENER) { + aom_write_symbol(w, unit_rtype != RESTORE_NONE, + xd->tile_ctx->wiener_restore_cdf, 2); +#if CONFIG_ENTROPY_STATS + ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; +#endif + if (unit_rtype != RESTORE_NONE) { + write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); + } + } else if (frame_rtype == RESTORE_SGRPROJ) { + aom_write_symbol(w, unit_rtype != RESTORE_NONE, + xd->tile_ctx->sgrproj_restore_cdf, 2); +#if CONFIG_ENTROPY_STATS + ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; +#endif + if (unit_rtype != RESTORE_NONE) { + write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); + } + } +} + +static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { + assert(!cm->coded_lossless); + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int i; + struct loopfilter *lf = &cm->lf; + + // Encode the loop filter level and type + aom_wb_write_literal(wb, lf->filter_level[0], 6); + aom_wb_write_literal(wb, lf->filter_level[1], 6); + if (num_planes > 1) { + if (lf->filter_level[0] || lf->filter_level[1]) { + aom_wb_write_literal(wb, lf->filter_level_u, 6); + aom_wb_write_literal(wb, lf->filter_level_v, 6); + } + } + aom_wb_write_literal(wb, lf->sharpness_level, 3); + + // Write out loop filter deltas applied at the MB level based on mode or + // ref frame (if they are enabled). + aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); + + if (lf->mode_ref_delta_enabled) { + aom_wb_write_bit(wb, lf->mode_ref_delta_update); + + if (lf->mode_ref_delta_update) { + const int prime_idx = cm->primary_ref_frame; + const int buf_idx = + prime_idx == PRIMARY_REF_NONE ? -1 : cm->frame_refs[prime_idx].idx; + int8_t last_ref_deltas[REF_FRAMES]; + if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { + av1_set_default_ref_deltas(last_ref_deltas); + } else { + memcpy(last_ref_deltas, cm->buffer_pool->frame_bufs[buf_idx].ref_deltas, + REF_FRAMES); + } + for (i = 0; i < REF_FRAMES; i++) { + const int delta = lf->ref_deltas[i]; + const int changed = delta != last_ref_deltas[i]; + aom_wb_write_bit(wb, changed); + if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); + } + + int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; + if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { + av1_set_default_mode_deltas(last_mode_deltas); + } else { + memcpy(last_mode_deltas, + cm->buffer_pool->frame_bufs[buf_idx].mode_deltas, + MAX_MODE_LF_DELTAS); + } + for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { + const int delta = lf->mode_deltas[i]; + const int changed = delta != last_mode_deltas[i]; + aom_wb_write_bit(wb, changed); + if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); + } + } + } +} + +static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { + assert(!cm->coded_lossless); + if (!cm->seq_params.enable_cdef) return; + if (cm->allow_intrabc) return; + const int num_planes = av1_num_planes(cm); + int i; + aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2); + assert(cm->cdef_pri_damping == cm->cdef_sec_damping); + aom_wb_write_literal(wb, cm->cdef_bits, 2); + for (i = 0; i < cm->nb_cdef_strengths; i++) { + aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS); + if (num_planes > 1) + aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS); + } +} + +static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { + if (delta_q != 0) { + aom_wb_write_bit(wb, 1); + aom_wb_write_inv_signed_literal(wb, delta_q, 6); + } else { + aom_wb_write_bit(wb, 0); + } +} + +static void encode_quantization(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + const int num_planes = av1_num_planes(cm); + + aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); + write_delta_q(wb, cm->y_dc_delta_q); + if (num_planes > 1) { + int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) || + (cm->u_ac_delta_q != cm->v_ac_delta_q); + if (cm->seq_params.separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); + write_delta_q(wb, cm->u_dc_delta_q); + write_delta_q(wb, cm->u_ac_delta_q); + if (diff_uv_delta) { + write_delta_q(wb, cm->v_dc_delta_q); + write_delta_q(wb, cm->v_ac_delta_q); + } + } + aom_wb_write_bit(wb, cm->using_qmatrix); + if (cm->using_qmatrix) { + aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS); + aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS); + if (!cm->seq_params.separate_uv_delta_q) + assert(cm->qm_u == cm->qm_v); + else + aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS); + } +} + +static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, + struct aom_write_bit_buffer *wb) { + int i, j; + struct segmentation *seg = &cm->seg; + + aom_wb_write_bit(wb, seg->enabled); + if (!seg->enabled) return; + + // Write update flags + if (cm->primary_ref_frame == PRIMARY_REF_NONE) { + assert(seg->update_map == 1); + seg->temporal_update = 0; + assert(seg->update_data == 1); + } else { + aom_wb_write_bit(wb, seg->update_map); + if (seg->update_map) { + // Select the coding strategy (temporal or spatial) + av1_choose_segmap_coding_method(cm, xd); + aom_wb_write_bit(wb, seg->temporal_update); + } + aom_wb_write_bit(wb, seg->update_data); + } + + // Segmentation data + if (seg->update_data) { + for (i = 0; i < MAX_SEGMENTS; i++) { + for (j = 0; j < SEG_LVL_MAX; j++) { + const int active = segfeature_active(seg, i, j); + aom_wb_write_bit(wb, active); + if (active) { + const int data_max = av1_seg_feature_data_max(j); + const int data_min = -data_max; + const int ubits = get_unsigned_bits(data_max); + const int data = clamp(get_segdata(seg, i, j), data_min, data_max); + + if (av1_is_segfeature_signed(j)) { + aom_wb_write_inv_signed_literal(wb, data, ubits); + } else { + aom_wb_write_literal(wb, data, ubits); + } + } + } + } + } +} + +static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode, + struct aom_write_bit_buffer *wb) { + if (cm->coded_lossless) { + *mode = ONLY_4X4; + return; + } + aom_wb_write_bit(wb, *mode == TX_MODE_SELECT); +} + +static void write_frame_interp_filter(InterpFilter filter, + struct aom_write_bit_buffer *wb) { + aom_wb_write_bit(wb, filter == SWITCHABLE); + if (filter != SWITCHABLE) + aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); +} + +static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) { + if (cm->interp_filter == SWITCHABLE) { + // Check to see if only one of the filters is actually used + int count[SWITCHABLE_FILTERS]; + int i, j, c = 0; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + count[i] = 0; + for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) + count[i] += counts->switchable_interp[j][i]; + c += (count[i] > 0); + } + if (c == 1) { + // Only one filter is used. So set the filter at frame level + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + if (count[i]) { + if (i == EIGHTTAP_REGULAR) cm->interp_filter = i; + break; + } + } + } + } +} + +// Same function as write_uniform but writing to uncompresses header wb +static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return; + if (v < m) { + aom_wb_write_literal(wb, v, l - 1); + } else { + aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); + aom_wb_write_literal(wb, (v - m) & 1, 1); + } +} + +static void write_tile_info_max_tile(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); + int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); + int width_sb = width_mi >> cm->seq_params.mib_size_log2; + int height_sb = height_mi >> cm->seq_params.mib_size_log2; + int size_sb, i; + + aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag); + + if (cm->uniform_tile_spacing_flag) { + // Uniform spaced tiles with power-of-two number of rows and columns + // tile columns + int ones = cm->log2_tile_cols - cm->min_log2_tile_cols; + while (ones--) { + aom_wb_write_bit(wb, 1); + } + if (cm->log2_tile_cols < cm->max_log2_tile_cols) { + aom_wb_write_bit(wb, 0); + } + + // rows + ones = cm->log2_tile_rows - cm->min_log2_tile_rows; + while (ones--) { + aom_wb_write_bit(wb, 1); + } + if (cm->log2_tile_rows < cm->max_log2_tile_rows) { + aom_wb_write_bit(wb, 0); + } + } else { + // Explicit tiles with configurable tile widths and heights + // columns + for (i = 0; i < cm->tile_cols; i++) { + size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; + wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb), + size_sb - 1); + width_sb -= size_sb; + } + assert(width_sb == 0); + + // rows + for (i = 0; i < cm->tile_rows; i++) { + size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i]; + wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb), + size_sb - 1); + height_sb -= size_sb; + } + assert(height_sb == 0); + } +} + +static void write_tile_info(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + write_tile_info_max_tile(cm, wb); + + *saved_wb = *wb; + if (cm->tile_rows * cm->tile_cols > 1) { + // tile id used for cdf update + aom_wb_write_literal(wb, 0, cm->log2_tile_cols + cm->log2_tile_rows); + // Number of bytes in tile size - 1 + aom_wb_write_literal(wb, 3, 2); + } +} + +static void write_ext_tile_info(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + // This information is stored as a separate byte. + int mod = wb->bit_offset % CHAR_BIT; + if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); + assert(aom_wb_is_byte_aligned(wb)); + + *saved_wb = *wb; + if (cm->tile_rows * cm->tile_cols > 1) { + // Note that the last item in the uncompressed header is the data + // describing tile configuration. + // Number of bytes in tile column size - 1 + aom_wb_write_literal(wb, 0, 2); + // Number of bytes in tile size - 1 + aom_wb_write_literal(wb, 0, 2); + } +} + +static int get_refresh_mask(AV1_COMP *cpi) { + if ((cpi->common.frame_type == KEY_FRAME && cpi->common.show_frame) || + frame_is_sframe(&cpi->common)) + return 0xFF; + + int refresh_mask = 0; + + // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be + // notified to get LAST3_FRAME refreshed and then the virtual indexes for all + // the 3 LAST reference frames will be updated accordingly, i.e.: + // (1) The original virtual index for LAST3_FRAME will become the new virtual + // index for LAST_FRAME; and + // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be + // shifted and become the new virtual indexes for LAST2_FRAME and + // LAST3_FRAME. + refresh_mask |= + (cpi->refresh_last_frame << cpi->ref_fb_idx[LAST_REF_FRAMES - 1]); +#if USE_SYMM_MULTI_LAYER + refresh_mask |= + (cpi->new_bwdref_update_rule == 1) + ? (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[EXTREF_FRAME - 1]) + : (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); +#else + refresh_mask |= + (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); +#endif + refresh_mask |= + (cpi->refresh_alt2_ref_frame << cpi->ref_fb_idx[ALTREF2_FRAME - 1]); + + if (av1_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term we leave it in the GF slot and, + // if we're updating the GF with the current decoded frame, we save it + // instead to the ARF slot. + // Later, in the function av1_encoder.c:av1_update_reference_frames() we + // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it + // there so that it can be done outside of the recode loop. + // Note: This is highly specific to the use of ARF as a forward reference, + // and this needs to be generalized as other uses are implemented + // (like RTC/temporal scalability). + + if (cpi->preserve_arf_as_gld) { + return refresh_mask; + } else { + return refresh_mask | + (cpi->refresh_golden_frame << cpi->ref_fb_idx[ALTREF_FRAME - 1]); + } + } else { + const int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1]; + return refresh_mask | + (cpi->refresh_golden_frame << cpi->ref_fb_idx[GOLDEN_FRAME - 1]) | + (cpi->refresh_alt_ref_frame << arf_idx); + } +} + +static INLINE int find_identical_tile( + const int tile_row, const int tile_col, + TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { + const MV32 candidate_offset[1] = { { 1, 0 } }; + const uint8_t *const cur_tile_data = + tile_buffers[tile_row][tile_col].data + 4; + const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; + + int i; + + if (tile_row == 0) return 0; + + // (TODO: yunqingwang) For now, only above tile is checked and used. + // More candidates such as left tile can be added later. + for (i = 0; i < 1; i++) { + int row_offset = candidate_offset[0].row; + int col_offset = candidate_offset[0].col; + int row = tile_row - row_offset; + int col = tile_col - col_offset; + uint8_t tile_hdr; + const uint8_t *tile_data; + TileBufferEnc *candidate; + + if (row < 0 || col < 0) continue; + + tile_hdr = *(tile_buffers[row][col].data); + + // Read out tcm bit + if ((tile_hdr >> 7) == 1) { + // The candidate is a copy tile itself + row_offset += tile_hdr & 0x7f; + row = tile_row - row_offset; + } + + candidate = &tile_buffers[row][col]; + + if (row_offset >= 128 || candidate->size != cur_tile_size) continue; + + tile_data = candidate->data + 4; + + if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; + + // Identical tile found + assert(row_offset > 0); + return row_offset; + } + + // No identical tile found + return 0; +} + +static void write_render_size(const AV1_COMMON *cm, + struct aom_write_bit_buffer *wb) { + const int scaling_active = av1_resize_scaled(cm); + aom_wb_write_bit(wb, scaling_active); + if (scaling_active) { + aom_wb_write_literal(wb, cm->render_width - 1, 16); + aom_wb_write_literal(wb, cm->render_height - 1, 16); + } +} + +static void write_superres_scale(const AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + const SequenceHeader *const seq_params = &cm->seq_params; + if (!seq_params->enable_superres) { + assert(cm->superres_scale_denominator == SCALE_NUMERATOR); + return; + } + + // First bit is whether to to scale or not + if (cm->superres_scale_denominator == SCALE_NUMERATOR) { + aom_wb_write_bit(wb, 0); // no scaling + } else { + aom_wb_write_bit(wb, 1); // scaling, write scale factor + assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); + assert(cm->superres_scale_denominator < + SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); + aom_wb_write_literal( + wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, + SUPERRES_SCALE_BITS); + } +} + +static void write_frame_size(const AV1_COMMON *cm, int frame_size_override, + struct aom_write_bit_buffer *wb) { + const int coded_width = cm->superres_upscaled_width - 1; + const int coded_height = cm->superres_upscaled_height - 1; + + if (frame_size_override) { + const SequenceHeader *seq_params = &cm->seq_params; + int num_bits_width = seq_params->num_bits_width; + int num_bits_height = seq_params->num_bits_height; + aom_wb_write_literal(wb, coded_width, num_bits_width); + aom_wb_write_literal(wb, coded_height, num_bits_height); + } + + write_superres_scale(cm, wb); + write_render_size(cm, wb); +} + +static void write_frame_size_with_refs(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + int found = 0; + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); + + if (cfg != NULL) { + found = cm->superres_upscaled_width == cfg->y_crop_width && + cm->superres_upscaled_height == cfg->y_crop_height; + found &= cm->render_width == cfg->render_width && + cm->render_height == cfg->render_height; + } + aom_wb_write_bit(wb, found); + if (found) { + write_superres_scale(cm, wb); + break; + } + } + + if (!found) { + int frame_size_override = 1; // Always equal to 1 in this function + write_frame_size(cm, frame_size_override, wb); + } +} + +static void write_profile(BITSTREAM_PROFILE profile, + struct aom_write_bit_buffer *wb) { + assert(profile >= PROFILE_0 && profile < MAX_PROFILES); + aom_wb_write_literal(wb, profile, PROFILE_BITS); +} + +static void write_bitdepth(const SequenceHeader *const seq_params, + struct aom_write_bit_buffer *wb) { + // Profile 0/1: [0] for 8 bit, [1] 10-bit + // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit + aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); + if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { + aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); + } +} + +static void write_color_config(const SequenceHeader *const seq_params, + struct aom_write_bit_buffer *wb) { + write_bitdepth(seq_params, wb); + const int is_monochrome = seq_params->monochrome; + // monochrome bit + if (seq_params->profile != PROFILE_1) + aom_wb_write_bit(wb, is_monochrome); + else + assert(!is_monochrome); + if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && + seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && + seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { + aom_wb_write_bit(wb, 0); // No color description present + } else { + aom_wb_write_bit(wb, 1); // Color description present + aom_wb_write_literal(wb, seq_params->color_primaries, 8); + aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); + aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); + } + if (is_monochrome) { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + aom_wb_write_bit(wb, seq_params->color_range); + return; + } + if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && + seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && + seq_params->matrix_coefficients == + AOM_CICP_MC_IDENTITY) { // it would be better to remove this + // dependency too + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + assert(seq_params->profile == PROFILE_1 || + (seq_params->profile == PROFILE_2 && + seq_params->bit_depth == AOM_BITS_12)); + } else { + // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] + aom_wb_write_bit(wb, seq_params->color_range); + if (seq_params->profile == PROFILE_0) { + // 420 only + assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1); + } else if (seq_params->profile == PROFILE_1) { + // 444 only + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + } else if (seq_params->profile == PROFILE_2) { + if (seq_params->bit_depth == AOM_BITS_12) { + // 420, 444 or 422 + aom_wb_write_bit(wb, seq_params->subsampling_x); + if (seq_params->subsampling_x == 0) { + assert(seq_params->subsampling_y == 0 && + "4:4:0 subsampling not allowed in AV1"); + } else { + aom_wb_write_bit(wb, seq_params->subsampling_y); + } + } else { + // 422 only + assert(seq_params->subsampling_x == 1 && + seq_params->subsampling_y == 0); + } + } + if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { + assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); + } + if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { + aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); + } + } + aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); +} + +static void write_timing_info_header(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_unsigned_literal(wb, cm->timing_info.num_units_in_display_tick, + 32); // Number of units in tick + aom_wb_write_unsigned_literal(wb, cm->timing_info.time_scale, + 32); // Time scale + aom_wb_write_bit( + wb, + cm->timing_info.equal_picture_interval); // Equal picture interval bit + if (cm->timing_info.equal_picture_interval) { + aom_wb_write_uvlc( + wb, + cm->timing_info.num_ticks_per_picture - 1); // ticks per picture + } +} + +static void write_decoder_model_info(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_literal( + wb, cm->buffer_model.encoder_decoder_buffer_delay_length - 1, 5); + aom_wb_write_unsigned_literal(wb, cm->buffer_model.num_units_in_decoding_tick, + 32); // Number of units in decoding tick + aom_wb_write_literal(wb, cm->buffer_model.buffer_removal_time_length - 1, 5); + aom_wb_write_literal(wb, cm->buffer_model.frame_presentation_time_length - 1, + 5); +} + +static void write_dec_model_op_parameters(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb, + int op_num) { + if (op_num > MAX_NUM_OPERATING_POINTS) + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Encoder does not support %d decoder model operating points", op_num); + + // aom_wb_write_bit(wb, cm->op_params[op_num].has_parameters); + // if (!cm->op_params[op_num].has_parameters) return; + + aom_wb_write_unsigned_literal( + wb, cm->op_params[op_num].decoder_buffer_delay, + cm->buffer_model.encoder_decoder_buffer_delay_length); + + aom_wb_write_unsigned_literal( + wb, cm->op_params[op_num].encoder_buffer_delay, + cm->buffer_model.encoder_decoder_buffer_delay_length); + + aom_wb_write_bit(wb, cm->op_params[op_num].low_delay_mode_flag); + + cm->op_frame_timing[op_num].buffer_removal_time = + 0; // reset the decoded frame counter +} + +static void write_tu_pts_info(AV1_COMMON *const cm, + struct aom_write_bit_buffer *wb) { + aom_wb_write_unsigned_literal( + wb, cm->frame_presentation_time, + cm->buffer_model.frame_presentation_time_length); +} + +static void write_film_grain_params(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + aom_film_grain_t *pars = &cm->film_grain_params; + + cm->cur_frame->film_grain_params = *pars; + + aom_wb_write_bit(wb, pars->apply_grain); + if (!pars->apply_grain) return; + + aom_wb_write_literal(wb, pars->random_seed, 16); + + pars->random_seed += 3381; // Changing random seed for film grain + if (!pars->random_seed) // Random seed should not be zero + pars->random_seed += 7391; + if (cm->frame_type == INTER_FRAME) + aom_wb_write_bit(wb, pars->update_parameters); + else + pars->update_parameters = 1; + if (!pars->update_parameters) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + int ref_frame, ref_idx, buf_idx; + for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) { + ref_idx = get_ref_frame_map_idx(cpi, ref_frame); + assert(ref_idx != INVALID_IDX); + buf_idx = cm->ref_frame_map[ref_idx]; + if (frame_bufs[buf_idx].film_grain_params_present && + memcmp(pars, &frame_bufs[buf_idx].film_grain_params, sizeof(*pars))) { + break; + } + } + assert(ref_frame < REF_FRAMES); + aom_wb_write_literal(wb, ref_idx, 3); + return; + } + + // Scaling functions parameters + aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14 + for (int i = 0; i < pars->num_y_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); + } + + if (!cm->seq_params.monochrome) + aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); + else + pars->chroma_scaling_from_luma = 0; // for monochrome override to 0 + + if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || + ((cm->seq_params.subsampling_x == 1) && + (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) { + pars->num_cb_points = 0; + pars->num_cr_points = 0; + } else { + aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10 + for (int i = 0; i < pars->num_cb_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); + } + + aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10 + for (int i = 0; i < pars->num_cr_points; i++) { + aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); + aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); + } + } + + aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value + + // AR coefficients + // Only sent if the corresponsing scaling function has + // more than 0 points + + aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); + + int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); + int num_pos_chroma = num_pos_luma; + if (pars->num_y_points > 0) ++num_pos_chroma; + + if (pars->num_y_points) + for (int i = 0; i < num_pos_luma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); + + if (pars->num_cb_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); + + if (pars->num_cr_points || pars->chroma_scaling_from_luma) + for (int i = 0; i < num_pos_chroma; i++) + aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); + + aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value + + aom_wb_write_literal(wb, pars->grain_scale_shift, 2); + + if (pars->num_cb_points) { + aom_wb_write_literal(wb, pars->cb_mult, 8); + aom_wb_write_literal(wb, pars->cb_luma_mult, 8); + aom_wb_write_literal(wb, pars->cb_offset, 9); + } + + if (pars->num_cr_points) { + aom_wb_write_literal(wb, pars->cr_mult, 8); + aom_wb_write_literal(wb, pars->cr_luma_mult, 8); + aom_wb_write_literal(wb, pars->cr_offset, 9); + } + + aom_wb_write_bit(wb, pars->overlap_flag); + + aom_wb_write_bit(wb, pars->clip_to_restricted_range); +} + +static void write_sb_size(SequenceHeader *seq_params, + struct aom_write_bit_buffer *wb) { + (void)seq_params; + (void)wb; + assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); + assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); + assert(seq_params->sb_size == BLOCK_128X128 || + seq_params->sb_size == BLOCK_64X64); + aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); +} + +static void write_sequence_header(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + SequenceHeader *seq_params = &cm->seq_params; + + int max_frame_width = cpi->oxcf.forced_max_frame_width + ? cpi->oxcf.forced_max_frame_width + : cpi->oxcf.width; + int max_frame_height = cpi->oxcf.forced_max_frame_height + ? cpi->oxcf.forced_max_frame_height + : cpi->oxcf.height; + // max((int)ceil(log2(max_frame_width)), 1) + const int num_bits_width = + (max_frame_width > 1) ? get_msb(max_frame_width - 1) + 1 : 1; + // max((int)ceil(log2(max_frame_height)), 1) + const int num_bits_height = + (max_frame_height > 1) ? get_msb(max_frame_height - 1) + 1 : 1; + assert(num_bits_width <= 16); + assert(num_bits_height <= 16); + + seq_params->num_bits_width = num_bits_width; + seq_params->num_bits_height = num_bits_height; + seq_params->max_frame_width = max_frame_width; + seq_params->max_frame_height = max_frame_height; + + aom_wb_write_literal(wb, num_bits_width - 1, 4); + aom_wb_write_literal(wb, num_bits_height - 1, 4); + aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width); + aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height); + + /* Placeholder for actually writing to the bitstream */ + if (!seq_params->reduced_still_picture_hdr) { + seq_params->frame_id_numbers_present_flag = + cm->large_scale_tile ? 0 : cm->error_resilient_mode; + seq_params->frame_id_length = FRAME_ID_LENGTH; + seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; + + aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); + if (seq_params->frame_id_numbers_present_flag) { + // We must always have delta_frame_id_length < frame_id_length, + // in order for a frame to be referenced with a unique delta. + // Avoid wasting bits by using a coding that enforces this restriction. + aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); + aom_wb_write_literal( + wb, + seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, + 3); + } + } + + write_sb_size(seq_params, wb); + + aom_wb_write_bit(wb, seq_params->enable_filter_intra); + aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); + + if (!seq_params->reduced_still_picture_hdr) { + aom_wb_write_bit(wb, seq_params->enable_interintra_compound); + aom_wb_write_bit(wb, seq_params->enable_masked_compound); + aom_wb_write_bit(wb, seq_params->enable_warped_motion); + aom_wb_write_bit(wb, seq_params->enable_dual_filter); + + aom_wb_write_bit(wb, seq_params->enable_order_hint); + + if (seq_params->enable_order_hint) { + aom_wb_write_bit(wb, seq_params->enable_jnt_comp); + aom_wb_write_bit(wb, seq_params->enable_ref_frame_mvs); + } + if (seq_params->force_screen_content_tools == 2) { + aom_wb_write_bit(wb, 1); + } else { + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, seq_params->force_screen_content_tools); + } + if (seq_params->force_screen_content_tools > 0) { + if (seq_params->force_integer_mv == 2) { + aom_wb_write_bit(wb, 1); + } else { + aom_wb_write_bit(wb, 0); + aom_wb_write_bit(wb, seq_params->force_integer_mv); + } + } else { + assert(seq_params->force_integer_mv == 2); + } + if (seq_params->enable_order_hint) + aom_wb_write_literal(wb, seq_params->order_hint_bits_minus_1, 3); + } + + aom_wb_write_bit(wb, seq_params->enable_superres); + aom_wb_write_bit(wb, seq_params->enable_cdef); + aom_wb_write_bit(wb, seq_params->enable_restoration); +} + +static void write_global_motion_params(const WarpedMotionParams *params, + const WarpedMotionParams *ref_params, + struct aom_write_bit_buffer *wb, + int allow_hp) { + const TransformationType type = params->wmtype; + + aom_wb_write_bit(wb, type != IDENTITY); + if (type != IDENTITY) { + aom_wb_write_bit(wb, type == ROTZOOM); + if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); + } + + if (type >= ROTZOOM) { + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS), + (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), + (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); + } + + if (type >= AFFINE) { + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), + (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS), + (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + } + + if (type >= TRANSLATION) { + const int trans_bits = (type == TRANSLATION) + ? GM_ABS_TRANS_ONLY_BITS - !allow_hp + : GM_ABS_TRANS_BITS; + const int trans_prec_diff = (type == TRANSLATION) + ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp + : GM_TRANS_PREC_DIFF; + aom_wb_write_signed_primitive_refsubexpfin( + wb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[0] >> trans_prec_diff), + (params->wmmat[0] >> trans_prec_diff)); + aom_wb_write_signed_primitive_refsubexpfin( + wb, (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_params->wmmat[1] >> trans_prec_diff), + (params->wmmat[1] >> trans_prec_diff)); + } +} + +static void write_global_motion(AV1_COMP *cpi, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + int frame; + for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { + const WarpedMotionParams *ref_params = + cm->prev_frame ? &cm->prev_frame->global_motion[frame] + : &default_warp_params; + write_global_motion_params(&cm->global_motion[frame], ref_params, wb, + cm->allow_high_precision_mv); + // TODO(sarahparker, debargha): The logic in the commented out code below + // does not work currently and causes mismatches when resize is on. + // Fix it before turning the optimization back on. + /* + YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame); + if (cpi->source->y_crop_width == ref_buf->y_crop_width && + cpi->source->y_crop_height == ref_buf->y_crop_height) { + write_global_motion_params(&cm->global_motion[frame], + &cm->prev_frame->global_motion[frame], wb, + cm->allow_high_precision_mv); + } else { + assert(cm->global_motion[frame].wmtype == IDENTITY && + "Invalid warp type for frames of different resolutions"); + } + */ + /* + printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", + cm->current_video_frame, cm->show_frame, frame, + cm->global_motion[frame].wmmat[0], + cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], + cm->global_motion[frame].wmmat[3]); + */ + } +} + +static void check_frame_refs_short_signaling(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + if (!cm->frame_refs_short_signaling) return; + + // Check whether all references are distinct frames. + int buf_markers[FRAME_BUFFERS] = { 0 }; + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + if (buf_idx != INVALID_IDX) { + assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); + buf_markers[buf_idx] = 1; + } + } + + int num_refs = 0; + for (int buf_idx = 0; buf_idx < FRAME_BUFFERS; ++buf_idx) { + num_refs += buf_markers[buf_idx]; + } + + // We only turn on frame_refs_short_signaling when all references are + // distinct. + if (num_refs < INTER_REFS_PER_FRAME) { + // It indicates that there exist more than one reference frame pointing to + // the same reference buffer, i.e. two or more references are duplicate. + cm->frame_refs_short_signaling = 0; + return; + } + + // Check whether the encoder side ref frame choices are aligned with that to + // be derived at the decoder side. + RefBuffer frame_refs_copy[INTER_REFS_PER_FRAME]; + + // Backup the frame refs info + memcpy(frame_refs_copy, cm->frame_refs, + INTER_REFS_PER_FRAME * sizeof(RefBuffer)); + + const int lst_map_idx = get_ref_frame_map_idx(cpi, LAST_FRAME); + const int gld_map_idx = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); + + // Set up the frame refs mapping indexes according to the + // frame_refs_short_signaling policy. + av1_set_frame_refs(cm, lst_map_idx, gld_map_idx); + + // We only turn on frame_refs_short_signaling when the encoder side decision + // on ref frames is identical to that at the decoder side. + for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) { + // Compare the buffer index between two reference frames indexed + // respectively by the encoder and the decoder side decisions. + if (cm->frame_refs[ref_idx].idx != frame_refs_copy[ref_idx].idx) { + cm->frame_refs_short_signaling = 0; + break; + } + } + +#if 0 // For debug + printf("\nFrame=%d: \n", cm->current_video_frame); + printf("***frame_refs_short_signaling=%d\n", cm->frame_refs_short_signaling); + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + printf("enc_ref(map_idx=%d, buf_idx=%d)=%d, vs. " + "dec_ref(map_idx=%d, buf_idx=%d)=%d\n", + get_ref_frame_map_idx(cpi, ref_frame), + get_ref_frame_buf_idx(cpi, ref_frame), ref_frame, + cm->frame_refs[ref_frame - LAST_FRAME].map_idx, + cm->frame_refs[ref_frame - LAST_FRAME].idx, ref_frame); + } +#endif // 0 + + // Restore the frame refs info if frame_refs_short_signaling is off. + if (!cm->frame_refs_short_signaling) + memcpy(cm->frame_refs, frame_refs_copy, + INTER_REFS_PER_FRAME * sizeof(RefBuffer)); +} + +// New function based on HLS R18 +static void write_uncompressed_header_obu(AV1_COMP *cpi, + struct aom_write_bit_buffer *saved_wb, + struct aom_write_bit_buffer *wb) { + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + // NOTE: By default all coded frames to be used as a reference + cm->is_reference_frame = 1; + cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type; + + if (seq_params->still_picture) { + assert(cm->show_existing_frame == 0); + assert(cm->show_frame == 1); + assert(cm->frame_type == KEY_FRAME); + } + if (!seq_params->reduced_still_picture_hdr) { + if (encode_show_existing_frame(cm)) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; + + if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Buffer %d does not contain a reconstructed frame", + frame_to_show); + } + ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); + + aom_wb_write_bit(wb, 1); // show_existing_frame + aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); + + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) { + write_tu_pts_info(cm, wb); + } + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_len = seq_params->frame_id_length; + int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; + aom_wb_write_literal(wb, display_frame_id, frame_id_len); + } + + if (cm->reset_decoder_state && + frame_bufs[frame_to_show].frame_type != KEY_FRAME) { + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "show_existing_frame to reset state on KEY_FRAME only"); + } + + return; + } else { + aom_wb_write_bit(wb, 0); // show_existing_frame + } + + aom_wb_write_literal(wb, cm->frame_type, 2); + + aom_wb_write_bit(wb, cm->show_frame); + if (cm->show_frame) { + if (seq_params->decoder_model_info_present_flag && + cm->timing_info.equal_picture_interval == 0) + write_tu_pts_info(cm, wb); + } else { + aom_wb_write_bit(wb, cm->showable_frame); + } + if (frame_is_sframe(cm)) { + assert(cm->error_resilient_mode); + } else if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) { + aom_wb_write_bit(wb, cm->error_resilient_mode); + } + } + aom_wb_write_bit(wb, cm->disable_cdf_update); + + if (seq_params->force_screen_content_tools == 2) { + aom_wb_write_bit(wb, cm->allow_screen_content_tools); + } else { + assert(cm->allow_screen_content_tools == + seq_params->force_screen_content_tools); + } + + if (cm->allow_screen_content_tools) { + if (seq_params->force_integer_mv == 2) { + aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); + } else { + assert(cm->cur_frame_force_integer_mv == seq_params->force_integer_mv); + } + } else { + assert(cm->cur_frame_force_integer_mv == 0); + } + + cm->invalid_delta_frame_id_minus_1 = 0; + int frame_size_override_flag = 0; + cm->frame_refs_short_signaling = 0; + + if (seq_params->reduced_still_picture_hdr) { + assert(cm->width == seq_params->max_frame_width && + cm->height == seq_params->max_frame_height); + } else { + if (seq_params->frame_id_numbers_present_flag) { + int frame_id_len = seq_params->frame_id_length; + aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); + } + + if (cm->width > seq_params->max_frame_width || + cm->height > seq_params->max_frame_height) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "Frame dimensions are larger than the maximum values"); + } + + frame_size_override_flag = + frame_is_sframe(cm) ? 1 + : (cm->width != seq_params->max_frame_width || + cm->height != seq_params->max_frame_height); + if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); + + if (seq_params->enable_order_hint) + aom_wb_write_literal(wb, cm->frame_offset, + seq_params->order_hint_bits_minus_1 + 1); + + if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { + aom_wb_write_literal(wb, cm->primary_ref_frame, PRIMARY_REF_BITS); + } + } + + if (seq_params->decoder_model_info_present_flag) { + aom_wb_write_bit(wb, cm->buffer_removal_time_present); + if (cm->buffer_removal_time_present) { + for (int op_num = 0; + op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { + if (cm->op_params[op_num].decoder_model_param_present_flag) { + if (((seq_params->operating_point_idc[op_num] >> + cm->temporal_layer_id) & + 0x1 && + (seq_params->operating_point_idc[op_num] >> + (cm->spatial_layer_id + 8)) & + 0x1) || + seq_params->operating_point_idc[op_num] == 0) { + aom_wb_write_unsigned_literal( + wb, cm->op_frame_timing[op_num].buffer_removal_time, + cm->buffer_model.buffer_removal_time_length); + cm->op_frame_timing[op_num].buffer_removal_time++; + if (cm->op_frame_timing[op_num].buffer_removal_time == 0) { + aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "buffer_removal_time overflowed"); + } + } + } + } + } + } + cpi->refresh_frame_mask = get_refresh_mask(cpi); + if (cm->frame_type == KEY_FRAME) { + if (!cm->show_frame) { // unshown keyframe (forward keyframe) + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else { + assert(cpi->refresh_frame_mask == 0xFF); + } + } else { + if (cm->frame_type == INTRA_ONLY_FRAME) { + assert(cpi->refresh_frame_mask != 0xFF); + int updated_fb = -1; + for (int i = 0; i < REF_FRAMES; i++) { + // If more than one frame is refreshed, it doesn't matter which one + // we pick, so pick the first. + if (cpi->refresh_frame_mask & (1 << i)) { + updated_fb = i; + break; + } + } + assert(updated_fb >= 0); + cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { + if (cm->frame_type == INTER_FRAME) { + aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); + } else { + assert(frame_is_sframe(cm) && cpi->refresh_frame_mask == 0xFF); + } + int updated_fb = -1; + for (int i = 0; i < REF_FRAMES; i++) { + // If more than one frame is refreshed, it doesn't matter which one + // we pick, so pick the first. + if (cpi->refresh_frame_mask & (1 << i)) { + updated_fb = i; + break; + } + } + // large scale tile sometimes won't refresh any fbs + if (updated_fb >= 0) { + cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; + } + + if (!cpi->refresh_frame_mask) { + // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame + // will not be used as a reference + cm->is_reference_frame = 0; + } + } + } + + if (!frame_is_intra_only(cm) || cpi->refresh_frame_mask != 0xFF) { + // Write all ref frame order hints if error_resilient_mode == 1 + if (cm->error_resilient_mode && seq_params->enable_order_hint) { + RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; + for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { + // Get buffer index + const int buf_idx = cm->ref_frame_map[ref_idx]; + assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); + + // Write order hint to bit stream + aom_wb_write_literal(wb, frame_bufs[buf_idx].cur_frame_offset, + seq_params->order_hint_bits_minus_1 + 1); + } + } + } + + if (cm->frame_type == KEY_FRAME) { + write_frame_size(cm, frame_size_override_flag, wb); + assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + aom_wb_write_bit(wb, cm->allow_intrabc); + // all eight fbs are refreshed, pick one that will live long enough + cm->fb_of_context_type[REGULAR_FRAME] = 0; + } else { + if (cm->frame_type == INTRA_ONLY_FRAME) { + write_frame_size(cm, frame_size_override_flag, wb); + assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); + if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) + aom_wb_write_bit(wb, cm->allow_intrabc); + } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { + MV_REFERENCE_FRAME ref_frame; + + // NOTE: Error resilient mode turns off frame_refs_short_signaling + // automatically. +#define FRAME_REFS_SHORT_SIGNALING 0 +#if FRAME_REFS_SHORT_SIGNALING + cm->frame_refs_short_signaling = seq_params->enable_order_hint; +#endif // FRAME_REFS_SHORT_SIGNALING + + if (cm->frame_refs_short_signaling) { + // NOTE(zoeliu@google.com): + // An example solution for encoder-side implementation on frame refs + // short signaling, which is only turned on when the encoder side + // decision on ref frames is identical to that at the decoder side. + check_frame_refs_short_signaling(cpi); + } + + if (seq_params->enable_order_hint) + aom_wb_write_bit(wb, cm->frame_refs_short_signaling); + + if (cm->frame_refs_short_signaling) { + const int lst_ref = get_ref_frame_map_idx(cpi, LAST_FRAME); + aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2); + + const int gld_ref = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); + aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2); + } + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); + if (!cm->frame_refs_short_signaling) + aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), + REF_FRAMES_LOG2); + if (seq_params->frame_id_numbers_present_flag) { + int i = get_ref_frame_map_idx(cpi, ref_frame); + int frame_id_len = seq_params->frame_id_length; + int diff_len = seq_params->delta_frame_id_length; + int delta_frame_id_minus_1 = + ((cm->current_frame_id - cm->ref_frame_id[i] + + (1 << frame_id_len)) % + (1 << frame_id_len)) - + 1; + if (delta_frame_id_minus_1 < 0 || + delta_frame_id_minus_1 >= (1 << diff_len)) + cm->invalid_delta_frame_id_minus_1 = 1; + aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); + } + } + + if (!cm->error_resilient_mode && frame_size_override_flag) { + write_frame_size_with_refs(cpi, wb); + } else { + write_frame_size(cm, frame_size_override_flag, wb); + } + + if (cm->cur_frame_force_integer_mv) { + cm->allow_high_precision_mv = 0; + } else { + aom_wb_write_bit(wb, cm->allow_high_precision_mv); + } + fix_interp_filter(cm, cpi->td.counts); + write_frame_interp_filter(cm->interp_filter, wb); + aom_wb_write_bit(wb, cm->switchable_motion_mode); + if (frame_might_allow_ref_frame_mvs(cm)) { + aom_wb_write_bit(wb, cm->allow_ref_frame_mvs); + } else { + assert(cm->allow_ref_frame_mvs == 0); + } + } + } + + const int might_bwd_adapt = + !(seq_params->reduced_still_picture_hdr) && !(cm->disable_cdf_update); + if (cm->large_scale_tile) + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + + if (might_bwd_adapt) { + aom_wb_write_bit( + wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); + } + + write_tile_info(cm, saved_wb, wb); + encode_quantization(cm, wb); + encode_segmentation(cm, xd, wb); + + if (cm->delta_q_present_flag) assert(cm->base_qindex > 0); + if (cm->base_qindex > 0) { + aom_wb_write_bit(wb, cm->delta_q_present_flag); + if (cm->delta_q_present_flag) { + aom_wb_write_literal(wb, get_msb(cm->delta_q_res), 2); + xd->current_qindex = cm->base_qindex; + if (cm->allow_intrabc) + assert(cm->delta_lf_present_flag == 0); + else + aom_wb_write_bit(wb, cm->delta_lf_present_flag); + if (cm->delta_lf_present_flag) { + aom_wb_write_literal(wb, get_msb(cm->delta_lf_res), 2); + aom_wb_write_bit(wb, cm->delta_lf_multi); + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + } + + if (cm->all_lossless) { + assert(!av1_superres_scaled(cm)); + } else { + if (!cm->coded_lossless) { + encode_loopfilter(cm, wb); + encode_cdef(cm, wb); + } + encode_restoration_mode(cm, wb); + } + + write_tx_mode(cm, &cm->tx_mode, wb); + + if (cpi->allow_comp_inter_inter) { + const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; + + aom_wb_write_bit(wb, use_hybrid_pred); + } + + if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); + + if (frame_might_allow_warped_motion(cm)) + aom_wb_write_bit(wb, cm->allow_warped_motion); + else + assert(!cm->allow_warped_motion); + + aom_wb_write_bit(wb, cm->reduced_tx_set_used); + + if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); + + if (seq_params->film_grain_params_present && + (cm->show_frame || cm->showable_frame)) { + int flip_back_update_parameters_flag = 0; + if (cm->frame_type != INTER_FRAME && + cm->film_grain_params.update_parameters == 0) { + cm->film_grain_params.update_parameters = 1; + flip_back_update_parameters_flag = 1; + } + write_film_grain_params(cpi, wb); + + if (flip_back_update_parameters_flag) + cm->film_grain_params.update_parameters = 0; + } + + if (cm->large_scale_tile) write_ext_tile_info(cm, saved_wb, wb); +} + +static int choose_size_bytes(uint32_t size, int spare_msbs) { + // Choose the number of bytes required to represent size, without + // using the 'spare_msbs' number of most significant bits. + + // Make sure we will fit in 4 bytes to start with.. + if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; + + // Normalise to 32 bits + size <<= spare_msbs; + + if (size >> 24 != 0) + return 4; + else if (size >> 16 != 0) + return 3; + else if (size >> 8 != 0) + return 2; + else + return 1; +} + +static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { + switch (sz) { + case 1: dst[0] = (uint8_t)(val & 0xff); break; + case 2: mem_put_le16(dst, val); break; + case 3: mem_put_le24(dst, val); break; + case 4: mem_put_le32(dst, val); break; + default: assert(0 && "Invalid size"); break; + } +} + +static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, + const uint32_t data_size, const uint32_t max_tile_size, + const uint32_t max_tile_col_size, + int *const tile_size_bytes, + int *const tile_col_size_bytes) { + // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) + int tsb; + int tcsb; + + if (cm->large_scale_tile) { + // The top bit in the tile size field indicates tile copy mode, so we + // have 1 less bit to code the tile size + tsb = choose_size_bytes(max_tile_size, 1); + tcsb = choose_size_bytes(max_tile_col_size, 0); + } else { + tsb = choose_size_bytes(max_tile_size, 0); + tcsb = 4; // This is ignored + (void)max_tile_col_size; + } + + assert(tsb > 0); + assert(tcsb > 0); + + *tile_size_bytes = tsb; + *tile_col_size_bytes = tcsb; + if (tsb == 4 && tcsb == 4) return data_size; + + uint32_t wpos = 0; + uint32_t rpos = 0; + + if (cm->large_scale_tile) { + int tile_row; + int tile_col; + + for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { + // All but the last column has a column header + if (tile_col < cm->tile_cols - 1) { + uint32_t tile_col_size = mem_get_le32(dst + rpos); + rpos += 4; + + // Adjust the tile column size by the number of bytes removed + // from the tile size fields. + tile_col_size -= (4 - tsb) * cm->tile_rows; + + mem_put_varsize(dst + wpos, tcsb, tile_col_size); + wpos += tcsb; + } + + for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { + // All, including the last row has a header + uint32_t tile_header = mem_get_le32(dst + rpos); + rpos += 4; + + // If this is a copy tile, we need to shift the MSB to the + // top bit of the new width, and there is no data to copy. + if (tile_header >> 31 != 0) { + if (tsb < 4) tile_header >>= 32 - 8 * tsb; + mem_put_varsize(dst + wpos, tsb, tile_header); + wpos += tsb; + } else { + mem_put_varsize(dst + wpos, tsb, tile_header); + wpos += tsb; + + tile_header += AV1_MIN_TILE_SIZE_BYTES; + memmove(dst + wpos, dst + rpos, tile_header); + rpos += tile_header; + wpos += tile_header; + } + } + } + + assert(rpos > wpos); + assert(rpos == data_size); + + return wpos; + } + const int n_tiles = cm->tile_cols * cm->tile_rows; + int n; + + for (n = 0; n < n_tiles; n++) { + int tile_size; + + if (n == n_tiles - 1) { + tile_size = data_size - rpos; + } else { + tile_size = mem_get_le32(dst + rpos); + rpos += 4; + mem_put_varsize(dst + wpos, tsb, tile_size); + tile_size += AV1_MIN_TILE_SIZE_BYTES; + wpos += tsb; + } + + memmove(dst + wpos, dst + rpos, tile_size); + + rpos += tile_size; + wpos += tile_size; + } + + assert(rpos > wpos); + assert(rpos == data_size); + + return wpos; +} + +uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, + uint8_t *const dst) { + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + aom_wb_write_literal(&wb, 0, 1); // forbidden bit. + aom_wb_write_literal(&wb, (int)obu_type, 4); + aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); + aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field + aom_wb_write_literal(&wb, 0, 1); // reserved + + if (obu_extension) { + aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); + } + + size = aom_wb_bytes_written(&wb); + return size; +} + +int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size, + uint8_t *dest) { + const uint32_t obu_size = obu_payload_size; + const uint32_t offset = obu_header_size; + size_t coded_obu_size = 0; + + if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, + &coded_obu_size) != 0) { + return AOM_CODEC_ERROR; + } + + return AOM_CODEC_OK; +} + +static size_t obu_memmove(uint32_t obu_header_size, uint32_t obu_payload_size, + uint8_t *data) { + const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); + const uint32_t move_dst_offset = + (uint32_t)length_field_size + obu_header_size; + const uint32_t move_src_offset = obu_header_size; + const uint32_t move_size = obu_payload_size; + memmove(data + move_dst_offset, data + move_src_offset, move_size); + return length_field_size; +} + +static void add_trailing_bits(struct aom_write_bit_buffer *wb) { + if (aom_wb_is_byte_aligned(wb)) { + aom_wb_write_literal(wb, 0x80, 8); + } else { + // assumes that the other bits are already 0s + aom_wb_write_bit(wb, 1); + } +} + +static void write_bitstream_level(BitstreamLevel bl, + struct aom_write_bit_buffer *wb) { + uint8_t seq_level_idx = major_minor_to_seq_level_idx(bl); + assert(is_valid_seq_level_idx(seq_level_idx)); + aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); +} + +uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst) { + AV1_COMMON *const cm = &cpi->common; + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + write_profile(cm->seq_params.profile, &wb); + + // Still picture or not + aom_wb_write_bit(&wb, cm->seq_params.still_picture); + assert(IMPLIES(!cm->seq_params.still_picture, + !cm->seq_params.reduced_still_picture_hdr)); + // whether to use reduced still picture header + aom_wb_write_bit(&wb, cm->seq_params.reduced_still_picture_hdr); + + if (cm->seq_params.reduced_still_picture_hdr) { + assert(cm->timing_info_present == 0); + assert(cm->seq_params.decoder_model_info_present_flag == 0); + assert(cm->seq_params.display_model_info_present_flag == 0); + write_bitstream_level(cm->seq_params.level[0], &wb); + } else { + aom_wb_write_bit(&wb, cm->timing_info_present); // timing info present flag + + if (cm->timing_info_present) { + // timing_info + write_timing_info_header(cm, &wb); + aom_wb_write_bit(&wb, cm->seq_params.decoder_model_info_present_flag); + if (cm->seq_params.decoder_model_info_present_flag) { + write_decoder_model_info(cm, &wb); + } + } + aom_wb_write_bit(&wb, cm->seq_params.display_model_info_present_flag); + aom_wb_write_literal(&wb, cm->seq_params.operating_points_cnt_minus_1, + OP_POINTS_CNT_MINUS_1_BITS); + int i; + for (i = 0; i < cm->seq_params.operating_points_cnt_minus_1 + 1; i++) { + aom_wb_write_literal(&wb, cm->seq_params.operating_point_idc[i], + OP_POINTS_IDC_BITS); + write_bitstream_level(cm->seq_params.level[i], &wb); + if (cm->seq_params.level[i].major > 3) + aom_wb_write_bit(&wb, cm->seq_params.tier[i]); + if (cm->seq_params.decoder_model_info_present_flag) { + aom_wb_write_bit(&wb, + cm->op_params[i].decoder_model_param_present_flag); + if (cm->op_params[i].decoder_model_param_present_flag) + write_dec_model_op_parameters(cm, &wb, i); + } + if (cm->seq_params.display_model_info_present_flag) { + aom_wb_write_bit(&wb, + cm->op_params[i].display_model_param_present_flag); + if (cm->op_params[i].display_model_param_present_flag) { + assert(cm->op_params[i].initial_display_delay <= 10); + aom_wb_write_literal(&wb, cm->op_params[i].initial_display_delay - 1, + 4); + } + } + } + } + write_sequence_header(cpi, &wb); + + write_color_config(&cm->seq_params, &wb); + + aom_wb_write_bit(&wb, cm->seq_params.film_grain_params_present); + + add_trailing_bits(&wb); + + size = aom_wb_bytes_written(&wb); + return size; +} + +static uint32_t write_frame_header_obu(AV1_COMP *cpi, + struct aom_write_bit_buffer *saved_wb, + uint8_t *const dst, + int append_trailing_bits) { + struct aom_write_bit_buffer wb = { dst, 0 }; + write_uncompressed_header_obu(cpi, saved_wb, &wb); + if (append_trailing_bits) add_trailing_bits(&wb); + return aom_wb_bytes_written(&wb); +} + +static uint32_t write_tile_group_header(uint8_t *const dst, int startTile, + int endTile, int tiles_log2, + int tile_start_and_end_present_flag) { + struct aom_write_bit_buffer wb = { dst, 0 }; + uint32_t size = 0; + + if (!tiles_log2) return size; + + aom_wb_write_bit(&wb, tile_start_and_end_present_flag); + + if (tile_start_and_end_present_flag) { + aom_wb_write_literal(&wb, startTile, tiles_log2); + aom_wb_write_literal(&wb, endTile, tiles_log2); + } + + size = aom_wb_bytes_written(&wb); + return size; +} + +typedef struct { + uint8_t *frame_header; + size_t obu_header_byte_offset; + size_t total_length; +} FrameHeaderInfo; + +static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, + struct aom_write_bit_buffer *saved_wb, + uint8_t obu_extension_header, + const FrameHeaderInfo *fh_info) { + AV1_COMMON *const cm = &cpi->common; + aom_writer mode_bc; + int tile_row, tile_col; + TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; + uint32_t total_size = 0; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + unsigned int tile_size = 0; + unsigned int max_tile_size = 0; + unsigned int max_tile_col_size = 0; + const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; + // Fixed size tile groups for the moment + const int num_tg_hdrs = cm->num_tg; + const int tg_size = + (cm->large_scale_tile) + ? 1 + : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; + int tile_count = 0; + int curr_tg_data_size = 0; + uint8_t *data = dst; + int new_tg = 1; + const int have_tiles = tile_cols * tile_rows > 1; + int first_tg = 1; + + cm->largest_tile_id = 0; + + if (cm->large_scale_tile) { + // For large_scale_tile case, we always have only one tile group, so it can + // be written as an OBU_FRAME. + const OBU_TYPE obu_type = OBU_FRAME; + const uint32_t tg_hdr_size = write_obu_header(obu_type, 0, data); + data += tg_hdr_size; + + const uint32_t frame_header_size = + write_frame_header_obu(cpi, saved_wb, data, 0); + data += frame_header_size; + total_size += frame_header_size; + +#define EXT_TILE_DEBUG 0 +#if EXT_TILE_DEBUG + { + char fn[20] = "./fh"; + fn[4] = cm->current_video_frame / 100 + '0'; + fn[5] = (cm->current_video_frame % 100) / 10 + '0'; + fn[6] = (cm->current_video_frame % 10) + '0'; + fn[7] = '\0'; + av1_print_uncompressed_frame_header(data - frame_header_size, + frame_header_size, fn); + } +#endif // EXT_TILE_DEBUG +#undef EXT_TILE_DEBUG + + int tile_size_bytes = 0; + int tile_col_size_bytes = 0; + + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + TileInfo tile_info; + const int is_last_col = (tile_col == tile_cols - 1); + const uint32_t col_offset = total_size; + + av1_tile_set_col(&tile_info, cm, tile_col); + + // The last column does not have a column header + if (!is_last_col) total_size += 4; + + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; + const int data_offset = have_tiles ? 4 : 0; + const int tile_idx = tile_row * tile_cols + tile_col; + TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; + av1_tile_set_row(&tile_info, cm, tile_row); + + buf->data = dst + total_size + tg_hdr_size; + + // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, + // even for the last one, unless no tiling is used at all. + total_size += data_offset; + // Initialise tile context from the frame context + this_tile->tctx = *cm->fc; + cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; + mode_bc.allow_update_cdf = !cm->large_scale_tile; + mode_bc.allow_update_cdf = + mode_bc.allow_update_cdf && !cm->disable_cdf_update; + aom_start_encode(&mode_bc, buf->data + data_offset); + write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); + aom_stop_encode(&mode_bc); + tile_size = mode_bc.pos; + buf->size = tile_size; + + // Record the maximum tile size we see, so we can compact headers later. + if (tile_size > max_tile_size) { + max_tile_size = tile_size; + cm->largest_tile_id = tile_cols * tile_row + tile_col; + } + + if (have_tiles) { + // tile header: size of this tile, or copy offset + uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; + const int tile_copy_mode = + ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) + ? 1 + : 0; + + // If tile_copy_mode = 1, check if this tile is a copy tile. + // Very low chances to have copy tiles on the key frames, so don't + // search on key frames to reduce unnecessary search. + if (cm->frame_type != KEY_FRAME && tile_copy_mode) { + const int identical_tile_offset = + find_identical_tile(tile_row, tile_col, tile_buffers); + + if (identical_tile_offset > 0) { + tile_size = 0; + tile_header = identical_tile_offset | 0x80; + tile_header <<= 24; + } + } + + mem_put_le32(buf->data, tile_header); + } + + total_size += tile_size; + } + + if (!is_last_col) { + uint32_t col_size = total_size - col_offset - 4; + mem_put_le32(dst + col_offset + tg_hdr_size, col_size); + + // Record the maximum tile column size we see. + max_tile_col_size = AOMMAX(max_tile_col_size, col_size); + } + } + + if (have_tiles) { + total_size = remux_tiles(cm, data, total_size - frame_header_size, + max_tile_size, max_tile_col_size, + &tile_size_bytes, &tile_col_size_bytes); + total_size += frame_header_size; + } + + // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write + // current tile group size before tile data(include tile column header). + // Tile group size doesn't include the bytes storing tg size. + total_size += tg_hdr_size; + const uint32_t obu_payload_size = total_size - tg_hdr_size; + const size_t length_field_size = + obu_memmove(tg_hdr_size, obu_payload_size, dst); + if (write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != + AOM_CODEC_OK) { + assert(0); + } + total_size += (uint32_t)length_field_size; + saved_wb->bit_buffer += length_field_size; + + // Now fill in the gaps in the uncompressed header. + if (have_tiles) { + assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); + aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); + + assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); + aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); + } + return total_size; + } + + uint32_t obu_header_size = 0; + uint8_t *tile_data_start = dst + total_size; + for (tile_row = 0; tile_row < tile_rows; tile_row++) { + TileInfo tile_info; + av1_tile_set_row(&tile_info, cm, tile_row); + + for (tile_col = 0; tile_col < tile_cols; tile_col++) { + const int tile_idx = tile_row * tile_cols + tile_col; + TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; + TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; + int is_last_tile_in_tg = 0; + + if (new_tg) { + data = dst + total_size; + + // A new tile group begins at this tile. Write the obu header and + // tile group header + const OBU_TYPE obu_type = + (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; + curr_tg_data_size = + write_obu_header(obu_type, obu_extension_header, data); + obu_header_size = curr_tg_data_size; + + if (num_tg_hdrs == 1) { + curr_tg_data_size += write_frame_header_obu( + cpi, saved_wb, data + curr_tg_data_size, 0); + } + curr_tg_data_size += write_tile_group_header( + data + curr_tg_data_size, tile_idx, + AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), + n_log2_tiles, cm->num_tg > 1); + total_size += curr_tg_data_size; + tile_data_start += curr_tg_data_size; + new_tg = 0; + tile_count = 0; + } + tile_count++; + av1_tile_set_col(&tile_info, cm, tile_col); + + if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { + is_last_tile_in_tg = 1; + new_tg = 1; + } else { + is_last_tile_in_tg = 0; + } + + buf->data = dst + total_size; + + // The last tile of the tile group does not have a header. + if (!is_last_tile_in_tg) total_size += 4; + + // Initialise tile context from the frame context + this_tile->tctx = *cm->fc; + cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; + mode_bc.allow_update_cdf = 1; + mode_bc.allow_update_cdf = + mode_bc.allow_update_cdf && !cm->disable_cdf_update; + const int num_planes = av1_num_planes(cm); + av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); + + aom_start_encode(&mode_bc, dst + total_size); + write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); + aom_stop_encode(&mode_bc); + tile_size = mode_bc.pos; + assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); + + curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); + buf->size = tile_size; + if (tile_size > max_tile_size) { + cm->largest_tile_id = tile_cols * tile_row + tile_col; + max_tile_size = tile_size; + } + + if (!is_last_tile_in_tg) { + // size of this tile + mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); + } else { + // write current tile group size + const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + assert(0); + } + curr_tg_data_size += (int)length_field_size; + total_size += (uint32_t)length_field_size; + tile_data_start += length_field_size; + if (num_tg_hdrs == 1) { + // if this tg is combined with the frame header then update saved + // frame header base offset accroding to length field size + saved_wb->bit_buffer += length_field_size; + } + + if (!first_tg && cm->error_resilient_mode) { + // Make room for a duplicate Frame Header OBU. + memmove(data + fh_info->total_length, data, curr_tg_data_size); + + // Insert a copy of the Frame Header OBU. + memcpy(data, fh_info->frame_header, fh_info->total_length); + + // Force context update tile to be the first tile in error + // resiliant mode as the duplicate frame headers will have + // context_update_tile_id set to 0 + cm->largest_tile_id = 0; + + // Rewrite the OBU header to change the OBU type to Redundant Frame + // Header. + write_obu_header(OBU_REDUNDANT_FRAME_HEADER, obu_extension_header, + &data[fh_info->obu_header_byte_offset]); + + data += fh_info->total_length; + + curr_tg_data_size += (int)(fh_info->total_length); + total_size += (uint32_t)(fh_info->total_length); + } + first_tg = 0; + } + + total_size += tile_size; + } + } + + if (have_tiles) { + // Fill in context_update_tile_id indicating the tile to use for the + // cdf update. The encoder currently sets it to the largest tile + // (but is up to the encoder) + aom_wb_overwrite_literal(saved_wb, cm->largest_tile_id, + cm->log2_tile_cols + cm->log2_tile_rows); + // If more than one tile group. tile_size_bytes takes the default value 4 + // and does not need to be set. For a single tile group it is set in the + // section below. + if (num_tg_hdrs == 1) { + int tile_size_bytes = 4, unused; + const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); + const uint32_t tile_data_size = total_size - tile_data_offset; + + total_size = + remux_tiles(cm, tile_data_start, tile_data_size, max_tile_size, + max_tile_col_size, &tile_size_bytes, &unused); + total_size += tile_data_offset; + assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); + + aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); + + // Update the OBU length if remux_tiles() reduced the size. + uint64_t payload_size; + size_t length_field_size; + int res = + aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, + &payload_size, &length_field_size); + assert(res == 0); + (void)res; + + const uint64_t new_payload_size = + total_size - obu_header_size - length_field_size; + if (new_payload_size != payload_size) { + size_t new_length_field_size; + res = aom_uleb_encode(new_payload_size, length_field_size, + dst + obu_header_size, &new_length_field_size); + assert(res == 0); + if (new_length_field_size < length_field_size) { + const size_t src_offset = obu_header_size + length_field_size; + const size_t dst_offset = obu_header_size + new_length_field_size; + memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); + total_size -= (int)(length_field_size - new_length_field_size); + } + } + } + } + return total_size; +} + +int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) { + uint8_t *data = dst; + uint32_t data_size; + AV1_COMMON *const cm = &cpi->common; + uint32_t obu_header_size = 0; + uint32_t obu_payload_size = 0; + FrameHeaderInfo fh_info = { NULL, 0, 0 }; + const uint8_t obu_extension_header = + cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; + +#if CONFIG_BITSTREAM_DEBUG + bitstream_queue_reset_write(); +#endif + + // The TD is now written outside the frame encode loop + + // write sequence header obu if KEY_FRAME, preceded by 4-byte size + if (cm->frame_type == KEY_FRAME && cm->show_frame) { + obu_header_size = write_obu_header(OBU_SEQUENCE_HEADER, 0, data); + + obu_payload_size = write_sequence_header_obu(cpi, data + obu_header_size); + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + + data += obu_header_size + obu_payload_size + length_field_size; + } + + const int write_frame_header = + (cm->num_tg > 1 || encode_show_existing_frame(cm)); + struct aom_write_bit_buffer saved_wb; + if (write_frame_header) { + // Write Frame Header OBU. + fh_info.frame_header = data; + obu_header_size = + write_obu_header(OBU_FRAME_HEADER, obu_extension_header, data); + obu_payload_size = + write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1); + + const size_t length_field_size = + obu_memmove(obu_header_size, obu_payload_size, data); + if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + + fh_info.obu_header_byte_offset = 0; + fh_info.total_length = + obu_header_size + obu_payload_size + length_field_size; + data += fh_info.total_length; + + // Since length_field_size is determined adaptively after frame header + // encoding, saved_wb must be adjusted accordingly. + saved_wb.bit_buffer += length_field_size; + } + + if (encode_show_existing_frame(cm)) { + data_size = 0; + } else { + // Each tile group obu will be preceded by 4-byte size of the tile group + // obu + data_size = write_tiles_in_tg_obus(cpi, data, &saved_wb, + obu_extension_header, &fh_info); + } + data += data_size; + *size = data - dst; + return AOM_CODEC_OK; +} diff --git a/third_party/aom/av1/encoder/bitstream.h b/third_party/aom/av1/encoder/bitstream.h new file mode 100644 index 0000000000..465ccaed57 --- /dev/null +++ b/third_party/aom/av1/encoder/bitstream.h @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_BITSTREAM_H_ +#define AOM_AV1_ENCODER_BITSTREAM_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/encoder.h" + +struct aom_write_bit_buffer; + +// Writes only the OBU Sequence Header payload, and returns the size of the +// payload written to 'dst'. This function does not write the OBU header, the +// optional extension, or the OBU size to 'dst'. +uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst); + +// Writes the OBU header byte, and the OBU header extension byte when +// 'obu_extension' is non-zero. Returns number of bytes written to 'dst'. +uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, + uint8_t *const dst); + +int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size, + uint8_t *dest); + +int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dest, size_t *size); + +static INLINE int av1_preserve_existing_gf(AV1_COMP *cpi) { + // Do not swap gf and arf indices for internal overlay frames + return cpi->rc.is_src_frame_alt_ref && !cpi->rc.is_src_frame_ext_arf; +} + +void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, + int blk_row, int blk_col, int plane, TX_SIZE tx_size, + aom_writer *w); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_BITSTREAM_H_ diff --git a/third_party/aom/av1/encoder/block.h b/third_party/aom/av1/encoder/block.h new file mode 100644 index 0000000000..0bc5dea825 --- /dev/null +++ b/third_party/aom/av1/encoder/block.h @@ -0,0 +1,452 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_BLOCK_H_ +#define AOM_AV1_ENCODER_BLOCK_H_ + +#include "av1/common/entropymv.h" +#include "av1/common/entropy.h" +#include "av1/common/mvref_common.h" +#include "av1/encoder/hash.h" +#if CONFIG_DIST_8X8 +#include "aom/aomcx.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + unsigned int sse; + int sum; + unsigned int var; +} DIFF; + +typedef struct macroblock_plane { + DECLARE_ALIGNED(16, int16_t, src_diff[MAX_SB_SQUARE]); + tran_low_t *qcoeff; + tran_low_t *coeff; + uint16_t *eobs; + uint8_t *txb_entropy_ctx; + struct buf_2d src; + + // Quantizer setings + // These are used/accessed only in the quantization process + // RDO does not / must not depend on any of these values + // All values below share the coefficient scale/shift used in TX + const int16_t *quant_fp_QTX; + const int16_t *round_fp_QTX; + const int16_t *quant_QTX; + const int16_t *quant_shift_QTX; + const int16_t *zbin_QTX; + const int16_t *round_QTX; + const int16_t *dequant_QTX; +} MACROBLOCK_PLANE; + +typedef struct { + int txb_skip_cost[TXB_SKIP_CONTEXTS][2]; + int base_eob_cost[SIG_COEF_CONTEXTS_EOB][3]; + int base_cost[SIG_COEF_CONTEXTS][4]; + int eob_extra_cost[EOB_COEF_CONTEXTS][2]; + int dc_sign_cost[DC_SIGN_CONTEXTS][2]; + int lps_cost[LEVEL_CONTEXTS][COEFF_BASE_RANGE + 1]; +} LV_MAP_COEFF_COST; + +typedef struct { + int eob_cost[2][11]; +} LV_MAP_EOB_COST; + +typedef struct { + tran_low_t tcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]; + uint16_t eobs[MAX_MB_PLANE][MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; + uint8_t txb_skip_ctx[MAX_MB_PLANE] + [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; + int dc_sign_ctx[MAX_MB_PLANE] + [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)]; +} CB_COEFF_BUFFER; + +typedef struct { + int16_t mode_context[MODE_CTX_REF_FRAMES]; + // TODO(angiebird): Reduce the buffer size according to sb_type + tran_low_t *tcoeff[MAX_MB_PLANE]; + uint16_t *eobs[MAX_MB_PLANE]; + uint8_t *txb_skip_ctx[MAX_MB_PLANE]; + int *dc_sign_ctx[MAX_MB_PLANE]; + uint8_t ref_mv_count[MODE_CTX_REF_FRAMES]; + CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE]; + int_mv global_mvs[REF_FRAMES]; + int16_t compound_mode_context[MODE_CTX_REF_FRAMES]; +} MB_MODE_INFO_EXT; + +typedef struct { + int col_min; + int col_max; + int row_min; + int row_max; +} MvLimits; + +typedef struct { + uint8_t best_palette_color_map[MAX_PALETTE_SQUARE]; + int kmeans_data_buf[2 * MAX_PALETTE_SQUARE]; +} PALETTE_BUFFER; + +typedef struct { + TX_SIZE tx_size; + TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN]; + uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + TX_TYPE txk_type[TXK_TYPE_BUF_LEN]; + RD_STATS rd_stats; + uint32_t hash_value; +} MB_RD_INFO; + +#define RD_RECORD_BUFFER_LEN 8 +typedef struct { + MB_RD_INFO tx_rd_info[RD_RECORD_BUFFER_LEN]; // Circular buffer. + int index_start; + int num; + CRC32C crc_calculator; // Hash function. +} MB_RD_RECORD; + +typedef struct { + int64_t dist; + int64_t sse; + int rate; + uint16_t eob; + TX_TYPE tx_type; + uint16_t entropy_context; + uint8_t txb_entropy_ctx; + uint8_t valid; + uint8_t fast; // This is not being used now. +} TXB_RD_INFO; + +#define TX_SIZE_RD_RECORD_BUFFER_LEN 256 +typedef struct { + uint32_t hash_vals[TX_SIZE_RD_RECORD_BUFFER_LEN]; + TXB_RD_INFO tx_rd_info[TX_SIZE_RD_RECORD_BUFFER_LEN]; + int index_start; + int num; +} TXB_RD_RECORD; + +typedef struct tx_size_rd_info_node { + TXB_RD_INFO *rd_info_array; // Points to array of size TX_TYPES. + struct tx_size_rd_info_node *children[4]; +} TXB_RD_INFO_NODE; + +// Region size for mode decision sampling in the first pass of partition +// search(two_pass_partition_search speed feature), in units of mi size(4). +// Used by the mode_pruning_based_on_two_pass_partition_search speed feature. +#define FIRST_PARTITION_PASS_SAMPLE_REGION 8 +#define FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2 3 +#define FIRST_PARTITION_PASS_STATS_TABLES \ + (MAX_MIB_SIZE >> FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2) * \ + (MAX_MIB_SIZE >> FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2) +#define FIRST_PARTITION_PASS_STATS_STRIDE \ + (MAX_MIB_SIZE_LOG2 - FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2) + +static INLINE int av1_first_partition_pass_stats_index(int mi_row, int mi_col) { + const int row = + (mi_row & MAX_MIB_MASK) >> FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2; + const int col = + (mi_col & MAX_MIB_MASK) >> FIRST_PARTITION_PASS_SAMPLE_REGION_LOG2; + return (row << FIRST_PARTITION_PASS_STATS_STRIDE) + col; +} + +typedef struct { + uint8_t ref0_counts[REF_FRAMES]; // Counters for ref_frame[0]. + uint8_t ref1_counts[REF_FRAMES]; // Counters for ref_frame[1]. + int sample_counts; // Number of samples collected. +} FIRST_PARTITION_PASS_STATS; + +#define MAX_INTERP_FILTER_STATS 64 +typedef struct { + InterpFilters filters; + int_mv mv[2]; + int8_t ref_frames[2]; + COMPOUND_TYPE comp_type; +} INTERPOLATION_FILTER_STATS; + +typedef struct macroblock MACROBLOCK; +struct macroblock { + struct macroblock_plane plane[MAX_MB_PLANE]; + + // Determine if one would go with reduced complexity transform block + // search model to select prediction modes, or full complexity model + // to select transform kernel. + int rd_model; + + // Indicate if the encoder is running in the first pass partition search. + // In that case, apply certain speed features therein to reduce the overhead + // cost in the first pass search. + int cb_partition_scan; + + FIRST_PARTITION_PASS_STATS + first_partition_pass_stats[FIRST_PARTITION_PASS_STATS_TABLES]; + + // [comp_idx][saved stat_idx] + INTERPOLATION_FILTER_STATS interp_filter_stats[2][MAX_INTERP_FILTER_STATS]; + int interp_filter_stats_idx[2]; + + // Activate constrained coding block partition search range. + int use_cb_search_range; + + // Inter macroblock RD search info. + MB_RD_RECORD mb_rd_record; + + // Inter transform block RD search info. for square TX sizes. + TXB_RD_RECORD txb_rd_record_8X8[(MAX_MIB_SIZE >> 1) * (MAX_MIB_SIZE >> 1)]; + TXB_RD_RECORD txb_rd_record_16X16[(MAX_MIB_SIZE >> 2) * (MAX_MIB_SIZE >> 2)]; + TXB_RD_RECORD txb_rd_record_32X32[(MAX_MIB_SIZE >> 3) * (MAX_MIB_SIZE >> 3)]; + TXB_RD_RECORD txb_rd_record_64X64[(MAX_MIB_SIZE >> 4) * (MAX_MIB_SIZE >> 4)]; + + // Intra transform block RD search info. for square TX sizes. + TXB_RD_RECORD txb_rd_record_intra; + + MACROBLOCKD e_mbd; + MB_MODE_INFO_EXT *mbmi_ext; + int skip_block; + int qindex; + + // The equivalent error at the current rdmult of one whole bit (not one + // bitcost unit). + int errorperbit; + // The equivalend SAD error of one (whole) bit at the current quantizer + // for large blocks. + int sadperbit16; + // The equivalend SAD error of one (whole) bit at the current quantizer + // for sub-8x8 blocks. + int sadperbit4; + int rdmult; + int mb_energy; + int sb_energy_level; + int *m_search_count_ptr; + int *ex_search_count_ptr; + + unsigned int txb_split_count; + + // These are set to their default values at the beginning, and then adjusted + // further in the encoding process. + BLOCK_SIZE min_partition_size; + BLOCK_SIZE max_partition_size; + + unsigned int max_mv_context[REF_FRAMES]; + unsigned int source_variance; + unsigned int pred_sse[REF_FRAMES]; + int pred_mv_sad[REF_FRAMES]; + + int *nmvjointcost; + int nmv_vec_cost[MV_JOINTS]; + int *nmvcost[2]; + int *nmvcost_hp[2]; + int **mv_cost_stack; + int **mvcost; + + int32_t *wsrc_buf; + int32_t *mask_buf; + uint8_t *above_pred_buf; + uint8_t *left_pred_buf; + + PALETTE_BUFFER *palette_buffer; + + CONV_BUF_TYPE *tmp_conv_dst; + uint8_t *tmp_obmc_bufs[2]; + + // buffer for hash value calculation of a block + // used only in av1_get_block_hash_value() + // [first hash/second hash] + // [two buffers used ping-pong] + uint32_t *hash_value_buffer[2][2]; + + CRC_CALCULATOR crc_calculator1; + CRC_CALCULATOR crc_calculator2; + int g_crc_initialized; + + // These define limits to motion vector components to prevent them + // from extending outside the UMV borders + MvLimits mv_limits; + + uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + + int skip; + int skip_chroma_rd; + int skip_cost[SKIP_CONTEXTS][2]; + + int skip_mode; // 0: off; 1: on + int skip_mode_cost[SKIP_CONTEXTS][2]; + + int compound_idx; + + LV_MAP_COEFF_COST coeff_costs[TX_SIZES][PLANE_TYPES]; + LV_MAP_EOB_COST eob_costs[7][2]; + uint16_t cb_offset; + + // mode costs + int intra_inter_cost[INTRA_INTER_CONTEXTS][2]; + + int mbmode_cost[BLOCK_SIZE_GROUPS][INTRA_MODES]; + int newmv_mode_cost[NEWMV_MODE_CONTEXTS][2]; + int zeromv_mode_cost[GLOBALMV_MODE_CONTEXTS][2]; + int refmv_mode_cost[REFMV_MODE_CONTEXTS][2]; + int drl_mode_cost0[DRL_MODE_CONTEXTS][2]; + + int comp_inter_cost[COMP_INTER_CONTEXTS][2]; + int single_ref_cost[REF_CONTEXTS][SINGLE_REFS - 1][2]; + int comp_ref_type_cost[COMP_REF_TYPE_CONTEXTS] + [CDF_SIZE(COMP_REFERENCE_TYPES)]; + int uni_comp_ref_cost[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1] + [CDF_SIZE(2)]; + // Cost for signaling ref_frame[0] (LAST_FRAME, LAST2_FRAME, LAST3_FRAME or + // GOLDEN_FRAME) in bidir-comp mode. + int comp_ref_cost[REF_CONTEXTS][FWD_REFS - 1][2]; + // Cost for signaling ref_frame[1] (ALTREF_FRAME, ALTREF2_FRAME, or + // BWDREF_FRAME) in bidir-comp mode. + int comp_bwdref_cost[REF_CONTEXTS][BWD_REFS - 1][2]; + int inter_compound_mode_cost[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES]; + int compound_type_cost[BLOCK_SIZES_ALL][COMPOUND_TYPES - 1]; + int wedge_idx_cost[BLOCK_SIZES_ALL][16]; + int interintra_cost[BLOCK_SIZE_GROUPS][2]; + int wedge_interintra_cost[BLOCK_SIZES_ALL][2]; + int interintra_mode_cost[BLOCK_SIZE_GROUPS][INTERINTRA_MODES]; + int motion_mode_cost[BLOCK_SIZES_ALL][MOTION_MODES]; + int motion_mode_cost1[BLOCK_SIZES_ALL][2]; + int intra_uv_mode_cost[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES]; + int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES]; + int filter_intra_cost[BLOCK_SIZES_ALL][2]; + int filter_intra_mode_cost[FILTER_INTRA_MODES]; + int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS]; + int partition_cost[PARTITION_CONTEXTS][EXT_PARTITION_TYPES]; + int palette_y_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; + int palette_uv_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; + int palette_y_color_cost[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS] + [PALETTE_COLORS]; + int palette_uv_color_cost[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS] + [PALETTE_COLORS]; + int palette_y_mode_cost[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2]; + int palette_uv_mode_cost[PALETTE_UV_MODE_CONTEXTS][2]; + // The rate associated with each alpha codeword + int cfl_cost[CFL_JOINT_SIGNS][CFL_PRED_PLANES][CFL_ALPHABET_SIZE]; + int tx_size_cost[TX_SIZES - 1][TX_SIZE_CONTEXTS][TX_SIZES]; + int txfm_partition_cost[TXFM_PARTITION_CONTEXTS][2]; + int inter_tx_type_costs[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES]; + int intra_tx_type_costs[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES] + [TX_TYPES]; + int angle_delta_cost[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1]; + int switchable_restore_cost[RESTORE_SWITCHABLE_TYPES]; + int wiener_restore_cost[2]; + int sgrproj_restore_cost[2]; + int intrabc_cost[2]; + + // Used to store sub partition's choices. + MV pred_mv[REF_FRAMES]; + + // Store the best motion vector during motion search + int_mv best_mv; + // Store the second best motion vector during full-pixel motion search + int_mv second_best_mv; + + // use default transform and skip transform type search for intra modes + int use_default_intra_tx_type; + // use default transform and skip transform type search for inter modes + int use_default_inter_tx_type; +#if CONFIG_DIST_8X8 + int using_dist_8x8; + aom_tune_metric tune_metric; +#endif // CONFIG_DIST_8X8 + int comp_idx_cost[COMP_INDEX_CONTEXTS][2]; + int comp_group_idx_cost[COMP_GROUP_IDX_CONTEXTS][2]; + // Bit flags for pruning tx type search, tx split, etc. + int tx_search_prune[EXT_TX_SET_TYPES]; + int must_find_valid_partition; + int tx_split_prune_flag; // Flag to skip tx split RD search. + int recalc_luma_mc_data; // Flag to indicate recalculation of MC data during + // interpolation filter search +}; + +static INLINE int is_rect_tx_allowed_bsize(BLOCK_SIZE bsize) { + static const char LUT[BLOCK_SIZES_ALL] = { + 0, // BLOCK_4X4 + 1, // BLOCK_4X8 + 1, // BLOCK_8X4 + 0, // BLOCK_8X8 + 1, // BLOCK_8X16 + 1, // BLOCK_16X8 + 0, // BLOCK_16X16 + 1, // BLOCK_16X32 + 1, // BLOCK_32X16 + 0, // BLOCK_32X32 + 1, // BLOCK_32X64 + 1, // BLOCK_64X32 + 0, // BLOCK_64X64 + 0, // BLOCK_64X128 + 0, // BLOCK_128X64 + 0, // BLOCK_128X128 + 1, // BLOCK_4X16 + 1, // BLOCK_16X4 + 1, // BLOCK_8X32 + 1, // BLOCK_32X8 + 1, // BLOCK_16X64 + 1, // BLOCK_64X16 + }; + + return LUT[bsize]; +} + +static INLINE int is_rect_tx_allowed(const MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi) { + return is_rect_tx_allowed_bsize(mbmi->sb_type) && + !xd->lossless[mbmi->segment_id]; +} + +static INLINE int tx_size_to_depth(TX_SIZE tx_size, BLOCK_SIZE bsize) { + TX_SIZE ctx_size = max_txsize_rect_lookup[bsize]; + int depth = 0; + while (tx_size != ctx_size) { + depth++; + ctx_size = sub_tx_size_map[ctx_size]; + assert(depth <= MAX_TX_DEPTH); + } + return depth; +} + +static INLINE void set_blk_skip(MACROBLOCK *x, int plane, int blk_idx, + int skip) { + if (skip) + x->blk_skip[blk_idx] |= 1UL << plane; + else + x->blk_skip[blk_idx] &= ~(1UL << plane); +#ifndef NDEBUG + // Set chroma planes to uninitialized states when luma is set to check if + // it will be set later + if (plane == 0) { + x->blk_skip[blk_idx] |= 1UL << (1 + 4); + x->blk_skip[blk_idx] |= 1UL << (2 + 4); + } + + // Clear the initialization checking bit + x->blk_skip[blk_idx] &= ~(1UL << (plane + 4)); +#endif +} + +static INLINE int is_blk_skip(MACROBLOCK *x, int plane, int blk_idx) { +#ifndef NDEBUG + // Check if this is initialized + assert(!(x->blk_skip[blk_idx] & (1UL << (plane + 4)))); + + // The magic number is 0x77, this is to test if there is garbage data + assert((x->blk_skip[blk_idx] & 0x88) == 0); +#endif + return (x->blk_skip[blk_idx] >> plane) & 1; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_BLOCK_H_ diff --git a/third_party/aom/av1/encoder/blockiness.c b/third_party/aom/av1/encoder/blockiness.c new file mode 100644 index 0000000000..f7cff9e532 --- /dev/null +++ b/third_party/aom/av1/encoder/blockiness.c @@ -0,0 +1,142 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/av1_rtcd.h" +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" + +#include "av1/common/common.h" +#include "av1/common/filter.h" +#include "aom/aom_integer.h" +#include "aom_dsp/aom_filter.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +static int horizontal_filter(const uint8_t *s) { + return (s[1] - s[-2]) * 2 + (s[-1] - s[0]) * 6; +} + +static int vertical_filter(const uint8_t *s, int p) { + return (s[p] - s[-2 * p]) * 2 + (s[-p] - s[0]) * 6; +} + +static int variance(int sum, int sum_squared, int size) { + return sum_squared / size - (sum / size) * (sum / size); +} +// Calculate a blockiness level for a vertical block edge. +// This function returns a new blockiness metric that's defined as + +// p0 p1 p2 p3 +// q0 q1 q2 q3 +// block edge -> +// r0 r1 r2 r3 +// s0 s1 s2 s3 + +// blockiness = p0*-2+q0*6+r0*-6+s0*2 + +// p1*-2+q1*6+r1*-6+s1*2 + +// p2*-2+q2*6+r2*-6+s2*2 + +// p3*-2+q3*6+r3*-6+s3*2 ; + +// reconstructed_blockiness = abs(blockiness from reconstructed buffer - +// blockiness from source buffer,0) +// +// I make the assumption that flat blocks are much more visible than high +// contrast blocks. As such, I scale the result of the blockiness calc +// by dividing the blockiness by the variance of the pixels on either side +// of the edge as follows: +// var_0 = (q0^2+q1^2+q2^2+q3^2) - ((q0 + q1 + q2 + q3) / 4 )^2 +// var_1 = (r0^2+r1^2+r2^2+r3^2) - ((r0 + r1 + r2 + r3) / 4 )^2 +// The returned blockiness is the scaled value +// Reconstructed blockiness / ( 1 + var_0 + var_1 ) ; +static int blockiness_vertical(const uint8_t *s, int sp, const uint8_t *r, + int rp, int size) { + int s_blockiness = 0; + int r_blockiness = 0; + int sum_0 = 0; + int sum_sq_0 = 0; + int sum_1 = 0; + int sum_sq_1 = 0; + int i; + int var_0; + int var_1; + for (i = 0; i < size; ++i, s += sp, r += rp) { + s_blockiness += horizontal_filter(s); + r_blockiness += horizontal_filter(r); + sum_0 += s[0]; + sum_sq_0 += s[0] * s[0]; + sum_1 += s[-1]; + sum_sq_1 += s[-1] * s[-1]; + } + var_0 = variance(sum_0, sum_sq_0, size); + var_1 = variance(sum_1, sum_sq_1, size); + r_blockiness = abs(r_blockiness); + s_blockiness = abs(s_blockiness); + + if (r_blockiness > s_blockiness) + return (r_blockiness - s_blockiness) / (1 + var_0 + var_1); + else + return 0; +} + +// Calculate a blockiness level for a horizontal block edge +// same as above. +static int blockiness_horizontal(const uint8_t *s, int sp, const uint8_t *r, + int rp, int size) { + int s_blockiness = 0; + int r_blockiness = 0; + int sum_0 = 0; + int sum_sq_0 = 0; + int sum_1 = 0; + int sum_sq_1 = 0; + int i; + int var_0; + int var_1; + for (i = 0; i < size; ++i, ++s, ++r) { + s_blockiness += vertical_filter(s, sp); + r_blockiness += vertical_filter(r, rp); + sum_0 += s[0]; + sum_sq_0 += s[0] * s[0]; + sum_1 += s[-sp]; + sum_sq_1 += s[-sp] * s[-sp]; + } + var_0 = variance(sum_0, sum_sq_0, size); + var_1 = variance(sum_1, sum_sq_1, size); + r_blockiness = abs(r_blockiness); + s_blockiness = abs(s_blockiness); + + if (r_blockiness > s_blockiness) + return (r_blockiness - s_blockiness) / (1 + var_0 + var_1); + else + return 0; +} + +// This function returns the blockiness for the entire frame currently by +// looking at all borders in steps of 4. +double av1_get_blockiness(const unsigned char *img1, int img1_pitch, + const unsigned char *img2, int img2_pitch, int width, + int height) { + double blockiness = 0; + int i, j; + aom_clear_system_state(); + for (i = 0; i < height; + i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { + for (j = 0; j < width; j += 4) { + if (i > 0 && i < height && j > 0 && j < width) { + blockiness += + blockiness_vertical(img1 + j, img1_pitch, img2 + j, img2_pitch, 4); + blockiness += blockiness_horizontal(img1 + j, img1_pitch, img2 + j, + img2_pitch, 4); + } + } + } + blockiness /= width * height / 16; + return blockiness; +} diff --git a/third_party/aom/av1/encoder/context_tree.c b/third_party/aom/av1/encoder/context_tree.c new file mode 100644 index 0000000000..57f59f304b --- /dev/null +++ b/third_party/aom/av1/encoder/context_tree.c @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/encoder/context_tree.h" +#include "av1/encoder/encoder.h" + +static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = { + BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, BLOCK_128X128, +}; + +static void alloc_mode_context(AV1_COMMON *cm, int num_pix, + PICK_MODE_CONTEXT *ctx) { + const int num_planes = av1_num_planes(cm); + int i; + const int num_blk = num_pix / 16; + ctx->num_4x4_blk = num_blk; + + CHECK_MEM_ERROR(cm, ctx->blk_skip, aom_calloc(num_blk, sizeof(uint8_t))); + for (i = 0; i < num_planes; ++i) { + CHECK_MEM_ERROR(cm, ctx->coeff[i], + aom_memalign(32, num_pix * sizeof(*ctx->coeff[i]))); + CHECK_MEM_ERROR(cm, ctx->qcoeff[i], + aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i]))); + CHECK_MEM_ERROR(cm, ctx->dqcoeff[i], + aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i]))); + CHECK_MEM_ERROR(cm, ctx->eobs[i], + aom_memalign(32, num_blk * sizeof(*ctx->eobs[i]))); + CHECK_MEM_ERROR( + cm, ctx->txb_entropy_ctx[i], + aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i]))); + } + + if (num_pix <= MAX_PALETTE_SQUARE) { + for (i = 0; i < 2; ++i) { + CHECK_MEM_ERROR( + cm, ctx->color_index_map[i], + aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i]))); + } + } +} + +static void free_mode_context(PICK_MODE_CONTEXT *ctx, const int num_planes) { + int i; + aom_free(ctx->blk_skip); + ctx->blk_skip = 0; + for (i = 0; i < num_planes; ++i) { + aom_free(ctx->coeff[i]); + ctx->coeff[i] = 0; + aom_free(ctx->qcoeff[i]); + ctx->qcoeff[i] = 0; + aom_free(ctx->dqcoeff[i]); + ctx->dqcoeff[i] = 0; + aom_free(ctx->eobs[i]); + ctx->eobs[i] = 0; + aom_free(ctx->txb_entropy_ctx[i]); + ctx->txb_entropy_ctx[i] = 0; + } + + for (i = 0; i < 2; ++i) { + aom_free(ctx->color_index_map[i]); + ctx->color_index_map[i] = 0; + } +} + +static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, int num_pix, + int is_leaf) { + alloc_mode_context(cm, num_pix, &tree->none); + + if (is_leaf) return; + + alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0]); + alloc_mode_context(cm, num_pix / 2, &tree->vertical[0]); + + alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1]); + alloc_mode_context(cm, num_pix / 2, &tree->vertical[1]); + + alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0]); + alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1]); + alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2]); + + alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0]); + alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1]); + alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2]); + + alloc_mode_context(cm, num_pix / 4, &tree->verticala[0]); + alloc_mode_context(cm, num_pix / 4, &tree->verticala[1]); + alloc_mode_context(cm, num_pix / 2, &tree->verticala[2]); + + alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0]); + alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1]); + alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2]); + + for (int i = 0; i < 4; ++i) { + alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i]); + alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i]); + } +} + +static void free_tree_contexts(PC_TREE *tree, const int num_planes) { + int i; + for (i = 0; i < 3; i++) { + free_mode_context(&tree->horizontala[i], num_planes); + free_mode_context(&tree->horizontalb[i], num_planes); + free_mode_context(&tree->verticala[i], num_planes); + free_mode_context(&tree->verticalb[i], num_planes); + } + for (i = 0; i < 4; ++i) { + free_mode_context(&tree->horizontal4[i], num_planes); + free_mode_context(&tree->vertical4[i], num_planes); + } + free_mode_context(&tree->none, num_planes); + free_mode_context(&tree->horizontal[0], num_planes); + free_mode_context(&tree->horizontal[1], num_planes); + free_mode_context(&tree->vertical[0], num_planes); + free_mode_context(&tree->vertical[1], num_planes); +} + +// This function sets up a tree of contexts such that at each square +// partition level. There are contexts for none, horizontal, vertical, and +// split. Along with a block_size value and a selected block_size which +// represents the state of our search. +void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) { + int i, j; + const int tree_nodes_inc = 1024; + const int leaf_factor = 4; + const int leaf_nodes = 256 * leaf_factor; + const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; + int pc_tree_index = 0; + PC_TREE *this_pc; + int square_index = 1; + int nodes; + + aom_free(td->pc_tree); + CHECK_MEM_ERROR(cm, td->pc_tree, + aom_calloc(tree_nodes, sizeof(*td->pc_tree))); + this_pc = &td->pc_tree[0]; + + // Sets up all the leaf nodes in the tree. + for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) { + PC_TREE *const tree = &td->pc_tree[pc_tree_index]; + tree->block_size = square[0]; + alloc_tree_contexts(cm, tree, 16, 1); + } + + // Each node has 4 leaf nodes, fill each block_size level of the tree + // from leafs to the root. + for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { + for (i = 0; i < nodes; ++i) { + PC_TREE *const tree = &td->pc_tree[pc_tree_index]; + alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0); + tree->block_size = square[square_index]; + for (j = 0; j < 4; j++) tree->split[j] = this_pc++; + ++pc_tree_index; + } + ++square_index; + } + + // Set up the root node for the largest superblock size + i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2; + td->pc_root[i] = &td->pc_tree[tree_nodes - 1]; + td->pc_root[i]->none.best_mode_index = 2; + // Set up the root nodes for the rest of the possible superblock sizes + while (--i >= 0) { + td->pc_root[i] = td->pc_root[i + 1]->split[0]; + td->pc_root[i]->none.best_mode_index = 2; + } +} + +void av1_free_pc_tree(ThreadData *td, const int num_planes) { + if (td->pc_tree != NULL) { + const int tree_nodes_inc = 1024; + const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; + for (int i = 0; i < tree_nodes; ++i) { + free_tree_contexts(&td->pc_tree[i], num_planes); + } + aom_free(td->pc_tree); + td->pc_tree = NULL; + } +} + +void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx, + PICK_MODE_CONTEXT *src_ctx) { + dst_ctx->mic = src_ctx->mic; + dst_ctx->mbmi_ext = src_ctx->mbmi_ext; + + dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk; + dst_ctx->skip = src_ctx->skip; + dst_ctx->skippable = src_ctx->skippable; + dst_ctx->best_mode_index = src_ctx->best_mode_index; + + memcpy(dst_ctx->blk_skip, src_ctx->blk_skip, + sizeof(uint8_t) * src_ctx->num_4x4_blk); + + dst_ctx->hybrid_pred_diff = src_ctx->hybrid_pred_diff; + dst_ctx->comp_pred_diff = src_ctx->comp_pred_diff; + dst_ctx->single_pred_diff = src_ctx->single_pred_diff; + + dst_ctx->rate = src_ctx->rate; + dst_ctx->dist = src_ctx->dist; + dst_ctx->rdcost = src_ctx->rdcost; + dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready; + + memcpy(dst_ctx->pred_mv, src_ctx->pred_mv, sizeof(MV) * REF_FRAMES); + dst_ctx->pred_interp_filter = src_ctx->pred_interp_filter; + + dst_ctx->partition = src_ctx->partition; +} diff --git a/third_party/aom/av1/encoder/context_tree.h b/third_party/aom/av1/encoder/context_tree.h new file mode 100644 index 0000000000..4efc349852 --- /dev/null +++ b/third_party/aom/av1/encoder/context_tree.h @@ -0,0 +1,114 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_CONTEXT_TREE_H_ +#define AOM_AV1_ENCODER_CONTEXT_TREE_H_ + +#include "av1/common/blockd.h" +#include "av1/encoder/block.h" + +#ifdef __cplusplus +extern "C" { +#endif + +struct AV1_COMP; +struct AV1Common; +struct ThreadData; + +typedef enum { + // Search all the partition types in this plane. + SEARCH_FULL_PLANE = 0, + // Only search none_partition coding block. + NONE_PARTITION_PLANE = 1, + // Search all the partition types in this plane except split. + SEARCH_SAME_PLANE = 2, + // Skip search partition on this plane. Go split directly. + SPLIT_PLANE = 3, +} CB_TREE_SEARCH; + +// Structure to hold snapshot of coding context during the mode picking process +typedef struct { + MB_MODE_INFO mic; + MB_MODE_INFO_EXT mbmi_ext; + uint8_t *color_index_map[2]; + uint8_t *blk_skip; + + tran_low_t *coeff[MAX_MB_PLANE]; + tran_low_t *qcoeff[MAX_MB_PLANE]; + tran_low_t *dqcoeff[MAX_MB_PLANE]; + uint16_t *eobs[MAX_MB_PLANE]; + uint8_t *txb_entropy_ctx[MAX_MB_PLANE]; + + int num_4x4_blk; + int skip; + // For current partition, only if all Y, U, and V transform blocks' + // coefficients are quantized to 0, skippable is set to 1. + int skippable; + int best_mode_index; + int hybrid_pred_diff; + int comp_pred_diff; + int single_pred_diff; + // Skip certain ref frames during RD search of rectangular partitions. + int skip_ref_frame_mask; + + // TODO(jingning) Use RD_COST struct here instead. This involves a boarder + // scope of refactoring. + int rate; + int64_t dist; + int64_t rdcost; + int rd_mode_is_ready; // Flag to indicate whether rd pick mode decision has + // been made. + + // motion vector cache for adaptive motion search control in partition + // search loop + MV pred_mv[REF_FRAMES]; + InterpFilter pred_interp_filter; + PARTITION_TYPE partition; +} PICK_MODE_CONTEXT; + +typedef struct { + int valid; + int split; + int skip; + int64_t rdcost; + int sub_block_split[4]; + int sub_block_skip[4]; + int64_t sub_block_rdcost[4]; +} PC_TREE_STATS; + +typedef struct PC_TREE { + int index; + PARTITION_TYPE partitioning; + BLOCK_SIZE block_size; + PICK_MODE_CONTEXT none; + PICK_MODE_CONTEXT horizontal[2]; + PICK_MODE_CONTEXT vertical[2]; + PICK_MODE_CONTEXT horizontala[3]; + PICK_MODE_CONTEXT horizontalb[3]; + PICK_MODE_CONTEXT verticala[3]; + PICK_MODE_CONTEXT verticalb[3]; + PICK_MODE_CONTEXT horizontal4[4]; + PICK_MODE_CONTEXT vertical4[4]; + CB_TREE_SEARCH cb_search_range; + struct PC_TREE *split[4]; + PC_TREE_STATS pc_tree_stats; +} PC_TREE; + +void av1_setup_pc_tree(struct AV1Common *cm, struct ThreadData *td); +void av1_free_pc_tree(struct ThreadData *td, const int num_planes); +void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx, + PICK_MODE_CONTEXT *src_ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_CONTEXT_TREE_H_ diff --git a/third_party/aom/av1/encoder/corner_detect.c b/third_party/aom/av1/encoder/corner_detect.c new file mode 100644 index 0000000000..e4c59dd9c6 --- /dev/null +++ b/third_party/aom/av1/encoder/corner_detect.c @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdlib.h> +#include <stdio.h> +#include <memory.h> +#include <math.h> +#include <assert.h> + +#include "third_party/fastfeat/fast.h" + +#include "av1/encoder/corner_detect.h" + +// Fast_9 wrapper +#define FAST_BARRIER 18 +int fast_corner_detect(unsigned char *buf, int width, int height, int stride, + int *points, int max_points) { + int num_points; + xy *const frm_corners_xy = fast9_detect_nonmax(buf, width, height, stride, + FAST_BARRIER, &num_points); + num_points = (num_points <= max_points ? num_points : max_points); + if (num_points > 0 && frm_corners_xy) { + memcpy(points, frm_corners_xy, sizeof(*frm_corners_xy) * num_points); + free(frm_corners_xy); + return num_points; + } + free(frm_corners_xy); + return 0; +} diff --git a/third_party/aom/av1/encoder/corner_detect.h b/third_party/aom/av1/encoder/corner_detect.h new file mode 100644 index 0000000000..cab59a7743 --- /dev/null +++ b/third_party/aom/av1/encoder/corner_detect.h @@ -0,0 +1,22 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_CORNER_DETECT_H_ +#define AOM_AV1_ENCODER_CORNER_DETECT_H_ + +#include <stdio.h> +#include <stdlib.h> +#include <memory.h> + +int fast_corner_detect(unsigned char *buf, int width, int height, int stride, + int *points, int max_points); + +#endif // AOM_AV1_ENCODER_CORNER_DETECT_H_ diff --git a/third_party/aom/av1/encoder/corner_match.c b/third_party/aom/av1/encoder/corner_match.c new file mode 100644 index 0000000000..29e934debd --- /dev/null +++ b/third_party/aom/av1/encoder/corner_match.c @@ -0,0 +1,191 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdlib.h> +#include <memory.h> +#include <math.h> + +#include "config/av1_rtcd.h" + +#include "av1/encoder/corner_match.h" + +#define SEARCH_SZ 9 +#define SEARCH_SZ_BY2 ((SEARCH_SZ - 1) / 2) + +#define THRESHOLD_NCC 0.75 + +/* Compute var(im) * MATCH_SZ_SQ over a MATCH_SZ by MATCH_SZ window of im, + centered at (x, y). +*/ +static double compute_variance(unsigned char *im, int stride, int x, int y) { + int sum = 0; + int sumsq = 0; + int var; + int i, j; + for (i = 0; i < MATCH_SZ; ++i) + for (j = 0; j < MATCH_SZ; ++j) { + sum += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; + sumsq += im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)] * + im[(i + y - MATCH_SZ_BY2) * stride + (j + x - MATCH_SZ_BY2)]; + } + var = sumsq * MATCH_SZ_SQ - sum * sum; + return (double)var; +} + +/* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the + correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows + of each image, centered at (x1, y1) and (x2, y2) respectively. +*/ +double compute_cross_correlation_c(unsigned char *im1, int stride1, int x1, + int y1, unsigned char *im2, int stride2, + int x2, int y2) { + int v1, v2; + int sum1 = 0; + int sum2 = 0; + int sumsq2 = 0; + int cross = 0; + int var2, cov; + int i, j; + for (i = 0; i < MATCH_SZ; ++i) + for (j = 0; j < MATCH_SZ; ++j) { + v1 = im1[(i + y1 - MATCH_SZ_BY2) * stride1 + (j + x1 - MATCH_SZ_BY2)]; + v2 = im2[(i + y2 - MATCH_SZ_BY2) * stride2 + (j + x2 - MATCH_SZ_BY2)]; + sum1 += v1; + sum2 += v2; + sumsq2 += v2 * v2; + cross += v1 * v2; + } + var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2; + cov = cross * MATCH_SZ_SQ - sum1 * sum2; + return cov / sqrt((double)var2); +} + +static int is_eligible_point(int pointx, int pointy, int width, int height) { + return (pointx >= MATCH_SZ_BY2 && pointy >= MATCH_SZ_BY2 && + pointx + MATCH_SZ_BY2 < width && pointy + MATCH_SZ_BY2 < height); +} + +static int is_eligible_distance(int point1x, int point1y, int point2x, + int point2y, int width, int height) { + const int thresh = (width < height ? height : width) >> 4; + return ((point1x - point2x) * (point1x - point2x) + + (point1y - point2y) * (point1y - point2y)) <= thresh * thresh; +} + +static void improve_correspondence(unsigned char *frm, unsigned char *ref, + int width, int height, int frm_stride, + int ref_stride, + Correspondence *correspondences, + int num_correspondences) { + int i; + for (i = 0; i < num_correspondences; ++i) { + int x, y, best_x = 0, best_y = 0; + double best_match_ncc = 0.0; + for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) { + for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { + double match_ncc; + if (!is_eligible_point(correspondences[i].rx + x, + correspondences[i].ry + y, width, height)) + continue; + if (!is_eligible_distance(correspondences[i].x, correspondences[i].y, + correspondences[i].rx + x, + correspondences[i].ry + y, width, height)) + continue; + match_ncc = compute_cross_correlation( + frm, frm_stride, correspondences[i].x, correspondences[i].y, ref, + ref_stride, correspondences[i].rx + x, correspondences[i].ry + y); + if (match_ncc > best_match_ncc) { + best_match_ncc = match_ncc; + best_y = y; + best_x = x; + } + } + } + correspondences[i].rx += best_x; + correspondences[i].ry += best_y; + } + for (i = 0; i < num_correspondences; ++i) { + int x, y, best_x = 0, best_y = 0; + double best_match_ncc = 0.0; + for (y = -SEARCH_SZ_BY2; y <= SEARCH_SZ_BY2; ++y) + for (x = -SEARCH_SZ_BY2; x <= SEARCH_SZ_BY2; ++x) { + double match_ncc; + if (!is_eligible_point(correspondences[i].x + x, + correspondences[i].y + y, width, height)) + continue; + if (!is_eligible_distance( + correspondences[i].x + x, correspondences[i].y + y, + correspondences[i].rx, correspondences[i].ry, width, height)) + continue; + match_ncc = compute_cross_correlation( + ref, ref_stride, correspondences[i].rx, correspondences[i].ry, frm, + frm_stride, correspondences[i].x + x, correspondences[i].y + y); + if (match_ncc > best_match_ncc) { + best_match_ncc = match_ncc; + best_y = y; + best_x = x; + } + } + correspondences[i].x += best_x; + correspondences[i].y += best_y; + } +} + +int determine_correspondence(unsigned char *frm, int *frm_corners, + int num_frm_corners, unsigned char *ref, + int *ref_corners, int num_ref_corners, int width, + int height, int frm_stride, int ref_stride, + int *correspondence_pts) { + // TODO(sarahparker) Improve this to include 2-way match + int i, j; + Correspondence *correspondences = (Correspondence *)correspondence_pts; + int num_correspondences = 0; + for (i = 0; i < num_frm_corners; ++i) { + double best_match_ncc = 0.0; + double template_norm; + int best_match_j = -1; + if (!is_eligible_point(frm_corners[2 * i], frm_corners[2 * i + 1], width, + height)) + continue; + for (j = 0; j < num_ref_corners; ++j) { + double match_ncc; + if (!is_eligible_point(ref_corners[2 * j], ref_corners[2 * j + 1], width, + height)) + continue; + if (!is_eligible_distance(frm_corners[2 * i], frm_corners[2 * i + 1], + ref_corners[2 * j], ref_corners[2 * j + 1], + width, height)) + continue; + match_ncc = compute_cross_correlation( + frm, frm_stride, frm_corners[2 * i], frm_corners[2 * i + 1], ref, + ref_stride, ref_corners[2 * j], ref_corners[2 * j + 1]); + if (match_ncc > best_match_ncc) { + best_match_ncc = match_ncc; + best_match_j = j; + } + } + // Note: We want to test if the best correlation is >= THRESHOLD_NCC, + // but need to account for the normalization in compute_cross_correlation. + template_norm = compute_variance(frm, frm_stride, frm_corners[2 * i], + frm_corners[2 * i + 1]); + if (best_match_ncc > THRESHOLD_NCC * sqrt(template_norm)) { + correspondences[num_correspondences].x = frm_corners[2 * i]; + correspondences[num_correspondences].y = frm_corners[2 * i + 1]; + correspondences[num_correspondences].rx = ref_corners[2 * best_match_j]; + correspondences[num_correspondences].ry = + ref_corners[2 * best_match_j + 1]; + num_correspondences++; + } + } + improve_correspondence(frm, ref, width, height, frm_stride, ref_stride, + correspondences, num_correspondences); + return num_correspondences; +} diff --git a/third_party/aom/av1/encoder/corner_match.h b/third_party/aom/av1/encoder/corner_match.h new file mode 100644 index 0000000000..535d2faed1 --- /dev/null +++ b/third_party/aom/av1/encoder/corner_match.h @@ -0,0 +1,33 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_ENCODER_CORNER_MATCH_H_ +#define AOM_AV1_ENCODER_CORNER_MATCH_H_ + +#include <stdio.h> +#include <stdlib.h> +#include <memory.h> + +#define MATCH_SZ 13 +#define MATCH_SZ_BY2 ((MATCH_SZ - 1) / 2) +#define MATCH_SZ_SQ (MATCH_SZ * MATCH_SZ) + +typedef struct { + int x, y; + int rx, ry; +} Correspondence; + +int determine_correspondence(unsigned char *frm, int *frm_corners, + int num_frm_corners, unsigned char *ref, + int *ref_corners, int num_ref_corners, int width, + int height, int frm_stride, int ref_stride, + int *correspondence_pts); + +#endif // AOM_AV1_ENCODER_CORNER_MATCH_H_ diff --git a/third_party/aom/av1/encoder/cost.c b/third_party/aom/av1/encoder/cost.c new file mode 100644 index 0000000000..323e2aed58 --- /dev/null +++ b/third_party/aom/av1/encoder/cost.c @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#include <assert.h> + +#include "av1/encoder/cost.h" +#include "av1/common/entropy.h" + +// round(-log2(i/256.) * (1 << AV1_PROB_COST_SHIFT)); i = 128~255. +const uint16_t av1_prob_cost[128] = { + 512, 506, 501, 495, 489, 484, 478, 473, 467, 462, 456, 451, 446, 441, 435, + 430, 425, 420, 415, 410, 405, 400, 395, 390, 385, 380, 375, 371, 366, 361, + 356, 352, 347, 343, 338, 333, 329, 324, 320, 316, 311, 307, 302, 298, 294, + 289, 285, 281, 277, 273, 268, 264, 260, 256, 252, 248, 244, 240, 236, 232, + 228, 224, 220, 216, 212, 209, 205, 201, 197, 194, 190, 186, 182, 179, 175, + 171, 168, 164, 161, 157, 153, 150, 146, 143, 139, 136, 132, 129, 125, 122, + 119, 115, 112, 109, 105, 102, 99, 95, 92, 89, 86, 82, 79, 76, 73, + 70, 66, 63, 60, 57, 54, 51, 48, 45, 42, 38, 35, 32, 29, 26, + 23, 20, 18, 15, 12, 9, 6, 3, +}; + +void av1_cost_tokens_from_cdf(int *costs, const aom_cdf_prob *cdf, + const int *inv_map) { + int i; + aom_cdf_prob prev_cdf = 0; + for (i = 0;; ++i) { + aom_cdf_prob p15 = AOM_ICDF(cdf[i]) - prev_cdf; + p15 = (p15 < EC_MIN_PROB) ? EC_MIN_PROB : p15; + prev_cdf = AOM_ICDF(cdf[i]); + + if (inv_map) + costs[inv_map[i]] = av1_cost_symbol(p15); + else + costs[i] = av1_cost_symbol(p15); + + // Stop once we reach the end of the CDF + if (cdf[i] == AOM_ICDF(CDF_PROB_TOP)) break; + } +} diff --git a/third_party/aom/av1/encoder/cost.h b/third_party/aom/av1/encoder/cost.h new file mode 100644 index 0000000000..af5b098370 --- /dev/null +++ b/third_party/aom/av1/encoder/cost.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_COST_H_ +#define AOM_AV1_ENCODER_COST_H_ + +#include "aom_dsp/prob.h" +#include "aom/aom_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern const uint16_t av1_prob_cost[128]; + +// The factor to scale from cost in bits to cost in av1_prob_cost units. +#define AV1_PROB_COST_SHIFT 9 + +// Cost of coding an n bit literal, using 128 (i.e. 50%) probability +// for each bit. +#define av1_cost_literal(n) ((n) * (1 << AV1_PROB_COST_SHIFT)) + +// Calculate the cost of a symbol with probability p15 / 2^15 +static INLINE int av1_cost_symbol(aom_cdf_prob p15) { + assert(0 < p15 && p15 < CDF_PROB_TOP); + const int shift = CDF_PROB_BITS - 1 - get_msb(p15); + const int prob = get_prob(p15 << shift, CDF_PROB_TOP); + assert(prob >= 128); + return av1_prob_cost[prob - 128] + av1_cost_literal(shift); +} + +void av1_cost_tokens_from_cdf(int *costs, const aom_cdf_prob *cdf, + const int *inv_map); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_COST_H_ diff --git a/third_party/aom/av1/encoder/dwt.c b/third_party/aom/av1/encoder/dwt.c new file mode 100644 index 0000000000..04088b25f9 --- /dev/null +++ b/third_party/aom/av1/encoder/dwt.c @@ -0,0 +1,155 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdlib.h> +#include <math.h> + +#include "config/av1_rtcd.h" +#include "av1/encoder/dwt.h" + +// Note: block length must be even for this implementation +static void analysis_53_row(int length, tran_low_t *x, tran_low_t *lowpass, + tran_low_t *highpass) { + int n; + tran_low_t r, *a, *b; + + n = length >> 1; + b = highpass; + a = lowpass; + while (--n) { + *a++ = (r = *x++) * 2; + *b++ = *x - ((r + x[1] + 1) >> 1); + x++; + } + *a = (r = *x++) * 2; + *b = *x - r; + + n = length >> 1; + b = highpass; + a = lowpass; + r = *highpass; + while (n--) { + *a++ += (r + (*b) + 1) >> 1; + r = *b++; + } +} + +static void analysis_53_col(int length, tran_low_t *x, tran_low_t *lowpass, + tran_low_t *highpass) { + int n; + tran_low_t r, *a, *b; + + n = length >> 1; + b = highpass; + a = lowpass; + while (--n) { + *a++ = (r = *x++); + *b++ = (((*x) * 2) - (r + x[1]) + 2) >> 2; + x++; + } + *a = (r = *x++); + *b = (*x - r + 1) >> 1; + + n = length >> 1; + b = highpass; + a = lowpass; + r = *highpass; + while (n--) { + *a++ += (r + (*b) + 1) >> 1; + r = *b++; + } +} + +static void dyadic_analyze_53_uint8_input(int levels, int width, int height, + uint8_t *x, int pitch_x, + tran_low_t *c, int pitch_c, + int dwt_scale_bits, int hbd) { + int lv, i, j, nh, nw, hh = height, hw = width; + tran_low_t buffer[2 * DWT_MAX_LENGTH]; + + if (hbd) { + uint16_t *x16 = CONVERT_TO_SHORTPTR(x); + for (i = 0; i < height; i++) { + for (j = 0; j < width; j++) { + c[i * pitch_c + j] = x16[i * pitch_x + j] << dwt_scale_bits; + } + } + } else { + for (i = 0; i < height; i++) { + for (j = 0; j < width; j++) { + c[i * pitch_c + j] = x[i * pitch_x + j] << dwt_scale_bits; + } + } + } + + for (lv = 0; lv < levels; lv++) { + nh = hh; + hh = (hh + 1) >> 1; + nw = hw; + hw = (hw + 1) >> 1; + if ((nh < 2) || (nw < 2)) return; + for (i = 0; i < nh; i++) { + memcpy(buffer, &c[i * pitch_c], nw * sizeof(tran_low_t)); + analysis_53_row(nw, buffer, &c[i * pitch_c], &c[i * pitch_c] + hw); + } + for (j = 0; j < nw; j++) { + for (i = 0; i < nh; i++) buffer[i + nh] = c[i * pitch_c + j]; + analysis_53_col(nh, buffer + nh, buffer, buffer + hh); + for (i = 0; i < nh; i++) c[i * pitch_c + j] = buffer[i]; + } + } +} + +void av1_fdwt8x8_uint8_input_c(uint8_t *input, tran_low_t *output, int stride, + int hbd) { + dyadic_analyze_53_uint8_input(4, 8, 8, input, stride, output, 8, 2, hbd); +} + +int av1_haar_ac_sad(tran_low_t *output, int bw, int bh, int stride) { + int acsad = 0; + + for (int r = 0; r < bh; ++r) + for (int c = 0; c < bw; ++c) { + if (r >= bh / 2 || c >= bw / 2) acsad += abs(output[r * stride + c]); + } + return acsad; +} + +uint64_t av1_dct_ac_sad(tran_low_t *output, int bw, int bh, int stride) { + uint64_t acsad = 0; + + for (int r = 0; r < bh; ++r) + for (int c = 0; c < bw; ++c) { + if (r > 0 || c > 0) acsad += abs(output[r * stride + c]); + } + + return acsad; +} + +uint32_t av1_variance(uint8_t *input, int bw, int bh, int stride) { + int sum = 0; + uint32_t sse = 0; + + for (int r = 0; r < bh; ++r) + for (int c = 0; c < bw; ++c) { + sum += input[r * stride + c]; + sse += input[r * stride + c] * input[r * stride + c]; + } + return sse - (uint32_t)(((int64_t)sum * sum) / (bw * bh)); +} + +int av1_haar_ac_sad_8x8_uint8_input(uint8_t *input, int stride, int hbd) { + tran_low_t output[64]; + + av1_fdwt8x8_uint8_input_c(input, output, stride, hbd); + return av1_haar_ac_sad(output, 8, 8, 8); +} diff --git a/third_party/aom/av1/encoder/dwt.h b/third_party/aom/av1/encoder/dwt.h new file mode 100644 index 0000000000..37306c6a5f --- /dev/null +++ b/third_party/aom/av1/encoder/dwt.h @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_DWT_H_ +#define AOM_AV1_ENCODER_DWT_H_ + +#include "av1/common/common.h" +#include "av1/common/enums.h" + +#define DWT_MAX_LENGTH 64 + +void av1_fdwt8x8(tran_low_t *input, tran_low_t *output, int stride); +void av1_fdwt8x8_uint8_input_c(uint8_t *input, tran_low_t *output, int stride, + int hbd); +int av1_haar_ac_sad_8x8_uint8_input(uint8_t *input, int stride, int hbd); + +#endif // AOM_AV1_ENCODER_DWT_H_ diff --git a/third_party/aom/av1/encoder/encodeframe.c b/third_party/aom/av1/encoder/encodeframe.c new file mode 100644 index 0000000000..cb226c59e2 --- /dev/null +++ b/third_party/aom/av1/encoder/encodeframe.c @@ -0,0 +1,5739 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> +#include <stdio.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_writer.h" +#include "aom_ports/mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_ports/system_state.h" + +#if CONFIG_MISMATCH_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_MISMATCH_DEBUG + +#include "av1/common/cfl.h" +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/idct.h" +#include "av1/common/mv.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconintra.h" +#include "av1/common/reconinter.h" +#include "av1/common/seg_common.h" +#include "av1/common/tile_common.h" +#include "av1/common/warped_motion.h" + +#include "av1/encoder/aq_complexity.h" +#include "av1/encoder/aq_cyclicrefresh.h" +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/global_motion.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/ethread.h" +#include "av1/encoder/extend.h" +#include "av1/encoder/ml.h" +#include "av1/encoder/partition_model_weights.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/reconinter_enc.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/tokenize.h" + +static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, + ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int *rate); + +// This is used as a reference when computing the source variance for the +// purposes of activity masking. +// Eventually this should be replaced by custom no-reference routines, +// which will be faster. +static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128 +}; + +static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, + 128, 128, 128, 128, 128, 128, 128, 128 +}; + +static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, + 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 +}; + +static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, + 128 * 16, 128 * 16 +}; + +#if CONFIG_FP_MB_STATS +static const uint8_t num_16x16_blocks_wide_lookup[BLOCK_SIZES_ALL] = { + 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 1, 1, 1, 2, 2, 4 +}; +static const uint8_t num_16x16_blocks_high_lookup[BLOCK_SIZES_ALL] = { + 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 1, 1, 2, 1, 4, 2 +}; +#endif // CONFIG_FP_MB_STATS + +unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs) { + unsigned int sse; + const unsigned int var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); + return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); +} + +unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs, int bd) { + unsigned int var, sse; + switch (bd) { + case 10: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); + break; + case 12: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); + break; + case 8: + default: + var = + cpi->fn_ptr[bs].vf(ref->buf, ref->stride, + CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); + break; + } + return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); +} + +static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, + const struct buf_2d *ref, + int mi_row, int mi_col, + BLOCK_SIZE bs) { + unsigned int sse, var; + uint8_t *last_y; + const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); + + assert(last != NULL); + last_y = + &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; + var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); + return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); +} + +static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, + int mi_row, int mi_col) { + unsigned int var = get_sby_perpixel_diff_variance( + cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); + if (var < 8) + return BLOCK_64X64; + else if (var < 128) + return BLOCK_32X32; + else if (var < 2048) + return BLOCK_16X16; + else + return BLOCK_8X8; +} + +// Lighter version of set_offsets that only sets the mode info +// pointers. +static void set_mode_info_offsets(const AV1_COMP *const cpi, + MACROBLOCK *const x, MACROBLOCKD *const xd, + int mi_row, int mi_col) { + const AV1_COMMON *const cm = &cpi->common; + const int idx_str = xd->mi_stride * mi_row + mi_col; + xd->mi = cm->mi_grid_visible + idx_str; + xd->mi[0] = cm->mi + idx_str; + x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); +} + +static void set_offsets_without_segment_id(const AV1_COMP *const cpi, + const TileInfo *const tile, + MACROBLOCK *const x, int mi_row, + int mi_col, BLOCK_SIZE bsize) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + + set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); + + set_skip_context(xd, mi_row, mi_col, num_planes); + xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + // Set up destination pointers. + av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, + mi_col, 0, num_planes); + + // Set up limit values for MV components. + // Mv beyond the range do not produce new/different prediction block. + x->mv_limits.row_min = + -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); + x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); + x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; + x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; + + set_plane_n4(xd, mi_width, mi_height, num_planes); + + // Set up distance of MB to edge of frame in 1/8th pel units. + assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); + set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, + cm->mi_cols); + + // Set up source buffers. + av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); + + // R/D setup. + x->rdmult = cpi->rd.RDMULT; + + // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() + xd->tile = *tile; +} + +static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, + MACROBLOCK *const x, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi; + const struct segmentation *const seg = &cm->seg; + + set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); + + mbmi = xd->mi[0]; + xd->cfl.mi_row = mi_row; + xd->cfl.mi_col = mi_col; + + mbmi->segment_id = 0; + + // Setup segment ID. + if (seg->enabled) { + if (seg->enabled && !cpi->vaq_refresh) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mbmi->segment_id = + map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; + } + av1_init_plane_quantizers(cpi, x, mbmi->segment_id); + } +} + +static void reset_intmv_filter_type(MB_MODE_INFO *mbmi) { + InterpFilter filters[2]; + + for (int dir = 0; dir < 2; ++dir) { + filters[dir] = av1_extract_interp_filter(mbmi->interp_filters, dir); + } + mbmi->interp_filters = av1_make_interp_filters(filters[0], filters[1]); +} + +static void update_filter_type_count(uint8_t allow_update_cdf, + FRAME_COUNTS *counts, + const MACROBLOCKD *xd, + const MB_MODE_INFO *mbmi) { + int dir; + for (dir = 0; dir < 2; ++dir) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); + ++counts->switchable_interp[ctx][filter]; + if (allow_update_cdf) { + update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, + SWITCHABLE_FILTERS); + } + } +} + +static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize, + const MB_MODE_INFO *mbmi, + RD_COUNTS *rdc) { + if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) { + const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize]; + int ref; + for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { + rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; + } + } +} + +static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, + const TX_MODE tx_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + if (xd->lossless[mbmi->segment_id]) { + mbmi->tx_size = TX_4X4; + } else if (tx_mode != TX_MODE_SELECT) { + mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode); + } else { + BLOCK_SIZE bsize = mbmi->sb_type; + TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); + mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); + } + if (is_inter_block(mbmi)) { + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + } + memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); + av1_zero(x->blk_skip); + x->skip = 0; +} + +static void update_state(const AV1_COMP *const cpi, + const TileDataEnc *const tile_data, ThreadData *td, + const PICK_MODE_CONTEXT *const ctx, int mi_row, + int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { + int i, x_idx, y; + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + RD_COUNTS *const rdc = &td->rd_counts; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const MB_MODE_INFO *const mi = &ctx->mic; + MB_MODE_INFO *const mi_addr = xd->mi[0]; + const struct segmentation *const seg = &cm->seg; + const int bw = mi_size_wide[mi->sb_type]; + const int bh = mi_size_high[mi->sb_type]; + const int mis = cm->mi_stride; + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + + assert(mi->sb_type == bsize); + + *mi_addr = *mi; + *x->mbmi_ext = ctx->mbmi_ext; + + reset_intmv_filter_type(mi_addr); + + memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + + x->skip = ctx->skip; + + // If segmentation in use + if (seg->enabled) { + // For in frame complexity AQ copy the segment id from the segment map. + if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + mi_addr->segment_id = + map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; + reset_tx_size(x, mi_addr, cm->tx_mode); + } + // Else for cyclic refresh mode update the segment map, set the segment id + // and then update the quantizer. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, + ctx->rate, ctx->dist, x->skip); + reset_tx_size(x, mi_addr, cm->tx_mode); + } + if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) + mi_addr->uv_mode = UV_DC_PRED; + } + + for (i = 0; i < num_planes; ++i) { + p[i].coeff = ctx->coeff[i]; + p[i].qcoeff = ctx->qcoeff[i]; + pd[i].dqcoeff = ctx->dqcoeff[i]; + p[i].eobs = ctx->eobs[i]; + p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; + } + for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; + // Restore the coding context of the MB to that that was in place + // when the mode was picked for it + for (y = 0; y < mi_height; y++) + for (x_idx = 0; x_idx < mi_width; x_idx++) + if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && + (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { + xd->mi[x_idx + y * mis] = mi_addr; + } + + if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); + + if (dry_run) return; + +#if CONFIG_INTERNAL_STATS + { + unsigned int *const mode_chosen_counts = + (unsigned int *)cpi->mode_chosen_counts; // Cast const away. + if (frame_is_intra_only(cm)) { + static const int kf_mode_index[] = { + THR_DC /*DC_PRED*/, + THR_V_PRED /*V_PRED*/, + THR_H_PRED /*H_PRED*/, + THR_D45_PRED /*D45_PRED*/, + THR_D135_PRED /*D135_PRED*/, + THR_D113_PRED /*D113_PRED*/, + THR_D157_PRED /*D157_PRED*/, + THR_D203_PRED /*D203_PRED*/, + THR_D67_PRED /*D67_PRED*/, + THR_SMOOTH, /*SMOOTH_PRED*/ + THR_SMOOTH_V, /*SMOOTH_V_PRED*/ + THR_SMOOTH_H, /*SMOOTH_H_PRED*/ + THR_PAETH /*PAETH_PRED*/, + }; + ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; + } else { + // Note how often each mode chosen as best + ++mode_chosen_counts[ctx->best_mode_index]; + } + } +#endif + if (!frame_is_intra_only(cm)) { + if (is_inter_block(mi_addr)) { + // TODO(sarahparker): global motion stats need to be handled per-tile + // to be compatible with tile-based threading. + update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc); + } + + if (cm->interp_filter == SWITCHABLE && + mi_addr->motion_mode != WARPED_CAUSAL && + !is_nontrans_global_motion(xd, xd->mi[0])) { + update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd, + mi_addr); + } + + rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; + rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; + rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; + } + + const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); + const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); + av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); +} + +void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, + int mi_row, int mi_col, const int num_planes) { + // Set current frame pointer. + x->e_mbd.cur_buf = src; + + // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet + // the static analysis warnings. + for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { + const int is_uv = i > 0; + setup_pred_plane(&x->plane[i].src, x->e_mbd.mi[0]->sb_type, src->buffers[i], + src->crop_widths[is_uv], src->crop_heights[is_uv], + src->strides[is_uv], mi_row, mi_col, NULL, + x->e_mbd.plane[i].subsampling_x, + x->e_mbd.plane[i].subsampling_y); + } +} + +static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, + int8_t segment_id) { + const AV1_COMMON *const cm = &cpi->common; + av1_init_plane_quantizers(cpi, x, segment_id); + aom_clear_system_state(); + int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); + return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); +} + +static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) { + const AV1_COMMON *const cm = &cpi->common; + + return av1_compute_rd_mult( + cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q); +} + +static void rd_pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, + MACROBLOCK *const x, int mi_row, int mi_col, + RD_STATS *rd_cost, PARTITION_TYPE partition, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int64_t best_rd) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi; + MB_MODE_INFO *ctx_mbmi = &ctx->mic; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const AQ_MODE aq_mode = cpi->oxcf.aq_mode; + const DELTAQ_MODE deltaq_mode = cpi->oxcf.deltaq_mode; + int i, orig_rdmult; + + if (best_rd < 0) { + ctx->rdcost = INT64_MAX; + ctx->skip = 0; + av1_invalid_rd_stats(rd_cost); + return; + } + + aom_clear_system_state(); + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + + mbmi = xd->mi[0]; + + if (ctx->rd_mode_is_ready) { + assert(ctx_mbmi->sb_type == bsize); + assert(ctx_mbmi->partition == partition); + *mbmi = *ctx_mbmi; + rd_cost->rate = ctx->rate; + rd_cost->dist = ctx->dist; + rd_cost->rdcost = ctx->rdcost; + } else { + mbmi->sb_type = bsize; + mbmi->partition = partition; + } + +#if CONFIG_RD_DEBUG + mbmi->mi_row = mi_row; + mbmi->mi_col = mi_col; +#endif + + for (i = 0; i < num_planes; ++i) { + p[i].coeff = ctx->coeff[i]; + p[i].qcoeff = ctx->qcoeff[i]; + pd[i].dqcoeff = ctx->dqcoeff[i]; + p[i].eobs = ctx->eobs[i]; + p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; + } + + for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; + + if (!ctx->rd_mode_is_ready) { + ctx->skippable = 0; + + // Set to zero to make sure we do not use the previous encoded frame stats + mbmi->skip = 0; + + // Reset skip mode flag. + mbmi->skip_mode = 0; + } + + x->skip_chroma_rd = + !is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, + xd->plane[1].subsampling_y); + + if (ctx->rd_mode_is_ready) { + x->skip = ctx->skip; + *x->mbmi_ext = ctx->mbmi_ext; + return; + } + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + x->source_variance = av1_high_get_sby_perpixel_variance( + cpi, &x->plane[0].src, bsize, xd->bd); + } else { + x->source_variance = + av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); + } + + // Save rdmult before it might be changed, so it can be restored later. + orig_rdmult = x->rdmult; + + if (aq_mode == VARIANCE_AQ) { + if (cpi->vaq_refresh) { + const int energy = bsize <= BLOCK_16X16 + ? x->mb_energy + : av1_log_block_var(cpi, x, bsize); + mbmi->segment_id = energy; + } + x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); + } else if (aq_mode == COMPLEXITY_AQ) { + x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); + } else if (aq_mode == CYCLIC_REFRESH_AQ) { + // If segment is boosted, use rdmult for that segment. + if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) + x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); + } + + if (deltaq_mode > 0) x->rdmult = set_deltaq_rdmult(cpi, xd); + + // Find best coding mode & reconstruct the MB so it is available + // as a predictor for MBs that follow in the SB + if (frame_is_intra_only(cm)) { + av1_rd_pick_intra_mode_sb(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, + best_rd); + } else { + if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { + av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, + rd_cost, bsize, ctx, best_rd); + } else { + av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, + bsize, ctx, best_rd); + } + } + + // Examine the resulting rate and for AQ mode 2 make a segment choice. + if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && + (bsize >= BLOCK_16X16) && + (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || + cpi->refresh_alt2_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { + av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); + } + + x->rdmult = orig_rdmult; + + // TODO(jingning) The rate-distortion optimization flow needs to be + // refactored to provide proper exit/return handle. + if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; + + ctx->rate = rd_cost->rate; + ctx->dist = rd_cost->dist; + ctx->rdcost = rd_cost->rdcost; +} + +static void update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, + PREDICTION_MODE mode, int16_t mode_context, + uint8_t allow_update_cdf) { + (void)counts; + + int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; + if (mode == NEWMV) { +#if CONFIG_ENTROPY_STATS + ++counts->newmv_mode[mode_ctx][0]; +#endif + if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); + return; + } else { +#if CONFIG_ENTROPY_STATS + ++counts->newmv_mode[mode_ctx][1]; +#endif + if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); + + mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + if (mode == GLOBALMV) { +#if CONFIG_ENTROPY_STATS + ++counts->zeromv_mode[mode_ctx][0]; +#endif + if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); + return; + } else { +#if CONFIG_ENTROPY_STATS + ++counts->zeromv_mode[mode_ctx][1]; +#endif + if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); + mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; +#if CONFIG_ENTROPY_STATS + ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; +#endif + if (allow_update_cdf) + update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); + } + } +} + +static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, + FRAME_COUNTS *counts, uint8_t allow_update_cdf) { + FRAME_CONTEXT *fc = xd->tile_ctx; + const BLOCK_SIZE bsize = mbmi->sb_type; + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); + + (void)counts; + + if (mbmi->mode == DC_PRED) { + const int n = pmi->palette_size[0]; + const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); + +#if CONFIG_ENTROPY_STATS + ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; +#endif + if (allow_update_cdf) + update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], + n > 0, 2); + if (n > 0) { +#if CONFIG_ENTROPY_STATS + ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; +#endif + if (allow_update_cdf) { + update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], + n - PALETTE_MIN_SIZE, PALETTE_SIZES); + } + } + } + + if (mbmi->uv_mode == UV_DC_PRED) { + const int n = pmi->palette_size[1]; + const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); + +#if CONFIG_ENTROPY_STATS + ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; +#endif + if (allow_update_cdf) + update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); + + if (n > 0) { +#if CONFIG_ENTROPY_STATS + ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; +#endif + if (allow_update_cdf) { + update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], + n - PALETTE_MIN_SIZE, PALETTE_SIZES); + } + } + } +} + +static void sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, + MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, + const MB_MODE_INFO *above_mi, + const MB_MODE_INFO *left_mi, const int intraonly, + const int mi_row, const int mi_col, + uint8_t allow_update_cdf) { + FRAME_CONTEXT *fc = xd->tile_ctx; + const PREDICTION_MODE y_mode = mbmi->mode; + const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; + (void)counts; + const BLOCK_SIZE bsize = mbmi->sb_type; + + if (intraonly) { +#if CONFIG_ENTROPY_STATS + const PREDICTION_MODE above = av1_above_block_mode(above_mi); + const PREDICTION_MODE left = av1_left_block_mode(left_mi); + const int above_ctx = intra_mode_context[above]; + const int left_ctx = intra_mode_context[left]; + ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) + update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); + } else { +#if CONFIG_ENTROPY_STATS + ++counts->y_mode[size_group_lookup[bsize]][y_mode]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) + update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); + } + + if (av1_filter_intra_allowed(cm, mbmi)) { + const int use_filter_intra_mode = + mbmi->filter_intra_mode_info.use_filter_intra; +#if CONFIG_ENTROPY_STATS + ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode]; + if (use_filter_intra_mode) { + ++counts + ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; + } +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) { + update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, + 2); + if (use_filter_intra_mode) { + update_cdf(fc->filter_intra_mode_cdf, + mbmi->filter_intra_mode_info.filter_intra_mode, + FILTER_INTRA_MODES); + } + } + } + if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { +#if CONFIG_ENTROPY_STATS + ++counts->angle_delta[mbmi->mode - V_PRED] + [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; +#endif + if (allow_update_cdf) { + update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], + mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, + 2 * MAX_ANGLE_DELTA + 1); + } + } + + if (!is_chroma_reference(mi_row, mi_col, bsize, + xd->plane[AOM_PLANE_U].subsampling_x, + xd->plane[AOM_PLANE_U].subsampling_y)) + return; + +#if CONFIG_ENTROPY_STATS + ++counts->uv_mode[is_cfl_allowed(xd)][y_mode][uv_mode]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) { + const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); + update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, + UV_INTRA_MODES - !cfl_allowed); + } + if (uv_mode == UV_CFL_PRED) { + const int joint_sign = mbmi->cfl_alpha_signs; + const int idx = mbmi->cfl_alpha_idx; + +#if CONFIG_ENTROPY_STATS + ++counts->cfl_sign[joint_sign]; +#endif + if (allow_update_cdf) + update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); + if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; + +#if CONFIG_ENTROPY_STATS + ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; +#endif + if (allow_update_cdf) + update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); + } + if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { + aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; + +#if CONFIG_ENTROPY_STATS + ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; +#endif + if (allow_update_cdf) + update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); + } + } + if (av1_is_directional_mode(get_uv_mode(uv_mode)) && + av1_use_angle_delta(bsize)) { +#if CONFIG_ENTROPY_STATS + ++counts->angle_delta[uv_mode - UV_V_PRED] + [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; +#endif + if (allow_update_cdf) { + update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], + mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, + 2 * MAX_ANGLE_DELTA + 1); + } + } + if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) + update_palette_cdf(xd, mbmi, counts, allow_update_cdf); +} + +static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data, + ThreadData *td, int mi_row, int mi_col) { + MACROBLOCK *x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const BLOCK_SIZE bsize = mbmi->sb_type; + FRAME_CONTEXT *fc = xd->tile_ctx; + const uint8_t allow_update_cdf = tile_data->allow_update_cdf; + + // delta quant applies to both intra and inter + const int super_block_upper_left = + ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && + ((mi_col & (cm->seq_params.mib_size - 1)) == 0); + + const int seg_ref_active = + segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); + + if (cm->skip_mode_flag && !seg_ref_active && is_comp_ref_allowed(bsize)) { + const int skip_mode_ctx = av1_get_skip_mode_context(xd); +#if CONFIG_ENTROPY_STATS + td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; +#endif + if (allow_update_cdf) + update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); + } + + if (!mbmi->skip_mode) { + if (!seg_ref_active) { + const int skip_ctx = av1_get_skip_context(xd); +#if CONFIG_ENTROPY_STATS + td->counts->skip[skip_ctx][mbmi->skip]++; +#endif + if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2); + } + } + + if (cm->delta_q_present_flag && + (bsize != cm->seq_params.sb_size || !mbmi->skip) && + super_block_upper_left) { +#if CONFIG_ENTROPY_STATS + const int dq = + (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; + const int absdq = abs(dq); + for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { + td->counts->delta_q[i][1]++; + } + if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; +#endif + xd->current_qindex = mbmi->current_qindex; + if (cm->delta_lf_present_flag) { + if (cm->delta_lf_multi) { + const int frame_lf_count = + av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { +#if CONFIG_ENTROPY_STATS + const int delta_lf = + (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / cm->delta_lf_res; + const int abs_delta_lf = abs(delta_lf); + for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { + td->counts->delta_lf_multi[lf_id][i][1]++; + } + if (abs_delta_lf < DELTA_LF_SMALL) + td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; +#endif + xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; + } + } else { +#if CONFIG_ENTROPY_STATS + const int delta_lf = + (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / + cm->delta_lf_res; + const int abs_delta_lf = abs(delta_lf); + for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { + td->counts->delta_lf[i][1]++; + } + if (abs_delta_lf < DELTA_LF_SMALL) + td->counts->delta_lf[abs_delta_lf][0]++; +#endif + xd->delta_lf_from_base = mbmi->delta_lf_from_base; + } + } + } + + if (!is_inter_block(mbmi)) { + sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, + frame_is_intra_only(cm), mi_row, mi_col, + tile_data->allow_update_cdf); + } + + if (av1_allow_intrabc(cm)) { + if (allow_update_cdf) + update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2); +#if CONFIG_ENTROPY_STATS + ++td->counts->intrabc[is_intrabc_block(mbmi)]; +#endif // CONFIG_ENTROPY_STATS + } + + if (!frame_is_intra_only(cm)) { + RD_COUNTS *rdc = &td->rd_counts; + + FRAME_COUNTS *const counts = td->counts; + + if (mbmi->skip_mode) { + rdc->skip_mode_used_flag = 1; + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + assert(has_second_ref(mbmi)); + rdc->compound_ref_used_flag = 1; + } + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + return; + } + + const int inter_block = is_inter_block(mbmi); + + if (!seg_ref_active) { +#if CONFIG_ENTROPY_STATS + counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], + inter_block, 2); + } + // If the segment reference feature is enabled we have only a single + // reference frame allowed for the segment so exclude it from + // the reference frame counts used to work out probabilities. + if (inter_block) { + const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; + const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; + + av1_collect_neighbors_ref_counts(xd); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + if (has_second_ref(mbmi)) + // This flag is also updated for 4x4 blocks + rdc->compound_ref_used_flag = 1; + if (is_comp_ref_allowed(bsize)) { +#if CONFIG_ENTROPY_STATS + counts->comp_inter[av1_get_reference_mode_context(xd)] + [has_second_ref(mbmi)]++; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) { + update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), + 2); + } + } + } + + if (has_second_ref(mbmi)) { + const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) + ? UNIDIR_COMP_REFERENCE + : BIDIR_COMP_REFERENCE; + if (allow_update_cdf) { + update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, + COMP_REFERENCE_TYPES); + } +#if CONFIG_ENTROPY_STATS + counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] + [comp_ref_type]++; +#endif // CONFIG_ENTROPY_STATS + + if (comp_ref_type == UNIDIR_COMP_REFERENCE) { + const int bit = (ref0 == BWDREF_FRAME); + if (allow_update_cdf) + update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); +#if CONFIG_ENTROPY_STATS + counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0] + [bit]++; +#endif // CONFIG_ENTROPY_STATS + if (!bit) { + const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); + if (allow_update_cdf) + update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); +#if CONFIG_ENTROPY_STATS + counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] + [bit1]++; +#endif // CONFIG_ENTROPY_STATS + if (bit1) { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), + ref1 == GOLDEN_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)] + [2][ref1 == GOLDEN_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } + } + } else { + const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); + if (allow_update_cdf) + update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); +#if CONFIG_ENTROPY_STATS + counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; +#endif // CONFIG_ENTROPY_STATS + if (!bit) { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), + ref0 == LAST2_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] + [ref0 == LAST2_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } else { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), + ref0 == GOLDEN_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] + [ref0 == GOLDEN_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), + ref1 == ALTREF_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] + [ref1 == ALTREF_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + if (ref1 != ALTREF_FRAME) { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), + ref1 == ALTREF2_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] + [ref1 == ALTREF2_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } + } + } else { + const int bit = (ref0 >= BWDREF_FRAME); + if (allow_update_cdf) + update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); +#if CONFIG_ENTROPY_STATS + counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; +#endif // CONFIG_ENTROPY_STATS + if (bit) { + assert(ref0 <= ALTREF_FRAME); + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_single_ref_p2(xd), + ref0 == ALTREF_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] + [ref0 == ALTREF_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + if (ref0 != ALTREF_FRAME) { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_single_ref_p6(xd), + ref0 == ALTREF2_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] + [ref0 == ALTREF2_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } + } else { + const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); + if (allow_update_cdf) + update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); +#if CONFIG_ENTROPY_STATS + counts + ->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; +#endif // CONFIG_ENTROPY_STATS + if (!bit1) { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_single_ref_p4(xd), + ref0 != LAST_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] + [ref0 != LAST_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } else { + if (allow_update_cdf) { + update_cdf(av1_get_pred_cdf_single_ref_p5(xd), + ref0 != LAST3_FRAME, 2); + } +#if CONFIG_ENTROPY_STATS + counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] + [ref0 != LAST3_FRAME]++; +#endif // CONFIG_ENTROPY_STATS + } + } + } + + if (cm->seq_params.enable_interintra_compound && + is_interintra_allowed(mbmi)) { + const int bsize_group = size_group_lookup[bsize]; + if (mbmi->ref_frame[1] == INTRA_FRAME) { +#if CONFIG_ENTROPY_STATS + counts->interintra[bsize_group][1]++; +#endif + if (allow_update_cdf) + update_cdf(fc->interintra_cdf[bsize_group], 1, 2); +#if CONFIG_ENTROPY_STATS + counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->interintra_mode_cdf[bsize_group], + mbmi->interintra_mode, INTERINTRA_MODES); + } + if (is_interintra_wedge_used(bsize)) { +#if CONFIG_ENTROPY_STATS + counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->wedge_interintra_cdf[bsize], + mbmi->use_wedge_interintra, 2); + } + if (mbmi->use_wedge_interintra) { +#if CONFIG_ENTROPY_STATS + counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->wedge_idx_cdf[bsize], + mbmi->interintra_wedge_index, 16); + } + } + } + } else { +#if CONFIG_ENTROPY_STATS + counts->interintra[bsize_group][0]++; +#endif + if (allow_update_cdf) + update_cdf(fc->interintra_cdf[bsize_group], 0, 2); + } + } + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + const MOTION_MODE motion_allowed = + cm->switchable_motion_mode + ? motion_mode_allowed(xd->global_motion, xd, mbmi, + cm->allow_warped_motion) + : SIMPLE_TRANSLATION; + if (mbmi->ref_frame[1] != INTRA_FRAME) { + if (motion_allowed == WARPED_CAUSAL) { +#if CONFIG_ENTROPY_STATS + counts->motion_mode[bsize][mbmi->motion_mode]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, + MOTION_MODES); + } + } else if (motion_allowed == OBMC_CAUSAL) { +#if CONFIG_ENTROPY_STATS + counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, + 2); + } + } + } + + if (has_second_ref(mbmi)) { + assert(cm->reference_mode != SINGLE_REFERENCE && + is_inter_compound_mode(mbmi->mode) && + mbmi->motion_mode == SIMPLE_TRANSLATION); + + const int masked_compound_used = + is_any_masked_compound_used(bsize) && + cm->seq_params.enable_masked_compound; + if (masked_compound_used) { + const int comp_group_idx_ctx = get_comp_group_idx_context(xd); +#if CONFIG_ENTROPY_STATS + ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; +#endif + if (allow_update_cdf) { + update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], + mbmi->comp_group_idx, 2); + } + } + + if (mbmi->comp_group_idx == 0) { + const int comp_index_ctx = get_comp_index_context(cm, xd); +#if CONFIG_ENTROPY_STATS + ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; +#endif + if (allow_update_cdf) { + update_cdf(fc->compound_index_cdf[comp_index_ctx], + mbmi->compound_idx, 2); + } + } else { + assert(masked_compound_used); + if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { +#if CONFIG_ENTROPY_STATS + ++counts->compound_type[bsize][mbmi->interinter_comp.type - 1]; +#endif + if (allow_update_cdf) { + update_cdf(fc->compound_type_cdf[bsize], + mbmi->interinter_comp.type - 1, COMPOUND_TYPES - 1); + } + } + } + } + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { +#if CONFIG_ENTROPY_STATS + counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; +#endif + if (allow_update_cdf) { + update_cdf(fc->wedge_idx_cdf[bsize], + mbmi->interinter_comp.wedge_index, 16); + } + } + } + } + } + + if (inter_block && + !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { + int16_t mode_ctx; + const PREDICTION_MODE mode = mbmi->mode; + + mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); + if (has_second_ref(mbmi)) { +#if CONFIG_ENTROPY_STATS + ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; +#endif + if (allow_update_cdf) + update_cdf(fc->inter_compound_mode_cdf[mode_ctx], + INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); + } else { + update_inter_mode_stats(fc, counts, mode, mode_ctx, allow_update_cdf); + } + + int mode_allowed = (mbmi->mode == NEWMV); + mode_allowed |= (mbmi->mode == NEW_NEWMV); + if (mode_allowed) { + uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + int idx; + + for (idx = 0; idx < 2; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { +#if CONFIG_ENTROPY_STATS + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; +#endif + + if (mbmi->ref_mv_idx == idx) break; + } + } + } + + if (have_nearmv_in_inter_mode(mbmi->mode)) { + uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + int idx; + + for (idx = 1; idx < 3; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { +#if CONFIG_ENTROPY_STATS + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; +#endif + + if (mbmi->ref_mv_idx == idx - 1) break; + } + } + } + } + } +} + +typedef struct { + ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; + ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; + PARTITION_CONTEXT sa[MAX_MIB_SIZE]; + PARTITION_CONTEXT sl[MAX_MIB_SIZE]; + TXFM_CONTEXT *p_ta; + TXFM_CONTEXT *p_tl; + TXFM_CONTEXT ta[MAX_MIB_SIZE]; + TXFM_CONTEXT tl[MAX_MIB_SIZE]; +} RD_SEARCH_MACROBLOCK_CONTEXT; + +static void restore_context(MACROBLOCK *x, + const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, + int mi_col, BLOCK_SIZE bsize, + const int num_planes) { + MACROBLOCKD *xd = &x->e_mbd; + int p; + const int num_4x4_blocks_wide = + block_size_wide[bsize] >> tx_size_wide_log2[0]; + const int num_4x4_blocks_high = + block_size_high[bsize] >> tx_size_high_log2[0]; + int mi_width = mi_size_wide[bsize]; + int mi_height = mi_size_high[bsize]; + for (p = 0; p < num_planes; p++) { + int tx_col = mi_col; + int tx_row = mi_row & MAX_MIB_MASK; + memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), + ctx->a + num_4x4_blocks_wide * p, + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> + xd->plane[p].subsampling_x); + memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), + ctx->l + num_4x4_blocks_high * p, + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> + xd->plane[p].subsampling_y); + } + memcpy(xd->above_seg_context + mi_col, ctx->sa, + sizeof(*xd->above_seg_context) * mi_width); + memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, + sizeof(xd->left_seg_context[0]) * mi_height); + xd->above_txfm_context = ctx->p_ta; + xd->left_txfm_context = ctx->p_tl; + memcpy(xd->above_txfm_context, ctx->ta, + sizeof(*xd->above_txfm_context) * mi_width); + memcpy(xd->left_txfm_context, ctx->tl, + sizeof(*xd->left_txfm_context) * mi_height); +} + +static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, + int mi_row, int mi_col, BLOCK_SIZE bsize, + const int num_planes) { + const MACROBLOCKD *xd = &x->e_mbd; + int p; + const int num_4x4_blocks_wide = + block_size_wide[bsize] >> tx_size_wide_log2[0]; + const int num_4x4_blocks_high = + block_size_high[bsize] >> tx_size_high_log2[0]; + int mi_width = mi_size_wide[bsize]; + int mi_height = mi_size_high[bsize]; + + // buffer the above/left context information of the block in search. + for (p = 0; p < num_planes; ++p) { + int tx_col = mi_col; + int tx_row = mi_row & MAX_MIB_MASK; + memcpy(ctx->a + num_4x4_blocks_wide * p, + xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> + xd->plane[p].subsampling_x); + memcpy(ctx->l + num_4x4_blocks_high * p, + xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), + (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> + xd->plane[p].subsampling_y); + } + memcpy(ctx->sa, xd->above_seg_context + mi_col, + sizeof(*xd->above_seg_context) * mi_width); + memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), + sizeof(xd->left_seg_context[0]) * mi_height); + memcpy(ctx->ta, xd->above_txfm_context, + sizeof(*xd->above_txfm_context) * mi_width); + memcpy(ctx->tl, xd->left_txfm_context, + sizeof(*xd->left_txfm_context) * mi_height); + ctx->p_ta = xd->above_txfm_context; + ctx->p_tl = xd->left_txfm_context; +} + +static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, + ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, + RUN_TYPE dry_run, BLOCK_SIZE bsize, + PARTITION_TYPE partition, + const PICK_MODE_CONTEXT *const ctx, int *rate) { + TileInfo *const tile = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *xd = &x->e_mbd; + + set_offsets(cpi, tile, x, mi_row, mi_col, bsize); + MB_MODE_INFO *mbmi = xd->mi[0]; + mbmi->partition = partition; + update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run); + + if (!dry_run) av1_set_coeff_buffer(cpi, x, mi_row, mi_col); + + encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize, + rate); + + if (dry_run == 0) + x->cb_offset += block_size_wide[bsize] * block_size_high[bsize]; + + if (!dry_run) { + if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 && + cpi->common.delta_lf_present_flag) { + const int frame_lf_count = av1_num_planes(&cpi->common) > 1 + ? FRAME_LF_COUNT + : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) + mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; + mbmi->delta_lf_from_base = xd->delta_lf_from_base; + } + if (has_second_ref(mbmi)) { + if (mbmi->compound_idx == 0 || + mbmi->interinter_comp.type == COMPOUND_AVERAGE) + mbmi->comp_group_idx = 0; + else + mbmi->comp_group_idx = 1; + } + update_stats(&cpi->common, tile_data, td, mi_row, mi_col); + } +} + +static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, + int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, + PC_TREE *pc_tree, int *rate) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int hbs = mi_size_wide[bsize] / 2; + const int is_partition_root = bsize >= BLOCK_8X8; + const int ctx = is_partition_root + ? partition_plane_context(xd, mi_row, mi_col, bsize) + : -1; + const PARTITION_TYPE partition = pc_tree->partitioning; + const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); + int quarter_step = mi_size_wide[bsize] / 4; + int i; + BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + if (!dry_run && ctx >= 0) { + const int has_rows = (mi_row + hbs) < cm->mi_rows; + const int has_cols = (mi_col + hbs) < cm->mi_cols; + + if (has_rows && has_cols) { +#if CONFIG_ENTROPY_STATS + td->counts->partition[ctx][partition]++; +#endif + + if (tile_data->allow_update_cdf) { + FRAME_CONTEXT *fc = xd->tile_ctx; + update_cdf(fc->partition_cdf[ctx], partition, + partition_cdf_length(bsize)); + } + } + } + + switch (partition) { + case PARTITION_NONE: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->none, rate); + break; + case PARTITION_VERT: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->vertical[0], rate); + if (mi_col + hbs < cm->mi_cols) { + encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, + partition, &pc_tree->vertical[1], rate); + } + break; + case PARTITION_HORZ: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->horizontal[0], rate); + if (mi_row + hbs < cm->mi_rows) { + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, + partition, &pc_tree->horizontal[1], rate); + } + break; + case PARTITION_SPLIT: + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, + pc_tree->split[0], rate); + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, + pc_tree->split[1], rate); + encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, + pc_tree->split[2], rate); + encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, + subsize, pc_tree->split[3], rate); + break; + + case PARTITION_HORZ_A: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, + partition, &pc_tree->horizontala[0], rate); + encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, + partition, &pc_tree->horizontala[1], rate); + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, + partition, &pc_tree->horizontala[2], rate); + break; + case PARTITION_HORZ_B: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->horizontalb[0], rate); + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, + partition, &pc_tree->horizontalb[1], rate); + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, + bsize2, partition, &pc_tree->horizontalb[2], rate); + break; + case PARTITION_VERT_A: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, + partition, &pc_tree->verticala[0], rate); + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, + partition, &pc_tree->verticala[1], rate); + encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, + partition, &pc_tree->verticala[2], rate); + + break; + case PARTITION_VERT_B: + encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->verticalb[0], rate); + encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, + partition, &pc_tree->verticalb[1], rate); + encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, + bsize2, partition, &pc_tree->verticalb[2], rate); + break; + case PARTITION_HORZ_4: + for (i = 0; i < 4; ++i) { + int this_mi_row = mi_row + i * quarter_step; + if (i > 0 && this_mi_row >= cm->mi_rows) break; + + encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, + partition, &pc_tree->horizontal4[i], rate); + } + break; + case PARTITION_VERT_4: + for (i = 0; i < 4; ++i) { + int this_mi_col = mi_col + i * quarter_step; + if (i > 0 && this_mi_col >= cm->mi_cols) break; + + encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, + partition, &pc_tree->vertical4[i], rate); + } + break; + default: assert(0 && "Invalid partition type."); break; + } + + update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); +} + +// Check to see if the given partition size is allowed for a specified number +// of mi block rows and columns remaining in the image. +// If not then return the largest allowed partition size +static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, + int cols_left, int *bh, int *bw) { + if (rows_left <= 0 || cols_left <= 0) { + return AOMMIN(bsize, BLOCK_8X8); + } else { + for (; bsize > 0; bsize -= 3) { + *bh = mi_size_high[bsize]; + *bw = mi_size_wide[bsize]; + if ((*bh <= rows_left) && (*bw <= cols_left)) { + break; + } + } + } + return bsize; +} + +static void set_partial_sb_partition(const AV1_COMMON *const cm, + MB_MODE_INFO *mi, int bh_in, int bw_in, + int mi_rows_remaining, + int mi_cols_remaining, BLOCK_SIZE bsize, + MB_MODE_INFO **mib) { + int bh = bh_in; + int r, c; + for (r = 0; r < cm->seq_params.mib_size; r += bh) { + int bw = bw_in; + for (c = 0; c < cm->seq_params.mib_size; c += bw) { + const int index = r * cm->mi_stride + c; + mib[index] = mi + index; + mib[index]->sb_type = find_partition_size( + bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); + } + } +} + +// This function attempts to set all mode info entries in a given superblock +// to the same block partition size. +// However, at the bottom and right borders of the image the requested size +// may not be allowed in which case this code attempts to choose the largest +// allowable partition. +static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, + MB_MODE_INFO **mib, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + AV1_COMMON *const cm = &cpi->common; + const int mi_rows_remaining = tile->mi_row_end - mi_row; + const int mi_cols_remaining = tile->mi_col_end - mi_col; + int block_row, block_col; + MB_MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; + int bh = mi_size_high[bsize]; + int bw = mi_size_wide[bsize]; + + assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); + + // Apply the requested partition size to the SB if it is all "in image" + if ((mi_cols_remaining >= cm->seq_params.mib_size) && + (mi_rows_remaining >= cm->seq_params.mib_size)) { + for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) { + for (block_col = 0; block_col < cm->seq_params.mib_size; + block_col += bw) { + int index = block_row * cm->mi_stride + block_col; + mib[index] = mi_upper_left + index; + mib[index]->sb_type = bsize; + } + } + } else { + // Else this is a partial SB. + set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, + mi_cols_remaining, bsize, mib); + } +} + +static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, MB_MODE_INFO **mib, + TOKENEXTRA **tp, int mi_row, int mi_col, + BLOCK_SIZE bsize, int *rate, int64_t *dist, + int do_recon, PC_TREE *pc_tree) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int bs = mi_size_wide[bsize]; + const int hbs = bs / 2; + int i; + const int pl = (bsize >= BLOCK_8X8) + ? partition_plane_context(xd, mi_row, mi_col, bsize) + : 0; + const PARTITION_TYPE partition = + (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) + : PARTITION_NONE; + const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); + RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; + RD_STATS last_part_rdc, none_rdc, chosen_rdc; + BLOCK_SIZE sub_subsize = BLOCK_4X4; + int splits_below = 0; + BLOCK_SIZE bs_type = mib[0]->sb_type; + int do_partition_search = 1; + PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + assert(mi_size_wide[bsize] == mi_size_high[bsize]); + + av1_invalid_rd_stats(&last_part_rdc); + av1_invalid_rd_stats(&none_rdc); + av1_invalid_rd_stats(&chosen_rdc); + + pc_tree->partitioning = partition; + + xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + + if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + x->mb_energy = av1_log_block_var(cpi, x, bsize); + } + + if (do_partition_search && + cpi->sf.partition_search_type == SEARCH_PARTITION && + cpi->sf.adjust_partitioning_from_last_frame) { + // Check if any of the sub blocks are further split. + if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { + sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT); + splits_below = 1; + for (i = 0; i < 4; i++) { + int jj = i >> 1, ii = i & 0x01; + MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; + if (this_mi && this_mi->sb_type >= sub_subsize) { + splits_below = 0; + } + } + } + + // If partition is not none try none unless each of the 4 splits are split + // even further.. + if (partition != PARTITION_NONE && !splits_below && + mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { + pc_tree->partitioning = PARTITION_NONE; + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, + PARTITION_NONE, bsize, ctx_none, INT64_MAX); + + if (none_rdc.rate < INT_MAX) { + none_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; + none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + mib[0]->sb_type = bs_type; + pc_tree->partitioning = partition; + } + } + for (int b = 0; b < 2; ++b) { + pc_tree->horizontal[b].skip_ref_frame_mask = 0; + pc_tree->vertical[b].skip_ref_frame_mask = 0; + } + for (int b = 0; b < 3; ++b) { + pc_tree->horizontala[b].skip_ref_frame_mask = 0; + pc_tree->horizontalb[b].skip_ref_frame_mask = 0; + pc_tree->verticala[b].skip_ref_frame_mask = 0; + pc_tree->verticalb[b].skip_ref_frame_mask = 0; + } + for (int b = 0; b < 4; ++b) { + pc_tree->horizontal4[b].skip_ref_frame_mask = 0; + pc_tree->vertical4[b].skip_ref_frame_mask = 0; + } + switch (partition) { + case PARTITION_NONE: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + PARTITION_NONE, bsize, ctx_none, INT64_MAX); + break; + case PARTITION_HORZ: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + PARTITION_HORZ, subsize, &pc_tree->horizontal[0], + INT64_MAX); + if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && + mi_row + hbs < cm->mi_rows) { + RD_STATS tmp_rdc; + const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; + av1_init_rd_stats(&tmp_rdc); + update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); + encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, + mi_col, subsize, NULL); + rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, + PARTITION_HORZ, subsize, &pc_tree->horizontal[1], + INT64_MAX); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + av1_invalid_rd_stats(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + last_part_rdc.rdcost += tmp_rdc.rdcost; + } + break; + case PARTITION_VERT: + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, + PARTITION_VERT, subsize, &pc_tree->vertical[0], + INT64_MAX); + if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && + mi_col + hbs < cm->mi_cols) { + RD_STATS tmp_rdc; + const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0]; + av1_init_rd_stats(&tmp_rdc); + update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1); + encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, + mi_col, subsize, NULL); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, + PARTITION_VERT, subsize, + &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + av1_invalid_rd_stats(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + last_part_rdc.rdcost += tmp_rdc.rdcost; + } + break; + case PARTITION_SPLIT: + last_part_rdc.rate = 0; + last_part_rdc.dist = 0; + last_part_rdc.rdcost = 0; + for (i = 0; i < 4; i++) { + int x_idx = (i & 1) * hbs; + int y_idx = (i >> 1) * hbs; + int jj = i >> 1, ii = i & 0x01; + RD_STATS tmp_rdc; + if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) + continue; + + av1_init_rd_stats(&tmp_rdc); + rd_use_partition(cpi, td, tile_data, + mib + jj * hbs * cm->mi_stride + ii * hbs, tp, + mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, + &tmp_rdc.dist, i != 3, pc_tree->split[i]); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + av1_invalid_rd_stats(&last_part_rdc); + break; + } + last_part_rdc.rate += tmp_rdc.rate; + last_part_rdc.dist += tmp_rdc.dist; + } + break; + case PARTITION_VERT_A: + case PARTITION_VERT_B: + case PARTITION_HORZ_A: + case PARTITION_HORZ_B: + case PARTITION_HORZ_4: + case PARTITION_VERT_4: + assert(0 && "Cannot handle extended partition types"); + default: assert(0); break; + } + + if (last_part_rdc.rate < INT_MAX) { + last_part_rdc.rate += x->partition_cost[pl][partition]; + last_part_rdc.rdcost = + RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); + } + + if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && + cpi->sf.partition_search_type == SEARCH_PARTITION && + partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && + (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && + (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { + BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + chosen_rdc.rate = 0; + chosen_rdc.dist = 0; + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + pc_tree->partitioning = PARTITION_SPLIT; + + // Split partition. + for (i = 0; i < 4; i++) { + int x_idx = (i & 1) * hbs; + int y_idx = (i >> 1) * hbs; + RD_STATS tmp_rdc; + + if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) + continue; + + save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + pc_tree->split[i]->partitioning = PARTITION_NONE; + rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, + &tmp_rdc, PARTITION_SPLIT, split_subsize, + &pc_tree->split[i]->none, INT64_MAX); + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { + av1_invalid_rd_stats(&chosen_rdc); + break; + } + + chosen_rdc.rate += tmp_rdc.rate; + chosen_rdc.dist += tmp_rdc.dist; + + if (i != 3) + encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, + OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); + + chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; + } + if (chosen_rdc.rate < INT_MAX) { + chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT]; + chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); + } + } + + // If last_part is better set the partitioning to that. + if (last_part_rdc.rdcost < chosen_rdc.rdcost) { + mib[0]->sb_type = bsize; + if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; + chosen_rdc = last_part_rdc; + } + // If none was better set the partitioning to that. + if (none_rdc.rdcost < chosen_rdc.rdcost) { + if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; + chosen_rdc = none_rdc; + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + + // We must have chosen a partitioning and encoding or we'll fail later on. + // No other opportunities for success. + if (bsize == cm->seq_params.sb_size) + assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); + + if (do_recon) { + if (bsize == cm->seq_params.sb_size) { + // NOTE: To get estimate for rate due to the tokens, use: + // int rate_coeffs = 0; + // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, + // bsize, pc_tree, &rate_coeffs); + x->cb_offset = 0; + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, + pc_tree, NULL); + } else { + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, + pc_tree, NULL); + } + } + + *rate = chosen_rdc.rate; + *dist = chosen_rdc.dist; +} + +/* clang-format off */ +static const BLOCK_SIZE min_partition_size[BLOCK_SIZES_ALL] = { + BLOCK_4X4, // 4x4 + BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8 + BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16 + BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32 + BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64 + BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 64x128, 128x64, 128x128 + BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 + BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 +}; + +static const BLOCK_SIZE max_partition_size[BLOCK_SIZES_ALL] = { + BLOCK_8X8, // 4x4 + BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8 + BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16 + BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32 + BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64 + BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 64x128, 128x64, 128x128 + BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 4x16, 16x4, 8x32 + BLOCK_32X32, BLOCK_LARGEST, BLOCK_LARGEST, // 32x8, 16x64, 64x16 +}; + +// Next square block size less or equal than current block size. +static const BLOCK_SIZE next_square_size[BLOCK_SIZES_ALL] = { + BLOCK_4X4, // 4x4 + BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8 + BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16 + BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32 + BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64 + BLOCK_64X64, BLOCK_64X64, BLOCK_128X128, // 64x128, 128x64, 128x128 + BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 + BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 +}; +/* clang-format on */ + +// Look at all the mode_info entries for blocks that are part of this +// partition and find the min and max values for sb_type. +// At the moment this is designed to work on a superblock but could be +// adjusted to use a size parameter. +// +// The min and max are assumed to have been initialized prior to calling this +// function so repeat calls can accumulate a min and max of more than one +// superblock. +static void get_sb_partition_size_range(const AV1_COMMON *const cm, + MACROBLOCKD *xd, MB_MODE_INFO **mib, + BLOCK_SIZE *min_block_size, + BLOCK_SIZE *max_block_size) { + int i, j; + int index = 0; + + // Check the sb_type for each block that belongs to this region. + for (i = 0; i < cm->seq_params.mib_size; ++i) { + for (j = 0; j < cm->seq_params.mib_size; ++j) { + MB_MODE_INFO *mi = mib[index + j]; + BLOCK_SIZE sb_type = mi ? mi->sb_type : BLOCK_4X4; + *min_block_size = AOMMIN(*min_block_size, sb_type); + *max_block_size = AOMMAX(*max_block_size, sb_type); + } + index += xd->mi_stride; + } +} + +// Checks to see if a super block is on a horizontal image edge. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { + int top_edge = 0; + int bottom_edge = cpi->common.mi_rows; + int is_active_h_edge = 0; + + // For two pass account for any formatting bars detected. + if (cpi->oxcf.pass == 2) { + const TWO_PASS *const twopass = &cpi->twopass; + + // The inactive region is specified in MBs not mi units. + // The image edge is in the following MB row. + top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); + + bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); + bottom_edge = AOMMAX(top_edge, bottom_edge); + } + + if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || + ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { + is_active_h_edge = 1; + } + return is_active_h_edge; +} + +// Checks to see if a super block is on a vertical image edge. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { + int left_edge = 0; + int right_edge = cpi->common.mi_cols; + int is_active_v_edge = 0; + + // For two pass account for any formatting bars detected. + if (cpi->oxcf.pass == 2) { + const TWO_PASS *const twopass = &cpi->twopass; + + // The inactive region is specified in MBs not mi units. + // The image edge is in the following MB row. + left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); + + right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); + right_edge = AOMMAX(left_edge, right_edge); + } + + if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || + ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { + is_active_v_edge = 1; + } + return is_active_v_edge; +} + +// Checks to see if a super block is at the edge of the active image. +// In most cases this is the "real" edge unless there are formatting +// bars embedded in the stream. +static int active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) { + return active_h_edge(cpi, mi_row, cpi->common.seq_params.mib_size) || + active_v_edge(cpi, mi_col, cpi->common.seq_params.mib_size); +} + +// Look at neighboring blocks and set a min and max partition size based on +// what they chose. +static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile, + MACROBLOCKD *const xd, int mi_row, + int mi_col, BLOCK_SIZE *min_block_size, + BLOCK_SIZE *max_block_size) { + AV1_COMMON *const cm = &cpi->common; + MB_MODE_INFO **mi = xd->mi; + const int left_in_image = xd->left_available && mi[-1]; + const int above_in_image = xd->up_available && mi[-xd->mi_stride]; + const int mi_rows_remaining = tile->mi_row_end - mi_row; + const int mi_cols_remaining = tile->mi_col_end - mi_col; + int bh, bw; + BLOCK_SIZE min_size = BLOCK_4X4; + BLOCK_SIZE max_size = BLOCK_LARGEST; + + // Trap case where we do not have a prediction. + if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { + // Default "min to max" and "max to min" + min_size = BLOCK_LARGEST; + max_size = BLOCK_4X4; + + // NOTE: each call to get_sb_partition_size_range() uses the previous + // passed in values for min and max as a starting point. + // Find the min and max partition used in previous frame at this location + if (cm->frame_type != KEY_FRAME) { + MB_MODE_INFO **prev_mi = + &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; + get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size); + } + // Find the min and max partition sizes used in the left superblock + if (left_in_image) { + MB_MODE_INFO **left_sb_mi = &mi[-cm->seq_params.mib_size]; + get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size); + } + // Find the min and max partition sizes used in the above suprblock. + if (above_in_image) { + MB_MODE_INFO **above_sb_mi = + &mi[-xd->mi_stride * cm->seq_params.mib_size]; + get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size); + } + + // Adjust observed min and max for "relaxed" auto partition case. + if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { + min_size = min_partition_size[min_size]; + max_size = max_partition_size[max_size]; + } + } + + // Check border cases where max and min from neighbors may not be legal. + max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining, + &bh, &bw); + min_size = AOMMIN(min_size, max_size); + + // Test for blocks at the edge of the active image. + // This may be the actual edge of the image or where there are formatting + // bars. + if (active_edge_sb(cpi, mi_row, mi_col)) { + min_size = BLOCK_4X4; + } else { + min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size); + } + + // When use_square_partition_only is true, make sure at least one square + // partition is allowed by selecting the next smaller square size as + // *min_block_size. + if (min_size >= cpi->sf.use_square_partition_only_threshold) { + min_size = AOMMIN(min_size, next_square_size[max_size]); + } + + *min_block_size = AOMMIN(min_size, cm->seq_params.sb_size); + *max_block_size = AOMMIN(max_size, cm->seq_params.sb_size); +} + +// TODO(jingning) refactor functions setting partition search range +static void set_partition_range(const AV1_COMMON *const cm, + const MACROBLOCKD *const xd, int mi_row, + int mi_col, BLOCK_SIZE bsize, + BLOCK_SIZE *const min_bs, + BLOCK_SIZE *const max_bs) { + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + int idx, idy; + + const int idx_str = cm->mi_stride * mi_row + mi_col; + MB_MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str]; + BLOCK_SIZE min_size = cm->seq_params.sb_size; // default values + BLOCK_SIZE max_size = BLOCK_4X4; + + if (prev_mi) { + for (idy = 0; idy < mi_height; ++idy) { + for (idx = 0; idx < mi_width; ++idx) { + const MB_MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx]; + const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; + min_size = AOMMIN(min_size, bs); + max_size = AOMMAX(max_size, bs); + } + } + } + + if (xd->left_available) { + for (idy = 0; idy < mi_height; ++idy) { + const MB_MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1]; + const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; + min_size = AOMMIN(min_size, bs); + max_size = AOMMAX(max_size, bs); + } + } + + if (xd->up_available) { + for (idx = 0; idx < mi_width; ++idx) { + const MB_MODE_INFO *const mi = xd->mi[idx - cm->mi_stride]; + const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; + min_size = AOMMIN(min_size, bs); + max_size = AOMMAX(max_size, bs); + } + } + + if (min_size == max_size) { + min_size = min_partition_size[min_size]; + max_size = max_partition_size[max_size]; + } + + *min_bs = AOMMIN(min_size, cm->seq_params.sb_size); + *max_bs = AOMMIN(max_size, cm->seq_params.sb_size); +} + +static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { + memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); +} + +static INLINE void load_pred_mv(MACROBLOCK *x, + const PICK_MODE_CONTEXT *const ctx) { + memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); +} + +#if CONFIG_FP_MB_STATS +const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { + 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120, + // TODO(debargha): What are the correct numbers here? + 130, 130, 150 +}; +const int qindex_split_threshold_lookup[BLOCK_SIZES] = { + 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120, + // TODO(debargha): What are the correct numbers here? + 160, 160, 240 +}; +const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6, + // TODO(debargha): What are the correct numbers here? + 8, 8, 10 +}; + +typedef enum { + MV_ZERO = 0, + MV_LEFT = 1, + MV_UP = 2, + MV_RIGHT = 3, + MV_DOWN = 4, + MV_INVALID +} MOTION_DIRECTION; + +static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { + if (fp_byte & FPMB_MOTION_ZERO_MASK) { + return MV_ZERO; + } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { + return MV_LEFT; + } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { + return MV_RIGHT; + } else if (fp_byte & FPMB_MOTION_UP_MASK) { + return MV_UP; + } else { + return MV_DOWN; + } +} + +static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, + MOTION_DIRECTION that_mv) { + if (this_mv == that_mv) { + return 0; + } else { + return abs(this_mv - that_mv) == 2 ? 2 : 1; + } +} +#endif + +// Try searching for an encoding for the given subblock. Returns zero if the +// rdcost is already too high (to tell the caller not to bother searching for +// encodings of further subblocks) +static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last, + int mi_row, int mi_col, BLOCK_SIZE subsize, + RD_STATS *best_rdc, RD_STATS *sum_rdc, + RD_STATS *this_rdc, PARTITION_TYPE partition, + PICK_MODE_CONTEXT *prev_ctx, + PICK_MODE_CONTEXT *this_ctx) { +#define RTS_X_RATE_NOCOEF_ARG +#define RTS_MAX_RDCOST best_rdc->rdcost + + MACROBLOCK *const x = &td->mb; + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx); + + const int64_t rdcost_remaining = best_rdc->rdcost == INT64_MAX + ? INT64_MAX + : (best_rdc->rdcost - sum_rdc->rdcost); + + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, + RTS_X_RATE_NOCOEF_ARG partition, subsize, this_ctx, + rdcost_remaining); + + if (this_rdc->rate == INT_MAX) { + sum_rdc->rdcost = INT64_MAX; + } else { + sum_rdc->rate += this_rdc->rate; + sum_rdc->dist += this_rdc->dist; + sum_rdc->rdcost += this_rdc->rdcost; + } + + if (sum_rdc->rdcost >= RTS_MAX_RDCOST) return 0; + + if (!is_last) { + update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1); + encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, + subsize, NULL); + } + + return 1; + +#undef RTS_X_RATE_NOCOEF_ARG +#undef RTS_MAX_RDCOST +} + +static void rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, + PC_TREE *pc_tree, RD_STATS *best_rdc, + PICK_MODE_CONTEXT ctxs[3], + PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, + BLOCK_SIZE bsize, PARTITION_TYPE partition, + int mi_row0, int mi_col0, BLOCK_SIZE subsize0, + int mi_row1, int mi_col1, BLOCK_SIZE subsize1, + int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + RD_STATS sum_rdc, this_rdc; +#define RTP_STX_TRY_ARGS + int pl = partition_plane_context(xd, mi_row, mi_col, bsize); + av1_init_rd_stats(&sum_rdc); + sum_rdc.rate = x->partition_cost[pl][partition]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0, + best_rdc, &sum_rdc, &this_rdc, + RTP_STX_TRY_ARGS partition, ctx, &ctxs[0])) + return; + + if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1, + best_rdc, &sum_rdc, &this_rdc, + RTP_STX_TRY_ARGS partition, &ctxs[0], &ctxs[1])) + return; + + // With the new layout of mixed partitions for PARTITION_HORZ_B and + // PARTITION_VERT_B, the last subblock might start past halfway through the + // main block, so we might signal it even though the subblock lies strictly + // outside the image. In that case, we won't spend any bits coding it and the + // difference (obviously) doesn't contribute to the error. + const int try_block2 = 1; + if (try_block2 && + !rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2, + best_rdc, &sum_rdc, &this_rdc, + RTP_STX_TRY_ARGS partition, &ctxs[1], &ctxs[2])) + return; + + if (sum_rdc.rdcost >= best_rdc->rdcost) return; + + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + + if (sum_rdc.rdcost >= best_rdc->rdcost) return; + + *best_rdc = sum_rdc; + pc_tree->partitioning = partition; + +#undef RTP_STX_TRY_ARGS +} + +static void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) { + pc_tree->partitioning = PARTITION_NONE; + pc_tree->cb_search_range = SEARCH_FULL_PLANE; + pc_tree->none.skip = 0; + + if (bsize >= BLOCK_8X8) { + BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + for (int idx = 0; idx < 4; ++idx) + reset_partition(pc_tree->split[idx], subsize); + } +} + +static void rd_pick_sqr_partition(AV1_COMP *const cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, + int mi_row, int mi_col, BLOCK_SIZE bsize, + RD_STATS *rd_cost, int64_t best_rd, + PC_TREE *pc_tree, int64_t *none_rd) { + const AV1_COMMON *const cm = &cpi->common; + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int mi_step = mi_size_wide[bsize] / 2; + RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; + const TOKENEXTRA *const tp_orig = *tp; + PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; + int tmp_partition_cost[PARTITION_TYPES]; + BLOCK_SIZE subsize; + RD_STATS this_rdc, sum_rdc, best_rdc, pn_rdc; + const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); + int do_square_split = bsize_at_least_8x8; + const int pl = bsize_at_least_8x8 + ? partition_plane_context(xd, mi_row, mi_col, bsize) + : 0; + const int *partition_cost = + pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; + const int num_planes = av1_num_planes(cm); + + int64_t split_rd[4] = { 0, 0, 0, 0 }; + + // Override skipping rectangular partition operations for edge blocks + const int has_rows = (mi_row + mi_step < cm->mi_rows); + const int has_cols = (mi_col + mi_step < cm->mi_cols); + + if (none_rd) *none_rd = 0; + + int partition_none_allowed = has_rows && has_cols; + + (void)*tp_orig; + (void)split_rd; + + if (best_rd < 0) { + pc_tree->none.rdcost = INT64_MAX; + pc_tree->none.skip = 0; + av1_invalid_rd_stats(rd_cost); + return; + } + pc_tree->pc_tree_stats.valid = 1; + + // Override partition costs at the edges of the frame in the same + // way as in read_partition (see decodeframe.c) + if (!(has_rows && has_cols)) { + assert(bsize_at_least_8x8 && pl >= 0); + const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; + for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; + if (has_cols) { + // At the bottom, the two possibilities are HORZ and SPLIT + aom_cdf_prob bot_cdf[2]; + partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); + static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; + av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); + } else if (has_rows) { + // At the right, the two possibilities are VERT and SPLIT + aom_cdf_prob rhs_cdf[2]; + partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); + static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; + av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); + } else { + // At the bottom right, we always split + tmp_partition_cost[PARTITION_SPLIT] = 0; + } + + partition_cost = tmp_partition_cost; + } + +#ifndef NDEBUG + // Nothing should rely on the default value of this array (which is just + // leftover from encoding the previous block. Setting it to fixed pattern + // when debugging. + // bit 0, 1, 2 are blk_skip of each plane + // bit 4, 5, 6 are initialization checking of each plane + memset(x->blk_skip, 0x77, sizeof(x->blk_skip)); +#endif // NDEBUG + + assert(mi_size_wide[bsize] == mi_size_high[bsize]); + + av1_init_rd_stats(&this_rdc); + av1_init_rd_stats(&sum_rdc); + av1_invalid_rd_stats(&best_rdc); + best_rdc.rdcost = best_rd; + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + + if (bsize == BLOCK_16X16 && cpi->vaq_refresh) + x->mb_energy = av1_log_block_var(cpi, x, bsize); + + xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) + do_square_split = 0; + } +#endif + + // PARTITION_NONE + if (partition_none_allowed) { + int pt_cost = 0; + if (bsize_at_least_8x8) { + pc_tree->partitioning = PARTITION_NONE; + pt_cost = partition_cost[PARTITION_NONE] < INT_MAX + ? partition_cost[PARTITION_NONE] + : 0; + } + int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0); + int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX + ? INT64_MAX + : (best_rdc.rdcost - partition_rd_cost); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, + PARTITION_NONE, bsize, ctx_none, best_remain_rdcost); + + pc_tree->pc_tree_stats.rdcost = ctx_none->rdcost; + pc_tree->pc_tree_stats.skip = ctx_none->skip; + + if (none_rd) *none_rd = this_rdc.rdcost; + if (this_rdc.rate != INT_MAX) { + if (bsize_at_least_8x8) { + this_rdc.rate += pt_cost; + this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); + } + + if (this_rdc.rdcost < best_rdc.rdcost) { + // Adjust dist breakout threshold according to the partition size. + const int64_t dist_breakout_thr = + cpi->sf.partition_search_breakout_dist_thr >> + ((2 * (MAX_SB_SIZE_LOG2 - 2)) - + (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); + const int rate_breakout_thr = + cpi->sf.partition_search_breakout_rate_thr * + num_pels_log2_lookup[bsize]; + + best_rdc = this_rdc; + if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; + + pc_tree->cb_search_range = SEARCH_FULL_PLANE; + + // If all y, u, v transform blocks in this partition are skippable, and + // the dist & rate are within the thresholds, the partition search is + // terminated for current branch of the partition search tree. + // The dist & rate thresholds are set to 0 at speed 0 to disable the + // early termination at that speed. + if (!x->e_mbd.lossless[xd->mi[0]->segment_id] && + (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && + best_rdc.rate < rate_breakout_thr)) { + do_square_split = 0; + } + } + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // store estimated motion vector + if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); + + int64_t temp_best_rdcost = best_rdc.rdcost; + pn_rdc = best_rdc; + + // PARTITION_SPLIT + if (do_square_split) { + int reached_last_index = 0; + subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + int idx; + + for (idx = 0; idx < 4 && sum_rdc.rdcost < temp_best_rdcost; ++idx) { + const int x_idx = (idx & 1) * mi_step; + const int y_idx = (idx >> 1) * mi_step; + + if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) + continue; + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); + + pc_tree->split[idx]->index = idx; + int64_t *p_split_rd = &split_rd[idx]; + // TODO(Cherma) : Account for partition cost while passing best rd to + // rd_pick_sqr_partition() + rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row + y_idx, + mi_col + x_idx, subsize, &this_rdc, + temp_best_rdcost - sum_rdc.rdcost, + pc_tree->split[idx], p_split_rd); + + pc_tree->pc_tree_stats.sub_block_rdcost[idx] = this_rdc.rdcost; + pc_tree->pc_tree_stats.sub_block_skip[idx] = + pc_tree->split[idx]->none.skip; + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + break; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + reached_last_index = (idx == 4); + + if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rate += partition_cost[PARTITION_SPLIT]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_SPLIT; + } + } + + int has_split = 0; + if (pc_tree->partitioning == PARTITION_SPLIT) { + for (int cb_idx = 0; cb_idx <= AOMMIN(idx, 3); ++cb_idx) { + if (pc_tree->split[cb_idx]->partitioning == PARTITION_SPLIT) + ++has_split; + } + + if (has_split >= 3 || sum_rdc.rdcost < (pn_rdc.rdcost >> 1)) { + pc_tree->cb_search_range = SPLIT_PLANE; + } + } + + if (pc_tree->partitioning == PARTITION_NONE) { + pc_tree->cb_search_range = SEARCH_SAME_PLANE; + if (pn_rdc.dist <= sum_rdc.dist) + pc_tree->cb_search_range = NONE_PARTITION_PLANE; + } + + if (pn_rdc.rate == INT_MAX) pc_tree->cb_search_range = NONE_PARTITION_PLANE; + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } // if (do_split) + + pc_tree->pc_tree_stats.split = pc_tree->partitioning == PARTITION_SPLIT; + if (do_square_split) { + for (int i = 0; i < 4; ++i) { + pc_tree->pc_tree_stats.sub_block_split[i] = + pc_tree->split[i]->partitioning == PARTITION_SPLIT; + } + } + + // TODO(jbb): This code added so that we avoid static analysis + // warning related to the fact that best_rd isn't used after this + // point. This code should be refactored so that the duplicate + // checks occur in some sub function and thus are used... + (void)best_rd; + *rd_cost = best_rdc; + + if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && + pc_tree->index != 3) { + if (bsize == cm->seq_params.sb_size) { + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } else { + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, + pc_tree, NULL); + } + } + + if (bsize == cm->seq_params.sb_size) { + assert(best_rdc.rate < INT_MAX); + assert(best_rdc.dist < INT64_MAX); + } else { + assert(tp_orig == *tp); + } +} + +#define FEATURE_SIZE 19 +static const float two_pass_split_partition_weights_128[FEATURE_SIZE + 1] = { + 2.683936f, -0.193620f, -4.106470f, -0.141320f, -0.282289f, + 0.125296f, -1.134961f, 0.862757f, -0.418799f, -0.637666f, + 0.016232f, 0.345013f, 0.018823f, -0.393394f, -1.130700f, + 0.695357f, 0.112569f, -0.341975f, -0.513882f, 5.7488966f, +}; + +static const float two_pass_split_partition_weights_64[FEATURE_SIZE + 1] = { + 2.990993f, 0.423273f, -0.926544f, 0.454646f, -0.292698f, + -1.311632f, -0.284432f, 0.717141f, -0.419257f, -0.574760f, + -0.674444f, 0.669047f, -0.374255f, 0.380624f, -0.804036f, + 0.264021f, 0.004163f, 1.896802f, 0.924287f, 0.13490619f, +}; + +static const float two_pass_split_partition_weights_32[FEATURE_SIZE + 1] = { + 2.795181f, -0.136943f, -0.924842f, 0.405330f, -0.463505f, + -0.584076f, -0.831472f, 0.382985f, -0.597544f, -0.138915f, + -1.354350f, 0.466035f, -0.553961f, 0.213202f, -1.166429f, + 0.010776f, -0.096236f, 2.335084f, 1.699857f, -0.58178353f, +}; + +static const float two_pass_split_partition_weights_16[FEATURE_SIZE + 1] = { + 1.987888f, -0.431100f, -1.687703f, 0.262602f, -0.425298f, + -0.463870f, -1.493457f, 0.470917f, -0.528457f, -0.087700f, + -1.815092f, 0.152883f, -0.337908f, 0.093679f, -1.548267f, + -0.042387f, -0.000861f, 2.556746f, 1.619192f, 0.03643292f, +}; + +static const float two_pass_split_partition_weights_8[FEATURE_SIZE + 1] = { + 2.188344f, -0.817528f, -2.119219f, 0.000000f, -0.348167f, + -0.658074f, -1.960362f, 0.000000f, -0.403080f, 0.282699f, + -2.061088f, 0.000000f, -0.431919f, -0.127960f, -1.099550f, + 0.000000f, 0.121622f, 2.017455f, 2.058228f, -0.15475988f, +}; + +static const float two_pass_none_partition_weights_128[FEATURE_SIZE + 1] = { + -1.006689f, 0.777908f, 4.461072f, -0.395782f, -0.014610f, + -0.853863f, 0.729997f, -0.420477f, 0.282429f, -1.194595f, + 3.181220f, -0.511416f, 0.117084f, -1.149348f, 1.507990f, + -0.477212f, 0.202963f, -1.469581f, 0.624461f, -0.89081228f, +}; + +static const float two_pass_none_partition_weights_64[FEATURE_SIZE + 1] = { + -1.241117f, 0.844878f, 5.638803f, -0.489780f, -0.108796f, + -4.576821f, 1.540624f, -0.477519f, 0.227791f, -1.443968f, + 1.586911f, -0.505125f, 0.140764f, -0.464194f, 1.466658f, + -0.641166f, 0.195412f, 1.427905f, 2.080007f, -1.98272777f, +}; + +static const float two_pass_none_partition_weights_32[FEATURE_SIZE + 1] = { + -2.130825f, 0.476023f, 5.907343f, -0.516002f, -0.097471f, + -2.662754f, 0.614858f, -0.576728f, 0.085261f, -0.031901f, + 0.727842f, -0.600034f, 0.079326f, 0.324328f, 0.504502f, + -0.547105f, -0.037670f, 0.304995f, 0.369018f, -2.66299987f, +}; + +static const float two_pass_none_partition_weights_16[FEATURE_SIZE + 1] = { + -1.626410f, 0.872047f, 5.414965f, -0.554781f, -0.084514f, + -3.020550f, 0.467632f, -0.382280f, 0.199568f, 0.426220f, + 0.829426f, -0.467100f, 0.153098f, 0.662994f, 0.327545f, + -0.560106f, -0.141610f, 0.403372f, 0.523991f, -3.02891231f, +}; + +static const float two_pass_none_partition_weights_8[FEATURE_SIZE + 1] = { + -1.463349f, 0.375376f, 4.751430f, 0.000000f, -0.184451f, + -1.655447f, 0.443214f, 0.000000f, 0.127961f, 0.152435f, + 0.083288f, 0.000000f, 0.143105f, 0.438012f, 0.073238f, + 0.000000f, -0.278137f, 0.186134f, 0.073737f, -1.6494962f, +}; + +// split_score indicates confidence of picking split partition; +// none_score indicates confidence of picking none partition; +static int ml_prune_2pass_split_partition(const PC_TREE_STATS *pc_tree_stats, + BLOCK_SIZE bsize, int *split_score, + int *none_score) { + if (!pc_tree_stats->valid) return 0; + const float *split_weights = NULL; + const float *none_weights = NULL; + switch (bsize) { + case BLOCK_4X4: break; + case BLOCK_8X8: + split_weights = two_pass_split_partition_weights_8; + none_weights = two_pass_none_partition_weights_8; + break; + case BLOCK_16X16: + split_weights = two_pass_split_partition_weights_16; + none_weights = two_pass_none_partition_weights_16; + break; + case BLOCK_32X32: + split_weights = two_pass_split_partition_weights_32; + none_weights = two_pass_none_partition_weights_32; + break; + case BLOCK_64X64: + split_weights = two_pass_split_partition_weights_64; + none_weights = two_pass_none_partition_weights_64; + break; + case BLOCK_128X128: + split_weights = two_pass_split_partition_weights_128; + none_weights = two_pass_none_partition_weights_128; + break; + default: assert(0 && "Unexpected bsize."); + } + if (!split_weights || !none_weights) return 0; + + aom_clear_system_state(); + + float features[FEATURE_SIZE]; + int feature_index = 0; + features[feature_index++] = (float)pc_tree_stats->split; + features[feature_index++] = (float)pc_tree_stats->skip; + const int rdcost = (int)AOMMIN(INT_MAX, pc_tree_stats->rdcost); + const int rd_valid = rdcost > 0 && rdcost < 1000000000; + features[feature_index++] = (float)rd_valid; + for (int i = 0; i < 4; ++i) { + features[feature_index++] = (float)pc_tree_stats->sub_block_split[i]; + features[feature_index++] = (float)pc_tree_stats->sub_block_skip[i]; + const int sub_rdcost = + (int)AOMMIN(INT_MAX, pc_tree_stats->sub_block_rdcost[i]); + const int sub_rd_valid = sub_rdcost > 0 && sub_rdcost < 1000000000; + features[feature_index++] = (float)sub_rd_valid; + // Ratio between the sub-block RD and the whole-block RD. + float rd_ratio = 1.0f; + if (rd_valid && sub_rd_valid && sub_rdcost < rdcost) + rd_ratio = (float)sub_rdcost / (float)rdcost; + features[feature_index++] = rd_ratio; + } + assert(feature_index == FEATURE_SIZE); + + float score_1 = split_weights[FEATURE_SIZE]; + float score_2 = none_weights[FEATURE_SIZE]; + for (int i = 0; i < FEATURE_SIZE; ++i) { + score_1 += features[i] * split_weights[i]; + score_2 += features[i] * none_weights[i]; + } + *split_score = (int)(score_1 * 100); + *none_score = (int)(score_2 * 100); + return 1; +} +#undef FEATURE_SIZE + +static void ml_prune_rect_partition(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE bsize, + int64_t best_rd, int64_t none_rd, + int64_t *split_rd, + int *const dst_prune_horz, + int *const dst_prune_vert) { + if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; + best_rd = AOMMAX(best_rd, 1); + const NN_CONFIG *nn_config = NULL; + const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f }; + float cur_thresh = 0.0f; + switch (bsize) { + case BLOCK_8X8: + nn_config = &av1_rect_partition_nnconfig_8; + cur_thresh = prob_thresholds[0]; + break; + case BLOCK_16X16: + nn_config = &av1_rect_partition_nnconfig_16; + cur_thresh = prob_thresholds[1]; + break; + case BLOCK_32X32: + nn_config = &av1_rect_partition_nnconfig_32; + cur_thresh = prob_thresholds[2]; + break; + case BLOCK_64X64: + nn_config = &av1_rect_partition_nnconfig_64; + cur_thresh = prob_thresholds[3]; + break; + case BLOCK_128X128: + nn_config = &av1_rect_partition_nnconfig_128; + cur_thresh = prob_thresholds[4]; + break; + default: assert(0 && "Unexpected bsize."); + } + if (!nn_config) return; + aom_clear_system_state(); + + // 1. Compute input features + float features[9]; + + // RD cost ratios + for (int i = 0; i < 5; i++) features[i] = 1.0f; + if (none_rd > 0 && none_rd < 1000000000) + features[0] = (float)none_rd / (float)best_rd; + for (int i = 0; i < 4; i++) { + if (split_rd[i] > 0 && split_rd[i] < 1000000000) + features[1 + i] = (float)split_rd[i] / (float)best_rd; + } + + // Variance ratios + const MACROBLOCKD *const xd = &x->e_mbd; + int whole_block_variance; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + whole_block_variance = av1_high_get_sby_perpixel_variance( + cpi, &x->plane[0].src, bsize, xd->bd); + } else { + whole_block_variance = + av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); + } + whole_block_variance = AOMMAX(whole_block_variance, 1); + + int split_variance[4]; + const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + struct buf_2d buf; + buf.stride = x->plane[0].src.stride; + const int bw = block_size_wide[bsize]; + for (int i = 0; i < 4; ++i) { + const int x_idx = (i & 1) * bw / 2; + const int y_idx = (i >> 1) * bw / 2; + buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + split_variance[i] = + av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd); + } else { + split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize); + } + } + + for (int i = 0; i < 4; i++) + features[5 + i] = (float)split_variance[i] / (float)whole_block_variance; + + // 2. Do the prediction and prune 0-2 partitions based on their probabilities + float raw_scores[3] = { 0.0f }; + av1_nn_predict(features, nn_config, raw_scores); + float probs[3] = { 0.0f }; + av1_nn_softmax(raw_scores, probs, 3); + + // probs[0] is the probability of the fact that both rectangular partitions + // are worse than current best_rd + if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1; + if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1; +} + +// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be +// considered. +static void ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx, + int64_t best_rd, int64_t horz_rd[2], + int64_t vert_rd[2], int64_t split_rd[4], + int *const horza_partition_allowed, + int *const horzb_partition_allowed, + int *const verta_partition_allowed, + int *const vertb_partition_allowed) { + if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; + const NN_CONFIG *nn_config = NULL; + switch (bsize) { + case BLOCK_8X8: nn_config = NULL; break; + case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; + case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; + case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; + case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; + default: assert(0 && "Unexpected bsize."); + } + if (!nn_config) return; + + aom_clear_system_state(); + + // Generate features. + float features[10]; + int feature_index = 0; + features[feature_index++] = (float)part_ctx; + features[feature_index++] = (float)var_ctx; + const int rdcost = (int)AOMMIN(INT_MAX, best_rd); + int sub_block_rdcost[8] = { 0 }; + int rd_index = 0; + for (int i = 0; i < 2; ++i) { + if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)horz_rd[i]; + ++rd_index; + } + for (int i = 0; i < 2; ++i) { + if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)vert_rd[i]; + ++rd_index; + } + for (int i = 0; i < 4; ++i) { + if (split_rd[i] > 0 && split_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)split_rd[i]; + ++rd_index; + } + for (int i = 0; i < 8; ++i) { + // Ratio between the sub-block RD and the whole-block RD. + float rd_ratio = 1.0f; + if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) + rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; + features[feature_index++] = rd_ratio; + } + assert(feature_index == 10); + + // Calculate scores using the NN model. + float score[16] = { 0.0f }; + av1_nn_predict(features, nn_config, score); + int int_score[16]; + int max_score = -1000; + for (int i = 0; i < 16; ++i) { + int_score[i] = (int)(100 * score[i]); + max_score = AOMMAX(int_score[i], max_score); + } + + // Make decisions based on the model scores. + int thresh = max_score; + switch (bsize) { + case BLOCK_16X16: thresh -= 150; break; + case BLOCK_32X32: thresh -= 100; break; + default: break; + } + *horza_partition_allowed = 0; + *horzb_partition_allowed = 0; + *verta_partition_allowed = 0; + *vertb_partition_allowed = 0; + for (int i = 0; i < 16; ++i) { + if (int_score[i] >= thresh) { + if ((i >> 0) & 1) *horza_partition_allowed = 1; + if ((i >> 1) & 1) *horzb_partition_allowed = 1; + if ((i >> 2) & 1) *verta_partition_allowed = 1; + if ((i >> 3) & 1) *vertb_partition_allowed = 1; + } + } +} + +#define FEATURES 18 +#define LABELS 4 +// Use a ML model to predict if horz4 and vert4 should be considered. +static void ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int part_ctx, + int64_t best_rd, int64_t horz_rd[2], + int64_t vert_rd[2], int64_t split_rd[4], + int *const partition_horz4_allowed, + int *const partition_vert4_allowed, + unsigned int pb_source_variance, int mi_row, + int mi_col) { + if (best_rd >= 1000000000) return; + const NN_CONFIG *nn_config = NULL; + switch (bsize) { + case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; + case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; + case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; + default: assert(0 && "Unexpected bsize."); + } + if (!nn_config) return; + + aom_clear_system_state(); + + // Generate features. + float features[FEATURES]; + int feature_index = 0; + features[feature_index++] = (float)part_ctx; + features[feature_index++] = (float)get_unsigned_bits(pb_source_variance); + + const int rdcost = (int)AOMMIN(INT_MAX, best_rd); + int sub_block_rdcost[8] = { 0 }; + int rd_index = 0; + for (int i = 0; i < 2; ++i) { + if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)horz_rd[i]; + ++rd_index; + } + for (int i = 0; i < 2; ++i) { + if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)vert_rd[i]; + ++rd_index; + } + for (int i = 0; i < 4; ++i) { + if (split_rd[i] > 0 && split_rd[i] < 1000000000) + sub_block_rdcost[rd_index] = (int)split_rd[i]; + ++rd_index; + } + for (int i = 0; i < 8; ++i) { + // Ratio between the sub-block RD and the whole-block RD. + float rd_ratio = 1.0f; + if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) + rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; + features[feature_index++] = rd_ratio; + } + + // Get variance of the 1:4 and 4:1 sub-blocks. + unsigned int horz_4_source_var[4] = { 0 }; + unsigned int vert_4_source_var[4] = { 0 }; + { + BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); + BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); + av1_setup_src_planes(x, cpi->source, mi_row, mi_col, + av1_num_planes(&cpi->common)); + const int src_stride = x->plane[0].src.stride; + const uint8_t *src = x->plane[0].src.buf; + const MACROBLOCKD *const xd = &x->e_mbd; + for (int i = 0; i < 4; ++i) { + const uint8_t *horz_src = + src + i * block_size_high[horz_4_bs] * src_stride; + const uint8_t *vert_src = src + i * block_size_wide[vert_4_bs]; + unsigned int horz_var, vert_var, sse; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + switch (xd->bd) { + case 10: + horz_var = cpi->fn_ptr[horz_4_bs].vf( + horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), + 0, &sse); + vert_var = cpi->fn_ptr[vert_4_bs].vf( + vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), + 0, &sse); + break; + case 12: + horz_var = cpi->fn_ptr[horz_4_bs].vf( + horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), + 0, &sse); + vert_var = cpi->fn_ptr[vert_4_bs].vf( + vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), + 0, &sse); + break; + case 8: + default: + horz_var = cpi->fn_ptr[horz_4_bs].vf( + horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), + 0, &sse); + vert_var = cpi->fn_ptr[vert_4_bs].vf( + vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), + 0, &sse); + break; + } + horz_4_source_var[i] = + ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); + vert_4_source_var[i] = + ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); + } else { + horz_var = cpi->fn_ptr[horz_4_bs].vf(horz_src, src_stride, AV1_VAR_OFFS, + 0, &sse); + vert_var = cpi->fn_ptr[vert_4_bs].vf(vert_src, src_stride, AV1_VAR_OFFS, + 0, &sse); + horz_4_source_var[i] = + ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); + vert_4_source_var[i] = + ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); + } + } + } + + const float denom = (float)(pb_source_variance + 1); + const float low_b = 0.1f; + const float high_b = 10.0f; + for (int i = 0; i < 4; ++i) { + // Ratio between the 4:1 sub-block variance and the whole-block variance. + float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; + if (var_ratio < low_b) var_ratio = low_b; + if (var_ratio > high_b) var_ratio = high_b; + features[feature_index++] = var_ratio; + } + for (int i = 0; i < 4; ++i) { + // Ratio between the 1:4 sub-block RD and the whole-block RD. + float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; + if (var_ratio < low_b) var_ratio = low_b; + if (var_ratio > high_b) var_ratio = high_b; + features[feature_index++] = var_ratio; + } + assert(feature_index == FEATURES); + + // Calculate scores using the NN model. + float score[LABELS] = { 0.0f }; + av1_nn_predict(features, nn_config, score); + int int_score[LABELS]; + int max_score = -1000; + for (int i = 0; i < LABELS; ++i) { + int_score[i] = (int)(100 * score[i]); + max_score = AOMMAX(int_score[i], max_score); + } + + // Make decisions based on the model scores. + int thresh = max_score; + switch (bsize) { + case BLOCK_16X16: thresh -= 500; break; + case BLOCK_32X32: thresh -= 500; break; + case BLOCK_64X64: thresh -= 200; break; + default: break; + } + *partition_horz4_allowed = 0; + *partition_vert4_allowed = 0; + for (int i = 0; i < LABELS; ++i) { + if (int_score[i] >= thresh) { + if ((i >> 0) & 1) *partition_horz4_allowed = 1; + if ((i >> 1) & 1) *partition_vert4_allowed = 1; + } + } +} +#undef FEATURES +#undef LABELS + +#define FEATURES 4 +// ML-based partition search breakout. +static int ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + const MACROBLOCK *const x, + const RD_STATS *const rd_stats, + unsigned int pb_source_variance) { + const NN_CONFIG *nn_config = NULL; + int thresh = 0; + switch (bsize) { + case BLOCK_8X8: + nn_config = &av1_partition_breakout_nnconfig_8; + thresh = cpi->sf.ml_partition_search_breakout_thresh[0]; + break; + case BLOCK_16X16: + nn_config = &av1_partition_breakout_nnconfig_16; + thresh = cpi->sf.ml_partition_search_breakout_thresh[1]; + break; + case BLOCK_32X32: + nn_config = &av1_partition_breakout_nnconfig_32; + thresh = cpi->sf.ml_partition_search_breakout_thresh[2]; + break; + case BLOCK_64X64: + nn_config = &av1_partition_breakout_nnconfig_64; + thresh = cpi->sf.ml_partition_search_breakout_thresh[3]; + break; + case BLOCK_128X128: + nn_config = &av1_partition_breakout_nnconfig_128; + thresh = cpi->sf.ml_partition_search_breakout_thresh[4]; + break; + default: assert(0 && "Unexpected bsize."); + } + if (!nn_config || thresh < 0) return 0; + + // Generate feature values. + float features[FEATURES]; + int feature_index = 0; + aom_clear_system_state(); + + const int num_pels_log2 = num_pels_log2_lookup[bsize]; + float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX); + rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) * + rate_f; + features[feature_index++] = rate_f; + + const float dist_f = + (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2); + features[feature_index++] = dist_f; + + features[feature_index++] = (float)pb_source_variance; + + const int dc_q = (int)x->plane[0].dequant_QTX[0]; + features[feature_index++] = (float)(dc_q * dc_q) / 256.0f; + assert(feature_index == FEATURES); + + // Calculate score using the NN model. + float score = 0.0f; + av1_nn_predict(features, nn_config, &score); + + // Make decision. + return (int)(score * 100) >= thresh; +} +#undef FEATURES + +// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are +// unlikely to be selected depending on previous rate-distortion optimization +// results, for encoding speed-up. +static void rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, + TileDataEnc *tile_data, TOKENEXTRA **tp, + int mi_row, int mi_col, BLOCK_SIZE bsize, + RD_STATS *rd_cost, int64_t best_rd, + PC_TREE *pc_tree, int64_t *none_rd) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + const int mi_step = mi_size_wide[bsize] / 2; + RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; + const TOKENEXTRA *const tp_orig = *tp; + PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; + int tmp_partition_cost[PARTITION_TYPES]; + BLOCK_SIZE subsize; + RD_STATS this_rdc, sum_rdc, best_rdc; + const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); + int do_square_split = bsize_at_least_8x8; + const int pl = bsize_at_least_8x8 + ? partition_plane_context(xd, mi_row, mi_col, bsize) + : 0; + const int *partition_cost = + pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; + + int do_rectangular_split = 1; + int64_t cur_none_rd = 0; + int64_t split_rd[4] = { 0, 0, 0, 0 }; + int64_t horz_rd[2] = { 0, 0 }; + int64_t vert_rd[2] = { 0, 0 }; + + int split_ctx_is_ready[2] = { 0, 0 }; + int horz_ctx_is_ready = 0; + int vert_ctx_is_ready = 0; + BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); + + if (best_rd < 0) { + pc_tree->none.rdcost = INT64_MAX; + pc_tree->none.skip = 0; + av1_invalid_rd_stats(rd_cost); + return; + } + if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; + + // Override skipping rectangular partition operations for edge blocks + const int has_rows = (mi_row + mi_step < cm->mi_rows); + const int has_cols = (mi_col + mi_step < cm->mi_cols); + const int xss = x->e_mbd.plane[1].subsampling_x; + const int yss = x->e_mbd.plane[1].subsampling_y; + + BLOCK_SIZE min_size = x->min_partition_size; + BLOCK_SIZE max_size = x->max_partition_size; + + if (none_rd) *none_rd = 0; + +#if CONFIG_FP_MB_STATS + unsigned int src_diff_var = UINT_MAX; + int none_complexity = 0; +#endif + + int partition_none_allowed = has_rows && has_cols; + int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; + int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; + + (void)*tp_orig; + + // Override partition costs at the edges of the frame in the same + // way as in read_partition (see decodeframe.c) + if (!(has_rows && has_cols)) { + assert(bsize_at_least_8x8 && pl >= 0); + const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; + for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; + if (has_cols) { + // At the bottom, the two possibilities are HORZ and SPLIT + aom_cdf_prob bot_cdf[2]; + partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); + static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; + av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); + } else if (has_rows) { + // At the right, the two possibilities are VERT and SPLIT + aom_cdf_prob rhs_cdf[2]; + partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); + static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; + av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); + } else { + // At the bottom right, we always split + tmp_partition_cost[PARTITION_SPLIT] = 0; + } + + partition_cost = tmp_partition_cost; + } + +#ifndef NDEBUG + // Nothing should rely on the default value of this array (which is just + // leftover from encoding the previous block. Setting it to fixed pattern + // when debugging. + // bit 0, 1, 2 are blk_skip of each plane + // bit 4, 5, 6 are initialization checking of each plane + memset(x->blk_skip, 0x77, sizeof(x->blk_skip)); +#endif // NDEBUG + + assert(mi_size_wide[bsize] == mi_size_high[bsize]); + + av1_init_rd_stats(&this_rdc); + av1_invalid_rd_stats(&best_rdc); + best_rdc.rdcost = best_rd; + + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + + if (bsize == BLOCK_16X16 && cpi->vaq_refresh) + x->mb_energy = av1_log_block_var(cpi, x, bsize); + + if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { + const int cb_partition_search_ctrl = + ((pc_tree->index == 0 || pc_tree->index == 3) + + get_chessboard_index(cm->current_video_frame)) & + 0x1; + + if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) + set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); + } + + // Determine partition types in search according to the speed features. + // The threshold set here has to be of square block size. + if (cpi->sf.auto_min_max_partition_size) { + const int no_partition_allowed = (bsize <= max_size && bsize >= min_size); + // Note: Further partitioning is NOT allowed when bsize == min_size already. + const int partition_allowed = (bsize <= max_size && bsize > min_size); + partition_none_allowed &= no_partition_allowed; + partition_horz_allowed &= partition_allowed || !has_rows; + partition_vert_allowed &= partition_allowed || !has_cols; + do_square_split &= bsize > min_size; + } + + if (bsize > cpi->sf.use_square_partition_only_threshold) { + partition_horz_allowed &= !has_rows; + partition_vert_allowed &= !has_cols; + } + + if (bsize > BLOCK_4X4 && x->use_cb_search_range && + cpi->sf.auto_min_max_partition_size == 0) { + int split_score = 0; + int none_score = 0; + const int score_valid = ml_prune_2pass_split_partition( + &pc_tree->pc_tree_stats, bsize, &split_score, &none_score); + if (score_valid) { + { + const int only_split_thresh = 300; + const int no_none_thresh = 250; + const int no_split_thresh = 0; + if (split_score > only_split_thresh) { + partition_none_allowed = 0; + partition_horz_allowed = 0; + partition_vert_allowed = 0; + } else if (split_score > no_none_thresh) { + partition_none_allowed = 0; + } + if (split_score < no_split_thresh) do_square_split = 0; + } + { + const int no_split_thresh = 120; + const int no_none_thresh = -120; + if (none_score > no_split_thresh && partition_none_allowed) + do_square_split = 0; + if (none_score < no_none_thresh) partition_none_allowed = 0; + } + } else { + if (pc_tree->cb_search_range == SPLIT_PLANE) { + partition_none_allowed = 0; + partition_horz_allowed = 0; + partition_vert_allowed = 0; + } + if (pc_tree->cb_search_range == SEARCH_SAME_PLANE) do_square_split = 0; + if (pc_tree->cb_search_range == NONE_PARTITION_PLANE) { + do_square_split = 0; + partition_horz_allowed = 0; + partition_vert_allowed = 0; + } + } + + // Fall back to default values in case all partition modes are rejected. + if (partition_none_allowed == 0 && do_square_split == 0 && + partition_horz_allowed == 0 && partition_vert_allowed == 0) { + do_square_split = bsize_at_least_8x8; + partition_none_allowed = has_rows && has_cols; + partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; + partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; + } + } + + xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, + mi_col, bsize); + } + + // Decide whether we shall split directly and skip searching NONE by using + // the first pass block statistics + if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split && + partition_none_allowed && src_diff_var > 4 && + cm->base_qindex < qindex_split_threshold_lookup[bsize]) { + int mb_row = mi_row >> 1; + int mb_col = mi_col >> 1; + int mb_row_end = + AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); + int mb_col_end = + AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); + int r, c; + + // compute a complexity measure, basically measure inconsistency of motion + // vectors obtained from the first pass in the current block + for (r = mb_row; r < mb_row_end; r++) { + for (c = mb_col; c < mb_col_end; c++) { + const int mb_index = r * cm->mb_cols + c; + + MOTION_DIRECTION this_mv; + MOTION_DIRECTION right_mv; + MOTION_DIRECTION bottom_mv; + + this_mv = + get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); + + // to its right + if (c != mb_col_end - 1) { + right_mv = get_motion_direction_fp( + cpi->twopass.this_frame_mb_stats[mb_index + 1]); + none_complexity += get_motion_inconsistency(this_mv, right_mv); + } + + // to its bottom + if (r != mb_row_end - 1) { + bottom_mv = get_motion_direction_fp( + cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); + none_complexity += get_motion_inconsistency(this_mv, bottom_mv); + } + + // do not count its left and top neighbors to avoid double counting + } + } + + if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { + partition_none_allowed = 0; + } + } +#endif + + // Ref frames picked in the [i_th] quarter subblock during square partition + // RD search. It may be used to prune ref frame selection of rect partitions. + int ref_frames_used[4] = { + 0, + }; + +BEGIN_PARTITION_SEARCH: + if (x->must_find_valid_partition) { + partition_none_allowed = has_rows && has_cols; + partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; + partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; + } + + // Partition block source pixel variance. + unsigned int pb_source_variance = UINT_MAX; + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (block_size_high[bsize] <= 8) partition_horz_allowed = 0; + if (block_size_wide[bsize] <= 8) partition_vert_allowed = 0; + if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) + do_square_split = 0; + } +#endif + + // PARTITION_NONE + if (partition_none_allowed) { + int pt_cost = 0; + if (bsize_at_least_8x8) { + pt_cost = partition_cost[PARTITION_NONE] < INT_MAX + ? partition_cost[PARTITION_NONE] + : 0; + } + int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0); + int64_t best_remain_rdcost = (best_rdc.rdcost == INT64_MAX) + ? INT64_MAX + : (best_rdc.rdcost - partition_rd_cost); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, + PARTITION_NONE, bsize, ctx_none, best_remain_rdcost); + pb_source_variance = x->source_variance; + if (none_rd) *none_rd = this_rdc.rdcost; + cur_none_rd = this_rdc.rdcost; + if (this_rdc.rate != INT_MAX) { + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame); + for (int i = 0; i < 4; ++i) { + ref_frames_used[i] |= (1 << ref_type); + } + } + if (bsize_at_least_8x8) { + this_rdc.rate += pt_cost; + this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); + } + + if (this_rdc.rdcost < best_rdc.rdcost) { + // Adjust dist breakout threshold according to the partition size. + const int64_t dist_breakout_thr = + cpi->sf.partition_search_breakout_dist_thr >> + ((2 * (MAX_SB_SIZE_LOG2 - 2)) - + (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); + const int rate_breakout_thr = + cpi->sf.partition_search_breakout_rate_thr * + num_pels_log2_lookup[bsize]; + + best_rdc = this_rdc; + if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; + + if ((do_square_split || do_rectangular_split) && + !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { + const int use_ml_based_breakout = + bsize <= cpi->sf.use_square_partition_only_threshold && + bsize > BLOCK_4X4 && xd->bd == 8; + if (use_ml_based_breakout) { + if (ml_predict_breakout(cpi, bsize, x, &this_rdc, + pb_source_variance)) { + do_square_split = 0; + do_rectangular_split = 0; + } + } + + // If all y, u, v transform blocks in this partition are skippable, + // and the dist & rate are within the thresholds, the partition + // search is terminated for current branch of the partition search + // tree. The dist & rate thresholds are set to 0 at speed 0 to + // disable the early termination at that speed. + if (best_rdc.dist < dist_breakout_thr && + best_rdc.rate < rate_breakout_thr) { + do_square_split = 0; + do_rectangular_split = 0; + } + } + +#if CONFIG_FP_MB_STATS + // Check if every 16x16 first pass block statistics has zero + // motion and the corresponding first pass residue is small enough. + // If that is the case, check the difference variance between the + // current frame and the last frame. If the variance is small enough, + // stop further splitting in RD optimization + if (cpi->use_fp_mb_stats && do_square_split && + cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { + int mb_row = mi_row >> 1; + int mb_col = mi_col >> 1; + int mb_row_end = + AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); + int mb_col_end = + AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); + int r, c; + + int skip = 1; + for (r = mb_row; r < mb_row_end; r++) { + for (c = mb_col; c < mb_col_end; c++) { + const int mb_index = r * cm->mb_cols + c; + if (!(cpi->twopass.this_frame_mb_stats[mb_index] & + FPMB_MOTION_ZERO_MASK) || + !(cpi->twopass.this_frame_mb_stats[mb_index] & + FPMB_ERROR_SMALL_MASK)) { + skip = 0; + break; + } + } + if (skip == 0) { + break; + } + } + if (skip) { + if (src_diff_var == UINT_MAX) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); + src_diff_var = get_sby_perpixel_diff_variance( + cpi, &x->plane[0].src, mi_row, mi_col, bsize); + } + if (src_diff_var < 8) { + do_square_split = 0; + do_rectangular_split = 0; + } + } + } +#endif + } + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // store estimated motion vector + if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); + + // PARTITION_SPLIT + if (do_square_split) { + av1_init_rd_stats(&sum_rdc); + subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + sum_rdc.rate = partition_cost[PARTITION_SPLIT]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + + int idx; + for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { + const int x_idx = (idx & 1) * mi_step; + const int y_idx = (idx >> 1) * mi_step; + + if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) + continue; + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); + + pc_tree->split[idx]->index = idx; + int64_t *p_split_rd = &split_rd[idx]; + int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX + ? INT64_MAX + : (best_rdc.rdcost - sum_rdc.rdcost); + if (cpi->sf.prune_ref_frame_for_rect_partitions) + pc_tree->split[idx]->none.rate = INT_MAX; + rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, + subsize, &this_rdc, best_remain_rdcost, + pc_tree->split[idx], p_split_rd); + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + break; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + if (cpi->sf.prune_ref_frame_for_rect_partitions && + pc_tree->split[idx]->none.rate != INT_MAX) { + const int ref_type = + av1_ref_frame_type(pc_tree->split[idx]->none.mic.ref_frame); + ref_frames_used[idx] |= (1 << ref_type); + } + if (idx <= 1 && (bsize <= BLOCK_8X8 || + pc_tree->split[idx]->partitioning == PARTITION_NONE)) { + const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic; + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + // Neither palette mode nor cfl predicted + if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { + if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1; + } + } + } + } + const int reached_last_index = (idx == 4); + + if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_SPLIT; + } + } else if (cpi->sf.less_rectangular_check_level > 0) { + // skip rectangular partition test when larger block size + // gives better rd cost + if (cpi->sf.less_rectangular_check_level == 2 || idx <= 2) + do_rectangular_split &= !partition_none_allowed; + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } // if (do_split) + + pc_tree->horizontal[0].skip_ref_frame_mask = 0; + pc_tree->horizontal[1].skip_ref_frame_mask = 0; + pc_tree->vertical[0].skip_ref_frame_mask = 0; + pc_tree->vertical[1].skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + int used_frames; + used_frames = ref_frames_used[0] | ref_frames_used[1]; + if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[2] | ref_frames_used[3]; + if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[0] | ref_frames_used[2]; + if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[1] | ref_frames_used[3]; + if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames; + } + + int prune_horz = 0; + int prune_vert = 0; + if (cpi->sf.ml_prune_rect_partition && !frame_is_intra_only(cm) && + (partition_horz_allowed || partition_vert_allowed)) { + av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); + ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd, + split_rd, &prune_horz, &prune_vert); + } + + // PARTITION_HORZ + if (partition_horz_allowed && !prune_horz && + (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { + av1_init_rd_stats(&sum_rdc); + subsize = get_partition_subsize(bsize, PARTITION_HORZ); + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) { + pc_tree->horizontal[0].pred_interp_filter = + av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); + } + int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX + ? INT64_MAX + : (best_rdc.rdcost - sum_rdc.rdcost); + sum_rdc.rate = partition_cost[PARTITION_HORZ]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, + PARTITION_HORZ, subsize, &pc_tree->horizontal[0], + best_remain_rdcost); + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + horz_rd[0] = this_rdc.rdcost; + + if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) { + const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; + const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic; + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + // Neither palette mode nor cfl predicted + if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { + if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1; + } + update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); + encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, + subsize, NULL); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); + + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) { + pc_tree->horizontal[1].pred_interp_filter = + av1_extract_interp_filter(ctx_h->mic.interp_filters, 0); + } + rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, + PARTITION_HORZ, subsize, &pc_tree->horizontal[1], + best_rdc.rdcost - sum_rdc.rdcost); + horz_rd[1] = this_rdc.rdcost; + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_HORZ; + } + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // PARTITION_VERT + if (partition_vert_allowed && !prune_vert && + (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step))) { + av1_init_rd_stats(&sum_rdc); + subsize = get_partition_subsize(bsize, PARTITION_VERT); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); + + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) { + pc_tree->vertical[0].pred_interp_filter = + av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); + } + sum_rdc.rate = partition_cost[PARTITION_VERT]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX + ? INT64_MAX + : (best_rdc.rdcost - sum_rdc.rdcost); + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, + PARTITION_VERT, subsize, &pc_tree->vertical[0], + best_remain_rdcost); + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + vert_rd[0] = this_rdc.rdcost; + const int64_t vert_max_rdcost = best_rdc.rdcost; + if (sum_rdc.rdcost < vert_max_rdcost && has_cols) { + const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic; + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + // Neither palette mode nor cfl predicted + if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { + if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1; + } + update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col, + subsize, 1); + encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, + subsize, NULL); + + if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); + + if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && + partition_none_allowed) { + pc_tree->vertical[1].pred_interp_filter = + av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); + } + rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, + PARTITION_VERT, subsize, &pc_tree->vertical[1], + best_rdc.rdcost - sum_rdc.rdcost); + vert_rd[1] = this_rdc.rdcost; + + if (this_rdc.rate == INT_MAX) { + sum_rdc.rdcost = INT64_MAX; + } else { + sum_rdc.rate += this_rdc.rate; + sum_rdc.dist += this_rdc.dist; + sum_rdc.rdcost += this_rdc.rdcost; + } + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_VERT; + } + } + + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + if (pb_source_variance == UINT_MAX) { + av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + pb_source_variance = av1_high_get_sby_perpixel_variance( + cpi, &x->plane[0].src, bsize, xd->bd); + } else { + pb_source_variance = + av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); + } + } + + const int ext_partition_allowed = + do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed; + + // The standard AB partitions are allowed whenever ext-partition-types are + // allowed + int horzab_partition_allowed = ext_partition_allowed; + int vertab_partition_allowed = ext_partition_allowed; + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) { + horzab_partition_allowed = 0; + vertab_partition_allowed = 0; + } + } +#endif + + if (cpi->sf.prune_ext_partition_types_search_level) { + if (cpi->sf.prune_ext_partition_types_search_level == 1) { + // TODO(debargha,huisu@google.com): may need to tune the threshold for + // pb_source_variance. + horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || + (pc_tree->partitioning == PARTITION_NONE && + pb_source_variance < 32) || + pc_tree->partitioning == PARTITION_SPLIT); + vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || + (pc_tree->partitioning == PARTITION_NONE && + pb_source_variance < 32) || + pc_tree->partitioning == PARTITION_SPLIT); + } else { + horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || + pc_tree->partitioning == PARTITION_SPLIT); + vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || + pc_tree->partitioning == PARTITION_SPLIT); + } + horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); + horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); + vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); + vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); + split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); + split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); + split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); + split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); + } + int horza_partition_allowed = horzab_partition_allowed; + int horzb_partition_allowed = horzab_partition_allowed; + if (cpi->sf.prune_ext_partition_types_search_level) { + const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; + const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; + switch (cpi->sf.prune_ext_partition_types_search_level) { + case 1: + horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost); + horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost); + break; + case 2: + default: + horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost); + horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost); + break; + } + } + + int verta_partition_allowed = vertab_partition_allowed; + int vertb_partition_allowed = vertab_partition_allowed; + if (cpi->sf.prune_ext_partition_types_search_level) { + const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; + const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; + switch (cpi->sf.prune_ext_partition_types_search_level) { + case 1: + verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost); + vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost); + break; + case 2: + default: + verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost); + vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost); + break; + } + } + + if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed && + partition_horz_allowed && partition_vert_allowed) { + // TODO(huisu@google.com): x->source_variance may not be the current block's + // variance. The correct one to use is pb_source_variance. + // Need to re-train the model to fix it. + ml_prune_ab_partition(bsize, pc_tree->partitioning, + get_unsigned_bits(x->source_variance), + best_rdc.rdcost, horz_rd, vert_rd, split_rd, + &horza_partition_allowed, &horzb_partition_allowed, + &verta_partition_allowed, &vertb_partition_allowed); + } + + // PARTITION_HORZ_A + if (partition_horz_allowed && horza_partition_allowed) { + subsize = get_partition_subsize(bsize, PARTITION_HORZ_A); + pc_tree->horizontala[0].rd_mode_is_ready = 0; + pc_tree->horizontala[1].rd_mode_is_ready = 0; + pc_tree->horizontala[2].rd_mode_is_ready = 0; + if (split_ctx_is_ready[0]) { + av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none); + pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A; + pc_tree->horizontala[0].rd_mode_is_ready = 1; + if (split_ctx_is_ready[1]) { + av1_copy_tree_context(&pc_tree->horizontala[1], + &pc_tree->split[1]->none); + pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A; + pc_tree->horizontala[1].rd_mode_is_ready = 1; + } + } + pc_tree->horizontala[0].skip_ref_frame_mask = 0; + pc_tree->horizontala[1].skip_ref_frame_mask = 0; + pc_tree->horizontala[2].skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + int used_frames; + used_frames = ref_frames_used[0]; + if (used_frames) + pc_tree->horizontala[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[1]; + if (used_frames) + pc_tree->horizontala[1].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[2] | ref_frames_used[3]; + if (used_frames) + pc_tree->horizontala[2].skip_ref_frame_mask = ~used_frames; + } + rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, + pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize, + PARTITION_HORZ_A, mi_row, mi_col, bsize2, mi_row, + mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, + subsize); + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + // PARTITION_HORZ_B + if (partition_horz_allowed && horzb_partition_allowed) { + subsize = get_partition_subsize(bsize, PARTITION_HORZ_B); + pc_tree->horizontalb[0].rd_mode_is_ready = 0; + pc_tree->horizontalb[1].rd_mode_is_ready = 0; + pc_tree->horizontalb[2].rd_mode_is_ready = 0; + if (horz_ctx_is_ready) { + av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]); + pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B; + pc_tree->horizontalb[0].rd_mode_is_ready = 1; + } + pc_tree->horizontalb[0].skip_ref_frame_mask = 0; + pc_tree->horizontalb[1].skip_ref_frame_mask = 0; + pc_tree->horizontalb[2].skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + int used_frames; + used_frames = ref_frames_used[0] | ref_frames_used[1]; + if (used_frames) + pc_tree->horizontalb[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[2]; + if (used_frames) + pc_tree->horizontalb[1].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[3]; + if (used_frames) + pc_tree->horizontalb[2].skip_ref_frame_mask = ~used_frames; + } + rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, + pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize, + PARTITION_HORZ_B, mi_row, mi_col, subsize, + mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, + mi_col + mi_step, bsize2); + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // PARTITION_VERT_A + if (partition_vert_allowed && verta_partition_allowed) { + subsize = get_partition_subsize(bsize, PARTITION_VERT_A); + pc_tree->verticala[0].rd_mode_is_ready = 0; + pc_tree->verticala[1].rd_mode_is_ready = 0; + pc_tree->verticala[2].rd_mode_is_ready = 0; + if (split_ctx_is_ready[0]) { + av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none); + pc_tree->verticala[0].mic.partition = PARTITION_VERT_A; + pc_tree->verticala[0].rd_mode_is_ready = 1; + } + pc_tree->verticala[0].skip_ref_frame_mask = 0; + pc_tree->verticala[1].skip_ref_frame_mask = 0; + pc_tree->verticala[2].skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + int used_frames; + used_frames = ref_frames_used[0]; + if (used_frames) pc_tree->verticala[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[2]; + if (used_frames) pc_tree->verticala[1].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[1] | ref_frames_used[3]; + if (used_frames) pc_tree->verticala[2].skip_ref_frame_mask = ~used_frames; + } + rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, + pc_tree->verticala, ctx_none, mi_row, mi_col, bsize, + PARTITION_VERT_A, mi_row, mi_col, bsize2, + mi_row + mi_step, mi_col, bsize2, mi_row, + mi_col + mi_step, subsize); + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + // PARTITION_VERT_B + if (partition_vert_allowed && vertb_partition_allowed) { + subsize = get_partition_subsize(bsize, PARTITION_VERT_B); + pc_tree->verticalb[0].rd_mode_is_ready = 0; + pc_tree->verticalb[1].rd_mode_is_ready = 0; + pc_tree->verticalb[2].rd_mode_is_ready = 0; + if (vert_ctx_is_ready) { + av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]); + pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B; + pc_tree->verticalb[0].rd_mode_is_ready = 1; + } + pc_tree->verticalb[0].skip_ref_frame_mask = 0; + pc_tree->verticalb[1].skip_ref_frame_mask = 0; + pc_tree->verticalb[2].skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + int used_frames; + used_frames = ref_frames_used[0] | ref_frames_used[2]; + if (used_frames) pc_tree->verticalb[0].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[1]; + if (used_frames) pc_tree->verticalb[1].skip_ref_frame_mask = ~used_frames; + used_frames = ref_frames_used[3]; + if (used_frames) pc_tree->verticalb[2].skip_ref_frame_mask = ~used_frames; + } + rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, + pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize, + PARTITION_VERT_B, mi_row, mi_col, subsize, mi_row, + mi_col + mi_step, bsize2, mi_row + mi_step, + mi_col + mi_step, bsize2); + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or + // PARTITION_VERT_4 for this block. This is almost the same as + // ext_partition_allowed, except that we don't allow 128x32 or 32x128 blocks, + // so we require that bsize is not BLOCK_128X128. + const int partition4_allowed = + ext_partition_allowed && bsize != BLOCK_128X128; + int partition_horz4_allowed = partition4_allowed && partition_horz_allowed; + int partition_vert4_allowed = partition4_allowed && partition_vert_allowed; + if (cpi->sf.prune_ext_partition_types_search_level == 2) { + partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ || + pc_tree->partitioning == PARTITION_HORZ_A || + pc_tree->partitioning == PARTITION_HORZ_B || + pc_tree->partitioning == PARTITION_SPLIT || + pc_tree->partitioning == PARTITION_NONE); + partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT || + pc_tree->partitioning == PARTITION_VERT_A || + pc_tree->partitioning == PARTITION_VERT_B || + pc_tree->partitioning == PARTITION_SPLIT || + pc_tree->partitioning == PARTITION_NONE); + } + if (cpi->sf.ml_prune_4_partition && partition4_allowed && + partition_horz_allowed && partition_vert_allowed) { + ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, best_rdc.rdcost, + horz_rd, vert_rd, split_rd, &partition_horz4_allowed, + &partition_vert4_allowed, pb_source_variance, mi_row, + mi_col); + } + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (block_size_high[bsize] <= 16 || block_size_wide[bsize] <= 16) { + partition_horz4_allowed = 0; + partition_vert4_allowed = 0; + } + } +#endif + + // PARTITION_HORZ_4 + if (partition_horz4_allowed && has_rows && + (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { + av1_init_rd_stats(&sum_rdc); + const int quarter_step = mi_size_high[bsize] / 4; + PICK_MODE_CONTEXT *ctx_prev = ctx_none; + + subsize = get_partition_subsize(bsize, PARTITION_HORZ_4); + sum_rdc.rate = partition_cost[PARTITION_HORZ_4]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + + for (int i = 0; i < 4; ++i) { + const int this_mi_row = mi_row + i * quarter_step; + + if (i > 0 && this_mi_row >= cm->mi_rows) break; + + PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i]; + + ctx_this->rd_mode_is_ready = 0; + ctx_this->skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + const int used_frames = i <= 1 + ? (ref_frames_used[0] | ref_frames_used[1]) + : (ref_frames_used[2] | ref_frames_used[3]); + if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; + } + if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row, + mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc, + PARTITION_HORZ_4, ctx_prev, ctx_this)) + break; + + ctx_prev = ctx_this; + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_HORZ_4; + } + } + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + // PARTITION_VERT_4 + if (partition_vert4_allowed && has_cols && + (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step))) { + av1_init_rd_stats(&sum_rdc); + const int quarter_step = mi_size_wide[bsize] / 4; + PICK_MODE_CONTEXT *ctx_prev = ctx_none; + + subsize = get_partition_subsize(bsize, PARTITION_VERT_4); + sum_rdc.rate = partition_cost[PARTITION_VERT_4]; + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); + + for (int i = 0; i < 4; ++i) { + const int this_mi_col = mi_col + i * quarter_step; + + if (i > 0 && this_mi_col >= cm->mi_cols) break; + + PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i]; + + ctx_this->rd_mode_is_ready = 0; + ctx_this->skip_ref_frame_mask = 0; + if (cpi->sf.prune_ref_frame_for_rect_partitions) { + const int used_frames = i <= 1 + ? (ref_frames_used[0] | ref_frames_used[2]) + : (ref_frames_used[1] | ref_frames_used[3]); + if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; + } + if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row, + this_mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc, + PARTITION_VERT_4, ctx_prev, ctx_this)) + break; + + ctx_prev = ctx_this; + } + + if (sum_rdc.rdcost < best_rdc.rdcost) { + sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); + if (sum_rdc.rdcost < best_rdc.rdcost) { + best_rdc = sum_rdc; + pc_tree->partitioning = PARTITION_VERT_4; + } + } + restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); + } + + if (bsize == cm->seq_params.sb_size && best_rdc.rate == INT_MAX) { + // Did not find a valid partition, go back and search again, with less + // constraint on which partition types to search. + x->must_find_valid_partition = 1; + goto BEGIN_PARTITION_SEARCH; + } + + // TODO(jbb): This code added so that we avoid static analysis + // warning related to the fact that best_rd isn't used after this + // point. This code should be refactored so that the duplicate + // checks occur in some sub function and thus are used... + (void)best_rd; + *rd_cost = best_rdc; + + if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && + pc_tree->index != 3) { + if (bsize == cm->seq_params.sb_size) { + x->cb_offset = 0; + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, + pc_tree, NULL); + } else { + encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, + pc_tree, NULL); + } + } + + if (bsize == cm->seq_params.sb_size) { + assert(best_rdc.rate < INT_MAX); + assert(best_rdc.dist < INT64_MAX); + } else { + assert(tp_orig == *tp); + } +} + +// Set all the counters as max. +static void init_first_partition_pass_stats_tables( + FIRST_PARTITION_PASS_STATS *stats) { + for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { + memset(stats[i].ref0_counts, 0xff, sizeof(stats[i].ref0_counts)); + memset(stats[i].ref1_counts, 0xff, sizeof(stats[i].ref1_counts)); + stats[i].sample_counts = INT_MAX; + } +} + +// clear pc_tree_stats +static INLINE void clear_pc_tree_stats(PC_TREE *pt) { + if (pt == NULL) return; + pt->pc_tree_stats.valid = 0; + for (int i = 0; i < 4; ++i) { + clear_pc_tree_stats(pt->split[i]); + } +} + +// Minimum number of samples to trigger the +// mode_pruning_based_on_two_pass_partition_search feature. +#define FIRST_PARTITION_PASS_MIN_SAMPLES 16 + +static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td, + TileDataEnc *tile_data, int mi_row, + TOKENEXTRA **tp) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const TileInfo *const tile_info = &tile_data->tile_info; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + SPEED_FEATURES *const sf = &cpi->sf; + const int leaf_nodes = 256; + + // Initialize the left context for the new SB row + av1_zero_left_context(xd); + + // Reset delta for every tile + if (mi_row == tile_info->mi_row_start) { + if (cm->delta_q_present_flag) xd->current_qindex = cm->base_qindex; + if (cm->delta_lf_present_flag) { + av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); + } + } + + PC_TREE *const pc_root = + td->pc_root[cm->seq_params.mib_size_log2 - MIN_MIB_SIZE_LOG2]; + // Code each SB in the row + for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; + mi_col += cm->seq_params.mib_size) { + av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes); + av1_fill_mode_rates(cm, x, xd->tile_ctx); + + if (sf->adaptive_pred_interp_filter) { + for (int i = 0; i < leaf_nodes; ++i) { + td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; + } + } + + x->mb_rd_record.num = x->mb_rd_record.index_start = 0; + + av1_zero(x->txb_rd_record_8X8); + av1_zero(x->txb_rd_record_16X16); + av1_zero(x->txb_rd_record_32X32); + av1_zero(x->txb_rd_record_64X64); + av1_zero(x->txb_rd_record_intra); + + av1_zero(x->pred_mv); + pc_root->index = 0; + + const struct segmentation *const seg = &cm->seg; + int seg_skip = 0; + if (seg->enabled) { + const uint8_t *const map = + seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; + const int segment_id = + map ? get_segment_id(cm, map, cm->seq_params.sb_size, mi_row, mi_col) + : 0; + seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); + } + xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; + + x->sb_energy_level = 0; + if (cm->delta_q_present_flag) { + // Delta-q modulation based on variance + av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); + + int offset_qindex; + if (DELTAQ_MODULATION == 1) { + const int block_wavelet_energy_level = + av1_block_wavelet_energy_level(cpi, x, cm->seq_params.sb_size); + x->sb_energy_level = block_wavelet_energy_level; + offset_qindex = av1_compute_deltaq_from_energy_level( + cpi, block_wavelet_energy_level); + } else { + const int block_var_level = + av1_log_block_var(cpi, x, cm->seq_params.sb_size); + x->sb_energy_level = block_var_level; + offset_qindex = + av1_compute_deltaq_from_energy_level(cpi, block_var_level); + } + const int qmask = ~(cm->delta_q_res - 1); + int current_qindex = clamp(cm->base_qindex + offset_qindex, + cm->delta_q_res, 256 - cm->delta_q_res); + current_qindex = + ((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) + + cm->base_qindex; + assert(current_qindex > 0); + + xd->delta_qindex = current_qindex - cm->base_qindex; + set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); + xd->mi[0]->current_qindex = current_qindex; + av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); + if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) { + const int lfmask = ~(cm->delta_lf_res - 1); + const int delta_lf_from_base = + ((offset_qindex / 2 + cm->delta_lf_res / 2) & lfmask); + + // pre-set the delta lf for loop filter. Note that this value is set + // before mi is assigned for each block in current superblock + for (int j = 0; + j < AOMMIN(cm->seq_params.mib_size, cm->mi_rows - mi_row); j++) { + for (int k = 0; + k < AOMMIN(cm->seq_params.mib_size, cm->mi_cols - mi_col); k++) { + cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] + .delta_lf_from_base = + clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); + const int frame_lf_count = + av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; + for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { + cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] + .delta_lf[lf_id] = + clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); + } + } + } + } + } + + int dummy_rate; + int64_t dummy_dist; + RD_STATS dummy_rdc; + const int idx_str = cm->mi_stride * mi_row + mi_col; + MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str; + x->source_variance = UINT_MAX; + if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); + const BLOCK_SIZE bsize = + seg_skip ? cm->seq_params.sb_size : sf->always_this_block_size; + set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); + rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, + pc_root); + } else if (cpi->partition_search_skippable_frame) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); + const BLOCK_SIZE bsize = + get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); + set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); + rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, + cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, + pc_root); + } else { + // If required set upper and lower partition size limits + if (sf->auto_min_max_partition_size) { + set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); + rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, + &x->min_partition_size, &x->max_partition_size); + } + + reset_partition(pc_root, cm->seq_params.sb_size); + x->use_cb_search_range = 0; + init_first_partition_pass_stats_tables(x->first_partition_pass_stats); + // Do the first pass if we need two pass partition search + if (cpi->sf.two_pass_partition_search && + cpi->sf.use_square_partition_only_threshold > BLOCK_4X4 && + mi_row + mi_size_high[cm->seq_params.sb_size] < cm->mi_rows && + mi_col + mi_size_wide[cm->seq_params.sb_size] < cm->mi_cols && + cm->frame_type != KEY_FRAME) { + x->cb_partition_scan = 1; + // Reset the stats tables. + if (sf->mode_pruning_based_on_two_pass_partition_search) + av1_zero(x->first_partition_pass_stats); + clear_pc_tree_stats(pc_root); + rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row, mi_col, + cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, + pc_root, NULL); + x->cb_partition_scan = 0; + + x->source_variance = UINT_MAX; + if (sf->adaptive_pred_interp_filter) { + for (int i = 0; i < leaf_nodes; ++i) { + td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; + td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; + } + } + + x->mb_rd_record.num = x->mb_rd_record.index_start = 0; + av1_zero(x->txb_rd_record_8X8); + av1_zero(x->txb_rd_record_16X16); + av1_zero(x->txb_rd_record_32X32); + av1_zero(x->txb_rd_record_64X64); + av1_zero(x->txb_rd_record_intra); + av1_zero(x->pred_mv); + pc_root->index = 0; + + for (int idy = 0; idy < mi_size_high[cm->seq_params.sb_size]; ++idy) { + for (int idx = 0; idx < mi_size_wide[cm->seq_params.sb_size]; ++idx) { + const int offset = cm->mi_stride * (mi_row + idy) + (mi_col + idx); + cm->mi_grid_visible[offset] = 0; + } + } + + x->use_cb_search_range = 1; + + if (sf->mode_pruning_based_on_two_pass_partition_search) { + for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { + FIRST_PARTITION_PASS_STATS *const stat = + &x->first_partition_pass_stats[i]; + if (stat->sample_counts < FIRST_PARTITION_PASS_MIN_SAMPLES) { + // If there are not enough samples collected, make all available. + memset(stat->ref0_counts, 0xff, sizeof(stat->ref0_counts)); + memset(stat->ref1_counts, 0xff, sizeof(stat->ref1_counts)); + } else if (sf->selective_ref_frame < 2) { + // ALTREF2_FRAME and BWDREF_FRAME may be skipped during the + // initial partition scan, so we don't eliminate them. + stat->ref0_counts[ALTREF2_FRAME] = 0xff; + stat->ref1_counts[ALTREF2_FRAME] = 0xff; + stat->ref0_counts[BWDREF_FRAME] = 0xff; + stat->ref1_counts[BWDREF_FRAME] = 0xff; + } + } + } + } + + rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, + cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, pc_root, + NULL); + } +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. + if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 && + cm->tile_rows == 1) { + av1_inter_mode_data_fit(tile_data, x->rdmult); + } +#endif + } +} + +static void init_encode_frame_mb_context(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + + // Copy data over into macro block data structures. + av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); + + av1_setup_block_planes(xd, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y, num_planes); +} + +static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { + if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; + // We will not update the golden frame with an internal overlay frame + else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || + cpi->rc.is_src_frame_ext_arf) + return ALTREF_FRAME; + else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || + cpi->refresh_alt_ref_frame) + return GOLDEN_FRAME; + else + // TODO(zoeliu): To investigate whether a frame_type other than + // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. + return LAST_FRAME; +} + +static TX_MODE select_tx_mode(const AV1_COMP *cpi) { + if (cpi->common.coded_lossless) return ONLY_4X4; + if (cpi->sf.tx_size_search_method == USE_LARGESTALL) + return TX_MODE_LARGEST; + else if (cpi->sf.tx_size_search_method == USE_FULL_RD || + cpi->sf.tx_size_search_method == USE_FAST_RD) + return TX_MODE_SELECT; + else + return cpi->common.tx_mode; +} + +void av1_alloc_tile_data(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int tile_col, tile_row; + + if (cpi->tile_data != NULL) aom_free(cpi->tile_data); + CHECK_MEM_ERROR( + cm, cpi->tile_data, + aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); + cpi->allocated_tiles = tile_cols * tile_rows; + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + TileDataEnc *const tile_data = + &cpi->tile_data[tile_row * tile_cols + tile_col]; + int i, j; + for (i = 0; i < BLOCK_SIZES_ALL; ++i) { + for (j = 0; j < MAX_MODES; ++j) { + tile_data->thresh_freq_fact[i][j] = 32; + tile_data->mode_map[i][j] = j; + } + } + } +} + +void av1_init_tile_data(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int tile_col, tile_row; + TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; + TOKENLIST *tplist = cpi->tplist[0][0]; + unsigned int tile_tok = 0; + int tplist_count = 0; + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + TileDataEnc *const tile_data = + &cpi->tile_data[tile_row * tile_cols + tile_col]; + TileInfo *const tile_info = &tile_data->tile_info; + av1_tile_init(tile_info, cm, tile_row, tile_col); + + cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; + pre_tok = cpi->tile_tok[tile_row][tile_col]; + tile_tok = allocated_tokens( + *tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); + cpi->tplist[tile_row][tile_col] = tplist + tplist_count; + tplist = cpi->tplist[tile_row][tile_col]; + tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info); + tile_data->allow_update_cdf = !cm->large_scale_tile; + tile_data->allow_update_cdf = + tile_data->allow_update_cdf && !cm->disable_cdf_update; + } + } +} + +void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row, + int tile_col, int mi_row) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int tile_cols = cm->tile_cols; + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + TOKENEXTRA *tok = NULL; + int sb_row_in_tile; + int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; + + int num_mb_rows_in_sb = + ((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4; + + sb_row_in_tile = + (mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2; + + get_start_tok(cpi, tile_row, tile_col, mi_row, &tok, + cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); + cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok; + + encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); + + cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok; + cpi->tplist[tile_row][tile_col][sb_row_in_tile].count = + (unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop - + cpi->tplist[tile_row][tile_col][sb_row_in_tile].start); + + assert( + (unsigned int)(tok - + cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <= + get_token_alloc(num_mb_rows_in_sb, tile_mb_cols, + cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes)); + + (void)tile_mb_cols; + (void)num_mb_rows_in_sb; +} + +void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, + int tile_col) { + AV1_COMMON *const cm = &cpi->common; + TileDataEnc *const this_tile = + &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + int mi_row; + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + av1_inter_mode_data_init(this_tile); +#endif + + av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, + tile_info->mi_col_end, tile_row); + av1_init_above_context(cm, &td->mb.e_mbd, tile_row); + + // Set up pointers to per thread motion search counters. + this_tile->m_search_count = 0; // Count of motion search hits. + this_tile->ex_search_count = 0; // Exhaustive mesh search hits. + td->mb.m_search_count_ptr = &this_tile->m_search_count; + td->mb.ex_search_count_ptr = &this_tile->ex_search_count; + this_tile->tctx = *cm->fc; + td->mb.e_mbd.tile_ctx = &this_tile->tctx; + + cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); + + av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator); + + td->intrabc_used_this_tile = 0; + + for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; + mi_row += cm->seq_params.mib_size) { + av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row); + } +} + +static void encode_tiles(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int tile_col, tile_row; + + if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) + av1_alloc_tile_data(cpi); + + av1_init_tile_data(cpi); + + for (tile_row = 0; tile_row < tile_rows; ++tile_row) { + for (tile_col = 0; tile_col < tile_cols; ++tile_col) { + av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); + cpi->intrabc_used |= cpi->td.intrabc_used_this_tile; + } + } +} + +#if CONFIG_FP_MB_STATS +static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, + AV1_COMMON *cm, uint8_t **this_frame_mb_stats) { + uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + + cm->current_video_frame * cm->MBs * sizeof(uint8_t); + + if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; + + *this_frame_mb_stats = mb_stats_in; + + return 1; +} +#endif + +#define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search +static int gm_get_params_cost(const WarpedMotionParams *gm, + const WarpedMotionParams *ref_gm, int allow_hp) { + int params_cost = 0; + int trans_bits, trans_prec_diff; + switch (gm->wmtype) { + case AFFINE: + case ROTZOOM: + params_cost += aom_count_signed_primitive_refsubexpfin( + GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), + (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + params_cost += aom_count_signed_primitive_refsubexpfin( + GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), + (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); + if (gm->wmtype >= AFFINE) { + params_cost += aom_count_signed_primitive_refsubexpfin( + GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), + (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); + params_cost += aom_count_signed_primitive_refsubexpfin( + GM_ALPHA_MAX + 1, SUBEXPFIN_K, + (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - + (1 << GM_ALPHA_PREC_BITS), + (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); + } + AOM_FALLTHROUGH_INTENDED; + case TRANSLATION: + trans_bits = (gm->wmtype == TRANSLATION) + ? GM_ABS_TRANS_ONLY_BITS - !allow_hp + : GM_ABS_TRANS_BITS; + trans_prec_diff = (gm->wmtype == TRANSLATION) + ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp + : GM_TRANS_PREC_DIFF; + params_cost += aom_count_signed_primitive_refsubexpfin( + (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_gm->wmmat[0] >> trans_prec_diff), + (gm->wmmat[0] >> trans_prec_diff)); + params_cost += aom_count_signed_primitive_refsubexpfin( + (1 << trans_bits) + 1, SUBEXPFIN_K, + (ref_gm->wmmat[1] >> trans_prec_diff), + (gm->wmmat[1] >> trans_prec_diff)); + AOM_FALLTHROUGH_INTENDED; + case IDENTITY: break; + default: assert(0); + } + return (params_cost << AV1_PROB_COST_SHIFT); +} + +static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm, + int frame) { + (void)num_refs_using_gm; + (void)frame; + switch (sf->gm_search_type) { + case GM_FULL_SEARCH: return 1; + case GM_REDUCED_REF_SEARCH: + return !(frame == LAST2_FRAME || frame == LAST3_FRAME); + case GM_DISABLE_SEARCH: return 0; + default: assert(0); + } + return 1; +} + +// Estimate if the source frame is screen content, based on the portion of +// blocks that have no more than 4 (experimentally selected) luma colors. +static int is_screen_content(const uint8_t *src, int use_hbd, int bd, + int stride, int width, int height) { + assert(src != NULL); + int counts = 0; + const int blk_w = 16; + const int blk_h = 16; + const int limit = 4; + for (int r = 0; r + blk_h <= height; r += blk_h) { + for (int c = 0; c + blk_w <= width; c += blk_w) { + int count_buf[1 << 12]; // Maximum (1 << 12) color levels. + const int n_colors = + use_hbd ? av1_count_colors_highbd(src + r * stride + c, stride, blk_w, + blk_h, bd, count_buf) + : av1_count_colors(src + r * stride + c, stride, blk_w, blk_h, + count_buf); + if (n_colors > 1 && n_colors <= limit) counts++; + } + } + // The threshold is 10%. + return counts * blk_h * blk_w * 10 > width * height; +} + +static const uint8_t ref_frame_flag_list[REF_FRAMES] = { 0, + AOM_LAST_FLAG, + AOM_LAST2_FLAG, + AOM_LAST3_FLAG, + AOM_GOLD_FLAG, + AOM_BWD_FLAG, + AOM_ALT2_FLAG, + AOM_ALT_FLAG }; + +// Enforce the number of references for each arbitrary frame limited to +// (INTER_REFS_PER_FRAME - 1) +static void enforce_max_ref_frames(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MV_REFERENCE_FRAME ref_frame; + int total_valid_refs = 0; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) + total_valid_refs++; + } + + // NOTE(zoeliu): When all the possible reference frames are availble, we + // reduce the number of reference frames by 1, following the rules of: + // (1) Retain GOLDEN_FARME/ALTEF_FRAME; + // (2) Check the earliest 2 remaining reference frames, and remove the one + // with the lower quality factor, otherwise if both have been coded at + // the same quality level, remove the earliest reference frame. + + if (total_valid_refs == INTER_REFS_PER_FRAME) { + unsigned int min_ref_offset = UINT_MAX; + unsigned int second_min_ref_offset = UINT_MAX; + MV_REFERENCE_FRAME earliest_ref_frames[2] = { LAST3_FRAME, LAST2_FRAME }; + int earliest_buf_idxes[2] = { 0 }; + + // Locate the earliest two reference frames except GOLDEN/ALTREF. + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + // Retain GOLDEN/ALTERF + if (ref_frame == GOLDEN_FRAME || ref_frame == ALTREF_FRAME) continue; + + const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; + if (buf_idx >= 0) { + const unsigned int ref_offset = + cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; + + if (min_ref_offset == UINT_MAX) { + min_ref_offset = ref_offset; + earliest_ref_frames[0] = ref_frame; + earliest_buf_idxes[0] = buf_idx; + } else { + if (get_relative_dist(cm, ref_offset, min_ref_offset) < 0) { + second_min_ref_offset = min_ref_offset; + earliest_ref_frames[1] = earliest_ref_frames[0]; + earliest_buf_idxes[1] = earliest_buf_idxes[0]; + + min_ref_offset = ref_offset; + earliest_ref_frames[0] = ref_frame; + earliest_buf_idxes[0] = buf_idx; + } else if (second_min_ref_offset == UINT_MAX || + get_relative_dist(cm, ref_offset, second_min_ref_offset) < + 0) { + second_min_ref_offset = ref_offset; + earliest_ref_frames[1] = ref_frame; + earliest_buf_idxes[1] = buf_idx; + } + } + } + } + // Check the coding quality factors of the two earliest reference frames. + RATE_FACTOR_LEVEL ref_rf_level[2]; + double ref_rf_deltas[2]; + for (int i = 0; i < 2; ++i) { + ref_rf_level[i] = cpi->frame_rf_level[earliest_buf_idxes[i]]; + ref_rf_deltas[i] = rate_factor_deltas[ref_rf_level[i]]; + } + (void)ref_rf_level; + (void)ref_rf_deltas; + +#define USE_RF_LEVEL_TO_ENFORCE 1 +#if USE_RF_LEVEL_TO_ENFORCE + // If both earliest two reference frames are coded using the same rate- + // factor, disable the earliest reference frame; Otherwise disable the + // reference frame that uses a lower rate-factor delta. + const MV_REFERENCE_FRAME ref_frame_to_disable = + (ref_rf_deltas[0] <= ref_rf_deltas[1]) ? earliest_ref_frames[0] + : earliest_ref_frames[1]; +#else + // Always disable the earliest reference frame + const MV_REFERENCE_FRAME ref_frame_to_disable = earliest_ref_frames[0]; +#endif // USE_RF_LEVEL_TO_ENFORCE +#undef USE_RF_LEVEL_TO_ENFORCE + + switch (ref_frame_to_disable) { + case LAST_FRAME: cpi->ref_frame_flags &= ~AOM_LAST_FLAG; break; + case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break; + case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break; + case BWDREF_FRAME: cpi->ref_frame_flags &= ~AOM_BWD_FLAG; break; + case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break; + default: break; + } + } +} + +static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) { + assert(!frame_is_intra_only(cm)); + + int one_sided_refs = 1; + for (int ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) { + const int buf_idx = cm->frame_refs[ref].idx; + if (buf_idx == INVALID_IDX) continue; + + const int ref_offset = + cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; + if (get_relative_dist(cm, ref_offset, (int)cm->frame_offset) > 0) { + one_sided_refs = 0; // bwd reference + break; + } + } + return one_sided_refs; +} + +static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, + int ref_offset[2]) { + ref_offset[0] = ref_offset[1] = 0; + if (!cm->is_skip_mode_allowed) return; + + const int buf_idx_0 = cm->frame_refs[cm->ref_frame_idx_0].idx; + const int buf_idx_1 = cm->frame_refs[cm->ref_frame_idx_1].idx; + assert(buf_idx_0 != INVALID_IDX && buf_idx_1 != INVALID_IDX); + + ref_offset[0] = cm->buffer_pool->frame_bufs[buf_idx_0].cur_frame_offset; + ref_offset[1] = cm->buffer_pool->frame_bufs[buf_idx_1].cur_frame_offset; +} + +static int check_skip_mode_enabled(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + + av1_setup_skip_mode_allowed(cm); + if (!cm->is_skip_mode_allowed) return 0; + + // Turn off skip mode if the temporal distances of the reference pair to the + // current frame are different by more than 1 frame. + const int cur_offset = (int)cm->frame_offset; + int ref_offset[2]; + get_skip_mode_ref_offsets(cm, ref_offset); + const int cur_to_ref0 = get_relative_dist(cm, cur_offset, ref_offset[0]); + const int cur_to_ref1 = abs(get_relative_dist(cm, cur_offset, ref_offset[1])); + if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; + + // High Latency: Turn off skip mode if all refs are fwd. + if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0; + + static const int flag_list[REF_FRAMES] = { 0, + AOM_LAST_FLAG, + AOM_LAST2_FLAG, + AOM_LAST3_FLAG, + AOM_GOLD_FLAG, + AOM_BWD_FLAG, + AOM_ALT2_FLAG, + AOM_ALT_FLAG }; + const int ref_frame[2] = { cm->ref_frame_idx_0 + LAST_FRAME, + cm->ref_frame_idx_1 + LAST_FRAME }; + if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || + !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) + return 0; + + return 1; +} + +// Function to decide if we can skip the global motion parameter computation +// for a particular ref frame +static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) { + if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) && + cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) { + return get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[ref_frame - LAST_FRAME], + cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0; + } + return 0; +} + +static void set_default_interp_skip_flags(AV1_COMP *cpi) { + const int num_planes = av1_num_planes(&cpi->common); + cpi->default_interp_skip_flags = (num_planes == 1) + ? DEFAULT_LUMA_INTERP_SKIP_FLAG + : DEFAULT_INTERP_SKIP_FLAG; +} + +static void encode_frame_internal(AV1_COMP *cpi) { + ThreadData *const td = &cpi->td; + MACROBLOCK *const x = &td->mb; + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + RD_COUNTS *const rdc = &cpi->td.rd_counts; + int i; + + x->min_partition_size = AOMMIN(x->min_partition_size, cm->seq_params.sb_size); + x->max_partition_size = AOMMIN(x->max_partition_size, cm->seq_params.sb_size); +#if CONFIG_DIST_8X8 + x->using_dist_8x8 = cpi->oxcf.using_dist_8x8; + x->tune_metric = cpi->oxcf.tuning; +#endif + cm->setup_mi(cm); + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + + av1_zero(*td->counts); + av1_zero(rdc->comp_pred_diff); + + if (frame_is_intra_only(cm)) { + if (cm->seq_params.force_screen_content_tools == 2) { + cm->allow_screen_content_tools = + cpi->oxcf.content == AOM_CONTENT_SCREEN || + is_screen_content(cpi->source->y_buffer, + cpi->source->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, + cpi->source->y_stride, cpi->source->y_width, + cpi->source->y_height); + } else { + cm->allow_screen_content_tools = + cm->seq_params.force_screen_content_tools; + } + } + + // Allow intrabc when screen content tools are enabled. + cm->allow_intrabc = cm->allow_screen_content_tools; + // Reset the flag. + cpi->intrabc_used = 0; + // Need to disable intrabc when superres is selected + if (av1_superres_scaled(cm)) { + cm->allow_intrabc = 0; + } + + if (cpi->oxcf.pass != 1 && av1_use_hash_me(cm)) { + // add to hash table + const int pic_width = cpi->source->y_crop_width; + const int pic_height = cpi->source->y_crop_height; + uint32_t *block_hash_values[2][2]; + int8_t *is_block_same[2][3]; + int k, j; + + for (k = 0; k < 2; k++) { + for (j = 0; j < 2; j++) { + CHECK_MEM_ERROR(cm, block_hash_values[k][j], + aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); + } + + for (j = 0; j < 3; j++) { + CHECK_MEM_ERROR(cm, is_block_same[k][j], + aom_malloc(sizeof(int8_t) * pic_width * pic_height)); + } + } + + av1_hash_table_create(&cm->cur_frame->hash_table); + av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0], + is_block_same[0], &cpi->td.mb); + av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0], + block_hash_values[1], is_block_same[0], + is_block_same[1], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], + pic_width, pic_height, 4); + av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1], + block_hash_values[0], is_block_same[1], + is_block_same[0], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], + pic_width, pic_height, 8); + av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0], + block_hash_values[1], is_block_same[0], + is_block_same[1], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], + pic_width, pic_height, 16); + av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1], + block_hash_values[0], is_block_same[1], + is_block_same[0], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], + pic_width, pic_height, 32); + av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0], + block_hash_values[1], is_block_same[0], + is_block_same[1], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], + pic_width, pic_height, 64); + + av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1], + block_hash_values[0], is_block_same[1], + is_block_same[0], &cpi->td.mb); + av1_add_to_hash_map_by_row_with_precal_data( + &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], + pic_width, pic_height, 128); + + for (k = 0; k < 2; k++) { + for (j = 0; j < 2; j++) { + aom_free(block_hash_values[k][j]); + } + + for (j = 0; j < 3; j++) { + aom_free(is_block_same[k][j]); + } + } + } + + for (i = 0; i < MAX_SEGMENTS; ++i) { + const int qindex = cm->seg.enabled + ? av1_get_qindex(&cm->seg, i, cm->base_qindex) + : cm->base_qindex; + xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && + cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && + cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; + if (xd->lossless[i]) cpi->has_lossless_segment = 1; + xd->qindex[i] = qindex; + if (xd->lossless[i]) { + cpi->optimize_seg_arr[i] = 0; + } else { + cpi->optimize_seg_arr[i] = cpi->optimize_speed_feature; + } + } + cm->coded_lossless = is_coded_lossless(cm, xd); + cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); + + cm->tx_mode = select_tx_mode(cpi); + + // Fix delta q resolution for the moment + cm->delta_q_res = DEFAULT_DELTA_Q_RES; + // Set delta_q_present_flag before it is used for the first time + cm->delta_lf_res = DEFAULT_DELTA_LF_RES; + cm->delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; + cm->delta_lf_present_flag = cpi->oxcf.deltaq_mode == DELTA_Q_LF; + cm->delta_lf_multi = DEFAULT_DELTA_LF_MULTI; + // update delta_q_present_flag and delta_lf_present_flag based on base_qindex + cm->delta_q_present_flag &= cm->base_qindex > 0; + cm->delta_lf_present_flag &= cm->base_qindex > 0; + + av1_frame_init_quantizer(cpi); + + av1_initialize_rd_consts(cpi); + av1_initialize_me_consts(cpi, x, cm->base_qindex); + init_encode_frame_mb_context(cpi); + set_default_interp_skip_flags(cpi); + if (cm->prev_frame) + cm->last_frame_seg_map = cm->prev_frame->seg_map; + else + cm->last_frame_seg_map = NULL; + cm->current_frame_seg_map = cm->cur_frame->seg_map; + if (cm->allow_intrabc || cm->coded_lossless) { + av1_set_default_ref_deltas(cm->lf.ref_deltas); + av1_set_default_mode_deltas(cm->lf.mode_deltas); + } else if (cm->prev_frame) { + memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); + memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); + } + memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); + memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); + + // Special case: set prev_mi to NULL when the previous mode info + // context cannot be used. + cm->prev_mi = cm->allow_ref_frame_mvs ? cm->prev_mip : NULL; + + x->txb_split_count = 0; + + av1_zero(rdc->global_motion_used); + av1_zero(cpi->gmparams_cost); +#if !CONFIG_GLOBAL_MOTION_SEARCH + cpi->global_motion_search_done = 1; +#endif // !CONFIG_GLOBAL_MOTION_SEARCH + if (cpi->common.frame_type == INTER_FRAME && cpi->source && + !cpi->global_motion_search_done) { + YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES]; + int frame; + double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)]; + const double *params_this_motion; + int inliers_by_motion[RANSAC_NUM_MOTIONS]; + WarpedMotionParams tmp_wm_params; + static const double kIdentityParams[MAX_PARAMDIM - 1] = { + 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 + }; + int num_refs_using_gm = 0; + + for (frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { + ref_buf[frame] = get_ref_frame_buffer(cpi, frame); + int pframe; + cm->global_motion[frame] = default_warp_params; + const WarpedMotionParams *ref_params = + cm->prev_frame ? &cm->prev_frame->global_motion[frame] + : &default_warp_params; + // check for duplicate buffer + for (pframe = ALTREF_FRAME; pframe > frame; --pframe) { + if (ref_buf[frame] == ref_buf[pframe]) break; + } + if (pframe > frame) { + memcpy(&cm->global_motion[frame], &cm->global_motion[pframe], + sizeof(WarpedMotionParams)); + } else if (ref_buf[frame] && + ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && + ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && + do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame) && + !(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) { + TransformationType model; + const int64_t ref_frame_error = + av1_frame_error(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, + ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride, + cpi->source->y_buffer, cpi->source->y_width, + cpi->source->y_height, cpi->source->y_stride); + + if (ref_frame_error == 0) continue; + + aom_clear_system_state(); + for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { + int64_t best_warp_error = INT64_MAX; + // Initially set all params to identity. + for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { + memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams, + (MAX_PARAMDIM - 1) * sizeof(*params_by_motion)); + } + + compute_global_motion_feature_based( + model, cpi->source, ref_buf[frame], + cpi->common.seq_params.bit_depth, inliers_by_motion, + params_by_motion, RANSAC_NUM_MOTIONS); + + for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { + if (inliers_by_motion[i] == 0) continue; + + params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i; + convert_model_to_params(params_this_motion, &tmp_wm_params); + + if (tmp_wm_params.wmtype != IDENTITY) { + const int64_t warp_error = refine_integerized_param( + &tmp_wm_params, tmp_wm_params.wmtype, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, + ref_buf[frame]->y_buffer, ref_buf[frame]->y_width, + ref_buf[frame]->y_height, ref_buf[frame]->y_stride, + cpi->source->y_buffer, cpi->source->y_width, + cpi->source->y_height, cpi->source->y_stride, 5, + best_warp_error); + if (warp_error < best_warp_error) { + best_warp_error = warp_error; + // Save the wm_params modified by refine_integerized_param() + // rather than motion index to avoid rerunning refine() below. + memcpy(&(cm->global_motion[frame]), &tmp_wm_params, + sizeof(WarpedMotionParams)); + } + } + } + if (cm->global_motion[frame].wmtype <= AFFINE) + if (!get_shear_params(&cm->global_motion[frame])) + cm->global_motion[frame] = default_warp_params; + + if (cm->global_motion[frame].wmtype == TRANSLATION) { + cm->global_motion[frame].wmmat[0] = + convert_to_trans_prec(cm->allow_high_precision_mv, + cm->global_motion[frame].wmmat[0]) * + GM_TRANS_ONLY_DECODE_FACTOR; + cm->global_motion[frame].wmmat[1] = + convert_to_trans_prec(cm->allow_high_precision_mv, + cm->global_motion[frame].wmmat[1]) * + GM_TRANS_ONLY_DECODE_FACTOR; + } + + // If the best error advantage found doesn't meet the threshold for + // this motion type, revert to IDENTITY. + if (!is_enough_erroradvantage( + (double)best_warp_error / ref_frame_error, + gm_get_params_cost(&cm->global_motion[frame], ref_params, + cm->allow_high_precision_mv), + cpi->sf.gm_erroradv_type)) { + cm->global_motion[frame] = default_warp_params; + } + if (cm->global_motion[frame].wmtype != IDENTITY) break; + } + aom_clear_system_state(); + } + if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++; + cpi->gmparams_cost[frame] = + gm_get_params_cost(&cm->global_motion[frame], ref_params, + cm->allow_high_precision_mv) + + cpi->gmtype_cost[cm->global_motion[frame].wmtype] - + cpi->gmtype_cost[IDENTITY]; + } + // clear disabled ref_frames + for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { + const int ref_disabled = + !(cpi->ref_frame_flags & ref_frame_flag_list[frame]); + if (ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE) { + cpi->gmparams_cost[frame] = 0; + cm->global_motion[frame] = default_warp_params; + } + } + cpi->global_motion_search_done = 1; + } + memcpy(cm->cur_frame->global_motion, cm->global_motion, + REF_FRAMES * sizeof(WarpedMotionParams)); + + av1_setup_motion_field(cm); + + cpi->all_one_sided_refs = + frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm); + + cm->skip_mode_flag = check_skip_mode_enabled(cpi); + + { + struct aom_usec_timer emr_timer; + aom_usec_timer_start(&emr_timer); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, + &cpi->twopass.this_frame_mb_stats); + } +#endif + + if (cpi->row_mt && (cpi->oxcf.max_threads > 1)) + av1_encode_tiles_mt(cpi); + else if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1) + av1_encode_tiles_mt(cpi); + else + encode_tiles(cpi); + + aom_usec_timer_mark(&emr_timer); + cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer); + } + + // If intrabc is allowed but never selected, reset the allow_intrabc flag. + if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0; + if (cm->allow_intrabc) cm->delta_lf_present_flag = 0; +} + +void av1_encode_frame(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + // Indicates whether or not to use a default reduced set for ext-tx + // rather than the potential full set of 16 transforms + cm->reduced_tx_set_used = 0; + + if (cm->show_frame == 0) { + int arf_offset = AOMMIN( + (MAX_GF_INTERVAL - 1), + cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); + int brf_offset = + cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; + arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); + cm->frame_offset = cm->current_video_frame + arf_offset; + } else { + cm->frame_offset = cm->current_video_frame; + } + cm->frame_offset %= (1 << (cm->seq_params.order_hint_bits_minus_1 + 1)); + + // Make sure segment_id is no larger than last_active_segid. + if (cm->seg.enabled && cm->seg.update_map) { + const int mi_rows = cm->mi_rows; + const int mi_cols = cm->mi_cols; + const int last_active_segid = cm->seg.last_active_segid; + uint8_t *map = cpi->segmentation_map; + for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { + for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { + map[mi_col] = AOMMIN(map[mi_col], last_active_segid); + } + map += mi_cols; + } + } + + av1_setup_frame_buf_refs(cm); + if (cpi->sf.selective_ref_frame >= 2) enforce_max_ref_frames(cpi); + av1_setup_frame_sign_bias(cm); + +#if CONFIG_MISMATCH_DEBUG + mismatch_reset_frame(num_planes); +#else + (void)num_planes; +#endif + + cpi->allow_comp_inter_inter = !frame_is_intra_only(cm); + + if (cpi->sf.frame_parameter_update) { + int i; + RD_OPT *const rd_opt = &cpi->rd; + RD_COUNTS *const rdc = &cpi->td.rd_counts; + + // This code does a single RD pass over the whole frame assuming + // either compound, single or hybrid prediction as per whatever has + // worked best for that type of frame in the past. + // It also predicts whether another coding mode would have worked + // better than this coding mode. If that is the case, it remembers + // that for subsequent frames. + // It does the same analysis for transform size selection also. + // + // TODO(zoeliu): To investigate whether a frame_type other than + // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. + const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); + int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; + const int is_alt_ref = frame_type == ALTREF_FRAME; + + /* prediction (compound, single or hybrid) mode selection */ + // NOTE: "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames + if (is_alt_ref || !cpi->allow_comp_inter_inter) + cm->reference_mode = SINGLE_REFERENCE; + else + cm->reference_mode = REFERENCE_MODE_SELECT; + + cm->interp_filter = SWITCHABLE; + if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR; + + cm->switchable_motion_mode = 1; + + rdc->compound_ref_used_flag = 0; + rdc->skip_mode_used_flag = 0; + + encode_frame_internal(cpi); + + for (i = 0; i < REFERENCE_MODES; ++i) + mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + // Use a flag that includes 4x4 blocks + if (rdc->compound_ref_used_flag == 0) { + cm->reference_mode = SINGLE_REFERENCE; +#if CONFIG_ENTROPY_STATS + av1_zero(cpi->td.counts->comp_inter); +#endif // CONFIG_ENTROPY_STATS + } + } + // Re-check on the skip mode status as reference mode may have been changed. + if (frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE) { + cm->is_skip_mode_allowed = 0; + cm->skip_mode_flag = 0; + } + if (cm->skip_mode_flag && rdc->skip_mode_used_flag == 0) + cm->skip_mode_flag = 0; + + if (!cm->large_scale_tile) { + if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) + cm->tx_mode = TX_MODE_LARGEST; + } + } else { + encode_frame_internal(cpi); + } +} + +static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, + FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, + int blk_row, int blk_col, + uint8_t allow_update_cdf) { + MB_MODE_INFO *mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int max_blocks_high = max_block_high(xd, bsize, 0); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, + mbmi->sb_type, tx_size); + const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); + const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + assert(tx_size > TX_4X4); + + if (depth == MAX_VARTX_DEPTH) { + // Don't add to counts in this case + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + return; + } + + if (tx_size == plane_tx_size) { +#if CONFIG_ENTROPY_STATS + ++counts->txfm_partition[ctx][0]; +#endif + if (allow_update_cdf) + update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + +#if CONFIG_ENTROPY_STATS + ++counts->txfm_partition[ctx][1]; +#endif + if (allow_update_cdf) + update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); + ++x->txb_split_count; + + if (sub_txs == TX_4X4) { + mbmi->inter_tx_size[txb_size_index] = TX_4X4; + mbmi->tx_size = TX_4X4; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, TX_4X4, tx_size); + return; + } + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + int offsetr = row; + int offsetc = col; + + update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, + blk_col + offsetc, allow_update_cdf); + } + } + } +} + +static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, + BLOCK_SIZE plane_bsize, int mi_row, + int mi_col, FRAME_COUNTS *td_counts, + uint8_t allow_update_cdf) { + MACROBLOCKD *xd = &x->e_mbd; + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + + xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + for (idy = 0; idy < mi_height; idy += bh) + for (idx = 0; idx < mi_width; idx += bw) + update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, + allow_update_cdf); +} + +static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, + int blk_col) { + MB_MODE_INFO *mbmi = xd->mi[0]; + const BLOCK_SIZE bsize = mbmi->sb_type; + const int max_blocks_high = max_block_high(xd, bsize, 0); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); + const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + if (tx_size == plane_tx_size) { + mbmi->tx_size = tx_size; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, tx_size, tx_size); + + } else { + if (tx_size == TX_8X8) { + mbmi->inter_tx_size[txb_size_index] = TX_4X4; + mbmi->tx_size = TX_4X4; + txfm_partition_update(xd->above_txfm_context + blk_col, + xd->left_txfm_context + blk_row, TX_4X4, tx_size); + return; + } + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + set_txfm_context(xd, sub_txs, offsetr, offsetc); + } + } + } +} + +static void tx_partition_set_contexts(const AV1_COMMON *const cm, + MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, + int mi_row, int mi_col) { + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + + xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; + xd->left_txfm_context = + xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); + + for (idy = 0; idy < mi_height; idy += bh) + for (idx = 0; idx < mi_width; idx += bw) + set_txfm_context(xd, max_tx_size, idy, idx); +} + +static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, + ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, + int mi_row, int mi_col, BLOCK_SIZE bsize, + int *rate) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO **mi_4x4 = xd->mi; + MB_MODE_INFO *mbmi = mi_4x4[0]; + const int seg_skip = + segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); + const int mis = cm->mi_stride; + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + const int is_inter = is_inter_block(mbmi); + + if (cpi->sf.mode_pruning_based_on_two_pass_partition_search && + x->cb_partition_scan) { + for (int row = mi_row; row < mi_row + mi_width; + row += FIRST_PARTITION_PASS_SAMPLE_REGION) { + for (int col = mi_col; col < mi_col + mi_height; + col += FIRST_PARTITION_PASS_SAMPLE_REGION) { + const int index = av1_first_partition_pass_stats_index(row, col); + FIRST_PARTITION_PASS_STATS *const stats = + &x->first_partition_pass_stats[index]; + // Increase the counter of data samples. + ++stats->sample_counts; + // Increase the counter for ref_frame[0] and ref_frame[1]. + if (stats->ref0_counts[mbmi->ref_frame[0]] < 255) + ++stats->ref0_counts[mbmi->ref_frame[0]]; + if (mbmi->ref_frame[1] >= 0 && + stats->ref1_counts[mbmi->ref_frame[0]] < 255) + ++stats->ref1_counts[mbmi->ref_frame[1]]; + } + } + } + + if (!is_inter) { + xd->cfl.is_chroma_reference = + is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + xd->cfl.store_y = store_cfl_required(cm, xd); + mbmi->skip = 1; + for (int plane = 0; plane < num_planes; ++plane) { + av1_encode_intra_block_plane(cpi, x, bsize, plane, + cpi->optimize_seg_arr[mbmi->segment_id], + mi_row, mi_col); + } + + // If there is at least one lossless segment, force the skip for intra + // block to be 0, in order to avoid the segment_id to be changed by in + // write_segment_id(). + if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && + cpi->has_lossless_segment) + mbmi->skip = 0; + + xd->cfl.store_y = 0; + if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { + for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { + if (mbmi->palette_mode_info.palette_size[plane] > 0) { + if (!dry_run) { + av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, + PALETTE_MAP, tile_data->allow_update_cdf, + td->counts); + } else if (dry_run == DRY_RUN_COSTCOEFFS) { + rate += + av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); + } + } + } + } + + av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col, + tile_data->allow_update_cdf); + } else { + int ref; + const int is_compound = has_second_ref(mbmi); + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + for (ref = 0; ref < 1 + is_compound; ++ref) { + YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); + assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); + av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, + &xd->block_refs[ref]->sf, num_planes); + } + + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) + av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + +#if CONFIG_MISMATCH_DEBUG + if (dry_run == OUTPUT_ENABLED) { + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + int pixel_c, pixel_r; + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, + pd->subsampling_x, pd->subsampling_y); + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset, + plane, pixel_c, pixel_r, pd->width, + pd->height, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); + } + } +#else + (void)num_planes; +#endif + + av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run); + av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, bsize, rate, + tile_data->allow_update_cdf); + } + + if (!dry_run) { + if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) + td->intrabc_used_this_tile = 1; + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && + mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) { + if (is_inter) { + tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts, + tile_data->allow_update_cdf); + } else { + if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) + ++x->txb_split_count; + if (block_signals_txsize(bsize)) { + const int tx_size_ctx = get_tx_size_context(xd); + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + const int depth = tx_size_to_depth(mbmi->tx_size, bsize); + const int max_depths = bsize_to_max_depth(bsize); + + if (tile_data->allow_update_cdf) + update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], + depth, max_depths + 1); +#if CONFIG_ENTROPY_STATS + ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; +#endif + } + } + assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); + } else { + int i, j; + TX_SIZE intra_tx_size; + // The new intra coding scheme requires no change of transform size + if (is_inter) { + if (xd->lossless[mbmi->segment_id]) { + intra_tx_size = TX_4X4; + } else { + intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + } + } else { + intra_tx_size = mbmi->tx_size; + } + + for (j = 0; j < mi_height; j++) + for (i = 0; i < mi_width; i++) + if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) + mi_4x4[mis * j + i]->tx_size = intra_tx_size; + + if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count; + } + } + + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type) && + is_inter && !(mbmi->skip || seg_skip) && + !xd->lossless[mbmi->segment_id]) { + if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); + } else { + TX_SIZE tx_size = mbmi->tx_size; + // The new intra coding scheme requires no change of transform size + if (is_inter) { + if (xd->lossless[mbmi->segment_id]) { + tx_size = TX_4X4; + } else { + tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + } + } else { + tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; + } + mbmi->tx_size = tx_size; + set_txfm_ctxs(tx_size, xd->n4_w, xd->n4_h, + (mbmi->skip || seg_skip) && is_inter_block(mbmi), xd); + } + CFL_CTX *const cfl = &xd->cfl; + if (is_inter_block(mbmi) && + !is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x, + cfl->subsampling_y) && + is_cfl_allowed(xd)) { + cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); + } +} diff --git a/third_party/aom/av1/encoder/encodeframe.h b/third_party/aom/av1/encoder/encodeframe.h new file mode 100644 index 0000000000..e8cf9b4685 --- /dev/null +++ b/third_party/aom/av1/encoder/encodeframe.h @@ -0,0 +1,47 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ENCODEFRAME_H_ +#define AOM_AV1_ENCODER_ENCODEFRAME_H_ + +#include "aom/aom_integer.h" +#include "av1/common/blockd.h" +#include "av1/common/enums.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define DELTAQ_MODULATION 1 // 0: variance based, 1: wavelet AC energy based + +struct macroblock; +struct yv12_buffer_config; +struct AV1_COMP; +struct ThreadData; + +void av1_setup_src_planes(struct macroblock *x, + const struct yv12_buffer_config *src, int mi_row, + int mi_col, const int num_planes); + +void av1_encode_frame(struct AV1_COMP *cpi); + +void av1_alloc_tile_data(struct AV1_COMP *cpi); +void av1_init_tile_data(struct AV1_COMP *cpi); +void av1_encode_tile(struct AV1_COMP *cpi, struct ThreadData *td, int tile_row, + int tile_col); +void av1_encode_sb_row(struct AV1_COMP *cpi, struct ThreadData *td, + int tile_row, int tile_col, int mi_row); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ENCODEFRAME_H_ diff --git a/third_party/aom/av1/encoder/encodemb.c b/third_party/aom/av1/encoder/encodemb.c new file mode 100644 index 0000000000..ad12577e6e --- /dev/null +++ b/third_party/aom/av1/encoder/encodemb.c @@ -0,0 +1,649 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" +#include "config/aom_dsp_rtcd.h" + +#include "aom_dsp/bitwriter.h" +#include "aom_dsp/quantize.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" + +#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG + +#include "av1/common/cfl.h" +#include "av1/common/idct.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/scan.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/hybrid_fwd_txfm.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/rdopt.h" + +// Check if one needs to use c version subtraction. +static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } + +static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, + int16_t *diff, ptrdiff_t diff_stride, + const uint8_t *src8, ptrdiff_t src_stride, + const uint8_t *pred8, ptrdiff_t pred_stride) { + if (check_subtract_block_size(rows, cols)) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, + src_stride, pred8, pred_stride, xd->bd); + return; + } + aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, + pred_stride); + + return; + } + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, + pred8, pred_stride, xd->bd); + return; + } + aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, + pred_stride); +} + +void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, + int blk_col, int blk_row, TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; + const int diff_stride = block_size_wide[plane_bsize]; + const int src_stride = p->src.stride; + const int dst_stride = pd->dst.stride; + const int tx1d_width = tx_size_wide[tx_size]; + const int tx1d_height = tx_size_high[tx_size]; + uint8_t *dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + uint8_t *src = + &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; + int16_t *src_diff = + &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; + subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, + src_stride, dst, dst_stride); +} + +void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + const MACROBLOCKD *xd = &x->e_mbd; + + subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride); +} + +int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane, + int block, TX_SIZE tx_size, TX_TYPE tx_type, + const TXB_CTX *const txb_ctx, int fast_mode, + int *rate_cost) { + MACROBLOCKD *const xd = &mb->e_mbd; + struct macroblock_plane *const p = &mb->plane[plane]; + const int eob = p->eobs[block]; + const int segment_id = xd->mi[0]->segment_id; + + if (eob == 0 || !cpi->optimize_seg_arr[segment_id] || + xd->lossless[segment_id]) { + *rate_cost = av1_cost_skip_txb(mb, txb_ctx, plane, tx_size); + return eob; + } + + (void)fast_mode; + return av1_optimize_txb_new(cpi, mb, plane, block, tx_size, tx_type, txb_ctx, + rate_cost, cpi->oxcf.sharpness); +} + +typedef enum QUANT_FUNC { + QUANT_FUNC_LOWBD = 0, + QUANT_FUNC_HIGHBD = 1, + QUANT_FUNC_TYPES = 2 +} QUANT_FUNC; + +static AV1_QUANT_FACADE + quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { + { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, + { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, + { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, + { NULL, NULL } + }; + +void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, + int blk_row, int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, TX_TYPE tx_type, + AV1_XFORM_QUANT xform_quant_idx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint16_t *const eob = &p->eobs[block]; + const int diff_stride = block_size_wide[plane_bsize]; + int seg_id = mbmi->segment_id; + const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); + // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms + const qm_val_t *qmatrix = + IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][qm_tx_size] + : cm->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; + const qm_val_t *iqmatrix = + IS_2D_TRANSFORM(tx_type) + ? pd->seg_iqmatrix[seg_id][qm_tx_size] + : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; + + const int src_offset = (blk_row * diff_stride + blk_col); + const int16_t *src_diff = &p->src_diff[src_offset << tx_size_wide_log2[0]]; + QUANT_PARAM qparam; + qparam.log_scale = av1_get_tx_scale(tx_size); + qparam.tx_size = tx_size; + qparam.qmatrix = qmatrix; + qparam.iqmatrix = iqmatrix; + TxfmParam txfm_param; + txfm_param.tx_type = tx_type; + txfm_param.tx_size = tx_size; + txfm_param.lossless = xd->lossless[mbmi->segment_id]; + txfm_param.tx_set_type = av1_get_ext_tx_set_type( + txfm_param.tx_size, is_inter_block(mbmi), cm->reduced_tx_set_used); + + txfm_param.bd = xd->bd; + txfm_param.is_hbd = get_bitdepth_data_path_index(xd); + + av1_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param); + + if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { + const int n_coeffs = av1_get_max_eob(tx_size); + if (LIKELY(!x->skip_block)) { + quant_func_list[xform_quant_idx][txfm_param.is_hbd]( + coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam); + } else { + av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); + } + } + // NOTE: optimize_b_following is ture means av1_optimze_b will be called + // When the condition of doing optimize_b is changed, + // this flag need update simultaneously + const int optimize_b_following = + (xform_quant_idx != AV1_XFORM_QUANT_FP) || (txfm_param.lossless); + if (optimize_b_following) { + p->txb_entropy_ctx[block] = + (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); + } else { + p->txb_entropy_ctx[block] = 0; + } + return; +} + +static void encode_block(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, + int mi_row, int mi_col, RUN_TYPE dry_run) { + (void)mi_row; + (void)mi_col; + (void)dry_run; + struct encode_b_args *const args = arg; + const AV1_COMMON *const cm = &args->cpi->common; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + uint8_t *dst; + ENTROPY_CONTEXT *a, *l; + int dummy_rate_cost = 0; + + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + dst = &pd->dst + .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; + + a = &args->ta[blk_col]; + l = &args->tl[blk_row]; + + if (!is_blk_skip(x, plane, blk_row * bw + blk_col) && !mbmi->skip_mode) { + TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + if (args->enable_optimize_b) { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, tx_type, AV1_XFORM_QUANT_FP); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); + av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, 1, + &dummy_rate_cost); + } else { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + } + } else { + p->eobs[block] = 0; + p->txb_entropy_ctx[block] = 0; + } + + av1_set_txb_context(x, plane, block, tx_size, a, l); + + if (p->eobs[block]) { + *(args->skip) = 0; + + TX_TYPE tx_type = av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, + pd->dst.stride, p->eobs[block], + cm->reduced_tx_set_used); + } + + if (p->eobs[block] == 0 && plane == 0) { + // TODO(debargha, jingning): Temporarily disable txk_type check for eob=0 + // case. It is possible that certain collision in hash index would cause + // the assertion failure. To further optimize the rate-distortion + // performance, we need to re-visit this part and enable this assert + // again. +#if 0 + if (args->cpi->oxcf.aq_mode == NO_AQ && + args->cpi->oxcf.deltaq_mode == NO_DELTA_Q) { + // TODO(jingning,angiebird,huisu@google.com): enable txk_check when + // enable_optimize_b is true to detect potential RD bug. + const uint8_t disable_txk_check = args->enable_optimize_b; + if (!disable_txk_check) { + assert(mbmi->txk_type[av1_get_txk_type_index(plane_bsize, blk_row, + blk_col)] == DCT_DCT); + } + } +#endif + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } + +#if CONFIG_MISMATCH_DEBUG + if (dry_run == OUTPUT_ENABLED) { + int pixel_c, pixel_r; + BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; + int blk_w = block_size_wide[bsize]; + int blk_h = block_size_high[bsize]; + mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, + pd->subsampling_x, pd->subsampling_y); + mismatch_record_block_tx(dst, pd->dst.stride, cm->frame_offset, plane, + pixel_c, pixel_r, blk_w, blk_h, + xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); + } +#endif +} + +static void encode_block_inter(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg, int mi_row, int mi_col, + RUN_TYPE dry_run) { + (void)mi_row; + (void)mi_col; + struct encode_b_args *const args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + if (!plane) { + assert(tx_size_wide[tx_size] >= tx_size_wide[plane_tx_size] && + tx_size_high[tx_size] >= tx_size_high[plane_tx_size]); + } + + if (tx_size == plane_tx_size || plane) { + encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, + mi_row, mi_col, dry_run); + } else { + assert(tx_size < TX_SIZES_ALL); + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); + assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); + // This is the square transform block partition entry point. + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsh * bsw; + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + + encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, + arg, mi_row, mi_col, dry_run); + block += step; + } + } + } +} + +void av1_foreach_transformed_block_in_plane( + const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, + foreach_transformed_block_visitor visit, void *arg) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") + // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 + // transform size varies per plane, look it up in a common way. + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const uint8_t txw_unit = tx_size_wide_unit[tx_size]; + const uint8_t txh_unit = tx_size_high_unit[tx_size]; + const int step = txw_unit * txh_unit; + int i = 0, r, c; + + // If mb_to_right_edge is < 0 we are in a situation in which + // the current block size extends into the UMV and we won't + // visit the sub blocks that are wholly within the UMV. + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + + int blk_row, blk_col; + + const BLOCK_SIZE max_unit_bsize = + get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); + int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + // Keep track of the row and column of the blocks we use so that we know + // if we are in the unrestricted motion border. + for (r = 0; r < max_blocks_high; r += mu_blocks_high) { + const int unit_height = AOMMIN(mu_blocks_high + r, max_blocks_high); + // Skip visiting the sub blocks that are wholly within the UMV. + for (c = 0; c < max_blocks_wide; c += mu_blocks_wide) { + const int unit_width = AOMMIN(mu_blocks_wide + c, max_blocks_wide); + for (blk_row = r; blk_row < unit_height; blk_row += txh_unit) { + for (blk_col = c; blk_col < unit_width; blk_col += txw_unit) { + visit(plane, i, blk_row, blk_col, plane_bsize, tx_size, arg); + i += step; + } + } + } + } +} + +void av1_foreach_transformed_block(const MACROBLOCKD *const xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, + foreach_transformed_block_visitor visit, + void *arg, const int num_planes) { + for (int plane = 0; plane < num_planes; ++plane) { + if (!is_chroma_reference(mi_row, mi_col, bsize, + xd->plane[plane].subsampling_x, + xd->plane[plane].subsampling_y)) + continue; + av1_foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); + } +} + +typedef struct encode_block_pass1_args { + AV1_COMMON *cm; + MACROBLOCK *x; +} encode_block_pass1_args; + +static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + encode_block_pass1_args *args = (encode_block_pass1_args *)arg; + AV1_COMMON *cm = args->cm; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + TxfmParam txfm_param; + uint8_t *dst; + dst = &pd->dst + .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + DCT_DCT, AV1_XFORM_QUANT_B); + + if (p->eobs[block] > 0) { + txfm_param.bd = xd->bd; + txfm_param.is_hbd = get_bitdepth_data_path_index(xd); + txfm_param.tx_type = DCT_DCT; + txfm_param.tx_size = tx_size; + txfm_param.eob = p->eobs[block]; + txfm_param.lossless = xd->lossless[xd->mi[0]->segment_id]; + txfm_param.tx_set_type = av1_get_ext_tx_set_type( + txfm_param.tx_size, is_inter_block(xd->mi[0]), cm->reduced_tx_set_used); + if (txfm_param.is_hbd) { + av1_highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); + return; + } + av1_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); + } +} + +void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { + encode_block_pass1_args args = { cm, x }; + av1_subtract_plane(x, bsize, 0); + av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, + encode_block_pass1, &args); +} + +void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col, RUN_TYPE dry_run) { + (void)dry_run; + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + struct optimize_ctx ctx; + MB_MODE_INFO *mbmi = xd->mi[0]; + struct encode_b_args arg = { cpi, + x, + &ctx, + &mbmi->skip, + NULL, + NULL, + cpi->optimize_seg_arr[mbmi->segment_id] }; + int plane; + + mbmi->skip = 1; + + if (x->skip) return; + + for (plane = 0; plane < num_planes; ++plane) { + const int subsampling_x = xd->plane[plane].subsampling_x; + const int subsampling_y = xd->plane[plane].subsampling_y; + + if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, + subsampling_y)) + continue; + + const BLOCK_SIZE bsizec = + scale_chroma_bsize(bsize, subsampling_x, subsampling_y); + + // TODO(jingning): Clean this up. + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + + const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; + const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; + const int bh = block_size_high[txb_size] >> tx_size_high_log2[0]; + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + av1_get_entropy_contexts(bsizec, pd, ctx.ta[plane], ctx.tl[plane]); + + av1_subtract_plane(x, bsizec, plane); + + arg.ta = ctx.ta[plane]; + arg.tl = ctx.tl[plane]; + + const BLOCK_SIZE max_unit_bsize = + get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); + mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); + + for (idy = 0; idy < mi_height; idy += mu_blocks_high) { + for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { + int blk_row, blk_col; + const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); + const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); + for (blk_row = idy; blk_row < unit_height; blk_row += bh) { + for (blk_col = idx; blk_col < unit_width; blk_col += bw) { + encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, + max_tx_size, &arg, mi_row, mi_col, dry_run); + block += step; + } + } + } + } + } +} + +static void encode_block_intra_and_set_context(int plane, int block, + int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg) { + av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, + arg); + + struct encode_b_args *const args = arg; + MACROBLOCK *x = args->x; + ENTROPY_CONTEXT *a = &args->ta[blk_col]; + ENTROPY_CONTEXT *l = &args->tl[blk_row]; + av1_set_txb_context(x, plane, block, tx_size, a, l); +} + +void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + struct encode_b_args *const args = arg; + const AV1_COMMON *const cm = &args->cpi->common; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + PLANE_TYPE plane_type = get_plane_type(plane); + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + uint16_t *eob = &p->eobs[block]; + const int dst_stride = pd->dst.stride; + uint8_t *dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + int dummy_rate_cost = 0; + + av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); + + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + if (plane == 0 && is_blk_skip(x, plane, blk_row * bw + blk_col)) { + *eob = 0; + p->txb_entropy_ctx[block] = 0; + } else { + av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); + + const ENTROPY_CONTEXT *a = &args->ta[blk_col]; + const ENTROPY_CONTEXT *l = &args->tl[blk_row]; + if (args->enable_optimize_b) { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, tx_type, AV1_XFORM_QUANT_FP); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); + av1_optimize_b(args->cpi, x, plane, block, tx_size, tx_type, &txb_ctx, 1, + &dummy_rate_cost); + } else { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + } + } + + if (*eob) { + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, + dst_stride, *eob, cm->reduced_tx_set_used); + } + + if (*eob == 0 && plane == 0) { + // TODO(jingning): Temporarily disable txk_type check for eob=0 case. + // It is possible that certain collision in hash index would cause + // the assertion failure. To further optimize the rate-distortion + // performance, we need to re-visit this part and enable this assert + // again. +#if 0 + if (args->cpi->oxcf.aq_mode == NO_AQ + && args->cpi->oxcf.deltaq_mode == NO_DELTA_Q) { + assert(mbmi->txk_type[av1_get_txk_type_index(plane_bsize, blk_row, + blk_col)] == DCT_DCT); + } +#endif + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } + + // For intra mode, skipped blocks are so rare that transmitting skip=1 is + // very expensive. + *(args->skip) = 0; + + if (plane == AOM_PLANE_Y && xd->cfl.store_y) { + cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); + } +} + +void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int plane, + int enable_optimize_b, int mi_row, + int mi_col) { + const MACROBLOCKD *const xd = &x->e_mbd; + ENTROPY_CONTEXT ta[MAX_MIB_SIZE] = { 0 }; + ENTROPY_CONTEXT tl[MAX_MIB_SIZE] = { 0 }; + + struct encode_b_args arg = { + cpi, x, NULL, &(xd->mi[0]->skip), ta, tl, enable_optimize_b + }; + + if (!is_chroma_reference(mi_row, mi_col, bsize, + xd->plane[plane].subsampling_x, + xd->plane[plane].subsampling_y)) + return; + + if (enable_optimize_b) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + av1_get_entropy_contexts(bsize, pd, ta, tl); + } + av1_foreach_transformed_block_in_plane( + xd, bsize, plane, encode_block_intra_and_set_context, &arg); +} diff --git a/third_party/aom/av1/encoder/encodemb.h b/third_party/aom/av1/encoder/encodemb.h new file mode 100644 index 0000000000..39080de599 --- /dev/null +++ b/third_party/aom/av1/encoder/encodemb.h @@ -0,0 +1,96 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ENCODEMB_H_ +#define AOM_AV1_ENCODER_ENCODEMB_H_ + +#include "config/aom_config.h" + +#include "av1/common/onyxc_int.h" +#include "av1/common/txb_common.h" +#include "av1/encoder/block.h" +#include "av1/encoder/tokenize.h" +#ifdef __cplusplus +extern "C" { +#endif + +struct optimize_ctx { + ENTROPY_CONTEXT ta[MAX_MB_PLANE][MAX_MIB_SIZE]; + ENTROPY_CONTEXT tl[MAX_MB_PLANE][MAX_MIB_SIZE]; +}; + +struct encode_b_args { + const struct AV1_COMP *cpi; + MACROBLOCK *x; + struct optimize_ctx *ctx; + int8_t *skip; + ENTROPY_CONTEXT *ta; + ENTROPY_CONTEXT *tl; + int8_t enable_optimize_b; +}; + +typedef enum AV1_XFORM_QUANT { + AV1_XFORM_QUANT_FP = 0, + AV1_XFORM_QUANT_B = 1, + AV1_XFORM_QUANT_DC = 2, + AV1_XFORM_QUANT_SKIP_QUANT, + AV1_XFORM_QUANT_TYPES, +} AV1_XFORM_QUANT; + +void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col, RUN_TYPE dry_run); + +void av1_foreach_transformed_block_in_plane( + const MACROBLOCKD *const xd, BLOCK_SIZE bsize, int plane, + foreach_transformed_block_visitor visit, void *arg); + +void av1_foreach_transformed_block(const MACROBLOCKD *const xd, + BLOCK_SIZE bsize, int mi_row, int mi_col, + foreach_transformed_block_visitor visit, + void *arg, const int num_planes); + +void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize); + +void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, + int blk_row, int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, TX_TYPE tx_type, + AV1_XFORM_QUANT xform_quant_idx); + +int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane, + int block, TX_SIZE tx_size, TX_TYPE tx_type, + const TXB_CTX *const txb_ctx, int fast_mode, int *rate_cost); + +void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, + int blk_col, int blk_row, TX_SIZE tx_size); + +void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane); + +static INLINE void av1_set_txb_context(MACROBLOCK *x, int plane, int block, + TX_SIZE tx_size, ENTROPY_CONTEXT *a, + ENTROPY_CONTEXT *l) { + const uint8_t ctx = x->plane[plane].txb_entropy_ctx[block]; + memset(a, ctx, tx_size_wide_unit[tx_size] * sizeof(*a)); + memset(l, ctx, tx_size_high_unit[tx_size] * sizeof(*l)); +} + +void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg); + +void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int plane, + int enable_optimize_b, int mi_row, + int mi_col); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ENCODEMB_H_ diff --git a/third_party/aom/av1/encoder/encodemv.c b/third_party/aom/av1/encoder/encodemv.c new file mode 100644 index 0000000000..42eb5abf62 --- /dev/null +++ b/third_party/aom/av1/encoder/encodemv.c @@ -0,0 +1,239 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> + +#include "av1/common/common.h" +#include "av1/common/entropymode.h" + +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemv.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_ports/bitops.h" + +static INLINE int mv_class_base(MV_CLASS_TYPE c) { + return c ? CLASS0_SIZE << (c + 2) : 0; +} + +// If n != 0, returns the floor of log base 2 of n. If n == 0, returns 0. +static INLINE uint8_t log_in_base_2(unsigned int n) { + // get_msb() is only valid when n != 0. + return n == 0 ? 0 : get_msb(n); +} + +static INLINE MV_CLASS_TYPE get_mv_class(int z, int *offset) { + const MV_CLASS_TYPE c = (z >= CLASS0_SIZE * 4096) + ? MV_CLASS_10 + : (MV_CLASS_TYPE)log_in_base_2(z >> 3); + if (offset) *offset = z - mv_class_base(c); + return c; +} + +static void encode_mv_component(aom_writer *w, int comp, nmv_component *mvcomp, + MvSubpelPrecision precision) { + assert(comp != 0); + int offset; + const int sign = comp < 0; + const int mag = sign ? -comp : comp; + const int mv_class = get_mv_class(mag - 1, &offset); + const int d = offset >> 3; // int mv data + const int fr = (offset >> 1) & 3; // fractional mv data + const int hp = offset & 1; // high precision mv data + + // Sign + aom_write_symbol(w, sign, mvcomp->sign_cdf, 2); + + // Class + aom_write_symbol(w, mv_class, mvcomp->classes_cdf, MV_CLASSES); + + // Integer bits + if (mv_class == MV_CLASS_0) { + aom_write_symbol(w, d, mvcomp->class0_cdf, CLASS0_SIZE); + } else { + int i; + const int n = mv_class + CLASS0_BITS - 1; // number of bits + for (i = 0; i < n; ++i) + aom_write_symbol(w, (d >> i) & 1, mvcomp->bits_cdf[i], 2); + } + // Fractional bits + if (precision > MV_SUBPEL_NONE) { + aom_write_symbol( + w, fr, + mv_class == MV_CLASS_0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf, + MV_FP_SIZE); + } + + // High precision bit + if (precision > MV_SUBPEL_LOW_PRECISION) + aom_write_symbol( + w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, + 2); +} + +static void build_nmv_component_cost_table(int *mvcost, + const nmv_component *const mvcomp, + MvSubpelPrecision precision) { + int i, v; + int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; + int bits_cost[MV_OFFSET_BITS][2]; + int class0_fp_cost[CLASS0_SIZE][MV_FP_SIZE], fp_cost[MV_FP_SIZE]; + int class0_hp_cost[2], hp_cost[2]; + + av1_cost_tokens_from_cdf(sign_cost, mvcomp->sign_cdf, NULL); + av1_cost_tokens_from_cdf(class_cost, mvcomp->classes_cdf, NULL); + av1_cost_tokens_from_cdf(class0_cost, mvcomp->class0_cdf, NULL); + for (i = 0; i < MV_OFFSET_BITS; ++i) { + av1_cost_tokens_from_cdf(bits_cost[i], mvcomp->bits_cdf[i], NULL); + } + + for (i = 0; i < CLASS0_SIZE; ++i) + av1_cost_tokens_from_cdf(class0_fp_cost[i], mvcomp->class0_fp_cdf[i], NULL); + av1_cost_tokens_from_cdf(fp_cost, mvcomp->fp_cdf, NULL); + + if (precision > MV_SUBPEL_LOW_PRECISION) { + av1_cost_tokens_from_cdf(class0_hp_cost, mvcomp->class0_hp_cdf, NULL); + av1_cost_tokens_from_cdf(hp_cost, mvcomp->hp_cdf, NULL); + } + mvcost[0] = 0; + for (v = 1; v <= MV_MAX; ++v) { + int z, c, o, d, e, f, cost = 0; + z = v - 1; + c = get_mv_class(z, &o); + cost += class_cost[c]; + d = (o >> 3); /* int mv data */ + f = (o >> 1) & 3; /* fractional pel mv data */ + e = (o & 1); /* high precision mv data */ + if (c == MV_CLASS_0) { + cost += class0_cost[d]; + } else { + const int b = c + CLASS0_BITS - 1; /* number of bits */ + for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)]; + } + if (precision > MV_SUBPEL_NONE) { + if (c == MV_CLASS_0) { + cost += class0_fp_cost[d][f]; + } else { + cost += fp_cost[f]; + } + if (precision > MV_SUBPEL_LOW_PRECISION) { + if (c == MV_CLASS_0) { + cost += class0_hp_cost[e]; + } else { + cost += hp_cost[e]; + } + } + } + mvcost[v] = cost + sign_cost[0]; + mvcost[-v] = cost + sign_cost[1]; + } +} + +void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref, + nmv_context *mvctx, int usehp) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); + if (cpi->common.cur_frame_force_integer_mv) { + usehp = MV_SUBPEL_NONE; + } + aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); + if (mv_joint_vertical(j)) + encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); + + if (mv_joint_horizontal(j)) + encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); + + // If auto_mv_step_size is enabled then keep track of the largest + // motion vector component used. + if (cpi->sf.mv.auto_mv_step_size) { + unsigned int maxv = AOMMAX(abs(mv->row), abs(mv->col)) >> 3; + cpi->max_mv_magnitude = AOMMAX(maxv, cpi->max_mv_magnitude); + } +} + +void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, + nmv_context *mvctx) { + // DV and ref DV should not have sub-pel. + assert((mv->col & 7) == 0); + assert((mv->row & 7) == 0); + assert((ref->col & 7) == 0); + assert((ref->row & 7) == 0); + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + const MV_JOINT_TYPE j = av1_get_mv_joint(&diff); + + aom_write_symbol(w, j, mvctx->joints_cdf, MV_JOINTS); + if (mv_joint_vertical(j)) + encode_mv_component(w, diff.row, &mvctx->comps[0], MV_SUBPEL_NONE); + + if (mv_joint_horizontal(j)) + encode_mv_component(w, diff.col, &mvctx->comps[1], MV_SUBPEL_NONE); +} + +void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], + const nmv_context *ctx, + MvSubpelPrecision precision) { + av1_cost_tokens_from_cdf(mvjoint, ctx->joints_cdf, NULL); + build_nmv_component_cost_table(mvcost[0], &ctx->comps[0], precision); + build_nmv_component_cost_table(mvcost[1], &ctx->comps[1], precision); +} + +int_mv av1_get_ref_mv_from_stack(int ref_idx, + const MV_REFERENCE_FRAME *ref_frame, + int ref_mv_idx, + const MB_MODE_INFO_EXT *mbmi_ext) { + const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); + const CANDIDATE_MV *curr_ref_mv_stack = + mbmi_ext->ref_mv_stack[ref_frame_type]; + int_mv ref_mv; + ref_mv.as_int = INVALID_MV; + + if (ref_frame[1] > INTRA_FRAME) { + if (ref_idx == 0) { + ref_mv = curr_ref_mv_stack[ref_mv_idx].this_mv; + } else { + assert(ref_idx == 1); + ref_mv = curr_ref_mv_stack[ref_mv_idx].comp_mv; + } + } else { + assert(ref_idx == 0); + if (ref_mv_idx < mbmi_ext->ref_mv_count[ref_frame_type]) { + ref_mv = curr_ref_mv_stack[ref_mv_idx].this_mv; + } else { + ref_mv = mbmi_ext->global_mvs[ref_frame_type]; + } + } + return ref_mv; +} + +int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx) { + const MACROBLOCKD *xd = &x->e_mbd; + const MB_MODE_INFO *mbmi = xd->mi[0]; + int ref_mv_idx = mbmi->ref_mv_idx; + if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) { + assert(has_second_ref(mbmi)); + ref_mv_idx += 1; + } + return av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, + x->mbmi_ext); +} + +void av1_find_best_ref_mvs_from_stack(int allow_hp, + const MB_MODE_INFO_EXT *mbmi_ext, + MV_REFERENCE_FRAME ref_frame, + int_mv *nearest_mv, int_mv *near_mv, + int is_integer) { + const int ref_idx = 0; + MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; + *nearest_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 0, mbmi_ext); + lower_mv_precision(&nearest_mv->as_mv, allow_hp, is_integer); + *near_mv = av1_get_ref_mv_from_stack(ref_idx, ref_frames, 1, mbmi_ext); + lower_mv_precision(&near_mv->as_mv, allow_hp, is_integer); +} diff --git a/third_party/aom/av1/encoder/encodemv.h b/third_party/aom/av1/encoder/encodemv.h new file mode 100644 index 0000000000..37ff547c8c --- /dev/null +++ b/third_party/aom/av1/encoder/encodemv.h @@ -0,0 +1,55 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ENCODEMV_H_ +#define AOM_AV1_ENCODER_ENCODEMV_H_ + +#include "av1/encoder/encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_encode_mv(AV1_COMP *cpi, aom_writer *w, const MV *mv, const MV *ref, + nmv_context *mvctx, int usehp); + +void av1_build_nmv_cost_table(int *mvjoint, int *mvcost[2], + const nmv_context *mvctx, + MvSubpelPrecision precision); + +void av1_update_mv_count(ThreadData *td); + +void av1_encode_dv(aom_writer *w, const MV *mv, const MV *ref, + nmv_context *mvctx); +int_mv av1_get_ref_mv(const MACROBLOCK *x, int ref_idx); +int_mv av1_get_ref_mv_from_stack(int ref_idx, + const MV_REFERENCE_FRAME *ref_frame, + int ref_mv_idx, + const MB_MODE_INFO_EXT *mbmi_ext); +void av1_find_best_ref_mvs_from_stack(int allow_hp, + const MB_MODE_INFO_EXT *mbmi_ext, + MV_REFERENCE_FRAME ref_frame, + int_mv *nearest_mv, int_mv *near_mv, + int is_integer); + +static INLINE MV_JOINT_TYPE av1_get_mv_joint(const MV *mv) { + if (mv->row == 0) { + return mv->col == 0 ? MV_JOINT_ZERO : MV_JOINT_HNZVZ; + } else { + return mv->col == 0 ? MV_JOINT_HZVNZ : MV_JOINT_HNZVNZ; + } +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ENCODEMV_H_ diff --git a/third_party/aom/av1/encoder/encoder.c b/third_party/aom/av1/encoder/encoder.c new file mode 100644 index 0000000000..a2da2df899 --- /dev/null +++ b/third_party/aom/av1/encoder/encoder.c @@ -0,0 +1,6437 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> +#include <stdio.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/aom_filter.h" +#if CONFIG_DENOISE +#include "aom_dsp/grain_table.h" +#include "aom_dsp/noise_util.h" +#include "aom_dsp/noise_model.h" +#endif +#include "aom_dsp/psnr.h" +#if CONFIG_INTERNAL_STATS +#include "aom_dsp/ssim.h" +#endif +#include "aom_ports/aom_timer.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" +#include "aom_scale/aom_scale.h" +#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG +#include "aom_util/debug_util.h" +#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG + +#include "av1/common/alloccommon.h" +#include "av1/common/cdef.h" +#include "av1/common/filter.h" +#include "av1/common/idct.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/resize.h" +#include "av1/common/tile_common.h" + +#include "av1/encoder/aq_complexity.h" +#include "av1/encoder/aq_cyclicrefresh.h" +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/bitstream.h" +#include "av1/encoder/context_tree.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/ethread.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/grain_test_vectors.h" +#include "av1/encoder/hash_motion.h" +#include "av1/encoder/mbgraph.h" +#include "av1/encoder/picklpf.h" +#include "av1/encoder/pickrst.h" +#include "av1/encoder/random.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/speed_features.h" +#include "av1/encoder/temporal_filter.h" + +#define DEFAULT_EXPLICIT_ORDER_HINT_BITS 7 + +// av1 uses 10,000,000 ticks/second as time stamp +#define TICKS_PER_SEC 10000000LL + +#if CONFIG_ENTROPY_STATS +FRAME_COUNTS aggregate_fc; +#endif // CONFIG_ENTROPY_STATS + +#define AM_SEGMENT_ID_INACTIVE 7 +#define AM_SEGMENT_ID_ACTIVE 0 + +// Whether to use high precision mv for altref computation. +#define ALTREF_HIGH_PRECISION_MV 1 + +// Q threshold for high precision mv. Choose a very high value for now so that +// HIGH_PRECISION is always chosen. +#define HIGH_PRECISION_MV_QTHRESH 200 + +// #define OUTPUT_YUV_REC +#ifdef OUTPUT_YUV_SKINMAP +FILE *yuv_skinmap_file = NULL; +#endif +#ifdef OUTPUT_YUV_REC +FILE *yuv_rec_file; +#define FILE_NAME_LEN 100 +#endif + +static INLINE void Scale2Ratio(AOM_SCALING mode, int *hr, int *hs) { + switch (mode) { + case NORMAL: + *hr = 1; + *hs = 1; + break; + case FOURFIVE: + *hr = 4; + *hs = 5; + break; + case THREEFIVE: + *hr = 3; + *hs = 5; + break; + case ONETWO: + *hr = 1; + *hs = 2; + break; + default: + *hr = 1; + *hs = 1; + assert(0); + break; + } +} + +// Mark all inactive blocks as active. Other segmentation features may be set +// so memset cannot be used, instead only inactive blocks should be reset. +static void suppress_active_map(AV1_COMP *cpi) { + unsigned char *const seg_map = cpi->segmentation_map; + int i; + if (cpi->active_map.enabled || cpi->active_map.update) + for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) + if (seg_map[i] == AM_SEGMENT_ID_INACTIVE) + seg_map[i] = AM_SEGMENT_ID_ACTIVE; +} + +static void apply_active_map(AV1_COMP *cpi) { + struct segmentation *const seg = &cpi->common.seg; + unsigned char *const seg_map = cpi->segmentation_map; + const unsigned char *const active_map = cpi->active_map.map; + int i; + + assert(AM_SEGMENT_ID_ACTIVE == CR_SEGMENT_ID_BASE); + + if (frame_is_intra_only(&cpi->common)) { + cpi->active_map.enabled = 0; + cpi->active_map.update = 1; + } + + if (cpi->active_map.update) { + if (cpi->active_map.enabled) { + for (i = 0; i < cpi->common.mi_rows * cpi->common.mi_cols; ++i) + if (seg_map[i] == AM_SEGMENT_ID_ACTIVE) seg_map[i] = active_map[i]; + av1_enable_segmentation(seg); + av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); + av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H); + av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V); + av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U); + av1_enable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V); + + av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H, + -MAX_LOOP_FILTER); + av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V, + -MAX_LOOP_FILTER); + av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U, + -MAX_LOOP_FILTER); + av1_set_segdata(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V, + -MAX_LOOP_FILTER); + } else { + av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_SKIP); + av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_H); + av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_Y_V); + av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_U); + av1_disable_segfeature(seg, AM_SEGMENT_ID_INACTIVE, SEG_LVL_ALT_LF_V); + if (seg->enabled) { + seg->update_data = 1; + seg->update_map = 1; + } + } + cpi->active_map.update = 0; + } +} + +int av1_set_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, + int cols) { + if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { + unsigned char *const active_map_8x8 = cpi->active_map.map; + const int mi_rows = cpi->common.mi_rows; + const int mi_cols = cpi->common.mi_cols; + const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2; + const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2; + cpi->active_map.update = 1; + if (new_map_16x16) { + int r, c; + for (r = 0; r < mi_rows; ++r) { + for (c = 0; c < mi_cols; ++c) { + active_map_8x8[r * mi_cols + c] = + new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] + ? AM_SEGMENT_ID_ACTIVE + : AM_SEGMENT_ID_INACTIVE; + } + } + cpi->active_map.enabled = 1; + } else { + cpi->active_map.enabled = 0; + } + return 0; + } else { + return -1; + } +} + +int av1_get_active_map(AV1_COMP *cpi, unsigned char *new_map_16x16, int rows, + int cols) { + if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols && + new_map_16x16) { + unsigned char *const seg_map_8x8 = cpi->segmentation_map; + const int mi_rows = cpi->common.mi_rows; + const int mi_cols = cpi->common.mi_cols; + const int row_scale = mi_size_high[BLOCK_16X16] == 2 ? 1 : 2; + const int col_scale = mi_size_wide[BLOCK_16X16] == 2 ? 1 : 2; + + memset(new_map_16x16, !cpi->active_map.enabled, rows * cols); + if (cpi->active_map.enabled) { + int r, c; + for (r = 0; r < mi_rows; ++r) { + for (c = 0; c < mi_cols; ++c) { + // Cyclic refresh segments are considered active despite not having + // AM_SEGMENT_ID_ACTIVE + new_map_16x16[(r >> row_scale) * cols + (c >> col_scale)] |= + seg_map_8x8[r * mi_cols + c] != AM_SEGMENT_ID_INACTIVE; + } + } + } + return 0; + } else { + return -1; + } +} + +static void set_high_precision_mv(AV1_COMP *cpi, int allow_high_precision_mv, + int cur_frame_force_integer_mv) { + MACROBLOCK *const mb = &cpi->td.mb; + cpi->common.allow_high_precision_mv = + allow_high_precision_mv && cur_frame_force_integer_mv == 0; + const int copy_hp = + cpi->common.allow_high_precision_mv && cur_frame_force_integer_mv == 0; + int *(*src)[2] = copy_hp ? &mb->nmvcost_hp : &mb->nmvcost; + mb->mv_cost_stack = *src; +} + +static BLOCK_SIZE select_sb_size(const AV1_COMP *const cpi) { + const AV1_COMMON *const cm = &cpi->common; + + if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_64X64) + return BLOCK_64X64; +#if CONFIG_FILEOPTIONS + if (cm->options && cm->options->ext_partition) +#endif + if (cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_128X128) + return BLOCK_128X128; + + assert(cpi->oxcf.superblock_size == AOM_SUPERBLOCK_SIZE_DYNAMIC); + +// TODO(any): Possibly could improve this with a heuristic. +#if CONFIG_FILEOPTIONS + if (cm->options && !cm->options->ext_partition) return BLOCK_64X64; +#endif + + // When superres / resize is on, 'cm->width / height' can change between + // calls, so we don't apply this heuristic there. Also, this heuristic gives + // compression gain for speed >= 2 only. + if (cpi->oxcf.superres_mode == SUPERRES_NONE && + cpi->oxcf.resize_mode == RESIZE_NONE && cpi->oxcf.speed >= 2) { + return (cm->width >= 480 && cm->height >= 360) ? BLOCK_128X128 + : BLOCK_64X64; + } + + return BLOCK_128X128; +} + +static void setup_frame(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + // Set up entropy context depending on frame type. The decoder mandates + // the use of the default context, index 0, for keyframes and inter + // frames where the error_resilient_mode or intra_only flag is set. For + // other inter-frames the encoder currently uses only two contexts; + // context 1 for ALTREF frames and context 0 for the others. + + cm->primary_ref_frame = PRIMARY_REF_NONE; + if (frame_is_intra_only(cm) || cm->error_resilient_mode || + cm->force_primary_ref_none) { + av1_setup_past_independence(cm); + for (int i = 0; i < REF_FRAMES; i++) { + cm->fb_of_context_type[i] = -1; + } + cm->fb_of_context_type[REGULAR_FRAME] = + cm->show_frame ? get_ref_frame_map_idx(cpi, GOLDEN_FRAME) + : get_ref_frame_map_idx(cpi, ALTREF_FRAME); + cm->frame_context_idx = REGULAR_FRAME; + } else { + const GF_GROUP *gf_group = &cpi->twopass.gf_group; + if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) + cm->frame_context_idx = EXT_ARF_FRAME; + else if (cpi->refresh_alt_ref_frame) + cm->frame_context_idx = ARF_FRAME; + else if (cpi->rc.is_src_frame_alt_ref) + cm->frame_context_idx = OVERLAY_FRAME; + else if (cpi->refresh_golden_frame) + cm->frame_context_idx = GLD_FRAME; + else if (cpi->refresh_bwd_ref_frame) + cm->frame_context_idx = BRF_FRAME; + else + cm->frame_context_idx = REGULAR_FRAME; + int wanted_fb = cm->fb_of_context_type[cm->frame_context_idx]; + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { + int fb = get_ref_frame_map_idx(cpi, ref_frame); + if (fb == wanted_fb) { + cm->primary_ref_frame = ref_frame - LAST_FRAME; + } + } + } + + if (cm->frame_type == KEY_FRAME && cm->show_frame) { + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 1; + av1_zero(cpi->interp_filter_selected); + set_sb_size(&cm->seq_params, select_sb_size(cpi)); + set_use_reference_buffer(cm, 0); + } else if (frame_is_sframe(cm)) { + cpi->refresh_golden_frame = 1; + cpi->refresh_alt_ref_frame = 1; + av1_zero(cpi->interp_filter_selected); + set_sb_size(&cm->seq_params, select_sb_size(cpi)); + } else { + if (cm->primary_ref_frame == PRIMARY_REF_NONE || + cm->frame_refs[cm->primary_ref_frame].idx < 0) { + av1_setup_past_independence(cm); + cm->seg.update_map = 1; + cm->seg.update_data = 1; + } else { + *cm->fc = cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx]; + } + av1_zero(cpi->interp_filter_selected[0]); + } + + cm->prev_frame = get_prev_frame(cm); + cpi->vaq_refresh = 0; +} + +static void enc_setup_mi(AV1_COMMON *cm) { + int i; + int mi_rows_sb_aligned = calc_mi_size(cm->mi_rows); + cm->mi = cm->mip; + memset(cm->mip, 0, cm->mi_stride * mi_rows_sb_aligned * sizeof(*cm->mip)); + cm->prev_mi = cm->prev_mip; + // Clear top border row + memset(cm->prev_mip, 0, sizeof(*cm->prev_mip) * cm->mi_stride); + // Clear left border column + for (i = 0; i < mi_rows_sb_aligned; ++i) + memset(&cm->prev_mip[i * cm->mi_stride], 0, sizeof(*cm->prev_mip)); + cm->mi_grid_visible = cm->mi_grid_base; + cm->prev_mi_grid_visible = cm->prev_mi_grid_base; + + memset(cm->mi_grid_base, 0, + cm->mi_stride * mi_rows_sb_aligned * sizeof(*cm->mi_grid_base)); +} + +static int enc_alloc_mi(AV1_COMMON *cm, int mi_size) { + cm->mip = aom_calloc(mi_size, sizeof(*cm->mip)); + if (!cm->mip) return 1; + cm->prev_mip = aom_calloc(mi_size, sizeof(*cm->prev_mip)); + if (!cm->prev_mip) return 1; + cm->mi_alloc_size = mi_size; + + cm->mi_grid_base = + (MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *)); + if (!cm->mi_grid_base) return 1; + cm->prev_mi_grid_base = + (MB_MODE_INFO **)aom_calloc(mi_size, sizeof(MB_MODE_INFO *)); + if (!cm->prev_mi_grid_base) return 1; + + return 0; +} + +static void enc_free_mi(AV1_COMMON *cm) { + aom_free(cm->mip); + cm->mip = NULL; + aom_free(cm->prev_mip); + cm->prev_mip = NULL; + aom_free(cm->mi_grid_base); + cm->mi_grid_base = NULL; + aom_free(cm->prev_mi_grid_base); + cm->prev_mi_grid_base = NULL; + cm->mi_alloc_size = 0; +} + +static void swap_mi_and_prev_mi(AV1_COMMON *cm) { + // Current mip will be the prev_mip for the next frame. + MB_MODE_INFO **temp_base = cm->prev_mi_grid_base; + MB_MODE_INFO *temp = cm->prev_mip; + cm->prev_mip = cm->mip; + cm->mip = temp; + + // Update the upper left visible macroblock ptrs. + cm->mi = cm->mip; + cm->prev_mi = cm->prev_mip; + + cm->prev_mi_grid_base = cm->mi_grid_base; + cm->mi_grid_base = temp_base; + cm->mi_grid_visible = cm->mi_grid_base; + cm->prev_mi_grid_visible = cm->prev_mi_grid_base; +} + +void av1_initialize_enc(void) { + av1_rtcd(); + aom_dsp_rtcd(); + aom_scale_rtcd(); + av1_init_intra_predictors(); + av1_init_me_luts(); + av1_rc_init_minq_luts(); + av1_init_wedge_masks(); +} + +static void dealloc_context_buffers_ext(AV1_COMP *cpi) { + if (cpi->mbmi_ext_base) { + aom_free(cpi->mbmi_ext_base); + cpi->mbmi_ext_base = NULL; + } +} + +static void alloc_context_buffers_ext(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + int mi_size = cm->mi_cols * cm->mi_rows; + + dealloc_context_buffers_ext(cpi); + CHECK_MEM_ERROR(cm, cpi->mbmi_ext_base, + aom_calloc(mi_size, sizeof(*cpi->mbmi_ext_base))); +} + +static void update_film_grain_parameters(struct AV1_COMP *cpi, + const AV1EncoderConfig *oxcf) { + AV1_COMMON *const cm = &cpi->common; + cpi->oxcf = *oxcf; + + if (cpi->film_grain_table) { + aom_film_grain_table_free(cpi->film_grain_table); + aom_free(cpi->film_grain_table); + cpi->film_grain_table = NULL; + } + + if (oxcf->film_grain_test_vector) { + cm->seq_params.film_grain_params_present = 1; + if (cm->frame_type == KEY_FRAME) { + memcpy(&cm->film_grain_params, + film_grain_test_vectors + oxcf->film_grain_test_vector - 1, + sizeof(cm->film_grain_params)); + + cm->film_grain_params.bit_depth = cm->seq_params.bit_depth; + if (cm->seq_params.color_range == AOM_CR_FULL_RANGE) { + cm->film_grain_params.clip_to_restricted_range = 0; + } + } + } else if (oxcf->film_grain_table_filename) { + cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table)); + memset(cpi->film_grain_table, 0, sizeof(aom_film_grain_table_t)); + + aom_film_grain_table_read(cpi->film_grain_table, + oxcf->film_grain_table_filename, &cm->error); + } else { + cm->seq_params.film_grain_params_present = 0; + memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); + } +} + +static void dealloc_compressor_data(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + + dealloc_context_buffers_ext(cpi); + + aom_free(cpi->tile_data); + cpi->tile_data = NULL; + + // Delete sementation map + aom_free(cpi->segmentation_map); + cpi->segmentation_map = NULL; + + av1_cyclic_refresh_free(cpi->cyclic_refresh); + cpi->cyclic_refresh = NULL; + + aom_free(cpi->active_map.map); + cpi->active_map.map = NULL; + + aom_free(cpi->td.mb.above_pred_buf); + cpi->td.mb.above_pred_buf = NULL; + + aom_free(cpi->td.mb.left_pred_buf); + cpi->td.mb.left_pred_buf = NULL; + + aom_free(cpi->td.mb.wsrc_buf); + cpi->td.mb.wsrc_buf = NULL; + + for (int i = 0; i < 2; i++) + for (int j = 0; j < 2; j++) { + aom_free(cpi->td.mb.hash_value_buffer[i][j]); + cpi->td.mb.hash_value_buffer[i][j] = NULL; + } + aom_free(cpi->td.mb.mask_buf); + cpi->td.mb.mask_buf = NULL; + + aom_free(cm->tpl_mvs); + cm->tpl_mvs = NULL; + + av1_free_ref_frame_buffers(cm->buffer_pool); + av1_free_txb_buf(cpi); + av1_free_context_buffers(cm); + + aom_free_frame_buffer(&cpi->last_frame_uf); + av1_free_restoration_buffers(cm); + aom_free_frame_buffer(&cpi->trial_frame_rst); + aom_free_frame_buffer(&cpi->scaled_source); + aom_free_frame_buffer(&cpi->scaled_last_source); + aom_free_frame_buffer(&cpi->alt_ref_buffer); + av1_lookahead_destroy(cpi->lookahead); + + aom_free(cpi->tile_tok[0][0]); + cpi->tile_tok[0][0] = 0; + + aom_free(cpi->tplist[0][0]); + cpi->tplist[0][0] = NULL; + + av1_free_pc_tree(&cpi->td, num_planes); + + aom_free(cpi->td.mb.palette_buffer); + + aom_free(cpi->td.mb.tmp_conv_dst); + for (int j = 0; j < 2; ++j) { + aom_free(cpi->td.mb.tmp_obmc_bufs[j]); + } + +#if CONFIG_DENOISE + if (cpi->denoise_and_model) { + aom_denoise_and_model_free(cpi->denoise_and_model); + cpi->denoise_and_model = NULL; + } +#endif + if (cpi->film_grain_table) { + aom_film_grain_table_free(cpi->film_grain_table); + cpi->film_grain_table = NULL; + } +} + +static void save_coding_context(AV1_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + AV1_COMMON *cm = &cpi->common; + + // Stores a snapshot of key state variables which can subsequently be + // restored with a call to av1_restore_coding_context. These functions are + // intended for use in a re-code loop in av1_compress_frame where the + // quantizer value is adjusted between loop iterations. + av1_copy(cc->nmv_vec_cost, cpi->td.mb.nmv_vec_cost); + av1_copy(cc->nmv_costs, cpi->nmv_costs); + av1_copy(cc->nmv_costs_hp, cpi->nmv_costs_hp); + + cc->fc = *cm->fc; +} + +static void restore_coding_context(AV1_COMP *cpi) { + CODING_CONTEXT *const cc = &cpi->coding_context; + AV1_COMMON *cm = &cpi->common; + + // Restore key state variables to the snapshot state stored in the + // previous call to av1_save_coding_context. + av1_copy(cpi->td.mb.nmv_vec_cost, cc->nmv_vec_cost); + av1_copy(cpi->nmv_costs, cc->nmv_costs); + av1_copy(cpi->nmv_costs_hp, cc->nmv_costs_hp); + + *cm->fc = cc->fc; +} + +static void configure_static_seg_features(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + struct segmentation *const seg = &cm->seg; + + int high_q = (int)(rc->avg_q > 48.0); + int qi_delta; + + // Disable and clear down for KF + if (cm->frame_type == KEY_FRAME) { + // Clear down the global segmentation map + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + seg->update_map = 0; + seg->update_data = 0; + cpi->static_mb_pct = 0; + + // Disable segmentation + av1_disable_segmentation(seg); + + // Clear down the segment features. + av1_clearall_segfeatures(seg); + } else if (cpi->refresh_alt_ref_frame) { + // If this is an alt ref frame + // Clear down the global segmentation map + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + seg->update_map = 0; + seg->update_data = 0; + cpi->static_mb_pct = 0; + + // Disable segmentation and individual segment features by default + av1_disable_segmentation(seg); + av1_clearall_segfeatures(seg); + + // Scan frames from current to arf frame. + // This function re-enables segmentation if appropriate. + av1_update_mbgraph_stats(cpi); + + // If segmentation was enabled set those features needed for the + // arf itself. + if (seg->enabled) { + seg->update_map = 1; + seg->update_data = 1; + + qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 0.875, + cm->seq_params.bit_depth); + av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta - 2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2); + + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V); + + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); + } + } else if (seg->enabled) { + // All other frames if segmentation has been enabled + + // First normal frame in a valid gf or alt ref group + if (rc->frames_since_golden == 0) { + // Set up segment features for normal frames in an arf group + if (rc->source_alt_ref_active) { + seg->update_map = 0; + seg->update_data = 1; + + qi_delta = av1_compute_qdelta(rc, rc->avg_q, rc->avg_q * 1.125, + cm->seq_params.bit_depth); + av1_set_segdata(seg, 1, SEG_LVL_ALT_Q, qi_delta + 2); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); + + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_H, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_Y_V, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_U, -2); + av1_set_segdata(seg, 1, SEG_LVL_ALT_LF_V, -2); + + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_H); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_Y_V); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_U); + av1_enable_segfeature(seg, 1, SEG_LVL_ALT_LF_V); + + // Segment coding disabled for compred testing + if (high_q || (cpi->static_mb_pct == 100)) { + av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); + av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); + av1_enable_segfeature(seg, 1, SEG_LVL_SKIP); + } + } else { + // Disable segmentation and clear down features if alt ref + // is not active for this group + + av1_disable_segmentation(seg); + + memset(cpi->segmentation_map, 0, cm->mi_rows * cm->mi_cols); + + seg->update_map = 0; + seg->update_data = 0; + + av1_clearall_segfeatures(seg); + } + } else if (rc->is_src_frame_alt_ref) { + // Special case where we are coding over the top of a previous + // alt ref frame. + // Segment coding disabled for compred testing + + // Enable ref frame features for segment 0 as well + av1_enable_segfeature(seg, 0, SEG_LVL_REF_FRAME); + av1_enable_segfeature(seg, 1, SEG_LVL_REF_FRAME); + + // All mbs should use ALTREF_FRAME + av1_clear_segdata(seg, 0, SEG_LVL_REF_FRAME); + av1_set_segdata(seg, 0, SEG_LVL_REF_FRAME, ALTREF_FRAME); + av1_clear_segdata(seg, 1, SEG_LVL_REF_FRAME); + av1_set_segdata(seg, 1, SEG_LVL_REF_FRAME, ALTREF_FRAME); + + // Skip all MBs if high Q (0,0 mv and skip coeffs) + if (high_q) { + av1_enable_segfeature(seg, 0, SEG_LVL_SKIP); + av1_enable_segfeature(seg, 1, SEG_LVL_SKIP); + } + // Enable data update + seg->update_data = 1; + } else { + // All other frames. + + // No updates.. leave things as they are. + seg->update_map = 0; + seg->update_data = 0; + } + } +} + +static void update_reference_segmentation_map(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MB_MODE_INFO **mi_4x4_ptr = cm->mi_grid_visible; + uint8_t *cache_ptr = cm->current_frame_seg_map; + int row, col; + + for (row = 0; row < cm->mi_rows; row++) { + MB_MODE_INFO **mi_4x4 = mi_4x4_ptr; + uint8_t *cache = cache_ptr; + for (col = 0; col < cm->mi_cols; col++, mi_4x4++, cache++) + cache[0] = mi_4x4[0]->segment_id; + mi_4x4_ptr += cm->mi_stride; + cache_ptr += cm->mi_cols; + } +} + +static void alloc_raw_frame_buffers(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + const AV1EncoderConfig *oxcf = &cpi->oxcf; + + if (!cpi->lookahead) + cpi->lookahead = + av1_lookahead_init(oxcf->width, oxcf->height, seq_params->subsampling_x, + seq_params->subsampling_y, + seq_params->use_highbitdepth, oxcf->lag_in_frames); + if (!cpi->lookahead) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate lag buffers"); + + // TODO(agrange) Check if ARF is enabled and skip allocation if not. + if (aom_realloc_frame_buffer( + &cpi->alt_ref_buffer, oxcf->width, oxcf->height, + seq_params->subsampling_x, seq_params->subsampling_y, + seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate altref buffer"); +} + +static void alloc_util_frame_buffers(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + if (aom_realloc_frame_buffer( + &cpi->last_frame_uf, cm->width, cm->height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate last frame buffer"); + + if (aom_realloc_frame_buffer( + &cpi->trial_frame_rst, cm->superres_upscaled_width, + cm->superres_upscaled_height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate trial restored frame buffer"); + + if (aom_realloc_frame_buffer( + &cpi->scaled_source, cm->width, cm->height, seq_params->subsampling_x, + seq_params->subsampling_y, seq_params->use_highbitdepth, + AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate scaled source buffer"); + + if (aom_realloc_frame_buffer( + &cpi->scaled_last_source, cm->width, cm->height, + seq_params->subsampling_x, seq_params->subsampling_y, + seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate scaled last source buffer"); +} + +static void alloc_compressor_data(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + + av1_alloc_context_buffers(cm, cm->width, cm->height); + + int mi_rows_aligned_to_sb = + ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); + int sb_rows = mi_rows_aligned_to_sb >> cm->seq_params.mib_size_log2; + + av1_alloc_txb_buf(cpi); + + alloc_context_buffers_ext(cpi); + + aom_free(cpi->tile_tok[0][0]); + + { + unsigned int tokens = + get_token_alloc(cm->mb_rows, cm->mb_cols, MAX_SB_SIZE_LOG2, num_planes); + CHECK_MEM_ERROR(cm, cpi->tile_tok[0][0], + aom_calloc(tokens, sizeof(*cpi->tile_tok[0][0]))); + } + aom_free(cpi->tplist[0][0]); + + CHECK_MEM_ERROR(cm, cpi->tplist[0][0], + aom_calloc(sb_rows * MAX_TILE_ROWS * MAX_TILE_COLS, + sizeof(*cpi->tplist[0][0]))); + + av1_setup_pc_tree(&cpi->common, &cpi->td); +} + +void av1_new_framerate(AV1_COMP *cpi, double framerate) { + cpi->framerate = framerate < 0.1 ? 30 : framerate; + av1_rc_update_framerate(cpi, cpi->common.width, cpi->common.height); +} + +static void set_tile_info(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + int i, start_sb; + + av1_get_tile_limits(cm); + + // configure tile columns + if (cpi->oxcf.tile_width_count == 0 || cpi->oxcf.tile_height_count == 0) { + cm->uniform_tile_spacing_flag = 1; + cm->log2_tile_cols = AOMMAX(cpi->oxcf.tile_columns, cm->min_log2_tile_cols); + cm->log2_tile_cols = AOMMIN(cm->log2_tile_cols, cm->max_log2_tile_cols); + } else { + int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); + int sb_cols = mi_cols >> cm->seq_params.mib_size_log2; + int size_sb, j = 0; + cm->uniform_tile_spacing_flag = 0; + for (i = 0, start_sb = 0; start_sb < sb_cols && i < MAX_TILE_COLS; i++) { + cm->tile_col_start_sb[i] = start_sb; + size_sb = cpi->oxcf.tile_widths[j++]; + if (j >= cpi->oxcf.tile_width_count) j = 0; + start_sb += AOMMIN(size_sb, cm->max_tile_width_sb); + } + cm->tile_cols = i; + cm->tile_col_start_sb[i] = sb_cols; + } + av1_calculate_tile_cols(cm); + + // configure tile rows + if (cm->uniform_tile_spacing_flag) { + cm->log2_tile_rows = AOMMAX(cpi->oxcf.tile_rows, cm->min_log2_tile_rows); + cm->log2_tile_rows = AOMMIN(cm->log2_tile_rows, cm->max_log2_tile_rows); + } else { + int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); + int sb_rows = mi_rows >> cm->seq_params.mib_size_log2; + int size_sb, j = 0; + for (i = 0, start_sb = 0; start_sb < sb_rows && i < MAX_TILE_ROWS; i++) { + cm->tile_row_start_sb[i] = start_sb; + size_sb = cpi->oxcf.tile_heights[j++]; + if (j >= cpi->oxcf.tile_height_count) j = 0; + start_sb += AOMMIN(size_sb, cm->max_tile_height_sb); + } + cm->tile_rows = i; + cm->tile_row_start_sb[i] = sb_rows; + } + av1_calculate_tile_rows(cm); +} + +static void update_frame_size(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + + av1_set_mb_mi(cm, cm->width, cm->height); + av1_init_context_buffers(cm); + av1_init_macroblockd(cm, xd, NULL); + memset(cpi->mbmi_ext_base, 0, + cm->mi_rows * cm->mi_cols * sizeof(*cpi->mbmi_ext_base)); + set_tile_info(cpi); +} + +static void init_buffer_indices(AV1_COMP *cpi) { + int fb_idx; + for (fb_idx = 0; fb_idx < REF_FRAMES; ++fb_idx) + cpi->ref_fb_idx[fb_idx] = fb_idx; + cpi->rate_index = 0; + cpi->rate_size = 0; + cpi->cur_poc = -1; +} + +static INLINE int does_level_match(int width, int height, double fps, + int lvl_width, int lvl_height, + double lvl_fps, int lvl_dim_mult) { + const int64_t lvl_luma_pels = lvl_width * lvl_height; + const double lvl_display_sample_rate = lvl_luma_pels * lvl_fps; + const int64_t luma_pels = width * height; + const double display_sample_rate = luma_pels * fps; + return luma_pels <= lvl_luma_pels && + display_sample_rate <= lvl_display_sample_rate && + width <= lvl_width * lvl_dim_mult && + height <= lvl_height * lvl_dim_mult; +} + +static void set_bitstream_level_tier(SequenceHeader *seq, AV1_COMMON *cm, + const AV1EncoderConfig *oxcf) { + // TODO(any): This is a placeholder function that only addresses dimensions + // and max display sample rates. + // Need to add checks for max bit rate, max decoded luma sample rate, header + // rate, etc. that are not covered by this function. + (void)oxcf; + BitstreamLevel bl = { 9, 3 }; + if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, 512, + 288, 30.0, 4)) { + bl.major = 2; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 704, 396, 30.0, 4)) { + bl.major = 2; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 1088, 612, 30.0, 4)) { + bl.major = 3; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 1376, 774, 30.0, 4)) { + bl.major = 3; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 2048, 1152, 30.0, 3)) { + bl.major = 4; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 2048, 1152, 60.0, 3)) { + bl.major = 4; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 4096, 2176, 30.0, 2)) { + bl.major = 5; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 4096, 2176, 60.0, 2)) { + bl.major = 5; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 4096, 2176, 120.0, 2)) { + bl.major = 5; + bl.minor = 2; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 8192, 4352, 30.0, 2)) { + bl.major = 6; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 8192, 4352, 60.0, 2)) { + bl.major = 6; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 8192, 4352, 120.0, 2)) { + bl.major = 6; + bl.minor = 2; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 16384, 8704, 30.0, 2)) { + bl.major = 7; + bl.minor = 0; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 16384, 8704, 60.0, 2)) { + bl.major = 7; + bl.minor = 1; + } else if (does_level_match(oxcf->width, oxcf->height, oxcf->init_framerate, + 16384, 8704, 120.0, 2)) { + bl.major = 7; + bl.minor = 2; + } + for (int i = 0; i < MAX_NUM_OPERATING_POINTS; ++i) { + seq->level[i] = bl; + seq->tier[i] = 0; // setting main tier by default + // Set the maximum parameters for bitrate and buffer size for this profile, + // level, and tier + cm->op_params[i].bitrate = max_level_bitrate( + cm->seq_params.profile, major_minor_to_seq_level_idx(seq->level[i]), + seq->tier[i]); + // Level with seq_level_idx = 31 returns a high "dummy" bitrate to pass the + // check + if (cm->op_params[i].bitrate == 0) + aom_internal_error( + &cm->error, AOM_CODEC_UNSUP_BITSTREAM, + "AV1 does not support this combination of profile, level, and tier."); + // Buffer size in bits/s is bitrate in bits/s * 1 s + cm->op_params[i].buffer_size = cm->op_params[i].bitrate; + } +} + +static void init_seq_coding_tools(SequenceHeader *seq, AV1_COMMON *cm, + const AV1EncoderConfig *oxcf) { + seq->still_picture = (oxcf->limit == 1); + seq->reduced_still_picture_hdr = seq->still_picture; + seq->reduced_still_picture_hdr &= !oxcf->full_still_picture_hdr; + seq->force_screen_content_tools = 2; + seq->force_integer_mv = 2; + seq->enable_order_hint = oxcf->enable_order_hint; + seq->frame_id_numbers_present_flag = oxcf->large_scale_tile; + if (seq->still_picture && seq->reduced_still_picture_hdr) { + seq->enable_order_hint = 0; + seq->frame_id_numbers_present_flag = 0; + seq->force_screen_content_tools = 2; + seq->force_integer_mv = 2; + } + seq->order_hint_bits_minus_1 = + seq->enable_order_hint ? DEFAULT_EXPLICIT_ORDER_HINT_BITS - 1 : -1; + + seq->enable_dual_filter = oxcf->enable_dual_filter; + seq->enable_jnt_comp = oxcf->enable_jnt_comp; + seq->enable_jnt_comp &= seq->enable_order_hint; + seq->enable_ref_frame_mvs = oxcf->enable_ref_frame_mvs; + seq->enable_ref_frame_mvs &= seq->enable_order_hint; + seq->enable_superres = oxcf->enable_superres; + seq->enable_cdef = oxcf->enable_cdef; + seq->enable_restoration = oxcf->enable_restoration; + seq->enable_warped_motion = oxcf->enable_warped_motion; + seq->enable_interintra_compound = 1; + seq->enable_masked_compound = 1; + seq->enable_intra_edge_filter = 1; + seq->enable_filter_intra = 1; + + set_bitstream_level_tier(seq, cm, oxcf); + + if (seq->operating_points_cnt_minus_1 == 0) { + seq->operating_point_idc[0] = 0; + } else { + // Set operating_point_idc[] such that for the i-th operating point the + // first (operating_points_cnt-i) spatial layers and the first temporal + // layer are decoded Note that highest quality operating point should come + // first + for (int i = 0; i < seq->operating_points_cnt_minus_1 + 1; i++) + seq->operating_point_idc[i] = + (~(~0u << (seq->operating_points_cnt_minus_1 + 1 - i)) << 8) | 1; + } +} + +static void init_config(struct AV1_COMP *cpi, AV1EncoderConfig *oxcf) { + AV1_COMMON *const cm = &cpi->common; + + cpi->oxcf = *oxcf; + cpi->framerate = oxcf->init_framerate; + + cm->seq_params.profile = oxcf->profile; + cm->seq_params.bit_depth = oxcf->bit_depth; + cm->seq_params.use_highbitdepth = oxcf->use_highbitdepth; + cm->seq_params.color_primaries = oxcf->color_primaries; + cm->seq_params.transfer_characteristics = oxcf->transfer_characteristics; + cm->seq_params.matrix_coefficients = oxcf->matrix_coefficients; + cm->seq_params.monochrome = oxcf->monochrome; + cm->seq_params.chroma_sample_position = oxcf->chroma_sample_position; + cm->seq_params.color_range = oxcf->color_range; + cm->timing_info_present = oxcf->timing_info_present; + cm->timing_info.num_units_in_display_tick = + oxcf->timing_info.num_units_in_display_tick; + cm->timing_info.time_scale = oxcf->timing_info.time_scale; + cm->timing_info.equal_picture_interval = + oxcf->timing_info.equal_picture_interval; + cm->timing_info.num_ticks_per_picture = + oxcf->timing_info.num_ticks_per_picture; + + cm->seq_params.display_model_info_present_flag = + oxcf->display_model_info_present_flag; + cm->seq_params.decoder_model_info_present_flag = + oxcf->decoder_model_info_present_flag; + if (oxcf->decoder_model_info_present_flag) { + // set the decoder model parameters in schedule mode + cm->buffer_model.num_units_in_decoding_tick = + oxcf->buffer_model.num_units_in_decoding_tick; + cm->buffer_removal_time_present = 1; + set_aom_dec_model_info(&cm->buffer_model); + set_dec_model_op_parameters(&cm->op_params[0]); + } else if (cm->timing_info_present && + cm->timing_info.equal_picture_interval && + !cm->seq_params.decoder_model_info_present_flag) { + // set the decoder model parameters in resource availability mode + set_resource_availability_parameters(&cm->op_params[0]); + } else { + cm->op_params[0].initial_display_delay = + 10; // Default value (not signaled) + } + + if (cm->seq_params.monochrome) { + cm->seq_params.subsampling_x = 1; + cm->seq_params.subsampling_y = 1; + } else if (cm->seq_params.color_primaries == AOM_CICP_CP_BT_709 && + cm->seq_params.transfer_characteristics == AOM_CICP_TC_SRGB && + cm->seq_params.matrix_coefficients == AOM_CICP_MC_IDENTITY) { + cm->seq_params.subsampling_x = 0; + cm->seq_params.subsampling_y = 0; + } else { + if (cm->seq_params.profile == 0) { + cm->seq_params.subsampling_x = 1; + cm->seq_params.subsampling_y = 1; + } else if (cm->seq_params.profile == 1) { + cm->seq_params.subsampling_x = 0; + cm->seq_params.subsampling_y = 0; + } else { + if (cm->seq_params.bit_depth == AOM_BITS_12) { + cm->seq_params.subsampling_x = oxcf->chroma_subsampling_x; + cm->seq_params.subsampling_y = oxcf->chroma_subsampling_y; + } else { + cm->seq_params.subsampling_x = 1; + cm->seq_params.subsampling_y = 0; + } + } + } + + cm->width = oxcf->width; + cm->height = oxcf->height; + set_sb_size(&cm->seq_params, + select_sb_size(cpi)); // set sb size before allocations + alloc_compressor_data(cpi); + + update_film_grain_parameters(cpi, oxcf); + + // Single thread case: use counts in common. + cpi->td.counts = &cpi->counts; + + // change includes all joint functionality + av1_change_config(cpi, oxcf); + + cpi->static_mb_pct = 0; + cpi->ref_frame_flags = 0; + + // Reset resize pending flags + cpi->resize_pending_width = 0; + cpi->resize_pending_height = 0; + + init_buffer_indices(cpi); +} + +static void set_rc_buffer_sizes(RATE_CONTROL *rc, + const AV1EncoderConfig *oxcf) { + const int64_t bandwidth = oxcf->target_bandwidth; + const int64_t starting = oxcf->starting_buffer_level_ms; + const int64_t optimal = oxcf->optimal_buffer_level_ms; + const int64_t maximum = oxcf->maximum_buffer_size_ms; + + rc->starting_buffer_level = starting * bandwidth / 1000; + rc->optimal_buffer_level = + (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; + rc->maximum_buffer_size = + (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; +} + +#define HIGHBD_BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \ + cpi->fn_ptr[BT].sdf = SDF; \ + cpi->fn_ptr[BT].sdaf = SDAF; \ + cpi->fn_ptr[BT].vf = VF; \ + cpi->fn_ptr[BT].svf = SVF; \ + cpi->fn_ptr[BT].svaf = SVAF; \ + cpi->fn_ptr[BT].sdx4df = SDX4DF; \ + cpi->fn_ptr[BT].jsdaf = JSDAF; \ + cpi->fn_ptr[BT].jsvaf = JSVAF; + +#define MAKE_BFP_SAD_WRAPPER(fnname) \ + static unsigned int fnname##_bits8(const uint8_t *src_ptr, \ + int source_stride, \ + const uint8_t *ref_ptr, int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride) >> 4; \ + } + +#define MAKE_BFP_SADAVG_WRAPPER(fnname) \ + static unsigned int fnname##_bits8( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ + 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred) >> \ + 4; \ + } + +#define MAKE_BFP_SAD4D_WRAPPER(fnname) \ + static void fnname##_bits8(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + } \ + static void fnname##_bits10(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + int i; \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + for (i = 0; i < 4; i++) sad_array[i] >>= 2; \ + } \ + static void fnname##_bits12(const uint8_t *src_ptr, int source_stride, \ + const uint8_t *const ref_ptr[], int ref_stride, \ + unsigned int *sad_array) { \ + int i; \ + fnname(src_ptr, source_stride, ref_ptr, ref_stride, sad_array); \ + for (i = 0; i < 4; i++) sad_array[i] >>= 4; \ + } + +#define MAKE_BFP_JSADAVG_WRAPPER(fnname) \ + static unsigned int fnname##_bits8( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred, \ + const JNT_COMP_PARAMS *jcp_param) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \ + jcp_param); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred, \ + const JNT_COMP_PARAMS *jcp_param) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \ + jcp_param) >> \ + 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred, \ + const JNT_COMP_PARAMS *jcp_param) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, second_pred, \ + jcp_param) >> \ + 4; \ + } + +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x128) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x128_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x128x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad128x64) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad128x64_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad128x64x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x128) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x128_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x128x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x16) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x16_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x16x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x32) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x32_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x32x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x32) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x32_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x32x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x64) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x64_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x64x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x32) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x32_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x32x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x64) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x64_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x64x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x16) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x16_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x16x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x8) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x8_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x8x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x16) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x16_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x16x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x8) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x8_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x8x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x4) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x4_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x4x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x8) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x8_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x8x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x4) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x4_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x4x4d) + +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad4x16) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad4x16_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad4x16x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x4) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x4_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x4x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad8x32) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad8x32_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad8x32x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad32x8) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad32x8_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad32x8x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad16x64) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad16x64_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad16x64x4d) +MAKE_BFP_SAD_WRAPPER(aom_highbd_sad64x16) +MAKE_BFP_SADAVG_WRAPPER(aom_highbd_sad64x16_avg) +MAKE_BFP_SAD4D_WRAPPER(aom_highbd_sad64x16x4d) + +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x128_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad128x64_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x128_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x16_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x32_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x32_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x64_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x32_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x64_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x16_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x8_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x16_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x8_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x4_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x8_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x4_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad4x16_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x4_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad8x32_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad32x8_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad16x64_avg) +MAKE_BFP_JSADAVG_WRAPPER(aom_highbd_jnt_sad64x16_avg) + +#define HIGHBD_MBFP(BT, MCSDF, MCSVF) \ + cpi->fn_ptr[BT].msdf = MCSDF; \ + cpi->fn_ptr[BT].msvf = MCSVF; + +#define MAKE_MBFP_COMPOUND_SAD_WRAPPER(fnname) \ + static unsigned int fnname##_bits8( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \ + int m_stride, int invert_mask) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \ + second_pred_ptr, m, m_stride, invert_mask); \ + } \ + static unsigned int fnname##_bits10( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \ + int m_stride, int invert_mask) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \ + second_pred_ptr, m, m_stride, invert_mask) >> \ + 2; \ + } \ + static unsigned int fnname##_bits12( \ + const uint8_t *src_ptr, int source_stride, const uint8_t *ref_ptr, \ + int ref_stride, const uint8_t *second_pred_ptr, const uint8_t *m, \ + int m_stride, int invert_mask) { \ + return fnname(src_ptr, source_stride, ref_ptr, ref_stride, \ + second_pred_ptr, m, m_stride, invert_mask) >> \ + 4; \ + } + +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x128) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad128x64) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x128) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x64) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x32) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x64) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x32) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x16) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x32) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x16) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x8) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x16) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x8) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x4) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x8) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x4) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad4x16) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x4) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad8x32) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad32x8) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad16x64) +MAKE_MBFP_COMPOUND_SAD_WRAPPER(aom_highbd_masked_sad64x16) + +#define HIGHBD_OBFP(BT, OSDF, OVF, OSVF) \ + cpi->fn_ptr[BT].osdf = OSDF; \ + cpi->fn_ptr[BT].ovf = OVF; \ + cpi->fn_ptr[BT].osvf = OSVF; + +#define MAKE_OBFP_SAD_WRAPPER(fnname) \ + static unsigned int fnname##_bits8(const uint8_t *ref, int ref_stride, \ + const int32_t *wsrc, \ + const int32_t *msk) { \ + return fnname(ref, ref_stride, wsrc, msk); \ + } \ + static unsigned int fnname##_bits10(const uint8_t *ref, int ref_stride, \ + const int32_t *wsrc, \ + const int32_t *msk) { \ + return fnname(ref, ref_stride, wsrc, msk) >> 2; \ + } \ + static unsigned int fnname##_bits12(const uint8_t *ref, int ref_stride, \ + const int32_t *wsrc, \ + const int32_t *msk) { \ + return fnname(ref, ref_stride, wsrc, msk) >> 4; \ + } + +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x128) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad128x64) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x128) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x64) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x32) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x64) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x32) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x16) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x32) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x16) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x8) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x16) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x8) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x4) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x8) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x4) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad4x16) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x4) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad8x32) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad32x8) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad16x64) +MAKE_OBFP_SAD_WRAPPER(aom_highbd_obmc_sad64x16) + +static void highbd_set_var_fns(AV1_COMP *const cpi) { + AV1_COMMON *const cm = &cpi->common; + if (cm->seq_params.use_highbitdepth) { + switch (cm->seq_params.bit_depth) { + case AOM_BITS_8: + HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits8, + aom_highbd_sad64x16_avg_bits8, aom_highbd_8_variance64x16, + aom_highbd_8_sub_pixel_variance64x16, + aom_highbd_8_sub_pixel_avg_variance64x16, + aom_highbd_sad64x16x4d_bits8, + aom_highbd_jnt_sad64x16_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance64x16) + + HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits8, + aom_highbd_sad16x64_avg_bits8, aom_highbd_8_variance16x64, + aom_highbd_8_sub_pixel_variance16x64, + aom_highbd_8_sub_pixel_avg_variance16x64, + aom_highbd_sad16x64x4d_bits8, + aom_highbd_jnt_sad16x64_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance16x64) + + HIGHBD_BFP( + BLOCK_32X8, aom_highbd_sad32x8_bits8, aom_highbd_sad32x8_avg_bits8, + aom_highbd_8_variance32x8, aom_highbd_8_sub_pixel_variance32x8, + aom_highbd_8_sub_pixel_avg_variance32x8, + aom_highbd_sad32x8x4d_bits8, aom_highbd_jnt_sad32x8_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance32x8) + + HIGHBD_BFP( + BLOCK_8X32, aom_highbd_sad8x32_bits8, aom_highbd_sad8x32_avg_bits8, + aom_highbd_8_variance8x32, aom_highbd_8_sub_pixel_variance8x32, + aom_highbd_8_sub_pixel_avg_variance8x32, + aom_highbd_sad8x32x4d_bits8, aom_highbd_jnt_sad8x32_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance8x32) + + HIGHBD_BFP( + BLOCK_16X4, aom_highbd_sad16x4_bits8, aom_highbd_sad16x4_avg_bits8, + aom_highbd_8_variance16x4, aom_highbd_8_sub_pixel_variance16x4, + aom_highbd_8_sub_pixel_avg_variance16x4, + aom_highbd_sad16x4x4d_bits8, aom_highbd_jnt_sad16x4_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance16x4) + + HIGHBD_BFP( + BLOCK_4X16, aom_highbd_sad4x16_bits8, aom_highbd_sad4x16_avg_bits8, + aom_highbd_8_variance4x16, aom_highbd_8_sub_pixel_variance4x16, + aom_highbd_8_sub_pixel_avg_variance4x16, + aom_highbd_sad4x16x4d_bits8, aom_highbd_jnt_sad4x16_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance4x16) + + HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits8, + aom_highbd_sad32x16_avg_bits8, aom_highbd_8_variance32x16, + aom_highbd_8_sub_pixel_variance32x16, + aom_highbd_8_sub_pixel_avg_variance32x16, + aom_highbd_sad32x16x4d_bits8, + aom_highbd_jnt_sad32x16_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance32x16) + + HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits8, + aom_highbd_sad16x32_avg_bits8, aom_highbd_8_variance16x32, + aom_highbd_8_sub_pixel_variance16x32, + aom_highbd_8_sub_pixel_avg_variance16x32, + aom_highbd_sad16x32x4d_bits8, + aom_highbd_jnt_sad16x32_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance16x32) + + HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits8, + aom_highbd_sad64x32_avg_bits8, aom_highbd_8_variance64x32, + aom_highbd_8_sub_pixel_variance64x32, + aom_highbd_8_sub_pixel_avg_variance64x32, + aom_highbd_sad64x32x4d_bits8, + aom_highbd_jnt_sad64x32_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance64x32) + + HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits8, + aom_highbd_sad32x64_avg_bits8, aom_highbd_8_variance32x64, + aom_highbd_8_sub_pixel_variance32x64, + aom_highbd_8_sub_pixel_avg_variance32x64, + aom_highbd_sad32x64x4d_bits8, + aom_highbd_jnt_sad32x64_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance32x64) + + HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits8, + aom_highbd_sad32x32_avg_bits8, aom_highbd_8_variance32x32, + aom_highbd_8_sub_pixel_variance32x32, + aom_highbd_8_sub_pixel_avg_variance32x32, + aom_highbd_sad32x32x4d_bits8, + aom_highbd_jnt_sad32x32_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance32x32) + + HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits8, + aom_highbd_sad64x64_avg_bits8, aom_highbd_8_variance64x64, + aom_highbd_8_sub_pixel_variance64x64, + aom_highbd_8_sub_pixel_avg_variance64x64, + aom_highbd_sad64x64x4d_bits8, + aom_highbd_jnt_sad64x64_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance64x64) + + HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits8, + aom_highbd_sad16x16_avg_bits8, aom_highbd_8_variance16x16, + aom_highbd_8_sub_pixel_variance16x16, + aom_highbd_8_sub_pixel_avg_variance16x16, + aom_highbd_sad16x16x4d_bits8, + aom_highbd_jnt_sad16x16_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance16x16) + + HIGHBD_BFP( + BLOCK_16X8, aom_highbd_sad16x8_bits8, aom_highbd_sad16x8_avg_bits8, + aom_highbd_8_variance16x8, aom_highbd_8_sub_pixel_variance16x8, + aom_highbd_8_sub_pixel_avg_variance16x8, + aom_highbd_sad16x8x4d_bits8, aom_highbd_jnt_sad16x8_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance16x8) + + HIGHBD_BFP( + BLOCK_8X16, aom_highbd_sad8x16_bits8, aom_highbd_sad8x16_avg_bits8, + aom_highbd_8_variance8x16, aom_highbd_8_sub_pixel_variance8x16, + aom_highbd_8_sub_pixel_avg_variance8x16, + aom_highbd_sad8x16x4d_bits8, aom_highbd_jnt_sad8x16_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance8x16) + + HIGHBD_BFP(BLOCK_8X8, aom_highbd_sad8x8_bits8, + aom_highbd_sad8x8_avg_bits8, aom_highbd_8_variance8x8, + aom_highbd_8_sub_pixel_variance8x8, + aom_highbd_8_sub_pixel_avg_variance8x8, + aom_highbd_sad8x8x4d_bits8, aom_highbd_jnt_sad8x8_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance8x8) + + HIGHBD_BFP(BLOCK_8X4, aom_highbd_sad8x4_bits8, + aom_highbd_sad8x4_avg_bits8, aom_highbd_8_variance8x4, + aom_highbd_8_sub_pixel_variance8x4, + aom_highbd_8_sub_pixel_avg_variance8x4, + aom_highbd_sad8x4x4d_bits8, aom_highbd_jnt_sad8x4_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance8x4) + + HIGHBD_BFP(BLOCK_4X8, aom_highbd_sad4x8_bits8, + aom_highbd_sad4x8_avg_bits8, aom_highbd_8_variance4x8, + aom_highbd_8_sub_pixel_variance4x8, + aom_highbd_8_sub_pixel_avg_variance4x8, + aom_highbd_sad4x8x4d_bits8, aom_highbd_jnt_sad4x8_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance4x8) + + HIGHBD_BFP(BLOCK_4X4, aom_highbd_sad4x4_bits8, + aom_highbd_sad4x4_avg_bits8, aom_highbd_8_variance4x4, + aom_highbd_8_sub_pixel_variance4x4, + aom_highbd_8_sub_pixel_avg_variance4x4, + aom_highbd_sad4x4x4d_bits8, aom_highbd_jnt_sad4x4_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance4x4) + + HIGHBD_BFP( + BLOCK_128X128, aom_highbd_sad128x128_bits8, + aom_highbd_sad128x128_avg_bits8, aom_highbd_8_variance128x128, + aom_highbd_8_sub_pixel_variance128x128, + aom_highbd_8_sub_pixel_avg_variance128x128, + aom_highbd_sad128x128x4d_bits8, aom_highbd_jnt_sad128x128_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance128x128) + + HIGHBD_BFP(BLOCK_128X64, aom_highbd_sad128x64_bits8, + aom_highbd_sad128x64_avg_bits8, aom_highbd_8_variance128x64, + aom_highbd_8_sub_pixel_variance128x64, + aom_highbd_8_sub_pixel_avg_variance128x64, + aom_highbd_sad128x64x4d_bits8, + aom_highbd_jnt_sad128x64_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance128x64) + + HIGHBD_BFP(BLOCK_64X128, aom_highbd_sad64x128_bits8, + aom_highbd_sad64x128_avg_bits8, aom_highbd_8_variance64x128, + aom_highbd_8_sub_pixel_variance64x128, + aom_highbd_8_sub_pixel_avg_variance64x128, + aom_highbd_sad64x128x4d_bits8, + aom_highbd_jnt_sad64x128_avg_bits8, + aom_highbd_8_jnt_sub_pixel_avg_variance64x128) + + HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits8, + aom_highbd_8_masked_sub_pixel_variance128x128) + HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits8, + aom_highbd_8_masked_sub_pixel_variance128x64) + HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits8, + aom_highbd_8_masked_sub_pixel_variance64x128) + HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits8, + aom_highbd_8_masked_sub_pixel_variance64x64) + HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits8, + aom_highbd_8_masked_sub_pixel_variance64x32) + HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits8, + aom_highbd_8_masked_sub_pixel_variance32x64) + HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits8, + aom_highbd_8_masked_sub_pixel_variance32x32) + HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits8, + aom_highbd_8_masked_sub_pixel_variance32x16) + HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits8, + aom_highbd_8_masked_sub_pixel_variance16x32) + HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits8, + aom_highbd_8_masked_sub_pixel_variance16x16) + HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits8, + aom_highbd_8_masked_sub_pixel_variance8x16) + HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits8, + aom_highbd_8_masked_sub_pixel_variance16x8) + HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits8, + aom_highbd_8_masked_sub_pixel_variance8x8) + HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits8, + aom_highbd_8_masked_sub_pixel_variance4x8) + HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits8, + aom_highbd_8_masked_sub_pixel_variance8x4) + HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits8, + aom_highbd_8_masked_sub_pixel_variance4x4) + HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits8, + aom_highbd_8_masked_sub_pixel_variance64x16) + HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits8, + aom_highbd_8_masked_sub_pixel_variance16x64) + HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits8, + aom_highbd_8_masked_sub_pixel_variance32x8) + HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits8, + aom_highbd_8_masked_sub_pixel_variance8x32) + HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits8, + aom_highbd_8_masked_sub_pixel_variance16x4) + HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits8, + aom_highbd_8_masked_sub_pixel_variance4x16) + HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits8, + aom_highbd_obmc_variance128x128, + aom_highbd_obmc_sub_pixel_variance128x128) + HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits8, + aom_highbd_obmc_variance128x64, + aom_highbd_obmc_sub_pixel_variance128x64) + HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits8, + aom_highbd_obmc_variance64x128, + aom_highbd_obmc_sub_pixel_variance64x128) + HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits8, + aom_highbd_obmc_variance64x64, + aom_highbd_obmc_sub_pixel_variance64x64) + HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits8, + aom_highbd_obmc_variance64x32, + aom_highbd_obmc_sub_pixel_variance64x32) + HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits8, + aom_highbd_obmc_variance32x64, + aom_highbd_obmc_sub_pixel_variance32x64) + HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits8, + aom_highbd_obmc_variance32x32, + aom_highbd_obmc_sub_pixel_variance32x32) + HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits8, + aom_highbd_obmc_variance32x16, + aom_highbd_obmc_sub_pixel_variance32x16) + HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits8, + aom_highbd_obmc_variance16x32, + aom_highbd_obmc_sub_pixel_variance16x32) + HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits8, + aom_highbd_obmc_variance16x16, + aom_highbd_obmc_sub_pixel_variance16x16) + HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits8, + aom_highbd_obmc_variance8x16, + aom_highbd_obmc_sub_pixel_variance8x16) + HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits8, + aom_highbd_obmc_variance16x8, + aom_highbd_obmc_sub_pixel_variance16x8) + HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits8, + aom_highbd_obmc_variance8x8, + aom_highbd_obmc_sub_pixel_variance8x8) + HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits8, + aom_highbd_obmc_variance4x8, + aom_highbd_obmc_sub_pixel_variance4x8) + HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits8, + aom_highbd_obmc_variance8x4, + aom_highbd_obmc_sub_pixel_variance8x4) + HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits8, + aom_highbd_obmc_variance4x4, + aom_highbd_obmc_sub_pixel_variance4x4) + HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits8, + aom_highbd_obmc_variance64x16, + aom_highbd_obmc_sub_pixel_variance64x16) + HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits8, + aom_highbd_obmc_variance16x64, + aom_highbd_obmc_sub_pixel_variance16x64) + HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits8, + aom_highbd_obmc_variance32x8, + aom_highbd_obmc_sub_pixel_variance32x8) + HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits8, + aom_highbd_obmc_variance8x32, + aom_highbd_obmc_sub_pixel_variance8x32) + HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits8, + aom_highbd_obmc_variance16x4, + aom_highbd_obmc_sub_pixel_variance16x4) + HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits8, + aom_highbd_obmc_variance4x16, + aom_highbd_obmc_sub_pixel_variance4x16) + break; + + case AOM_BITS_10: + HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits10, + aom_highbd_sad64x16_avg_bits10, aom_highbd_10_variance64x16, + aom_highbd_10_sub_pixel_variance64x16, + aom_highbd_10_sub_pixel_avg_variance64x16, + aom_highbd_sad64x16x4d_bits10, + aom_highbd_jnt_sad64x16_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance64x16); + + HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits10, + aom_highbd_sad16x64_avg_bits10, aom_highbd_10_variance16x64, + aom_highbd_10_sub_pixel_variance16x64, + aom_highbd_10_sub_pixel_avg_variance16x64, + aom_highbd_sad16x64x4d_bits10, + aom_highbd_jnt_sad16x64_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance16x64); + + HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits10, + aom_highbd_sad32x8_avg_bits10, aom_highbd_10_variance32x8, + aom_highbd_10_sub_pixel_variance32x8, + aom_highbd_10_sub_pixel_avg_variance32x8, + aom_highbd_sad32x8x4d_bits10, + aom_highbd_jnt_sad32x8_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance32x8); + + HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits10, + aom_highbd_sad8x32_avg_bits10, aom_highbd_10_variance8x32, + aom_highbd_10_sub_pixel_variance8x32, + aom_highbd_10_sub_pixel_avg_variance8x32, + aom_highbd_sad8x32x4d_bits10, + aom_highbd_jnt_sad8x32_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance8x32); + + HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits10, + aom_highbd_sad16x4_avg_bits10, aom_highbd_10_variance16x4, + aom_highbd_10_sub_pixel_variance16x4, + aom_highbd_10_sub_pixel_avg_variance16x4, + aom_highbd_sad16x4x4d_bits10, + aom_highbd_jnt_sad16x4_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance16x4); + + HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits10, + aom_highbd_sad4x16_avg_bits10, aom_highbd_10_variance4x16, + aom_highbd_10_sub_pixel_variance4x16, + aom_highbd_10_sub_pixel_avg_variance4x16, + aom_highbd_sad4x16x4d_bits10, + aom_highbd_jnt_sad4x16_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance4x16); + + HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits10, + aom_highbd_sad32x16_avg_bits10, aom_highbd_10_variance32x16, + aom_highbd_10_sub_pixel_variance32x16, + aom_highbd_10_sub_pixel_avg_variance32x16, + aom_highbd_sad32x16x4d_bits10, + aom_highbd_jnt_sad32x16_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance32x16); + + HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits10, + aom_highbd_sad16x32_avg_bits10, aom_highbd_10_variance16x32, + aom_highbd_10_sub_pixel_variance16x32, + aom_highbd_10_sub_pixel_avg_variance16x32, + aom_highbd_sad16x32x4d_bits10, + aom_highbd_jnt_sad16x32_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance16x32); + + HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits10, + aom_highbd_sad64x32_avg_bits10, aom_highbd_10_variance64x32, + aom_highbd_10_sub_pixel_variance64x32, + aom_highbd_10_sub_pixel_avg_variance64x32, + aom_highbd_sad64x32x4d_bits10, + aom_highbd_jnt_sad64x32_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance64x32); + + HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits10, + aom_highbd_sad32x64_avg_bits10, aom_highbd_10_variance32x64, + aom_highbd_10_sub_pixel_variance32x64, + aom_highbd_10_sub_pixel_avg_variance32x64, + aom_highbd_sad32x64x4d_bits10, + aom_highbd_jnt_sad32x64_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance32x64); + + HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits10, + aom_highbd_sad32x32_avg_bits10, aom_highbd_10_variance32x32, + aom_highbd_10_sub_pixel_variance32x32, + aom_highbd_10_sub_pixel_avg_variance32x32, + aom_highbd_sad32x32x4d_bits10, + aom_highbd_jnt_sad32x32_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance32x32); + + HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits10, + aom_highbd_sad64x64_avg_bits10, aom_highbd_10_variance64x64, + aom_highbd_10_sub_pixel_variance64x64, + aom_highbd_10_sub_pixel_avg_variance64x64, + aom_highbd_sad64x64x4d_bits10, + aom_highbd_jnt_sad64x64_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance64x64); + + HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits10, + aom_highbd_sad16x16_avg_bits10, aom_highbd_10_variance16x16, + aom_highbd_10_sub_pixel_variance16x16, + aom_highbd_10_sub_pixel_avg_variance16x16, + aom_highbd_sad16x16x4d_bits10, + aom_highbd_jnt_sad16x16_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance16x16); + + HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits10, + aom_highbd_sad16x8_avg_bits10, aom_highbd_10_variance16x8, + aom_highbd_10_sub_pixel_variance16x8, + aom_highbd_10_sub_pixel_avg_variance16x8, + aom_highbd_sad16x8x4d_bits10, + aom_highbd_jnt_sad16x8_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance16x8); + + HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits10, + aom_highbd_sad8x16_avg_bits10, aom_highbd_10_variance8x16, + aom_highbd_10_sub_pixel_variance8x16, + aom_highbd_10_sub_pixel_avg_variance8x16, + aom_highbd_sad8x16x4d_bits10, + aom_highbd_jnt_sad8x16_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance8x16); + + HIGHBD_BFP( + BLOCK_8X8, aom_highbd_sad8x8_bits10, aom_highbd_sad8x8_avg_bits10, + aom_highbd_10_variance8x8, aom_highbd_10_sub_pixel_variance8x8, + aom_highbd_10_sub_pixel_avg_variance8x8, + aom_highbd_sad8x8x4d_bits10, aom_highbd_jnt_sad8x8_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance8x8); + + HIGHBD_BFP( + BLOCK_8X4, aom_highbd_sad8x4_bits10, aom_highbd_sad8x4_avg_bits10, + aom_highbd_10_variance8x4, aom_highbd_10_sub_pixel_variance8x4, + aom_highbd_10_sub_pixel_avg_variance8x4, + aom_highbd_sad8x4x4d_bits10, aom_highbd_jnt_sad8x4_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance8x4); + + HIGHBD_BFP( + BLOCK_4X8, aom_highbd_sad4x8_bits10, aom_highbd_sad4x8_avg_bits10, + aom_highbd_10_variance4x8, aom_highbd_10_sub_pixel_variance4x8, + aom_highbd_10_sub_pixel_avg_variance4x8, + aom_highbd_sad4x8x4d_bits10, aom_highbd_jnt_sad4x8_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance4x8); + + HIGHBD_BFP( + BLOCK_4X4, aom_highbd_sad4x4_bits10, aom_highbd_sad4x4_avg_bits10, + aom_highbd_10_variance4x4, aom_highbd_10_sub_pixel_variance4x4, + aom_highbd_10_sub_pixel_avg_variance4x4, + aom_highbd_sad4x4x4d_bits10, aom_highbd_jnt_sad4x4_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance4x4); + + HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits10, + aom_highbd_sad128x128_avg_bits10, + aom_highbd_10_variance128x128, + aom_highbd_10_sub_pixel_variance128x128, + aom_highbd_10_sub_pixel_avg_variance128x128, + aom_highbd_sad128x128x4d_bits10, + aom_highbd_jnt_sad128x128_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance128x128); + + HIGHBD_BFP( + BLOCK_128X64, aom_highbd_sad128x64_bits10, + aom_highbd_sad128x64_avg_bits10, aom_highbd_10_variance128x64, + aom_highbd_10_sub_pixel_variance128x64, + aom_highbd_10_sub_pixel_avg_variance128x64, + aom_highbd_sad128x64x4d_bits10, aom_highbd_jnt_sad128x64_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance128x64); + + HIGHBD_BFP( + BLOCK_64X128, aom_highbd_sad64x128_bits10, + aom_highbd_sad64x128_avg_bits10, aom_highbd_10_variance64x128, + aom_highbd_10_sub_pixel_variance64x128, + aom_highbd_10_sub_pixel_avg_variance64x128, + aom_highbd_sad64x128x4d_bits10, aom_highbd_jnt_sad64x128_avg_bits10, + aom_highbd_10_jnt_sub_pixel_avg_variance64x128); + + HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits10, + aom_highbd_10_masked_sub_pixel_variance128x128) + HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits10, + aom_highbd_10_masked_sub_pixel_variance128x64) + HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits10, + aom_highbd_10_masked_sub_pixel_variance64x128) + HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits10, + aom_highbd_10_masked_sub_pixel_variance64x64) + HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits10, + aom_highbd_10_masked_sub_pixel_variance64x32) + HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits10, + aom_highbd_10_masked_sub_pixel_variance32x64) + HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits10, + aom_highbd_10_masked_sub_pixel_variance32x32) + HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits10, + aom_highbd_10_masked_sub_pixel_variance32x16) + HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits10, + aom_highbd_10_masked_sub_pixel_variance16x32) + HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits10, + aom_highbd_10_masked_sub_pixel_variance16x16) + HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits10, + aom_highbd_10_masked_sub_pixel_variance8x16) + HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits10, + aom_highbd_10_masked_sub_pixel_variance16x8) + HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits10, + aom_highbd_10_masked_sub_pixel_variance8x8) + HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits10, + aom_highbd_10_masked_sub_pixel_variance4x8) + HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits10, + aom_highbd_10_masked_sub_pixel_variance8x4) + HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits10, + aom_highbd_10_masked_sub_pixel_variance4x4) + HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits10, + aom_highbd_10_masked_sub_pixel_variance64x16) + HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits10, + aom_highbd_10_masked_sub_pixel_variance16x64) + HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits10, + aom_highbd_10_masked_sub_pixel_variance32x8) + HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits10, + aom_highbd_10_masked_sub_pixel_variance8x32) + HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits10, + aom_highbd_10_masked_sub_pixel_variance16x4) + HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits10, + aom_highbd_10_masked_sub_pixel_variance4x16) + HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits10, + aom_highbd_10_obmc_variance128x128, + aom_highbd_10_obmc_sub_pixel_variance128x128) + HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits10, + aom_highbd_10_obmc_variance128x64, + aom_highbd_10_obmc_sub_pixel_variance128x64) + HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits10, + aom_highbd_10_obmc_variance64x128, + aom_highbd_10_obmc_sub_pixel_variance64x128) + HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits10, + aom_highbd_10_obmc_variance64x64, + aom_highbd_10_obmc_sub_pixel_variance64x64) + HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits10, + aom_highbd_10_obmc_variance64x32, + aom_highbd_10_obmc_sub_pixel_variance64x32) + HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits10, + aom_highbd_10_obmc_variance32x64, + aom_highbd_10_obmc_sub_pixel_variance32x64) + HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits10, + aom_highbd_10_obmc_variance32x32, + aom_highbd_10_obmc_sub_pixel_variance32x32) + HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits10, + aom_highbd_10_obmc_variance32x16, + aom_highbd_10_obmc_sub_pixel_variance32x16) + HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits10, + aom_highbd_10_obmc_variance16x32, + aom_highbd_10_obmc_sub_pixel_variance16x32) + HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits10, + aom_highbd_10_obmc_variance16x16, + aom_highbd_10_obmc_sub_pixel_variance16x16) + HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits10, + aom_highbd_10_obmc_variance8x16, + aom_highbd_10_obmc_sub_pixel_variance8x16) + HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits10, + aom_highbd_10_obmc_variance16x8, + aom_highbd_10_obmc_sub_pixel_variance16x8) + HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits10, + aom_highbd_10_obmc_variance8x8, + aom_highbd_10_obmc_sub_pixel_variance8x8) + HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits10, + aom_highbd_10_obmc_variance4x8, + aom_highbd_10_obmc_sub_pixel_variance4x8) + HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits10, + aom_highbd_10_obmc_variance8x4, + aom_highbd_10_obmc_sub_pixel_variance8x4) + HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits10, + aom_highbd_10_obmc_variance4x4, + aom_highbd_10_obmc_sub_pixel_variance4x4) + + HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits10, + aom_highbd_10_obmc_variance64x16, + aom_highbd_10_obmc_sub_pixel_variance64x16) + + HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits10, + aom_highbd_10_obmc_variance16x64, + aom_highbd_10_obmc_sub_pixel_variance16x64) + + HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits10, + aom_highbd_10_obmc_variance32x8, + aom_highbd_10_obmc_sub_pixel_variance32x8) + + HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits10, + aom_highbd_10_obmc_variance8x32, + aom_highbd_10_obmc_sub_pixel_variance8x32) + + HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits10, + aom_highbd_10_obmc_variance16x4, + aom_highbd_10_obmc_sub_pixel_variance16x4) + + HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits10, + aom_highbd_10_obmc_variance4x16, + aom_highbd_10_obmc_sub_pixel_variance4x16) + break; + + case AOM_BITS_12: + HIGHBD_BFP(BLOCK_64X16, aom_highbd_sad64x16_bits12, + aom_highbd_sad64x16_avg_bits12, aom_highbd_12_variance64x16, + aom_highbd_12_sub_pixel_variance64x16, + aom_highbd_12_sub_pixel_avg_variance64x16, + aom_highbd_sad64x16x4d_bits12, + aom_highbd_jnt_sad64x16_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance64x16); + + HIGHBD_BFP(BLOCK_16X64, aom_highbd_sad16x64_bits12, + aom_highbd_sad16x64_avg_bits12, aom_highbd_12_variance16x64, + aom_highbd_12_sub_pixel_variance16x64, + aom_highbd_12_sub_pixel_avg_variance16x64, + aom_highbd_sad16x64x4d_bits12, + aom_highbd_jnt_sad16x64_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance16x64); + + HIGHBD_BFP(BLOCK_32X8, aom_highbd_sad32x8_bits12, + aom_highbd_sad32x8_avg_bits12, aom_highbd_12_variance32x8, + aom_highbd_12_sub_pixel_variance32x8, + aom_highbd_12_sub_pixel_avg_variance32x8, + aom_highbd_sad32x8x4d_bits12, + aom_highbd_jnt_sad32x8_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance32x8); + + HIGHBD_BFP(BLOCK_8X32, aom_highbd_sad8x32_bits12, + aom_highbd_sad8x32_avg_bits12, aom_highbd_12_variance8x32, + aom_highbd_12_sub_pixel_variance8x32, + aom_highbd_12_sub_pixel_avg_variance8x32, + aom_highbd_sad8x32x4d_bits12, + aom_highbd_jnt_sad8x32_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance8x32); + + HIGHBD_BFP(BLOCK_16X4, aom_highbd_sad16x4_bits12, + aom_highbd_sad16x4_avg_bits12, aom_highbd_12_variance16x4, + aom_highbd_12_sub_pixel_variance16x4, + aom_highbd_12_sub_pixel_avg_variance16x4, + aom_highbd_sad16x4x4d_bits12, + aom_highbd_jnt_sad16x4_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance16x4); + + HIGHBD_BFP(BLOCK_4X16, aom_highbd_sad4x16_bits12, + aom_highbd_sad4x16_avg_bits12, aom_highbd_12_variance4x16, + aom_highbd_12_sub_pixel_variance4x16, + aom_highbd_12_sub_pixel_avg_variance4x16, + aom_highbd_sad4x16x4d_bits12, + aom_highbd_jnt_sad4x16_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance4x16); + + HIGHBD_BFP(BLOCK_32X16, aom_highbd_sad32x16_bits12, + aom_highbd_sad32x16_avg_bits12, aom_highbd_12_variance32x16, + aom_highbd_12_sub_pixel_variance32x16, + aom_highbd_12_sub_pixel_avg_variance32x16, + aom_highbd_sad32x16x4d_bits12, + aom_highbd_jnt_sad32x16_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance32x16); + + HIGHBD_BFP(BLOCK_16X32, aom_highbd_sad16x32_bits12, + aom_highbd_sad16x32_avg_bits12, aom_highbd_12_variance16x32, + aom_highbd_12_sub_pixel_variance16x32, + aom_highbd_12_sub_pixel_avg_variance16x32, + aom_highbd_sad16x32x4d_bits12, + aom_highbd_jnt_sad16x32_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance16x32); + + HIGHBD_BFP(BLOCK_64X32, aom_highbd_sad64x32_bits12, + aom_highbd_sad64x32_avg_bits12, aom_highbd_12_variance64x32, + aom_highbd_12_sub_pixel_variance64x32, + aom_highbd_12_sub_pixel_avg_variance64x32, + aom_highbd_sad64x32x4d_bits12, + aom_highbd_jnt_sad64x32_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance64x32); + + HIGHBD_BFP(BLOCK_32X64, aom_highbd_sad32x64_bits12, + aom_highbd_sad32x64_avg_bits12, aom_highbd_12_variance32x64, + aom_highbd_12_sub_pixel_variance32x64, + aom_highbd_12_sub_pixel_avg_variance32x64, + aom_highbd_sad32x64x4d_bits12, + aom_highbd_jnt_sad32x64_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance32x64); + + HIGHBD_BFP(BLOCK_32X32, aom_highbd_sad32x32_bits12, + aom_highbd_sad32x32_avg_bits12, aom_highbd_12_variance32x32, + aom_highbd_12_sub_pixel_variance32x32, + aom_highbd_12_sub_pixel_avg_variance32x32, + aom_highbd_sad32x32x4d_bits12, + aom_highbd_jnt_sad32x32_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance32x32); + + HIGHBD_BFP(BLOCK_64X64, aom_highbd_sad64x64_bits12, + aom_highbd_sad64x64_avg_bits12, aom_highbd_12_variance64x64, + aom_highbd_12_sub_pixel_variance64x64, + aom_highbd_12_sub_pixel_avg_variance64x64, + aom_highbd_sad64x64x4d_bits12, + aom_highbd_jnt_sad64x64_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance64x64); + + HIGHBD_BFP(BLOCK_16X16, aom_highbd_sad16x16_bits12, + aom_highbd_sad16x16_avg_bits12, aom_highbd_12_variance16x16, + aom_highbd_12_sub_pixel_variance16x16, + aom_highbd_12_sub_pixel_avg_variance16x16, + aom_highbd_sad16x16x4d_bits12, + aom_highbd_jnt_sad16x16_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance16x16); + + HIGHBD_BFP(BLOCK_16X8, aom_highbd_sad16x8_bits12, + aom_highbd_sad16x8_avg_bits12, aom_highbd_12_variance16x8, + aom_highbd_12_sub_pixel_variance16x8, + aom_highbd_12_sub_pixel_avg_variance16x8, + aom_highbd_sad16x8x4d_bits12, + aom_highbd_jnt_sad16x8_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance16x8); + + HIGHBD_BFP(BLOCK_8X16, aom_highbd_sad8x16_bits12, + aom_highbd_sad8x16_avg_bits12, aom_highbd_12_variance8x16, + aom_highbd_12_sub_pixel_variance8x16, + aom_highbd_12_sub_pixel_avg_variance8x16, + aom_highbd_sad8x16x4d_bits12, + aom_highbd_jnt_sad8x16_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance8x16); + + HIGHBD_BFP( + BLOCK_8X8, aom_highbd_sad8x8_bits12, aom_highbd_sad8x8_avg_bits12, + aom_highbd_12_variance8x8, aom_highbd_12_sub_pixel_variance8x8, + aom_highbd_12_sub_pixel_avg_variance8x8, + aom_highbd_sad8x8x4d_bits12, aom_highbd_jnt_sad8x8_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance8x8); + + HIGHBD_BFP( + BLOCK_8X4, aom_highbd_sad8x4_bits12, aom_highbd_sad8x4_avg_bits12, + aom_highbd_12_variance8x4, aom_highbd_12_sub_pixel_variance8x4, + aom_highbd_12_sub_pixel_avg_variance8x4, + aom_highbd_sad8x4x4d_bits12, aom_highbd_jnt_sad8x4_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance8x4); + + HIGHBD_BFP( + BLOCK_4X8, aom_highbd_sad4x8_bits12, aom_highbd_sad4x8_avg_bits12, + aom_highbd_12_variance4x8, aom_highbd_12_sub_pixel_variance4x8, + aom_highbd_12_sub_pixel_avg_variance4x8, + aom_highbd_sad4x8x4d_bits12, aom_highbd_jnt_sad4x8_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance4x8); + + HIGHBD_BFP( + BLOCK_4X4, aom_highbd_sad4x4_bits12, aom_highbd_sad4x4_avg_bits12, + aom_highbd_12_variance4x4, aom_highbd_12_sub_pixel_variance4x4, + aom_highbd_12_sub_pixel_avg_variance4x4, + aom_highbd_sad4x4x4d_bits12, aom_highbd_jnt_sad4x4_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance4x4); + + HIGHBD_BFP(BLOCK_128X128, aom_highbd_sad128x128_bits12, + aom_highbd_sad128x128_avg_bits12, + aom_highbd_12_variance128x128, + aom_highbd_12_sub_pixel_variance128x128, + aom_highbd_12_sub_pixel_avg_variance128x128, + aom_highbd_sad128x128x4d_bits12, + aom_highbd_jnt_sad128x128_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance128x128); + + HIGHBD_BFP( + BLOCK_128X64, aom_highbd_sad128x64_bits12, + aom_highbd_sad128x64_avg_bits12, aom_highbd_12_variance128x64, + aom_highbd_12_sub_pixel_variance128x64, + aom_highbd_12_sub_pixel_avg_variance128x64, + aom_highbd_sad128x64x4d_bits12, aom_highbd_jnt_sad128x64_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance128x64); + + HIGHBD_BFP( + BLOCK_64X128, aom_highbd_sad64x128_bits12, + aom_highbd_sad64x128_avg_bits12, aom_highbd_12_variance64x128, + aom_highbd_12_sub_pixel_variance64x128, + aom_highbd_12_sub_pixel_avg_variance64x128, + aom_highbd_sad64x128x4d_bits12, aom_highbd_jnt_sad64x128_avg_bits12, + aom_highbd_12_jnt_sub_pixel_avg_variance64x128); + + HIGHBD_MBFP(BLOCK_128X128, aom_highbd_masked_sad128x128_bits12, + aom_highbd_12_masked_sub_pixel_variance128x128) + HIGHBD_MBFP(BLOCK_128X64, aom_highbd_masked_sad128x64_bits12, + aom_highbd_12_masked_sub_pixel_variance128x64) + HIGHBD_MBFP(BLOCK_64X128, aom_highbd_masked_sad64x128_bits12, + aom_highbd_12_masked_sub_pixel_variance64x128) + HIGHBD_MBFP(BLOCK_64X64, aom_highbd_masked_sad64x64_bits12, + aom_highbd_12_masked_sub_pixel_variance64x64) + HIGHBD_MBFP(BLOCK_64X32, aom_highbd_masked_sad64x32_bits12, + aom_highbd_12_masked_sub_pixel_variance64x32) + HIGHBD_MBFP(BLOCK_32X64, aom_highbd_masked_sad32x64_bits12, + aom_highbd_12_masked_sub_pixel_variance32x64) + HIGHBD_MBFP(BLOCK_32X32, aom_highbd_masked_sad32x32_bits12, + aom_highbd_12_masked_sub_pixel_variance32x32) + HIGHBD_MBFP(BLOCK_32X16, aom_highbd_masked_sad32x16_bits12, + aom_highbd_12_masked_sub_pixel_variance32x16) + HIGHBD_MBFP(BLOCK_16X32, aom_highbd_masked_sad16x32_bits12, + aom_highbd_12_masked_sub_pixel_variance16x32) + HIGHBD_MBFP(BLOCK_16X16, aom_highbd_masked_sad16x16_bits12, + aom_highbd_12_masked_sub_pixel_variance16x16) + HIGHBD_MBFP(BLOCK_8X16, aom_highbd_masked_sad8x16_bits12, + aom_highbd_12_masked_sub_pixel_variance8x16) + HIGHBD_MBFP(BLOCK_16X8, aom_highbd_masked_sad16x8_bits12, + aom_highbd_12_masked_sub_pixel_variance16x8) + HIGHBD_MBFP(BLOCK_8X8, aom_highbd_masked_sad8x8_bits12, + aom_highbd_12_masked_sub_pixel_variance8x8) + HIGHBD_MBFP(BLOCK_4X8, aom_highbd_masked_sad4x8_bits12, + aom_highbd_12_masked_sub_pixel_variance4x8) + HIGHBD_MBFP(BLOCK_8X4, aom_highbd_masked_sad8x4_bits12, + aom_highbd_12_masked_sub_pixel_variance8x4) + HIGHBD_MBFP(BLOCK_4X4, aom_highbd_masked_sad4x4_bits12, + aom_highbd_12_masked_sub_pixel_variance4x4) + HIGHBD_MBFP(BLOCK_64X16, aom_highbd_masked_sad64x16_bits12, + aom_highbd_12_masked_sub_pixel_variance64x16) + HIGHBD_MBFP(BLOCK_16X64, aom_highbd_masked_sad16x64_bits12, + aom_highbd_12_masked_sub_pixel_variance16x64) + HIGHBD_MBFP(BLOCK_32X8, aom_highbd_masked_sad32x8_bits12, + aom_highbd_12_masked_sub_pixel_variance32x8) + HIGHBD_MBFP(BLOCK_8X32, aom_highbd_masked_sad8x32_bits12, + aom_highbd_12_masked_sub_pixel_variance8x32) + HIGHBD_MBFP(BLOCK_16X4, aom_highbd_masked_sad16x4_bits12, + aom_highbd_12_masked_sub_pixel_variance16x4) + HIGHBD_MBFP(BLOCK_4X16, aom_highbd_masked_sad4x16_bits12, + aom_highbd_12_masked_sub_pixel_variance4x16) + HIGHBD_OBFP(BLOCK_128X128, aom_highbd_obmc_sad128x128_bits12, + aom_highbd_12_obmc_variance128x128, + aom_highbd_12_obmc_sub_pixel_variance128x128) + HIGHBD_OBFP(BLOCK_128X64, aom_highbd_obmc_sad128x64_bits12, + aom_highbd_12_obmc_variance128x64, + aom_highbd_12_obmc_sub_pixel_variance128x64) + HIGHBD_OBFP(BLOCK_64X128, aom_highbd_obmc_sad64x128_bits12, + aom_highbd_12_obmc_variance64x128, + aom_highbd_12_obmc_sub_pixel_variance64x128) + HIGHBD_OBFP(BLOCK_64X64, aom_highbd_obmc_sad64x64_bits12, + aom_highbd_12_obmc_variance64x64, + aom_highbd_12_obmc_sub_pixel_variance64x64) + HIGHBD_OBFP(BLOCK_64X32, aom_highbd_obmc_sad64x32_bits12, + aom_highbd_12_obmc_variance64x32, + aom_highbd_12_obmc_sub_pixel_variance64x32) + HIGHBD_OBFP(BLOCK_32X64, aom_highbd_obmc_sad32x64_bits12, + aom_highbd_12_obmc_variance32x64, + aom_highbd_12_obmc_sub_pixel_variance32x64) + HIGHBD_OBFP(BLOCK_32X32, aom_highbd_obmc_sad32x32_bits12, + aom_highbd_12_obmc_variance32x32, + aom_highbd_12_obmc_sub_pixel_variance32x32) + HIGHBD_OBFP(BLOCK_32X16, aom_highbd_obmc_sad32x16_bits12, + aom_highbd_12_obmc_variance32x16, + aom_highbd_12_obmc_sub_pixel_variance32x16) + HIGHBD_OBFP(BLOCK_16X32, aom_highbd_obmc_sad16x32_bits12, + aom_highbd_12_obmc_variance16x32, + aom_highbd_12_obmc_sub_pixel_variance16x32) + HIGHBD_OBFP(BLOCK_16X16, aom_highbd_obmc_sad16x16_bits12, + aom_highbd_12_obmc_variance16x16, + aom_highbd_12_obmc_sub_pixel_variance16x16) + HIGHBD_OBFP(BLOCK_8X16, aom_highbd_obmc_sad8x16_bits12, + aom_highbd_12_obmc_variance8x16, + aom_highbd_12_obmc_sub_pixel_variance8x16) + HIGHBD_OBFP(BLOCK_16X8, aom_highbd_obmc_sad16x8_bits12, + aom_highbd_12_obmc_variance16x8, + aom_highbd_12_obmc_sub_pixel_variance16x8) + HIGHBD_OBFP(BLOCK_8X8, aom_highbd_obmc_sad8x8_bits12, + aom_highbd_12_obmc_variance8x8, + aom_highbd_12_obmc_sub_pixel_variance8x8) + HIGHBD_OBFP(BLOCK_4X8, aom_highbd_obmc_sad4x8_bits12, + aom_highbd_12_obmc_variance4x8, + aom_highbd_12_obmc_sub_pixel_variance4x8) + HIGHBD_OBFP(BLOCK_8X4, aom_highbd_obmc_sad8x4_bits12, + aom_highbd_12_obmc_variance8x4, + aom_highbd_12_obmc_sub_pixel_variance8x4) + HIGHBD_OBFP(BLOCK_4X4, aom_highbd_obmc_sad4x4_bits12, + aom_highbd_12_obmc_variance4x4, + aom_highbd_12_obmc_sub_pixel_variance4x4) + HIGHBD_OBFP(BLOCK_64X16, aom_highbd_obmc_sad64x16_bits12, + aom_highbd_12_obmc_variance64x16, + aom_highbd_12_obmc_sub_pixel_variance64x16) + HIGHBD_OBFP(BLOCK_16X64, aom_highbd_obmc_sad16x64_bits12, + aom_highbd_12_obmc_variance16x64, + aom_highbd_12_obmc_sub_pixel_variance16x64) + HIGHBD_OBFP(BLOCK_32X8, aom_highbd_obmc_sad32x8_bits12, + aom_highbd_12_obmc_variance32x8, + aom_highbd_12_obmc_sub_pixel_variance32x8) + HIGHBD_OBFP(BLOCK_8X32, aom_highbd_obmc_sad8x32_bits12, + aom_highbd_12_obmc_variance8x32, + aom_highbd_12_obmc_sub_pixel_variance8x32) + HIGHBD_OBFP(BLOCK_16X4, aom_highbd_obmc_sad16x4_bits12, + aom_highbd_12_obmc_variance16x4, + aom_highbd_12_obmc_sub_pixel_variance16x4) + HIGHBD_OBFP(BLOCK_4X16, aom_highbd_obmc_sad4x16_bits12, + aom_highbd_12_obmc_variance4x16, + aom_highbd_12_obmc_sub_pixel_variance4x16) + break; + + default: + assert(0 && + "cm->seq_params.bit_depth should be AOM_BITS_8, " + "AOM_BITS_10 or AOM_BITS_12"); + } + } +} + +static void realloc_segmentation_maps(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + + // Create the encoder segmentation map and set all entries to 0 + aom_free(cpi->segmentation_map); + CHECK_MEM_ERROR(cm, cpi->segmentation_map, + aom_calloc(cm->mi_rows * cm->mi_cols, 1)); + + // Create a map used for cyclic background refresh. + if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh); + CHECK_MEM_ERROR(cm, cpi->cyclic_refresh, + av1_cyclic_refresh_alloc(cm->mi_rows, cm->mi_cols)); + + // Create a map used to mark inactive areas. + aom_free(cpi->active_map.map); + CHECK_MEM_ERROR(cm, cpi->active_map.map, + aom_calloc(cm->mi_rows * cm->mi_cols, 1)); +} + +void av1_change_config(struct AV1_COMP *cpi, const AV1EncoderConfig *oxcf) { + AV1_COMMON *const cm = &cpi->common; + SequenceHeader *const seq_params = &cm->seq_params; + const int num_planes = av1_num_planes(cm); + RATE_CONTROL *const rc = &cpi->rc; + MACROBLOCK *const x = &cpi->td.mb; + + if (seq_params->profile != oxcf->profile) seq_params->profile = oxcf->profile; + seq_params->bit_depth = oxcf->bit_depth; + seq_params->color_primaries = oxcf->color_primaries; + seq_params->transfer_characteristics = oxcf->transfer_characteristics; + seq_params->matrix_coefficients = oxcf->matrix_coefficients; + seq_params->monochrome = oxcf->monochrome; + seq_params->chroma_sample_position = oxcf->chroma_sample_position; + seq_params->color_range = oxcf->color_range; + + assert(IMPLIES(seq_params->profile <= PROFILE_1, + seq_params->bit_depth <= AOM_BITS_10)); + + cm->timing_info_present = oxcf->timing_info_present; + cm->timing_info.num_units_in_display_tick = + oxcf->timing_info.num_units_in_display_tick; + cm->timing_info.time_scale = oxcf->timing_info.time_scale; + cm->timing_info.equal_picture_interval = + oxcf->timing_info.equal_picture_interval; + cm->timing_info.num_ticks_per_picture = + oxcf->timing_info.num_ticks_per_picture; + + seq_params->display_model_info_present_flag = + oxcf->display_model_info_present_flag; + seq_params->decoder_model_info_present_flag = + oxcf->decoder_model_info_present_flag; + if (oxcf->decoder_model_info_present_flag) { + // set the decoder model parameters in schedule mode + cm->buffer_model.num_units_in_decoding_tick = + oxcf->buffer_model.num_units_in_decoding_tick; + cm->buffer_removal_time_present = 1; + set_aom_dec_model_info(&cm->buffer_model); + set_dec_model_op_parameters(&cm->op_params[0]); + } else if (cm->timing_info_present && + cm->timing_info.equal_picture_interval && + !seq_params->decoder_model_info_present_flag) { + // set the decoder model parameters in resource availability mode + set_resource_availability_parameters(&cm->op_params[0]); + } else { + cm->op_params[0].initial_display_delay = + 10; // Default value (not signaled) + } + + update_film_grain_parameters(cpi, oxcf); + + cpi->oxcf = *oxcf; + cpi->common.options = oxcf->cfg; + cpi->row_mt = oxcf->row_mt; + x->e_mbd.bd = (int)seq_params->bit_depth; + x->e_mbd.global_motion = cm->global_motion; + + if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) { + rc->baseline_gf_interval = FIXED_GF_INTERVAL; + } else { + rc->baseline_gf_interval = (MIN_GF_INTERVAL + MAX_GF_INTERVAL) / 2; + } + + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + + cm->refresh_frame_context = (oxcf->frame_parallel_decoding_mode) + ? REFRESH_FRAME_CONTEXT_DISABLED + : REFRESH_FRAME_CONTEXT_BACKWARD; + if (oxcf->large_scale_tile) + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + + if (x->palette_buffer == NULL) { + CHECK_MEM_ERROR(cm, x->palette_buffer, + aom_memalign(16, sizeof(*x->palette_buffer))); + } + + if (x->tmp_conv_dst == NULL) { + CHECK_MEM_ERROR( + cm, x->tmp_conv_dst, + aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(*x->tmp_conv_dst))); + x->e_mbd.tmp_conv_dst = x->tmp_conv_dst; + } + for (int i = 0; i < 2; ++i) { + if (x->tmp_obmc_bufs[i] == NULL) { + CHECK_MEM_ERROR(cm, x->tmp_obmc_bufs[i], + aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*x->tmp_obmc_bufs[i]))); + x->e_mbd.tmp_obmc_bufs[i] = x->tmp_obmc_bufs[i]; + } + } + + av1_reset_segment_features(cm); + set_high_precision_mv(cpi, 1, 0); + + set_rc_buffer_sizes(rc, &cpi->oxcf); + + // Under a configuration change, where maximum_buffer_size may change, + // keep buffer level clipped to the maximum allowed buffer size. + rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size); + rc->buffer_level = AOMMIN(rc->buffer_level, rc->maximum_buffer_size); + + // Set up frame rate and related parameters rate control values. + av1_new_framerate(cpi, cpi->framerate); + + // Set absolute upper and lower quality limits + rc->worst_quality = cpi->oxcf.worst_allowed_q; + rc->best_quality = cpi->oxcf.best_allowed_q; + + cm->interp_filter = oxcf->large_scale_tile ? EIGHTTAP_REGULAR : SWITCHABLE; + cm->switchable_motion_mode = 1; + + if (cpi->oxcf.render_width > 0 && cpi->oxcf.render_height > 0) { + cm->render_width = cpi->oxcf.render_width; + cm->render_height = cpi->oxcf.render_height; + } else { + cm->render_width = cpi->oxcf.width; + cm->render_height = cpi->oxcf.height; + } + cm->width = cpi->oxcf.width; + cm->height = cpi->oxcf.height; + + int sb_size = seq_params->sb_size; + // Superblock size should not be updated after the first key frame. + if (!cpi->seq_params_locked) { + set_sb_size(&cm->seq_params, select_sb_size(cpi)); + } + + if (cpi->initial_width || sb_size != seq_params->sb_size) { + if (cm->width > cpi->initial_width || cm->height > cpi->initial_height || + seq_params->sb_size != sb_size) { + av1_free_context_buffers(cm); + av1_free_pc_tree(&cpi->td, num_planes); + alloc_compressor_data(cpi); + realloc_segmentation_maps(cpi); + cpi->initial_width = cpi->initial_height = 0; + } + } + update_frame_size(cpi); + + cpi->alt_ref_source = NULL; + rc->is_src_frame_alt_ref = 0; + + rc->is_bwd_ref_frame = 0; + rc->is_last_bipred_frame = 0; + rc->is_bipred_frame = 0; + + set_tile_info(cpi); + + cpi->ext_refresh_frame_flags_pending = 0; + cpi->ext_refresh_frame_context_pending = 0; + + highbd_set_var_fns(cpi); + + // Init sequence level coding tools + // This should not be called after the first key frame. + if (!cpi->seq_params_locked) { + seq_params->operating_points_cnt_minus_1 = + cm->number_spatial_layers > 1 ? cm->number_spatial_layers - 1 : 0; + init_seq_coding_tools(&cm->seq_params, cm, oxcf); + } +} + +AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf, + BufferPool *const pool) { + unsigned int i; + AV1_COMP *volatile const cpi = aom_memalign(32, sizeof(AV1_COMP)); + AV1_COMMON *volatile const cm = cpi != NULL ? &cpi->common : NULL; + + if (!cm) return NULL; + + av1_zero(*cpi); + + // The jmp_buf is valid only for the duration of the function that calls + // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 + // before it returns. + if (setjmp(cm->error.jmp)) { + cm->error.setjmp = 0; + av1_remove_compressor(cpi); + return 0; + } + + cm->error.setjmp = 1; + cm->alloc_mi = enc_alloc_mi; + cm->free_mi = enc_free_mi; + cm->setup_mi = enc_setup_mi; + + CHECK_MEM_ERROR(cm, cm->fc, + (FRAME_CONTEXT *)aom_memalign(32, sizeof(*cm->fc))); + CHECK_MEM_ERROR(cm, cm->frame_contexts, + (FRAME_CONTEXT *)aom_memalign( + 32, FRAME_CONTEXTS * sizeof(*cm->frame_contexts))); + memset(cm->fc, 0, sizeof(*cm->fc)); + memset(cm->frame_contexts, 0, FRAME_CONTEXTS * sizeof(*cm->frame_contexts)); + + cpi->resize_state = 0; + cpi->resize_avg_qp = 0; + cpi->resize_buffer_underflow = 0; + + cpi->common.buffer_pool = pool; + + init_config(cpi, oxcf); + av1_rc_init(&cpi->oxcf, oxcf->pass, &cpi->rc); + + cm->current_video_frame = 0; + cpi->seq_params_locked = 0; + cpi->partition_search_skippable_frame = 0; + cpi->tile_data = NULL; + cpi->last_show_frame_buf_idx = INVALID_IDX; + + realloc_segmentation_maps(cpi); + + memset(cpi->nmv_costs, 0, sizeof(cpi->nmv_costs)); + memset(cpi->nmv_costs_hp, 0, sizeof(cpi->nmv_costs_hp)); + + for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); + i++) { + CHECK_MEM_ERROR( + cm, cpi->mbgraph_stats[i].mb_stats, + aom_calloc(cm->MBs * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); + } + +#if CONFIG_FP_MB_STATS + cpi->use_fp_mb_stats = 0; + if (cpi->use_fp_mb_stats) { + // a place holder used to store the first pass mb stats in the first pass + CHECK_MEM_ERROR(cm, cpi->twopass.frame_mb_stats_buf, + aom_calloc(cm->MBs * sizeof(uint8_t), 1)); + } else { + cpi->twopass.frame_mb_stats_buf = NULL; + } +#endif + + cpi->refresh_alt_ref_frame = 0; + + cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; +#if CONFIG_INTERNAL_STATS + cpi->b_calculate_blockiness = 1; + cpi->b_calculate_consistency = 1; + cpi->total_inconsistency = 0; + cpi->psnr.worst = 100.0; + cpi->worst_ssim = 100.0; + + cpi->count = 0; + cpi->bytes = 0; + + if (cpi->b_calculate_psnr) { + cpi->total_sq_error = 0; + cpi->total_samples = 0; + cpi->tot_recode_hits = 0; + cpi->summed_quality = 0; + cpi->summed_weights = 0; + } + + cpi->fastssim.worst = 100.0; + cpi->psnrhvs.worst = 100.0; + + if (cpi->b_calculate_blockiness) { + cpi->total_blockiness = 0; + cpi->worst_blockiness = 0.0; + } + + if (cpi->b_calculate_consistency) { + CHECK_MEM_ERROR(cm, cpi->ssim_vars, + aom_malloc(sizeof(*cpi->ssim_vars) * 4 * + cpi->common.mi_rows * cpi->common.mi_cols)); + cpi->worst_consistency = 100.0; + } +#endif +#if CONFIG_ENTROPY_STATS + av1_zero(aggregate_fc); +#endif // CONFIG_ENTROPY_STATS + + cpi->first_time_stamp_ever = INT64_MAX; + + cpi->td.mb.nmvcost[0] = &cpi->nmv_costs[0][MV_MAX]; + cpi->td.mb.nmvcost[1] = &cpi->nmv_costs[1][MV_MAX]; + cpi->td.mb.nmvcost_hp[0] = &cpi->nmv_costs_hp[0][MV_MAX]; + cpi->td.mb.nmvcost_hp[1] = &cpi->nmv_costs_hp[1][MV_MAX]; + +#ifdef OUTPUT_YUV_SKINMAP + yuv_skinmap_file = fopen("skinmap.yuv", "ab"); +#endif +#ifdef OUTPUT_YUV_REC + yuv_rec_file = fopen("rec.yuv", "wb"); +#endif + + if (oxcf->pass == 1) { + av1_init_first_pass(cpi); + } else if (oxcf->pass == 2) { + const size_t packet_sz = sizeof(FIRSTPASS_STATS); + const int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + const size_t psz = cpi->common.MBs * sizeof(uint8_t); + const int ps = (int)(oxcf->firstpass_mb_stats_in.sz / psz); + + cpi->twopass.firstpass_mb_stats.mb_stats_start = + oxcf->firstpass_mb_stats_in.buf; + cpi->twopass.firstpass_mb_stats.mb_stats_end = + cpi->twopass.firstpass_mb_stats.mb_stats_start + + (ps - 1) * cpi->common.MBs * sizeof(uint8_t); + } +#endif + + cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; + cpi->twopass.stats_in = cpi->twopass.stats_in_start; + cpi->twopass.stats_in_end = &cpi->twopass.stats_in[packets - 1]; + + av1_init_second_pass(cpi); + } + + CHECK_MEM_ERROR( + cm, cpi->td.mb.above_pred_buf, + (uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*cpi->td.mb.above_pred_buf))); + CHECK_MEM_ERROR( + cm, cpi->td.mb.left_pred_buf, + (uint8_t *)aom_memalign(16, MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*cpi->td.mb.left_pred_buf))); + + CHECK_MEM_ERROR(cm, cpi->td.mb.wsrc_buf, + (int32_t *)aom_memalign( + 16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.wsrc_buf))); + + for (int x = 0; x < 2; x++) + for (int y = 0; y < 2; y++) + CHECK_MEM_ERROR( + cm, cpi->td.mb.hash_value_buffer[x][y], + (uint32_t *)aom_malloc(AOM_BUFFER_SIZE_FOR_BLOCK_HASH * + sizeof(*cpi->td.mb.hash_value_buffer[0][0]))); + + cpi->td.mb.g_crc_initialized = 0; + + CHECK_MEM_ERROR(cm, cpi->td.mb.mask_buf, + (int32_t *)aom_memalign( + 16, MAX_SB_SQUARE * sizeof(*cpi->td.mb.mask_buf))); + + av1_set_speed_features_framesize_independent(cpi); + av1_set_speed_features_framesize_dependent(cpi); + +#define BFP(BT, SDF, SDAF, VF, SVF, SVAF, SDX4DF, JSDAF, JSVAF) \ + cpi->fn_ptr[BT].sdf = SDF; \ + cpi->fn_ptr[BT].sdaf = SDAF; \ + cpi->fn_ptr[BT].vf = VF; \ + cpi->fn_ptr[BT].svf = SVF; \ + cpi->fn_ptr[BT].svaf = SVAF; \ + cpi->fn_ptr[BT].sdx4df = SDX4DF; \ + cpi->fn_ptr[BT].jsdaf = JSDAF; \ + cpi->fn_ptr[BT].jsvaf = JSVAF; + + BFP(BLOCK_4X16, aom_sad4x16, aom_sad4x16_avg, aom_variance4x16, + aom_sub_pixel_variance4x16, aom_sub_pixel_avg_variance4x16, + aom_sad4x16x4d, aom_jnt_sad4x16_avg, aom_jnt_sub_pixel_avg_variance4x16) + + BFP(BLOCK_16X4, aom_sad16x4, aom_sad16x4_avg, aom_variance16x4, + aom_sub_pixel_variance16x4, aom_sub_pixel_avg_variance16x4, + aom_sad16x4x4d, aom_jnt_sad16x4_avg, aom_jnt_sub_pixel_avg_variance16x4) + + BFP(BLOCK_8X32, aom_sad8x32, aom_sad8x32_avg, aom_variance8x32, + aom_sub_pixel_variance8x32, aom_sub_pixel_avg_variance8x32, + aom_sad8x32x4d, aom_jnt_sad8x32_avg, aom_jnt_sub_pixel_avg_variance8x32) + + BFP(BLOCK_32X8, aom_sad32x8, aom_sad32x8_avg, aom_variance32x8, + aom_sub_pixel_variance32x8, aom_sub_pixel_avg_variance32x8, + aom_sad32x8x4d, aom_jnt_sad32x8_avg, aom_jnt_sub_pixel_avg_variance32x8) + + BFP(BLOCK_16X64, aom_sad16x64, aom_sad16x64_avg, aom_variance16x64, + aom_sub_pixel_variance16x64, aom_sub_pixel_avg_variance16x64, + aom_sad16x64x4d, aom_jnt_sad16x64_avg, + aom_jnt_sub_pixel_avg_variance16x64) + + BFP(BLOCK_64X16, aom_sad64x16, aom_sad64x16_avg, aom_variance64x16, + aom_sub_pixel_variance64x16, aom_sub_pixel_avg_variance64x16, + aom_sad64x16x4d, aom_jnt_sad64x16_avg, + aom_jnt_sub_pixel_avg_variance64x16) + + BFP(BLOCK_128X128, aom_sad128x128, aom_sad128x128_avg, aom_variance128x128, + aom_sub_pixel_variance128x128, aom_sub_pixel_avg_variance128x128, + aom_sad128x128x4d, aom_jnt_sad128x128_avg, + aom_jnt_sub_pixel_avg_variance128x128) + + BFP(BLOCK_128X64, aom_sad128x64, aom_sad128x64_avg, aom_variance128x64, + aom_sub_pixel_variance128x64, aom_sub_pixel_avg_variance128x64, + aom_sad128x64x4d, aom_jnt_sad128x64_avg, + aom_jnt_sub_pixel_avg_variance128x64) + + BFP(BLOCK_64X128, aom_sad64x128, aom_sad64x128_avg, aom_variance64x128, + aom_sub_pixel_variance64x128, aom_sub_pixel_avg_variance64x128, + aom_sad64x128x4d, aom_jnt_sad64x128_avg, + aom_jnt_sub_pixel_avg_variance64x128) + + BFP(BLOCK_32X16, aom_sad32x16, aom_sad32x16_avg, aom_variance32x16, + aom_sub_pixel_variance32x16, aom_sub_pixel_avg_variance32x16, + aom_sad32x16x4d, aom_jnt_sad32x16_avg, + aom_jnt_sub_pixel_avg_variance32x16) + + BFP(BLOCK_16X32, aom_sad16x32, aom_sad16x32_avg, aom_variance16x32, + aom_sub_pixel_variance16x32, aom_sub_pixel_avg_variance16x32, + aom_sad16x32x4d, aom_jnt_sad16x32_avg, + aom_jnt_sub_pixel_avg_variance16x32) + + BFP(BLOCK_64X32, aom_sad64x32, aom_sad64x32_avg, aom_variance64x32, + aom_sub_pixel_variance64x32, aom_sub_pixel_avg_variance64x32, + aom_sad64x32x4d, aom_jnt_sad64x32_avg, + aom_jnt_sub_pixel_avg_variance64x32) + + BFP(BLOCK_32X64, aom_sad32x64, aom_sad32x64_avg, aom_variance32x64, + aom_sub_pixel_variance32x64, aom_sub_pixel_avg_variance32x64, + aom_sad32x64x4d, aom_jnt_sad32x64_avg, + aom_jnt_sub_pixel_avg_variance32x64) + + BFP(BLOCK_32X32, aom_sad32x32, aom_sad32x32_avg, aom_variance32x32, + aom_sub_pixel_variance32x32, aom_sub_pixel_avg_variance32x32, + aom_sad32x32x4d, aom_jnt_sad32x32_avg, + aom_jnt_sub_pixel_avg_variance32x32) + + BFP(BLOCK_64X64, aom_sad64x64, aom_sad64x64_avg, aom_variance64x64, + aom_sub_pixel_variance64x64, aom_sub_pixel_avg_variance64x64, + aom_sad64x64x4d, aom_jnt_sad64x64_avg, + aom_jnt_sub_pixel_avg_variance64x64) + + BFP(BLOCK_16X16, aom_sad16x16, aom_sad16x16_avg, aom_variance16x16, + aom_sub_pixel_variance16x16, aom_sub_pixel_avg_variance16x16, + aom_sad16x16x4d, aom_jnt_sad16x16_avg, + aom_jnt_sub_pixel_avg_variance16x16) + + BFP(BLOCK_16X8, aom_sad16x8, aom_sad16x8_avg, aom_variance16x8, + aom_sub_pixel_variance16x8, aom_sub_pixel_avg_variance16x8, + aom_sad16x8x4d, aom_jnt_sad16x8_avg, aom_jnt_sub_pixel_avg_variance16x8) + + BFP(BLOCK_8X16, aom_sad8x16, aom_sad8x16_avg, aom_variance8x16, + aom_sub_pixel_variance8x16, aom_sub_pixel_avg_variance8x16, + aom_sad8x16x4d, aom_jnt_sad8x16_avg, aom_jnt_sub_pixel_avg_variance8x16) + + BFP(BLOCK_8X8, aom_sad8x8, aom_sad8x8_avg, aom_variance8x8, + aom_sub_pixel_variance8x8, aom_sub_pixel_avg_variance8x8, aom_sad8x8x4d, + aom_jnt_sad8x8_avg, aom_jnt_sub_pixel_avg_variance8x8) + + BFP(BLOCK_8X4, aom_sad8x4, aom_sad8x4_avg, aom_variance8x4, + aom_sub_pixel_variance8x4, aom_sub_pixel_avg_variance8x4, aom_sad8x4x4d, + aom_jnt_sad8x4_avg, aom_jnt_sub_pixel_avg_variance8x4) + + BFP(BLOCK_4X8, aom_sad4x8, aom_sad4x8_avg, aom_variance4x8, + aom_sub_pixel_variance4x8, aom_sub_pixel_avg_variance4x8, aom_sad4x8x4d, + aom_jnt_sad4x8_avg, aom_jnt_sub_pixel_avg_variance4x8) + + BFP(BLOCK_4X4, aom_sad4x4, aom_sad4x4_avg, aom_variance4x4, + aom_sub_pixel_variance4x4, aom_sub_pixel_avg_variance4x4, aom_sad4x4x4d, + aom_jnt_sad4x4_avg, aom_jnt_sub_pixel_avg_variance4x4) + +#define OBFP(BT, OSDF, OVF, OSVF) \ + cpi->fn_ptr[BT].osdf = OSDF; \ + cpi->fn_ptr[BT].ovf = OVF; \ + cpi->fn_ptr[BT].osvf = OSVF; + + OBFP(BLOCK_128X128, aom_obmc_sad128x128, aom_obmc_variance128x128, + aom_obmc_sub_pixel_variance128x128) + OBFP(BLOCK_128X64, aom_obmc_sad128x64, aom_obmc_variance128x64, + aom_obmc_sub_pixel_variance128x64) + OBFP(BLOCK_64X128, aom_obmc_sad64x128, aom_obmc_variance64x128, + aom_obmc_sub_pixel_variance64x128) + OBFP(BLOCK_64X64, aom_obmc_sad64x64, aom_obmc_variance64x64, + aom_obmc_sub_pixel_variance64x64) + OBFP(BLOCK_64X32, aom_obmc_sad64x32, aom_obmc_variance64x32, + aom_obmc_sub_pixel_variance64x32) + OBFP(BLOCK_32X64, aom_obmc_sad32x64, aom_obmc_variance32x64, + aom_obmc_sub_pixel_variance32x64) + OBFP(BLOCK_32X32, aom_obmc_sad32x32, aom_obmc_variance32x32, + aom_obmc_sub_pixel_variance32x32) + OBFP(BLOCK_32X16, aom_obmc_sad32x16, aom_obmc_variance32x16, + aom_obmc_sub_pixel_variance32x16) + OBFP(BLOCK_16X32, aom_obmc_sad16x32, aom_obmc_variance16x32, + aom_obmc_sub_pixel_variance16x32) + OBFP(BLOCK_16X16, aom_obmc_sad16x16, aom_obmc_variance16x16, + aom_obmc_sub_pixel_variance16x16) + OBFP(BLOCK_16X8, aom_obmc_sad16x8, aom_obmc_variance16x8, + aom_obmc_sub_pixel_variance16x8) + OBFP(BLOCK_8X16, aom_obmc_sad8x16, aom_obmc_variance8x16, + aom_obmc_sub_pixel_variance8x16) + OBFP(BLOCK_8X8, aom_obmc_sad8x8, aom_obmc_variance8x8, + aom_obmc_sub_pixel_variance8x8) + OBFP(BLOCK_4X8, aom_obmc_sad4x8, aom_obmc_variance4x8, + aom_obmc_sub_pixel_variance4x8) + OBFP(BLOCK_8X4, aom_obmc_sad8x4, aom_obmc_variance8x4, + aom_obmc_sub_pixel_variance8x4) + OBFP(BLOCK_4X4, aom_obmc_sad4x4, aom_obmc_variance4x4, + aom_obmc_sub_pixel_variance4x4) + OBFP(BLOCK_4X16, aom_obmc_sad4x16, aom_obmc_variance4x16, + aom_obmc_sub_pixel_variance4x16) + OBFP(BLOCK_16X4, aom_obmc_sad16x4, aom_obmc_variance16x4, + aom_obmc_sub_pixel_variance16x4) + OBFP(BLOCK_8X32, aom_obmc_sad8x32, aom_obmc_variance8x32, + aom_obmc_sub_pixel_variance8x32) + OBFP(BLOCK_32X8, aom_obmc_sad32x8, aom_obmc_variance32x8, + aom_obmc_sub_pixel_variance32x8) + OBFP(BLOCK_16X64, aom_obmc_sad16x64, aom_obmc_variance16x64, + aom_obmc_sub_pixel_variance16x64) + OBFP(BLOCK_64X16, aom_obmc_sad64x16, aom_obmc_variance64x16, + aom_obmc_sub_pixel_variance64x16) + +#define MBFP(BT, MCSDF, MCSVF) \ + cpi->fn_ptr[BT].msdf = MCSDF; \ + cpi->fn_ptr[BT].msvf = MCSVF; + + MBFP(BLOCK_128X128, aom_masked_sad128x128, + aom_masked_sub_pixel_variance128x128) + MBFP(BLOCK_128X64, aom_masked_sad128x64, aom_masked_sub_pixel_variance128x64) + MBFP(BLOCK_64X128, aom_masked_sad64x128, aom_masked_sub_pixel_variance64x128) + MBFP(BLOCK_64X64, aom_masked_sad64x64, aom_masked_sub_pixel_variance64x64) + MBFP(BLOCK_64X32, aom_masked_sad64x32, aom_masked_sub_pixel_variance64x32) + MBFP(BLOCK_32X64, aom_masked_sad32x64, aom_masked_sub_pixel_variance32x64) + MBFP(BLOCK_32X32, aom_masked_sad32x32, aom_masked_sub_pixel_variance32x32) + MBFP(BLOCK_32X16, aom_masked_sad32x16, aom_masked_sub_pixel_variance32x16) + MBFP(BLOCK_16X32, aom_masked_sad16x32, aom_masked_sub_pixel_variance16x32) + MBFP(BLOCK_16X16, aom_masked_sad16x16, aom_masked_sub_pixel_variance16x16) + MBFP(BLOCK_16X8, aom_masked_sad16x8, aom_masked_sub_pixel_variance16x8) + MBFP(BLOCK_8X16, aom_masked_sad8x16, aom_masked_sub_pixel_variance8x16) + MBFP(BLOCK_8X8, aom_masked_sad8x8, aom_masked_sub_pixel_variance8x8) + MBFP(BLOCK_4X8, aom_masked_sad4x8, aom_masked_sub_pixel_variance4x8) + MBFP(BLOCK_8X4, aom_masked_sad8x4, aom_masked_sub_pixel_variance8x4) + MBFP(BLOCK_4X4, aom_masked_sad4x4, aom_masked_sub_pixel_variance4x4) + + MBFP(BLOCK_4X16, aom_masked_sad4x16, aom_masked_sub_pixel_variance4x16) + + MBFP(BLOCK_16X4, aom_masked_sad16x4, aom_masked_sub_pixel_variance16x4) + + MBFP(BLOCK_8X32, aom_masked_sad8x32, aom_masked_sub_pixel_variance8x32) + + MBFP(BLOCK_32X8, aom_masked_sad32x8, aom_masked_sub_pixel_variance32x8) + + MBFP(BLOCK_16X64, aom_masked_sad16x64, aom_masked_sub_pixel_variance16x64) + + MBFP(BLOCK_64X16, aom_masked_sad64x16, aom_masked_sub_pixel_variance64x16) + + highbd_set_var_fns(cpi); + + /* av1_init_quantizer() is first called here. Add check in + * av1_frame_init_quantizer() so that av1_init_quantizer is only + * called later when needed. This will avoid unnecessary calls of + * av1_init_quantizer() for every frame. + */ + av1_init_quantizer(cpi); + av1_qm_init(cm); + + av1_loop_filter_init(cm); + cm->superres_scale_denominator = SCALE_NUMERATOR; + cm->superres_upscaled_width = oxcf->width; + cm->superres_upscaled_height = oxcf->height; + av1_loop_restoration_precal(); + + cm->error.setjmp = 0; + + return cpi; +} + +#if CONFIG_INTERNAL_STATS +#define SNPRINT(H, T) snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T)) + +#define SNPRINT2(H, T, V) \ + snprintf((H) + strlen(H), sizeof(H) - strlen(H), (T), (V)) +#endif // CONFIG_INTERNAL_STATS + +void av1_remove_compressor(AV1_COMP *cpi) { + AV1_COMMON *cm; + unsigned int i; + int t; + + if (!cpi) return; + + cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + + if (cm->current_video_frame > 0) { +#if CONFIG_ENTROPY_STATS + if (cpi->oxcf.pass != 1) { + fprintf(stderr, "Writing counts.stt\n"); + FILE *f = fopen("counts.stt", "wb"); + fwrite(&aggregate_fc, sizeof(aggregate_fc), 1, f); + fclose(f); + } +#endif // CONFIG_ENTROPY_STATS +#if CONFIG_INTERNAL_STATS + aom_clear_system_state(); + + if (cpi->oxcf.pass != 1) { + char headings[512] = { 0 }; + char results[512] = { 0 }; + FILE *f = fopen("opsnr.stt", "a"); + double time_encoded = + (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / + 10000000.000; + double total_encode_time = + (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; + const double dr = + (double)cpi->bytes * (double)8 / (double)1000 / time_encoded; + const double peak = (double)((1 << cpi->oxcf.input_bit_depth) - 1); + const double target_rate = (double)cpi->oxcf.target_bandwidth / 1000; + const double rate_err = ((100.0 * (dr - target_rate)) / target_rate); + + if (cpi->b_calculate_psnr) { + const double total_psnr = aom_sse_to_psnr( + (double)cpi->total_samples, peak, (double)cpi->total_sq_error); + const double total_ssim = + 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); + snprintf(headings, sizeof(headings), + "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" + "AOMSSIM\tVPSSIMP\tFASTSIM\tPSNRHVS\t" + "WstPsnr\tWstSsim\tWstFast\tWstHVS\t" + "AVPsrnY\tAPsnrCb\tAPsnrCr"); + snprintf(results, sizeof(results), + "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f\t%7.3f\t" + "%7.3f\t%7.3f\t%7.3f", + dr, cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr, + cpi->psnr.stat[STAT_ALL] / cpi->count, total_psnr, total_ssim, + total_ssim, cpi->fastssim.stat[STAT_ALL] / cpi->count, + cpi->psnrhvs.stat[STAT_ALL] / cpi->count, cpi->psnr.worst, + cpi->worst_ssim, cpi->fastssim.worst, cpi->psnrhvs.worst, + cpi->psnr.stat[STAT_Y] / cpi->count, + cpi->psnr.stat[STAT_U] / cpi->count, + cpi->psnr.stat[STAT_V] / cpi->count); + + if (cpi->b_calculate_blockiness) { + SNPRINT(headings, "\t Block\tWstBlck"); + SNPRINT2(results, "\t%7.3f", cpi->total_blockiness / cpi->count); + SNPRINT2(results, "\t%7.3f", cpi->worst_blockiness); + } + + if (cpi->b_calculate_consistency) { + double consistency = + aom_sse_to_psnr((double)cpi->total_samples, peak, + (double)cpi->total_inconsistency); + + SNPRINT(headings, "\tConsist\tWstCons"); + SNPRINT2(results, "\t%7.3f", consistency); + SNPRINT2(results, "\t%7.3f", cpi->worst_consistency); + } + fprintf(f, "%s\t Time\tRcErr\tAbsErr\n", headings); + fprintf(f, "%s\t%8.0f\t%7.2f\t%7.2f\n", results, total_encode_time, + rate_err, fabs(rate_err)); + } + + fclose(f); + } +#endif // CONFIG_INTERNAL_STATS + } + + for (t = 0; t < cpi->num_workers; ++t) { + AVxWorker *const worker = &cpi->workers[t]; + EncWorkerData *const thread_data = &cpi->tile_thr_data[t]; + + // Deallocate allocated threads. + aom_get_worker_interface()->end(worker); + + // Deallocate allocated thread data. + if (t < cpi->num_workers - 1) { + aom_free(thread_data->td->palette_buffer); + aom_free(thread_data->td->tmp_conv_dst); + for (int j = 0; j < 2; ++j) { + aom_free(thread_data->td->tmp_obmc_bufs[j]); + } + aom_free(thread_data->td->above_pred_buf); + aom_free(thread_data->td->left_pred_buf); + aom_free(thread_data->td->wsrc_buf); + for (int x = 0; x < 2; x++) { + for (int y = 0; y < 2; y++) { + aom_free(thread_data->td->hash_value_buffer[x][y]); + thread_data->td->hash_value_buffer[x][y] = NULL; + } + } + aom_free(thread_data->td->mask_buf); + aom_free(thread_data->td->counts); + av1_free_pc_tree(thread_data->td, num_planes); + aom_free(thread_data->td); + } + } + aom_free(cpi->tile_thr_data); + aom_free(cpi->workers); + + if (cpi->num_workers > 1) { + av1_loop_filter_dealloc(&cpi->lf_row_sync); + av1_loop_restoration_dealloc(&cpi->lr_row_sync, cpi->num_workers); + } + + dealloc_compressor_data(cpi); + + for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); + ++i) { + aom_free(cpi->mbgraph_stats[i].mb_stats); + } + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + aom_free(cpi->twopass.frame_mb_stats_buf); + cpi->twopass.frame_mb_stats_buf = NULL; + } +#endif +#if CONFIG_INTERNAL_STATS + aom_free(cpi->ssim_vars); + cpi->ssim_vars = NULL; +#endif // CONFIG_INTERNAL_STATS + + av1_remove_common(cm); + for (i = 0; i < FRAME_BUFFERS; ++i) { + av1_hash_table_destroy(&cm->buffer_pool->frame_bufs[i].hash_table); + } + if (cpi->sf.use_hash_based_trellis) hbt_destroy(); + av1_free_ref_frame_buffers(cm->buffer_pool); + aom_free(cpi); + +#ifdef OUTPUT_YUV_SKINMAP + fclose(yuv_skinmap_file); +#endif +#ifdef OUTPUT_YUV_REC + fclose(yuv_rec_file); +#endif +} + +static void generate_psnr_packet(AV1_COMP *cpi) { + struct aom_codec_cx_pkt pkt; + int i; + PSNR_STATS psnr; + aom_calc_highbd_psnr(cpi->source, cpi->common.frame_to_show, &psnr, + cpi->td.mb.e_mbd.bd, cpi->oxcf.input_bit_depth); + + for (i = 0; i < 4; ++i) { + pkt.data.psnr.samples[i] = psnr.samples[i]; + pkt.data.psnr.sse[i] = psnr.sse[i]; + pkt.data.psnr.psnr[i] = psnr.psnr[i]; + } + pkt.kind = AOM_CODEC_PSNR_PKT; + aom_codec_pkt_list_add(cpi->output_pkt_list, &pkt); +} + +int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags) { + if (ref_frame_flags > ((1 << INTER_REFS_PER_FRAME) - 1)) return -1; + + cpi->ext_ref_frame_flags = ref_frame_flags; + return 0; +} + +void av1_update_reference(AV1_COMP *cpi, int ref_frame_upd_flags) { + cpi->ext_refresh_last_frame = (ref_frame_upd_flags & AOM_LAST_FLAG) != 0; + cpi->ext_refresh_golden_frame = (ref_frame_upd_flags & AOM_GOLD_FLAG) != 0; + cpi->ext_refresh_alt_ref_frame = (ref_frame_upd_flags & AOM_ALT_FLAG) != 0; + cpi->ext_refresh_bwd_ref_frame = (ref_frame_upd_flags & AOM_BWD_FLAG) != 0; + cpi->ext_refresh_alt2_ref_frame = (ref_frame_upd_flags & AOM_ALT2_FLAG) != 0; + cpi->ext_refresh_frame_flags_pending = 1; +} + +int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); + if (cfg) { + aom_yv12_copy_frame(cfg, sd, num_planes); + return 0; + } else { + return -1; + } +} + +int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + YV12_BUFFER_CONFIG *cfg = get_ref_frame(cm, idx); + if (cfg) { + aom_yv12_copy_frame(sd, cfg, num_planes); + return 0; + } else { + return -1; + } +} + +int av1_update_entropy(AV1_COMP *cpi, int update) { + cpi->ext_refresh_frame_context = update; + cpi->ext_refresh_frame_context_pending = 1; + return 0; +} + +#if defined(OUTPUT_YUV_DENOISED) || defined(OUTPUT_YUV_SKINMAP) +// The denoiser buffer is allocated as a YUV 440 buffer. This function writes it +// as YUV 420. We simply use the top-left pixels of the UV buffers, since we do +// not denoise the UV channels at this time. If ever we implement UV channel +// denoising we will have to modify this. +void aom_write_yuv_frame_420(YV12_BUFFER_CONFIG *s, FILE *f) { + uint8_t *src = s->y_buffer; + int h = s->y_height; + + do { + fwrite(src, s->y_width, 1, f); + src += s->y_stride; + } while (--h); + + src = s->u_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, f); + src += s->uv_stride; + } while (--h); + + src = s->v_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, f); + src += s->uv_stride; + } while (--h); +} +#endif + +static void check_show_existing_frame(AV1_COMP *cpi) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + AV1_COMMON *const cm = &cpi->common; + const FRAME_UPDATE_TYPE next_frame_update_type = + gf_group->update_type[gf_group->index]; +#if USE_SYMM_MULTI_LAYER + const int which_arf = (cpi->new_bwdref_update_rule == 1) + ? gf_group->arf_update_idx[gf_group->index] > 0 + : gf_group->arf_update_idx[gf_group->index]; +#else + const int which_arf = gf_group->arf_update_idx[gf_group->index]; +#endif + + if (cm->show_existing_frame == 1) { + cm->show_existing_frame = 0; + } else if (cpi->rc.is_last_bipred_frame) { +#if USE_SYMM_MULTI_LAYER + // NOTE: When new structure is used, every bwdref will have one overlay + // frame. Therefore, there is no need to find out which frame to + // show in advance. + if (cpi->new_bwdref_update_rule == 0) { +#endif + // NOTE: If the current frame is a last bi-predictive frame, it is + // needed next to show the BWDREF_FRAME, which is pointed by + // the last_fb_idxes[0] after reference frame buffer update + cpi->rc.is_last_bipred_frame = 0; + cm->show_existing_frame = 1; + cpi->existing_fb_idx_to_show = cpi->ref_fb_idx[0]; +#if USE_SYMM_MULTI_LAYER + } +#endif + } else if (cpi->is_arf_filter_off[which_arf] && + (next_frame_update_type == OVERLAY_UPDATE || + next_frame_update_type == INTNL_OVERLAY_UPDATE)) { +#if USE_SYMM_MULTI_LAYER + const int bwdref_to_show = + (cpi->new_bwdref_update_rule == 1) ? BWDREF_FRAME : ALTREF2_FRAME; +#else + const int bwdref_to_show = ALTREF2_FRAME; +#endif + // Other parameters related to OVERLAY_UPDATE will be taken care of + // in av1_rc_get_second_pass_params(cpi) + cm->show_existing_frame = 1; + cpi->rc.is_src_frame_alt_ref = 1; + cpi->existing_fb_idx_to_show = (next_frame_update_type == OVERLAY_UPDATE) + ? cpi->ref_fb_idx[ALTREF_FRAME - 1] + : cpi->ref_fb_idx[bwdref_to_show - 1]; +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 0) +#endif + cpi->is_arf_filter_off[which_arf] = 0; + } + cpi->rc.is_src_frame_ext_arf = 0; +} + +#ifdef OUTPUT_YUV_REC +void aom_write_one_yuv_frame(AV1_COMMON *cm, YV12_BUFFER_CONFIG *s) { + uint8_t *src = s->y_buffer; + int h = cm->height; + if (yuv_rec_file == NULL) return; + if (s->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *src16 = CONVERT_TO_SHORTPTR(s->y_buffer); + + do { + fwrite(src16, s->y_width, 2, yuv_rec_file); + src16 += s->y_stride; + } while (--h); + + src16 = CONVERT_TO_SHORTPTR(s->u_buffer); + h = s->uv_height; + + do { + fwrite(src16, s->uv_width, 2, yuv_rec_file); + src16 += s->uv_stride; + } while (--h); + + src16 = CONVERT_TO_SHORTPTR(s->v_buffer); + h = s->uv_height; + + do { + fwrite(src16, s->uv_width, 2, yuv_rec_file); + src16 += s->uv_stride; + } while (--h); + + fflush(yuv_rec_file); + return; + } + + do { + fwrite(src, s->y_width, 1, yuv_rec_file); + src += s->y_stride; + } while (--h); + + src = s->u_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, yuv_rec_file); + src += s->uv_stride; + } while (--h); + + src = s->v_buffer; + h = s->uv_height; + + do { + fwrite(src, s->uv_width, 1, yuv_rec_file); + src += s->uv_stride; + } while (--h); + + fflush(yuv_rec_file); +} +#endif // OUTPUT_YUV_REC + +#define GM_RECODE_LOOP_NUM4X4_FACTOR 192 +static int recode_loop_test_global_motion(AV1_COMP *cpi) { + int i; + int recode = 0; + RD_COUNTS *const rdc = &cpi->td.rd_counts; + AV1_COMMON *const cm = &cpi->common; + for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + if (cm->global_motion[i].wmtype != IDENTITY && + rdc->global_motion_used[i] * GM_RECODE_LOOP_NUM4X4_FACTOR < + cpi->gmparams_cost[i]) { + cm->global_motion[i] = default_warp_params; + assert(cm->global_motion[i].wmtype == IDENTITY); + cpi->gmparams_cost[i] = 0; + recode = 1; + // TODO(sarahparker): The earlier condition for recoding here was: + // "recode |= (rdc->global_motion_used[i] > 0);". Can we bring something + // similar to that back to speed up global motion? + } + } + return recode; +} + +// Function to test for conditions that indicate we should loop +// back and recode a frame. +static int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q, + int maxq, int minq) { + const RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); + int force_recode = 0; + + if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || + (cpi->sf.recode_loop == ALLOW_RECODE) || + (frame_is_kfgfarf && (cpi->sf.recode_loop == ALLOW_RECODE_KFARFGF))) { + // TODO(agrange) high_limit could be greater than the scale-down threshold. + if ((rc->projected_frame_size > high_limit && q < maxq) || + (rc->projected_frame_size < low_limit && q > minq)) { + force_recode = 1; + } else if (cpi->oxcf.rc_mode == AOM_CQ) { + // Deal with frame undershoot and whether or not we are + // below the automatically set cq level. + if (q > oxcf->cq_level && + rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { + force_recode = 1; + } + } + } + return force_recode; +} + +#define DUMP_REF_FRAME_IMAGES 0 + +#if DUMP_REF_FRAME_IMAGES == 1 +static int dump_one_image(AV1_COMMON *cm, + const YV12_BUFFER_CONFIG *const ref_buf, + char *file_name) { + int h; + FILE *f_ref = NULL; + + if (ref_buf == NULL) { + printf("Frame data buffer is NULL.\n"); + return AOM_CODEC_MEM_ERROR; + } + + if ((f_ref = fopen(file_name, "wb")) == NULL) { + printf("Unable to open file %s to write.\n", file_name); + return AOM_CODEC_MEM_ERROR; + } + + // --- Y --- + for (h = 0; h < cm->height; ++h) { + fwrite(&ref_buf->y_buffer[h * ref_buf->y_stride], 1, cm->width, f_ref); + } + // --- U --- + for (h = 0; h < (cm->height >> 1); ++h) { + fwrite(&ref_buf->u_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), + f_ref); + } + // --- V --- + for (h = 0; h < (cm->height >> 1); ++h) { + fwrite(&ref_buf->v_buffer[h * ref_buf->uv_stride], 1, (cm->width >> 1), + f_ref); + } + + fclose(f_ref); + + return AOM_CODEC_OK; +} + +static void dump_ref_frame_images(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MV_REFERENCE_FRAME ref_frame; + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + char file_name[256] = ""; + snprintf(file_name, sizeof(file_name), "/tmp/enc_F%d_ref_%d.yuv", + cm->current_video_frame, ref_frame); + dump_one_image(cm, get_ref_frame_buffer(cpi, ref_frame), file_name); + } +} +#endif // DUMP_REF_FRAME_IMAGES == 1 + +// This function is used to shift the virtual indices of last reference frames +// as follows: +// LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME +// when the LAST_FRAME is updated. +static INLINE void shift_last_ref_frames(AV1_COMP *cpi) { + // TODO(isbs): shift the scaled indices as well + int ref_frame; + for (ref_frame = LAST_REF_FRAMES - 1; ref_frame > 0; --ref_frame) { + cpi->ref_fb_idx[ref_frame] = cpi->ref_fb_idx[ref_frame - 1]; + + // [0] is allocated to the current coded frame. The statistics for the + // reference frames start at [LAST_FRAME], i.e. [1]. + if (!cpi->rc.is_src_frame_alt_ref) { + memcpy(cpi->interp_filter_selected[ref_frame + LAST_FRAME], + cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME], + sizeof(cpi->interp_filter_selected[ref_frame - 1 + LAST_FRAME])); + } + } +} + +#if USE_SYMM_MULTI_LAYER +// This function is used to shift the virtual indices of bwd reference +// frames as follows: +// BWD_REF -> ALT2_REF -> EXT_REF +// to clear a space to store the closest bwdref +static INLINE void rshift_bwd_ref_frames(AV1_COMP *cpi) { + // TODO(isbs): shift the scaled indices as well + static const int ordered_bwd[3] = { BWDREF_FRAME - 1, ALTREF2_FRAME - 1, + EXTREF_FRAME - 1 }; + + for (int i = 2; i > 0; --i) { + // [0] is allocated to the current coded frame, i.e. bwdref + memcpy( + cpi->interp_filter_selected[ordered_bwd[i] + LAST_FRAME], + cpi->interp_filter_selected[ordered_bwd[i - 1] + LAST_FRAME], + sizeof(cpi->interp_filter_selected[ordered_bwd[i - 1] + LAST_FRAME])); + + cpi->ref_fb_idx[ordered_bwd[i]] = cpi->ref_fb_idx[ordered_bwd[i - 1]]; + } +} + +// This function is used to shift the virtual indices of bwd reference +// frames as follows: +// BWD_REF <- ALT2_REF <- EXT_REF +// to update the bwd reference frame for coding the next frame. +static INLINE void lshift_bwd_ref_frames(AV1_COMP *cpi) { + // TODO(isbs): shift the scaled indices as well + static const int ordered_bwd[3] = { BWDREF_FRAME - 1, ALTREF2_FRAME - 1, + EXTREF_FRAME - 1 }; + + for (int i = 0; i < 2; ++i) { + // [0] is allocated to the current coded frame, i.e. bwdref + memcpy( + cpi->interp_filter_selected[ordered_bwd[i] + LAST_FRAME], + cpi->interp_filter_selected[ordered_bwd[i + 1] + LAST_FRAME], + sizeof(cpi->interp_filter_selected[ordered_bwd[i + 1] + LAST_FRAME])); + + cpi->ref_fb_idx[ordered_bwd[i]] = cpi->ref_fb_idx[ordered_bwd[i + 1]]; + } +} +#endif // USE_SYMM_MULTI_LAYER + +static void update_reference_frames(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + + // NOTE: Save the new show frame buffer index for --test-code=warn, i.e., + // for the purpose to verify no mismatch between encoder and decoder. + if (cm->show_frame) cpi->last_show_frame_buf_idx = cm->new_fb_idx; + + // In the case of show_existing frame, we will not send fresh flag + // to decoder. Any change in the reference frame buffer can be done by + // switching the virtual indices. + if (cm->show_existing_frame) { + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_bwd_ref_frame = 0; + cpi->rc.is_last_bipred_frame = 0; + cpi->rc.is_bipred_frame = 0; + } + + BufferPool *const pool = cm->buffer_pool; + + // At this point the new frame has been encoded. + // If any buffer copy / swapping is signaled it should be done here. + + // Only update all of the reference buffers if a KEY_FRAME is also a + // show_frame. This ensures a fwd keyframe does not update all of the buffers + if ((cm->frame_type == KEY_FRAME && cm->show_frame) || frame_is_sframe(cm)) { + for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[ref_frame]], + cm->new_fb_idx); + } + return; + } + + if (av1_preserve_existing_gf(cpi)) { + // We have decided to preserve the previously existing golden frame as our + // new ARF frame. However, in the short term in function + // av1_bitstream.c::get_refresh_mask() we left it in the GF slot and, if + // we're updating the GF with the current decoded frame, we save it to the + // ARF slot instead. + // We now have to update the ARF with the current frame and swap gld_fb_idx + // and alt_fb_idx so that, overall, we've stored the old GF in the new ARF + // slot and, if we're updating the GF, the current frame becomes the new GF. + int tmp; + + // ARF in general is a better reference than overlay. We shouldkeep ARF as + // reference instead of replacing it with overlay. + + if (!cpi->preserve_arf_as_gld) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[ALTREF_FRAME - 1]], + cm->new_fb_idx); + } + + tmp = cpi->ref_fb_idx[ALTREF_FRAME - 1]; + cpi->ref_fb_idx[ALTREF_FRAME - 1] = cpi->ref_fb_idx[GOLDEN_FRAME - 1]; + cpi->ref_fb_idx[GOLDEN_FRAME - 1] = tmp; + + // TODO(zoeliu): Do we need to copy cpi->interp_filter_selected[0] over to + // cpi->interp_filter_selected[GOLDEN_FRAME]? + } else if (cpi->rc.is_src_frame_ext_arf && cm->show_existing_frame) { +#if CONFIG_DEBUG + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + assert(gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE); +#endif +#if USE_SYMM_MULTI_LAYER + const int bwdref_to_show = + (cpi->new_bwdref_update_rule == 1) ? BWDREF_FRAME : ALTREF2_FRAME; +#else + const int bwdref_to_show = ALTREF2_FRAME; +#endif + // Deal with the special case for showing existing internal ALTREF_FRAME + // Refresh the LAST_FRAME with the ALTREF_FRAME and retire the LAST3_FRAME + // by updating the virtual indices. + const int tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1]; + shift_last_ref_frames(cpi); + + cpi->ref_fb_idx[LAST_FRAME - 1] = cpi->ref_fb_idx[bwdref_to_show - 1]; + + memcpy(cpi->interp_filter_selected[LAST_FRAME], + cpi->interp_filter_selected[bwdref_to_show], + sizeof(cpi->interp_filter_selected[bwdref_to_show])); +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 1) { + lshift_bwd_ref_frames(cpi); + // pass outdated forward reference frame (previous LAST3) to the + // spared space + cpi->ref_fb_idx[EXTREF_FRAME - 1] = tmp; + } else { +#endif + cpi->ref_fb_idx[bwdref_to_show - 1] = tmp; +#if USE_SYMM_MULTI_LAYER + } +#endif + } else { /* For non key/golden frames */ + // === ALTREF_FRAME === + if (cpi->refresh_alt_ref_frame) { + int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1]; + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); + + memcpy(cpi->interp_filter_selected[ALTREF_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } + + // === GOLDEN_FRAME === + if (cpi->refresh_golden_frame) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]], + cm->new_fb_idx); + + memcpy(cpi->interp_filter_selected[GOLDEN_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } + + // === BWDREF_FRAME === + if (cpi->refresh_bwd_ref_frame) { +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule) { + // We shift the backward reference frame as follows: + // BWDREF -> ALTREF2 -> EXTREF + // and assign the newly coded frame to BWDREF so that it always + // keeps the nearest future frame + int tmp = cpi->ref_fb_idx[EXTREF_FRAME - 1]; + ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[tmp], cm->new_fb_idx); + + rshift_bwd_ref_frames(cpi); + cpi->ref_fb_idx[BWDREF_FRAME - 1] = tmp; + } else { +#endif // USE_SYMM_MULTI_LAYER + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[BWDREF_FRAME - 1]], + cm->new_fb_idx); +#if USE_SYMM_MULTI_LAYER + } +#endif + memcpy(cpi->interp_filter_selected[BWDREF_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } + + // === ALTREF2_FRAME === + if (cpi->refresh_alt2_ref_frame) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]], + cm->new_fb_idx); + + memcpy(cpi->interp_filter_selected[ALTREF2_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + } + } + + if (cpi->refresh_last_frame) { + // NOTE(zoeliu): We have two layers of mapping (1) from the per-frame + // reference to the reference frame buffer virtual index; and then (2) from + // the virtual index to the reference frame buffer physical index: + // + // LAST_FRAME, ..., LAST3_FRAME, ..., ALTREF_FRAME + // | | | + // v v v + // ref_fb_idx[0], ..., ref_fb_idx[2], ..., ref_fb_idx[ALTREF_FRAME-1] + // | | | + // v v v + // ref_frame_map[], ..., ref_frame_map[], ..., ref_frame_map[] + // + // When refresh_last_frame is set, it is intended to retire LAST3_FRAME, + // have the other 2 LAST reference frames shifted as follows: + // LAST_FRAME -> LAST2_FRAME -> LAST3_FRAME + // , and then have LAST_FRAME refreshed by the newly coded frame. + // + // To fulfill it, the decoder will be notified to execute following 2 steps: + // + // (a) To change ref_frame_map[] and have the virtual index of LAST3_FRAME + // to point to the newly coded frame, i.e. + // ref_frame_map[lst_fb_idexes[2]] => new_fb_idx; + // + // (b) To change the 1st layer mapping to have LAST_FRAME mapped to the + // original virtual index of LAST3_FRAME and have the other mappings + // shifted as follows: + // LAST_FRAME, LAST2_FRAME, LAST3_FRAME + // | | | + // v v v + // ref_fb_idx[2], ref_fb_idx[0], ref_fb_idx[1] + int tmp; + + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[LAST_REF_FRAMES - 1]], + cm->new_fb_idx); + + tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1]; + + shift_last_ref_frames(cpi); + cpi->ref_fb_idx[0] = tmp; + + assert(cm->show_existing_frame == 0); + memcpy(cpi->interp_filter_selected[LAST_FRAME], + cpi->interp_filter_selected[0], + sizeof(cpi->interp_filter_selected[0])); + + // If the new structure is used, we will always have overlay frames coupled + // with bwdref frames. Therefore, we won't have to perform this update + // in advance (we do this update when the overlay frame shows up). +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 0 && cpi->rc.is_last_bipred_frame) { +#else + if (cpi->rc.is_last_bipred_frame) { +#endif + // Refresh the LAST_FRAME with the BWDREF_FRAME and retire the + // LAST3_FRAME by updating the virtual indices. + // + // NOTE: The source frame for BWDREF does not have a holding position as + // the OVERLAY frame for ALTREF's. Hence, to resolve the reference + // virtual index reshuffling for BWDREF, the encoder always + // specifies a LAST_BIPRED right before BWDREF and completes the + // reshuffling job accordingly. + tmp = cpi->ref_fb_idx[LAST_REF_FRAMES - 1]; + + shift_last_ref_frames(cpi); + cpi->ref_fb_idx[0] = cpi->ref_fb_idx[BWDREF_FRAME - 1]; + cpi->ref_fb_idx[BWDREF_FRAME - 1] = tmp; + + memcpy(cpi->interp_filter_selected[LAST_FRAME], + cpi->interp_filter_selected[BWDREF_FRAME], + sizeof(cpi->interp_filter_selected[BWDREF_FRAME])); + } + } + +#if DUMP_REF_FRAME_IMAGES == 1 + // Dump out all reference frame images. + dump_ref_frame_images(cpi); +#endif // DUMP_REF_FRAME_IMAGES +} + +static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, int buffer_idx) { + assert(buffer_idx != INVALID_IDX); + RefCntBuffer *const new_fb_ptr = &cm->buffer_pool->frame_bufs[buffer_idx]; + ensure_mv_buffer(new_fb_ptr, cm); + new_fb_ptr->width = cm->width; + new_fb_ptr->height = cm->height; +} + +static void scale_references(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MV_REFERENCE_FRAME ref_frame; + const AOM_REFFRAME ref_mask[INTER_REFS_PER_FRAME] = { + AOM_LAST_FLAG, AOM_LAST2_FLAG, AOM_LAST3_FLAG, AOM_GOLD_FLAG, + AOM_BWD_FLAG, AOM_ALT2_FLAG, AOM_ALT_FLAG + }; + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + // Need to convert from AOM_REFFRAME to index into ref_mask (subtract 1). + if (cpi->ref_frame_flags & ref_mask[ref_frame - 1]) { + BufferPool *const pool = cm->buffer_pool; + const YV12_BUFFER_CONFIG *const ref = + get_ref_frame_buffer(cpi, ref_frame); + + if (ref == NULL) { + cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; + continue; + } + + if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { + RefCntBuffer *new_fb_ptr = NULL; + int force_scaling = 0; + int new_fb = cpi->scaled_ref_idx[ref_frame - 1]; + if (new_fb == INVALID_IDX) { + new_fb = get_free_fb(cm); + force_scaling = 1; + } + if (new_fb == INVALID_IDX) return; + new_fb_ptr = &pool->frame_bufs[new_fb]; + if (force_scaling || new_fb_ptr->buf.y_crop_width != cm->width || + new_fb_ptr->buf.y_crop_height != cm->height) { + if (aom_realloc_frame_buffer( + &new_fb_ptr->buf, cm->width, cm->height, + cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, + cm->seq_params.use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + av1_resize_and_extend_frame( + ref, &new_fb_ptr->buf, (int)cm->seq_params.bit_depth, num_planes); + cpi->scaled_ref_idx[ref_frame - 1] = new_fb; + alloc_frame_mvs(cm, new_fb); + } + } else { + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + RefCntBuffer *const buf = &pool->frame_bufs[buf_idx]; + buf->buf.y_crop_width = ref->y_crop_width; + buf->buf.y_crop_height = ref->y_crop_height; + cpi->scaled_ref_idx[ref_frame - 1] = buf_idx; + ++buf->ref_count; + } + } else { + if (cpi->oxcf.pass != 0) cpi->scaled_ref_idx[ref_frame - 1] = INVALID_IDX; + } + } +} + +static void release_scaled_references(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + int i; + // TODO(isbs): only refresh the necessary frames, rather than all of them + for (i = 0; i < REF_FRAMES; ++i) { + const int idx = cpi->scaled_ref_idx[i]; + RefCntBuffer *const buf = + idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[idx] : NULL; + if (buf != NULL) { + --buf->ref_count; + cpi->scaled_ref_idx[i] = INVALID_IDX; + } + } +} + +static void set_mv_search_params(AV1_COMP *cpi) { + const AV1_COMMON *const cm = &cpi->common; + const unsigned int max_mv_def = AOMMIN(cm->width, cm->height); + + // Default based on max resolution. + cpi->mv_step_param = av1_init_search_range(max_mv_def); + + if (cpi->sf.mv.auto_mv_step_size) { + if (frame_is_intra_only(cm)) { + // Initialize max_mv_magnitude for use in the first INTER frame + // after a key/intra-only frame. + cpi->max_mv_magnitude = max_mv_def; + } else { + if (cm->show_frame) { + // Allow mv_steps to correspond to twice the max mv magnitude found + // in the previous frame, capped by the default max_mv_magnitude based + // on resolution. + cpi->mv_step_param = av1_init_search_range( + AOMMIN(max_mv_def, 2 * cpi->max_mv_magnitude)); + } + cpi->max_mv_magnitude = 0; + } + } +} + +static void set_size_independent_vars(AV1_COMP *cpi) { + int i; + for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { + cpi->common.global_motion[i] = default_warp_params; + } + cpi->global_motion_search_done = 0; + av1_set_speed_features_framesize_independent(cpi); + av1_set_rd_speed_thresholds(cpi); + av1_set_rd_speed_thresholds_sub8x8(cpi); + cpi->common.interp_filter = SWITCHABLE; + cpi->common.switchable_motion_mode = 1; +} + +static void set_size_dependent_vars(AV1_COMP *cpi, int *q, int *bottom_index, + int *top_index) { + AV1_COMMON *const cm = &cpi->common; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + + // Setup variables that depend on the dimensions of the frame. + av1_set_speed_features_framesize_dependent(cpi); + + // Decide q and q bounds. + *q = av1_rc_pick_q_and_bounds(cpi, cm->width, cm->height, bottom_index, + top_index); + + if (!frame_is_intra_only(cm)) { + set_high_precision_mv(cpi, (*q) < HIGH_PRECISION_MV_QTHRESH, + cpi->common.cur_frame_force_integer_mv); + } + + // Configure experimental use of segmentation for enhanced coding of + // static regions if indicated. + // Only allowed in the second pass of a two pass encode, as it requires + // lagged coding, and if the relevant speed feature flag is set. + if (oxcf->pass == 2 && cpi->sf.static_segmentation) + configure_static_seg_features(cpi); +} + +static void init_motion_estimation(AV1_COMP *cpi) { + int y_stride = cpi->scaled_source.y_stride; + + if (cpi->sf.mv.search_method == NSTEP) { + av1_init3smotion_compensation(&cpi->ss_cfg, y_stride); + } else if (cpi->sf.mv.search_method == DIAMOND) { + av1_init_dsmotion_compensation(&cpi->ss_cfg, y_stride); + } +} + +#define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0 +static void set_restoration_unit_size(int width, int height, int sx, int sy, + RestorationInfo *rst) { + (void)width; + (void)height; + (void)sx; + (void)sy; +#if COUPLED_CHROMA_FROM_LUMA_RESTORATION + int s = AOMMIN(sx, sy); +#else + int s = 0; +#endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION + + if (width * height > 352 * 288) + rst[0].restoration_unit_size = RESTORATION_UNITSIZE_MAX; + else + rst[0].restoration_unit_size = (RESTORATION_UNITSIZE_MAX >> 1); + rst[1].restoration_unit_size = rst[0].restoration_unit_size >> s; + rst[2].restoration_unit_size = rst[1].restoration_unit_size; +} + +static void init_ref_frame_bufs(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + int i; + BufferPool *const pool = cm->buffer_pool; + cm->new_fb_idx = INVALID_IDX; + for (i = 0; i < REF_FRAMES; ++i) { + cm->ref_frame_map[i] = INVALID_IDX; + pool->frame_bufs[i].ref_count = 0; + } + if (cm->seq_params.force_screen_content_tools) { + for (i = 0; i < FRAME_BUFFERS; ++i) { + av1_hash_table_init(&pool->frame_bufs[i].hash_table, &cpi->td.mb); + } + } +} + +static void check_initial_width(AV1_COMP *cpi, int use_highbitdepth, + int subsampling_x, int subsampling_y) { + AV1_COMMON *const cm = &cpi->common; + SequenceHeader *const seq_params = &cm->seq_params; + + if (!cpi->initial_width || seq_params->use_highbitdepth != use_highbitdepth || + seq_params->subsampling_x != subsampling_x || + seq_params->subsampling_y != subsampling_y) { + seq_params->subsampling_x = subsampling_x; + seq_params->subsampling_y = subsampling_y; + seq_params->use_highbitdepth = use_highbitdepth; + + alloc_raw_frame_buffers(cpi); + init_ref_frame_bufs(cpi); + alloc_util_frame_buffers(cpi); + + init_motion_estimation(cpi); // TODO(agrange) This can be removed. + + cpi->initial_width = cm->width; + cpi->initial_height = cm->height; + cpi->initial_mbs = cm->MBs; + } +} + +// Returns 1 if the assigned width or height was <= 0. +static int set_size_literal(AV1_COMP *cpi, int width, int height) { + AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + check_initial_width(cpi, cm->seq_params.use_highbitdepth, + cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + + if (width <= 0 || height <= 0) return 1; + + cm->width = width; + cm->height = height; + + if (cpi->initial_width && cpi->initial_height && + (cm->width > cpi->initial_width || cm->height > cpi->initial_height)) { + av1_free_context_buffers(cm); + av1_free_pc_tree(&cpi->td, num_planes); + alloc_compressor_data(cpi); + realloc_segmentation_maps(cpi); + cpi->initial_width = cpi->initial_height = 0; + } + update_frame_size(cpi); + + return 0; +} + +static void set_frame_size(AV1_COMP *cpi, int width, int height) { + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; + int ref_frame; + + if (width != cm->width || height != cm->height) { + // There has been a change in the encoded frame size + set_size_literal(cpi, width, height); + set_mv_search_params(cpi); + // Recalculate 'all_lossless' in case super-resolution was (un)selected. + cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); + } + + if (cpi->oxcf.pass == 2) { + av1_set_target_rate(cpi, cm->width, cm->height); + } + + alloc_frame_mvs(cm, cm->new_fb_idx); + + // Allocate above context buffers + if (cm->num_allocated_above_context_planes < av1_num_planes(cm) || + cm->num_allocated_above_context_mi_col < cm->mi_cols || + cm->num_allocated_above_contexts < cm->tile_rows) { + av1_free_above_context_buffers(cm, cm->num_allocated_above_contexts); + if (av1_alloc_above_context_buffers(cm, cm->tile_rows)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate context buffers"); + } + + // Reset the frame pointers to the current frame size. + if (aom_realloc_frame_buffer( + get_frame_new_buffer(cm), cm->width, cm->height, + seq_params->subsampling_x, seq_params->subsampling_y, + seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS, + cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to allocate frame buffer"); + + const int frame_width = cm->superres_upscaled_width; + const int frame_height = cm->superres_upscaled_height; + set_restoration_unit_size(frame_width, frame_height, + seq_params->subsampling_x, + seq_params->subsampling_y, cm->rst_info); + for (int i = 0; i < num_planes; ++i) + cm->rst_info[i].frame_restoration_type = RESTORE_NONE; + + av1_alloc_restoration_buffers(cm); + alloc_util_frame_buffers(cpi); // TODO(afergs): Remove? Gets called anyways. + init_motion_estimation(cpi); + + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + RefBuffer *const ref_buf = &cm->frame_refs[ref_frame - LAST_FRAME]; + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + + ref_buf->idx = buf_idx; + + if (buf_idx != INVALID_IDX) { + YV12_BUFFER_CONFIG *const buf = &cm->buffer_pool->frame_bufs[buf_idx].buf; + ref_buf->buf = buf; + av1_setup_scale_factors_for_frame(&ref_buf->sf, buf->y_crop_width, + buf->y_crop_height, cm->width, + cm->height); + if (av1_is_scaled(&ref_buf->sf)) + aom_extend_frame_borders(buf, num_planes); + } else { + ref_buf->buf = NULL; + } + } + + av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height, + cm->width, cm->height); + + set_ref_ptrs(cm, xd, LAST_FRAME, LAST_FRAME); +} + +static uint8_t calculate_next_resize_scale(const AV1_COMP *cpi) { + // Choose an arbitrary random number + static unsigned int seed = 56789; + const AV1EncoderConfig *oxcf = &cpi->oxcf; + if (oxcf->pass == 1) return SCALE_NUMERATOR; + uint8_t new_denom = SCALE_NUMERATOR; + + if (cpi->common.seq_params.reduced_still_picture_hdr) return SCALE_NUMERATOR; + switch (oxcf->resize_mode) { + case RESIZE_NONE: new_denom = SCALE_NUMERATOR; break; + case RESIZE_FIXED: + if (cpi->common.frame_type == KEY_FRAME) + new_denom = oxcf->resize_kf_scale_denominator; + else + new_denom = oxcf->resize_scale_denominator; + break; + case RESIZE_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break; + default: assert(0); + } + return new_denom; +} + +static uint8_t calculate_next_superres_scale(AV1_COMP *cpi) { + // Choose an arbitrary random number + static unsigned int seed = 34567; + const AV1EncoderConfig *oxcf = &cpi->oxcf; + if (oxcf->pass == 1) return SCALE_NUMERATOR; + uint8_t new_denom = SCALE_NUMERATOR; + + // Make sure that superres mode of the frame is consistent with the + // sequence-level flag. + assert(IMPLIES(oxcf->superres_mode != SUPERRES_NONE, + cpi->common.seq_params.enable_superres)); + assert(IMPLIES(!cpi->common.seq_params.enable_superres, + oxcf->superres_mode == SUPERRES_NONE)); + + switch (oxcf->superres_mode) { + case SUPERRES_NONE: new_denom = SCALE_NUMERATOR; break; + case SUPERRES_FIXED: + if (cpi->common.frame_type == KEY_FRAME) + new_denom = oxcf->superres_kf_scale_denominator; + else + new_denom = oxcf->superres_scale_denominator; + break; + case SUPERRES_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break; + case SUPERRES_QTHRESH: { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + const RATE_FACTOR_LEVEL rf_level = gf_group->rf_level[gf_group->index]; + const double rate_factor_delta = rate_factor_deltas[rf_level]; + const int qthresh = (rate_factor_delta <= 1.0) + ? oxcf->superres_qthresh + : oxcf->superres_kf_qthresh; + av1_set_target_rate(cpi, cpi->oxcf.width, cpi->oxcf.height); + int bottom_index, top_index; + const int q = av1_rc_pick_q_and_bounds( + cpi, cpi->oxcf.width, cpi->oxcf.height, &bottom_index, &top_index); + if (q < qthresh) { + new_denom = SCALE_NUMERATOR; + } else { + const uint8_t min_denom = SCALE_NUMERATOR + 1; + const uint8_t denom_step = (MAXQ - qthresh + 1) >> 3; + + if (q == qthresh) { + new_denom = min_denom; + } else if (denom_step == 0) { + new_denom = SCALE_NUMERATOR << 1; + } else { + const uint8_t additional_denom = (q - qthresh) / denom_step; + new_denom = + AOMMIN(min_denom + additional_denom, SCALE_NUMERATOR << 1); + } + } + break; + } + default: assert(0); + } + return new_denom; +} + +static int dimension_is_ok(int orig_dim, int resized_dim, int denom) { + return (resized_dim * SCALE_NUMERATOR >= orig_dim * denom / 2); +} + +static int dimensions_are_ok(int owidth, int oheight, size_params_type *rsz) { + // Only need to check the width, as scaling is horizontal only. + (void)oheight; + return dimension_is_ok(owidth, rsz->resize_width, rsz->superres_denom); +} + +static int validate_size_scales(RESIZE_MODE resize_mode, + SUPERRES_MODE superres_mode, int owidth, + int oheight, size_params_type *rsz) { + if (dimensions_are_ok(owidth, oheight, rsz)) { // Nothing to do. + return 1; + } + + // Calculate current resize scale. + int resize_denom = + AOMMAX(DIVIDE_AND_ROUND(owidth * SCALE_NUMERATOR, rsz->resize_width), + DIVIDE_AND_ROUND(oheight * SCALE_NUMERATOR, rsz->resize_height)); + + if (resize_mode != RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) { + // Alter superres scale as needed to enforce conformity. + rsz->superres_denom = + (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / resize_denom; + if (!dimensions_are_ok(owidth, oheight, rsz)) { + if (rsz->superres_denom > SCALE_NUMERATOR) --rsz->superres_denom; + } + } else if (resize_mode == RESIZE_RANDOM && superres_mode != SUPERRES_RANDOM) { + // Alter resize scale as needed to enforce conformity. + resize_denom = + (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / rsz->superres_denom; + rsz->resize_width = owidth; + rsz->resize_height = oheight; + av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, + resize_denom); + if (!dimensions_are_ok(owidth, oheight, rsz)) { + if (resize_denom > SCALE_NUMERATOR) { + --resize_denom; + rsz->resize_width = owidth; + rsz->resize_height = oheight; + av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, + resize_denom); + } + } + } else if (resize_mode == RESIZE_RANDOM && superres_mode == SUPERRES_RANDOM) { + // Alter both resize and superres scales as needed to enforce conformity. + do { + if (resize_denom > rsz->superres_denom) + --resize_denom; + else + --rsz->superres_denom; + rsz->resize_width = owidth; + rsz->resize_height = oheight; + av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, + resize_denom); + } while (!dimensions_are_ok(owidth, oheight, rsz) && + (resize_denom > SCALE_NUMERATOR || + rsz->superres_denom > SCALE_NUMERATOR)); + } else { // We are allowed to alter neither resize scale nor superres + // scale. + return 0; + } + return dimensions_are_ok(owidth, oheight, rsz); +} + +// Calculates resize and superres params for next frame +size_params_type av1_calculate_next_size_params(AV1_COMP *cpi) { + const AV1EncoderConfig *oxcf = &cpi->oxcf; + size_params_type rsz = { oxcf->width, oxcf->height, SCALE_NUMERATOR }; + int resize_denom; + if (oxcf->pass == 1) return rsz; + if (cpi->resize_pending_width && cpi->resize_pending_height) { + rsz.resize_width = cpi->resize_pending_width; + rsz.resize_height = cpi->resize_pending_height; + cpi->resize_pending_width = cpi->resize_pending_height = 0; + } else { + resize_denom = calculate_next_resize_scale(cpi); + rsz.resize_width = cpi->oxcf.width; + rsz.resize_height = cpi->oxcf.height; + av1_calculate_scaled_size(&rsz.resize_width, &rsz.resize_height, + resize_denom); + } + rsz.superres_denom = calculate_next_superres_scale(cpi); + if (!validate_size_scales(oxcf->resize_mode, oxcf->superres_mode, oxcf->width, + oxcf->height, &rsz)) + assert(0 && "Invalid scale parameters"); + return rsz; +} + +static void setup_frame_size_from_params(AV1_COMP *cpi, size_params_type *rsz) { + int encode_width = rsz->resize_width; + int encode_height = rsz->resize_height; + + AV1_COMMON *cm = &cpi->common; + cm->superres_upscaled_width = encode_width; + cm->superres_upscaled_height = encode_height; + cm->superres_scale_denominator = rsz->superres_denom; + av1_calculate_scaled_superres_size(&encode_width, &encode_height, + rsz->superres_denom); + set_frame_size(cpi, encode_width, encode_height); +} + +static void setup_frame_size(AV1_COMP *cpi) { + size_params_type rsz = av1_calculate_next_size_params(cpi); + setup_frame_size_from_params(cpi, &rsz); +} + +static void superres_post_encode(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + + if (!av1_superres_scaled(cm)) return; + + assert(cpi->oxcf.enable_superres); + assert(!is_lossless_requested(&cpi->oxcf)); + assert(!cm->all_lossless); + + av1_superres_upscale(cm, NULL); + + // If regular resizing is occurring the source will need to be downscaled to + // match the upscaled superres resolution. Otherwise the original source is + // used. + if (!av1_resize_scaled(cm)) { + cpi->source = cpi->unscaled_source; + if (cpi->last_source != NULL) cpi->last_source = cpi->unscaled_last_source; + } else { + assert(cpi->unscaled_source->y_crop_width != cm->superres_upscaled_width); + assert(cpi->unscaled_source->y_crop_height != cm->superres_upscaled_height); + // Do downscale. cm->(width|height) has been updated by + // av1_superres_upscale + if (aom_realloc_frame_buffer( + &cpi->scaled_source, cm->superres_upscaled_width, + cm->superres_upscaled_height, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y, cm->seq_params.use_highbitdepth, + AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL)) + aom_internal_error( + &cm->error, AOM_CODEC_MEM_ERROR, + "Failed to reallocate scaled source buffer for superres"); + assert(cpi->scaled_source.y_crop_width == cm->superres_upscaled_width); + assert(cpi->scaled_source.y_crop_height == cm->superres_upscaled_height); + av1_resize_and_extend_frame(cpi->unscaled_source, &cpi->scaled_source, + (int)cm->seq_params.bit_depth, num_planes); + cpi->source = &cpi->scaled_source; + } +} + +static void loopfilter_frame(AV1_COMP *cpi, AV1_COMMON *cm) { + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &cpi->td.mb.e_mbd; + + assert(IMPLIES(is_lossless_requested(&cpi->oxcf), + cm->coded_lossless && cm->all_lossless)); + + const int no_loopfilter = cm->coded_lossless || cm->large_scale_tile; + const int no_cdef = + !cm->seq_params.enable_cdef || cm->coded_lossless || cm->large_scale_tile; + const int no_restoration = !cm->seq_params.enable_restoration || + cm->all_lossless || cm->large_scale_tile; + + struct loopfilter *lf = &cm->lf; + + if (no_loopfilter) { + lf->filter_level[0] = 0; + lf->filter_level[1] = 0; + } else { + struct aom_usec_timer timer; + + aom_clear_system_state(); + + aom_usec_timer_start(&timer); + + av1_pick_filter_level(cpi->source, cpi, cpi->sf.lpf_pick); + + aom_usec_timer_mark(&timer); + cpi->time_pick_lpf += aom_usec_timer_elapsed(&timer); + } + + if (lf->filter_level[0] || lf->filter_level[1]) { +#if LOOP_FILTER_BITMASK + av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, 0, num_planes, 0); +#else + if (cpi->num_workers > 1) + av1_loop_filter_frame_mt(cm->frame_to_show, cm, xd, 0, num_planes, 0, + cpi->workers, cpi->num_workers, + &cpi->lf_row_sync); + else + av1_loop_filter_frame(cm->frame_to_show, cm, xd, 0, num_planes, 0); +#endif + } + + if (!no_restoration) + av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 0); + + if (no_cdef) { + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->nb_cdef_strengths = 1; + cm->cdef_uv_strengths[0] = 0; + } else { + // Find CDEF parameters + av1_cdef_search(cm->frame_to_show, cpi->source, cm, xd, + cpi->sf.fast_cdef_search); + + // Apply the filter + av1_cdef_frame(cm->frame_to_show, cm, xd); + } + + superres_post_encode(cpi); + + if (no_restoration) { + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } else { + av1_loop_restoration_save_boundary_lines(cm->frame_to_show, cm, 1); + av1_pick_filter_restoration(cpi->source, cpi); + if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || + cm->rst_info[1].frame_restoration_type != RESTORE_NONE || + cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { + if (cpi->num_workers > 1) + av1_loop_restoration_filter_frame_mt(cm->frame_to_show, cm, 0, + cpi->workers, cpi->num_workers, + &cpi->lr_row_sync, &cpi->lr_ctxt); + else + av1_loop_restoration_filter_frame(cm->frame_to_show, cm, 0, + &cpi->lr_ctxt); + } + } +} + +static int encode_without_recode_loop(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + int q = 0, bottom_index = 0, top_index = 0; // Dummy variables. + + aom_clear_system_state(); + + set_size_independent_vars(cpi); + + setup_frame_size(cpi); + + assert(cm->width == cpi->scaled_source.y_crop_width); + assert(cm->height == cpi->scaled_source.y_crop_height); + + set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); + + cpi->source = + av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source); + if (cpi->unscaled_last_source != NULL) + cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source, + &cpi->scaled_last_source); + cpi->source->buf_8bit_valid = 0; + if (frame_is_intra_only(cm) == 0) { + scale_references(cpi); + } + + av1_set_quantizer(cm, q); + setup_frame(cpi); + suppress_active_map(cpi); + + // Variance adaptive and in frame q adjustment experiments are mutually + // exclusive. + if (cpi->oxcf.aq_mode == VARIANCE_AQ) { + av1_vaq_frame_setup(cpi); + } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { + av1_setup_in_frame_q_adj(cpi); + } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { + av1_cyclic_refresh_setup(cpi); + } + apply_active_map(cpi); + if (cm->seg.enabled) { + if (!cm->seg.update_data && cm->prev_frame) { + segfeatures_copy(&cm->seg, &cm->prev_frame->seg); + } else { + calculate_segdata(&cm->seg); + } + } else { + memset(&cm->seg, 0, sizeof(cm->seg)); + } + segfeatures_copy(&cm->cur_frame->seg, &cm->seg); + + // transform / motion compensation build reconstruction frame + av1_encode_frame(cpi); + + // Update some stats from cyclic refresh, and check if we should not update + // golden reference, for 1 pass CBR. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->frame_type != KEY_FRAME && + (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == AOM_CBR)) + av1_cyclic_refresh_check_golden_update(cpi); + + // Update the skip mb flag probabilities based on the distribution + // seen in the last encoder iteration. + // update_base_skip_probs(cpi); + aom_clear_system_state(); + return AOM_CODEC_OK; +} + +static int encode_with_recode_loop(AV1_COMP *cpi, size_t *size, uint8_t *dest) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int bottom_index, top_index; + int loop_count = 0; + int loop_at_this_size = 0; + int loop = 0; + int overshoot_seen = 0; + int undershoot_seen = 0; + int frame_over_shoot_limit; + int frame_under_shoot_limit; + int q = 0, q_low = 0, q_high = 0; + + set_size_independent_vars(cpi); + + cpi->source->buf_8bit_valid = 0; + + aom_clear_system_state(); + setup_frame_size(cpi); + set_size_dependent_vars(cpi, &q, &bottom_index, &top_index); + + do { + aom_clear_system_state(); + + if (loop_count == 0) { + // TODO(agrange) Scale cpi->max_mv_magnitude if frame-size has changed. + set_mv_search_params(cpi); + + // Reset the loop state for new frame size. + overshoot_seen = 0; + undershoot_seen = 0; + + q_low = bottom_index; + q_high = top_index; + + loop_at_this_size = 0; + + // Decide frame size bounds first time through. + av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, + &frame_under_shoot_limit, + &frame_over_shoot_limit); + } + + // if frame was scaled calculate global_motion_search again if already + // done + if (loop_count > 0 && cpi->source && cpi->global_motion_search_done) + if (cpi->source->y_crop_width != cm->width || + cpi->source->y_crop_height != cm->height) + cpi->global_motion_search_done = 0; + cpi->source = + av1_scale_if_required(cm, cpi->unscaled_source, &cpi->scaled_source); + if (cpi->unscaled_last_source != NULL) + cpi->last_source = av1_scale_if_required(cm, cpi->unscaled_last_source, + &cpi->scaled_last_source); + + if (frame_is_intra_only(cm) == 0) { + if (loop_count > 0) { + release_scaled_references(cpi); + } + scale_references(cpi); + } + av1_set_quantizer(cm, q); + // printf("Frame %d/%d: q = %d, frame_type = %d\n", cm->current_video_frame, + // cm->show_frame, q, cm->frame_type); + + if (loop_count == 0) setup_frame(cpi); + + // Base q-index may have changed, so we need to assign proper default coef + // probs before every iteration. + if (cm->primary_ref_frame == PRIMARY_REF_NONE || + cm->frame_refs[cm->primary_ref_frame].idx < 0) { + av1_default_coef_probs(cm); + av1_setup_frame_contexts(cm); + } + + // Variance adaptive and in frame q adjustment experiments are mutually + // exclusive. + if (cpi->oxcf.aq_mode == VARIANCE_AQ) { + av1_vaq_frame_setup(cpi); + } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { + av1_setup_in_frame_q_adj(cpi); + } + if (cm->seg.enabled) { + if (!cm->seg.update_data && cm->prev_frame) { + segfeatures_copy(&cm->seg, &cm->prev_frame->seg); + } else { + calculate_segdata(&cm->seg); + } + } else { + memset(&cm->seg, 0, sizeof(cm->seg)); + } + segfeatures_copy(&cm->cur_frame->seg, &cm->seg); + + // transform / motion compensation build reconstruction frame + save_coding_context(cpi); + av1_encode_frame(cpi); + + // Update the skip mb flag probabilities based on the distribution + // seen in the last encoder iteration. + // update_base_skip_probs(cpi); + + aom_clear_system_state(); + + // Dummy pack of the bitstream using up to date stats to get an + // accurate estimate of output frame size to determine if we need + // to recode. + if (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF) { + restore_coding_context(cpi); + + if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + + rc->projected_frame_size = (int)(*size) << 3; + restore_coding_context(cpi); + + if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; + } + + if (cpi->oxcf.rc_mode == AOM_Q) { + loop = 0; + } else { + if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced && + (rc->projected_frame_size < rc->max_frame_bandwidth)) { + int last_q = q; + int64_t kf_err; + + int64_t high_err_target = cpi->ambient_err; + int64_t low_err_target = cpi->ambient_err >> 1; + + if (cm->seq_params.use_highbitdepth) { + kf_err = aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm)); + } else { + kf_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); + } + // Prevent possible divide by zero error below for perfect KF + kf_err += !kf_err; + + // The key frame is not good enough or we can afford + // to make it better without undue risk of popping. + if ((kf_err > high_err_target && + rc->projected_frame_size <= frame_over_shoot_limit) || + (kf_err > low_err_target && + rc->projected_frame_size <= frame_under_shoot_limit)) { + // Lower q_high + q_high = q > q_low ? q - 1 : q_low; + + // Adjust Q + q = (int)((q * high_err_target) / kf_err); + q = AOMMIN(q, (q_high + q_low) >> 1); + } else if (kf_err < low_err_target && + rc->projected_frame_size >= frame_under_shoot_limit) { + // The key frame is much better than the previous frame + // Raise q_low + q_low = q < q_high ? q + 1 : q_high; + + // Adjust Q + q = (int)((q * low_err_target) / kf_err); + q = AOMMIN(q, (q_high + q_low + 1) >> 1); + } + + // Clamp Q to upper and lower limits: + q = clamp(q, q_low, q_high); + + loop = q != last_q; + } else if (recode_loop_test(cpi, frame_over_shoot_limit, + frame_under_shoot_limit, q, + AOMMAX(q_high, top_index), bottom_index)) { + // Is the projected frame size out of range and are we allowed + // to attempt to recode. + int last_q = q; + int retries = 0; + + // Frame size out of permitted range: + // Update correction factor & compute new Q to try... + // Frame is too large + if (rc->projected_frame_size > rc->this_frame_target) { + // Special case if the projected size is > the max allowed. + if (rc->projected_frame_size >= rc->max_frame_bandwidth) + q_high = rc->worst_quality; + + // Raise Qlow as to at least the current value + q_low = q < q_high ? q + 1 : q_high; + + if (undershoot_seen || loop_at_this_size > 1) { + // Update rate_correction_factor unless + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + + q = (q_high + q_low + 1) / 2; + } else { + // Update rate_correction_factor unless + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + + q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + AOMMAX(q_high, top_index), cm->width, + cm->height); + + while (q < q_low && retries < 10) { + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + AOMMAX(q_high, top_index), cm->width, + cm->height); + retries++; + } + } + + overshoot_seen = 1; + } else { + // Frame is too small + q_high = q > q_low ? q - 1 : q_low; + + if (overshoot_seen || loop_at_this_size > 1) { + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + q = (q_high + q_low) / 2; + } else { + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + top_index, cm->width, cm->height); + // Special case reset for qlow for constrained quality. + // This should only trigger where there is very substantial + // undershoot on a frame and the auto cq level is above + // the user passsed in value. + if (cpi->oxcf.rc_mode == AOM_CQ && q < q_low) { + q_low = q; + } + + while (q > q_high && retries < 10) { + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + q = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, + top_index, cm->width, cm->height); + retries++; + } + } + + undershoot_seen = 1; + } + + // Clamp Q to upper and lower limits: + q = clamp(q, q_low, q_high); + + loop = (q != last_q); + } else { + loop = 0; + } + } + + // Special case for overlay frame. + if (rc->is_src_frame_alt_ref && + rc->projected_frame_size < rc->max_frame_bandwidth) + loop = 0; + + if (!cpi->sf.gm_disable_recode) { + if (recode_loop_test_global_motion(cpi)) loop = 1; + } + + if (loop) { + ++loop_count; + ++loop_at_this_size; + +#if CONFIG_INTERNAL_STATS + ++cpi->tot_recode_hits; +#endif + } + } while (loop); + + return AOM_CODEC_OK; +} + +static int get_ref_frame_flags(const AV1_COMP *cpi) { + const int *const map = cpi->common.ref_frame_map; + + // No.1 Priority: LAST_FRAME + const int last2_is_last = map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[0]]; + const int last3_is_last = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[0]]; + const int gld_is_last = + map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[0]]; + const int bwd_is_last = + map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]]; + const int alt2_is_last = + map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[0]]; + const int alt_is_last = + map[cpi->ref_fb_idx[ALTREF_FRAME - 1]] == map[cpi->ref_fb_idx[0]]; + + // No.2 Priority: ALTREF_FRAME + const int last2_is_alt = + map[cpi->ref_fb_idx[1]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]]; + const int last3_is_alt = + map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[ALTREF_FRAME - 1]]; + const int gld_is_alt = map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == + map[cpi->ref_fb_idx[ALTREF_FRAME - 1]]; + const int bwd_is_alt = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == + map[cpi->ref_fb_idx[ALTREF_FRAME - 1]]; + const int alt2_is_alt = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == + map[cpi->ref_fb_idx[ALTREF_FRAME - 1]]; + + // No.3 Priority: LAST2_FRAME + const int last3_is_last2 = map[cpi->ref_fb_idx[2]] == map[cpi->ref_fb_idx[1]]; + const int gld_is_last2 = + map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[1]]; + const int bwd_is_last2 = + map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[1]]; + const int alt2_is_last2 = + map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[1]]; + + // No.4 Priority: LAST3_FRAME + const int gld_is_last3 = + map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]] == map[cpi->ref_fb_idx[2]]; + const int bwd_is_last3 = + map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == map[cpi->ref_fb_idx[2]]; + const int alt2_is_last3 = + map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == map[cpi->ref_fb_idx[2]]; + + // No.5 Priority: GOLDEN_FRAME + const int bwd_is_gld = map[cpi->ref_fb_idx[BWDREF_FRAME - 1]] == + map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]]; + const int alt2_is_gld = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == + map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]]; + + // No.6 Priority: BWDREF_FRAME + const int alt2_is_bwd = map[cpi->ref_fb_idx[ALTREF2_FRAME - 1]] == + map[cpi->ref_fb_idx[BWDREF_FRAME - 1]]; + + // No.7 Priority: ALTREF2_FRAME + + // After av1_apply_encoding_flags() is called, cpi->ref_frame_flags might be + // adjusted according to external encoder flags. + int flags = cpi->ext_ref_frame_flags; + + if (cpi->rc.frames_till_gf_update_due == INT_MAX) flags &= ~AOM_GOLD_FLAG; + + if (alt_is_last) flags &= ~AOM_ALT_FLAG; + + if (last2_is_last || last2_is_alt) flags &= ~AOM_LAST2_FLAG; + + if (last3_is_last || last3_is_alt || last3_is_last2) flags &= ~AOM_LAST3_FLAG; + + if (gld_is_last || gld_is_alt || gld_is_last2 || gld_is_last3) + flags &= ~AOM_GOLD_FLAG; + + if ((bwd_is_last || bwd_is_alt || bwd_is_last2 || bwd_is_last3 || + bwd_is_gld) && + (flags & AOM_BWD_FLAG)) + flags &= ~AOM_BWD_FLAG; + + if ((alt2_is_last || alt2_is_alt || alt2_is_last2 || alt2_is_last3 || + alt2_is_gld || alt2_is_bwd) && + (flags & AOM_ALT2_FLAG)) + flags &= ~AOM_ALT2_FLAG; + + return flags; +} + +static void set_ext_overrides(AV1_COMP *cpi) { + // Overrides the defaults with the externally supplied values with + // av1_update_reference() and av1_update_entropy() calls + // Note: The overrides are valid only for the next frame passed + // to encode_frame_to_data_rate() function + if (cpi->ext_use_s_frame) cpi->common.frame_type = S_FRAME; + cpi->common.force_primary_ref_none = cpi->ext_use_primary_ref_none; + + if (cpi->ext_refresh_frame_context_pending) { + cpi->common.refresh_frame_context = cpi->ext_refresh_frame_context; + cpi->ext_refresh_frame_context_pending = 0; + } + if (cpi->ext_refresh_frame_flags_pending) { + cpi->refresh_last_frame = cpi->ext_refresh_last_frame; + cpi->refresh_golden_frame = cpi->ext_refresh_golden_frame; + cpi->refresh_alt_ref_frame = cpi->ext_refresh_alt_ref_frame; + cpi->refresh_bwd_ref_frame = cpi->ext_refresh_bwd_ref_frame; + cpi->refresh_alt2_ref_frame = cpi->ext_refresh_alt2_ref_frame; + cpi->ext_refresh_frame_flags_pending = 0; + } + cpi->common.allow_ref_frame_mvs = cpi->ext_use_ref_frame_mvs; + // A keyframe is already error resilient and keyframes with + // error_resilient_mode interferes with the use of show_existing_frame + // when forward reference keyframes are enabled. + cpi->common.error_resilient_mode = + cpi->ext_use_error_resilient && cpi->common.frame_type != KEY_FRAME; +} + +#define DUMP_RECON_FRAMES 0 + +#if DUMP_RECON_FRAMES == 1 +// NOTE(zoeliu): For debug - Output the filtered reconstructed video. +static void dump_filtered_recon_frames(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const YV12_BUFFER_CONFIG *recon_buf = cm->frame_to_show; + + if (recon_buf == NULL) { + printf("Frame %d is not ready.\n", cm->current_video_frame); + return; + } + + static const int flag_list[REF_FRAMES] = { 0, + AOM_LAST_FLAG, + AOM_LAST2_FLAG, + AOM_LAST3_FLAG, + AOM_GOLD_FLAG, + AOM_BWD_FLAG, + AOM_ALT2_FLAG, + AOM_ALT_FLAG }; + printf( + "\n***Frame=%d (frame_offset=%d, show_frame=%d, " + "show_existing_frame=%d) " + "[LAST LAST2 LAST3 GOLDEN BWD ALT2 ALT]=[", + cm->current_video_frame, cm->frame_offset, cm->show_frame, + cm->show_existing_frame); + for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; + const int ref_offset = + (buf_idx >= 0) + ? (int)cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset + : -1; + printf( + " %d(%c-%d-%4.2f)", ref_offset, + (cpi->ref_frame_flags & flag_list[ref_frame]) ? 'Y' : 'N', + (buf_idx >= 0) ? (int)cpi->frame_rf_level[buf_idx] : -1, + (buf_idx >= 0) ? rate_factor_deltas[cpi->frame_rf_level[buf_idx]] : -1); + } + printf(" ]\n"); + + if (!cm->show_frame) { + printf("Frame %d is a no show frame, so no image dump.\n", + cm->current_video_frame); + return; + } + + int h; + char file_name[256] = "/tmp/enc_filtered_recon.yuv"; + FILE *f_recon = NULL; + + if (cm->current_video_frame == 0) { + if ((f_recon = fopen(file_name, "wb")) == NULL) { + printf("Unable to open file %s to write.\n", file_name); + return; + } + } else { + if ((f_recon = fopen(file_name, "ab")) == NULL) { + printf("Unable to open file %s to append.\n", file_name); + return; + } + } + printf( + "\nFrame=%5d, encode_update_type[%5d]=%1d, frame_offset=%d, " + "show_frame=%d, show_existing_frame=%d, source_alt_ref_active=%d, " + "refresh_alt_ref_frame=%d, rf_level=%d, " + "y_stride=%4d, uv_stride=%4d, cm->width=%4d, cm->height=%4d\n\n", + cm->current_video_frame, cpi->twopass.gf_group.index, + cpi->twopass.gf_group.update_type[cpi->twopass.gf_group.index], + cm->frame_offset, cm->show_frame, cm->show_existing_frame, + cpi->rc.source_alt_ref_active, cpi->refresh_alt_ref_frame, + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index], + recon_buf->y_stride, recon_buf->uv_stride, cm->width, cm->height); +#if 0 + int ref_frame; + printf("get_ref_frame_map_idx: ["); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) + printf(" %d", get_ref_frame_map_idx(cpi, ref_frame)); + printf(" ]\n"); + printf("cm->new_fb_idx = %d\n", cm->new_fb_idx); + printf("cm->ref_frame_map = ["); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + printf(" %d", cm->ref_frame_map[ref_frame - LAST_FRAME]); + } + printf(" ]\n"); +#endif // 0 + + // --- Y --- + for (h = 0; h < cm->height; ++h) { + fwrite(&recon_buf->y_buffer[h * recon_buf->y_stride], 1, cm->width, + f_recon); + } + // --- U --- + for (h = 0; h < (cm->height >> 1); ++h) { + fwrite(&recon_buf->u_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), + f_recon); + } + // --- V --- + for (h = 0; h < (cm->height >> 1); ++h) { + fwrite(&recon_buf->v_buffer[h * recon_buf->uv_stride], 1, (cm->width >> 1), + f_recon); + } + + fclose(f_recon); +} +#endif // DUMP_RECON_FRAMES + +static INLINE int is_frame_droppable(AV1_COMP *cpi) { + return !(cpi->refresh_alt_ref_frame || cpi->refresh_alt2_ref_frame || + cpi->refresh_bwd_ref_frame || cpi->refresh_golden_frame || + cpi->refresh_last_frame); +} + +static int encode_frame_to_data_rate(AV1_COMP *cpi, size_t *size, uint8_t *dest, + int skip_adapt, + unsigned int *frame_flags) { + AV1_COMMON *const cm = &cpi->common; + SequenceHeader *const seq_params = &cm->seq_params; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + struct segmentation *const seg = &cm->seg; + + set_ext_overrides(cpi); + aom_clear_system_state(); + + // frame type has been decided outside of this function call + cm->cur_frame->intra_only = frame_is_intra_only(cm); + cm->cur_frame->frame_type = cm->frame_type; + + // S_FRAMEs are always error resilient + cm->error_resilient_mode |= frame_is_sframe(cm); + + cm->large_scale_tile = cpi->oxcf.large_scale_tile; + cm->single_tile_decoding = cpi->oxcf.single_tile_decoding; + if (cm->large_scale_tile) seq_params->frame_id_numbers_present_flag = 0; + + cm->allow_ref_frame_mvs &= frame_might_allow_ref_frame_mvs(cm); + // cm->allow_ref_frame_mvs needs to be written into the frame header while + // cm->large_scale_tile is 1, therefore, "cm->large_scale_tile=1" case is + // separated from frame_might_allow_ref_frame_mvs(). + cm->allow_ref_frame_mvs &= !cm->large_scale_tile; + + cm->allow_warped_motion = + cpi->oxcf.allow_warped_motion && frame_might_allow_warped_motion(cm); + + // Reset the frame packet stamp index. + if (cm->frame_type == KEY_FRAME && cm->show_frame) + cm->current_video_frame = 0; + + // NOTE: + // (1) Move the setup of the ref_frame_flags upfront as it would be + // determined by the current frame properties; + // (2) The setup of the ref_frame_flags applies to both + // show_existing_frame's + // and the other cases. + if (cm->current_video_frame > 0) + cpi->ref_frame_flags = get_ref_frame_flags(cpi); + + if (encode_show_existing_frame(cm)) { + // NOTE(zoeliu): In BIDIR_PRED, the existing frame to show is the current + // BWDREF_FRAME in the reference frame buffer. + if (cm->frame_type == KEY_FRAME) { + cm->reset_decoder_state = 1; + } else { + cm->frame_type = INTER_FRAME; + } + cm->show_frame = 1; + cpi->frame_flags = *frame_flags; + + restore_coding_context(cpi); + + // Build the bitstream + if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + + cpi->seq_params_locked = 1; + + // Set up frame to show to get ready for stats collection. + cm->frame_to_show = get_frame_new_buffer(cm); + + // Update current frame offset. + cm->frame_offset = + cm->buffer_pool->frame_bufs[cm->new_fb_idx].cur_frame_offset; + +#if DUMP_RECON_FRAMES == 1 + // NOTE(zoeliu): For debug - Output the filtered reconstructed video. + dump_filtered_recon_frames(cpi); +#endif // DUMP_RECON_FRAMES + + // Update the LAST_FRAME in the reference frame buffer. + // NOTE: + // (1) For BWDREF_FRAME as the show_existing_frame, the reference frame + // update has been done previously when handling the LAST_BIPRED_FRAME + // right before BWDREF_FRAME (in the display order); + // (2) For INTNL_OVERLAY as the show_existing_frame, the reference frame + // update will be done when the following is called, which will + // exchange + // the virtual indexes between LAST_FRAME and ALTREF2_FRAME, so that + // LAST3 will get retired, LAST2 becomes LAST3, LAST becomes LAST2, + // and + // ALTREF2_FRAME will serve as the new LAST_FRAME. + update_reference_frames(cpi); + + // Update frame flags + cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; + cpi->frame_flags &= ~FRAMEFLAGS_BWDREF; + cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; + + *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; + + // Update the frame type + cm->last_frame_type = cm->frame_type; + + // Since we allocate a spot for the OVERLAY frame in the gf group, we need + // to do post-encoding update accordingly. + if (cpi->rc.is_src_frame_alt_ref) { + av1_set_target_rate(cpi, cm->width, cm->height); + av1_rc_postencode_update(cpi, *size); + } + + ++cm->current_video_frame; + + return AOM_CODEC_OK; + } + + // Set default state for segment based loop filter update flags. + cm->lf.mode_ref_delta_update = 0; + + // Set various flags etc to special state if it is a key frame. + if (frame_is_intra_only(cm) || frame_is_sframe(cm)) { + // Reset the loop filter deltas and segmentation map. + av1_reset_segment_features(cm); + + // If segmentation is enabled force a map update for key frames. + if (seg->enabled) { + seg->update_map = 1; + seg->update_data = 1; + } + + // The alternate reference frame cannot be active for a key frame. + cpi->rc.source_alt_ref_active = 0; + } + if (cpi->oxcf.mtu == 0) { + cm->num_tg = cpi->oxcf.num_tile_groups; + } else { + // Use a default value for the purposes of weighting costs in probability + // updates + cm->num_tg = DEFAULT_MAX_NUM_TG; + } + + // For 1 pass CBR, check if we are dropping this frame. + // Never drop on key frame. + if (oxcf->pass == 0 && oxcf->rc_mode == AOM_CBR && + cm->frame_type != KEY_FRAME) { + if (av1_rc_drop_frame(cpi)) { + av1_rc_postencode_update_drop_frame(cpi); + return AOM_CODEC_OK; + } + } + + aom_clear_system_state(); + +#if CONFIG_INTERNAL_STATS + memset(cpi->mode_chosen_counts, 0, + MAX_MODES * sizeof(*cpi->mode_chosen_counts)); +#endif + + if (seq_params->frame_id_numbers_present_flag) { + /* Non-normative definition of current_frame_id ("frame counter" with + * wraparound) */ + const int frame_id_length = FRAME_ID_LENGTH; + if (cm->current_frame_id == -1) { + int lsb, msb; + /* quasi-random initialization of current_frame_id for a key frame */ + if (cpi->source->flags & YV12_FLAG_HIGHBITDEPTH) { + lsb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[0] & 0xff; + msb = CONVERT_TO_SHORTPTR(cpi->source->y_buffer)[1] & 0xff; + } else { + lsb = cpi->source->y_buffer[0] & 0xff; + msb = cpi->source->y_buffer[1] & 0xff; + } + cm->current_frame_id = ((msb << 8) + lsb) % (1 << frame_id_length); + + // S_frame is meant for stitching different streams of different + // resolutions together, so current_frame_id must be the + // same across different streams of the same content current_frame_id + // should be the same and not random. 0x37 is a chosen number as start + // point + if (cpi->oxcf.sframe_enabled) cm->current_frame_id = 0x37; + } else { + cm->current_frame_id = + (cm->current_frame_id + 1 + (1 << frame_id_length)) % + (1 << frame_id_length); + } + } + + switch (cpi->oxcf.cdf_update_mode) { + case 0: // No CDF update for any frames(4~6% compression loss). + cm->disable_cdf_update = 1; + break; + case 1: // Enable CDF update for all frames. + cm->disable_cdf_update = 0; + break; + case 2: + // Strategically determine at which frames to do CDF update. + // Currently only enable CDF update for all-intra and no-show frames(1.5% + // compression loss). + // TODO(huisu@google.com): design schemes for various trade-offs between + // compression quality and decoding speed. + cm->disable_cdf_update = + (frame_is_intra_only(cm) || !cm->show_frame) ? 0 : 1; + break; + } + cm->timing_info_present &= !seq_params->reduced_still_picture_hdr; + + if (cpi->sf.recode_loop == DISALLOW_RECODE) { + if (encode_without_recode_loop(cpi) != AOM_CODEC_OK) return AOM_CODEC_ERROR; + } else { + if (encode_with_recode_loop(cpi, size, dest) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + } + + cm->last_tile_cols = cm->tile_cols; + cm->last_tile_rows = cm->tile_rows; + +#ifdef OUTPUT_YUV_SKINMAP + if (cpi->common.current_video_frame > 1) { + av1_compute_skin_map(cpi, yuv_skinmap_file); + } +#endif // OUTPUT_YUV_SKINMAP + + // Special case code to reduce pulsing when key frames are forced at a + // fixed interval. Note the reconstruction error if it is the frame before + // the force key frame + if (cpi->rc.next_key_frame_forced && cpi->rc.frames_to_key == 1) { + if (seq_params->use_highbitdepth) { + cpi->ambient_err = + aom_highbd_get_y_sse(cpi->source, get_frame_new_buffer(cm)); + } else { + cpi->ambient_err = aom_get_y_sse(cpi->source, get_frame_new_buffer(cm)); + } + } + + // If the encoder forced a KEY_FRAME decision or if frame is an S_FRAME + if ((cm->frame_type == KEY_FRAME && cm->show_frame) || frame_is_sframe(cm)) { + cpi->refresh_last_frame = 1; + } + + cm->frame_to_show = get_frame_new_buffer(cm); + cm->frame_to_show->color_primaries = seq_params->color_primaries; + cm->frame_to_show->transfer_characteristics = + seq_params->transfer_characteristics; + cm->frame_to_show->matrix_coefficients = seq_params->matrix_coefficients; + cm->frame_to_show->monochrome = seq_params->monochrome; + cm->frame_to_show->chroma_sample_position = + seq_params->chroma_sample_position; + cm->frame_to_show->color_range = seq_params->color_range; + cm->frame_to_show->render_width = cm->render_width; + cm->frame_to_show->render_height = cm->render_height; + + // TODO(zoeliu): For non-ref frames, loop filtering may need to be turned + // off. + + // Pick the loop filter level for the frame. + if (!cm->allow_intrabc) { + loopfilter_frame(cpi, cm); + } else { + cm->lf.filter_level[0] = 0; + cm->lf.filter_level[1] = 0; + cm->cdef_bits = 0; + cm->cdef_strengths[0] = 0; + cm->nb_cdef_strengths = 1; + cm->cdef_uv_strengths[0] = 0; + cm->rst_info[0].frame_restoration_type = RESTORE_NONE; + cm->rst_info[1].frame_restoration_type = RESTORE_NONE; + cm->rst_info[2].frame_restoration_type = RESTORE_NONE; + } + + // TODO(debargha): Fix mv search range on encoder side + // aom_extend_frame_inner_borders(cm->frame_to_show, av1_num_planes(cm)); + aom_extend_frame_borders(cm->frame_to_show, av1_num_planes(cm)); + +#ifdef OUTPUT_YUV_REC + aom_write_one_yuv_frame(cm, cm->frame_to_show); +#endif + + // Build the bitstream + if (av1_pack_bitstream(cpi, dest, size) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + + cpi->seq_params_locked = 1; + + if (skip_adapt) return AOM_CODEC_OK; + + if (seq_params->frame_id_numbers_present_flag) { + int i; + // Update reference frame id values based on the value of refresh_frame_mask + for (i = 0; i < REF_FRAMES; i++) { + if ((cpi->refresh_frame_mask >> i) & 1) { + cm->ref_frame_id[i] = cm->current_frame_id; + } + } + } + +#if DUMP_RECON_FRAMES == 1 + // NOTE(zoeliu): For debug - Output the filtered reconstructed video. + dump_filtered_recon_frames(cpi); +#endif // DUMP_RECON_FRAMES + + if (cm->seg.enabled) { + if (cm->seg.update_map) { + update_reference_segmentation_map(cpi); + } else if (cm->last_frame_seg_map) { + memcpy(cm->current_frame_seg_map, cm->last_frame_seg_map, + cm->mi_cols * cm->mi_rows * sizeof(uint8_t)); + } + } + + if (frame_is_intra_only(cm) == 0) { + release_scaled_references(cpi); + } + + update_reference_frames(cpi); + +#if CONFIG_ENTROPY_STATS + av1_accumulate_frame_counts(&aggregate_fc, &cpi->counts); +#endif // CONFIG_ENTROPY_STATS + + if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { + *cm->fc = cpi->tile_data[cm->largest_tile_id].tctx; + av1_reset_cdf_symbol_counters(cm->fc); + } + + if (cpi->refresh_golden_frame == 1) + cpi->frame_flags |= FRAMEFLAGS_GOLDEN; + else + cpi->frame_flags &= ~FRAMEFLAGS_GOLDEN; + + if (cpi->refresh_alt_ref_frame == 1) + cpi->frame_flags |= FRAMEFLAGS_ALTREF; + else + cpi->frame_flags &= ~FRAMEFLAGS_ALTREF; + + if (cpi->refresh_bwd_ref_frame == 1) + cpi->frame_flags |= FRAMEFLAGS_BWDREF; + else + cpi->frame_flags &= ~FRAMEFLAGS_BWDREF; + + cm->last_frame_type = cm->frame_type; + + av1_rc_postencode_update(cpi, *size); + + if (cm->frame_type == KEY_FRAME) { + // Tell the caller that the frame was coded as a key frame + *frame_flags = cpi->frame_flags | FRAMEFLAGS_KEY; + } else { + *frame_flags = cpi->frame_flags & ~FRAMEFLAGS_KEY; + } + + // Clear the one shot update flags for segmentation map and mode/ref loop + // filter deltas. + cm->seg.update_map = 0; + cm->seg.update_data = 0; + cm->lf.mode_ref_delta_update = 0; + + // A droppable frame might not be shown but it always + // takes a space in the gf group. Therefore, even when + // it is not shown, we still need update the count down. + + if (cm->show_frame) { + // TODO(zoeliu): We may only swamp mi and prev_mi for those frames that + // are + // being used as reference. + swap_mi_and_prev_mi(cm); + // Don't increment frame counters if this was an altref buffer + // update not a real frame + + ++cm->current_video_frame; + } + + // NOTE: Shall not refer to any frame not used as reference. + if (cm->is_reference_frame) { + // keep track of the last coded dimensions + cm->last_width = cm->width; + cm->last_height = cm->height; + + // reset to normal state now that we are done. + cm->last_show_frame = cm->show_frame; + } + + return AOM_CODEC_OK; +} + +static INLINE void update_keyframe_counters(AV1_COMP *cpi) { + // TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME + // differently here for rc->avg_frame_bandwidth. + if (cpi->common.show_frame || cpi->rc.is_bwd_ref_frame) { + if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref || + cpi->common.frame_type == KEY_FRAME) { + // If this is a show_existing_frame with a source other than altref, + // or if it is not a displayed forward keyframe, the keyframe update + // counters were incremented when it was originally encoded. + cpi->rc.frames_since_key++; + cpi->rc.frames_to_key--; + } + } +} + +static INLINE void update_frames_till_gf_update(AV1_COMP *cpi) { + // TODO(weitinglin): Updating this counter for is_frame_droppable + // is a work-around to handle the condition when a frame is drop. + // We should fix the cpi->common.show_frame flag + // instead of checking the other condition to update the counter properly. + if (cpi->common.show_frame || is_frame_droppable(cpi)) { + // Decrement count down till next gf + if (cpi->rc.frames_till_gf_update_due > 0) + cpi->rc.frames_till_gf_update_due--; + } +} + +static INLINE void update_twopass_gf_group_index(AV1_COMP *cpi) { + // Increment the gf group index ready for the next frame. If this is + // a show_existing_frame with a source other than altref, or if it is not + // a displayed forward keyframe, the index was incremented when it was + // originally encoded. + if (!cpi->common.show_existing_frame || cpi->rc.is_src_frame_alt_ref || + cpi->common.frame_type == KEY_FRAME) { + ++cpi->twopass.gf_group.index; + } +} + +static void update_rc_counts(AV1_COMP *cpi) { + update_keyframe_counters(cpi); + update_frames_till_gf_update(cpi); + if (cpi->oxcf.pass == 2) update_twopass_gf_group_index(cpi); +} + +static int Pass0Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest, + int skip_adapt, unsigned int *frame_flags) { + if (cpi->oxcf.rc_mode == AOM_CBR) { + av1_rc_get_one_pass_cbr_params(cpi); + } else { + av1_rc_get_one_pass_vbr_params(cpi); + } + if (encode_frame_to_data_rate(cpi, size, dest, skip_adapt, frame_flags) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + update_rc_counts(cpi); + check_show_existing_frame(cpi); + return AOM_CODEC_OK; +} + +static int Pass2Encode(AV1_COMP *cpi, size_t *size, uint8_t *dest, + unsigned int *frame_flags) { +#if CONFIG_MISMATCH_DEBUG + mismatch_move_frame_idx_w(); +#endif +#if TXCOEFF_COST_TIMER + AV1_COMMON *cm = &cpi->common; + cm->txcoeff_cost_timer = 0; + cm->txcoeff_cost_count = 0; +#endif + + if (encode_frame_to_data_rate(cpi, size, dest, 0, frame_flags) != + AOM_CODEC_OK) { + return AOM_CODEC_ERROR; + } + +#if TXCOEFF_COST_TIMER + cm->cum_txcoeff_cost_timer += cm->txcoeff_cost_timer; + fprintf(stderr, + "\ntxb coeff cost block number: %ld, frame time: %ld, cum time %ld " + "in us\n", + cm->txcoeff_cost_count, cm->txcoeff_cost_timer, + cm->cum_txcoeff_cost_timer); +#endif + + av1_twopass_postencode_update(cpi); + update_rc_counts(cpi); + check_show_existing_frame(cpi); + return AOM_CODEC_OK; +} + +#if CONFIG_DENOISE +static int apply_denoise_2d(AV1_COMP *cpi, YV12_BUFFER_CONFIG *sd, + int block_size, float noise_level, + int64_t time_stamp, int64_t end_time) { + AV1_COMMON *const cm = &cpi->common; + if (!cpi->denoise_and_model) { + cpi->denoise_and_model = aom_denoise_and_model_alloc( + cm->seq_params.bit_depth, block_size, noise_level); + if (!cpi->denoise_and_model) { + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Error allocating denoise and model"); + return -1; + } + } + if (!cpi->film_grain_table) { + cpi->film_grain_table = aom_malloc(sizeof(*cpi->film_grain_table)); + if (!cpi->film_grain_table) { + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Error allocating grain table"); + return -1; + } + memset(cpi->film_grain_table, 0, sizeof(*cpi->film_grain_table)); + } + if (aom_denoise_and_model_run(cpi->denoise_and_model, sd, + &cm->film_grain_params)) { + if (cm->film_grain_params.apply_grain) { + aom_film_grain_table_append(cpi->film_grain_table, time_stamp, end_time, + &cm->film_grain_params); + } + } + return 0; +} +#endif + +int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time) { + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + struct aom_usec_timer timer; + int res = 0; + const int subsampling_x = sd->subsampling_x; + const int subsampling_y = sd->subsampling_y; + const int use_highbitdepth = (sd->flags & YV12_FLAG_HIGHBITDEPTH) != 0; + + check_initial_width(cpi, use_highbitdepth, subsampling_x, subsampling_y); + + aom_usec_timer_start(&timer); + +#if CONFIG_DENOISE + if (cpi->oxcf.noise_level > 0) + if (apply_denoise_2d(cpi, sd, cpi->oxcf.noise_block_size, + cpi->oxcf.noise_level, time_stamp, end_time) < 0) + res = -1; +#endif // CONFIG_DENOISE + + if (av1_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, + use_highbitdepth, frame_flags)) + res = -1; + aom_usec_timer_mark(&timer); + cpi->time_receive_data += aom_usec_timer_elapsed(&timer); + + if ((seq_params->profile == PROFILE_0) && !seq_params->monochrome && + (subsampling_x != 1 || subsampling_y != 1)) { + aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, + "Non-4:2:0 color format requires profile 1 or 2"); + res = -1; + } + if ((seq_params->profile == PROFILE_1) && + !(subsampling_x == 0 && subsampling_y == 0)) { + aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, + "Profile 1 requires 4:4:4 color format"); + res = -1; + } + if ((seq_params->profile == PROFILE_2) && + (seq_params->bit_depth <= AOM_BITS_10) && + !(subsampling_x == 1 && subsampling_y == 0)) { + aom_internal_error(&cm->error, AOM_CODEC_INVALID_PARAM, + "Profile 2 bit-depth < 10 requires 4:2:2 color format"); + res = -1; + } + + return res; +} + +static int frame_is_reference(const AV1_COMP *cpi) { + const AV1_COMMON *cm = &cpi->common; + + return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || + cpi->refresh_golden_frame || cpi->refresh_bwd_ref_frame || + cpi->refresh_alt2_ref_frame || cpi->refresh_alt_ref_frame || + !cm->error_resilient_mode || cm->lf.mode_ref_delta_update || + cm->seg.update_map || cm->seg.update_data; +} + +static void adjust_frame_rate(AV1_COMP *cpi, + const struct lookahead_entry *source) { + int64_t this_duration; + int step = 0; + + if (source->ts_start == cpi->first_time_stamp_ever) { + this_duration = source->ts_end - source->ts_start; + step = 1; + } else { + int64_t last_duration = + cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; + + this_duration = source->ts_end - cpi->last_end_time_stamp_seen; + + // do a step update if the duration changes by 10% + if (last_duration) + step = (int)((this_duration - last_duration) * 10 / last_duration); + } + + if (this_duration) { + if (step) { + av1_new_framerate(cpi, 10000000.0 / this_duration); + } else { + // Average this frame's rate into the last second's average + // frame rate. If we haven't seen 1 second yet, then average + // over the whole interval seen. + const double interval = AOMMIN( + (double)(source->ts_end - cpi->first_time_stamp_ever), 10000000.0); + double avg_duration = 10000000.0 / cpi->framerate; + avg_duration *= (interval - avg_duration + this_duration); + avg_duration /= interval; + + av1_new_framerate(cpi, 10000000.0 / avg_duration); + } + } + cpi->last_time_stamp_seen = source->ts_start; + cpi->last_end_time_stamp_seen = source->ts_end; +} + +// Returns 0 if this is not an alt ref else the offset of the source frame +// used as the arf midpoint. +static int get_arf_src_index(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + int arf_src_index = 0; + if (is_altref_enabled(cpi)) { + if (cpi->oxcf.pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + arf_src_index = gf_group->arf_src_offset[gf_group->index]; + } + } else if (rc->source_alt_ref_pending) { + arf_src_index = rc->frames_till_gf_update_due; + } + } + return arf_src_index; +} + +static int get_brf_src_index(AV1_COMP *cpi) { + int brf_src_index = 0; + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + + // TODO(zoeliu): We need to add the check on the -bwd_ref command line setup + // flag. + if (gf_group->bidir_pred_enabled[gf_group->index]) { + if (cpi->oxcf.pass == 2) { + if (gf_group->update_type[gf_group->index] == BRF_UPDATE) + brf_src_index = gf_group->brf_src_offset[gf_group->index]; + } else { + // TODO(zoeliu): To re-visit the setup for this scenario + brf_src_index = cpi->rc.bipred_group_interval - 1; + } + } + + return brf_src_index; +} + +// Returns 0 if this is not an alt ref else the offset of the source frame +// used as the arf midpoint. +static int get_arf2_src_index(AV1_COMP *cpi) { + int arf2_src_index = 0; + if (is_altref_enabled(cpi) && cpi->num_extra_arfs) { + if (cpi->oxcf.pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { + arf2_src_index = gf_group->arf_src_offset[gf_group->index]; + } + } + } + return arf2_src_index; +} + +static void check_src_altref(AV1_COMP *cpi, + const struct lookahead_entry *source) { + RATE_CONTROL *const rc = &cpi->rc; + + // If pass == 2, the parameters set here will be reset in + // av1_rc_get_second_pass_params() + + if (cpi->oxcf.pass == 2) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + rc->is_src_frame_alt_ref = + (gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE) || + (gf_group->update_type[gf_group->index] == OVERLAY_UPDATE); + rc->is_src_frame_ext_arf = + gf_group->update_type[gf_group->index] == INTNL_OVERLAY_UPDATE; + } else { + rc->is_src_frame_alt_ref = + cpi->alt_ref_source && (source == cpi->alt_ref_source); + } + + if (rc->is_src_frame_alt_ref) { + // Current frame is an ARF overlay frame. + cpi->alt_ref_source = NULL; + + if (rc->is_src_frame_ext_arf && !cpi->common.show_existing_frame) { + // For INTNL_OVERLAY, when show_existing_frame == 0, they do need to + // refresh the LAST_FRAME, i.e. LAST3 gets retired, LAST2 becomes LAST3, + // LAST becomes LAST2, and INTNL_OVERLAY becomes LAST. + cpi->refresh_last_frame = 1; + } else { + // Don't refresh the last buffer for an ARF overlay frame. It will + // become the GF so preserve last as an alternative prediction option. + cpi->refresh_last_frame = 0; + } + } +} + +#if CONFIG_INTERNAL_STATS +extern double av1_get_blockiness(const unsigned char *img1, int img1_pitch, + const unsigned char *img2, int img2_pitch, + int width, int height); + +static void adjust_image_stat(double y, double u, double v, double all, + ImageStat *s) { + s->stat[STAT_Y] += y; + s->stat[STAT_U] += u; + s->stat[STAT_V] += v; + s->stat[STAT_ALL] += all; + s->worst = AOMMIN(s->worst, all); +} + +static void compute_internal_stats(AV1_COMP *cpi, int frame_bytes) { + AV1_COMMON *const cm = &cpi->common; + double samples = 0.0; + uint32_t in_bit_depth = 8; + uint32_t bit_depth = 8; + +#if CONFIG_INTER_STATS_ONLY + if (cm->frame_type == KEY_FRAME) return; // skip key frame +#endif + cpi->bytes += frame_bytes; + + if (cm->seq_params.use_highbitdepth) { + in_bit_depth = cpi->oxcf.input_bit_depth; + bit_depth = cm->seq_params.bit_depth; + } + if (cm->show_frame) { + const YV12_BUFFER_CONFIG *orig = cpi->source; + const YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; + double y, u, v, frame_all; + + cpi->count++; + if (cpi->b_calculate_psnr) { + PSNR_STATS psnr; + double frame_ssim2 = 0.0, weight = 0.0; + aom_clear_system_state(); + // TODO(yaowu): unify these two versions into one. + aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); + + adjust_image_stat(psnr.psnr[1], psnr.psnr[2], psnr.psnr[3], psnr.psnr[0], + &cpi->psnr); + cpi->total_sq_error += psnr.sse[0]; + cpi->total_samples += psnr.samples[0]; + samples = psnr.samples[0]; + // TODO(yaowu): unify these two versions into one. + if (cm->seq_params.use_highbitdepth) + frame_ssim2 = + aom_highbd_calc_ssim(orig, recon, &weight, bit_depth, in_bit_depth); + else + frame_ssim2 = aom_calc_ssim(orig, recon, &weight); + + cpi->worst_ssim = AOMMIN(cpi->worst_ssim, frame_ssim2); + cpi->summed_quality += frame_ssim2 * weight; + cpi->summed_weights += weight; + +#if 0 + { + FILE *f = fopen("q_used.stt", "a"); + double y2 = psnr.psnr[1]; + double u2 = psnr.psnr[2]; + double v2 = psnr.psnr[3]; + double frame_psnr2 = psnr.psnr[0]; + fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", + cm->current_video_frame, y2, u2, v2, + frame_psnr2, frame_ssim2); + fclose(f); + } +#endif + } + if (cpi->b_calculate_blockiness) { + if (!cm->seq_params.use_highbitdepth) { + const double frame_blockiness = + av1_get_blockiness(orig->y_buffer, orig->y_stride, recon->y_buffer, + recon->y_stride, orig->y_width, orig->y_height); + cpi->worst_blockiness = AOMMAX(cpi->worst_blockiness, frame_blockiness); + cpi->total_blockiness += frame_blockiness; + } + + if (cpi->b_calculate_consistency) { + if (!cm->seq_params.use_highbitdepth) { + const double this_inconsistency = aom_get_ssim_metrics( + orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, + orig->y_width, orig->y_height, cpi->ssim_vars, &cpi->metrics, 1); + + const double peak = (double)((1 << in_bit_depth) - 1); + const double consistency = + aom_sse_to_psnr(samples, peak, cpi->total_inconsistency); + if (consistency > 0.0) + cpi->worst_consistency = + AOMMIN(cpi->worst_consistency, consistency); + cpi->total_inconsistency += this_inconsistency; + } + } + } + + frame_all = + aom_calc_fastssim(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); + adjust_image_stat(y, u, v, frame_all, &cpi->fastssim); + frame_all = aom_psnrhvs(orig, recon, &y, &u, &v, bit_depth, in_bit_depth); + adjust_image_stat(y, u, v, frame_all, &cpi->psnrhvs); + } +} +#endif // CONFIG_INTERNAL_STATS + +static int is_integer_mv(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *cur_picture, + const YV12_BUFFER_CONFIG *last_picture, + hash_table *last_hash_table) { + aom_clear_system_state(); + // check use hash ME + int k; + uint32_t hash_value_1; + uint32_t hash_value_2; + + const int block_size = 8; + const double threshold_current = 0.8; + const double threshold_average = 0.95; + const int max_history_size = 32; + int T = 0; // total block + int C = 0; // match with collocated block + int S = 0; // smooth region but not match with collocated block + int M = 0; // match with other block + + const int pic_width = cur_picture->y_width; + const int pic_height = cur_picture->y_height; + for (int i = 0; i + block_size <= pic_height; i += block_size) { + for (int j = 0; j + block_size <= pic_width; j += block_size) { + const int x_pos = j; + const int y_pos = i; + int match = 1; + T++; + + // check whether collocated block match with current + uint8_t *p_cur = cur_picture->y_buffer; + uint8_t *p_ref = last_picture->y_buffer; + int stride_cur = cur_picture->y_stride; + int stride_ref = last_picture->y_stride; + p_cur += (y_pos * stride_cur + x_pos); + p_ref += (y_pos * stride_ref + x_pos); + + if (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *p16_cur = CONVERT_TO_SHORTPTR(p_cur); + uint16_t *p16_ref = CONVERT_TO_SHORTPTR(p_ref); + for (int tmpY = 0; tmpY < block_size && match; tmpY++) { + for (int tmpX = 0; tmpX < block_size && match; tmpX++) { + if (p16_cur[tmpX] != p16_ref[tmpX]) { + match = 0; + } + } + p16_cur += stride_cur; + p16_ref += stride_ref; + } + } else { + for (int tmpY = 0; tmpY < block_size && match; tmpY++) { + for (int tmpX = 0; tmpX < block_size && match; tmpX++) { + if (p_cur[tmpX] != p_ref[tmpX]) { + match = 0; + } + } + p_cur += stride_cur; + p_ref += stride_ref; + } + } + + if (match) { + C++; + continue; + } + + if (av1_hash_is_horizontal_perfect(cur_picture, block_size, x_pos, + y_pos) || + av1_hash_is_vertical_perfect(cur_picture, block_size, x_pos, y_pos)) { + S++; + continue; + } + + av1_get_block_hash_value( + cur_picture->y_buffer + y_pos * stride_cur + x_pos, stride_cur, + block_size, &hash_value_1, &hash_value_2, + (cur_picture->flags & YV12_FLAG_HIGHBITDEPTH), &cpi->td.mb); + // Hashing does not work for highbitdepth currently. + // TODO(Roger): Make it work for highbitdepth. + if (av1_use_hash_me(&cpi->common)) { + if (av1_has_exact_match(last_hash_table, hash_value_1, hash_value_2)) { + M++; + } + } + } + } + + assert(T > 0); + double csm_rate = ((double)(C + S + M)) / ((double)(T)); + double m_rate = ((double)(M)) / ((double)(T)); + + cpi->csm_rate_array[cpi->rate_index] = csm_rate; + cpi->m_rate_array[cpi->rate_index] = m_rate; + + cpi->rate_index = (cpi->rate_index + 1) % max_history_size; + cpi->rate_size++; + cpi->rate_size = AOMMIN(cpi->rate_size, max_history_size); + + if (csm_rate < threshold_current) { + return 0; + } + + if (C == T) { + return 1; + } + + double csm_average = 0.0; + double m_average = 0.0; + + for (k = 0; k < cpi->rate_size; k++) { + csm_average += cpi->csm_rate_array[k]; + m_average += cpi->m_rate_array[k]; + } + csm_average /= cpi->rate_size; + m_average /= cpi->rate_size; + + if (csm_average < threshold_average) { + return 0; + } + + if (M > (T - C - S) / 3) { + return 1; + } + + if (csm_rate > 0.99 && m_rate > 0.01) { + return 1; + } + + if (csm_average + m_average > 1.01) { + return 1; + } + + return 0; +} + +int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags, + size_t *size, uint8_t *dest, int64_t *time_stamp, + int64_t *time_end, int flush, + const aom_rational_t *timebase) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + BufferPool *const pool = cm->buffer_pool; + RATE_CONTROL *const rc = &cpi->rc; + struct aom_usec_timer cmptimer; + YV12_BUFFER_CONFIG *force_src_buffer = NULL; + struct lookahead_entry *last_source = NULL; + struct lookahead_entry *source = NULL; + int arf_src_index; + int brf_src_index; + int i; + +#if CONFIG_BITSTREAM_DEBUG + assert(cpi->oxcf.max_threads == 0 && + "bitstream debug tool does not support multithreading"); + bitstream_queue_record_write(); + bitstream_queue_set_frame_write(cm->current_video_frame * 2 + cm->show_frame); +#endif + + cm->showable_frame = 0; + aom_usec_timer_start(&cmptimer); + + set_high_precision_mv(cpi, ALTREF_HIGH_PRECISION_MV, 0); + + // Normal defaults + cm->refresh_frame_context = oxcf->frame_parallel_decoding_mode + ? REFRESH_FRAME_CONTEXT_DISABLED + : REFRESH_FRAME_CONTEXT_BACKWARD; + if (oxcf->large_scale_tile) + cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; + + // default reference buffers update config + av1_configure_buffer_updates_firstpass(cpi, LF_UPDATE); + + // Initialize fields related to forward keyframes + cpi->no_show_kf = 0; + cm->reset_decoder_state = 0; + + // Don't allow a show_existing_frame to coincide with an error resilient or + // S-Frame. An exception can be made in the case of a keyframe, since it + // does not depend on any previous frames. We must make this exception here + // because of the use of show_existing_frame with forward coded keyframes. + struct lookahead_entry *lookahead_src = NULL; + if (cm->current_video_frame > 0) + lookahead_src = av1_lookahead_peek(cpi->lookahead, 0); + + int use_show_existing = 1; + if (lookahead_src != NULL) { + const int is_error_resilient = + cpi->oxcf.error_resilient_mode || + (lookahead_src->flags & AOM_EFLAG_ERROR_RESILIENT); + const int is_s_frame = cpi->oxcf.s_frame_mode || + (lookahead_src->flags & AOM_EFLAG_SET_S_FRAME); + const int is_key_frame = + (rc->frames_to_key == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY); + use_show_existing = !(is_error_resilient || is_s_frame) || is_key_frame; + } + + if (oxcf->pass == 2 && cm->show_existing_frame && use_show_existing) { + // Manage the source buffer and flush out the source frame that has been + // coded already; Also get prepared for PSNR calculation if needed. + if ((source = av1_lookahead_pop(cpi->lookahead, flush)) == NULL) { + *size = 0; + return -1; + } + av1_apply_encoding_flags(cpi, source->flags); + cpi->source = &source->img; + // TODO(zoeliu): To track down to determine whether it's needed to adjust + // the frame rate. + *time_stamp = source->ts_start; + *time_end = source->ts_end; + + // We need to adjust frame rate for an overlay frame + if (cpi->rc.is_src_frame_alt_ref) adjust_frame_rate(cpi, source); + + // Find a free buffer for the new frame, releasing the reference + // previously + // held. + if (cm->new_fb_idx != INVALID_IDX) { + --pool->frame_bufs[cm->new_fb_idx].ref_count; + } + cm->new_fb_idx = get_free_fb(cm); + + if (cm->new_fb_idx == INVALID_IDX) return -1; + + // Clear down mmx registers + aom_clear_system_state(); + + // Start with a 0 size frame. + *size = 0; + + // We need to update the gf_group for show_existing overlay frame + if (cpi->rc.is_src_frame_alt_ref) av1_rc_get_second_pass_params(cpi); + + if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + + if (cpi->b_calculate_psnr) generate_psnr_packet(cpi); + +#if CONFIG_INTERNAL_STATS + compute_internal_stats(cpi, (int)(*size)); +#endif // CONFIG_INTERNAL_STATS + + // Clear down mmx registers + aom_clear_system_state(); + + cm->show_existing_frame = 0; + return 0; + } + + // Should we encode an arf frame. + arf_src_index = get_arf_src_index(cpi); + if (arf_src_index) { + for (i = 0; i <= arf_src_index; ++i) { + struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i); + // Avoid creating an alt-ref if there's a forced keyframe pending. + if (e == NULL) { + break; + } else if (e->flags == AOM_EFLAG_FORCE_KF) { + arf_src_index = 0; + flush = 1; + break; + } + } + } + + if (arf_src_index) { + assert(arf_src_index <= rc->frames_to_key); + + if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) { + cm->showable_frame = 1; + cpi->alt_ref_source = source; + // When arf_src_index == rc->frames_to_key, it indicates a fwd_kf + if (arf_src_index == rc->frames_to_key) { + // Skip temporal filtering and mark as intra_only if we have a fwd_kf + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + int which_arf = gf_group->arf_update_idx[gf_group->index]; + cpi->is_arf_filter_off[which_arf] = 1; + cpi->no_show_kf = 1; + } else { + if (oxcf->arnr_max_frames > 0) { + // Produce the filtered ARF frame. + av1_temporal_filter(cpi, arf_src_index); + aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes); + force_src_buffer = &cpi->alt_ref_buffer; + } + } + cm->show_frame = 0; + cm->intra_only = 0; + + if (oxcf->pass < 2) { + // In second pass, the buffer updates configure will be set + // in the function av1_rc_get_second_pass_params + av1_configure_buffer_updates_firstpass(cpi, ARF_UPDATE); + } + } + rc->source_alt_ref_pending = 0; + } + + // Should we encode an arf2 frame. + arf_src_index = get_arf2_src_index(cpi); + if (arf_src_index) { + for (i = 0; i <= arf_src_index; ++i) { + struct lookahead_entry *e = av1_lookahead_peek(cpi->lookahead, i); + // Avoid creating an alt-ref if there's a forced keyframe pending. + if (e == NULL) { + break; + } else if (e->flags == AOM_EFLAG_FORCE_KF) { + arf_src_index = 0; + flush = 1; + break; + } + } + } + + if (arf_src_index) { + assert(arf_src_index <= rc->frames_to_key); + + if ((source = av1_lookahead_peek(cpi->lookahead, arf_src_index)) != NULL) { + cm->showable_frame = 1; + cpi->alt_ref_source = source; + + if (oxcf->arnr_max_frames > 0) { + // Produce the filtered ARF frame. + av1_temporal_filter(cpi, arf_src_index); + aom_extend_frame_borders(&cpi->alt_ref_buffer, num_planes); + force_src_buffer = &cpi->alt_ref_buffer; + } + + cm->show_frame = 0; + cm->intra_only = 0; + + if (oxcf->pass < 2) { + // In second pass, the buffer updates configure will be set + // in the function av1_rc_get_second_pass_params + av1_configure_buffer_updates_firstpass(cpi, INTNL_ARF_UPDATE); + } + } + rc->source_alt_ref_pending = 0; + } + + rc->is_bwd_ref_frame = 0; + brf_src_index = get_brf_src_index(cpi); + if (brf_src_index) { + assert(brf_src_index <= rc->frames_to_key); + if ((source = av1_lookahead_peek(cpi->lookahead, brf_src_index)) != NULL) { + cm->showable_frame = 1; + cm->show_frame = 0; + cm->intra_only = 0; + + if (oxcf->pass < 2) { + // In second pass, the buffer updates configure will be set + // in the function av1_rc_get_second_pass_params + av1_configure_buffer_updates_firstpass(cpi, BIPRED_UPDATE); + } + } + } + + if (!source) { + // Get last frame source. + if (cm->current_video_frame > 0) { + if ((last_source = av1_lookahead_peek(cpi->lookahead, -1)) == NULL) + return -1; + } + if (cm->current_video_frame > 0) assert(last_source != NULL); + // Read in the source frame. + source = av1_lookahead_pop(cpi->lookahead, flush); + + if (source != NULL) { + cm->show_frame = 1; + cm->intra_only = 0; + + // Check to see if the frame should be encoded as an arf overlay. + check_src_altref(cpi, source); + } + } + if (source) { + cpi->unscaled_source = cpi->source = + force_src_buffer ? force_src_buffer : &source->img; + cpi->unscaled_last_source = last_source != NULL ? &last_source->img : NULL; + + *time_stamp = source->ts_start; + *time_end = source->ts_end; + av1_apply_encoding_flags(cpi, source->flags); + *frame_flags = (source->flags & AOM_EFLAG_FORCE_KF) ? FRAMEFLAGS_KEY : 0; + + } else { + *size = 0; + if (flush && oxcf->pass == 1 && !cpi->twopass.first_pass_done) { + av1_end_first_pass(cpi); /* get last stats packet */ + cpi->twopass.first_pass_done = 1; + } + return -1; + } + + if (source->ts_start < cpi->first_time_stamp_ever) { + cpi->first_time_stamp_ever = source->ts_start; + cpi->last_end_time_stamp_seen = source->ts_start; + } + + // Clear down mmx registers + aom_clear_system_state(); + + // adjust frame rates based on timestamps given + if (cm->show_frame) adjust_frame_rate(cpi, source); + + // Find a free buffer for the new frame, releasing the reference previously + // held. + if (cm->new_fb_idx != INVALID_IDX) { + --pool->frame_bufs[cm->new_fb_idx].ref_count; + } + cm->new_fb_idx = get_free_fb(cm); + + if (cm->new_fb_idx == INVALID_IDX) return -1; + + // Retain the RF_LEVEL for the current newly coded frame. + cpi->frame_rf_level[cm->new_fb_idx] = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + + cm->cur_frame = &pool->frame_bufs[cm->new_fb_idx]; + cm->cur_frame->buf.buf_8bit_valid = 0; + + if (cpi->film_grain_table) { + cm->seq_params.film_grain_params_present = aom_film_grain_table_lookup( + cpi->film_grain_table, *time_stamp, *time_end, 0 /* =erase */, + &cm->film_grain_params); + } + cm->cur_frame->film_grain_params_present = + cm->seq_params.film_grain_params_present; + + // only one operating point supported now + const int64_t pts64 = ticks_to_timebase_units(timebase, *time_stamp); + if (pts64 < 0 || pts64 > UINT32_MAX) return AOM_CODEC_ERROR; + cpi->common.frame_presentation_time = (uint32_t)pts64; + + // Start with a 0 size frame. + *size = 0; + + cpi->frame_flags = *frame_flags; + + if (oxcf->pass == 2) { + av1_rc_get_second_pass_params(cpi); + } else if (oxcf->pass == 1) { + setup_frame_size(cpi); + } + + if (cpi->oxcf.pass != 0 || frame_is_intra_only(cm) == 1) { + for (i = 0; i < REF_FRAMES; ++i) cpi->scaled_ref_idx[i] = INVALID_IDX; + } + + cm->using_qmatrix = cpi->oxcf.using_qm; + cm->min_qmlevel = cpi->oxcf.qm_minlevel; + cm->max_qmlevel = cpi->oxcf.qm_maxlevel; + + if (cm->seq_params.frame_id_numbers_present_flag) { + if (*time_stamp == 0) { + cpi->common.current_frame_id = -1; + } + } + + cpi->cur_poc++; + if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools && + !frame_is_intra_only(cm)) { + if (cpi->common.seq_params.force_integer_mv == 2) { + struct lookahead_entry *previous_entry = + av1_lookahead_peek(cpi->lookahead, cpi->previous_index); + if (!previous_entry) + cpi->common.cur_frame_force_integer_mv = 0; + else + cpi->common.cur_frame_force_integer_mv = is_integer_mv( + cpi, cpi->source, &previous_entry->img, cpi->previous_hash_table); + } else { + cpi->common.cur_frame_force_integer_mv = + cpi->common.seq_params.force_integer_mv; + } + } else { + cpi->common.cur_frame_force_integer_mv = 0; + } + + if (oxcf->pass == 1) { + cpi->td.mb.e_mbd.lossless[0] = is_lossless_requested(oxcf); + av1_first_pass(cpi, source); + } else if (oxcf->pass == 2) { + if (Pass2Encode(cpi, size, dest, frame_flags) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + } else { + // One pass encode + if (Pass0Encode(cpi, size, dest, 0, frame_flags) != AOM_CODEC_OK) + return AOM_CODEC_ERROR; + } + if (oxcf->pass != 1 && cpi->common.allow_screen_content_tools) { + cpi->previous_hash_table = &cm->cur_frame->hash_table; + { + int l; + for (l = -MAX_PRE_FRAMES; l < cpi->lookahead->max_sz; l++) { + if ((cpi->lookahead->buf + l) == source) { + cpi->previous_index = l; + break; + } + } + + if (l == cpi->lookahead->max_sz) { + aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, + "Failed to find last frame original buffer"); + } + } + } + + if (!cm->large_scale_tile) { + cm->frame_contexts[cm->new_fb_idx] = *cm->fc; + } + +#define EXT_TILE_DEBUG 0 +#if EXT_TILE_DEBUG + if (cm->large_scale_tile && oxcf->pass == 2) { + char fn[20] = "./fc"; + fn[4] = cm->current_video_frame / 100 + '0'; + fn[5] = (cm->current_video_frame % 100) / 10 + '0'; + fn[6] = (cm->current_video_frame % 10) + '0'; + fn[7] = '\0'; + av1_print_frame_contexts(cm->fc, fn); + } +#endif // EXT_TILE_DEBUG +#undef EXT_TILE_DEBUG + + cm->showable_frame = !cm->show_frame && cm->showable_frame; + + // No frame encoded, or frame was dropped, release scaled references. + if ((*size == 0) && (frame_is_intra_only(cm) == 0)) { + release_scaled_references(cpi); + } + + if (*size > 0) { + cpi->droppable = !frame_is_reference(cpi); + } + + aom_usec_timer_mark(&cmptimer); + cpi->time_compress_data += aom_usec_timer_elapsed(&cmptimer); + + if (cpi->b_calculate_psnr && oxcf->pass != 1 && cm->show_frame) + generate_psnr_packet(cpi); + +#if CONFIG_INTERNAL_STATS + if (oxcf->pass != 1) { + compute_internal_stats(cpi, (int)(*size)); + } +#endif // CONFIG_INTERNAL_STATS + + aom_clear_system_state(); + + return 0; +} + +int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest) { + AV1_COMMON *cm = &cpi->common; + if (!cm->show_frame) { + return -1; + } else { + int ret; + if (cm->frame_to_show) { + *dest = *cm->frame_to_show; + dest->y_width = cm->width; + dest->y_height = cm->height; + dest->uv_width = cm->width >> cm->seq_params.subsampling_x; + dest->uv_height = cm->height >> cm->seq_params.subsampling_y; + ret = 0; + } else { + ret = -1; + } + aom_clear_system_state(); + return ret; + } +} + +int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame) { + if (cpi->last_show_frame_buf_idx == INVALID_IDX) return -1; + + *frame = + cpi->common.buffer_pool->frame_bufs[cpi->last_show_frame_buf_idx].buf; + return 0; +} + +static int equal_dimensions_and_border(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b) { + return a->y_height == b->y_height && a->y_width == b->y_width && + a->uv_height == b->uv_height && a->uv_width == b->uv_width && + a->y_stride == b->y_stride && a->uv_stride == b->uv_stride && + a->border == b->border && + (a->flags & YV12_FLAG_HIGHBITDEPTH) == + (b->flags & YV12_FLAG_HIGHBITDEPTH); +} + +aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm, + YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *sd) { + const int num_planes = av1_num_planes(cm); + if (!equal_dimensions_and_border(new_frame, sd)) + aom_internal_error(&cm->error, AOM_CODEC_ERROR, + "Incorrect buffer dimensions"); + else + aom_yv12_copy_frame(new_frame, sd, num_planes); + + return cm->error.error_code; +} + +int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode, + AOM_SCALING vert_mode) { + int hr = 0, hs = 0, vr = 0, vs = 0; + + if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; + + Scale2Ratio(horiz_mode, &hr, &hs); + Scale2Ratio(vert_mode, &vr, &vs); + + // always go to the next whole number + cpi->resize_pending_width = (hs - 1 + cpi->oxcf.width * hr) / hs; + cpi->resize_pending_height = (vs - 1 + cpi->oxcf.height * vr) / vs; + + return 0; +} + +int av1_get_quantizer(AV1_COMP *cpi) { return cpi->common.base_qindex; } + +int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *frame_size) { + size_t output_size = 0; + size_t total_bytes_read = 0; + size_t remaining_size = *frame_size; + uint8_t *buff_ptr = buffer; + + // go through each OBUs + while (total_bytes_read < *frame_size) { + uint8_t saved_obu_header[2]; + uint64_t obu_payload_size; + size_t length_of_payload_size; + size_t length_of_obu_size; + uint32_t obu_header_size = (buff_ptr[0] >> 2) & 0x1 ? 2 : 1; + size_t obu_bytes_read = obu_header_size; // bytes read for current obu + + // save the obu header (1 or 2 bytes) + memmove(saved_obu_header, buff_ptr, obu_header_size); + // clear the obu_has_size_field + saved_obu_header[0] = saved_obu_header[0] & (~0x2); + + // get the payload_size and length of payload_size + if (aom_uleb_decode(buff_ptr + obu_header_size, remaining_size, + &obu_payload_size, &length_of_payload_size) != 0) { + return AOM_CODEC_ERROR; + } + obu_bytes_read += length_of_payload_size; + + // calculate the length of size of the obu header plus payload + length_of_obu_size = + aom_uleb_size_in_bytes((uint64_t)(obu_header_size + obu_payload_size)); + + // move the rest of data to new location + memmove(buff_ptr + length_of_obu_size + obu_header_size, + buff_ptr + obu_bytes_read, remaining_size - obu_bytes_read); + obu_bytes_read += (size_t)obu_payload_size; + + // write the new obu size + const uint64_t obu_size = obu_header_size + obu_payload_size; + size_t coded_obu_size; + if (aom_uleb_encode(obu_size, sizeof(obu_size), buff_ptr, + &coded_obu_size) != 0) { + return AOM_CODEC_ERROR; + } + + // write the saved (modified) obu_header following obu size + memmove(buff_ptr + length_of_obu_size, saved_obu_header, obu_header_size); + + total_bytes_read += obu_bytes_read; + remaining_size -= obu_bytes_read; + buff_ptr += length_of_obu_size + obu_size; + output_size += length_of_obu_size + (size_t)obu_size; + } + + *frame_size = output_size; + return AOM_CODEC_OK; +} + +void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags) { + // TODO(yunqingwang): For what references to use, external encoding flags + // should be consistent with internal reference frame selection. Need to + // ensure that there is not conflict between the two. In AV1 encoder, the + // priority rank for 7 reference frames are: LAST, ALTREF, LAST2, LAST3, + // GOLDEN, BWDREF, ALTREF2. If only one reference frame is used, it must be + // LAST. + cpi->ext_ref_frame_flags = AOM_REFFRAME_ALL; + if (flags & + (AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_LAST2 | AOM_EFLAG_NO_REF_LAST3 | + AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_BWD | + AOM_EFLAG_NO_REF_ARF2)) { + if (flags & AOM_EFLAG_NO_REF_LAST) { + cpi->ext_ref_frame_flags = 0; + } else { + int ref = AOM_REFFRAME_ALL; + + if (flags & AOM_EFLAG_NO_REF_LAST2) ref ^= AOM_LAST2_FLAG; + if (flags & AOM_EFLAG_NO_REF_LAST3) ref ^= AOM_LAST3_FLAG; + + if (flags & AOM_EFLAG_NO_REF_GF) ref ^= AOM_GOLD_FLAG; + + if (flags & AOM_EFLAG_NO_REF_ARF) { + ref ^= AOM_ALT_FLAG; + ref ^= AOM_BWD_FLAG; + ref ^= AOM_ALT2_FLAG; + } else { + if (flags & AOM_EFLAG_NO_REF_BWD) ref ^= AOM_BWD_FLAG; + if (flags & AOM_EFLAG_NO_REF_ARF2) ref ^= AOM_ALT2_FLAG; + } + + av1_use_as_reference(cpi, ref); + } + } + + if (flags & + (AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF)) { + int upd = AOM_REFFRAME_ALL; + + // Refreshing LAST/LAST2/LAST3 is handled by 1 common flag. + if (flags & AOM_EFLAG_NO_UPD_LAST) upd ^= AOM_LAST_FLAG; + + if (flags & AOM_EFLAG_NO_UPD_GF) upd ^= AOM_GOLD_FLAG; + + if (flags & AOM_EFLAG_NO_UPD_ARF) { + upd ^= AOM_ALT_FLAG; + upd ^= AOM_BWD_FLAG; + upd ^= AOM_ALT2_FLAG; + } + + av1_update_reference(cpi, upd); + } + + cpi->ext_use_ref_frame_mvs = cpi->oxcf.allow_ref_frame_mvs & + ((flags & AOM_EFLAG_NO_REF_FRAME_MVS) == 0); + cpi->ext_use_error_resilient = cpi->oxcf.error_resilient_mode | + ((flags & AOM_EFLAG_ERROR_RESILIENT) != 0); + cpi->ext_use_s_frame = + cpi->oxcf.s_frame_mode | ((flags & AOM_EFLAG_SET_S_FRAME) != 0); + cpi->ext_use_primary_ref_none = (flags & AOM_EFLAG_SET_PRIMARY_REF_NONE) != 0; + + if (flags & AOM_EFLAG_NO_UPD_ENTROPY) { + av1_update_entropy(cpi, 0); + } +} + +int64_t timebase_units_to_ticks(const aom_rational_t *timebase, int64_t n) { + return n * TICKS_PER_SEC * timebase->num / timebase->den; +} + +int64_t ticks_to_timebase_units(const aom_rational_t *timebase, int64_t n) { + const int64_t round = TICKS_PER_SEC * timebase->num / 2 - 1; + return (n * timebase->den + round) / timebase->num / TICKS_PER_SEC; +} + +aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi) { + if (!cpi) return NULL; + + uint8_t header_buf[512] = { 0 }; + const uint32_t sequence_header_size = + write_sequence_header_obu(cpi, &header_buf[0]); + assert(sequence_header_size <= sizeof(header_buf)); + if (sequence_header_size == 0) return NULL; + + const size_t obu_header_size = 1; + const size_t size_field_size = aom_uleb_size_in_bytes(sequence_header_size); + const size_t payload_offset = obu_header_size + size_field_size; + + if (payload_offset + sequence_header_size > sizeof(header_buf)) return NULL; + memmove(&header_buf[payload_offset], &header_buf[0], sequence_header_size); + + if (write_obu_header(OBU_SEQUENCE_HEADER, 0, &header_buf[0]) != + obu_header_size) { + return NULL; + } + + size_t coded_size_field_size = 0; + if (aom_uleb_encode(sequence_header_size, size_field_size, + &header_buf[obu_header_size], + &coded_size_field_size) != 0) { + return NULL; + } + assert(coded_size_field_size == size_field_size); + + aom_fixed_buf_t *global_headers = + (aom_fixed_buf_t *)malloc(sizeof(*global_headers)); + if (!global_headers) return NULL; + + const size_t global_header_buf_size = + obu_header_size + size_field_size + sequence_header_size; + + global_headers->buf = malloc(global_header_buf_size); + if (!global_headers->buf) { + free(global_headers); + return NULL; + } + + memcpy(global_headers->buf, &header_buf[0], global_header_buf_size); + global_headers->sz = global_header_buf_size; + return global_headers; +} diff --git a/third_party/aom/av1/encoder/encoder.h b/third_party/aom/av1/encoder/encoder.h new file mode 100644 index 0000000000..ee7fc46379 --- /dev/null +++ b/third_party/aom/av1/encoder/encoder.h @@ -0,0 +1,985 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ENCODER_H_ +#define AOM_AV1_ENCODER_ENCODER_H_ + +#include <stdio.h> + +#include "config/aom_config.h" + +#include "aom/aomcx.h" + +#include "av1/common/alloccommon.h" +#include "av1/common/entropymode.h" +#include "av1/common/thread_common.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/resize.h" +#include "av1/common/timing.h" +#include "av1/encoder/aq_cyclicrefresh.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/context_tree.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/lookahead.h" +#include "av1/encoder/mbgraph.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/speed_features.h" +#include "av1/encoder/tokenize.h" + +#if CONFIG_INTERNAL_STATS +#include "aom_dsp/ssim.h" +#endif +#include "aom_dsp/variance.h" +#if CONFIG_DENOISE +#include "aom_dsp/noise_model.h" +#endif +#include "aom/internal/aom_codec_internal.h" +#include "aom_util/aom_thread.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + int nmv_vec_cost[MV_JOINTS]; + int nmv_costs[2][MV_VALS]; + int nmv_costs_hp[2][MV_VALS]; + + FRAME_CONTEXT fc; +} CODING_CONTEXT; + +typedef enum { + // regular inter frame + REGULAR_FRAME = 0, + // alternate reference frame + ARF_FRAME = 1, + // overlay frame + OVERLAY_FRAME = 2, + // golden frame + GLD_FRAME = 3, + // backward reference frame + BRF_FRAME = 4, + // extra alternate reference frame + EXT_ARF_FRAME = 5, + FRAME_CONTEXT_INDEXES +} FRAME_CONTEXT_INDEX; + +typedef enum { + NORMAL = 0, + FOURFIVE = 1, + THREEFIVE = 2, + ONETWO = 3 +} AOM_SCALING; + +typedef enum { + // Good Quality Fast Encoding. The encoder balances quality with the amount of + // time it takes to encode the output. Speed setting controls how fast. + GOOD +} MODE; + +typedef enum { + FRAMEFLAGS_KEY = 1 << 0, + FRAMEFLAGS_GOLDEN = 1 << 1, + FRAMEFLAGS_BWDREF = 1 << 2, + // TODO(zoeliu): To determine whether a frame flag is needed for ALTREF2_FRAME + FRAMEFLAGS_ALTREF = 1 << 3, +} FRAMETYPE_FLAGS; + +typedef enum { + NO_AQ = 0, + VARIANCE_AQ = 1, + COMPLEXITY_AQ = 2, + CYCLIC_REFRESH_AQ = 3, + AQ_MODE_COUNT // This should always be the last member of the enum +} AQ_MODE; +typedef enum { + NO_DELTA_Q = 0, + DELTA_Q_ONLY = 1, + DELTA_Q_LF = 2, + DELTAQ_MODE_COUNT // This should always be the last member of the enum +} DELTAQ_MODE; + +typedef enum { + RESIZE_NONE = 0, // No frame resizing allowed. + RESIZE_FIXED = 1, // All frames are coded at the specified scale. + RESIZE_RANDOM = 2, // All frames are coded at a random scale. + RESIZE_MODES +} RESIZE_MODE; + +typedef enum { + SUPERRES_NONE = 0, // No frame superres allowed + SUPERRES_FIXED = 1, // All frames are coded at the specified scale, + // and super-resolved. + SUPERRES_RANDOM = 2, // All frames are coded at a random scale, + // and super-resolved. + SUPERRES_QTHRESH = 3, // Superres scale for a frame is determined based on + // q_index + SUPERRES_MODES +} SUPERRES_MODE; + +typedef struct AV1EncoderConfig { + BITSTREAM_PROFILE profile; + aom_bit_depth_t bit_depth; // Codec bit-depth. + int width; // width of data passed to the compressor + int height; // height of data passed to the compressor + int forced_max_frame_width; // forced maximum width of frame (if != 0) + int forced_max_frame_height; // forced maximum height of frame (if != 0) + unsigned int input_bit_depth; // Input bit depth. + double init_framerate; // set to passed in framerate + int64_t target_bandwidth; // bandwidth to be used in bits per second + + int noise_sensitivity; // pre processing blur: recommendation 0 + int sharpness; // sharpening output: recommendation 0: + int speed; + // maximum allowed bitrate for any intra frame in % of bitrate target. + unsigned int rc_max_intra_bitrate_pct; + // maximum allowed bitrate for any inter frame in % of bitrate target. + unsigned int rc_max_inter_bitrate_pct; + // percent of rate boost for golden frame in CBR mode. + unsigned int gf_cbr_boost_pct; + + MODE mode; + int pass; + + // Key Framing Operations + int auto_key; // autodetect cut scenes and set the keyframes + int key_freq; // maximum distance to key frame. + int sframe_dist; + int sframe_mode; + int sframe_enabled; + int lag_in_frames; // how many frames lag before we start encoding + int fwd_kf_enabled; + + // ---------------------------------------------------------------- + // DATARATE CONTROL OPTIONS + + // vbr, cbr, constrained quality or constant quality + enum aom_rc_mode rc_mode; + + // buffer targeting aggressiveness + int under_shoot_pct; + int over_shoot_pct; + + // buffering parameters + int64_t starting_buffer_level_ms; + int64_t optimal_buffer_level_ms; + int64_t maximum_buffer_size_ms; + + // Frame drop threshold. + int drop_frames_water_mark; + + // controlling quality + int fixed_q; + int worst_allowed_q; + int best_allowed_q; + int cq_level; + AQ_MODE aq_mode; // Adaptive Quantization mode + DELTAQ_MODE deltaq_mode; + int enable_cdef; + int enable_restoration; + int disable_trellis_quant; + int using_qm; + int qm_y; + int qm_u; + int qm_v; + int qm_minlevel; + int qm_maxlevel; +#if CONFIG_DIST_8X8 + int using_dist_8x8; +#endif + unsigned int num_tile_groups; + unsigned int mtu; + + // Internal frame size scaling. + RESIZE_MODE resize_mode; + uint8_t resize_scale_denominator; + uint8_t resize_kf_scale_denominator; + + // Frame Super-Resolution size scaling. + SUPERRES_MODE superres_mode; + uint8_t superres_scale_denominator; + uint8_t superres_kf_scale_denominator; + int superres_qthresh; + int superres_kf_qthresh; + + // Enable feature to reduce the frame quantization every x frames. + int frame_periodic_boost; + + // two pass datarate control + int two_pass_vbrbias; // two pass datarate control tweaks + int two_pass_vbrmin_section; + int two_pass_vbrmax_section; + // END DATARATE CONTROL OPTIONS + // ---------------------------------------------------------------- + + int enable_auto_arf; + int enable_auto_brf; // (b)ackward (r)ef (f)rame + + /* Bitfield defining the error resiliency features to enable. + * Can provide decodable frames after losses in previous + * frames and decodable partitions after losses in the same frame. + */ + unsigned int error_resilient_mode; + + unsigned int s_frame_mode; + + /* Bitfield defining the parallel decoding mode where the + * decoding in successive frames may be conducted in parallel + * just by decoding the frame headers. + */ + unsigned int frame_parallel_decoding_mode; + + unsigned int limit; + + int arnr_max_frames; + int arnr_strength; + + int min_gf_interval; + int max_gf_interval; + + int row_mt; + int tile_columns; + int tile_rows; + int tile_width_count; + int tile_height_count; + int tile_widths[MAX_TILE_COLS]; + int tile_heights[MAX_TILE_ROWS]; + + int max_threads; + + aom_fixed_buf_t two_pass_stats_in; + struct aom_codec_pkt_list *output_pkt_list; + +#if CONFIG_FP_MB_STATS + aom_fixed_buf_t firstpass_mb_stats_in; +#endif + + aom_tune_metric tuning; + aom_tune_content content; + int use_highbitdepth; + aom_color_primaries_t color_primaries; + aom_transfer_characteristics_t transfer_characteristics; + aom_matrix_coefficients_t matrix_coefficients; + aom_chroma_sample_position_t chroma_sample_position; + int color_range; + int render_width; + int render_height; + aom_timing_info_type_t timing_info_type; + int timing_info_present; + aom_timing_info_t timing_info; + int decoder_model_info_present_flag; + int display_model_info_present_flag; + int buffer_removal_time_present; + aom_dec_model_info_t buffer_model; + aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; + aom_op_timing_info_t op_frame_timing[MAX_NUM_OPERATING_POINTS + 1]; + int film_grain_test_vector; + const char *film_grain_table_filename; + + uint8_t cdf_update_mode; + aom_superblock_size_t superblock_size; + unsigned int large_scale_tile; + unsigned int single_tile_decoding; + int monochrome; + unsigned int full_still_picture_hdr; + int enable_dual_filter; + unsigned int motion_vector_unit_test; + const cfg_options_t *cfg; + int enable_order_hint; + int enable_jnt_comp; + int enable_ref_frame_mvs; + unsigned int allow_ref_frame_mvs; + int enable_warped_motion; + int allow_warped_motion; + int enable_superres; + unsigned int save_as_annexb; + +#if CONFIG_DENOISE + float noise_level; + int noise_block_size; +#endif + + unsigned int chroma_subsampling_x; + unsigned int chroma_subsampling_y; +} AV1EncoderConfig; + +static INLINE int is_lossless_requested(const AV1EncoderConfig *cfg) { + return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0; +} + +typedef struct FRAME_COUNTS { +// Note: This structure should only contain 'unsigned int' fields, or +// aggregates built solely from 'unsigned int' fields/elements +#if CONFIG_ENTROPY_STATS + unsigned int kf_y_mode[KF_MODE_CONTEXTS][KF_MODE_CONTEXTS][INTRA_MODES]; + unsigned int angle_delta[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1]; + unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES]; + unsigned int uv_mode[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES]; + unsigned int cfl_sign[CFL_JOINT_SIGNS]; + unsigned int cfl_alpha[CFL_ALPHA_CONTEXTS][CFL_ALPHABET_SIZE]; + unsigned int palette_y_mode[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2]; + unsigned int palette_uv_mode[PALETTE_UV_MODE_CONTEXTS][2]; + unsigned int palette_y_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; + unsigned int palette_uv_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES]; + unsigned int palette_y_color_index[PALETTE_SIZES] + [PALETTE_COLOR_INDEX_CONTEXTS] + [PALETTE_COLORS]; + unsigned int palette_uv_color_index[PALETTE_SIZES] + [PALETTE_COLOR_INDEX_CONTEXTS] + [PALETTE_COLORS]; + unsigned int partition[PARTITION_CONTEXTS][EXT_PARTITION_TYPES]; + unsigned int txb_skip[TOKEN_CDF_Q_CTXS][TX_SIZES][TXB_SKIP_CONTEXTS][2]; + unsigned int eob_extra[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] + [EOB_COEF_CONTEXTS][2]; + unsigned int dc_sign[PLANE_TYPES][DC_SIGN_CONTEXTS][2]; + unsigned int coeff_lps[TX_SIZES][PLANE_TYPES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS] + [2]; + unsigned int eob_flag[TX_SIZES][PLANE_TYPES][EOB_COEF_CONTEXTS][2]; + unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][5]; + unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][6]; + unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][7]; + unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][8]; + unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][9]; + unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][10]; + unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][11]; + unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] + [LEVEL_CONTEXTS][BR_CDF_SIZE]; + unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] + [SIG_COEF_CONTEXTS][NUM_BASE_LEVELS + 2]; + unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES] + [SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1]; + unsigned int newmv_mode[NEWMV_MODE_CONTEXTS][2]; + unsigned int zeromv_mode[GLOBALMV_MODE_CONTEXTS][2]; + unsigned int refmv_mode[REFMV_MODE_CONTEXTS][2]; + unsigned int drl_mode[DRL_MODE_CONTEXTS][2]; + unsigned int inter_compound_mode[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES]; + unsigned int wedge_idx[BLOCK_SIZES_ALL][16]; + unsigned int interintra[BLOCK_SIZE_GROUPS][2]; + unsigned int interintra_mode[BLOCK_SIZE_GROUPS][INTERINTRA_MODES]; + unsigned int wedge_interintra[BLOCK_SIZES_ALL][2]; + unsigned int compound_type[BLOCK_SIZES_ALL][COMPOUND_TYPES - 1]; + unsigned int motion_mode[BLOCK_SIZES_ALL][MOTION_MODES]; + unsigned int obmc[BLOCK_SIZES_ALL][2]; + unsigned int intra_inter[INTRA_INTER_CONTEXTS][2]; + unsigned int comp_inter[COMP_INTER_CONTEXTS][2]; + unsigned int comp_ref_type[COMP_REF_TYPE_CONTEXTS][2]; + unsigned int uni_comp_ref[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1][2]; + unsigned int single_ref[REF_CONTEXTS][SINGLE_REFS - 1][2]; + unsigned int comp_ref[REF_CONTEXTS][FWD_REFS - 1][2]; + unsigned int comp_bwdref[REF_CONTEXTS][BWD_REFS - 1][2]; + unsigned int intrabc[2]; + + unsigned int txfm_partition[TXFM_PARTITION_CONTEXTS][2]; + unsigned int intra_tx_size[MAX_TX_CATS][TX_SIZE_CONTEXTS][MAX_TX_DEPTH + 1]; + unsigned int skip_mode[SKIP_MODE_CONTEXTS][2]; + unsigned int skip[SKIP_CONTEXTS][2]; + unsigned int compound_index[COMP_INDEX_CONTEXTS][2]; + unsigned int comp_group_idx[COMP_GROUP_IDX_CONTEXTS][2]; + unsigned int delta_q[DELTA_Q_PROBS][2]; + unsigned int delta_lf_multi[FRAME_LF_COUNT][DELTA_LF_PROBS][2]; + unsigned int delta_lf[DELTA_LF_PROBS][2]; + + unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES]; + unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES] + [TX_TYPES]; + unsigned int filter_intra_mode[FILTER_INTRA_MODES]; + unsigned int filter_intra[BLOCK_SIZES_ALL][2]; + unsigned int switchable_restore[RESTORE_SWITCHABLE_TYPES]; + unsigned int wiener_restore[2]; + unsigned int sgrproj_restore[2]; +#endif // CONFIG_ENTROPY_STATS + + unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS] + [SWITCHABLE_FILTERS]; +} FRAME_COUNTS; + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +#define INTER_MODE_RD_DATA_OVERALL_SIZE 6400 + +typedef struct { + int ready; + double a; + double b; + double dist_mean; + double ld_mean; + double sse_mean; + double sse_sse_mean; + double sse_ld_mean; + int num; + double dist_sum; + double ld_sum; + double sse_sum; + double sse_sse_sum; + double sse_ld_sum; +} InterModeRdModel; + +typedef struct { + int idx; + int64_t rd; +} RdIdxPair; +// TODO(angiebird): This is an estimated size. We still need to figure what is +// the maximum number of modes. +#define MAX_INTER_MODES 1024 +typedef struct inter_modes_info { + int num; + MB_MODE_INFO mbmi_arr[MAX_INTER_MODES]; + int mode_rate_arr[MAX_INTER_MODES]; + int64_t sse_arr[MAX_INTER_MODES]; + int64_t est_rd_arr[MAX_INTER_MODES]; + RdIdxPair rd_idx_pair_arr[MAX_INTER_MODES]; +} InterModesInfo; +#endif + +// TODO(jingning) All spatially adaptive variables should go to TileDataEnc. +typedef struct TileDataEnc { + TileInfo tile_info; + int thresh_freq_fact[BLOCK_SIZES_ALL][MAX_MODES]; + int mode_map[BLOCK_SIZES_ALL][MAX_MODES]; + int m_search_count; + int ex_search_count; + CFL_CTX cfl; + DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx); + uint8_t allow_update_cdf; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL]; + InterModesInfo inter_modes_info; +#endif +} TileDataEnc; + +typedef struct { + TOKENEXTRA *start; + TOKENEXTRA *stop; + unsigned int count; +} TOKENLIST; + +typedef struct RD_COUNTS { + int64_t comp_pred_diff[REFERENCE_MODES]; + // Stores number of 4x4 blocks using global motion per reference frame. + int global_motion_used[REF_FRAMES]; + int compound_ref_used_flag; + int skip_mode_used_flag; +} RD_COUNTS; + +typedef struct ThreadData { + MACROBLOCK mb; + RD_COUNTS rd_counts; + FRAME_COUNTS *counts; + PC_TREE *pc_tree; + PC_TREE *pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2 + 1]; + uint32_t *hash_value_buffer[2][2]; + int32_t *wsrc_buf; + int32_t *mask_buf; + uint8_t *above_pred_buf; + uint8_t *left_pred_buf; + PALETTE_BUFFER *palette_buffer; + CONV_BUF_TYPE *tmp_conv_dst; + uint8_t *tmp_obmc_bufs[2]; + int intrabc_used_this_tile; +} ThreadData; + +struct EncWorkerData; + +typedef struct ActiveMap { + int enabled; + int update; + unsigned char *map; +} ActiveMap; + +#if CONFIG_INTERNAL_STATS +// types of stats +typedef enum { + STAT_Y, + STAT_U, + STAT_V, + STAT_ALL, + NUM_STAT_TYPES // This should always be the last member of the enum +} StatType; + +typedef struct IMAGE_STAT { + double stat[NUM_STAT_TYPES]; + double worst; +} ImageStat; +#endif // CONFIG_INTERNAL_STATS + +typedef struct { + int ref_count; + YV12_BUFFER_CONFIG buf; +} EncRefCntBuffer; + +typedef struct TileBufferEnc { + uint8_t *data; + size_t size; +} TileBufferEnc; + +typedef struct AV1_COMP { + QUANTS quants; + ThreadData td; + FRAME_COUNTS counts; + MB_MODE_INFO_EXT *mbmi_ext_base; + CB_COEFF_BUFFER *coeff_buffer_base; + Dequants dequants; + AV1_COMMON common; + AV1EncoderConfig oxcf; + struct lookahead_ctx *lookahead; + struct lookahead_entry *alt_ref_source; + int no_show_kf; + + int optimize_speed_feature; + int optimize_seg_arr[MAX_SEGMENTS]; + + YV12_BUFFER_CONFIG *source; + YV12_BUFFER_CONFIG *last_source; // NULL for first frame and alt_ref frames + YV12_BUFFER_CONFIG *unscaled_source; + YV12_BUFFER_CONFIG scaled_source; + YV12_BUFFER_CONFIG *unscaled_last_source; + YV12_BUFFER_CONFIG scaled_last_source; + + // For a still frame, this flag is set to 1 to skip partition search. + int partition_search_skippable_frame; + double csm_rate_array[32]; + double m_rate_array[32]; + int rate_size; + int rate_index; + hash_table *previous_hash_table; + int previous_index; + int cur_poc; // DebugInfo + + unsigned int row_mt; + int scaled_ref_idx[REF_FRAMES]; + int ref_fb_idx[REF_FRAMES]; + int refresh_fb_idx; // ref frame buffer index to refresh + + int last_show_frame_buf_idx; // last show frame buffer index + + int refresh_last_frame; + int refresh_golden_frame; + int refresh_bwd_ref_frame; + int refresh_alt2_ref_frame; + int refresh_alt_ref_frame; +#if USE_SYMM_MULTI_LAYER + int new_bwdref_update_rule; +#endif + + int ext_refresh_frame_flags_pending; + int ext_refresh_last_frame; + int ext_refresh_golden_frame; + int ext_refresh_bwd_ref_frame; + int ext_refresh_alt2_ref_frame; + int ext_refresh_alt_ref_frame; + + int ext_refresh_frame_context_pending; + int ext_refresh_frame_context; + int ext_use_ref_frame_mvs; + int ext_use_error_resilient; + int ext_use_s_frame; + int ext_use_primary_ref_none; + + YV12_BUFFER_CONFIG last_frame_uf; + YV12_BUFFER_CONFIG trial_frame_rst; + + // Ambient reconstruction err target for force key frames + int64_t ambient_err; + + RD_OPT rd; + + CODING_CONTEXT coding_context; + + int gmtype_cost[TRANS_TYPES]; + int gmparams_cost[REF_FRAMES]; + + int nmv_costs[2][MV_VALS]; + int nmv_costs_hp[2][MV_VALS]; + + int64_t last_time_stamp_seen; + int64_t last_end_time_stamp_seen; + int64_t first_time_stamp_ever; + + RATE_CONTROL rc; + double framerate; + + // NOTE(zoeliu): Any inter frame allows maximum of REF_FRAMES inter + // references; Plus the currently coded frame itself, it is needed to allocate + // sufficient space to the size of the maximum possible number of frames. + int interp_filter_selected[REF_FRAMES + 1][SWITCHABLE]; + + struct aom_codec_pkt_list *output_pkt_list; + + MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS]; + int mbgraph_n_frames; // number of frames filled in the above + int static_mb_pct; // % forced skip mbs by segmentation + int ref_frame_flags; + int ext_ref_frame_flags; + RATE_FACTOR_LEVEL frame_rf_level[FRAME_BUFFERS]; + + SPEED_FEATURES sf; + + unsigned int max_mv_magnitude; + int mv_step_param; + + int allow_comp_inter_inter; + int all_one_sided_refs; + + uint8_t *segmentation_map; + + CYCLIC_REFRESH *cyclic_refresh; + ActiveMap active_map; + + fractional_mv_step_fp *find_fractional_mv_step; + av1_diamond_search_fn_t diamond_search_sad; + aom_variance_fn_ptr_t fn_ptr[BLOCK_SIZES_ALL]; + uint64_t time_receive_data; + uint64_t time_compress_data; + uint64_t time_pick_lpf; + uint64_t time_encode_sb_row; + +#if CONFIG_FP_MB_STATS + int use_fp_mb_stats; +#endif + + TWO_PASS twopass; + + YV12_BUFFER_CONFIG alt_ref_buffer; + +#if CONFIG_INTERNAL_STATS + unsigned int mode_chosen_counts[MAX_MODES]; + + int count; + uint64_t total_sq_error; + uint64_t total_samples; + ImageStat psnr; + + double total_blockiness; + double worst_blockiness; + + int bytes; + double summed_quality; + double summed_weights; + unsigned int tot_recode_hits; + double worst_ssim; + + ImageStat fastssim; + ImageStat psnrhvs; + + int b_calculate_blockiness; + int b_calculate_consistency; + + double total_inconsistency; + double worst_consistency; + Ssimv *ssim_vars; + Metrics metrics; +#endif + int b_calculate_psnr; + + int droppable; + + int initial_width; + int initial_height; + int initial_mbs; // Number of MBs in the full-size frame; to be used to + // normalize the firstpass stats. This will differ from the + // number of MBs in the current frame when the frame is + // scaled. + + // When resize is triggered through external control, the desired width/height + // are stored here until use in the next frame coded. They are effective only + // for + // one frame and are reset after use. + int resize_pending_width; + int resize_pending_height; + + int frame_flags; + + search_site_config ss_cfg; + + TileDataEnc *tile_data; + int allocated_tiles; // Keep track of memory allocated for tiles. + + TOKENEXTRA *tile_tok[MAX_TILE_ROWS][MAX_TILE_COLS]; + unsigned int tok_count[MAX_TILE_ROWS][MAX_TILE_COLS]; + TOKENLIST *tplist[MAX_TILE_ROWS][MAX_TILE_COLS]; + + TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS]; + + int resize_state; + int resize_avg_qp; + int resize_buffer_underflow; + int resize_count; + + // Sequence parameters have been transmitted already and locked + // or not. Once locked av1_change_config cannot change the seq + // parameters. + int seq_params_locked; + + // VARIANCE_AQ segment map refresh + int vaq_refresh; + + // Multi-threading + int num_workers; + AVxWorker *workers; + struct EncWorkerData *tile_thr_data; + int refresh_frame_mask; + int existing_fb_idx_to_show; + int is_arf_filter_off[MAX_EXT_ARFS + 1]; + int num_extra_arfs; + int arf_pos_in_gf[MAX_EXT_ARFS + 1]; + int arf_pos_for_ovrly[MAX_EXT_ARFS + 1]; + int global_motion_search_done; + tran_low_t *tcoeff_buf[MAX_MB_PLANE]; + int extra_arf_allowed; + // A flag to indicate if intrabc is ever used in current frame. + int intrabc_used; + int dv_cost[2][MV_VALS]; + // TODO(huisu@google.com): we can update dv_joint_cost per SB. + int dv_joint_cost[MV_JOINTS]; + int has_lossless_segment; + + // For frame refs short signaling: + // A mapping of each reference frame from its encoder side value to the + // decoder side value obtained following the short signaling procedure. + int ref_conv[REF_FRAMES]; + + AV1LfSync lf_row_sync; + AV1LrSync lr_row_sync; + AV1LrStruct lr_ctxt; + + aom_film_grain_table_t *film_grain_table; +#if CONFIG_DENOISE + struct aom_denoise_and_model_t *denoise_and_model; +#endif + // Stores the default value of skip flag depending on chroma format + // Set as 1 for monochrome and 3 for other color formats + int default_interp_skip_flags; + int preserve_arf_as_gld; +} AV1_COMP; + +// Must not be called more than once. +void av1_initialize_enc(void); + +struct AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf, + BufferPool *const pool); +void av1_remove_compressor(AV1_COMP *cpi); + +void av1_change_config(AV1_COMP *cpi, const AV1EncoderConfig *oxcf); + +// receive a frames worth of data. caller can assume that a copy of this +// frame is made and not just a copy of the pointer.. +int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags, + YV12_BUFFER_CONFIG *sd, int64_t time_stamp, + int64_t end_time_stamp); + +int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags, + size_t *size, uint8_t *dest, int64_t *time_stamp, + int64_t *time_end, int flush, + const aom_rational_t *timebase); + +int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest); + +int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame); + +aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm, + YV12_BUFFER_CONFIG *new_frame, + YV12_BUFFER_CONFIG *sd); + +int av1_use_as_reference(AV1_COMP *cpi, int ref_frame_flags); + +void av1_update_reference(AV1_COMP *cpi, int ref_frame_flags); + +int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd); + +int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd); + +int av1_update_entropy(AV1_COMP *cpi, int update); + +int av1_set_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols); + +int av1_get_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols); + +int av1_set_internal_size(AV1_COMP *cpi, AOM_SCALING horiz_mode, + AOM_SCALING vert_mode); + +int av1_get_quantizer(struct AV1_COMP *cpi); + +int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *input_size); + +int64_t timebase_units_to_ticks(const aom_rational_t *timebase, int64_t n); +int64_t ticks_to_timebase_units(const aom_rational_t *timebase, int64_t n); + +static INLINE int frame_is_kf_gf_arf(const AV1_COMP *cpi) { + return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame || + (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref); +} + +static INLINE int get_ref_frame_map_idx(const AV1_COMP *cpi, + MV_REFERENCE_FRAME ref_frame) { + return (ref_frame >= 1) ? cpi->ref_fb_idx[ref_frame - 1] : INVALID_IDX; +} + +static INLINE int get_ref_frame_buf_idx(const AV1_COMP *cpi, + MV_REFERENCE_FRAME ref_frame) { + const AV1_COMMON *const cm = &cpi->common; + const int map_idx = get_ref_frame_map_idx(cpi, ref_frame); + return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX; +} + +// TODO(huisu@google.com, youzhou@microsoft.com): enable hash-me for HBD. +static INLINE int av1_use_hash_me(const AV1_COMMON *const cm) { + return cm->allow_screen_content_tools; +} + +static INLINE hash_table *av1_get_ref_frame_hash_map( + const AV1_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { + const AV1_COMMON *const cm = &cpi->common; + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return buf_idx != INVALID_IDX + ? &cm->buffer_pool->frame_bufs[buf_idx].hash_table + : NULL; +} + +static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer( + const AV1_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { + const AV1_COMMON *const cm = &cpi->common; + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf + : NULL; +} + +static INLINE int enc_is_ref_frame_buf(AV1_COMP *cpi, RefCntBuffer *frame_buf) { + MV_REFERENCE_FRAME ref_frame; + AV1_COMMON *const cm = &cpi->common; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); + if (buf_idx == INVALID_IDX) continue; + if (frame_buf == &cm->buffer_pool->frame_bufs[buf_idx]) break; + } + return (ref_frame <= ALTREF_FRAME); +} + +// Token buffer is only used for palette tokens. +static INLINE unsigned int get_token_alloc(int mb_rows, int mb_cols, + int sb_size_log2, + const int num_planes) { + // Calculate the maximum number of max superblocks in the image. + const int shift = sb_size_log2 - 4; + const int sb_size = 1 << sb_size_log2; + const int sb_size_square = sb_size * sb_size; + const int sb_rows = ALIGN_POWER_OF_TWO(mb_rows, shift) >> shift; + const int sb_cols = ALIGN_POWER_OF_TWO(mb_cols, shift) >> shift; + + // One palette token for each pixel. There can be palettes on two planes. + const int sb_palette_toks = AOMMIN(2, num_planes) * sb_size_square; + + return sb_rows * sb_cols * sb_palette_toks; +} + +// Get the allocated token size for a tile. It does the same calculation as in +// the frame token allocation. +static INLINE unsigned int allocated_tokens(TileInfo tile, int sb_size_log2, + int num_planes) { + int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 2) >> 2; + int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 2) >> 2; + + return get_token_alloc(tile_mb_rows, tile_mb_cols, sb_size_log2, num_planes); +} + +static INLINE void get_start_tok(AV1_COMP *cpi, int tile_row, int tile_col, + int mi_row, TOKENEXTRA **tok, int sb_size_log2, + int num_planes) { + AV1_COMMON *const cm = &cpi->common; + const int tile_cols = cm->tile_cols; + TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; + const TileInfo *const tile_info = &this_tile->tile_info; + + const int tile_mb_cols = + (tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2; + const int tile_mb_row = (mi_row - tile_info->mi_row_start + 2) >> 2; + + *tok = cpi->tile_tok[tile_row][tile_col] + + get_token_alloc(tile_mb_row, tile_mb_cols, sb_size_log2, num_planes); +} + +void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags); + +#define ALT_MIN_LAG 3 +static INLINE int is_altref_enabled(const AV1_COMP *const cpi) { + return cpi->oxcf.lag_in_frames >= ALT_MIN_LAG && cpi->oxcf.enable_auto_arf; +} + +// TODO(zoeliu): To set up cpi->oxcf.enable_auto_brf + +static INLINE void set_ref_ptrs(const AV1_COMMON *cm, MACROBLOCKD *xd, + MV_REFERENCE_FRAME ref0, + MV_REFERENCE_FRAME ref1) { + xd->block_refs[0] = + &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0]; + xd->block_refs[1] = + &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0]; +} + +static INLINE int get_chessboard_index(int frame_index) { + return frame_index & 0x1; +} + +static INLINE int *cond_cost_list(const struct AV1_COMP *cpi, int *cost_list) { + return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL; +} + +void av1_new_framerate(AV1_COMP *cpi, double framerate); + +#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl)) + +// Update up-sampled reference frame index. +static INLINE void uref_cnt_fb(EncRefCntBuffer *ubufs, int *uidx, + int new_uidx) { + const int ref_index = *uidx; + + if (ref_index >= 0 && ubufs[ref_index].ref_count > 0) + ubufs[ref_index].ref_count--; + + *uidx = new_uidx; + ubufs[new_uidx].ref_count++; +} + +// Returns 1 if a frame is scaled and 0 otherwise. +static INLINE int av1_resize_scaled(const AV1_COMMON *cm) { + return !(cm->superres_upscaled_width == cm->render_width && + cm->superres_upscaled_height == cm->render_height); +} + +static INLINE int av1_frame_scaled(const AV1_COMMON *cm) { + return !av1_superres_scaled(cm) && av1_resize_scaled(cm); +} + +// Don't allow a show_existing_frame to coincide with an error resilient +// frame. An exception can be made for a forward keyframe since it has no +// previous dependencies. +static INLINE int encode_show_existing_frame(const AV1_COMMON *cm) { + return cm->show_existing_frame && + (!cm->error_resilient_mode || cm->frame_type == KEY_FRAME); +} + +// Returns a Sequence Header OBU stored in an aom_fixed_buf_t, or NULL upon +// failure. When a non-NULL aom_fixed_buf_t pointer is returned by this +// function, the memory must be freed by the caller. Both the buf member of the +// aom_fixed_buf_t, and the aom_fixed_buf_t pointer itself must be freed. Memory +// returned must be freed via call to free(). +// +// Note: The OBU returned is in Low Overhead Bitstream Format. Specifically, +// the obu_has_size_field bit is set, and the buffer contains the obu_size +// field. +aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ENCODER_H_ diff --git a/third_party/aom/av1/encoder/encodetxb.c b/third_party/aom/av1/encoder/encodetxb.c new file mode 100644 index 0000000000..5a31d93d73 --- /dev/null +++ b/third_party/aom/av1/encoder/encodetxb.c @@ -0,0 +1,2062 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/encoder/encodetxb.h" + +#include "aom_ports/mem.h" +#include "av1/common/blockd.h" +#include "av1/common/idct.h" +#include "av1/common/pred_common.h" +#include "av1/common/scan.h" +#include "av1/encoder/bitstream.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/hash.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/tokenize.h" + +static int hbt_needs_init = 1; +static CRC32C crc_calculator; +static const int HBT_EOB = 16; // also the length in opt_qcoeff +static const int HBT_TABLE_SIZE = 65536; // 16 bit: holds 65536 'arrays' +static const int HBT_ARRAY_LENGTH = 256; // 8 bit: 256 entries +// If removed in hbt_create_hashes or increased beyond int8_t, widen deltas type +static const int HBT_KICKOUT = 3; + +typedef struct OptTxbQcoeff { + // Use larger type if larger/no kickout value is used in hbt_create_hashes + int8_t deltas[16]; + uint32_t hbt_qc_hash; + uint32_t hbt_ctx_hash; + int init; + int rate_cost; +} OptTxbQcoeff; + +OptTxbQcoeff *hbt_hash_table; + +typedef struct LevelDownStats { + int update; + tran_low_t low_qc; + tran_low_t low_dqc; + int64_t dist0; + int rate; + int rate_low; + int64_t dist; + int64_t dist_low; + int64_t rd; + int64_t rd_low; + int64_t nz_rd; + int64_t rd_diff; + int cost_diff; + int64_t dist_diff; + int new_eob; +} LevelDownStats; + +void av1_alloc_txb_buf(AV1_COMP *cpi) { + AV1_COMMON *cm = &cpi->common; + int size = ((cm->mi_rows >> cm->seq_params.mib_size_log2) + 1) * + ((cm->mi_cols >> cm->seq_params.mib_size_log2) + 1); + + av1_free_txb_buf(cpi); + // TODO(jingning): This should be further reduced. + CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base, + aom_memalign(32, sizeof(*cpi->coeff_buffer_base) * size)); +} + +void av1_free_txb_buf(AV1_COMP *cpi) { aom_free(cpi->coeff_buffer_base); } + +void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x, + int mi_row, int mi_col) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + int mib_size_log2 = cm->seq_params.mib_size_log2; + int stride = (cm->mi_cols >> mib_size_log2) + 1; + int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); + CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset]; + const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); + assert(x->cb_offset < (1 << num_pels_log2_lookup[cm->seq_params.sb_size])); + for (int plane = 0; plane < num_planes; ++plane) { + x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset; + x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset; + x->mbmi_ext->txb_skip_ctx[plane] = + coeff_buf->txb_skip_ctx[plane] + txb_offset; + x->mbmi_ext->dc_sign_ctx[plane] = + coeff_buf->dc_sign_ctx[plane] + txb_offset; + } +} + +static void write_golomb(aom_writer *w, int level) { + int x = level + 1; + int i = x; + int length = 0; + + while (i) { + i >>= 1; + ++length; + } + assert(length > 0); + + for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0); + + for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01); +} + +static INLINE tran_low_t get_lower_coeff(tran_low_t qc) { + if (qc == 0) { + return 0; + } + return qc > 0 ? qc - 1 : qc + 1; +} + +static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc, int coeff_idx, + int dqv, int shift, + const qm_val_t *iqmatrix) { + int sign = qc < 0 ? -1 : 1; + if (iqmatrix != NULL) + dqv = + ((iqmatrix[coeff_idx] * dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; + return sign * ((abs(qc) * dqv) >> shift); +} + +static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff, + int shift) { + const int64_t diff = (tcoeff - dqcoeff) * (1 << shift); + const int64_t error = diff * diff; + return error; +} + +static const int8_t eob_to_pos_small[33] = { + 0, 1, 2, // 0-2 + 3, 3, // 3-4 + 4, 4, 4, 4, // 5-8 + 5, 5, 5, 5, 5, 5, 5, 5, // 9-16 + 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 // 17-32 +}; + +static const int8_t eob_to_pos_large[17] = { + 6, // place holder + 7, // 33-64 + 8, 8, // 65-128 + 9, 9, 9, 9, // 129-256 + 10, 10, 10, 10, 10, 10, 10, 10, // 257-512 + 11 // 513- +}; + +static INLINE int get_eob_pos_token(const int eob, int *const extra) { + int t; + + if (eob < 33) { + t = eob_to_pos_small[eob]; + } else { + const int e = AOMMIN((eob - 1) >> 5, 16); + t = eob_to_pos_large[e]; + } + + *extra = eob - k_eob_group_start[t]; + + return t; +} + +#if CONFIG_ENTROPY_STATS +void av1_update_eob_context(int cdf_idx, int eob, TX_SIZE tx_size, + TX_CLASS tx_class, PLANE_TYPE plane, + FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts, + uint8_t allow_update_cdf) { +#else +void av1_update_eob_context(int eob, TX_SIZE tx_size, TX_CLASS tx_class, + PLANE_TYPE plane, FRAME_CONTEXT *ec_ctx, + uint8_t allow_update_cdf) { +#endif + int eob_extra; + const int eob_pt = get_eob_pos_token(eob, &eob_extra); + TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; + + switch (eob_multi_size) { + case 0: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi16[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) + update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5); + break; + case 1: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi32[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) + update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6); + break; + case 2: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi64[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) + update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7); + break; + case 3: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi128[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) { + update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1, + 8); + } + break; + case 4: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi256[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) { + update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1, + 9); + } + break; + case 5: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi512[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) { + update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1, + 10); + } + break; + case 6: + default: +#if CONFIG_ENTROPY_STATS + ++counts->eob_multi1024[cdf_idx][plane][eob_multi_ctx][eob_pt - 1]; +#endif + if (allow_update_cdf) { + update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1, + 11); + } + break; + } + + if (k_eob_offset_bits[eob_pt] > 0) { + int eob_ctx = eob_pt - 3; + int eob_shift = k_eob_offset_bits[eob_pt] - 1; + int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; +#if CONFIG_ENTROPY_STATS + counts->eob_extra[cdf_idx][txs_ctx][plane][eob_pt][bit]++; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) + update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_ctx], bit, 2); + } +} + +static int get_eob_cost(int eob, const LV_MAP_EOB_COST *txb_eob_costs, + const LV_MAP_COEFF_COST *txb_costs, TX_CLASS tx_class) { + int eob_extra; + const int eob_pt = get_eob_pos_token(eob, &eob_extra); + int eob_cost = 0; + const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; + eob_cost = txb_eob_costs->eob_cost[eob_multi_ctx][eob_pt - 1]; + + if (k_eob_offset_bits[eob_pt] > 0) { + const int eob_ctx = eob_pt - 3; + const int eob_shift = k_eob_offset_bits[eob_pt] - 1; + const int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; + eob_cost += txb_costs->eob_extra_cost[eob_ctx][bit]; + const int offset_bits = k_eob_offset_bits[eob_pt]; + if (offset_bits > 1) eob_cost += av1_cost_literal(offset_bits - 1); + } + return eob_cost; +} + +static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx, + const int (*dc_sign_cost)[2], + int dc_sign_ctx) { + if (coeff_idx == 0) { + const int sign = (qc < 0) ? 1 : 0; + return dc_sign_cost[dc_sign_ctx][sign]; + } + return av1_cost_literal(1); +} + +static INLINE int get_br_cost(tran_low_t abs_qc, int ctx, + const int *coeff_lps) { + const tran_low_t min_level = 1 + NUM_BASE_LEVELS; + const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE; + (void)ctx; + if (abs_qc >= min_level) { + if (abs_qc >= max_level) { + return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0; + } else { + return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1; + } + } + return 0; +} + +static INLINE int get_golomb_cost(int abs_qc) { + if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) { + const int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS; + const int length = get_msb(r) + 1; + return av1_cost_literal(2 * length - 1); + } + return 0; +} + +static int get_coeff_cost(const tran_low_t qc, const int scan_idx, + const int is_eob, const TxbInfo *const txb_info, + const LV_MAP_COEFF_COST *const txb_costs, + const int coeff_ctx, const TX_CLASS tx_class) { + const TXB_CTX *const txb_ctx = txb_info->txb_ctx; + const int is_nz = (qc != 0); + const tran_low_t abs_qc = abs(qc); + int cost = 0; + const int16_t *const scan = txb_info->scan_order->scan; + const int pos = scan[scan_idx]; + + if (is_eob) { + cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; + } else { + cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; + } + if (is_nz) { + cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost, + txb_ctx->dc_sign_ctx); + + if (abs_qc > NUM_BASE_LEVELS) { + const int ctx = + get_br_ctx(txb_info->levels, pos, txb_info->bwl, tx_class); + cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]); + cost += get_golomb_cost(abs_qc); + } + } + return cost; +} + +static INLINE int get_nz_map_ctx(const uint8_t *const levels, + const int coeff_idx, const int bwl, + const int height, const int scan_idx, + const int is_eob, const TX_SIZE tx_size, + const TX_CLASS tx_class) { + if (is_eob) { + if (scan_idx == 0) return 0; + if (scan_idx <= (height << bwl) / 8) return 1; + if (scan_idx <= (height << bwl) / 4) return 2; + return 3; + } + const int stats = + get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class); + return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class); +} + +static void get_dist_cost_stats(LevelDownStats *const stats, const int scan_idx, + const int is_eob, + const LV_MAP_COEFF_COST *const txb_costs, + const TxbInfo *const txb_info, + const TX_CLASS tx_class) { + const int16_t *const scan = txb_info->scan_order->scan; + const int coeff_idx = scan[scan_idx]; + const tran_low_t qc = txb_info->qcoeff[coeff_idx]; + const uint8_t *const levels = txb_info->levels; + stats->new_eob = -1; + stats->update = 0; + stats->rd_low = 0; + stats->rd = 0; + stats->nz_rd = 0; + stats->dist_low = 0; + stats->rate_low = 0; + stats->low_qc = 0; + + const tran_low_t tqc = txb_info->tcoeff[coeff_idx]; + const int dqv = txb_info->dequant[coeff_idx != 0]; + const int coeff_ctx = + get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height, + scan_idx, is_eob, txb_info->tx_size, tx_class); + const int qc_cost = get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs, + coeff_ctx, tx_class); + assert(qc != 0); + const tran_low_t dqc = qcoeff_to_dqcoeff(qc, coeff_idx, dqv, txb_info->shift, + txb_info->iqmatrix); + const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift); + + // distortion difference when coefficient is quantized to 0 + const tran_low_t dqc0 = + qcoeff_to_dqcoeff(0, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); + + stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift); + stats->dist = dqc_dist - stats->dist0; + stats->rate = qc_cost; + + stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist); + + stats->low_qc = get_lower_coeff(qc); + + if (is_eob && stats->low_qc == 0) { + stats->rd_low = stats->rd; // disable selection of low_qc in this case. + } else { + if (stats->low_qc == 0) { + stats->dist_low = 0; + } else { + stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, coeff_idx, dqv, + txb_info->shift, txb_info->iqmatrix); + const int64_t low_dqc_dist = + get_coeff_dist(tqc, stats->low_dqc, txb_info->shift); + stats->dist_low = low_dqc_dist - stats->dist0; + } + const int low_qc_cost = + get_coeff_cost(stats->low_qc, scan_idx, is_eob, txb_info, txb_costs, + coeff_ctx, tx_class); + stats->rate_low = low_qc_cost; + stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low); + } +} + +static void get_dist_cost_stats_with_eob( + LevelDownStats *const stats, const int scan_idx, + const LV_MAP_COEFF_COST *const txb_costs, const TxbInfo *const txb_info, + const TX_CLASS tx_class) { + const int is_eob = 0; + get_dist_cost_stats(stats, scan_idx, is_eob, txb_costs, txb_info, tx_class); + + const int16_t *const scan = txb_info->scan_order->scan; + const int coeff_idx = scan[scan_idx]; + const tran_low_t qc = txb_info->qcoeff[coeff_idx]; + const int coeff_ctx_temp = get_nz_map_ctx( + txb_info->levels, coeff_idx, txb_info->bwl, txb_info->height, scan_idx, 1, + txb_info->tx_size, tx_class); + const int qc_eob_cost = get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs, + coeff_ctx_temp, tx_class); + int64_t rd_eob = RDCOST(txb_info->rdmult, qc_eob_cost, stats->dist); + if (stats->low_qc != 0) { + const int low_qc_eob_cost = + get_coeff_cost(stats->low_qc, scan_idx, 1, txb_info, txb_costs, + coeff_ctx_temp, tx_class); + int64_t rd_eob_low = + RDCOST(txb_info->rdmult, low_qc_eob_cost, stats->dist_low); + rd_eob = (rd_eob > rd_eob_low) ? rd_eob_low : rd_eob; + } + + stats->nz_rd = AOMMIN(stats->rd_low, stats->rd) - rd_eob; +} + +static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc, + const TxbInfo *const txb_info) { + txb_info->qcoeff[coeff_idx] = qc; + txb_info->levels[get_padded_idx(coeff_idx, txb_info->bwl)] = + (uint8_t)clamp(abs(qc), 0, INT8_MAX); +} + +static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc, + const TxbInfo *const txb_info) { + update_qcoeff(coeff_idx, qc, txb_info); + const int dqv = txb_info->dequant[coeff_idx != 0]; + txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff( + qc, coeff_idx, dqv, txb_info->shift, txb_info->iqmatrix); +} + +void av1_txb_init_levels_c(const tran_low_t *const coeff, const int width, + const int height, uint8_t *const levels) { + const int stride = width + TX_PAD_HOR; + uint8_t *ls = levels; + + memset(levels - TX_PAD_TOP * stride, 0, + sizeof(*levels) * TX_PAD_TOP * stride); + memset(levels + stride * height, 0, + sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END)); + + for (int i = 0; i < height; i++) { + for (int j = 0; j < width; j++) { + *ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX); + } + for (int j = 0; j < TX_PAD_HOR; j++) { + *ls++ = 0; + } + } +} + +void av1_get_nz_map_contexts_c(const uint8_t *const levels, + const int16_t *const scan, const uint16_t eob, + const TX_SIZE tx_size, const TX_CLASS tx_class, + int8_t *const coeff_contexts) { + const int bwl = get_txb_bwl(tx_size); + const int height = get_txb_high(tx_size); + for (int i = 0; i < eob; ++i) { + const int pos = scan[i]; + coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bwl, height, i, + i == eob - 1, tx_size, tx_class); + } +} + +void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd, + aom_writer *w, int blk_row, int blk_col, int plane, + TX_SIZE tx_size, const tran_low_t *tcoeff, + uint16_t eob, TXB_CTX *txb_ctx) { + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; + aom_write_symbol(w, eob == 0, + ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2); + if (eob == 0) return; + const PLANE_TYPE plane_type = get_plane_type(plane); + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + const TX_CLASS tx_class = tx_type_to_class[tx_type]; + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const int16_t *const scan = scan_order->scan; + int c; + const int bwl = get_txb_bwl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, width); + DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); + av1_txb_init_levels(tcoeff, width, height, levels); + + av1_write_tx_type(cm, xd, blk_row, blk_col, plane, tx_size, w); + + int eob_extra; + const int eob_pt = get_eob_pos_token(eob, &eob_extra); + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const int eob_multi_ctx = (tx_class == TX_CLASS_2D) ? 0 : 1; + switch (eob_multi_size) { + case 0: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5); + break; + case 1: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6); + break; + case 2: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7); + break; + case 3: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8); + break; + case 4: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9); + break; + case 5: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10); + break; + default: + aom_write_symbol(w, eob_pt - 1, + ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11); + break; + } + + if (k_eob_offset_bits[eob_pt] > 0) { + const int eob_ctx = eob_pt - 3; + int eob_shift = k_eob_offset_bits[eob_pt] - 1; + int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; + aom_write_symbol(w, bit, + ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_ctx], 2); + for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) { + eob_shift = k_eob_offset_bits[eob_pt] - 1 - i; + bit = (eob_extra & (1 << eob_shift)) ? 1 : 0; + aom_write_bit(w, bit); + } + } + + av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); + + for (c = eob - 1; c >= 0; --c) { + const int pos = scan[c]; + const int coeff_ctx = coeff_contexts[pos]; + const tran_low_t v = tcoeff[pos]; + const tran_low_t level = abs(v); + + if (c == eob - 1) { + aom_write_symbol( + w, AOMMIN(level, 3) - 1, + ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3); + } else { + aom_write_symbol(w, AOMMIN(level, 3), + ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx], + 4); + } + if (level > NUM_BASE_LEVELS) { + // level is above 1. + const int base_range = level - 1 - NUM_BASE_LEVELS; + const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class); + for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { + const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); + aom_write_symbol( + w, k, + ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)][plane_type][br_ctx], + BR_CDF_SIZE); + if (k < BR_CDF_SIZE - 1) break; + } + } + } + + // Loop to code all signs in the transform block, + // starting with the sign of DC (if applicable) + for (c = 0; c < eob; ++c) { + const tran_low_t v = tcoeff[scan[c]]; + const tran_low_t level = abs(v); + const int sign = (v < 0) ? 1 : 0; + if (level) { + if (c == 0) { + aom_write_symbol( + w, sign, ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2); + } else { + aom_write_bit(w, sign); + } + if (level > COEFF_BASE_RANGE + NUM_BASE_LEVELS) + write_golomb(w, level - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS); + } + } +} + +typedef struct encode_txb_args { + const AV1_COMMON *cm; + MACROBLOCK *x; + aom_writer *w; +} ENCODE_TXB_ARGS; + +static void write_coeffs_txb_wrap(const AV1_COMMON *cm, MACROBLOCK *x, + aom_writer *w, int plane, int block, + int blk_row, int blk_col, TX_SIZE tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); + uint16_t eob = x->mbmi_ext->eobs[plane][block]; + TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], + x->mbmi_ext->dc_sign_ctx[plane][block] }; + av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, eob, + &txb_ctx); +} + +void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, + int mi_col, aom_writer *w, BLOCK_SIZE bsize) { + MACROBLOCKD *xd = &x->e_mbd; + const int num_planes = av1_num_planes(cm); + int block[MAX_MB_PLANE] = { 0 }; + int row, col; + assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, + xd->plane[0].subsampling_y)); + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; + int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); + mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); + + for (row = 0; row < max_blocks_high; row += mu_blocks_high) { + for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const int stepr = tx_size_high_unit[tx_size]; + const int stepc = tx_size_wide_unit[tx_size]; + const int step = stepr * stepc; + + const int unit_height = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y); + const int unit_width = ROUND_POWER_OF_TWO( + AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x); + for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height; + blk_row += stepr) { + for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width; + blk_col += stepc) { + write_coeffs_txb_wrap(cm, x, w, plane, block[plane], blk_row, + blk_col, tx_size); + block[plane] += step; + } + } + } + } + } +} + +// TODO(angiebird): use this function whenever it's possible +static int get_tx_type_cost(const AV1_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, int plane, TX_SIZE tx_size, + TX_TYPE tx_type) { + if (plane > 0) return 0; + + const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; + + const MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && + !xd->lossless[xd->mi[0]->segment_id]) { + const int ext_tx_set = + get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); + if (is_inter) { + if (ext_tx_set > 0) + return x->inter_tx_type_costs[ext_tx_set][square_tx_size][tx_type]; + } else { + if (ext_tx_set > 0) { + PREDICTION_MODE intra_dir; + if (mbmi->filter_intra_mode_info.use_filter_intra) + intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info + .filter_intra_mode]; + else + intra_dir = mbmi->mode; + return x->intra_tx_type_costs[ext_tx_set][square_tx_size][intra_dir] + [tx_type]; + } + } + } + return 0; +} + +static AOM_FORCE_INLINE int warehouse_efficients_txb( + const AV1_COMMON *const cm, const MACROBLOCK *x, const int plane, + const int block, const TX_SIZE tx_size, const TXB_CTX *const txb_ctx, + const struct macroblock_plane *p, const int eob, + const PLANE_TYPE plane_type, const LV_MAP_COEFF_COST *const coeff_costs, + const MACROBLOCKD *const xd, const TX_TYPE tx_type, + const TX_CLASS tx_class) { + const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); + const int txb_skip_ctx = txb_ctx->txb_skip_ctx; + const int bwl = get_txb_bwl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const int16_t *const scan = scan_order->scan; + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, width); + DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const LV_MAP_EOB_COST *const eob_costs = + &x->eob_costs[eob_multi_size][plane_type]; + int cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0]; + + av1_txb_init_levels(qcoeff, width, height, levels); + + cost += get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); + + cost += get_eob_cost(eob, eob_costs, coeff_costs, tx_class); + + av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); + + const int(*lps_cost)[COEFF_BASE_RANGE + 1] = coeff_costs->lps_cost; + int c = eob - 1; + { + const int pos = scan[c]; + const tran_low_t v = qcoeff[pos]; + const int sign = v >> 31; + const int level = (v ^ sign) - sign; + const int coeff_ctx = coeff_contexts[pos]; + cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1]; + + if (v) { + // sign bit cost + if (level > NUM_BASE_LEVELS) { + const int ctx = get_br_ctx(levels, pos, bwl, tx_class); + const int base_range = + AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); + cost += lps_cost[ctx][base_range]; + cost += get_golomb_cost(level); + } + if (c) { + cost += av1_cost_literal(1); + } else { + const int sign01 = (sign ^ sign) - sign; + const int dc_sign_ctx = txb_ctx->dc_sign_ctx; + cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01]; + return cost; + } + } + } + const int(*base_cost)[4] = coeff_costs->base_cost; + for (c = eob - 2; c >= 1; --c) { + const int pos = scan[c]; + const int coeff_ctx = coeff_contexts[pos]; + const tran_low_t v = qcoeff[pos]; + const int level = abs(v); + const int cost0 = base_cost[coeff_ctx][AOMMIN(level, 3)]; + if (v) { + // sign bit cost + cost += av1_cost_literal(1); + if (level > NUM_BASE_LEVELS) { + const int ctx = get_br_ctx(levels, pos, bwl, tx_class); + const int base_range = + AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); + cost += lps_cost[ctx][base_range]; + cost += get_golomb_cost(level); + } + } + cost += cost0; + } + if (c == 0) { + const int pos = scan[c]; + const tran_low_t v = qcoeff[pos]; + const int coeff_ctx = coeff_contexts[pos]; + const int sign = v >> 31; + const int level = (v ^ sign) - sign; + cost += base_cost[coeff_ctx][AOMMIN(level, 3)]; + + if (v) { + // sign bit cost + const int sign01 = (sign ^ sign) - sign; + const int dc_sign_ctx = txb_ctx->dc_sign_ctx; + cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign01]; + if (level > NUM_BASE_LEVELS) { + const int ctx = get_br_ctx(levels, pos, bwl, tx_class); + const int base_range = + AOMMIN(level - 1 - NUM_BASE_LEVELS, COEFF_BASE_RANGE); + cost += lps_cost[ctx][base_range]; + cost += get_golomb_cost(level); + } + } + } + return cost; +} + +int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x, + const int plane, const int block, const TX_SIZE tx_size, + const TX_TYPE tx_type, const TXB_CTX *const txb_ctx) { + const struct macroblock_plane *p = &x->plane[plane]; + const int eob = p->eobs[block]; + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const PLANE_TYPE plane_type = get_plane_type(plane); + const LV_MAP_COEFF_COST *const coeff_costs = + &x->coeff_costs[txs_ctx][plane_type]; + if (eob == 0) { + return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1]; + } + + const MACROBLOCKD *const xd = &x->e_mbd; + const TX_CLASS tx_class = tx_type_to_class[tx_type]; + +#define WAREHOUSE_EFFICIENTS_TXB_CASE(tx_class_literal) \ + case tx_class_literal: \ + return warehouse_efficients_txb(cm, x, plane, block, tx_size, txb_ctx, p, \ + eob, plane_type, coeff_costs, xd, tx_type, \ + tx_class_literal); + switch (tx_class) { + WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_2D); + WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_HORIZ); + WAREHOUSE_EFFICIENTS_TXB_CASE(TX_CLASS_VERT); +#undef WAREHOUSE_EFFICIENTS_TXB_CASE + default: assert(false); return 0; + } +} + +static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, + const LV_MAP_EOB_COST *txb_eob_costs, int *rate_cost) { + int update = 0; + if (txb_info->eob == 0) return update; + const int16_t *const scan = txb_info->scan_order->scan; + // forward optimize the nz_map` + const int init_eob = txb_info->eob; + const TX_CLASS tx_class = tx_type_to_class[txb_info->tx_type]; + const int eob_cost = + get_eob_cost(init_eob, txb_eob_costs, txb_costs, tx_class); + + // backward optimize the level-k map + int accu_rate = eob_cost; + int64_t accu_dist = 0; + int64_t prev_eob_rd_cost = INT64_MAX; + int64_t cur_eob_rd_cost = 0; + + { + const int si = init_eob - 1; + const int coeff_idx = scan[si]; + LevelDownStats stats; + get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info, + tx_class); + if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) { + update = 1; + update_coeff(coeff_idx, stats.low_qc, txb_info); + accu_rate += stats.rate_low; + accu_dist += stats.dist_low; + } else { + accu_rate += stats.rate; + accu_dist += stats.dist; + } + } + + int si = init_eob - 2; + int8_t has_nz_tail = 0; + // eob is not fixed + for (; si >= 0 && has_nz_tail < 2; --si) { + assert(si != init_eob - 1); + const int coeff_idx = scan[si]; + tran_low_t qc = txb_info->qcoeff[coeff_idx]; + + if (qc == 0) { + const int coeff_ctx = + get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl, + txb_info->tx_size, tx_class); + accu_rate += txb_costs->base_cost[coeff_ctx][0]; + } else { + LevelDownStats stats; + get_dist_cost_stats_with_eob(&stats, si, txb_costs, txb_info, tx_class); + // check if it is better to make this the last significant coefficient + int cur_eob_rate = + get_eob_cost(si + 1, txb_eob_costs, txb_costs, tx_class); + cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0); + prev_eob_rd_cost = + RDCOST(txb_info->rdmult, accu_rate, accu_dist) + stats.nz_rd; + if (cur_eob_rd_cost <= prev_eob_rd_cost) { + update = 1; + for (int j = si + 1; j < txb_info->eob; j++) { + const int coeff_pos_j = scan[j]; + update_coeff(coeff_pos_j, 0, txb_info); + } + txb_info->eob = si + 1; + + // rerun cost calculation due to change of eob + accu_rate = cur_eob_rate; + accu_dist = 0; + get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info, tx_class); + if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) { + update = 1; + update_coeff(coeff_idx, stats.low_qc, txb_info); + accu_rate += stats.rate_low; + accu_dist += stats.dist_low; + } else { + accu_rate += stats.rate; + accu_dist += stats.dist; + } + + // reset non zero tail when new eob is found + has_nz_tail = 0; + } else { + int bUpdCoeff = 0; + if (stats.rd_low < stats.rd) { + if ((si < txb_info->eob - 1)) { + bUpdCoeff = 1; + update = 1; + } + } else { + ++has_nz_tail; + } + + if (bUpdCoeff) { + update_coeff(coeff_idx, stats.low_qc, txb_info); + accu_rate += stats.rate_low; + accu_dist += stats.dist_low; + } else { + accu_rate += stats.rate; + accu_dist += stats.dist; + } + } + } + } // for (si) + + // eob is fixed + for (; si >= 0; --si) { + assert(si != init_eob - 1); + const int coeff_idx = scan[si]; + tran_low_t qc = txb_info->qcoeff[coeff_idx]; + + if (qc == 0) { + const int coeff_ctx = + get_lower_levels_ctx(txb_info->levels, coeff_idx, txb_info->bwl, + txb_info->tx_size, tx_class); + accu_rate += txb_costs->base_cost[coeff_ctx][0]; + } else { + LevelDownStats stats; + get_dist_cost_stats(&stats, si, 0, txb_costs, txb_info, tx_class); + + int bUpdCoeff = 0; + if (stats.rd_low < stats.rd) { + if ((si < txb_info->eob - 1)) { + bUpdCoeff = 1; + update = 1; + } + } + if (bUpdCoeff) { + update_coeff(coeff_idx, stats.low_qc, txb_info); + accu_rate += stats.rate_low; + accu_dist += stats.dist_low; + } else { + accu_rate += stats.rate; + accu_dist += stats.dist; + } + } + } // for (si) + + int non_zero_blk_rate = + txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0]; + prev_eob_rd_cost = + RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist); + + int zero_blk_rate = + txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1]; + int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0); + if (zero_blk_rd_cost <= prev_eob_rd_cost) { + update = 1; + for (int j = 0; j < txb_info->eob; j++) { + const int coeff_pos_j = scan[j]; + update_coeff(coeff_pos_j, 0, txb_info); + } + txb_info->eob = 0; + } + + // record total rate cost + *rate_cost = zero_blk_rd_cost <= prev_eob_rd_cost + ? zero_blk_rate + : accu_rate + non_zero_blk_rate; + + if (txb_info->eob > 0) { + *rate_cost += txb_info->tx_type_cost; + } + + return update; +} + +// These numbers are empirically obtained. +static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { + { 17, 13 }, + { 16, 10 }, +}; + +void hbt_init() { + hbt_hash_table = + aom_malloc(sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH); + memset(hbt_hash_table, 0, + sizeof(OptTxbQcoeff) * HBT_TABLE_SIZE * HBT_ARRAY_LENGTH); + av1_crc32c_calculator_init(&crc_calculator); // 31 bit: qc & ctx + + hbt_needs_init = 0; +} + +void hbt_destroy() { aom_free(hbt_hash_table); } + +int hbt_hash_miss(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash, + TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, + const LV_MAP_EOB_COST *txb_eob_costs, + const struct macroblock_plane *p, int block, int fast_mode, + int *rate_cost) { + (void)fast_mode; + const int16_t *scan = txb_info->scan_order->scan; + int prev_eob = txb_info->eob; + assert(HBT_EOB <= 16); // Lengthen array if allowing longer eob. + int32_t prev_coeff[16]; + for (int i = 0; i < prev_eob; i++) { + prev_coeff[i] = txb_info->qcoeff[scan[i]]; + } + for (int i = prev_eob; i < HBT_EOB; i++) { + prev_coeff[i] = 0; // For compiler piece of mind. + } + + av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height, + txb_info->levels); + + const int update = + optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost); + + // Overwrite old entry + uint16_t hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE; + uint16_t hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH; + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .rate_cost = *rate_cost; + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index].init = 1; + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .hbt_qc_hash = hbt_qc_hash; + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .hbt_ctx_hash = hbt_ctx_hash; + assert(prev_eob >= txb_info->eob); // eob can't get longer + for (int i = 0; i < txb_info->eob; i++) { + // Record how coeff changed. Convention: towards zero is negative. + if (txb_info->qcoeff[scan[i]] > 0) + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] = txb_info->qcoeff[scan[i]] - prev_coeff[i]; + else + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] = prev_coeff[i] - txb_info->qcoeff[scan[i]]; + } + for (int i = txb_info->eob; i < prev_eob; i++) { + // If eob got shorter, record that all after it changed to zero. + if (prev_coeff[i] > 0) + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] = -prev_coeff[i]; + else + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] = prev_coeff[i]; + } + for (int i = prev_eob; i < HBT_EOB; i++) { + // Record 'no change' after optimized coefficients run out. + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] = 0; + } + + if (update) { + p->eobs[block] = txb_info->eob; + p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( + txb_info->qcoeff, txb_info->scan_order, txb_info->eob); + } + return txb_info->eob; +} + +int hbt_hash_hit(uint32_t hbt_table_index, int hbt_array_index, + TxbInfo *txb_info, const struct macroblock_plane *p, int block, + int *rate_cost) { + const int16_t *scan = txb_info->scan_order->scan; + int new_eob = 0; + int update = 0; + + for (int i = 0; i < txb_info->eob; i++) { + // Delta convention is negatives go towards zero, so only apply those ones. + if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i] < 0) { + if (txb_info->qcoeff[scan[i]] > 0) + txb_info->qcoeff[scan[i]] += + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i]; + else + txb_info->qcoeff[scan[i]] -= + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .deltas[i]; + + update = 1; + update_coeff(scan[i], txb_info->qcoeff[scan[i]], txb_info); + } + if (txb_info->qcoeff[scan[i]]) new_eob = i + 1; + } + + // Rate_cost can be calculated here instead (av1_cost_coeffs_txb), but + // it is expensive and gives little benefit as long as qc_hash is high bit + *rate_cost = + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .rate_cost; + + if (update) { + txb_info->eob = new_eob; + p->eobs[block] = txb_info->eob; + p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( + txb_info->qcoeff, txb_info->scan_order, txb_info->eob); + } + + return txb_info->eob; +} + +int hbt_search_match(uint32_t hbt_ctx_hash, uint32_t hbt_qc_hash, + TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, + const LV_MAP_EOB_COST *txb_eob_costs, + const struct macroblock_plane *p, int block, int fast_mode, + int *rate_cost) { + // Check for qcoeff match + int hbt_array_index = hbt_qc_hash % HBT_ARRAY_LENGTH; + int hbt_table_index = hbt_ctx_hash % HBT_TABLE_SIZE; + + if (hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .hbt_qc_hash == hbt_qc_hash && + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .hbt_ctx_hash == hbt_ctx_hash && + hbt_hash_table[hbt_table_index * HBT_ARRAY_LENGTH + hbt_array_index] + .init) { + return hbt_hash_hit(hbt_table_index, hbt_array_index, txb_info, p, block, + rate_cost); + } else { + return hbt_hash_miss(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs, + txb_eob_costs, p, block, fast_mode, rate_cost); + } +} + +int hbt_create_hashes(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs, + const LV_MAP_EOB_COST *txb_eob_costs, + const struct macroblock_plane *p, int block, + int fast_mode, int *rate_cost) { + // Initialize hash table if needed. + if (hbt_needs_init) { + hbt_init(); + } + + //// Hash creation + uint8_t txb_hash_data[256]; // Asserts below to ensure enough space. + const int16_t *scan = txb_info->scan_order->scan; + uint8_t chunk = 0; + int hash_data_index = 0; + + // Make qc_hash. + int packing_index = 0; // needed for packing. + for (int i = 0; i < txb_info->eob; i++) { + tran_low_t prechunk = txb_info->qcoeff[scan[i]]; + + // Softening: Improves speed. Aligns with signed deltas. + if (prechunk < 0) prechunk *= -1; + + // Early kick out: Don't apply feature if there are large coeffs: + // If this kickout value is removed or raised beyond int8_t, + // widen deltas type in OptTxbQcoeff struct. + assert((int8_t)HBT_KICKOUT == HBT_KICKOUT); // If not, widen types. + if (prechunk > HBT_KICKOUT) { + av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height, + txb_info->levels); + + const int update = + optimize_txb(txb_info, txb_costs, txb_eob_costs, rate_cost); + + if (update) { + p->eobs[block] = txb_info->eob; + p->txb_entropy_ctx[block] = av1_get_txb_entropy_context( + txb_info->qcoeff, txb_info->scan_order, txb_info->eob); + } + return txb_info->eob; + } + + // Since coeffs are 0 to 3, only 2 bits are needed: pack into bytes + if (packing_index == 0) txb_hash_data[hash_data_index] = 0; + chunk = prechunk << packing_index; + packing_index += 2; + txb_hash_data[hash_data_index] |= chunk; + + // Full byte: + if (packing_index == 8) { + packing_index = 0; + hash_data_index++; + } + } + // Needed when packing_index != 0, to include final byte. + hash_data_index++; + assert(hash_data_index <= 64); + // 31 bit qc_hash: index to array + uint32_t hbt_qc_hash = + av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index); + + // Make ctx_hash. + hash_data_index = 0; + tran_low_t prechunk; + + for (int i = 0; i < txb_info->eob; i++) { + // Save as magnitudes towards or away from zero. + if (txb_info->tcoeff[scan[i]] >= 0) + prechunk = txb_info->tcoeff[scan[i]] - txb_info->dqcoeff[scan[i]]; + else + prechunk = txb_info->dqcoeff[scan[i]] - txb_info->tcoeff[scan[i]]; + + chunk = prechunk & 0xff; + txb_hash_data[hash_data_index++] = chunk; + } + + // Extra ctx data: + // Include dequants. + txb_hash_data[hash_data_index++] = txb_info->dequant[0] & 0xff; + txb_hash_data[hash_data_index++] = txb_info->dequant[1] & 0xff; + chunk = txb_info->txb_ctx->txb_skip_ctx & 0xff; + txb_hash_data[hash_data_index++] = chunk; + chunk = txb_info->txb_ctx->dc_sign_ctx & 0xff; + txb_hash_data[hash_data_index++] = chunk; + // eob + chunk = txb_info->eob & 0xff; + txb_hash_data[hash_data_index++] = chunk; + // rdmult (int64) + chunk = txb_info->rdmult & 0xff; + txb_hash_data[hash_data_index++] = chunk; + // tx_type + chunk = txb_info->tx_type & 0xff; + txb_hash_data[hash_data_index++] = chunk; + // base_eob_cost + for (int i = 1; i < 3; i++) { // i = 0 are softened away + for (int j = 0; j < SIG_COEF_CONTEXTS_EOB; j++) { + chunk = (txb_costs->base_eob_cost[j][i] & 0xff00) >> 8; + txb_hash_data[hash_data_index++] = chunk; + } + } + // eob_cost + for (int i = 0; i < 11; i++) { + for (int j = 0; j < 2; j++) { + chunk = (txb_eob_costs->eob_cost[j][i] & 0xff00) >> 8; + txb_hash_data[hash_data_index++] = chunk; + } + } + // dc_sign_cost + for (int i = 0; i < 2; i++) { + for (int j = 0; j < DC_SIGN_CONTEXTS; j++) { + chunk = (txb_costs->dc_sign_cost[j][i] & 0xff00) >> 8; + txb_hash_data[hash_data_index++] = chunk; + } + } + + assert(hash_data_index <= 256); + // 31 bit ctx_hash: used to index table + uint32_t hbt_ctx_hash = + av1_get_crc32c_value(&crc_calculator, txb_hash_data, hash_data_index); + //// End hash creation + + return hbt_search_match(hbt_ctx_hash, hbt_qc_hash, txb_info, txb_costs, + txb_eob_costs, p, block, fast_mode, rate_cost); +} + +static AOM_FORCE_INLINE int get_coeff_cost_simple( + int ci, tran_low_t abs_qc, int coeff_ctx, + const LV_MAP_COEFF_COST *txb_costs, int bwl, TX_CLASS tx_class, + const uint8_t *levels) { + // this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0) + // and not the last (scan_idx != eob - 1) + assert(ci > 0); + int cost = txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; + if (abs_qc) { + cost += av1_cost_literal(1); + if (abs_qc > NUM_BASE_LEVELS) { + const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class); + cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]); + cost += get_golomb_cost(abs_qc); + } + } + return cost; +} + +static INLINE int get_coeff_cost_general(int is_last, int ci, tran_low_t abs_qc, + int sign, int coeff_ctx, + int dc_sign_ctx, + const LV_MAP_COEFF_COST *txb_costs, + int bwl, TX_CLASS tx_class, + const uint8_t *levels) { + int cost = 0; + if (is_last) { + cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1]; + } else { + cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)]; + } + if (abs_qc != 0) { + if (ci == 0) { + cost += txb_costs->dc_sign_cost[dc_sign_ctx][sign]; + } else { + cost += av1_cost_literal(1); + } + if (abs_qc > NUM_BASE_LEVELS) { + const int br_ctx = get_br_ctx(levels, ci, bwl, tx_class); + cost += get_br_cost(abs_qc, br_ctx, txb_costs->lps_cost[br_ctx]); + cost += get_golomb_cost(abs_qc); + } + } + return cost; +} + +static INLINE void get_qc_dqc_low(tran_low_t abs_qc, int sign, int dqv, + int shift, tran_low_t *qc_low, + tran_low_t *dqc_low) { + tran_low_t abs_qc_low = abs_qc - 1; + *qc_low = (-sign ^ abs_qc_low) + sign; + assert((sign ? -abs_qc_low : abs_qc_low) == *qc_low); + tran_low_t abs_dqc_low = (abs_qc_low * dqv) >> shift; + *dqc_low = (-sign ^ abs_dqc_low) + sign; + assert((sign ? -abs_dqc_low : abs_dqc_low) == *dqc_low); +} + +static INLINE void update_coeff_general( + int *accu_rate, int64_t *accu_dist, int si, int eob, TX_SIZE tx_size, + TX_CLASS tx_class, int bwl, int height, int64_t rdmult, int shift, + int dc_sign_ctx, const int16_t *dequant, const int16_t *scan, + const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff, + tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels) { + const int dqv = dequant[si != 0]; + const int ci = scan[si]; + const tran_low_t qc = qcoeff[ci]; + const int is_last = si == (eob - 1); + const int coeff_ctx = get_lower_levels_ctx_general( + is_last, si, bwl, height, levels, ci, tx_size, tx_class); + if (qc == 0) { + *accu_rate += txb_costs->base_cost[coeff_ctx][0]; + } else { + const int sign = (qc < 0) ? 1 : 0; + const tran_low_t abs_qc = abs(qc); + const tran_low_t tqc = tcoeff[ci]; + const tran_low_t dqc = dqcoeff[ci]; + const int64_t dist = get_coeff_dist(tqc, dqc, shift); + const int64_t dist0 = get_coeff_dist(tqc, 0, shift); + const int rate = + get_coeff_cost_general(is_last, ci, abs_qc, sign, coeff_ctx, + dc_sign_ctx, txb_costs, bwl, tx_class, levels); + const int64_t rd = RDCOST(rdmult, rate, dist); + + tran_low_t qc_low, dqc_low; + get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); + const tran_low_t abs_qc_low = abs_qc - 1; + const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift); + const int rate_low = + get_coeff_cost_general(is_last, ci, abs_qc_low, sign, coeff_ctx, + dc_sign_ctx, txb_costs, bwl, tx_class, levels); + const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low); + if (rd_low < rd) { + qcoeff[ci] = qc_low; + dqcoeff[ci] = dqc_low; + levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); + *accu_rate += rate_low; + *accu_dist += dist_low - dist0; + } else { + *accu_rate += rate; + *accu_dist += dist - dist0; + } + } +} + +static AOM_FORCE_INLINE void update_coeff_simple( + int *accu_rate, int si, int eob, TX_SIZE tx_size, TX_CLASS tx_class, + int bwl, int64_t rdmult, int shift, const int16_t *dequant, + const int16_t *scan, const LV_MAP_COEFF_COST *txb_costs, + const tran_low_t *tcoeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, + uint8_t *levels) { + const int dqv = dequant[1]; + (void)eob; + // this simple version assumes the coeff's scan_idx is not DC (scan_idx != 0) + // and not the last (scan_idx != eob - 1) + assert(si != eob - 1); + assert(si > 0); + const int ci = scan[si]; + const tran_low_t qc = qcoeff[ci]; + const int coeff_ctx = + get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class); + if (qc == 0) { + *accu_rate += txb_costs->base_cost[coeff_ctx][0]; + } else { + const tran_low_t abs_qc = abs(qc); + const tran_low_t tqc = tcoeff[ci]; + const tran_low_t dqc = dqcoeff[ci]; + const int rate = get_coeff_cost_simple(ci, abs_qc, coeff_ctx, txb_costs, + bwl, tx_class, levels); + if (abs(dqc) < abs(tqc)) { + *accu_rate += rate; + return; + } + const int64_t dist = get_coeff_dist(tqc, dqc, shift); + const int64_t rd = RDCOST(rdmult, rate, dist); + + const int sign = (qc < 0) ? 1 : 0; + tran_low_t qc_low, dqc_low; + get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); + const tran_low_t abs_qc_low = abs_qc - 1; + const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift); + const int rate_low = get_coeff_cost_simple( + ci, abs_qc_low, coeff_ctx, txb_costs, bwl, tx_class, levels); + const int64_t rd_low = RDCOST(rdmult, rate_low, dist_low); + if (rd_low < rd) { + qcoeff[ci] = qc_low; + dqcoeff[ci] = dqc_low; + levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); + *accu_rate += rate_low; + } else { + *accu_rate += rate; + } + } +} + +static AOM_FORCE_INLINE void update_coeff_eob( + int *accu_rate, int64_t *accu_dist, int *eob, int *nz_num, int *nz_ci, + int si, TX_SIZE tx_size, TX_CLASS tx_class, int bwl, int height, + int dc_sign_ctx, int64_t rdmult, int shift, const int16_t *dequant, + const int16_t *scan, const LV_MAP_EOB_COST *txb_eob_costs, + const LV_MAP_COEFF_COST *txb_costs, const tran_low_t *tcoeff, + tran_low_t *qcoeff, tran_low_t *dqcoeff, uint8_t *levels, int sharpness) { + const int dqv = dequant[si != 0]; + assert(si != *eob - 1); + const int ci = scan[si]; + const tran_low_t qc = qcoeff[ci]; + const int coeff_ctx = + get_lower_levels_ctx(levels, ci, bwl, tx_size, tx_class); + if (qc == 0) { + *accu_rate += txb_costs->base_cost[coeff_ctx][0]; + } else { + int lower_level = 0; + const tran_low_t abs_qc = abs(qc); + const tran_low_t tqc = tcoeff[ci]; + const tran_low_t dqc = dqcoeff[ci]; + const int sign = (qc < 0) ? 1 : 0; + const int64_t dist0 = get_coeff_dist(tqc, 0, shift); + int64_t dist = get_coeff_dist(tqc, dqc, shift) - dist0; + int rate = + get_coeff_cost_general(0, ci, abs_qc, sign, coeff_ctx, dc_sign_ctx, + txb_costs, bwl, tx_class, levels); + int64_t rd = RDCOST(rdmult, *accu_rate + rate, *accu_dist + dist); + + tran_low_t qc_low, dqc_low; + get_qc_dqc_low(abs_qc, sign, dqv, shift, &qc_low, &dqc_low); + const tran_low_t abs_qc_low = abs_qc - 1; + const int64_t dist_low = get_coeff_dist(tqc, dqc_low, shift) - dist0; + const int rate_low = + get_coeff_cost_general(0, ci, abs_qc_low, sign, coeff_ctx, dc_sign_ctx, + txb_costs, bwl, tx_class, levels); + const int64_t rd_low = + RDCOST(rdmult, *accu_rate + rate_low, *accu_dist + dist_low); + + int lower_level_new_eob = 0; + const int new_eob = si + 1; + uint8_t tmp_levels[3]; + for (int ni = 0; ni < *nz_num; ++ni) { + const int last_ci = nz_ci[ni]; + tmp_levels[ni] = levels[get_padded_idx(last_ci, bwl)]; + levels[get_padded_idx(last_ci, bwl)] = 0; + } + + const int coeff_ctx_new_eob = get_lower_levels_ctx_general( + 1, si, bwl, height, levels, ci, tx_size, tx_class); + const int new_eob_cost = + get_eob_cost(new_eob, txb_eob_costs, txb_costs, tx_class); + int rate_coeff_eob = + new_eob_cost + get_coeff_cost_general(1, ci, abs_qc, sign, + coeff_ctx_new_eob, dc_sign_ctx, + txb_costs, bwl, tx_class, levels); + int64_t dist_new_eob = dist; + int64_t rd_new_eob = RDCOST(rdmult, rate_coeff_eob, dist_new_eob); + + if (abs_qc_low > 0) { + const int rate_coeff_eob_low = + new_eob_cost + + get_coeff_cost_general(1, ci, abs_qc_low, sign, coeff_ctx_new_eob, + dc_sign_ctx, txb_costs, bwl, tx_class, levels); + const int64_t dist_new_eob_low = dist_low; + const int64_t rd_new_eob_low = + RDCOST(rdmult, rate_coeff_eob_low, dist_new_eob_low); + if (rd_new_eob_low < rd_new_eob) { + lower_level_new_eob = 1; + rd_new_eob = rd_new_eob_low; + rate_coeff_eob = rate_coeff_eob_low; + dist_new_eob = dist_new_eob_low; + } + } + + if (rd_low < rd) { + lower_level = 1; + rd = rd_low; + rate = rate_low; + dist = dist_low; + } + + if (sharpness == 0 && rd_new_eob < rd) { + for (int ni = 0; ni < *nz_num; ++ni) { + int last_ci = nz_ci[ni]; + // levels[get_padded_idx(last_ci, bwl)] = 0; + qcoeff[last_ci] = 0; + dqcoeff[last_ci] = 0; + } + *eob = new_eob; + *nz_num = 0; + *accu_rate = rate_coeff_eob; + *accu_dist = dist_new_eob; + lower_level = lower_level_new_eob; + } else { + for (int ni = 0; ni < *nz_num; ++ni) { + const int last_ci = nz_ci[ni]; + levels[get_padded_idx(last_ci, bwl)] = tmp_levels[ni]; + } + *accu_rate += rate; + *accu_dist += dist; + } + + if (lower_level) { + qcoeff[ci] = qc_low; + dqcoeff[ci] = dqc_low; + levels[get_padded_idx(ci, bwl)] = AOMMIN(abs_qc_low, INT8_MAX); + } + if (qcoeff[ci]) { + nz_ci[*nz_num] = ci; + ++*nz_num; + } + } +} + +static INLINE void update_skip(int *accu_rate, int64_t accu_dist, int *eob, + int nz_num, int *nz_ci, int64_t rdmult, + int skip_cost, int non_skip_cost, + tran_low_t *qcoeff, tran_low_t *dqcoeff, + int sharpness) { + const int64_t rd = RDCOST(rdmult, *accu_rate + non_skip_cost, accu_dist); + const int64_t rd_new_eob = RDCOST(rdmult, skip_cost, 0); + if (sharpness == 0 && rd_new_eob < rd) { + for (int i = 0; i < nz_num; ++i) { + const int ci = nz_ci[i]; + qcoeff[ci] = 0; + dqcoeff[ci] = 0; + // no need to set up levels because this is the last step + // levels[get_padded_idx(ci, bwl)] = 0; + } + *accu_rate = 0; + *eob = 0; + } +} + +int av1_optimize_txb_new(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, + int block, TX_SIZE tx_size, TX_TYPE tx_type, + const TXB_CTX *const txb_ctx, int *rate_cost, + int sharpness) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + const PLANE_TYPE plane_type = get_plane_type(plane); + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const TX_CLASS tx_class = tx_type_to_class[tx_type]; + const MB_MODE_INFO *mbmi = xd->mi[0]; + const struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block); + const int16_t *dequant = p->dequant_QTX; + const int bwl = get_txb_bwl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + assert(width == (1 << bwl)); + const int is_inter = is_inter_block(mbmi); + const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type); + const int16_t *scan = scan_order->scan; + const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type]; + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const LV_MAP_EOB_COST *txb_eob_costs = + &x->eob_costs[eob_multi_size][plane_type]; + + const int shift = av1_get_tx_scale(tx_size); + const int64_t rdmult = + ((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) + + 2) >> + (sharpness + + (cpi->oxcf.aq_mode == VARIANCE_AQ && mbmi->segment_id < 4 + ? 7 - mbmi->segment_id + : 2) + + (cpi->oxcf.aq_mode != VARIANCE_AQ && + cpi->oxcf.deltaq_mode > NO_DELTA_Q && x->sb_energy_level < 0 + ? (3 - x->sb_energy_level) + : 0)); + + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, width); + + av1_txb_init_levels(qcoeff, width, height, levels); + + // TODO(angirbird): check iqmatrix + + const int non_skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][0]; + const int skip_cost = txb_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1]; + int eob = p->eobs[block]; + const int eob_cost = get_eob_cost(eob, txb_eob_costs, txb_costs, tx_class); + int accu_rate = eob_cost; + int64_t accu_dist = 0; + int si = eob - 1; + const int ci = scan[si]; + const tran_low_t qc = qcoeff[ci]; + const tran_low_t abs_qc = abs(qc); + const int sign = qc < 0; + const int max_nz_num = 2; + int nz_num = 1; + int nz_ci[3] = { ci, 0, 0 }; + if (abs_qc >= 2) { + update_coeff_general(&accu_rate, &accu_dist, si, eob, tx_size, tx_class, + bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx, + dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff, + levels); + --si; + } else { + assert(abs_qc == 1); + const int coeff_ctx = get_lower_levels_ctx_general( + 1, si, bwl, height, levels, ci, tx_size, tx_class); + accu_rate += get_coeff_cost_general(1, ci, abs_qc, sign, coeff_ctx, + txb_ctx->dc_sign_ctx, txb_costs, bwl, + tx_class, levels); + const tran_low_t tqc = tcoeff[ci]; + const tran_low_t dqc = dqcoeff[ci]; + const int64_t dist = get_coeff_dist(tqc, dqc, shift); + const int64_t dist0 = get_coeff_dist(tqc, 0, shift); + accu_dist += dist - dist0; + --si; + } + +#define UPDATE_COEFF_EOB_CASE(tx_class_literal) \ + case tx_class_literal: \ + for (; si >= 0 && nz_num <= max_nz_num; --si) { \ + update_coeff_eob(&accu_rate, &accu_dist, &eob, &nz_num, nz_ci, si, \ + tx_size, tx_class_literal, bwl, height, \ + txb_ctx->dc_sign_ctx, rdmult, shift, dequant, scan, \ + txb_eob_costs, txb_costs, tcoeff, qcoeff, dqcoeff, \ + levels, sharpness); \ + } \ + break; + switch (tx_class) { + UPDATE_COEFF_EOB_CASE(TX_CLASS_2D); + UPDATE_COEFF_EOB_CASE(TX_CLASS_HORIZ); + UPDATE_COEFF_EOB_CASE(TX_CLASS_VERT); +#undef UPDATE_COEFF_EOB_CASE + default: assert(false); + } + + if (si == -1 && nz_num <= max_nz_num) { + update_skip(&accu_rate, accu_dist, &eob, nz_num, nz_ci, rdmult, skip_cost, + non_skip_cost, qcoeff, dqcoeff, sharpness); + } + +#define UPDATE_COEFF_SIMPLE_CASE(tx_class_literal) \ + case tx_class_literal: \ + for (; si >= 1; --si) { \ + update_coeff_simple(&accu_rate, si, eob, tx_size, tx_class_literal, bwl, \ + rdmult, shift, dequant, scan, txb_costs, tcoeff, \ + qcoeff, dqcoeff, levels); \ + } \ + break; + switch (tx_class) { + UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_2D); + UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_HORIZ); + UPDATE_COEFF_SIMPLE_CASE(TX_CLASS_VERT); +#undef UPDATE_COEFF_SIMPLE_CASE + default: assert(false); + } + + // DC position + if (si == 0) { + // no need to update accu_dist because it's not used after this point + int64_t dummy_dist = 0; + update_coeff_general(&accu_rate, &dummy_dist, si, eob, tx_size, tx_class, + bwl, height, rdmult, shift, txb_ctx->dc_sign_ctx, + dequant, scan, txb_costs, tcoeff, qcoeff, dqcoeff, + levels); + } + + const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); + if (eob == 0) + accu_rate += skip_cost; + else + accu_rate += non_skip_cost + tx_type_cost; + + p->eobs[block] = eob; + p->txb_entropy_ctx[block] = + av1_get_txb_entropy_context(qcoeff, scan_order, p->eobs[block]); + + *rate_cost = accu_rate; + return eob; +} + +// This function is deprecated, but we keep it here because hash trellis +// is not integrated with av1_optimize_txb_new yet +int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, + int blk_row, int blk_col, int block, TX_SIZE tx_size, + TXB_CTX *txb_ctx, int fast_mode, int *rate_cost) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + const PLANE_TYPE plane_type = get_plane_type(plane); + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + const MB_MODE_INFO *mbmi = xd->mi[0]; + const struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + const int eob = p->eobs[block]; + tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block); + const int16_t *dequant = p->dequant_QTX; + const int seg_eob = av1_get_max_eob(tx_size); + const int bwl = get_txb_bwl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + const int is_inter = is_inter_block(mbmi); + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const LV_MAP_COEFF_COST *txb_costs = &x->coeff_costs[txs_ctx][plane_type]; + const int eob_multi_size = txsize_log2_minus4[tx_size]; + const LV_MAP_EOB_COST txb_eob_costs = + x->eob_costs[eob_multi_size][plane_type]; + + const int shift = av1_get_tx_scale(tx_size); + const int64_t rdmult = + ((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) + + 2) >> + 2; + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, width); + const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); + const qm_val_t *iqmatrix = + IS_2D_TRANSFORM(tx_type) + ? pd->seg_iqmatrix[mbmi->segment_id][qm_tx_size] + : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; + assert(width == (1 << bwl)); + const int tx_type_cost = get_tx_type_cost(cm, x, xd, plane, tx_size, tx_type); + TxbInfo txb_info = { + qcoeff, levels, dqcoeff, tcoeff, dequant, shift, + tx_size, txs_ctx, tx_type, bwl, width, height, + eob, seg_eob, scan_order, txb_ctx, rdmult, &cm->coeff_ctx_table, + iqmatrix, tx_type_cost, + }; + + // Hash based trellis (hbt) speed feature: avoid expensive optimize_txb calls + // by storing the coefficient deltas in a hash table. + // Currently disabled in speedfeatures.c + if (eob <= HBT_EOB && eob > 0 && cpi->sf.use_hash_based_trellis) { + return hbt_create_hashes(&txb_info, txb_costs, &txb_eob_costs, p, block, + fast_mode, rate_cost); + } + + av1_txb_init_levels(qcoeff, width, height, levels); + + const int update = + optimize_txb(&txb_info, txb_costs, &txb_eob_costs, rate_cost); + + if (update) { + p->eobs[block] = txb_info.eob; + p->txb_entropy_ctx[block] = + av1_get_txb_entropy_context(qcoeff, scan_order, txb_info.eob); + } + return txb_info.eob; +} + +int av1_get_txb_entropy_context(const tran_low_t *qcoeff, + const SCAN_ORDER *scan_order, int eob) { + const int16_t *const scan = scan_order->scan; + int cul_level = 0; + int c; + + if (eob == 0) return 0; + for (c = 0; c < eob; ++c) { + cul_level += abs(qcoeff[scan[c]]); + if (cul_level > COEFF_CONTEXT_MASK) break; + } + + cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level); + set_dc_sign(&cul_level, qcoeff[0]); + + return cul_level; +} + +void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg) { + struct tokenize_b_args *const args = arg; + const AV1_COMP *cpi = args->cpi; + const AV1_COMMON *cm = &cpi->common; + ThreadData *const td = args->td; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + const uint16_t eob = p->eobs[block]; + const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + const PLANE_TYPE plane_type = pd->plane_type; + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob); + av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, + blk_row); +} + +static void update_tx_type_count(const AV1_COMMON *cm, MACROBLOCKD *xd, + int blk_row, int blk_col, int plane, + TX_SIZE tx_size, FRAME_COUNTS *counts, + uint8_t allow_update_cdf) { + MB_MODE_INFO *mbmi = xd->mi[0]; + int is_inter = is_inter_block(mbmi); + FRAME_CONTEXT *fc = xd->tile_ctx; +#if !CONFIG_ENTROPY_STATS + (void)counts; +#endif // !CONFIG_ENTROPY_STATS + + // Only y plane's tx_type is updated + if (plane > 0) return; + TX_TYPE tx_type = av1_get_tx_type(PLANE_TYPE_Y, xd, blk_row, blk_col, tx_size, + cm->reduced_tx_set_used); + if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && + cm->base_qindex > 0 && !mbmi->skip && + !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { + const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); + if (eset > 0) { + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); + if (is_inter) { + if (allow_update_cdf) { + update_cdf(fc->inter_ext_tx_cdf[eset][txsize_sqr_map[tx_size]], + av1_ext_tx_ind[tx_set_type][tx_type], + av1_num_ext_tx_set[tx_set_type]); + } +#if CONFIG_ENTROPY_STATS + ++counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]] + [av1_ext_tx_ind[tx_set_type][tx_type]]; +#endif // CONFIG_ENTROPY_STATS + } else { + PREDICTION_MODE intra_dir; + if (mbmi->filter_intra_mode_info.use_filter_intra) + intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info + .filter_intra_mode]; + else + intra_dir = mbmi->mode; +#if CONFIG_ENTROPY_STATS + ++counts->intra_ext_tx[eset][txsize_sqr_map[tx_size]][intra_dir] + [av1_ext_tx_ind[tx_set_type][tx_type]]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) { + update_cdf( + fc->intra_ext_tx_cdf[eset][txsize_sqr_map[tx_size]][intra_dir], + av1_ext_tx_ind[tx_set_type][tx_type], + av1_num_ext_tx_set[tx_set_type]); + } + } + } + } +} + +void av1_update_and_record_txb_context(int plane, int block, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg) { + struct tokenize_b_args *const args = arg; + const AV1_COMP *cpi = args->cpi; + const AV1_COMMON *cm = &cpi->common; + ThreadData *const td = args->td; + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + struct macroblock_plane *p = &x->plane[plane]; + struct macroblockd_plane *pd = &xd->plane[plane]; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int eob = p->eobs[block]; + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col, + pd->left_context + blk_row, &txb_ctx); + const int bwl = get_txb_bwl(tx_size); + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + const uint8_t allow_update_cdf = args->allow_update_cdf; + const TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size); + FRAME_CONTEXT *ec_ctx = xd->tile_ctx; +#if CONFIG_ENTROPY_STATS + int cdf_idx = cm->coef_cdf_category; +#endif // CONFIG_ENTROPY_STATS + +#if CONFIG_ENTROPY_STATS + ++td->counts->txb_skip[cdf_idx][txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) { + update_cdf(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0, + 2); + } + + x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx; + x->mbmi_ext->eobs[plane][block] = eob; + + if (eob == 0) { + av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, 0, blk_col, blk_row); + return; + } + + tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); + const int segment_id = mbmi->segment_id; + const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size); + const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block); + memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob); + + uint8_t levels_buf[TX_PAD_2D]; + uint8_t *const levels = set_levels(levels_buf, width); + av1_txb_init_levels(tcoeff, width, height, levels); + update_tx_type_count(cm, xd, blk_row, blk_col, plane, tx_size, td->counts, + allow_update_cdf); + + const PLANE_TYPE plane_type = pd->plane_type; + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, cm->reduced_tx_set_used); + const TX_CLASS tx_class = tx_type_to_class[tx_type]; + const SCAN_ORDER *const scan_order = get_scan(tx_size, tx_type); + const int16_t *const scan = scan_order->scan; +#if CONFIG_ENTROPY_STATS + av1_update_eob_context(cdf_idx, eob, tx_size, tx_class, plane_type, ec_ctx, + td->counts, allow_update_cdf); +#else + av1_update_eob_context(eob, tx_size, tx_class, plane_type, ec_ctx, + allow_update_cdf); +#endif + + DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]); + av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_class, coeff_contexts); + + for (int c = eob - 1; c >= 0; --c) { + const int pos = scan[c]; + const int coeff_ctx = coeff_contexts[pos]; + const tran_low_t v = qcoeff[pos]; + const tran_low_t level = abs(v); + + if (allow_update_cdf) { + if (c == eob - 1) { + assert(coeff_ctx < 4); + update_cdf( + ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx], + AOMMIN(level, 3) - 1, 3); + } else { + update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx], + AOMMIN(level, 3), 4); + } + } + { + if (c == eob - 1) { + assert(coeff_ctx < 4); +#if CONFIG_ENTROPY_STATS + ++td->counts->coeff_base_eob_multi[cdf_idx][txsize_ctx][plane_type] + [coeff_ctx][AOMMIN(level, 3) - 1]; + } else { + ++td->counts->coeff_base_multi[cdf_idx][txsize_ctx][plane_type] + [coeff_ctx][AOMMIN(level, 3)]; +#endif + } + } + if (level > NUM_BASE_LEVELS) { + const int base_range = level - 1 - NUM_BASE_LEVELS; + const int br_ctx = get_br_ctx(levels, pos, bwl, tx_class); + for (int idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) { + const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1); + if (allow_update_cdf) { + update_cdf(ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)] + [plane_type][br_ctx], + k, BR_CDF_SIZE); + } + for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) { +#if CONFIG_ENTROPY_STATS + ++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type][lps] + [br_ctx][lps == k]; +#endif // CONFIG_ENTROPY_STATS + if (lps == k) break; + } +#if CONFIG_ENTROPY_STATS + ++td->counts->coeff_lps_multi[cdf_idx][AOMMIN(txsize_ctx, TX_32X32)] + [plane_type][br_ctx][k]; +#endif + if (k < BR_CDF_SIZE - 1) break; + } + } + } + + // Update the context needed to code the DC sign (if applicable) + if (tcoeff[0] != 0) { + const int dc_sign = (tcoeff[0] < 0) ? 1 : 0; + const int dc_sign_ctx = txb_ctx.dc_sign_ctx; +#if CONFIG_ENTROPY_STATS + ++td->counts->dc_sign[plane_type][dc_sign_ctx][dc_sign]; +#endif // CONFIG_ENTROPY_STATS + if (allow_update_cdf) + update_cdf(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], dc_sign, 2); + x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx; + } + + const int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob); + av1_set_contexts(xd, pd, plane, plane_bsize, tx_size, cul_level, blk_col, + blk_row); +} + +void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td, + RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, + int mi_row, int mi_col, uint8_t allow_update_cdf) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf }; + (void)rate; + (void)mi_row; + (void)mi_col; + if (mbmi->skip) { + av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes); + return; + } + + if (!dry_run) { + av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, + av1_update_and_record_txb_context, &arg, + num_planes); + } else if (dry_run == DRY_RUN_NORMAL) { + av1_foreach_transformed_block(xd, bsize, mi_row, mi_col, + av1_update_txb_context_b, &arg, num_planes); + } else { + printf("DRY_RUN_COSTCOEFFS is not supported yet\n"); + assert(0); + } +} diff --git a/third_party/aom/av1/encoder/encodetxb.h b/third_party/aom/av1/encoder/encodetxb.h new file mode 100644 index 0000000000..40ae343b0d --- /dev/null +++ b/third_party/aom/av1/encoder/encodetxb.h @@ -0,0 +1,87 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ENCODETXB_H_ +#define AOM_AV1_ENCODER_ENCODETXB_H_ + +#include "config/aom_config.h" + +#include "av1/common/blockd.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/txb_common.h" +#include "av1/encoder/block.h" +#include "av1/encoder/encoder.h" +#include "aom_dsp/bitwriter.h" +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct TxbInfo { + tran_low_t *qcoeff; + uint8_t *levels; // absolute values and clamped to 255. + tran_low_t *dqcoeff; + const tran_low_t *tcoeff; + const int16_t *dequant; + int shift; + TX_SIZE tx_size; + TX_SIZE txs_ctx; + TX_TYPE tx_type; + int bwl; + int width; + int height; + int eob; + int seg_eob; + const SCAN_ORDER *scan_order; + TXB_CTX *txb_ctx; + int64_t rdmult; + const LV_MAP_CTX_TABLE *coeff_ctx_table; + const qm_val_t *iqmatrix; + int tx_type_cost; +} TxbInfo; + +void av1_alloc_txb_buf(AV1_COMP *cpi); +void av1_free_txb_buf(AV1_COMP *cpi); +int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x, + const int plane, const int block, const TX_SIZE tx_size, + const TX_TYPE tx_type, const TXB_CTX *const txb_ctx); +void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd, + aom_writer *w, int blk_row, int blk_col, int plane, + TX_SIZE tx_size, const tran_low_t *tcoeff, + uint16_t eob, TXB_CTX *txb_ctx); +void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row, + int mi_col, aom_writer *w, BLOCK_SIZE bsize); +int av1_get_txb_entropy_context(const tran_low_t *qcoeff, + const SCAN_ORDER *scan_order, int eob); +void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td, + RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, + int mi_row, int mi_col, uint8_t allow_update_cdf); + +void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + void *arg); + +void av1_update_and_record_txb_context(int plane, int block, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, void *arg); + +void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x, + int mi_row, int mi_col); + +void hbt_destroy(); +int av1_optimize_txb_new(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane, + int block, TX_SIZE tx_size, TX_TYPE tx_type, + const TXB_CTX *const txb_ctx, int *rate_cost, + int sharpness); +#ifdef __cplusplus +} +#endif + +#endif // AOM_AV1_ENCODER_ENCODETXB_H_ diff --git a/third_party/aom/av1/encoder/ethread.c b/third_party/aom/av1/encoder/ethread.c new file mode 100644 index 0000000000..e8ac30bb52 --- /dev/null +++ b/third_party/aom/av1/encoder/ethread.c @@ -0,0 +1,261 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/ethread.h" +#include "aom_dsp/aom_dsp_common.h" + +static void accumulate_rd_opt(ThreadData *td, ThreadData *td_t) { + for (int i = 0; i < REFERENCE_MODES; i++) + td->rd_counts.comp_pred_diff[i] += td_t->rd_counts.comp_pred_diff[i]; + + for (int i = 0; i < REF_FRAMES; i++) + td->rd_counts.global_motion_used[i] += + td_t->rd_counts.global_motion_used[i]; + + td->rd_counts.compound_ref_used_flag |= + td_t->rd_counts.compound_ref_used_flag; + td->rd_counts.skip_mode_used_flag |= td_t->rd_counts.skip_mode_used_flag; +} + +static int enc_worker_hook(void *arg1, void *unused) { + EncWorkerData *const thread_data = (EncWorkerData *)arg1; + AV1_COMP *const cpi = thread_data->cpi; + const AV1_COMMON *const cm = &cpi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int t; + + (void)unused; + + for (t = thread_data->start; t < tile_rows * tile_cols; + t += cpi->num_workers) { + int tile_row = t / tile_cols; + int tile_col = t % tile_cols; + + av1_encode_tile(cpi, thread_data->td, tile_row, tile_col); + } + + return 1; +} + +static void create_enc_workers(AV1_COMP *cpi, int num_workers) { + AV1_COMMON *const cm = &cpi->common; + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + CHECK_MEM_ERROR(cm, cpi->workers, + aom_malloc(num_workers * sizeof(*cpi->workers))); + + CHECK_MEM_ERROR(cm, cpi->tile_thr_data, + aom_calloc(num_workers, sizeof(*cpi->tile_thr_data))); + + for (int i = 0; i < num_workers; i++) { + AVxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = &cpi->tile_thr_data[i]; + + ++cpi->num_workers; + winterface->init(worker); + + thread_data->cpi = cpi; + + if (i < num_workers - 1) { + // Allocate thread data. + CHECK_MEM_ERROR(cm, thread_data->td, + aom_memalign(32, sizeof(*thread_data->td))); + av1_zero(*thread_data->td); + + // Set up pc_tree. + thread_data->td->pc_tree = NULL; + av1_setup_pc_tree(cm, thread_data->td); + + CHECK_MEM_ERROR(cm, thread_data->td->above_pred_buf, + (uint8_t *)aom_memalign( + 16, MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*thread_data->td->above_pred_buf))); + CHECK_MEM_ERROR(cm, thread_data->td->left_pred_buf, + (uint8_t *)aom_memalign( + 16, MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*thread_data->td->left_pred_buf))); + + CHECK_MEM_ERROR( + cm, thread_data->td->wsrc_buf, + (int32_t *)aom_memalign( + 16, MAX_SB_SQUARE * sizeof(*thread_data->td->wsrc_buf))); + + for (int x = 0; x < 2; x++) + for (int y = 0; y < 2; y++) + CHECK_MEM_ERROR( + cm, thread_data->td->hash_value_buffer[x][y], + (uint32_t *)aom_malloc( + AOM_BUFFER_SIZE_FOR_BLOCK_HASH * + sizeof(*thread_data->td->hash_value_buffer[0][0]))); + + CHECK_MEM_ERROR( + cm, thread_data->td->mask_buf, + (int32_t *)aom_memalign( + 16, MAX_SB_SQUARE * sizeof(*thread_data->td->mask_buf))); + // Allocate frame counters in thread data. + CHECK_MEM_ERROR(cm, thread_data->td->counts, + aom_calloc(1, sizeof(*thread_data->td->counts))); + + // Allocate buffers used by palette coding mode. + CHECK_MEM_ERROR( + cm, thread_data->td->palette_buffer, + aom_memalign(16, sizeof(*thread_data->td->palette_buffer))); + + CHECK_MEM_ERROR( + cm, thread_data->td->tmp_conv_dst, + aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * + sizeof(*thread_data->td->tmp_conv_dst))); + for (int j = 0; j < 2; ++j) { + CHECK_MEM_ERROR( + cm, thread_data->td->tmp_obmc_bufs[j], + aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * + sizeof(*thread_data->td->tmp_obmc_bufs[j]))); + } + + // Create threads + if (!winterface->reset(worker)) + aom_internal_error(&cm->error, AOM_CODEC_ERROR, + "Tile encoder thread creation failed"); + } else { + // Main thread acts as a worker and uses the thread data in cpi. + thread_data->td = &cpi->td; + } + winterface->sync(worker); + } +} + +static void launch_enc_workers(AV1_COMP *cpi, int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + // Encode a frame + for (int i = 0; i < num_workers; i++) { + AVxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; + + // Set the starting tile for each thread. + thread_data->start = i; + + if (i == cpi->num_workers - 1) + winterface->execute(worker); + else + winterface->launch(worker); + } +} + +static void sync_enc_workers(AV1_COMP *cpi, int num_workers) { + const AVxWorkerInterface *const winterface = aom_get_worker_interface(); + + // Encoding ends. + for (int i = 0; i < num_workers; i++) { + AVxWorker *const worker = &cpi->workers[i]; + winterface->sync(worker); + } +} + +static void accumulate_counters_enc_workers(AV1_COMP *cpi, int num_workers) { + for (int i = 0; i < num_workers; i++) { + AVxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = (EncWorkerData *)worker->data1; + cpi->intrabc_used |= thread_data->td->intrabc_used_this_tile; + // Accumulate counters. + if (i < cpi->num_workers - 1) { + av1_accumulate_frame_counts(&cpi->counts, thread_data->td->counts); + accumulate_rd_opt(&cpi->td, thread_data->td); + cpi->td.mb.txb_split_count += thread_data->td->mb.txb_split_count; + } + } +} + +static void prepare_enc_workers(AV1_COMP *cpi, AVxWorkerHook hook, + int num_workers) { + for (int i = 0; i < num_workers; i++) { + AVxWorker *const worker = &cpi->workers[i]; + EncWorkerData *const thread_data = &cpi->tile_thr_data[i]; + + worker->hook = hook; + worker->data1 = thread_data; + worker->data2 = NULL; + + // Before encoding a frame, copy the thread data from cpi. + if (thread_data->td != &cpi->td) { + thread_data->td->mb = cpi->td.mb; + thread_data->td->rd_counts = cpi->td.rd_counts; + thread_data->td->mb.above_pred_buf = thread_data->td->above_pred_buf; + thread_data->td->mb.left_pred_buf = thread_data->td->left_pred_buf; + thread_data->td->mb.wsrc_buf = thread_data->td->wsrc_buf; + for (int x = 0; x < 2; x++) { + for (int y = 0; y < 2; y++) { + memcpy(thread_data->td->hash_value_buffer[x][y], + cpi->td.mb.hash_value_buffer[x][y], + AOM_BUFFER_SIZE_FOR_BLOCK_HASH * + sizeof(*thread_data->td->hash_value_buffer[0][0])); + thread_data->td->mb.hash_value_buffer[x][y] = + thread_data->td->hash_value_buffer[x][y]; + } + } + thread_data->td->mb.mask_buf = thread_data->td->mask_buf; + } + if (thread_data->td->counts != &cpi->counts) { + memcpy(thread_data->td->counts, &cpi->counts, sizeof(cpi->counts)); + } + + if (i < num_workers - 1) { + thread_data->td->mb.palette_buffer = thread_data->td->palette_buffer; + thread_data->td->mb.tmp_conv_dst = thread_data->td->tmp_conv_dst; + for (int j = 0; j < 2; ++j) { + thread_data->td->mb.tmp_obmc_bufs[j] = + thread_data->td->tmp_obmc_bufs[j]; + } + + thread_data->td->mb.e_mbd.tmp_conv_dst = thread_data->td->mb.tmp_conv_dst; + for (int j = 0; j < 2; ++j) { + thread_data->td->mb.e_mbd.tmp_obmc_bufs[j] = + thread_data->td->mb.tmp_obmc_bufs[j]; + } + } + } +} + +void av1_encode_tiles_mt(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int tile_cols = cm->tile_cols; + const int tile_rows = cm->tile_rows; + int num_workers = AOMMIN(cpi->oxcf.max_threads, tile_cols * tile_rows); + + if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) + av1_alloc_tile_data(cpi); + + av1_init_tile_data(cpi); + // Only run once to create threads and allocate thread data. + if (cpi->num_workers == 0) { + create_enc_workers(cpi, num_workers); + } else { + num_workers = AOMMIN(num_workers, cpi->num_workers); + } + prepare_enc_workers(cpi, enc_worker_hook, num_workers); + launch_enc_workers(cpi, num_workers); + sync_enc_workers(cpi, num_workers); + accumulate_counters_enc_workers(cpi, num_workers); +} + +// Accumulate frame counts. FRAME_COUNTS consist solely of 'unsigned int' +// members, so we treat it as an array, and sum over the whole length. +void av1_accumulate_frame_counts(FRAME_COUNTS *acc_counts, + const FRAME_COUNTS *counts) { + unsigned int *const acc = (unsigned int *)acc_counts; + const unsigned int *const cnt = (const unsigned int *)counts; + + const unsigned int n_counts = sizeof(FRAME_COUNTS) / sizeof(unsigned int); + + for (unsigned int i = 0; i < n_counts; i++) acc[i] += cnt[i]; +} diff --git a/third_party/aom/av1/encoder/ethread.h b/third_party/aom/av1/encoder/ethread.h new file mode 100644 index 0000000000..5de4b48038 --- /dev/null +++ b/third_party/aom/av1/encoder/ethread.h @@ -0,0 +1,37 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ETHREAD_H_ +#define AOM_AV1_ENCODER_ETHREAD_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +struct AV1_COMP; +struct ThreadData; + +typedef struct EncWorkerData { + struct AV1_COMP *cpi; + struct ThreadData *td; + int start; +} EncWorkerData; + +void av1_encode_tiles_mt(struct AV1_COMP *cpi); + +void av1_accumulate_frame_counts(struct FRAME_COUNTS *acc_counts, + const struct FRAME_COUNTS *counts); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ETHREAD_H_ diff --git a/third_party/aom/av1/encoder/extend.c b/third_party/aom/av1/encoder/extend.c new file mode 100644 index 0000000000..e9621a5742 --- /dev/null +++ b/third_party/aom/av1/encoder/extend.c @@ -0,0 +1,188 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" + +#include "av1/common/common.h" +#include "av1/encoder/extend.h" + +static void copy_and_extend_plane(const uint8_t *src, int src_pitch, + uint8_t *dst, int dst_pitch, int w, int h, + int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i, linesize; + + // copy the left and right most columns out + const uint8_t *src_ptr1 = src; + const uint8_t *src_ptr2 = src + w - 1; + uint8_t *dst_ptr1 = dst - extend_left; + uint8_t *dst_ptr2 = dst + w; + + for (i = 0; i < h; i++) { + memset(dst_ptr1, src_ptr1[0], extend_left); + memcpy(dst_ptr1 + extend_left, src_ptr1, w); + memset(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_pitch; + src_ptr2 += src_pitch; + dst_ptr1 += dst_pitch; + dst_ptr2 += dst_pitch; + } + + // Now copy the top and bottom lines into each line of the respective + // borders + src_ptr1 = dst - extend_left; + src_ptr2 = dst + dst_pitch * (h - 1) - extend_left; + dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left; + dst_ptr2 = dst + dst_pitch * (h)-extend_left; + linesize = extend_left + extend_right + w; + + for (i = 0; i < extend_top; i++) { + memcpy(dst_ptr1, src_ptr1, linesize); + dst_ptr1 += dst_pitch; + } + + for (i = 0; i < extend_bottom; i++) { + memcpy(dst_ptr2, src_ptr2, linesize); + dst_ptr2 += dst_pitch; + } +} + +static void highbd_copy_and_extend_plane(const uint8_t *src8, int src_pitch, + uint8_t *dst8, int dst_pitch, int w, + int h, int extend_top, int extend_left, + int extend_bottom, int extend_right) { + int i, linesize; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); + + // copy the left and right most columns out + const uint16_t *src_ptr1 = src; + const uint16_t *src_ptr2 = src + w - 1; + uint16_t *dst_ptr1 = dst - extend_left; + uint16_t *dst_ptr2 = dst + w; + + for (i = 0; i < h; i++) { + aom_memset16(dst_ptr1, src_ptr1[0], extend_left); + memcpy(dst_ptr1 + extend_left, src_ptr1, w * sizeof(src_ptr1[0])); + aom_memset16(dst_ptr2, src_ptr2[0], extend_right); + src_ptr1 += src_pitch; + src_ptr2 += src_pitch; + dst_ptr1 += dst_pitch; + dst_ptr2 += dst_pitch; + } + + // Now copy the top and bottom lines into each line of the respective + // borders + src_ptr1 = dst - extend_left; + src_ptr2 = dst + dst_pitch * (h - 1) - extend_left; + dst_ptr1 = dst + dst_pitch * (-extend_top) - extend_left; + dst_ptr2 = dst + dst_pitch * (h)-extend_left; + linesize = extend_left + extend_right + w; + + for (i = 0; i < extend_top; i++) { + memcpy(dst_ptr1, src_ptr1, linesize * sizeof(src_ptr1[0])); + dst_ptr1 += dst_pitch; + } + + for (i = 0; i < extend_bottom; i++) { + memcpy(dst_ptr2, src_ptr2, linesize * sizeof(src_ptr2[0])); + dst_ptr2 += dst_pitch; + } +} + +void av1_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst) { + // Extend src frame in buffer + // Altref filtering assumes 16 pixel extension + const int et_y = 16; + const int el_y = 16; + // Motion estimation may use src block variance with the block size up + // to 64x64, so the right and bottom need to be extended to 64 multiple + // or up to 16, whichever is greater. + const int er_y = + AOMMAX(src->y_width + 16, ALIGN_POWER_OF_TWO(src->y_width, 6)) - + src->y_crop_width; + const int eb_y = + AOMMAX(src->y_height + 16, ALIGN_POWER_OF_TWO(src->y_height, 6)) - + src->y_crop_height; + const int uv_width_subsampling = (src->uv_width != src->y_width); + const int uv_height_subsampling = (src->uv_height != src->y_height); + const int et_uv = et_y >> uv_height_subsampling; + const int el_uv = el_y >> uv_width_subsampling; + const int eb_uv = eb_y >> uv_height_subsampling; + const int er_uv = er_y >> uv_width_subsampling; + + if (src->flags & YV12_FLAG_HIGHBITDEPTH) { + highbd_copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, src->y_crop_width, + src->y_crop_height, et_y, el_y, eb_y, er_y); + + highbd_copy_and_extend_plane( + src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, + src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv); + + highbd_copy_and_extend_plane( + src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, + src->uv_crop_width, src->uv_crop_height, et_uv, el_uv, eb_uv, er_uv); + return; + } + + copy_and_extend_plane(src->y_buffer, src->y_stride, dst->y_buffer, + dst->y_stride, src->y_crop_width, src->y_crop_height, + et_y, el_y, eb_y, er_y); + + copy_and_extend_plane(src->u_buffer, src->uv_stride, dst->u_buffer, + dst->uv_stride, src->uv_crop_width, src->uv_crop_height, + et_uv, el_uv, eb_uv, er_uv); + + copy_and_extend_plane(src->v_buffer, src->uv_stride, dst->v_buffer, + dst->uv_stride, src->uv_crop_width, src->uv_crop_height, + et_uv, el_uv, eb_uv, er_uv); +} + +void av1_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw) { + // If the side is not touching the bounder then don't extend. + const int et_y = srcy ? 0 : dst->border; + const int el_y = srcx ? 0 : dst->border; + const int eb_y = srcy + srch != src->y_height + ? 0 + : dst->border + dst->y_height - src->y_height; + const int er_y = srcx + srcw != src->y_width + ? 0 + : dst->border + dst->y_width - src->y_width; + const int src_y_offset = srcy * src->y_stride + srcx; + const int dst_y_offset = srcy * dst->y_stride + srcx; + + const int et_uv = ROUND_POWER_OF_TWO(et_y, 1); + const int el_uv = ROUND_POWER_OF_TWO(el_y, 1); + const int eb_uv = ROUND_POWER_OF_TWO(eb_y, 1); + const int er_uv = ROUND_POWER_OF_TWO(er_y, 1); + const int src_uv_offset = ((srcy * src->uv_stride) >> 1) + (srcx >> 1); + const int dst_uv_offset = ((srcy * dst->uv_stride) >> 1) + (srcx >> 1); + const int srch_uv = ROUND_POWER_OF_TWO(srch, 1); + const int srcw_uv = ROUND_POWER_OF_TWO(srcw, 1); + + copy_and_extend_plane(src->y_buffer + src_y_offset, src->y_stride, + dst->y_buffer + dst_y_offset, dst->y_stride, srcw, srch, + et_y, el_y, eb_y, er_y); + + copy_and_extend_plane(src->u_buffer + src_uv_offset, src->uv_stride, + dst->u_buffer + dst_uv_offset, dst->uv_stride, srcw_uv, + srch_uv, et_uv, el_uv, eb_uv, er_uv); + + copy_and_extend_plane(src->v_buffer + src_uv_offset, src->uv_stride, + dst->v_buffer + dst_uv_offset, dst->uv_stride, srcw_uv, + srch_uv, et_uv, el_uv, eb_uv, er_uv); +} diff --git a/third_party/aom/av1/encoder/extend.h b/third_party/aom/av1/encoder/extend.h new file mode 100644 index 0000000000..e0432cc970 --- /dev/null +++ b/third_party/aom/av1/encoder/extend.h @@ -0,0 +1,32 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_EXTEND_H_ +#define AOM_AV1_ENCODER_EXTEND_H_ + +#include "aom_scale/yv12config.h" +#include "aom/aom_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_copy_and_extend_frame(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst); + +void av1_copy_and_extend_frame_with_rect(const YV12_BUFFER_CONFIG *src, + YV12_BUFFER_CONFIG *dst, int srcy, + int srcx, int srch, int srcw); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_EXTEND_H_ diff --git a/third_party/aom/av1/encoder/firstpass.c b/third_party/aom/av1/encoder/firstpass.c new file mode 100644 index 0000000000..69dd20c526 --- /dev/null +++ b/third_party/aom/av1/encoder/firstpass.c @@ -0,0 +1,3480 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> +#include <stdio.h> + +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" +#include "aom_scale/aom_scale.h" +#include "aom_scale/yv12config.h" + +#include "aom_dsp/variance.h" +#include "av1/common/entropymv.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" // av1_setup_dst_planes() +#include "av1/common/txb_common.h" +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/block.h" +#include "av1/encoder/dwt.h" +#include "av1/encoder/encodeframe.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/extend.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/reconinter_enc.h" + +#define OUTPUT_FPF 0 +#define ARF_STATS_OUTPUT 0 + +#define GROUP_ADAPTIVE_MAXQ 1 + +#define BOOST_BREAKOUT 12.5 +#define BOOST_FACTOR 12.5 +#define FACTOR_PT_LOW 0.70 +#define FACTOR_PT_HIGH 0.90 +#define FIRST_PASS_Q 10.0 +#define GF_MAX_BOOST 90.0 +#define INTRA_MODE_PENALTY 1024 +#define KF_MIN_FRAME_BOOST 80.0 +#define KF_MAX_FRAME_BOOST 128.0 +#define MIN_ARF_GF_BOOST 240 +#define MIN_DECAY_FACTOR 0.01 +#define MIN_KF_BOOST 300 +#define NEW_MV_MODE_PENALTY 32 +#define DARK_THRESH 64 +#define DEFAULT_GRP_WEIGHT 1.0 +#define RC_FACTOR_MIN 0.75 +#define RC_FACTOR_MAX 1.75 +#define MIN_FWD_KF_INTERVAL 8 + +#define NCOUNT_INTRA_THRESH 8192 +#define NCOUNT_INTRA_FACTOR 3 +#define NCOUNT_FRAME_II_THRESH 5.0 + +#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) + +#if ARF_STATS_OUTPUT +unsigned int arf_count = 0; +#endif + +// Resets the first pass file to the given position using a relative seek from +// the current position. +static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { + p->stats_in = position; +} + +// Read frame stats at an offset from the current position. +static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { + if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || + (offset < 0 && p->stats_in + offset < p->stats_in_start)) { + return NULL; + } + + return &p->stats_in[offset]; +} + +static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { + if (p->stats_in >= p->stats_in_end) return EOF; + + *fps = *p->stats_in; + ++p->stats_in; + return 1; +} + +static void output_stats(FIRSTPASS_STATS *stats, + struct aom_codec_pkt_list *pktlist) { + struct aom_codec_cx_pkt pkt; + pkt.kind = AOM_CODEC_STATS_PKT; + pkt.data.twopass_stats.buf = stats; + pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); + aom_codec_pkt_list_add(pktlist, &pkt); + +// TEMP debug code +#if OUTPUT_FPF + { + FILE *fpfile; + fpfile = fopen("firstpass.stt", "a"); + + fprintf(fpfile, + "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" + "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n", + stats->frame, stats->weight, stats->intra_error, stats->coded_error, + stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, + stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, + stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, + stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, + stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, + stats->count, stats->duration); + fclose(fpfile); + } +#endif +} + +#if CONFIG_FP_MB_STATS +static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size, + struct aom_codec_pkt_list *pktlist) { + struct aom_codec_cx_pkt pkt; + pkt.kind = AOM_CODEC_FPMB_STATS_PKT; + pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; + pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats); + aom_codec_pkt_list_add(pktlist, &pkt); +} +#endif + +static void zero_stats(FIRSTPASS_STATS *section) { + section->frame = 0.0; + section->weight = 0.0; + section->intra_error = 0.0; + section->frame_avg_wavelet_energy = 0.0; + section->coded_error = 0.0; + section->sr_coded_error = 0.0; + section->pcnt_inter = 0.0; + section->pcnt_motion = 0.0; + section->pcnt_second_ref = 0.0; + section->pcnt_neutral = 0.0; + section->intra_skip_pct = 0.0; + section->inactive_zone_rows = 0.0; + section->inactive_zone_cols = 0.0; + section->MVr = 0.0; + section->mvr_abs = 0.0; + section->MVc = 0.0; + section->mvc_abs = 0.0; + section->MVrv = 0.0; + section->MVcv = 0.0; + section->mv_in_out_count = 0.0; + section->new_mv_count = 0.0; + section->count = 0.0; + section->duration = 1.0; +} + +static void accumulate_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame += frame->frame; + section->weight += frame->weight; + section->intra_error += frame->intra_error; + section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy; + section->coded_error += frame->coded_error; + section->sr_coded_error += frame->sr_coded_error; + section->pcnt_inter += frame->pcnt_inter; + section->pcnt_motion += frame->pcnt_motion; + section->pcnt_second_ref += frame->pcnt_second_ref; + section->pcnt_neutral += frame->pcnt_neutral; + section->intra_skip_pct += frame->intra_skip_pct; + section->inactive_zone_rows += frame->inactive_zone_rows; + section->inactive_zone_cols += frame->inactive_zone_cols; + section->MVr += frame->MVr; + section->mvr_abs += frame->mvr_abs; + section->MVc += frame->MVc; + section->mvc_abs += frame->mvc_abs; + section->MVrv += frame->MVrv; + section->MVcv += frame->MVcv; + section->mv_in_out_count += frame->mv_in_out_count; + section->new_mv_count += frame->new_mv_count; + section->count += frame->count; + section->duration += frame->duration; +} + +static void subtract_stats(FIRSTPASS_STATS *section, + const FIRSTPASS_STATS *frame) { + section->frame -= frame->frame; + section->weight -= frame->weight; + section->intra_error -= frame->intra_error; + section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy; + section->coded_error -= frame->coded_error; + section->sr_coded_error -= frame->sr_coded_error; + section->pcnt_inter -= frame->pcnt_inter; + section->pcnt_motion -= frame->pcnt_motion; + section->pcnt_second_ref -= frame->pcnt_second_ref; + section->pcnt_neutral -= frame->pcnt_neutral; + section->intra_skip_pct -= frame->intra_skip_pct; + section->inactive_zone_rows -= frame->inactive_zone_rows; + section->inactive_zone_cols -= frame->inactive_zone_cols; + section->MVr -= frame->MVr; + section->mvr_abs -= frame->mvr_abs; + section->MVc -= frame->MVc; + section->mvc_abs -= frame->mvc_abs; + section->MVrv -= frame->MVrv; + section->MVcv -= frame->MVcv; + section->mv_in_out_count -= frame->mv_in_out_count; + section->new_mv_count -= frame->new_mv_count; + section->count -= frame->count; + section->duration -= frame->duration; +} + +// Calculate the linear size relative to a baseline of 1080P +#define BASE_SIZE 2073600.0 // 1920x1080 +static double get_linear_size_factor(const AV1_COMP *cpi) { + const double this_area = cpi->initial_width * cpi->initial_height; + return pow(this_area / BASE_SIZE, 0.5); +} + +// Calculate an active area of the image that discounts formatting +// bars and partially discounts other 0 energy areas. +#define MIN_ACTIVE_AREA 0.5 +#define MAX_ACTIVE_AREA 1.0 +static double calculate_active_area(const AV1_COMP *cpi, + const FIRSTPASS_STATS *this_frame) { + double active_pct; + + active_pct = + 1.0 - + ((this_frame->intra_skip_pct / 2) + + ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); + return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); +} + +// Calculate a modified Error used in distributing bits between easier and +// harder frames. +#define ACT_AREA_CORRECTION 0.5 +static double calculate_modified_err(const AV1_COMP *cpi, + const TWO_PASS *twopass, + const AV1EncoderConfig *oxcf, + const FIRSTPASS_STATS *this_frame) { + const FIRSTPASS_STATS *const stats = &twopass->total_stats; + const double av_weight = stats->weight / stats->count; + const double av_err = (stats->coded_error * av_weight) / stats->count; + double modified_error = + av_err * pow(this_frame->coded_error * this_frame->weight / + DOUBLE_DIVIDE_CHECK(av_err), + oxcf->two_pass_vbrbias / 100.0); + + // Correction for active area. Frames with a reduced active area + // (eg due to formatting bars) have a higher error per mb for the + // remaining active MBs. The correction here assumes that coding + // 0.5N blocks of complexity 2X is a little easier than coding N + // blocks of complexity X. + modified_error *= + pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); + + return fclamp(modified_error, twopass->modified_error_min, + twopass->modified_error_max); +} + +// This function returns the maximum target rate per frame. +static int frame_max_bits(const RATE_CONTROL *rc, + const AV1EncoderConfig *oxcf) { + int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * + (int64_t)oxcf->two_pass_vbrmax_section) / + 100; + if (max_bits < 0) + max_bits = 0; + else if (max_bits > rc->max_frame_bandwidth) + max_bits = rc->max_frame_bandwidth; + + return (int)max_bits; +} + +void av1_init_first_pass(AV1_COMP *cpi) { + zero_stats(&cpi->twopass.total_stats); +} + +void av1_end_first_pass(AV1_COMP *cpi) { + output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); +} + +static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { + switch (bsize) { + case BLOCK_8X8: return aom_mse8x8; + case BLOCK_16X8: return aom_mse16x8; + case BLOCK_8X16: return aom_mse8x16; + default: return aom_mse16x16; + } +} + +static unsigned int get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref) { + unsigned int sse; + const aom_variance_fn_t fn = get_block_variance_fn(bsize); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} + +static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, + int bd) { + switch (bd) { + default: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_8_mse8x8; + case BLOCK_16X8: return aom_highbd_8_mse16x8; + case BLOCK_8X16: return aom_highbd_8_mse8x16; + default: return aom_highbd_8_mse16x16; + } + break; + case 10: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_10_mse8x8; + case BLOCK_16X8: return aom_highbd_10_mse16x8; + case BLOCK_8X16: return aom_highbd_10_mse8x16; + default: return aom_highbd_10_mse16x16; + } + break; + case 12: + switch (bsize) { + case BLOCK_8X8: return aom_highbd_12_mse8x8; + case BLOCK_16X8: return aom_highbd_12_mse16x8; + case BLOCK_8X16: return aom_highbd_12_mse8x16; + default: return aom_highbd_12_mse16x16; + } + break; + } +} + +static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, + const struct buf_2d *src, + const struct buf_2d *ref, + int bd) { + unsigned int sse; + const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); + fn(src->buf, src->stride, ref->buf, ref->stride, &sse); + return sse; +} + +// Refine the motion search range according to the frame dimension +// for first pass test. +static int get_search_range(const AV1_COMP *cpi) { + int sr = 0; + const int dim = AOMMIN(cpi->initial_width, cpi->initial_height); + + while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; + return sr; +} + +static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x, + const MV *ref_mv, MV *best_mv, + int *best_motion_err) { + MACROBLOCKD *const xd = &x->e_mbd; + MV tmp_mv = kZeroMv; + MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int num00, tmp_err, n; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; + const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; + + int step_param = 3; + int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; + const int sr = get_search_range(cpi); + step_param += sr; + further_steps -= sr; + + // Override the default variance function to use MSE. + v_fn_ptr.vf = get_block_variance_fn(bsize); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); + } + + // Center the initial step/diamond search on best mv. + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + + // Carry out further step/diamond searches as necessary. + n = num00; + num00 = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + --num00; + } else { + tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, + step_param + n, x->sadperbit16, &num00, + &v_fn_ptr, ref_mv); + if (tmp_err < INT_MAX) + tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); + if (tmp_err < INT_MAX - new_mv_mode_penalty) + tmp_err += new_mv_mode_penalty; + + if (tmp_err < *best_motion_err) { + *best_motion_err = tmp_err; + *best_mv = tmp_mv; + } + } + } +} + +static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) { + if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] < + cm->mi_cols) { + return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < + cm->mi_rows + ? BLOCK_16X16 + : BLOCK_16X8; + } else { + return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] < + cm->mi_rows + ? BLOCK_8X16 + : BLOCK_8X8; + } +} + +static int find_fp_qindex(aom_bit_depth_t bit_depth) { + int i; + + for (i = 0; i < QINDEX_RANGE; ++i) + if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; + + if (i == QINDEX_RANGE) i--; + + return i; +} + +static void set_first_pass_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { + cm->frame_type = KEY_FRAME; + } else { + cm->frame_type = INTER_FRAME; + } + // Do not use periodic key frames. + cpi->rc.frames_to_key = INT_MAX; +} + +static double raw_motion_error_stdev(int *raw_motion_err_list, + int raw_motion_err_counts) { + int64_t sum_raw_err = 0; + double raw_err_avg = 0; + double raw_err_stdev = 0; + if (raw_motion_err_counts == 0) return 0; + + int i; + for (i = 0; i < raw_motion_err_counts; i++) { + sum_raw_err += raw_motion_err_list[i]; + } + raw_err_avg = (double)sum_raw_err / raw_motion_err_counts; + for (i = 0; i < raw_motion_err_counts; i++) { + raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) * + (raw_motion_err_list[i] - raw_err_avg); + } + // Calculate the standard deviation for the motion error of all the inter + // blocks of the 0,0 motion using the last source + // frame as the reference. + raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts); + return raw_err_stdev; +} + +#define UL_INTRA_THRESH 50 +#define INVALID_ROW -1 +void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) { + int mb_row, mb_col; + MACROBLOCK *const x = &cpi->td.mb; + AV1_COMMON *const cm = &cpi->common; + const SequenceHeader *const seq_params = &cm->seq_params; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + TileInfo tile; + struct macroblock_plane *const p = x->plane; + struct macroblockd_plane *const pd = xd->plane; + const PICK_MODE_CONTEXT *ctx = + &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none; + int i; + + int recon_yoffset, recon_uvoffset; + int64_t intra_error = 0; + int64_t frame_avg_wavelet_energy = 0; + int64_t coded_error = 0; + int64_t sr_coded_error = 0; + + int sum_mvr = 0, sum_mvc = 0; + int sum_mvr_abs = 0, sum_mvc_abs = 0; + int64_t sum_mvrs = 0, sum_mvcs = 0; + int mvcount = 0; + int intercount = 0; + int second_ref_count = 0; + const int intrapenalty = INTRA_MODE_PENALTY; + double neutral_count; + int intra_skip_count = 0; + int image_data_start_row = INVALID_ROW; + int new_mv_count = 0; + int sum_in_vectors = 0; + MV lastmv = kZeroMv; + TWO_PASS *twopass = &cpi->twopass; + int recon_y_stride, recon_uv_stride, uv_mb_height; + + YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); + YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); + const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; + double intra_factor; + double brightness_factor; + BufferPool *const pool = cm->buffer_pool; + const int qindex = find_fp_qindex(seq_params->bit_depth); + const int mb_scale = mi_size_wide[BLOCK_16X16]; + + int *raw_motion_err_list; + int raw_motion_err_counts = 0; + CHECK_MEM_ERROR( + cm, raw_motion_err_list, + aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list))); + // First pass code requires valid last and new frame buffers. + assert(new_yv12 != NULL); + assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs); + } +#endif + + aom_clear_system_state(); + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + x->e_mbd.mi[0]->sb_type = BLOCK_16X16; + + intra_factor = 0.0; + brightness_factor = 0.0; + neutral_count = 0.0; + + set_first_pass_params(cpi); + av1_set_quantizer(cm, qindex); + + av1_setup_block_planes(&x->e_mbd, seq_params->subsampling_x, + seq_params->subsampling_y, num_planes); + + av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); + av1_setup_dst_planes(xd->plane, seq_params->sb_size, new_yv12, 0, 0, 0, + num_planes); + + if (!frame_is_intra_only(cm)) { + av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL, num_planes); + } + + xd->mi = cm->mi_grid_visible; + xd->mi[0] = cm->mi; + + // Don't store luma on the fist pass since chroma is not computed + xd->cfl.store_y = 0; + av1_frame_init_quantizer(cpi); + + for (i = 0; i < num_planes; ++i) { + p[i].coeff = ctx->coeff[i]; + p[i].qcoeff = ctx->qcoeff[i]; + pd[i].dqcoeff = ctx->dqcoeff[i]; + p[i].eobs = ctx->eobs[i]; + p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; + } + + av1_init_mv_probs(cm); + av1_init_lv_map(cm); + av1_initialize_rd_consts(cpi); + + // Tiling is ignored in the first pass. + av1_tile_init(&tile, cm, 0, 0); + + recon_y_stride = new_yv12->y_stride; + recon_uv_stride = new_yv12->uv_stride; + uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); + + for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { + MV best_ref_mv = kZeroMv; + + // Reset above block coeffs. + xd->up_available = (mb_row != 0); + recon_yoffset = (mb_row * recon_y_stride * 16); + recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.row_max = + ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; + + for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { + int this_error; + const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); + const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); + double log_intra; + int level_sample; + +#if CONFIG_FP_MB_STATS + const int mb_index = mb_row * cm->mb_cols + mb_col; +#endif + + aom_clear_system_state(); + + const int idx_str = xd->mi_stride * mb_row * mb_scale + mb_col * mb_scale; + xd->mi = cm->mi_grid_visible + idx_str; + xd->mi[0] = cm->mi + idx_str; + xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; + xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; + xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; + xd->left_available = (mb_col != 0); + xd->mi[0]->sb_type = bsize; + xd->mi[0]->ref_frame[0] = INTRA_FRAME; + set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize], + mb_col * mb_scale, mi_size_wide[bsize], cm->mi_rows, + cm->mi_cols); + + set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes); + + // Do intra 16x16 prediction. + xd->mi[0]->segment_id = 0; + xd->lossless[xd->mi[0]->segment_id] = (qindex == 0); + xd->mi[0]->mode = DC_PRED; + xd->mi[0]->tx_size = + use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; + av1_encode_intra_block_plane(cpi, x, bsize, 0, 0, mb_row * 2, mb_col * 2); + this_error = aom_get_mb_ss(x->plane[0].src_diff); + + // Keep a record of blocks that have almost no intra error residual + // (i.e. are in effect completely flat and untextured in the intra + // domain). In natural videos this is uncommon, but it is much more + // common in animations, graphics and screen content, so may be used + // as a signal to detect these types of content. + if (this_error < UL_INTRA_THRESH) { + ++intra_skip_count; + } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) { + image_data_start_row = mb_row; + } + + if (seq_params->use_highbitdepth) { + switch (seq_params->bit_depth) { + case AOM_BITS_8: break; + case AOM_BITS_10: this_error >>= 4; break; + case AOM_BITS_12: this_error >>= 8; break; + default: + assert(0 && + "seq_params->bit_depth should be AOM_BITS_8, " + "AOM_BITS_10 or AOM_BITS_12"); + return; + } + } + + aom_clear_system_state(); + log_intra = log(this_error + 1.0); + if (log_intra < 10.0) + intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); + else + intra_factor += 1.0; + + if (seq_params->use_highbitdepth) + level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; + else + level_sample = x->plane[0].src.buf[0]; + if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) + brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); + else + brightness_factor += 1.0; + + // Intrapenalty below deals with situations where the intra and inter + // error scores are very low (e.g. a plain black frame). + // We do not have special cases in first pass for 0,0 and nearest etc so + // all inter modes carry an overhead cost estimate for the mv. + // When the error score is very low this causes us to pick all or lots of + // INTRA modes and throw lots of key frames. + // This penalty adds a cost matching that of a 0,0 mv to the intra case. + this_error += intrapenalty; + + // Accumulate the intra error. + intra_error += (int64_t)this_error; + + int stride = x->plane[0].src.stride; + uint8_t *buf = x->plane[0].src.buf; + for (int r8 = 0; r8 < 2; ++r8) + for (int c8 = 0; c8 < 2; ++c8) { + int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + frame_avg_wavelet_energy += av1_haar_ac_sad_8x8_uint8_input( + buf + c8 * 8 + r8 * 8 * stride, stride, hbd); + } + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // initialization + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + } +#endif + + // Set up limit values for motion vectors to prevent them extending + // outside the UMV borders. + x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); + x->mv_limits.col_max = + ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; + + if (!frame_is_intra_only(cm)) { // Do a motion search + int tmp_err, motion_error, raw_motion_error; + // Assume 0,0 motion with no mv overhead. + MV mv = kZeroMv, tmp_mv = kZeroMv; + struct buf_2d unscaled_last_source_buf_2d; + + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); + } + + // Compute the motion error of the 0,0 motion using the last source + // frame as the reference. Skip the further motion search on + // reconstructed frame if this error is small. + unscaled_last_source_buf_2d.buf = + cpi->unscaled_last_source->y_buffer + recon_yoffset; + unscaled_last_source_buf_2d.stride = + cpi->unscaled_last_source->y_stride; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + raw_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); + } else { + raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &unscaled_last_source_buf_2d); + } + + // TODO(pengchong): Replace the hard-coded threshold + if (raw_motion_error > 25) { + // Test last reference frame using the previous best mv as the + // starting point (best reference) for the search. + first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error); + + // If the current best reference mv is not centered on 0,0 then do a + // 0,0 based search as well. + if (!is_zero_mv(&best_ref_mv)) { + tmp_err = INT_MAX; + first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err); + + if (tmp_err < motion_error) { + motion_error = tmp_err; + mv = tmp_mv; + } + } + + // Search in an older reference frame. + if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { + // Assume 0,0 motion with no mv overhead. + int gf_motion_error; + + xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + gf_motion_error = highbd_get_prediction_error( + bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); + } else { + gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, + &xd->plane[0].pre[0]); + } + + first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, + &gf_motion_error); + + if (gf_motion_error < motion_error && gf_motion_error < this_error) + ++second_ref_count; + + // Reset to last frame as reference buffer. + xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; + xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; + xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; + + // In accumulating a score for the older reference frame take the + // best of the motion predicted score and the intra coded error + // (just as will be done for) accumulation of "coded_error" for + // the last frame. + if (gf_motion_error < this_error) + sr_coded_error += gf_motion_error; + else + sr_coded_error += this_error; + } else { + sr_coded_error += motion_error; + } + } else { + sr_coded_error += motion_error; + } + + // Start by assuming that intra mode is best. + best_ref_mv.row = 0; + best_ref_mv.col = 0; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // intra predication statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (motion_error <= this_error) { + aom_clear_system_state(); + + // Keep a count of cases where the inter and intra were very close + // and very low. This helps with scene cut detection for example in + // cropped clips with black bars at the sides or top and bottom. + if (((this_error - intrapenalty) * 9 <= motion_error * 10) && + (this_error < (2 * intrapenalty))) { + neutral_count += 1.0; + // Also track cases where the intra is not much worse than the inter + // and use this in limiting the GF/arf group length. + } else if ((this_error > NCOUNT_INTRA_THRESH) && + (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { + neutral_count += + (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); + } + + mv.row *= 8; + mv.col *= 8; + this_error = motion_error; + xd->mi[0]->mode = NEWMV; + xd->mi[0]->mv[0].as_mv = mv; + xd->mi[0]->tx_size = TX_4X4; + xd->mi[0]->ref_frame[0] = LAST_FRAME; + xd->mi[0]->ref_frame[1] = NONE_FRAME; + av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale, + mb_col * mb_scale, NULL, bsize); + av1_encode_sby_pass1(cm, x, bsize); + sum_mvr += mv.row; + sum_mvr_abs += abs(mv.row); + sum_mvc += mv.col; + sum_mvc_abs += abs(mv.col); + sum_mvrs += mv.row * mv.row; + sum_mvcs += mv.col * mv.col; + ++intercount; + + best_ref_mv = mv; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + // inter predication statistics + cpi->twopass.frame_mb_stats_buf[mb_index] = 0; + cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; + cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; + if (this_error > FPMB_ERROR_LARGE_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_ERROR_LARGE_MASK; + } else if (this_error < FPMB_ERROR_SMALL_TH) { + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_ERROR_SMALL_MASK; + } + } +#endif + + if (!is_zero_mv(&mv)) { + ++mvcount; + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + cpi->twopass.frame_mb_stats_buf[mb_index] &= + ~FPMB_MOTION_ZERO_MASK; + // check estimated motion direction + if (mv.col > 0 && mv.col >= abs(mv.row)) { + // right direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_RIGHT_MASK; + } else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) { + // up direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_UP_MASK; + } else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) { + // left direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_LEFT_MASK; + } else { + // down direction + cpi->twopass.frame_mb_stats_buf[mb_index] |= + FPMB_MOTION_DOWN_MASK; + } + } +#endif + + // Non-zero vector, was it different from the last non zero vector? + if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count; + lastmv = mv; + + // Does the row vector point inwards or outwards? + if (mb_row < cm->mb_rows / 2) { + if (mv.row > 0) + --sum_in_vectors; + else if (mv.row < 0) + ++sum_in_vectors; + } else if (mb_row > cm->mb_rows / 2) { + if (mv.row > 0) + ++sum_in_vectors; + else if (mv.row < 0) + --sum_in_vectors; + } + + // Does the col vector point inwards or outwards? + if (mb_col < cm->mb_cols / 2) { + if (mv.col > 0) + --sum_in_vectors; + else if (mv.col < 0) + ++sum_in_vectors; + } else if (mb_col > cm->mb_cols / 2) { + if (mv.col > 0) + ++sum_in_vectors; + else if (mv.col < 0) + --sum_in_vectors; + } + } + } + raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error; + } else { + sr_coded_error += (int64_t)this_error; + } + coded_error += (int64_t)this_error; + + // Adjust to the next column of MBs. + x->plane[0].src.buf += 16; + x->plane[1].src.buf += uv_mb_height; + x->plane[2].src.buf += uv_mb_height; + + recon_yoffset += 16; + recon_uvoffset += uv_mb_height; + } + // Adjust to the next row of MBs. + x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; + x->plane[1].src.buf += + uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; + x->plane[2].src.buf += + uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; + + aom_clear_system_state(); + } + const double raw_err_stdev = + raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts); + aom_free(raw_motion_err_list); + + // Clamp the image start to rows/2. This number of rows is discarded top + // and bottom as dead data so rows / 2 means the frame is blank. + if ((image_data_start_row > cm->mb_rows / 2) || + (image_data_start_row == INVALID_ROW)) { + image_data_start_row = cm->mb_rows / 2; + } + // Exclude any image dead zone + if (image_data_start_row > 0) { + intra_skip_count = + AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2)); + } + + { + FIRSTPASS_STATS fps; + // The minimum error here insures some bit allocation to frames even + // in static regions. The allocation per MB declines for larger formats + // where the typical "real" energy per MB also falls. + // Initial estimate here uses sqrt(mbs) to define the min_err, where the + // number of mbs is proportional to the image area. + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + const double min_err = 200 * sqrt(num_mbs); + + intra_factor = intra_factor / (double)num_mbs; + brightness_factor = brightness_factor / (double)num_mbs; + fps.weight = intra_factor * brightness_factor; + + fps.frame = cm->current_video_frame; + fps.coded_error = (double)(coded_error >> 8) + min_err; + fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err; + fps.intra_error = (double)(intra_error >> 8) + min_err; + fps.frame_avg_wavelet_energy = (double)frame_avg_wavelet_energy; + fps.count = 1.0; + fps.pcnt_inter = (double)intercount / num_mbs; + fps.pcnt_second_ref = (double)second_ref_count / num_mbs; + fps.pcnt_neutral = (double)neutral_count / num_mbs; + fps.intra_skip_pct = (double)intra_skip_count / num_mbs; + fps.inactive_zone_rows = (double)image_data_start_row; + fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix + fps.raw_error_stdev = raw_err_stdev; + + if (mvcount > 0) { + fps.MVr = (double)sum_mvr / mvcount; + fps.mvr_abs = (double)sum_mvr_abs / mvcount; + fps.MVc = (double)sum_mvc / mvcount; + fps.mvc_abs = (double)sum_mvc_abs / mvcount; + fps.MVrv = + ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount; + fps.MVcv = + ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount; + fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); + fps.new_mv_count = new_mv_count; + fps.pcnt_motion = (double)mvcount / num_mbs; + } else { + fps.MVr = 0.0; + fps.mvr_abs = 0.0; + fps.MVc = 0.0; + fps.mvc_abs = 0.0; + fps.MVrv = 0.0; + fps.MVcv = 0.0; + fps.mv_in_out_count = 0.0; + fps.new_mv_count = 0.0; + fps.pcnt_motion = 0.0; + } + + // TODO(paulwilkins): Handle the case when duration is set to 0, or + // something less than the full time between subsequent values of + // cpi->source_time_stamp. + fps.duration = (double)(source->ts_end - source->ts_start); + + // Don't want to do output stats with a stack variable! + twopass->this_frame_stats = fps; + output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); + accumulate_stats(&twopass->total_stats, &fps); + +#if CONFIG_FP_MB_STATS + if (cpi->use_fp_mb_stats) { + output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs, + cpi->output_pkt_list); + } +#endif + } + + // Copy the previous Last Frame back into gf and and arf buffers if + // the prediction is good enough... but also don't allow it to lag too far. + if ((twopass->sr_update_lag > 3) || + ((cm->current_video_frame > 0) && + (twopass->this_frame_stats.pcnt_inter > 0.20) && + ((twopass->this_frame_stats.intra_error / + DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { + if (gld_yv12 != NULL) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]], + cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]); + } + twopass->sr_update_lag = 1; + } else { + ++twopass->sr_update_lag; + } + + aom_extend_frame_borders(new_yv12, num_planes); + + // The frame we just compressed now becomes the last frame. + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]], + cm->new_fb_idx); + + // Special case for the first frame. Copy into the GF buffer as a second + // reference. + if (cm->current_video_frame == 0 && + cpi->ref_fb_idx[GOLDEN_FRAME - 1] != INVALID_IDX) { + ref_cnt_fb(pool->frame_bufs, + &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]], + cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]); + } + + // Use this to see what the first pass reconstruction looks like. + if (0) { + char filename[512]; + FILE *recon_file; + snprintf(filename, sizeof(filename), "enc%04d.yuv", + (int)cm->current_video_frame); + + if (cm->current_video_frame == 0) + recon_file = fopen(filename, "wb"); + else + recon_file = fopen(filename, "ab"); + + (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); + fclose(recon_file); + } + + ++cm->current_video_frame; +} + +static double calc_correction_factor(double err_per_mb, double err_divisor, + double pt_low, double pt_high, int q, + aom_bit_depth_t bit_depth) { + const double error_term = err_per_mb / err_divisor; + + // Adjustment based on actual quantizer to power term. + const double power_term = + AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); + + // Calculate correction factor. + if (power_term < 1.0) assert(error_term >= 0.0); + + return fclamp(pow(error_term, power_term), 0.05, 5.0); +} + +#define ERR_DIVISOR 100.0 +static int get_twopass_worst_quality(const AV1_COMP *cpi, + const double section_err, + double inactive_zone, + int section_target_bandwidth, + double group_weight_factor) { + const RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + + inactive_zone = fclamp(inactive_zone, 0.0, 1.0); + + if (section_target_bandwidth <= 0) { + return rc->worst_quality; // Highest value allowed + } else { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); + const double av_err_per_mb = section_err / active_mbs; + const double speed_term = 1.0; + double ediv_size_correction; + const int target_norm_bits_per_mb = + (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / + active_mbs; + int q; + + // Larger image formats are expected to be a little harder to code + // relatively given the same prediction error score. This in part at + // least relates to the increased size and hence coding overheads of + // motion vectors. Some account of this is made through adjustment of + // the error divisor. + ediv_size_correction = + AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi))); + if (ediv_size_correction < 1.0) + ediv_size_correction = -(1.0 / ediv_size_correction); + ediv_size_correction *= 4.0; + + // Try and pick a max Q that will be high enough to encode the + // content at the given rate. + for (q = rc->best_quality; q < rc->worst_quality; ++q) { + const double factor = calc_correction_factor( + av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW, + FACTOR_PT_HIGH, q, cpi->common.seq_params.bit_depth); + const int bits_per_mb = av1_rc_bits_per_mb( + INTER_FRAME, q, factor * speed_term * group_weight_factor, + cpi->common.seq_params.bit_depth); + if (bits_per_mb <= target_norm_bits_per_mb) break; + } + + // Restriction on active max q for constrained quality mode. + if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level); + return q; + } +} + +static void setup_rf_level_maxq(AV1_COMP *cpi) { + int i; + RATE_CONTROL *const rc = &cpi->rc; + for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { + int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality); + rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality); + } +} + +void av1_init_second_pass(AV1_COMP *cpi) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + double frame_rate; + FIRSTPASS_STATS *stats; + + zero_stats(&twopass->total_stats); + zero_stats(&twopass->total_left_stats); + + if (!twopass->stats_in_end) return; + + stats = &twopass->total_stats; + + *stats = *twopass->stats_in_end; + twopass->total_left_stats = *stats; + + frame_rate = 10000000.0 * stats->count / stats->duration; + // Each frame can have a different duration, as the frame rate in the source + // isn't guaranteed to be constant. The frame rate prior to the first frame + // encoded in the second pass is a guess. However, the sum duration is not. + // It is calculated based on the actual durations of all frames from the + // first pass. + av1_new_framerate(cpi, frame_rate); + twopass->bits_left = + (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); + + // This variable monitors how far behind the second ref update is lagging. + twopass->sr_update_lag = 1; + + // Scan the first pass file and calculate a modified total error based upon + // the bias/power function used to allocate bits. + { + const double avg_error = + stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); + const FIRSTPASS_STATS *s = twopass->stats_in; + double modified_error_total = 0.0; + twopass->modified_error_min = + (avg_error * oxcf->two_pass_vbrmin_section) / 100; + twopass->modified_error_max = + (avg_error * oxcf->two_pass_vbrmax_section) / 100; + while (s < twopass->stats_in_end) { + modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s); + ++s; + } + twopass->modified_error_left = modified_error_total; + } + + // Reset the vbr bits off target counters + cpi->rc.vbr_bits_off_target = 0; + cpi->rc.vbr_bits_off_target_fast = 0; + + cpi->rc.rate_error_estimate = 0; + + // Static sequence monitor variables. + twopass->kf_zeromotion_pct = 100; + twopass->last_kfgroup_zeromotion_pct = 100; + + if (oxcf->resize_mode != RESIZE_NONE) { + setup_rf_level_maxq(cpi); + } +} + +#define SR_DIFF_PART 0.0015 +#define MOTION_AMP_PART 0.003 +#define INTRA_PART 0.005 +#define DEFAULT_DECAY_LIMIT 0.75 +#define LOW_SR_DIFF_TRHESH 0.1 +#define SR_DIFF_MAX 128.0 + +static double get_sr_decay_rate(const AV1_COMP *cpi, + const FIRSTPASS_STATS *frame) { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; + double sr_decay = 1.0; + double modified_pct_inter; + double modified_pcnt_intra; + const double motion_amplitude_factor = + frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); + + modified_pct_inter = frame->pcnt_inter; + if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < + (double)NCOUNT_FRAME_II_THRESH) { + modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; + } + modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); + + if ((sr_diff > LOW_SR_DIFF_TRHESH)) { + sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX); + sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - + (MOTION_AMP_PART * motion_amplitude_factor) - + (INTRA_PART * modified_pcnt_intra); + } + return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); +} + +// This function gives an estimate of how badly we believe the prediction +// quality is decaying from frame to frame. +static double get_zero_motion_factor(const AV1_COMP *cpi, + const FIRSTPASS_STATS *frame) { + const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; + double sr_decay = get_sr_decay_rate(cpi, frame); + return AOMMIN(sr_decay, zero_motion_pct); +} + +#define ZM_POWER_FACTOR 0.75 + +static double get_prediction_decay_rate(const AV1_COMP *cpi, + const FIRSTPASS_STATS *next_frame) { + const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); + const double zero_motion_factor = + (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), + ZM_POWER_FACTOR)); + + return AOMMAX(zero_motion_factor, + (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); +} + +// Function to test for a condition where a complex transition is followed +// by a static section. For example in slide shows where there is a fade +// between slides. This is to help with more optimal kf and gf positioning. +static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval, + int still_interval, + double loop_decay_rate, + double last_decay_rate) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + + // Break clause to detect very still sections after motion + // For example a static image after a fade or other transition + // instead of a clean scene cut. + if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && + last_decay_rate < 0.9) { + int j; + + // Look ahead a few frames to see if static condition persists... + for (j = 0; j < still_interval; ++j) { + const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; + if (stats >= twopass->stats_in_end) break; + + if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; + } + + // Only if it does do we signal a transition to still. + return j == still_interval; + } + + return 0; +} + +// This function detects a flash through the high relative pcnt_second_ref +// score in the frame following a flash frame. The offset passed in should +// reflect this. +static int detect_flash(const TWO_PASS *twopass, int offset) { + const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); + + // What we are looking for here is a situation where there is a + // brief break in prediction (such as a flash) but subsequent frames + // are reasonably well predicted by an earlier (pre flash) frame. + // The recovery after a flash is indicated by a high pcnt_second_ref + // compared to pcnt_inter. + return next_frame != NULL && + next_frame->pcnt_second_ref > next_frame->pcnt_inter && + next_frame->pcnt_second_ref >= 0.5; +} + +// Update the motion related elements to the GF arf boost calculation. +static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, + double *mv_in_out, + double *mv_in_out_accumulator, + double *abs_mv_in_out_accumulator, + double *mv_ratio_accumulator) { + const double pct = stats->pcnt_motion; + + // Accumulate Motion In/Out of frame stats. + *mv_in_out = stats->mv_in_out_count * pct; + *mv_in_out_accumulator += *mv_in_out; + *abs_mv_in_out_accumulator += fabs(*mv_in_out); + + // Accumulate a measure of how uniform (or conversely how random) the motion + // field is (a ratio of abs(mv) / mv). + if (pct > 0.05) { + const double mvr_ratio = + fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); + const double mvc_ratio = + fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); + + *mv_ratio_accumulator += + pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); + *mv_ratio_accumulator += + pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); + } +} + +#define BASELINE_ERR_PER_MB 1000.0 +static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame, + double this_frame_mv_in_out, double max_boost) { + double frame_boost; + const double lq = av1_convert_qindex_to_q( + cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth); + const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); + int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + + // Correct for any inactive region in the image + num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame)); + + // Underlying boost factor is based on inter error ratio. + frame_boost = (BASELINE_ERR_PER_MB * num_mbs) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error); + frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; + + // Increase boost for frames where new data coming into frame (e.g. zoom out). + // Slightly reduce boost if there is a net balance of motion out of the frame + // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. + if (this_frame_mv_in_out > 0.0) + frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); + // In the extreme case the boost is halved. + else + frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); + + return AOMMIN(frame_boost, max_boost * boost_q_correction); +} + +static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames, + int *f_boost, int *b_boost) { + TWO_PASS *const twopass = &cpi->twopass; + int i; + double boost_score = 0.0; + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + int arf_boost; + int flash_detected = 0; + + // Search forward from the proposed arf/next gf position. + for (i = 0; i < f_frames; ++i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i + offset) || + detect_flash(twopass, i + offset + 1); + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + + boost_score += + decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); + } + + *f_boost = (int)boost_score; + + // Reset for backward looking loop. + boost_score = 0.0; + mv_ratio_accumulator = 0.0; + decay_accumulator = 1.0; + this_frame_mv_in_out = 0.0; + mv_in_out_accumulator = 0.0; + abs_mv_in_out_accumulator = 0.0; + + // Search backward towards last gf position. + for (i = -1; i >= -b_frames; --i) { + const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); + if (this_frame == NULL) break; + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + + // We want to discount the the flash frame itself and the recovery + // frame that follows as both will have poor scores. + flash_detected = detect_flash(twopass, i + offset) || + detect_flash(twopass, i + offset + 1); + + // Cumulative effect of prediction quality decay. + if (!flash_detected) { + decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); + decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR + ? MIN_DECAY_FACTOR + : decay_accumulator; + } + + boost_score += + decay_accumulator * + calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); + } + *b_boost = (int)boost_score; + + arf_boost = (*f_boost + *b_boost); + if (arf_boost < ((b_frames + f_frames) * 20)) + arf_boost = ((b_frames + f_frames) * 20); + arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST); + + return arf_boost; +} + +// Calculate a section intra ratio used in setting max loop filter. +static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, + const FIRSTPASS_STATS *end, + int section_length) { + const FIRSTPASS_STATS *s = begin; + double intra_error = 0.0; + double coded_error = 0.0; + int i = 0; + + while (s < end && i < section_length) { + intra_error += s->intra_error; + coded_error += s->coded_error; + ++s; + ++i; + } + + return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); +} + +// Calculate the total bits to allocate in this GF/ARF group. +static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, + double gf_group_err) { + const RATE_CONTROL *const rc = &cpi->rc; + const TWO_PASS *const twopass = &cpi->twopass; + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + int64_t total_group_bits; + + // Calculate the bits to be allocated to the group as a whole. + if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { + total_group_bits = (int64_t)(twopass->kf_group_bits * + (gf_group_err / twopass->kf_group_error_left)); + } else { + total_group_bits = 0; + } + + // Clamp odd edge cases. + total_group_bits = (total_group_bits < 0) + ? 0 + : (total_group_bits > twopass->kf_group_bits) + ? twopass->kf_group_bits + : total_group_bits; + + // Clip based on user supplied data rate variability limit. + if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) + total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; + + return total_group_bits; +} + +// Calculate the number bits extra to assign to boosted frames in a group. +static int calculate_boost_bits(int frame_count, int boost, + int64_t total_group_bits) { + int allocation_chunks; + + // return 0 for invalid inputs (could arise e.g. through rounding errors) + if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; + + allocation_chunks = (frame_count * 100) + boost; + + // Prevent overflow. + if (boost > 1023) { + int divisor = boost >> 10; + boost /= divisor; + allocation_chunks /= divisor; + } + + // Calculate the number of extra bits for use in the boosted frame or frames. + return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), + 0); +} + +#if USE_SYMM_MULTI_LAYER +// #define CHCEK_GF_PARAMETER +#ifdef CHCEK_GF_PARAMETER +void check_frame_params(GF_GROUP *const gf_group, int gf_interval, + int frame_nums) { + static const char *update_type_strings[] = { + "KF_UPDATE", "LF_UPDATE", "GF_UPDATE", + "ARF_UPDATE", "OVERLAY_UPDATE", "BRF_UPDATE", + "LAST_BIPRED_UPDATE", "BIPRED_UPDATE", "INTNL_OVERLAY_UPDATE", + "INTNL_ARF_UPDATE" + }; + FILE *fid = fopen("GF_PARAMS.txt", "a"); + + fprintf(fid, "\n{%d}\n", gf_interval); + for (int i = 0; i <= frame_nums; ++i) { + fprintf(fid, "%s %d %d %d %d\n", + update_type_strings[gf_group->update_type[i]], + gf_group->arf_src_offset[i], gf_group->arf_pos_in_gf[i], + gf_group->arf_update_idx[i], gf_group->pyramid_level[i]); + } + + fprintf(fid, "number of nodes in each level: \n"); + for (int i = 0; i < MAX_PYRAMID_LVL; ++i) { + fprintf(fid, "lvl %d: %d ", i, gf_group->pyramid_lvl_nodes[i]); + } + fprintf(fid, "\n"); + fclose(fid); +} +#endif // CHCEK_GF_PARAMETER +static int update_type_2_rf_level(FRAME_UPDATE_TYPE update_type) { + // Derive rf_level from update_type + switch (update_type) { + case LF_UPDATE: return INTER_NORMAL; + case ARF_UPDATE: return GF_ARF_STD; + case OVERLAY_UPDATE: return INTER_NORMAL; + case BRF_UPDATE: return GF_ARF_LOW; + case LAST_BIPRED_UPDATE: return INTER_NORMAL; + case BIPRED_UPDATE: return INTER_NORMAL; + case INTNL_ARF_UPDATE: return GF_ARF_LOW; + case INTNL_OVERLAY_UPDATE: return INTER_NORMAL; + default: return INTER_NORMAL; + } +} + +static void set_multi_layer_params(GF_GROUP *const gf_group, int l, int r, + int *frame_ind, int arf_ind, int level) { + if (r - l < 4) { + while (++l < r) { + // leaf nodes, not a look-ahead frame + gf_group->update_type[*frame_ind] = LF_UPDATE; + gf_group->arf_src_offset[*frame_ind] = 0; + gf_group->arf_pos_in_gf[*frame_ind] = 0; + gf_group->arf_update_idx[*frame_ind] = arf_ind; + gf_group->pyramid_level[*frame_ind] = 0; + ++gf_group->pyramid_lvl_nodes[0]; + ++(*frame_ind); + } + } else { + int m = (l + r) / 2; + int arf_pos_in_gf = *frame_ind; + + gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE; + gf_group->arf_src_offset[*frame_ind] = m - l - 1; + gf_group->arf_pos_in_gf[*frame_ind] = 0; + gf_group->arf_update_idx[*frame_ind] = 1; // mark all internal ARF 1 + gf_group->pyramid_level[*frame_ind] = level; + ++gf_group->pyramid_lvl_nodes[level]; + ++(*frame_ind); + + // set parameters for frames displayed before this frame + set_multi_layer_params(gf_group, l, m, frame_ind, 1, level - 1); + + // for overlay frames, we need to record the position of its corresponding + // arf frames for bit allocation + gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE; + gf_group->arf_src_offset[*frame_ind] = 0; + gf_group->arf_pos_in_gf[*frame_ind] = arf_pos_in_gf; + gf_group->arf_update_idx[*frame_ind] = 1; + gf_group->pyramid_level[*frame_ind] = 0; + ++(*frame_ind); + + // set parameters for frames displayed after this frame + set_multi_layer_params(gf_group, m, r, frame_ind, arf_ind, level - 1); + } +} + +static INLINE unsigned char get_pyramid_height(int pyramid_width) { + assert(pyramid_width <= 16 && pyramid_width >= 4 && + "invalid gf interval for pyramid structure"); + + return pyramid_width > 12 ? 4 : (pyramid_width > 6 ? 3 : 2); +} + +static int construct_multi_layer_gf_structure(GF_GROUP *const gf_group, + const int gf_interval) { + int frame_index = 0; + gf_group->pyramid_height = get_pyramid_height(gf_interval); + + assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL); + + av1_zero_array(gf_group->pyramid_lvl_nodes, MAX_PYRAMID_LVL); + + // At the beginning of each GF group it will be a key or overlay frame, + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->arf_src_offset[frame_index] = 0; + gf_group->arf_pos_in_gf[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + gf_group->pyramid_level[frame_index] = 0; + ++frame_index; + + // ALT0 + gf_group->update_type[frame_index] = ARF_UPDATE; + gf_group->arf_src_offset[frame_index] = gf_interval - 1; + gf_group->arf_pos_in_gf[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + gf_group->pyramid_level[frame_index] = gf_group->pyramid_height; + ++frame_index; + + // set parameters for the rest of the frames + set_multi_layer_params(gf_group, 0, gf_interval, &frame_index, 0, + gf_group->pyramid_height - 1); + return frame_index; +} + +void define_customized_gf_group_structure(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + assert(rc->baseline_gf_interval >= 4 && + rc->baseline_gf_interval <= MAX_PYRAMID_SIZE); + + const int gf_update_frames = + construct_multi_layer_gf_structure(gf_group, rc->baseline_gf_interval); + int frame_index; + + cpi->num_extra_arfs = 0; + + for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) { + // Set unused variables to default values + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + // Special handle for the first frame for assigning update_type + if (frame_index == 0) { + // For key frames the frame target rate is already set and it + // is also the golden frame. + if (key_frame) { + gf_group->update_type[frame_index] = KF_UPDATE; + continue; + } + + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + } + } else { + if (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++cpi->num_extra_arfs; + } + + // Assign rf level based on update type + gf_group->rf_level[frame_index] = + update_type_2_rf_level(gf_group->update_type[frame_index]); + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + gf_group->arf_update_idx[frame_index] = 0; + // This value is only used for INTNL_OVERLAY_UPDATE + gf_group->arf_pos_in_gf[frame_index] = 0; + + // This parameter is useless? + gf_group->arf_ref_idx[frame_index] = 0; +#ifdef CHCEK_GF_PARAMETER + check_frame_params(gf_group, rc->baseline_gf_interval, gf_update_frames); +#endif +} + +// It is an example of how to define a GF stucture manually. The function will +// result in exactly the same GF group structure as +// define_customized_gf_group_structure() when rc->baseline_gf_interval == 4 +#if USE_MANUAL_GF4_STRUCT +#define GF_INTERVAL_4 4 +static const unsigned char gf4_multi_layer_params[][GF_FRAME_PARAMS] = { + { + // gf_group->index == 0 (Frame 0) + // It can also be KEY frame. Will assign the proper value + // in define_gf_group_structure + OVERLAY_UPDATE, // update_type (default value) + 0, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 1 (Frame 4) + ARF_UPDATE, // update_type + GF_INTERVAL_4 - 1, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 2 (Frame 2) + INTNL_ARF_UPDATE, // update_type + (GF_INTERVAL_4 >> 1) - 1, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 3 (Frame 1) + LAST_BIPRED_UPDATE, // update_type + 0, // arf_src_offset + 0, // arf_pos_in_gf + 0 // arf_update_idx + }, + + { + // gf_group->index == 4 (Frame 2 - OVERLAY) + INTNL_OVERLAY_UPDATE, // update_type + 0, // arf_src_offset + 2, // arf_pos_in_gf + 0 // arf_update_idx + }, + { + // gf_group->index == 5 (Frame 3) + LF_UPDATE, // update_type + 0, // arf_src_offset + 0, // arf_pos_in_gf + 1 // arf_update_idx + } +}; + +static int define_gf_group_structure_4(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + assert(rc->baseline_gf_interval == GF_INTERVAL_4); + + const int gf_update_frames = rc->baseline_gf_interval + 2; + int frame_index; + + for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) { + int param_idx = 0; + + gf_group->bidir_pred_enabled[frame_index] = 0; + + if (frame_index == 0) { + // gf_group->arf_src_offset[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + gf_group->bidir_pred_enabled[frame_index] = 0; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + if (key_frame) continue; + + gf_group->update_type[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + } + param_idx++; + } else { + gf_group->update_type[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + } + + // setup other parameters + gf_group->rf_level[frame_index] = + update_type_2_rf_level(gf_group->update_type[frame_index]); + + // == arf_src_offset == + gf_group->arf_src_offset[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + // == arf_pos_in_gf == + gf_group->arf_pos_in_gf[frame_index] = + gf4_multi_layer_params[frame_index][param_idx++]; + + // == arf_update_idx == + gf_group->brf_src_offset[frame_index] = + gf4_multi_layer_params[frame_index][param_idx]; + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + // This value is only used for INTNL_OVERLAY_UPDATE + gf_group->arf_pos_in_gf[frame_index] = 0; + + return gf_update_frames; +} +#endif // USE_MANUAL_GF4_STRUCT +#endif // USE_SYMM_MULTI_LAYER + +static void define_gf_group_structure(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; + +#if USE_SYMM_MULTI_LAYER + const int valid_customized_gf_length = + rc->baseline_gf_interval >= 4 && + rc->baseline_gf_interval <= MAX_PYRAMID_SIZE; + // used the new structure only if extra_arf is allowed + if (valid_customized_gf_length && rc->source_alt_ref_pending && + cpi->extra_arf_allowed > 0) { +#if USE_MANUAL_GF4_STRUCT + if (rc->baseline_gf_interval == 4) + define_gf_group_structure_4(cpi); + else +#endif + define_customized_gf_group_structure(cpi); + cpi->new_bwdref_update_rule = 1; + return; + } else { + cpi->new_bwdref_update_rule = 0; + } +#endif + + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + int i; + int frame_index = 0; + const int key_frame = cpi->common.frame_type == KEY_FRAME; + + // The use of bi-predictive frames are only enabled when following 3 + // conditions are met: + // (1) ALTREF is enabled; + // (2) The bi-predictive group interval is at least 2; and + // (3) The bi-predictive group interval is strictly smaller than the + // golden group interval. + const int is_bipred_enabled = + cpi->extra_arf_allowed && rc->source_alt_ref_pending && + rc->bipred_group_interval && + rc->bipred_group_interval <= + (rc->baseline_gf_interval - rc->source_alt_ref_pending); + int bipred_group_end = 0; + int bipred_frame_index = 0; + + const unsigned char ext_arf_interval = + (unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1); + int which_arf = cpi->num_extra_arfs; + int subgroup_interval[MAX_EXT_ARFS + 1]; + int is_sg_bipred_enabled = is_bipred_enabled; + int accumulative_subgroup_interval = 0; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + // === [frame_index == 0] === + if (!key_frame) { + if (rc->source_alt_ref_active) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + + frame_index++; + + bipred_frame_index++; + + // === [frame_index == 1] === + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + gf_group->arf_src_offset[frame_index] = + (unsigned char)(rc->baseline_gf_interval - 1); + + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + // NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames. + + // Work out the ARFs' positions in this gf group + // NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display + // order (except for the original ARF). In the example of three ALT_REF's, + // We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0 + // but code them in the following order: + // KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0 + // + // arf_pos_for_ovrly[]: Position for OVERLAY + // arf_pos_in_gf[]: Position for ALTREF + cpi->arf_pos_for_ovrly[0] = frame_index + cpi->num_extra_arfs + + gf_group->arf_src_offset[frame_index] + 1; + for (i = 0; i < cpi->num_extra_arfs; ++i) { + cpi->arf_pos_for_ovrly[i + 1] = + frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2); + subgroup_interval[i] = cpi->arf_pos_for_ovrly[i] - + cpi->arf_pos_for_ovrly[i + 1] - (i == 0 ? 1 : 2); + } + subgroup_interval[cpi->num_extra_arfs] = + cpi->arf_pos_for_ovrly[cpi->num_extra_arfs] - frame_index - + (cpi->num_extra_arfs == 0 ? 1 : 2); + + ++frame_index; + + // Insert an extra ARF + // === [frame_index == 2] === + if (cpi->num_extra_arfs) { + gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->arf_src_offset[frame_index] = ext_arf_interval; + + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = 0; + ++frame_index; + } + accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs]; + } + + for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = which_arf; + + // If we are going to have ARFs, check whether we can have BWDREF in this + // subgroup, and further, whether we can have ARF subgroup which contains + // the BWDREF subgroup but contained within the GF group: + // + // GF group --> ARF subgroup --> BWDREF subgroup + if (rc->source_alt_ref_pending) { + is_sg_bipred_enabled = + is_bipred_enabled && + (subgroup_interval[which_arf] > rc->bipred_group_interval); + } + + // NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive + // frame group interval is strictly smaller than that of the GOLDEN + // FRAME group interval. + // TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on. + if (is_sg_bipred_enabled && !bipred_group_end) { + const int cur_brf_src_offset = rc->bipred_group_interval - 1; + + if (bipred_frame_index == 1) { + // --- BRF_UPDATE --- + gf_group->update_type[frame_index] = BRF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->brf_src_offset[frame_index] = cur_brf_src_offset; + } else if (bipred_frame_index == rc->bipred_group_interval) { + // --- LAST_BIPRED_UPDATE --- + gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->brf_src_offset[frame_index] = 0; + + // Reset the bi-predictive frame index. + bipred_frame_index = 0; + } else { + // --- BIPRED_UPDATE --- + gf_group->update_type[frame_index] = BIPRED_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->brf_src_offset[frame_index] = 0; + } + gf_group->bidir_pred_enabled[frame_index] = 1; + + bipred_frame_index++; + // Check whether the next bi-predictive frame group would entirely be + // included within the current golden frame group. + // In addition, we need to avoid coding a BRF right before an ARF. + if (bipred_frame_index == 1 && + (i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) { + bipred_group_end = 1; + } + } else { + gf_group->update_type[frame_index] = LF_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; + } + + ++frame_index; + + // Check if we need to update the ARF. + if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 && + frame_index > cpi->arf_pos_for_ovrly[which_arf]) { + --which_arf; + accumulative_subgroup_interval += subgroup_interval[which_arf] + 1; + + // Meet the new subgroup; Reset the bipred_group_end flag. + bipred_group_end = 0; + // Insert another extra ARF after the overlay frame + if (which_arf) { + gf_group->update_type[frame_index] = INTNL_ARF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_LOW; + gf_group->arf_src_offset[frame_index] = ext_arf_interval; + + gf_group->arf_update_idx[frame_index] = which_arf; + gf_group->arf_ref_idx[frame_index] = 0; + ++frame_index; + } + } + } + + // NOTE: We need to configure the frame at the end of the sequence + 1 that + // will be the start frame for the next group. Otherwise prior to the + // call to av1_rc_get_second_pass_params() the data will be undefined. + gf_group->arf_update_idx[frame_index] = 0; + gf_group->arf_ref_idx[frame_index] = 0; + + if (rc->source_alt_ref_pending) { + gf_group->update_type[frame_index] = OVERLAY_UPDATE; + gf_group->rf_level[frame_index] = INTER_NORMAL; + + cpi->arf_pos_in_gf[0] = 1; + if (cpi->num_extra_arfs) { + // Overwrite the update_type for extra-ARF's corresponding internal + // OVERLAY's: Change from LF_UPDATE to INTNL_OVERLAY_UPDATE. + for (i = cpi->num_extra_arfs; i > 0; --i) { + cpi->arf_pos_in_gf[i] = + (i == cpi->num_extra_arfs ? 2 : cpi->arf_pos_for_ovrly[i + 1] + 1); + + gf_group->update_type[cpi->arf_pos_for_ovrly[i]] = INTNL_OVERLAY_UPDATE; + gf_group->rf_level[cpi->arf_pos_for_ovrly[i]] = INTER_NORMAL; + } + } + } else { + gf_group->update_type[frame_index] = GF_UPDATE; + gf_group->rf_level[frame_index] = GF_ARF_STD; + } + + gf_group->bidir_pred_enabled[frame_index] = 0; + gf_group->brf_src_offset[frame_index] = 0; +} + +#if USE_SYMM_MULTI_LAYER +#define LEAF_REDUCTION_FACTOR 0.75f +#define LVL_3_BOOST_FACTOR 0.8f +#define LVL_2_BOOST_FACTOR 0.3f + +static float_t lvl_budget_factor[MAX_PYRAMID_LVL - 1][MAX_PYRAMID_LVL - 1] = { + { 1, 0, 0 }, + { LVL_3_BOOST_FACTOR, 0, 0 }, // Leaking budget works better + { LVL_3_BOOST_FACTOR, (1 - LVL_3_BOOST_FACTOR) * LVL_2_BOOST_FACTOR, + (1 - LVL_3_BOOST_FACTOR) * (1 - LVL_2_BOOST_FACTOR) } +}; +#endif // USE_SYMM_MULTI_LAYER +static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits, + double group_error, int gf_arf_bits) { + RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + FIRSTPASS_STATS frame_stats; + int i; + int frame_index = 0; + int target_frame_size; + int key_frame; + const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); + int64_t total_group_bits = gf_group_bits; + double modified_err = 0.0; + double err_fraction; + int ext_arf_boost[MAX_EXT_ARFS]; + + define_gf_group_structure(cpi); + + av1_zero_array(ext_arf_boost, MAX_EXT_ARFS); + + key_frame = cpi->common.frame_type == KEY_FRAME; + + // For key frames the frame target rate is already set and it + // is also the golden frame. + // === [frame_index == 0] === + if (!key_frame) { + if (rc->source_alt_ref_active) + gf_group->bit_allocation[frame_index] = 0; + else + gf_group->bit_allocation[frame_index] = gf_arf_bits; + + // Step over the golden frame / overlay frame + if (EOF == input_stats(twopass, &frame_stats)) return; + } + + // Deduct the boost bits for arf (or gf if it is not a key frame) + // from the group total. + if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; + + frame_index++; + + // Store the bits to spend on the ARF if there is one. + // === [frame_index == 1] === + if (rc->source_alt_ref_pending) { + gf_group->bit_allocation[frame_index] = gf_arf_bits; + + ++frame_index; + + // Skip all the extra-ARF's right after ARF at the starting segment of + // the current GF group. + if (cpi->num_extra_arfs) { + while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++frame_index; + } + } + + // Allocate bits to the other frames in the group. + for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { + if (EOF == input_stats(twopass, &frame_stats)) break; + + modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats); + + if (group_error > 0) + err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); + else + err_fraction = 0.0; + + target_frame_size = (int)((double)total_group_bits * err_fraction); + + target_frame_size = + clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits)); + + if (gf_group->update_type[frame_index] == BRF_UPDATE) { + // Boost up the allocated bits on BWDREF_FRAME + gf_group->bit_allocation[frame_index] = + target_frame_size + (target_frame_size >> 2); + } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) { + // Press down the allocated bits on LAST_BIPRED_UPDATE frames + gf_group->bit_allocation[frame_index] = + target_frame_size - (target_frame_size >> 1); + } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) { + // TODO(zoeliu): To investigate whether the allocated bits on + // BIPRED_UPDATE frames need to be further adjusted. + gf_group->bit_allocation[frame_index] = target_frame_size; +#if USE_SYMM_MULTI_LAYER + } else if (cpi->new_bwdref_update_rule && + gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) { + assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL && + gf_group->pyramid_height >= 0 && + "non-valid height for a pyramid structure"); + + int arf_pos = gf_group->arf_pos_in_gf[frame_index]; + gf_group->bit_allocation[frame_index] = 0; + + gf_group->bit_allocation[arf_pos] = target_frame_size; +#if MULTI_LVL_BOOST_VBR_CQ + const int pyr_h = gf_group->pyramid_height - 2; + const int this_lvl = gf_group->pyramid_level[arf_pos]; + const int dist2top = gf_group->pyramid_height - 1 - this_lvl; + + const float_t budget = + LEAF_REDUCTION_FACTOR * gf_group->pyramid_lvl_nodes[0]; + const float_t lvl_boost = budget * lvl_budget_factor[pyr_h][dist2top] / + gf_group->pyramid_lvl_nodes[this_lvl]; + + gf_group->bit_allocation[arf_pos] += (int)(target_frame_size * lvl_boost); +#endif // MULTI_LVL_BOOST_VBR_CQ +#endif // USE_SYMM_MULTI_LAYER + } else { + assert(gf_group->update_type[frame_index] == LF_UPDATE || + gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE); + gf_group->bit_allocation[frame_index] = target_frame_size; +#if MULTI_LVL_BOOST_VBR_CQ + if (cpi->new_bwdref_update_rule) { + gf_group->bit_allocation[frame_index] -= + (int)(target_frame_size * LEAF_REDUCTION_FACTOR); + } +#endif // MULTI_LVL_BOOST_VBR_CQ + } + + ++frame_index; + + // Skip all the extra-ARF's. + if (cpi->num_extra_arfs) { + while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE) + ++frame_index; + } + } + +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 0 && rc->source_alt_ref_pending) { +#else + if (rc->source_alt_ref_pending) { +#endif + if (cpi->num_extra_arfs) { + // NOTE: For bit allocation, move the allocated bits associated with + // INTNL_OVERLAY_UPDATE to the corresponding INTNL_ARF_UPDATE. + // i > 0 for extra-ARF's and i == 0 for ARF: + // arf_pos_for_ovrly[i]: Position for INTNL_OVERLAY_UPDATE + // arf_pos_in_gf[i]: Position for INTNL_ARF_UPDATE + for (i = cpi->num_extra_arfs; i > 0; --i) { + assert(gf_group->update_type[cpi->arf_pos_for_ovrly[i]] == + INTNL_OVERLAY_UPDATE); + + // Encoder's choice: + // Set show_existing_frame == 1 for all extra-ARF's, and hence + // allocate zero bit for both all internal OVERLAY frames. + gf_group->bit_allocation[cpi->arf_pos_in_gf[i]] = + gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]]; + gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]] = 0; + } + } + } +} + +// Analyse and define a gf/arf group. +static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + AV1EncoderConfig *const oxcf = &cpi->oxcf; + TWO_PASS *const twopass = &cpi->twopass; + FIRSTPASS_STATS next_frame; + const FIRSTPASS_STATS *const start_pos = twopass->stats_in; + int i; + + double boost_score = 0.0; +#if !CONFIG_FIX_GF_LENGTH + double old_boost_score = 0.0; + double mv_ratio_accumulator_thresh; + int active_max_gf_interval; + int active_min_gf_interval; +#endif + double gf_group_err = 0.0; +#if GROUP_ADAPTIVE_MAXQ + double gf_group_raw_error = 0.0; +#endif + double gf_group_skip_pct = 0.0; + double gf_group_inactive_zone_rows = 0.0; + double gf_first_frame_err = 0.0; + double mod_frame_err = 0.0; + + double mv_ratio_accumulator = 0.0; + double decay_accumulator = 1.0; + double zero_motion_accumulator = 1.0; + + double loop_decay_rate = 1.00; + double last_loop_decay_rate = 1.00; + + double this_frame_mv_in_out = 0.0; + double mv_in_out_accumulator = 0.0; + double abs_mv_in_out_accumulator = 0.0; + + unsigned int allow_alt_ref = is_altref_enabled(cpi); + + int f_boost = 0; + int b_boost = 0; + int flash_detected; + int64_t gf_group_bits; + double gf_group_error_left; + int gf_arf_bits; + const int is_key_frame = frame_is_intra_only(cm); + const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; + + cpi->extra_arf_allowed = 1; + + // Reset the GF group data structures unless this is a key + // frame in which case it will already have been done. + if (is_key_frame == 0) { + av1_zero(twopass->gf_group); + } + + aom_clear_system_state(); + av1_zero(next_frame); + + // Load stats for the current frame. + mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Note the error of the frame at the start of the group. This will be + // the GF frame error if we code a normal gf. + gf_first_frame_err = mod_frame_err; + + // If this is a key frame or the overlay from a previous arf then + // the error score / cost of this frame has already been accounted for. + if (arf_active_or_kf) { + gf_group_err -= gf_first_frame_err; +#if GROUP_ADAPTIVE_MAXQ + gf_group_raw_error -= this_frame->coded_error; +#endif + gf_group_skip_pct -= this_frame->intra_skip_pct; + gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; + } +#if !CONFIG_FIX_GF_LENGTH + // Motion breakout threshold for loop below depends on image size. + mv_ratio_accumulator_thresh = + (cpi->initial_height + cpi->initial_width) / 4.0; + // Set a maximum and minimum interval for the GF group. + // If the image appears almost completely static we can extend beyond this. + { + int int_max_q = (int)(av1_convert_qindex_to_q( + twopass->active_worst_quality, cpi->common.seq_params.bit_depth)); + int int_lbq = (int)(av1_convert_qindex_to_q( + rc->last_boosted_qindex, cpi->common.seq_params.bit_depth)); + + active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200); + if (active_min_gf_interval > rc->max_gf_interval) + active_min_gf_interval = rc->max_gf_interval; + + // The value chosen depends on the active Q range. At low Q we have + // bits to spare and are better with a smaller interval and smaller boost. + // At high Q when there are few bits to spare we are better with a longer + // interval to spread the cost of the GF. + active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6)); + + // We have: active_min_gf_interval <= rc->max_gf_interval + if (active_max_gf_interval < active_min_gf_interval) + active_max_gf_interval = active_min_gf_interval; + else if (active_max_gf_interval > rc->max_gf_interval) + active_max_gf_interval = rc->max_gf_interval; + } +#endif // !CONFIG_FIX_GF_LENGTH + double avg_sr_coded_error = 0; + double avg_raw_err_stdev = 0; + int non_zero_stdev_count = 0; + + i = 0; + while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { + ++i; + + // Accumulate error score of frames in this gf group. + mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + gf_group_err += mod_frame_err; +#if GROUP_ADAPTIVE_MAXQ + gf_group_raw_error += this_frame->coded_error; +#endif + gf_group_skip_pct += this_frame->intra_skip_pct; + gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; + + if (EOF == input_stats(twopass, &next_frame)) break; + + // Test for the case where there is a brief flash but the prediction + // quality back to an earlier frame is then restored. + flash_detected = detect_flash(twopass, 0); + + // Update the motion related elements to the boost calculation. + accumulate_frame_motion_stats( + &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, + &abs_mv_in_out_accumulator, &mv_ratio_accumulator); + // sum up the metric values of current gf group + avg_sr_coded_error += next_frame.sr_coded_error; + if (fabs(next_frame.raw_error_stdev) > 0.000001) { + non_zero_stdev_count++; + avg_raw_err_stdev += next_frame.raw_error_stdev; + } + + // Accumulate the effect of prediction quality decay. + if (!flash_detected) { + last_loop_decay_rate = loop_decay_rate; + loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); + + decay_accumulator = decay_accumulator * loop_decay_rate; + + // Monitor for static sections. + zero_motion_accumulator = AOMMIN( + zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); + + // Break clause to detect very still sections after motion. For example, + // a static image after a fade or other transition. + if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, + last_loop_decay_rate)) { + allow_alt_ref = 0; + break; + } + } + + // Calculate a boost number for this frame. + boost_score += + decay_accumulator * + calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST); +#if CONFIG_FIX_GF_LENGTH + if (i == (FIXED_GF_LENGTH + 1)) break; +#else + // Skip breaking condition for CONFIG_FIX_GF_LENGTH + // Break out conditions. + if ( + // Break at active_max_gf_interval unless almost totally static. + (i >= (active_max_gf_interval + arf_active_or_kf) && + zero_motion_accumulator < 0.995) || + ( + // Don't break out with a very short interval. + (i >= active_min_gf_interval + arf_active_or_kf) && + (!flash_detected) && + ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || + (abs_mv_in_out_accumulator > 3.0) || + (mv_in_out_accumulator < -2.0) || + ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) { + // If GF group interval is < 12, we force it to be 8. Otherwise, + // if it is >= 12, we keep it as is. + // NOTE: 'i' is 1 more than the GF group interval candidate that is being + // checked. + if (i == (8 + 1) || i >= (12 + 1)) { + boost_score = old_boost_score; + break; + } + } + old_boost_score = boost_score; +#endif // CONFIG_FIX_GF_LENGTH + *this_frame = next_frame; + } + twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); + + // Was the group length constrained by the requirement for a new KF? + rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; + + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs + : cpi->common.MBs; + assert(num_mbs > 0); + if (i) avg_sr_coded_error /= i; + + if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count; + + // Disable extra altrefs and backward refs for "still" gf group: + // zero_motion_accumulator: minimum percentage of (0,0) motion; + // avg_sr_coded_error: average of the SSE per pixel of each frame; + // avg_raw_err_stdev: average of the standard deviation of (0,0) + // motion error per block of each frame. + const int disable_bwd_extarf = + (zero_motion_accumulator > MIN_ZERO_MOTION && + avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR && + avg_raw_err_stdev < MAX_RAW_ERR_VAR); + + if (disable_bwd_extarf) cpi->extra_arf_allowed = 0; + +#define REDUCE_GF_LENGTH_THRESH 4 +#define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 +#define REDUCE_GF_LENGTH_BY 1 + int alt_offset = 0; +#if REDUCE_LAST_GF_LENGTH + // TODO(weitinglin): The length reduction stretagy is tweaking using AOM_Q + // mode, and hurting the performance of VBR mode. We need to investigate how + // to adjust GF length for other modes. + + int allow_gf_length_reduction = + cpi->oxcf.rc_mode == AOM_Q || cpi->extra_arf_allowed == 0; + + // We are going to have an alt ref, but we don't have do adjustment for + // lossless mode + if (allow_alt_ref && allow_gf_length_reduction && + (i < cpi->oxcf.lag_in_frames) && (i >= rc->min_gf_interval) && + !is_lossless_requested(&cpi->oxcf)) { + // adjust length of this gf group if one of the following condition met + // 1: only one overlay frame left and this gf is too long + // 2: next gf group is too short to have arf compared to the current gf + + // maximum length of next gf group + const int next_gf_len = rc->frames_to_key - i; + const int single_overlay_left = + next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH; + // the next gf is probably going to have a ARF but it will be shorter than + // this gf + const int unbalanced_gf = + i > REDUCE_GF_LENGTH_TO_KEY_THRESH && + next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && + next_gf_len + 1 >= rc->min_gf_interval; + + if (single_overlay_left || unbalanced_gf) { + // Note: Tried roll_back = DIVIDE_AND_ROUND(i, 8), but is does not work + // better in the current setting + const int roll_back = REDUCE_GF_LENGTH_BY; + alt_offset = -roll_back; + i -= roll_back; + } + } +#endif + + // Should we use the alternate reference frame. + if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && + (i >= rc->min_gf_interval)) { + // Calculate the boost for alt ref. + rc->gfu_boost = + calc_arf_boost(cpi, alt_offset, (i - 1), (i - 1), &f_boost, &b_boost); + rc->source_alt_ref_pending = 1; + + // do not replace ARFs with overlay frames, and keep it as GOLDEN_REF + cpi->preserve_arf_as_gld = 1; + } else { + rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST); + rc->source_alt_ref_pending = 0; + cpi->preserve_arf_as_gld = 0; + } + + // Set the interval until the next gf. + // If forward keyframes are enabled, ensure the final gf group obeys the + // MIN_FWD_KF_INTERVAL. + if (cpi->oxcf.fwd_kf_enabled && + ((twopass->stats_in - i + rc->frames_to_key) < twopass->stats_in_end)) { + if (i == rc->frames_to_key) { + rc->baseline_gf_interval = i; + // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL + } else if ((rc->frames_to_key - i < + AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) && + (rc->frames_to_key != i)) { + // if possible, merge the last two gf groups + if (rc->frames_to_key <= MAX_PYRAMID_SIZE) { + rc->baseline_gf_interval = rc->frames_to_key; + // if merging the last two gf groups creates a group that is too long, + // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL + } else { + rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL; + } + } else { + rc->baseline_gf_interval = + i - (is_key_frame || rc->source_alt_ref_pending); + } + } else { + rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); + } + +#if REDUCE_LAST_ALT_BOOST +#define LAST_ALR_BOOST_FACTOR 0.2f + rc->arf_boost_factor = 1.0; + if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) { + // Reduce the boost of altref in the last gf group + if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY || + rc->frames_to_key - i == 0) { + rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; + } + } +#endif + + if (!cpi->extra_arf_allowed) { + cpi->num_extra_arfs = 0; + } else { +#if USE_SYMM_MULTI_LAYER + if (rc->baseline_gf_interval == 4 && rc->source_alt_ref_pending) + cpi->num_extra_arfs = 1; + else + cpi->num_extra_arfs = get_number_of_extra_arfs( + rc->baseline_gf_interval, rc->source_alt_ref_pending); +#else + // Compute how many extra alt_refs we can have + cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval, + rc->source_alt_ref_pending); +#endif // USE_SYMM_MULTI_LAYER + } + +#if !USE_SYMM_MULTI_LAYER + // Currently at maximum two extra ARFs' are allowed + assert(cpi->num_extra_arfs <= MAX_EXT_ARFS); +#endif + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + + rc->bipred_group_interval = BFG_INTERVAL; + // The minimum bi-predictive frame group interval is 2. + if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0; + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate the bits to be allocated to the gf/arf group as a whole + gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); + +#if GROUP_ADAPTIVE_MAXQ + // Calculate an estimate of the maxq needed for the group. + // We are more agressive about correcting for sections + // where there could be significant overshoot than for easier + // sections where we do not wish to risk creating an overshoot + // of the allocated bit budget. + if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) { + const int vbr_group_bits_per_frame = + (int)(gf_group_bits / rc->baseline_gf_interval); + const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; + const double group_av_skip_pct = + gf_group_skip_pct / rc->baseline_gf_interval; + const double group_av_inactive_zone = + ((gf_group_inactive_zone_rows * 2) / + (rc->baseline_gf_interval * (double)cm->mb_rows)); + + int tmp_q; + // rc factor is a weight factor that corrects for local rate control drift. + double rc_factor = 1.0; + if (rc->rate_error_estimate > 0) { + rc_factor = AOMMAX(RC_FACTOR_MIN, + (double)(100 - rc->rate_error_estimate) / 100.0); + } else { + rc_factor = AOMMIN(RC_FACTOR_MAX, + (double)(100 - rc->rate_error_estimate) / 100.0); + } + tmp_q = get_twopass_worst_quality( + cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), + vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); + twopass->active_worst_quality = + AOMMAX(tmp_q, twopass->active_worst_quality >> 1); + } +#endif + + // Calculate the extra bits to be used for boosted frame(s) + gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, + gf_group_bits); + + // Adjust KF group bits and error remaining. + twopass->kf_group_error_left -= (int64_t)gf_group_err; + + // If this is an arf update we want to remove the score for the overlay + // frame at the end which will usually be very cheap to code. + // The overlay frame has already, in effect, been coded so we want to spread + // the remaining bits among the other frames. + // For normal GFs remove the score for the GF itself unless this is + // also a key frame in which case it has already been accounted for. + if (rc->source_alt_ref_pending) { + gf_group_error_left = gf_group_err - mod_frame_err; + } else if (is_key_frame == 0) { + gf_group_error_left = gf_group_err - gf_first_frame_err; + } else { + gf_group_error_left = gf_group_err; + } + + // Allocate bits to each of the frames in the GF group. + allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); + + // Reset the file position. + reset_fpf_position(twopass, start_pos); + + // Calculate a section intra ratio used in setting max loop filter. + if (cpi->common.frame_type != KEY_FRAME) { + twopass->section_intra_rating = calculate_section_intra_ratio( + start_pos, twopass->stats_in_end, rc->baseline_gf_interval); + } +} + +// Threshold for use of the lagging second reference frame. High second ref +// usage may point to a transient event like a flash or occlusion rather than +// a real scene cut. +#define SECOND_REF_USEAGE_THRESH 0.1 +// Minimum % intra coding observed in first pass (1.0 = 100%) +#define MIN_INTRA_LEVEL 0.25 +// Minimum ratio between the % of intra coding and inter coding in the first +// pass after discounting neutral blocks (discounting neutral blocks in this +// way helps catch scene cuts in clips with very flat areas or letter box +// format clips with image padding. +#define INTRA_VS_INTER_THRESH 2.0 +// Hard threshold where the first pass chooses intra for almost all blocks. +// In such a case even if the frame is not a scene cut coding a key frame +// may be a good option. +#define VERY_LOW_INTER_THRESH 0.05 +// Maximum threshold for the relative ratio of intra error score vs best +// inter error score. +#define KF_II_ERR_THRESHOLD 2.5 +// In real scene cuts there is almost always a sharp change in the intra +// or inter error score. +#define ERR_CHANGE_THRESHOLD 0.4 +// For real scene cuts we expect an improvment in the intra inter error +// ratio in the next frame. +#define II_IMPROVEMENT_THRESHOLD 3.5 +#define KF_II_MAX 128.0 + +static int test_candidate_kf(TWO_PASS *twopass, + const FIRSTPASS_STATS *last_frame, + const FIRSTPASS_STATS *this_frame, + const FIRSTPASS_STATS *next_frame) { + int is_viable_kf = 0; + double pcnt_intra = 1.0 - this_frame->pcnt_inter; + double modified_pcnt_inter = + this_frame->pcnt_inter - this_frame->pcnt_neutral; + + // Does the frame satisfy the primary criteria of a key frame? + // See above for an explanation of the test criteria. + // If so, then examine how well it predicts subsequent frames. + if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && + ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || + ((pcnt_intra > MIN_INTRA_LEVEL) && + (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && + ((this_frame->intra_error / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < + KF_II_ERR_THRESHOLD) && + ((fabs(last_frame->coded_error - this_frame->coded_error) / + DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > + ERR_CHANGE_THRESHOLD) || + (fabs(last_frame->intra_error - this_frame->intra_error) / + DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > + ERR_CHANGE_THRESHOLD) || + ((next_frame->intra_error / + DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > + II_IMPROVEMENT_THRESHOLD))))) { + int i; + const FIRSTPASS_STATS *start_pos = twopass->stats_in; + FIRSTPASS_STATS local_next_frame = *next_frame; + double boost_score = 0.0; + double old_boost_score = 0.0; + double decay_accumulator = 1.0; + + // Examine how well the key frame predicts subsequent frames. + for (i = 0; i < 16; ++i) { + double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / + DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); + + if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; + + // Cumulative effect of decay in prediction quality. + if (local_next_frame.pcnt_inter > 0.85) + decay_accumulator *= local_next_frame.pcnt_inter; + else + decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; + + // Keep a running total. + boost_score += (decay_accumulator * next_iiratio); + + // Test various breakout clauses. + if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || + (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < + 0.20) && + (next_iiratio < 3.0)) || + ((boost_score - old_boost_score) < 3.0) || + (local_next_frame.intra_error < 200)) { + break; + } + + old_boost_score = boost_score; + + // Get the next frame details + if (EOF == input_stats(twopass, &local_next_frame)) break; + } + + // If there is tolerable prediction for at least the next 3 frames then + // break out else discard this potential key frame and move on + if (boost_score > 30.0 && (i > 3)) { + is_viable_kf = 1; + } else { + // Reset the file position + reset_fpf_position(twopass, start_pos); + + is_viable_kf = 0; + } + } + + return is_viable_kf; +} + +#define FRAMES_TO_CHECK_DECAY 8 + +static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { + int i, j; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const FIRSTPASS_STATS first_frame = *this_frame; + const FIRSTPASS_STATS *const start_position = twopass->stats_in; + FIRSTPASS_STATS next_frame; + FIRSTPASS_STATS last_frame; + int kf_bits = 0; + int loop_decay_counter = 0; + double decay_accumulator = 1.0; + double av_decay_accumulator = 0.0; + double zero_motion_accumulator = 1.0; + double boost_score = 0.0; + double kf_mod_err = 0.0; + double kf_group_err = 0.0; + double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; + + av1_zero(next_frame); + + cpi->common.frame_type = KEY_FRAME; + + // Reset the GF group data structures. + av1_zero(*gf_group); + + // Is this a forced key frame by interval. + rc->this_key_frame_forced = rc->next_key_frame_forced; + + // Clear the alt ref active flag and last group multi arf flags as they + // can never be set for a key frame. + rc->source_alt_ref_active = 0; + + // KF is always a GF so clear frames till next gf counter. + rc->frames_till_gf_update_due = 0; + + rc->frames_to_key = 1; + + twopass->kf_group_bits = 0; // Total bits available to kf group + twopass->kf_group_error_left = 0; // Group modified error score. + + kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Initialize the decay rates for the recent frames to check + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; + + // Find the next keyframe. + i = 0; + while (twopass->stats_in < twopass->stats_in_end && + rc->frames_to_key < cpi->oxcf.key_freq) { + // Accumulate kf group error. + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); + + // Load the next frame's stats. + last_frame = *this_frame; + input_stats(twopass, this_frame); + + // Provided that we are not at the end of the file... + if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { + double loop_decay_rate; + + // Check for a scene cut. + if (test_candidate_kf(twopass, &last_frame, this_frame, + twopass->stats_in)) + break; + + // How fast is the prediction quality decaying? + loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); + + // We want to know something about the recent past... rather than + // as used elsewhere where we are concerned with decay in prediction + // quality since the last GF or KF. + recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; + decay_accumulator = 1.0; + for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) + decay_accumulator *= recent_loop_decay[j]; + + // Special check for transition or high motion followed by a + // static scene. + if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, + loop_decay_rate, decay_accumulator)) + break; + + // Step on to the next frame. + ++rc->frames_to_key; + + // If we don't have a real key frame within the next two + // key_freq intervals then break out of the loop. + if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; + } else { + ++rc->frames_to_key; + } + ++i; + } + + // If there is a max kf interval set by the user we must obey it. + // We already breakout of the loop above at 2x max. + // This code centers the extra kf if the actual natural interval + // is between 1x and 2x. + if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { + FIRSTPASS_STATS tmp_frame = first_frame; + + rc->frames_to_key /= 2; + + // Reset to the start of the group. + reset_fpf_position(twopass, start_position); + + kf_group_err = 0.0; + + // Rescan to get the correct error data for the forced kf group. + for (i = 0; i < rc->frames_to_key; ++i) { + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame); + input_stats(twopass, &tmp_frame); + } + rc->next_key_frame_forced = 1; + } else if (twopass->stats_in == twopass->stats_in_end || + rc->frames_to_key >= cpi->oxcf.key_freq) { + rc->next_key_frame_forced = 1; + } else { + rc->next_key_frame_forced = 0; + } + + // Special case for the last key frame of the file. + if (twopass->stats_in >= twopass->stats_in_end) { + // Accumulate kf group error. + kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); + } + + // Calculate the number of bits that should be assigned to the kf group. + if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { + // Maximum number of bits for a single normal frame (not key frame). + const int max_bits = frame_max_bits(rc, &cpi->oxcf); + + // Maximum number of bits allocated to the key frame group. + int64_t max_grp_bits; + + // Default allocation based on bits left and relative + // complexity of the section. + twopass->kf_group_bits = (int64_t)( + twopass->bits_left * (kf_group_err / twopass->modified_error_left)); + + // Clip based on maximum per frame rate defined by the user. + max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; + if (twopass->kf_group_bits > max_grp_bits) + twopass->kf_group_bits = max_grp_bits; + } else { + twopass->kf_group_bits = 0; + } + twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); + + // Reset the first pass file position. + reset_fpf_position(twopass, start_position); + + // Scan through the kf group collating various stats used to determine + // how many bits to spend on it. + decay_accumulator = 1.0; + boost_score = 0.0; + const double kf_max_boost = + cpi->oxcf.rc_mode == AOM_Q + ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), + KF_MAX_FRAME_BOOST) + : KF_MAX_FRAME_BOOST; + for (i = 0; i < (rc->frames_to_key - 1); ++i) { + if (EOF == input_stats(twopass, &next_frame)) break; + + // Monitor for static sections. + zero_motion_accumulator = AOMMIN(zero_motion_accumulator, + get_zero_motion_factor(cpi, &next_frame)); + + // Not all frames in the group are necessarily used in calculating boost. + if ((i <= rc->max_gf_interval) || + ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) { + const double frame_boost = + calc_frame_boost(cpi, this_frame, 0, kf_max_boost); + + // How fast is prediction quality decaying. + if (!detect_flash(twopass, 0)) { + const double loop_decay_rate = + get_prediction_decay_rate(cpi, &next_frame); + decay_accumulator *= loop_decay_rate; + decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR); + av_decay_accumulator += decay_accumulator; + ++loop_decay_counter; + } + boost_score += (decay_accumulator * frame_boost); + } + } + if (loop_decay_counter > 0) + av_decay_accumulator /= (double)loop_decay_counter; + + reset_fpf_position(twopass, start_position); + + // Store the zero motion percentage + twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); + + // Calculate a section intra ratio used in setting max loop filter. + twopass->section_intra_rating = calculate_section_intra_ratio( + start_position, twopass->stats_in_end, rc->frames_to_key); + + // Apply various clamps for min and max boost + rc->kf_boost = (int)(av_decay_accumulator * boost_score); + rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3)); + rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST); + + // Work out how many bits to allocate for the key frame itself. + kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, + twopass->kf_group_bits); + // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost, + // kf_bits, twopass->kf_zeromotion_pct); + + // Work out the fraction of the kf group bits reserved for the inter frames + // within the group after discounting the bits for the kf itself. + if (twopass->kf_group_bits) { + twopass->kfgroup_inter_fraction = + (double)(twopass->kf_group_bits - kf_bits) / + (double)twopass->kf_group_bits; + } else { + twopass->kfgroup_inter_fraction = 1.0; + } + + twopass->kf_group_bits -= kf_bits; + + // Save the bits to spend on the key frame. + gf_group->bit_allocation[0] = kf_bits; + gf_group->update_type[0] = KF_UPDATE; + gf_group->rf_level[0] = KF_STD; + + // Note the total error score of the kf group minus the key frame itself. + twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); + + // Adjust the count of total modified error left. + // The count of bits left is adjusted elsewhere based on real coded frame + // sizes. + twopass->modified_error_left -= kf_group_err; +} + +// Define the reference buffers that will be updated post encode. +static void configure_buffer_updates(AV1_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + + // NOTE(weitinglin): Should we define another function to take care of + // cpi->rc.is_$Source_Type to make this function as it is in the comment? + + cpi->rc.is_src_frame_alt_ref = 0; + cpi->rc.is_bwd_ref_frame = 0; + cpi->rc.is_last_bipred_frame = 0; + cpi->rc.is_bipred_frame = 0; + cpi->rc.is_src_frame_ext_arf = 0; + + switch (twopass->gf_group.update_type[twopass->gf_group.index]) { + case KF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 1; + cpi->refresh_alt_ref_frame = 1; + break; + + case LF_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + break; + + case GF_UPDATE: + // TODO(zoeliu): To further investigate whether 'refresh_last_frame' is + // needed. + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + break; + + case OVERLAY_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 1; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_src_frame_alt_ref = 1; + break; + + case ARF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + // NOTE: BWDREF does not get updated along with ALTREF_FRAME. + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 1; + break; + + case BRF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_bwd_ref_frame = 1; + break; + + case LAST_BIPRED_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_last_bipred_frame = 1; + break; + + case BIPRED_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_bipred_frame = 1; + break; + + case INTNL_OVERLAY_UPDATE: + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + cpi->rc.is_src_frame_alt_ref = 1; + cpi->rc.is_src_frame_ext_arf = 1; + break; + + case INTNL_ARF_UPDATE: + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule == 1) { + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_alt2_ref_frame = 0; + } else { +#endif + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 1; +#if USE_SYMM_MULTI_LAYER + } +#endif + cpi->refresh_alt_ref_frame = 0; + break; + + default: assert(0); break; + } +} + +void av1_configure_buffer_updates_firstpass(AV1_COMP *cpi, + FRAME_UPDATE_TYPE update_type) { + RATE_CONTROL *rc = &cpi->rc; + + cpi->refresh_last_frame = 1; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + rc->is_bwd_ref_frame = 0; + + switch (update_type) { + case ARF_UPDATE: + cpi->refresh_alt_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + + rc->is_src_frame_alt_ref = 0; + break; + case INTNL_ARF_UPDATE: + cpi->refresh_alt2_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_bwd_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + rc->is_src_frame_alt_ref = 0; + rc->is_src_frame_ext_arf = 0; + + break; + case BIPRED_UPDATE: + cpi->refresh_bwd_ref_frame = 1; + cpi->refresh_last_frame = 0; + cpi->refresh_golden_frame = 0; + cpi->refresh_alt2_ref_frame = 0; + cpi->refresh_alt_ref_frame = 0; + + rc->is_bwd_ref_frame = 1; + break; + default: break; + } +} + +static int is_skippable_frame(const AV1_COMP *cpi) { + // If the current frame does not have non-zero motion vector detected in the + // first pass, and so do its previous and forward frames, then this frame + // can be skipped for partition check, and the partition size is assigned + // according to the variance + const TWO_PASS *const twopass = &cpi->twopass; + + return (!frame_is_intra_only(&cpi->common) && + twopass->stats_in - 2 > twopass->stats_in_start && + twopass->stats_in < twopass->stats_in_end && + (twopass->stats_in - 1)->pcnt_inter - + (twopass->stats_in - 1)->pcnt_motion == + 1 && + (twopass->stats_in - 2)->pcnt_inter - + (twopass->stats_in - 2)->pcnt_motion == + 1 && + twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); +} + +void av1_rc_get_second_pass_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + TWO_PASS *const twopass = &cpi->twopass; + GF_GROUP *const gf_group = &twopass->gf_group; + int frames_left; + FIRSTPASS_STATS this_frame; + + int target_rate; + + frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); + + if (!twopass->stats_in) return; + + // If this is an arf frame then we dont want to read the stats file or + // advance the input pointer as we already have what we need. + if (gf_group->update_type[gf_group->index] == ARF_UPDATE || + gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { + configure_buffer_updates(cpi); + target_rate = gf_group->bit_allocation[gf_group->index]; + target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); + rc->base_frame_target = target_rate; + + if (cpi->no_show_kf) { + assert(gf_group->update_type[gf_group->index] == ARF_UPDATE); + cm->frame_type = KEY_FRAME; + } else { + cm->frame_type = INTER_FRAME; + } + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + return; + } + + aom_clear_system_state(); + + if (cpi->oxcf.rc_mode == AOM_Q) { + twopass->active_worst_quality = cpi->oxcf.cq_level; + } else if (cm->current_video_frame == 0) { + // Special case code for first frame. + const int section_target_bandwidth = + (int)(twopass->bits_left / frames_left); + const double section_length = twopass->total_left_stats.count; + const double section_error = + twopass->total_left_stats.coded_error / section_length; + const double section_intra_skip = + twopass->total_left_stats.intra_skip_pct / section_length; + const double section_inactive_zone = + (twopass->total_left_stats.inactive_zone_rows * 2) / + ((double)cm->mb_rows * section_length); + const int tmp_q = get_twopass_worst_quality( + cpi, section_error, section_intra_skip + section_inactive_zone, + section_target_bandwidth, DEFAULT_GRP_WEIGHT); + + twopass->active_worst_quality = tmp_q; + twopass->baseline_active_worst_quality = tmp_q; + rc->ni_av_qi = tmp_q; + rc->last_q[INTER_FRAME] = tmp_q; + rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth); + rc->avg_frame_qindex[INTER_FRAME] = tmp_q; + rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; + rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; + } + + av1_zero(this_frame); + if (EOF == input_stats(twopass, &this_frame)) return; + + // Set the frame content type flag. + if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) + twopass->fr_content_type = FC_GRAPHICS_ANIMATION; + else + twopass->fr_content_type = FC_NORMAL; + + // Keyframe and section processing. + if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { + FIRSTPASS_STATS this_frame_copy; + this_frame_copy = this_frame; + // Define next KF group and assign bits to it. + find_next_key_frame(cpi, &this_frame); + this_frame = this_frame_copy; + } else { + cm->frame_type = INTER_FRAME; + } + + // Define a new GF/ARF group. (Should always enter here for key frames). + if (rc->frames_till_gf_update_due == 0) { + define_gf_group(cpi, &this_frame); + + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + +#if ARF_STATS_OUTPUT + { + FILE *fpfile; + fpfile = fopen("arf.stt", "a"); + ++arf_count; + fprintf(fpfile, "%10d %10d %10d %10d %10d\n", cm->current_video_frame, + rc->frames_till_gf_update_due, rc->kf_boost, arf_count, + rc->gfu_boost); + + fclose(fpfile); + } +#endif + } + + configure_buffer_updates(cpi); + + // Do the firstpass stats indicate that this frame is skippable for the + // partition search? + if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { + cpi->partition_search_skippable_frame = is_skippable_frame(cpi); + } + + target_rate = gf_group->bit_allocation[gf_group->index]; + + if (cpi->common.frame_type == KEY_FRAME) + target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate); + else + target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate); + + rc->base_frame_target = target_rate; + + { + const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) + ? cpi->initial_mbs + : cpi->common.MBs; + // The multiplication by 256 reverses a scaling factor of (>> 8) + // applied when combining MB error values for the frame. + twopass->mb_av_energy = log((this_frame.intra_error / num_mbs) + 1.0); + twopass->frame_avg_haar_energy = + log((this_frame.frame_avg_wavelet_energy / num_mbs) + 1.0); + } + + // Update the total stats remaining structure. + subtract_stats(&twopass->total_left_stats, &this_frame); +} + +#define MINQ_ADJ_LIMIT 48 +#define MINQ_ADJ_LIMIT_CQ 20 +#define HIGH_UNDERSHOOT_RATIO 2 +void av1_twopass_postencode_update(AV1_COMP *cpi) { + TWO_PASS *const twopass = &cpi->twopass; + RATE_CONTROL *const rc = &cpi->rc; + const int bits_used = rc->base_frame_target; + + // VBR correction is done through rc->vbr_bits_off_target. Based on the + // sign of this value, a limited % adjustment is made to the target rate + // of subsequent frames, to try and push it back towards 0. This method + // is designed to prevent extreme behaviour at the end of a clip + // or group of frames. + rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; + twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0); + + // Calculate the pct rc error. + if (rc->total_actual_bits) { + rc->rate_error_estimate = + (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); + rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); + } else { + rc->rate_error_estimate = 0; + } + + if (cpi->common.frame_type != KEY_FRAME) { + twopass->kf_group_bits -= bits_used; + twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; + } + twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); + + // If the rate control is drifting consider adjustment to min or maxq. + if ((cpi->oxcf.rc_mode != AOM_Q) && + (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) && + !cpi->rc.is_src_frame_alt_ref) { + const int maxq_adj_limit = + rc->worst_quality - twopass->active_worst_quality; + const int minq_adj_limit = + (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); + + // Undershoot. + if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { + --twopass->extend_maxq; + if (rc->rolling_target_bits >= rc->rolling_actual_bits) + ++twopass->extend_minq; + // Overshoot. + } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { + --twopass->extend_minq; + if (rc->rolling_target_bits < rc->rolling_actual_bits) + ++twopass->extend_maxq; + } else { + // Adjustment for extreme local overshoot. + if (rc->projected_frame_size > (2 * rc->base_frame_target) && + rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) + ++twopass->extend_maxq; + + // Unwind undershoot or overshoot adjustment. + if (rc->rolling_target_bits < rc->rolling_actual_bits) + --twopass->extend_minq; + else if (rc->rolling_target_bits > rc->rolling_actual_bits) + --twopass->extend_maxq; + } + + twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); + twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); + + // If there is a big and undexpected undershoot then feed the extra + // bits back in quickly. One situation where this may happen is if a + // frame is unexpectedly almost perfectly predicted by the ARF or GF + // but not very well predcited by the previous frame. + if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { + int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; + if (rc->projected_frame_size < fast_extra_thresh) { + rc->vbr_bits_off_target_fast += + fast_extra_thresh - rc->projected_frame_size; + rc->vbr_bits_off_target_fast = + AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); + + // Fast adaptation of minQ if necessary to use up the extra bits. + if (rc->avg_frame_bandwidth) { + twopass->extend_minq_fast = + (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); + } + twopass->extend_minq_fast = AOMMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else if (rc->vbr_bits_off_target_fast) { + twopass->extend_minq_fast = AOMMIN( + twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); + } else { + twopass->extend_minq_fast = 0; + } + } + } +} diff --git a/third_party/aom/av1/encoder/firstpass.h b/third_party/aom/av1/encoder/firstpass.h new file mode 100644 index 0000000000..4b7325ae21 --- /dev/null +++ b/third_party/aom/av1/encoder/firstpass.h @@ -0,0 +1,208 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_FIRSTPASS_H_ +#define AOM_AV1_ENCODER_FIRSTPASS_H_ + +#include "av1/common/enums.h" +#include "av1/common/onyxc_int.h" +#include "av1/encoder/lookahead.h" +#include "av1/encoder/ratectrl.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#if CONFIG_FP_MB_STATS + +#define FPMB_DCINTRA_MASK 0x01 + +#define FPMB_MOTION_ZERO_MASK 0x02 +#define FPMB_MOTION_LEFT_MASK 0x04 +#define FPMB_MOTION_RIGHT_MASK 0x08 +#define FPMB_MOTION_UP_MASK 0x10 +#define FPMB_MOTION_DOWN_MASK 0x20 + +#define FPMB_ERROR_SMALL_MASK 0x40 +#define FPMB_ERROR_LARGE_MASK 0x80 +#define FPMB_ERROR_SMALL_TH 2000 +#define FPMB_ERROR_LARGE_TH 48000 + +typedef struct { + uint8_t *mb_stats_start; + uint8_t *mb_stats_end; +} FIRSTPASS_MB_STATS; +#endif + +// Length of the bi-predictive frame group (BFG) +// NOTE: Currently each BFG contains one backward ref (BWF) frame plus a certain +// number of bi-predictive frames. +#define BFG_INTERVAL 2 +// The maximum number of extra ALTREF's except ALTREF_FRAME +#define MAX_EXT_ARFS (REF_FRAMES - BWDREF_FRAME - 1) + +#define MIN_EXT_ARF_INTERVAL 4 + +#define MIN_ZERO_MOTION 0.95 +#define MAX_SR_CODED_ERROR 40 +#define MAX_RAW_ERR_VAR 2000 +#define MIN_MV_IN_OUT 0.4 + +#define VLOW_MOTION_THRESHOLD 950 + +typedef struct { + double frame; + double weight; + double intra_error; + double frame_avg_wavelet_energy; + double coded_error; + double sr_coded_error; + double pcnt_inter; + double pcnt_motion; + double pcnt_second_ref; + double pcnt_neutral; + double intra_skip_pct; + double inactive_zone_rows; // Image mask rows top and bottom. + double inactive_zone_cols; // Image mask columns at left and right edges. + double MVr; + double mvr_abs; + double MVc; + double mvc_abs; + double MVrv; + double MVcv; + double mv_in_out_count; + double new_mv_count; + double duration; + double count; + // standard deviation for (0, 0) motion prediction error + double raw_error_stdev; +} FIRSTPASS_STATS; + +typedef enum { + KF_UPDATE = 0, + LF_UPDATE = 1, + GF_UPDATE = 2, + ARF_UPDATE = 3, + OVERLAY_UPDATE = 4, + BRF_UPDATE = 5, // Backward Reference Frame + LAST_BIPRED_UPDATE = 6, // Last Bi-predictive Frame + BIPRED_UPDATE = 7, // Bi-predictive Frame, but not the last one + INTNL_OVERLAY_UPDATE = 8, // Internal Overlay Frame + INTNL_ARF_UPDATE = 9, // Internal Altref Frame (candidate for ALTREF2) + FRAME_UPDATE_TYPES = 10 +} FRAME_UPDATE_TYPE; + +#define FC_ANIMATION_THRESH 0.15 +typedef enum { + FC_NORMAL = 0, + FC_GRAPHICS_ANIMATION = 1, + FRAME_CONTENT_TYPES = 2 +} FRAME_CONTENT_TYPE; + +typedef struct { + unsigned char index; + RATE_FACTOR_LEVEL rf_level[(MAX_LAG_BUFFERS * 2) + 1]; + FRAME_UPDATE_TYPE update_type[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_src_offset[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_update_idx[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char arf_ref_idx[(MAX_LAG_BUFFERS * 2) + 1]; +#if USE_SYMM_MULTI_LAYER + unsigned char arf_pos_in_gf[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char pyramid_level[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char pyramid_height; + unsigned char pyramid_lvl_nodes[MAX_PYRAMID_LVL]; +#endif + unsigned char brf_src_offset[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char bidir_pred_enabled[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char ref_fb_idx_map[(MAX_LAG_BUFFERS * 2) + 1][REF_FRAMES]; + unsigned char refresh_idx[(MAX_LAG_BUFFERS * 2) + 1]; + unsigned char refresh_flag[(MAX_LAG_BUFFERS * 2) + 1]; + int bit_allocation[(MAX_LAG_BUFFERS * 2) + 1]; +} GF_GROUP; + +typedef struct { + unsigned int section_intra_rating; + FIRSTPASS_STATS total_stats; + FIRSTPASS_STATS this_frame_stats; + const FIRSTPASS_STATS *stats_in; + const FIRSTPASS_STATS *stats_in_start; + const FIRSTPASS_STATS *stats_in_end; + FIRSTPASS_STATS total_left_stats; + int first_pass_done; + int64_t bits_left; + double modified_error_min; + double modified_error_max; + double modified_error_left; + double mb_av_energy; + double frame_avg_haar_energy; + +#if CONFIG_FP_MB_STATS + uint8_t *frame_mb_stats_buf; + uint8_t *this_frame_mb_stats; + FIRSTPASS_MB_STATS firstpass_mb_stats; +#endif + // An indication of the content type of the current frame + FRAME_CONTENT_TYPE fr_content_type; + + // Projected total bits available for a key frame group of frames + int64_t kf_group_bits; + + // Error score of frames still to be coded in kf group + int64_t kf_group_error_left; + + // The fraction for a kf groups total bits allocated to the inter frames + double kfgroup_inter_fraction; + + int sr_update_lag; + + int kf_zeromotion_pct; + int last_kfgroup_zeromotion_pct; + int gf_zeromotion_pct; + int active_worst_quality; + int baseline_active_worst_quality; + int extend_minq; + int extend_maxq; + int extend_minq_fast; + + GF_GROUP gf_group; +} TWO_PASS; + +struct AV1_COMP; + +void av1_init_first_pass(struct AV1_COMP *cpi); +void av1_rc_get_first_pass_params(struct AV1_COMP *cpi); +void av1_first_pass(struct AV1_COMP *cpi, const struct lookahead_entry *source); +void av1_end_first_pass(struct AV1_COMP *cpi); + +void av1_init_second_pass(struct AV1_COMP *cpi); +void av1_rc_get_second_pass_params(struct AV1_COMP *cpi); +void av1_configure_buffer_updates_firstpass(struct AV1_COMP *cpi, + FRAME_UPDATE_TYPE update_type); + +// Post encode update of the rate control parameters for 2-pass +void av1_twopass_postencode_update(struct AV1_COMP *cpi); + +static INLINE int get_number_of_extra_arfs(int interval, int arf_pending) { + if (arf_pending && MAX_EXT_ARFS > 0) + return interval >= MIN_EXT_ARF_INTERVAL * (MAX_EXT_ARFS + 1) + ? MAX_EXT_ARFS + : interval >= MIN_EXT_ARF_INTERVAL * MAX_EXT_ARFS + ? MAX_EXT_ARFS - 1 + : 0; + else + return 0; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_FIRSTPASS_H_ diff --git a/third_party/aom/av1/encoder/global_motion.c b/third_party/aom/av1/encoder/global_motion.c new file mode 100644 index 0000000000..e9f8b0bb47 --- /dev/null +++ b/third_party/aom/av1/encoder/global_motion.c @@ -0,0 +1,298 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <memory.h> +#include <math.h> +#include <assert.h> + +#include "av1/encoder/global_motion.h" + +#include "av1/common/warped_motion.h" + +#include "av1/encoder/segmentation.h" +#include "av1/encoder/corner_detect.h" +#include "av1/encoder/corner_match.h" +#include "av1/encoder/ransac.h" + +#define MAX_CORNERS 4096 +#define MIN_INLIER_PROB 0.1 + +#define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR) + +// Border over which to compute the global motion +#define ERRORADV_BORDER 0 + +static const double erroradv_tr[] = { 0.65, 0.60, 0.55 }; +static const double erroradv_prod_tr[] = { 20000, 18000, 16000 }; + +int is_enough_erroradvantage(double best_erroradvantage, int params_cost, + int erroradv_type) { + assert(erroradv_type < GM_ERRORADV_TR_TYPES); + return best_erroradvantage < erroradv_tr[erroradv_type] && + best_erroradvantage * params_cost < erroradv_prod_tr[erroradv_type]; +} + +static void convert_to_params(const double *params, int32_t *model) { + int i; + int alpha_present = 0; + model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5); + model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5); + model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) * + GM_TRANS_DECODE_FACTOR; + model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) * + GM_TRANS_DECODE_FACTOR; + + for (i = 2; i < 6; ++i) { + const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0); + model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5); + model[i] = + (int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX); + alpha_present |= (model[i] != 0); + model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR; + } + for (; i < 8; ++i) { + model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5); + model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) * + GM_ROW3HOMO_DECODE_FACTOR; + alpha_present |= (model[i] != 0); + } + + if (!alpha_present) { + if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) { + model[0] = 0; + model[1] = 0; + } + } +} + +void convert_model_to_params(const double *params, WarpedMotionParams *model) { + convert_to_params(params, model->wmmat); + model->wmtype = get_gmtype(model); + model->invalid = 0; +} + +// Adds some offset to a global motion parameter and handles +// all of the necessary precision shifts, clamping, and +// zero-centering. +static int32_t add_param_offset(int param_index, int32_t param_value, + int32_t offset) { + const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF, + GM_ROW3HOMO_PREC_DIFF }; + const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX }; + // type of param: 0 - translation, 1 - affine, 2 - homography + const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2)); + const int is_one_centered = (param_index == 2 || param_index == 5); + + // Make parameter zero-centered and offset the shift that was done to make + // it compatible with the warped model + param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >> + scale_vals[param_type]; + // Add desired offset to the rescaled/zero-centered parameter + param_value += offset; + // Clamp the parameter so it does not overflow the number of bits allotted + // to it in the bitstream + param_value = (int32_t)clamp(param_value, -clamp_vals[param_type], + clamp_vals[param_type]); + // Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible + // with the warped motion library + param_value *= (1 << scale_vals[param_type]); + + // Undo the zero-centering step if necessary + return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS); +} + +static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) { + switch (wmtype) { + case IDENTITY: + wm->wmmat[0] = 0; + wm->wmmat[1] = 0; + AOM_FALLTHROUGH_INTENDED; + case TRANSLATION: + wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS; + wm->wmmat[3] = 0; + AOM_FALLTHROUGH_INTENDED; + case ROTZOOM: + wm->wmmat[4] = -wm->wmmat[3]; + wm->wmmat[5] = wm->wmmat[2]; + AOM_FALLTHROUGH_INTENDED; + case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; break; + default: assert(0); + } + wm->wmtype = wmtype; +} + +int64_t refine_integerized_param(WarpedMotionParams *wm, + TransformationType wmtype, int use_hbd, int bd, + uint8_t *ref, int r_width, int r_height, + int r_stride, uint8_t *dst, int d_width, + int d_height, int d_stride, int n_refinements, + int64_t best_frame_error) { + static const int max_trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 }; + const int border = ERRORADV_BORDER; + int i = 0, p; + int n_params = max_trans_model_params[wmtype]; + int32_t *param_mat = wm->wmmat; + int64_t step_error, best_error; + int32_t step; + int32_t *param; + int32_t curr_param; + int32_t best_param; + + force_wmtype(wm, wmtype); + best_error = av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride, + dst + border * d_stride + border, border, border, + d_width - 2 * border, d_height - 2 * border, + d_stride, 0, 0, best_frame_error); + best_error = AOMMIN(best_error, best_frame_error); + step = 1 << (n_refinements - 1); + for (i = 0; i < n_refinements; i++, step >>= 1) { + for (p = 0; p < n_params; ++p) { + int step_dir = 0; + // Skip searches for parameters that are forced to be 0 + param = param_mat + p; + curr_param = *param; + best_param = curr_param; + // look to the left + *param = add_param_offset(p, curr_param, -step); + step_error = + av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride, + dst + border * d_stride + border, border, border, + d_width - 2 * border, d_height - 2 * border, d_stride, + 0, 0, best_error); + if (step_error < best_error) { + best_error = step_error; + best_param = *param; + step_dir = -1; + } + + // look to the right + *param = add_param_offset(p, curr_param, step); + step_error = + av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride, + dst + border * d_stride + border, border, border, + d_width - 2 * border, d_height - 2 * border, d_stride, + 0, 0, best_error); + if (step_error < best_error) { + best_error = step_error; + best_param = *param; + step_dir = 1; + } + *param = best_param; + + // look to the direction chosen above repeatedly until error increases + // for the biggest step size + while (step_dir) { + *param = add_param_offset(p, best_param, step * step_dir); + step_error = + av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride, + dst + border * d_stride + border, border, border, + d_width - 2 * border, d_height - 2 * border, + d_stride, 0, 0, best_error); + if (step_error < best_error) { + best_error = step_error; + best_param = *param; + } else { + *param = best_param; + step_dir = 0; + } + } + } + } + force_wmtype(wm, wmtype); + wm->wmtype = get_gmtype(wm); + return best_error; +} + +static INLINE RansacFunc get_ransac_type(TransformationType type) { + switch (type) { + case AFFINE: return ransac_affine; + case ROTZOOM: return ransac_rotzoom; + case TRANSLATION: return ransac_translation; + default: assert(0); return NULL; + } +} + +static unsigned char *downconvert_frame(YV12_BUFFER_CONFIG *frm, + int bit_depth) { + int i, j; + uint16_t *orig_buf = CONVERT_TO_SHORTPTR(frm->y_buffer); + uint8_t *buf_8bit = frm->y_buffer_8bit; + assert(buf_8bit); + if (!frm->buf_8bit_valid) { + for (i = 0; i < frm->y_height; ++i) { + for (j = 0; j < frm->y_width; ++j) { + buf_8bit[i * frm->y_stride + j] = + orig_buf[i * frm->y_stride + j] >> (bit_depth - 8); + } + } + frm->buf_8bit_valid = 1; + } + return buf_8bit; +} + +int compute_global_motion_feature_based(TransformationType type, + YV12_BUFFER_CONFIG *frm, + YV12_BUFFER_CONFIG *ref, int bit_depth, + int *num_inliers_by_motion, + double *params_by_motion, + int num_motions) { + int i; + int num_frm_corners, num_ref_corners; + int num_correspondences; + int *correspondences; + int frm_corners[2 * MAX_CORNERS], ref_corners[2 * MAX_CORNERS]; + unsigned char *frm_buffer = frm->y_buffer; + unsigned char *ref_buffer = ref->y_buffer; + RansacFunc ransac = get_ransac_type(type); + + if (frm->flags & YV12_FLAG_HIGHBITDEPTH) { + // The frame buffer is 16-bit, so we need to convert to 8 bits for the + // following code. We cache the result until the frame is released. + frm_buffer = downconvert_frame(frm, bit_depth); + } + if (ref->flags & YV12_FLAG_HIGHBITDEPTH) { + ref_buffer = downconvert_frame(ref, bit_depth); + } + + // compute interest points in images using FAST features + num_frm_corners = fast_corner_detect(frm_buffer, frm->y_width, frm->y_height, + frm->y_stride, frm_corners, MAX_CORNERS); + num_ref_corners = fast_corner_detect(ref_buffer, ref->y_width, ref->y_height, + ref->y_stride, ref_corners, MAX_CORNERS); + + // find correspondences between the two images + correspondences = + (int *)malloc(num_frm_corners * 4 * sizeof(*correspondences)); + num_correspondences = determine_correspondence( + frm_buffer, (int *)frm_corners, num_frm_corners, ref_buffer, + (int *)ref_corners, num_ref_corners, frm->y_width, frm->y_height, + frm->y_stride, ref->y_stride, correspondences); + + ransac(correspondences, num_correspondences, num_inliers_by_motion, + params_by_motion, num_motions); + + free(correspondences); + + // Set num_inliers = 0 for motions with too few inliers so they are ignored. + for (i = 0; i < num_motions; ++i) { + if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) { + num_inliers_by_motion[i] = 0; + } + } + + // Return true if any one of the motions has inliers. + for (i = 0; i < num_motions; ++i) { + if (num_inliers_by_motion[i] > 0) return 1; + } + return 0; +} diff --git a/third_party/aom/av1/encoder/global_motion.h b/third_party/aom/av1/encoder/global_motion.h new file mode 100644 index 0000000000..c7c016c430 --- /dev/null +++ b/third_party/aom/av1/encoder/global_motion.h @@ -0,0 +1,64 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_GLOBAL_MOTION_H_ +#define AOM_AV1_ENCODER_GLOBAL_MOTION_H_ + +#include "aom/aom_integer.h" +#include "aom_scale/yv12config.h" +#include "av1/common/mv.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define RANSAC_NUM_MOTIONS 1 + +void convert_model_to_params(const double *params, WarpedMotionParams *model); + +int is_enough_erroradvantage(double best_erroradvantage, int params_cost, + int erroradv_type); + +// Returns the av1_warp_error between "dst" and the result of applying the +// motion params that result from fine-tuning "wm" to "ref". Note that "wm" is +// modified in place. +int64_t refine_integerized_param(WarpedMotionParams *wm, + TransformationType wmtype, int use_hbd, int bd, + uint8_t *ref, int r_width, int r_height, + int r_stride, uint8_t *dst, int d_width, + int d_height, int d_stride, int n_refinements, + int64_t best_frame_error); + +/* + Computes "num_motions" candidate global motion parameters between two frames. + The array "params_by_motion" should be length 8 * "num_motions". The ordering + of each set of parameters is best described by the homography: + + [x' (m2 m3 m0 [x + z . y' = m4 m5 m1 * y + 1] m6 m7 1) 1] + + where m{i} represents the ith value in any given set of parameters. + + "num_inliers" should be length "num_motions", and will be populated with the + number of inlier feature points for each motion. Params for which the + num_inliers entry is 0 should be ignored by the caller. +*/ +int compute_global_motion_feature_based(TransformationType type, + YV12_BUFFER_CONFIG *frm, + YV12_BUFFER_CONFIG *ref, int bit_depth, + int *num_inliers_by_motion, + double *params_by_motion, + int num_motions); +#ifdef __cplusplus +} // extern "C" +#endif +#endif // AOM_AV1_ENCODER_GLOBAL_MOTION_H_ diff --git a/third_party/aom/av1/encoder/grain_test_vectors.h b/third_party/aom/av1/encoder/grain_test_vectors.h new file mode 100644 index 0000000000..945dc37331 --- /dev/null +++ b/third_party/aom/av1/encoder/grain_test_vectors.h @@ -0,0 +1,781 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_ENCODER_GRAIN_TEST_VECTORS_H_ +#define AOM_AV1_ENCODER_GRAIN_TEST_VECTORS_H_ + +/* Test vectors for emulation of different film grain types. + * Note that bit depth would be derived from the bitstream and + * not signaled in film grain metadata. The parameters are valid + * for any bit depth. + */ +static aom_film_grain_t film_grain_test_vectors[16] = { + /* Test 1 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 16, 0 }, + { 25, 136 }, + { 33, 144 }, + { 41, 160 }, + { 48, 168 }, + { 56, 136 }, + { 67, 128 }, + { 82, 144 }, + { 97, 152 }, + { 113, 144 }, + { 128, 176 }, + { 143, 168 }, + { 158, 176 }, + { 178, 184 } }, + 14 /* num_points_y */, + { { 16, 0 }, + { 20, 64 }, + { 28, 88 }, + { 60, 104 }, + { 90, 136 }, + { 105, 160 }, + { 134, 168 }, + { 168, 208 } }, + 8 /* num_cb_points */, + { { 16, 0 }, + { 28, 96 }, + { 56, 80 }, + { 66, 96 }, + { 80, 104 }, + { 108, 96 }, + { 122, 112 }, + { 137, 112 }, + { 169, 176 } }, + 9 /* num_cr_points */, + 11 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 0, 0, -58, 0, 0, 0, -76, 100, -43, 0, -51, 82 }, + { 0, 0, -49, 0, 0, 0, -36, 22, -30, 0, -38, 7, 39 }, + { 0, 0, -47, 0, 0, 0, -31, 31, -25, 0, -32, 13, -100 }, + 8 /* ar_coeff_shift */, + 247 /* cb_mult */, + 192 /* cb_luma_mult */, + 18 /* cb_offset */, + 229 /* cr_mult */, + 192 /* cr_luma_mult */, + 54 /* cr_offset */, + 0 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /* chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 2 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 0, 96 }, { 255, 96 } }, + 2 /* num_points_y */, + { { 0, 64 }, { 255, 64 } }, + 2 /* num_cb_points */, + { { 0, 64 }, { 255, 64 } }, + 2 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 3 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 0, 192 }, { 255, 192 } }, + 2 /* num_points_y */, + { { 0, 128 }, { 255, 128 } }, + 2 /* num_cb_points */, + { { 0, 128 }, { 255, 128 } }, + 2 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 4, -7, 2, 4, 12, -12, 5, -8, 6, 8, -19, -16, 19, + -10, -2, 17, -42, 58, -2, -13, 9, 14, -36, 67, 0, + }, + { + 4, -7, 2, 4, 12, -12, 5, -8, 6, 8, -19, -16, 19, + -10, -2, 17, -42, 58, -2, -13, 9, 14, -36, 67, 0, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 1 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 4 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 16, 0 }, + { 24, 137 }, + { 53, 146 }, + { 63, 155 }, + { 78, 155 }, + { 107, 150 }, + { 122, 147 }, + { 136, 147 }, + { 166, 153 }, + }, + 9 /* num_points_y */, + { + { 16, 0 }, + { 20, 72 }, + { 27, 82 }, + { 33, 91 }, + { 69, 121 }, + { 95, 143 }, + { 108, 154 }, + { 134, 169 }, + { 147, 177 }, + }, + 9 /* num_cb_points */, + { + { 16, 0 }, + { 24, 95 }, + { 54, 93 }, + { 65, 94 }, + { 79, 98 }, + { 109, 107 }, + { 124, 119 }, + { 139, 136 }, + { 169, 170 }, + }, + 9 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 7, -9, 2, 4, 7, -12, 7, -18, 18, -30, -27, -42, + 13, -20, 7, -18, 6, 107, 55, -2, -4, -9, -22, 113, + }, + { + -3, -1, -4, 3, -6, -2, 3, 1, -4, -10, -10, -5, -5, + -3, -1, -13, -28, -25, -31, -6, -4, 14, -64, 66, 0, + }, + { + 0, 4, -3, 13, 0, 1, -3, 0, -3, -10, -68, -4, -2, + -5, 2, -3, -20, 62, -31, 0, -4, -1, -8, -29, 0, + }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 5 */ + { + 1 /* apply_grain */, + 0 /* update_parameters */, + { { 0, 64 }, { 255, 64 } }, + 2 /* num_points_y */, + { + { 0, 96 }, + { 32, 90 }, + { 64, 83 }, + { 96, 76 }, + { 128, 68 }, + { 159, 59 }, + { 191, 48 }, + { 223, 34 }, + { 255, 0 }, + }, + 9 /* num_cb_points */, + { + { 0, 0 }, + { 32, 34 }, + { 64, 48 }, + { 96, 59 }, + { 128, 68 }, + { 159, 76 }, + { 191, 83 }, + { 223, 90 }, + { 255, 96 }, + }, + 9 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + -2, 2, -5, 7, -6, 4, -2, -1, 1, -2, 0, -2, 2, + -3, -5, 13, -13, 6, -14, 8, -1, 18, -36, 58, 0, + }, + { + -2, -1, -3, 14, -4, -1, -3, 0, -1, 7, -31, 7, 2, + 0, 1, 0, -7, 50, -8, -2, 2, 2, 2, -4, 0, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 1063 /* random_seed */ + }, + /* Test 6 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 0, 96 }, + { 20, 92 }, + { 39, 88 }, + { 59, 84 }, + { 78, 80 }, + { 98, 75 }, + { 118, 70 }, + { 137, 65 }, + { 157, 60 }, + { 177, 53 }, + { 196, 46 }, + { 216, 38 }, + { 235, 27 }, + { 255, 0 }, + }, + 14 /* num_points_y */, + { { 0, 0 } }, + 0 /* num_cb_points */, + { { 0, 0 } }, + 0 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 2754 /* random_seed */ + }, + /* Test 7 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 0, 0 }, + { 20, 27 }, + { 39, 38 }, + { 59, 46 }, + { 78, 53 }, + { 98, 60 }, + { 118, 65 }, + { 137, 70 }, + { 157, 75 }, + { 177, 80 }, + { 196, 84 }, + { 216, 88 }, + { 235, 92 }, + { 255, 96 }, + }, + 14 /* num_points_y */, + { { 0, 0 }, { 255, 0 } }, + 2 /* num_cb_points */, + { { 0, 0 }, { 255, 0 } }, + 2 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + }, + { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 8 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 0, 96 }, { 255, 96 } }, + 2 /* num_points_y */, + { { 0, 62 }, { 255, 62 } }, + 2 /* num_cb_points */, + { { 0, 62 }, { 255, 62 } }, + 2 /* num_cr_points */, + 11 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 0, -2, -2, 8, 5, -1, 1, -1, 5, 16, -33, -9, 6, + -1, -3, 10, -47, 63, 0, -15, 3, 11, -42, 75, -69, + }, + { + 1, -1, -1, 9, 5, 0, 1, -1, 5, 15, -32, -10, 8, + -2, -4, 11, -46, 62, 1, -16, 3, 13, -43, 75, -55, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 9 */ + { + 1 /* apply_grain */, + 0 /* update_parameters */, + { { 0, 48 }, { 255, 48 } }, + 2 /* num_points_y */, + { { 0, 32 }, { 255, 32 } }, + 2 /* num_cb_points */, + { { 0, 32 }, { 255, 32 } }, + 2 /* num_cr_points */, + 10 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 10, -30, -20, -39, 1, -24, 12, 103, 60, -9, -24, 113 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 127 }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 10 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 0, 48 }, { 255, 48 } }, + 2 /* num_points_y */, + { { 0, 32 }, { 255, 32 } }, + 2 /* num_cb_points */, + { { 0, 32 }, { 255, 32 } }, + 2 /* num_cr_points */, + 10 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 10, -30, -20, -39, 1, -24, 12, 103, 60, -9, -24, 113 }, + { -7, -6, -48, -22, 2, -3, -45, 73, -11, -26, -52, 76, 0 }, + { -7, -6, -48, -22, 2, -3, -45, 73, -11, -26, -52, 76, 0 }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 11 */ + { + 1 /* apply_grain */, + 0 /* update_parameters */, + { { 0, 32 }, { 255, 32 } }, + 2 /* num_points_y */, + { + { 0, 48 }, + { 32, 45 }, + { 64, 42 }, + { 96, 38 }, + { 128, 34 }, + { 159, 29 }, + { 191, 24 }, + { 223, 17 }, + { 255, 0 }, + }, + 9 /* num_cb_points */, + { + { 0, 0 }, + { 32, 17 }, + { 64, 24 }, + { 96, 29 }, + { 128, 34 }, + { 159, 38 }, + { 191, 42 }, + { 223, 45 }, + { 255, 48 }, + }, + 9 /* num_cr_points */, + 10 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 7, -9, 2, 4, 7, -12, 7, -18, 18, -30, -27, -42, + 13, -20, 7, -18, 6, 107, 55, -2, -4, -9, -22, 113, + }, + { + -3, -1, -4, 3, -6, -2, 3, 1, -4, -10, -10, -5, -5, + -3, -1, -13, -28, -25, -31, -6, -4, 14, -64, 66, 0, + }, + { + 0, 4, -3, 13, 0, 1, -3, 0, -3, -10, -68, -4, -2, + -5, 2, -3, -20, 62, -31, 0, -4, -1, -8, -29, 0, + }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 1357 /* random_seed */ + }, + /* Test 12 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 16, 0 }, + { 24, 49 }, + { 39, 69 }, + { 46, 84 }, + { 53, 91 }, + { 63, 100 }, + { 78, 114 }, + { 92, 134 }, + { 164, 139 }, + }, + 9 /* num_points_y */, + { + { 16, 0 }, + { 20, 31 }, + { 26, 42 }, + { 33, 54 }, + { 40, 65 }, + { 47, 72 }, + { 56, 85 }, + { 84, 123 }, + { 152, 157 }, + }, + 9 /* num_cb_points */, + { + { 16, 0 }, + { 25, 14 }, + { 39, 33 }, + { 47, 40 }, + { 54, 47 }, + { 64, 62 }, + { 79, 76 }, + { 94, 83 }, + { 167, 101 }, + }, + 9 /* num_cr_points */, + 10 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 0, 0, -58, 0, 0, 0, -76, 100, -43, 0, -51, 82 }, + { 0, 0, -49, 0, 0, 0, -36, 22, -30, 0, -38, 7, 39 }, + { 0, 0, -47, 0, 0, 0, -31, 31, -25, 0, -32, 13, -100 }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 0 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 13 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 0, 48 }, + { 20, 46 }, + { 39, 44 }, + { 59, 42 }, + { 78, 40 }, + { 98, 38 }, + { 118, 35 }, + { 137, 33 }, + { 157, 30 }, + { 177, 27 }, + { 196, 23 }, + { 216, 19 }, + { 235, 13 }, + { 255, 0 }, + }, + 14 /* num_points_y */, + { { 0, 0 }, { 255, 0 } }, + 0 /* num_cb_points */, + { { 0, 0 }, { 255, 0 } }, + 0 /* num_cr_points */, + 10 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 10, -30, -20, -39, 1, -24, 12, 103, 60, -9, -24, 113 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 14 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 0, 0 }, + { 20, 13 }, + { 39, 19 }, + { 59, 23 }, + { 78, 27 }, + { 98, 30 }, + { 118, 33 }, + { 137, 35 }, + { 157, 38 }, + { 177, 40 }, + { 196, 42 }, + { 216, 44 }, + { 235, 46 }, + { 255, 48 }, + }, + 14 /* num_points_y */, + { { 0, 0 }, { 255, 0 } }, + 0 /* num_cb_points */, + { { 0, 0 }, { 255, 0 } }, + 0 /* num_cr_points */, + 10 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 10, -30, -20, -39, 1, -24, 12, 103, 60, -9, -24, 113 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + 8 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 1 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 15 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { { 0, 96 }, { 255, 96 } }, + 1 /* num_points_y */, + { { 0, 96 }, { 255, 96 } }, + 0 /* num_cb_points */, + { { 0, 96 }, { 255, 96 } }, + 0 /* num_cr_points */, + 11 /* scaling_shift */, + 2 /* ar_coeff_lag */, + { 5, -15, -10, -19, 0, -12, 6, 51, 30, -5, -12, 56 }, + { 2, 2, -24, -5, 1, 1, -18, 37, -2, 0, -15, 39, -70 }, + { 2, 3, -24, -5, -1, 0, -18, 38, -2, 0, -15, 39, -55 }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 1 /*chroma_scaling_from_luma*/, + 0 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, + /* Test 16 */ + { + 1 /* apply_grain */, + 1 /* update_parameters */, + { + { 16, 0 }, + { 58, 126 }, + { 87, 120 }, + { 97, 122 }, + { 112, 125 }, + { 126, 131 }, + { 141, 139 }, + { 199, 153 }, + }, + 8 /* num_points_y */, + { + { 16, 0 }, + { 59, 68 }, + { 66, 76 }, + { 73, 82 }, + { 79, 85 }, + { 86, 86 }, + { 151, 95 }, + { 192, 101 }, + }, + 8 /* num_cb_points */, + { + { 16, 0 }, + { 59, 64 }, + { 89, 80 }, + { 99, 86 }, + { 114, 90 }, + { 129, 93 }, + { 144, 97 }, + { 203, 85 }, + }, + 8 /* num_cr_points */, + 10 /* scaling_shift */, + 3 /* ar_coeff_lag */, + { + 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, + 0, -10, 6, -17, -4, 53, 36, 5, -5, -17, 8, 66, + }, + { + 0, -2, -2, 8, 5, -1, 1, -1, 5, 16, -33, -9, 6, + -1, -3, 10, -47, 63, 0, -15, 3, 11, -42, 75, -69, + }, + { + 1, -1, -1, 9, 5, 0, 1, -1, 5, 15, -32, -10, 8, + -2, -4, 11, -46, 62, 1, -16, 3, 13, -43, 75, -55, + }, + 7 /* ar_coeff_shift */, + 128 /* cb_mult */, + 192 /* cb_luma_mult */, + 256 /* cb_offset */, + 128 /* cr_mult */, + 192 /* cr_luma_mult */, + 256 /* cr_offset */, + 1 /* overlap_flag */, + 0 /* clip_to_restricted_range */, + 8 /* bit_depth */, + 0 /*chroma_scaling_from_luma*/, + 2 /* grain_scale_shift*/, + 45231 /* random_seed */ + }, +}; +#endif // AOM_AV1_ENCODER_GRAIN_TEST_VECTORS_H_ diff --git a/third_party/aom/av1/encoder/hash.c b/third_party/aom/av1/encoder/hash.c new file mode 100644 index 0000000000..180115d9f2 --- /dev/null +++ b/third_party/aom/av1/encoder/hash.c @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/encoder/hash.h" + +static void crc_calculator_process_data(CRC_CALCULATOR *p_crc_calculator, + uint8_t *pData, uint32_t dataLength) { + for (uint32_t i = 0; i < dataLength; i++) { + const uint8_t index = + (p_crc_calculator->remainder >> (p_crc_calculator->bits - 8)) ^ + pData[i]; + p_crc_calculator->remainder <<= 8; + p_crc_calculator->remainder ^= p_crc_calculator->table[index]; + } +} + +static void crc_calculator_reset(CRC_CALCULATOR *p_crc_calculator) { + p_crc_calculator->remainder = 0; +} + +static uint32_t crc_calculator_get_crc(CRC_CALCULATOR *p_crc_calculator) { + return p_crc_calculator->remainder & p_crc_calculator->final_result_mask; +} + +static void crc_calculator_init_table(CRC_CALCULATOR *p_crc_calculator) { + const uint32_t high_bit = 1 << (p_crc_calculator->bits - 1); + const uint32_t byte_high_bit = 1 << (8 - 1); + + for (uint32_t value = 0; value < 256; value++) { + uint32_t remainder = 0; + for (uint8_t mask = byte_high_bit; mask != 0; mask >>= 1) { + if (value & mask) { + remainder ^= high_bit; + } + + if (remainder & high_bit) { + remainder <<= 1; + remainder ^= p_crc_calculator->trunc_poly; + } else { + remainder <<= 1; + } + } + p_crc_calculator->table[value] = remainder; + } +} + +void av1_crc_calculator_init(CRC_CALCULATOR *p_crc_calculator, uint32_t bits, + uint32_t truncPoly) { + p_crc_calculator->remainder = 0; + p_crc_calculator->bits = bits; + p_crc_calculator->trunc_poly = truncPoly; + p_crc_calculator->final_result_mask = (1 << bits) - 1; + crc_calculator_init_table(p_crc_calculator); +} + +uint32_t av1_get_crc_value(void *crc_calculator, uint8_t *p, int length) { + CRC_CALCULATOR *p_crc_calculator = (CRC_CALCULATOR *)crc_calculator; + crc_calculator_reset(p_crc_calculator); + crc_calculator_process_data(p_crc_calculator, p, length); + return crc_calculator_get_crc(p_crc_calculator); +} + +/* CRC-32C (iSCSI) polynomial in reversed bit order. */ +#define POLY 0x82f63b78 + +/* Construct table for software CRC-32C calculation. */ +void av1_crc32c_calculator_init(CRC32C *p_crc32c) { + uint32_t crc; + + for (int n = 0; n < 256; n++) { + crc = n; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1; + p_crc32c->table[0][n] = crc; + } + for (int n = 0; n < 256; n++) { + crc = p_crc32c->table[0][n]; + for (int k = 1; k < 8; k++) { + crc = p_crc32c->table[0][crc & 0xff] ^ (crc >> 8); + p_crc32c->table[k][n] = crc; + } + } +} + +/* Table-driven software version as a fall-back. This is about 15 times slower + than using the hardware instructions. This assumes little-endian integers, + as is the case on Intel processors that the assembler code here is for. */ +uint32_t av1_get_crc32c_value_c(CRC32C *p, uint8_t *buf, size_t len) { + const uint8_t *next = (const uint8_t *)(buf); + uint64_t crc; + + crc = 0 ^ 0xffffffff; + while (len && ((uintptr_t)next & 7) != 0) { + crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); + len--; + } + while (len >= 8) { + crc ^= *(uint64_t *)next; + crc = p->table[7][crc & 0xff] ^ p->table[6][(crc >> 8) & 0xff] ^ + p->table[5][(crc >> 16) & 0xff] ^ p->table[4][(crc >> 24) & 0xff] ^ + p->table[3][(crc >> 32) & 0xff] ^ p->table[2][(crc >> 40) & 0xff] ^ + p->table[1][(crc >> 48) & 0xff] ^ p->table[0][crc >> 56]; + next += 8; + len -= 8; + } + while (len) { + crc = p->table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8); + len--; + } + return (uint32_t)crc ^ 0xffffffff; +} diff --git a/third_party/aom/av1/encoder/hash.h b/third_party/aom/av1/encoder/hash.h new file mode 100644 index 0000000000..826c004d6f --- /dev/null +++ b/third_party/aom/av1/encoder/hash.h @@ -0,0 +1,52 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_HASH_H_ +#define AOM_AV1_ENCODER_HASH_H_ + +#include "config/aom_config.h" + +#include "aom/aom_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct _crc_calculator { + uint32_t remainder; + uint32_t trunc_poly; + uint32_t bits; + uint32_t table[256]; + uint32_t final_result_mask; +} CRC_CALCULATOR; + +// Initialize the crc calculator. It must be executed at least once before +// calling av1_get_crc_value(). +void av1_crc_calculator_init(CRC_CALCULATOR *p_crc_calculator, uint32_t bits, + uint32_t truncPoly); +uint32_t av1_get_crc_value(void *crc_calculator, uint8_t *p, int length); + +// CRC32C: POLY = 0x82f63b78; +typedef struct _CRC32C { + /* Table for a quadword-at-a-time software crc. */ + uint32_t table[8][256]; +} CRC32C; + +// init table for software version crc32c +void av1_crc32c_calculator_init(CRC32C *p_crc32c); + +#define AOM_BUFFER_SIZE_FOR_BLOCK_HASH (4096) + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_HASH_H_ diff --git a/third_party/aom/av1/encoder/hash_motion.c b/third_party/aom/av1/encoder/hash_motion.c new file mode 100644 index 0000000000..e85a516e85 --- /dev/null +++ b/third_party/aom/av1/encoder/hash_motion.c @@ -0,0 +1,482 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "config/av1_rtcd.h" + +#include "av1/encoder/block.h" +#include "av1/encoder/hash.h" +#include "av1/encoder/hash_motion.h" + +static const int crc_bits = 16; +static const int block_size_bits = 3; + +static void hash_table_clear_all(hash_table *p_hash_table) { + if (p_hash_table->p_lookup_table == NULL) { + return; + } + int max_addr = 1 << (crc_bits + block_size_bits); + for (int i = 0; i < max_addr; i++) { + if (p_hash_table->p_lookup_table[i] != NULL) { + aom_vector_destroy(p_hash_table->p_lookup_table[i]); + aom_free(p_hash_table->p_lookup_table[i]); + p_hash_table->p_lookup_table[i] = NULL; + } + } +} + +// TODO(youzhou@microsoft.com): is higher than 8 bits screen content supported? +// If yes, fix this function +static void get_pixels_in_1D_char_array_by_block_2x2(uint8_t *y_src, int stride, + uint8_t *p_pixels_in1D) { + uint8_t *p_pel = y_src; + int index = 0; + for (int i = 0; i < 2; i++) { + for (int j = 0; j < 2; j++) { + p_pixels_in1D[index++] = p_pel[j]; + } + p_pel += stride; + } +} + +static void get_pixels_in_1D_short_array_by_block_2x2(uint16_t *y_src, + int stride, + uint16_t *p_pixels_in1D) { + uint16_t *p_pel = y_src; + int index = 0; + for (int i = 0; i < 2; i++) { + for (int j = 0; j < 2; j++) { + p_pixels_in1D[index++] = p_pel[j]; + } + p_pel += stride; + } +} + +static int is_block_2x2_row_same_value(uint8_t *p) { + if (p[0] != p[1] || p[2] != p[3]) { + return 0; + } + return 1; +} + +static int is_block16_2x2_row_same_value(uint16_t *p) { + if (p[0] != p[1] || p[2] != p[3]) { + return 0; + } + return 1; +} + +static int is_block_2x2_col_same_value(uint8_t *p) { + if ((p[0] != p[2]) || (p[1] != p[3])) { + return 0; + } + return 1; +} + +static int is_block16_2x2_col_same_value(uint16_t *p) { + if ((p[0] != p[2]) || (p[1] != p[3])) { + return 0; + } + return 1; +} + +// the hash value (hash_value1 consists two parts, the first 3 bits relate to +// the block size and the remaining 16 bits are the crc values. This fuction +// is used to get the first 3 bits. +static int hash_block_size_to_index(int block_size) { + switch (block_size) { + case 4: return 0; + case 8: return 1; + case 16: return 2; + case 32: return 3; + case 64: return 4; + case 128: return 5; + default: return -1; + } +} + +void av1_hash_table_init(hash_table *p_hash_table, MACROBLOCK *x) { + if (x->g_crc_initialized == 0) { + av1_crc_calculator_init(&x->crc_calculator1, 24, 0x5D6DCB); + av1_crc_calculator_init(&x->crc_calculator2, 24, 0x864CFB); + x->g_crc_initialized = 1; + } + p_hash_table->p_lookup_table = NULL; +} + +void av1_hash_table_destroy(hash_table *p_hash_table) { + hash_table_clear_all(p_hash_table); + aom_free(p_hash_table->p_lookup_table); + p_hash_table->p_lookup_table = NULL; +} + +void av1_hash_table_create(hash_table *p_hash_table) { + if (p_hash_table->p_lookup_table != NULL) { + hash_table_clear_all(p_hash_table); + return; + } + const int max_addr = 1 << (crc_bits + block_size_bits); + p_hash_table->p_lookup_table = + (Vector **)aom_malloc(sizeof(p_hash_table->p_lookup_table[0]) * max_addr); + memset(p_hash_table->p_lookup_table, 0, + sizeof(p_hash_table->p_lookup_table[0]) * max_addr); +} + +static void hash_table_add_to_table(hash_table *p_hash_table, + uint32_t hash_value, + block_hash *curr_block_hash) { + if (p_hash_table->p_lookup_table[hash_value] == NULL) { + p_hash_table->p_lookup_table[hash_value] = + aom_malloc(sizeof(p_hash_table->p_lookup_table[0][0])); + aom_vector_setup(p_hash_table->p_lookup_table[hash_value], 10, + sizeof(curr_block_hash[0])); + aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], + curr_block_hash); + } else { + aom_vector_push_back(p_hash_table->p_lookup_table[hash_value], + curr_block_hash); + } +} + +int32_t av1_hash_table_count(hash_table *p_hash_table, uint32_t hash_value) { + if (p_hash_table->p_lookup_table[hash_value] == NULL) { + return 0; + } else { + return (int32_t)(p_hash_table->p_lookup_table[hash_value]->size); + } +} + +Iterator av1_hash_get_first_iterator(hash_table *p_hash_table, + uint32_t hash_value) { + assert(av1_hash_table_count(p_hash_table, hash_value) > 0); + return aom_vector_begin(p_hash_table->p_lookup_table[hash_value]); +} + +int32_t av1_has_exact_match(hash_table *p_hash_table, uint32_t hash_value1, + uint32_t hash_value2) { + if (p_hash_table->p_lookup_table[hash_value1] == NULL) { + return 0; + } + Iterator iterator = + aom_vector_begin(p_hash_table->p_lookup_table[hash_value1]); + Iterator last = aom_vector_end(p_hash_table->p_lookup_table[hash_value1]); + for (; !iterator_equals(&iterator, &last); iterator_increment(&iterator)) { + if ((*(block_hash *)iterator_get(&iterator)).hash_value2 == hash_value2) { + return 1; + } + } + return 0; +} + +void av1_generate_block_2x2_hash_value(const YV12_BUFFER_CONFIG *picture, + uint32_t *pic_block_hash[2], + int8_t *pic_block_same_info[3], + MACROBLOCK *x) { + const int width = 2; + const int height = 2; + const int x_end = picture->y_crop_width - width + 1; + const int y_end = picture->y_crop_height - height + 1; + + const int length = width * 2; + if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t p[4]; + int pos = 0; + for (int y_pos = 0; y_pos < y_end; y_pos++) { + for (int x_pos = 0; x_pos < x_end; x_pos++) { + get_pixels_in_1D_short_array_by_block_2x2( + CONVERT_TO_SHORTPTR(picture->y_buffer) + y_pos * picture->y_stride + + x_pos, + picture->y_stride, p); + pic_block_same_info[0][pos] = is_block16_2x2_row_same_value(p); + pic_block_same_info[1][pos] = is_block16_2x2_col_same_value(p); + + pic_block_hash[0][pos] = av1_get_crc_value( + &x->crc_calculator1, (uint8_t *)p, length * sizeof(p[0])); + pic_block_hash[1][pos] = av1_get_crc_value( + &x->crc_calculator2, (uint8_t *)p, length * sizeof(p[0])); + pos++; + } + pos += width - 1; + } + } else { + uint8_t p[4]; + int pos = 0; + for (int y_pos = 0; y_pos < y_end; y_pos++) { + for (int x_pos = 0; x_pos < x_end; x_pos++) { + get_pixels_in_1D_char_array_by_block_2x2( + picture->y_buffer + y_pos * picture->y_stride + x_pos, + picture->y_stride, p); + pic_block_same_info[0][pos] = is_block_2x2_row_same_value(p); + pic_block_same_info[1][pos] = is_block_2x2_col_same_value(p); + + pic_block_hash[0][pos] = + av1_get_crc_value(&x->crc_calculator1, p, length * sizeof(p[0])); + pic_block_hash[1][pos] = + av1_get_crc_value(&x->crc_calculator2, p, length * sizeof(p[0])); + pos++; + } + pos += width - 1; + } + } +} + +void av1_generate_block_hash_value(const YV12_BUFFER_CONFIG *picture, + int block_size, + uint32_t *src_pic_block_hash[2], + uint32_t *dst_pic_block_hash[2], + int8_t *src_pic_block_same_info[3], + int8_t *dst_pic_block_same_info[3], + MACROBLOCK *x) { + const int pic_width = picture->y_crop_width; + const int x_end = picture->y_crop_width - block_size + 1; + const int y_end = picture->y_crop_height - block_size + 1; + + const int src_size = block_size >> 1; + const int quad_size = block_size >> 2; + + uint32_t p[4]; + const int length = sizeof(p); + + int pos = 0; + for (int y_pos = 0; y_pos < y_end; y_pos++) { + for (int x_pos = 0; x_pos < x_end; x_pos++) { + p[0] = src_pic_block_hash[0][pos]; + p[1] = src_pic_block_hash[0][pos + src_size]; + p[2] = src_pic_block_hash[0][pos + src_size * pic_width]; + p[3] = src_pic_block_hash[0][pos + src_size * pic_width + src_size]; + dst_pic_block_hash[0][pos] = + av1_get_crc_value(&x->crc_calculator1, (uint8_t *)p, length); + + p[0] = src_pic_block_hash[1][pos]; + p[1] = src_pic_block_hash[1][pos + src_size]; + p[2] = src_pic_block_hash[1][pos + src_size * pic_width]; + p[3] = src_pic_block_hash[1][pos + src_size * pic_width + src_size]; + dst_pic_block_hash[1][pos] = + av1_get_crc_value(&x->crc_calculator2, (uint8_t *)p, length); + + dst_pic_block_same_info[0][pos] = + src_pic_block_same_info[0][pos] && + src_pic_block_same_info[0][pos + quad_size] && + src_pic_block_same_info[0][pos + src_size] && + src_pic_block_same_info[0][pos + src_size * pic_width] && + src_pic_block_same_info[0][pos + src_size * pic_width + quad_size] && + src_pic_block_same_info[0][pos + src_size * pic_width + src_size]; + + dst_pic_block_same_info[1][pos] = + src_pic_block_same_info[1][pos] && + src_pic_block_same_info[1][pos + src_size] && + src_pic_block_same_info[1][pos + quad_size * pic_width] && + src_pic_block_same_info[1][pos + quad_size * pic_width + src_size] && + src_pic_block_same_info[1][pos + src_size * pic_width] && + src_pic_block_same_info[1][pos + src_size * pic_width + src_size]; + pos++; + } + pos += block_size - 1; + } + + if (block_size >= 4) { + const int size_minus_1 = block_size - 1; + pos = 0; + for (int y_pos = 0; y_pos < y_end; y_pos++) { + for (int x_pos = 0; x_pos < x_end; x_pos++) { + dst_pic_block_same_info[2][pos] = + (!dst_pic_block_same_info[0][pos] && + !dst_pic_block_same_info[1][pos]) || + (((x_pos & size_minus_1) == 0) && ((y_pos & size_minus_1) == 0)); + pos++; + } + pos += block_size - 1; + } + } +} + +void av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table, + uint32_t *pic_hash[2], + int8_t *pic_is_same, + int pic_width, int pic_height, + int block_size) { + const int x_end = pic_width - block_size + 1; + const int y_end = pic_height - block_size + 1; + + const int8_t *src_is_added = pic_is_same; + const uint32_t *src_hash[2] = { pic_hash[0], pic_hash[1] }; + + int add_value = hash_block_size_to_index(block_size); + assert(add_value >= 0); + add_value <<= crc_bits; + const int crc_mask = (1 << crc_bits) - 1; + + for (int x_pos = 0; x_pos < x_end; x_pos++) { + for (int y_pos = 0; y_pos < y_end; y_pos++) { + const int pos = y_pos * pic_width + x_pos; + // valid data + if (src_is_added[pos]) { + block_hash curr_block_hash; + curr_block_hash.x = x_pos; + curr_block_hash.y = y_pos; + + const uint32_t hash_value1 = (src_hash[0][pos] & crc_mask) + add_value; + curr_block_hash.hash_value2 = src_hash[1][pos]; + + hash_table_add_to_table(p_hash_table, hash_value1, &curr_block_hash); + } + } + } +} + +int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture, + int block_size, int x_start, int y_start) { + const int stride = picture->y_stride; + const uint8_t *p = picture->y_buffer + y_start * stride + x_start; + + if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { + const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); + for (int i = 0; i < block_size; i++) { + for (int j = 1; j < block_size; j++) { + if (p16[j] != p16[0]) { + return 0; + } + } + p16 += stride; + } + } else { + for (int i = 0; i < block_size; i++) { + for (int j = 1; j < block_size; j++) { + if (p[j] != p[0]) { + return 0; + } + } + p += stride; + } + } + + return 1; +} + +int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture, + int block_size, int x_start, int y_start) { + const int stride = picture->y_stride; + const uint8_t *p = picture->y_buffer + y_start * stride + x_start; + + if (picture->flags & YV12_FLAG_HIGHBITDEPTH) { + const uint16_t *p16 = CONVERT_TO_SHORTPTR(p); + for (int i = 0; i < block_size; i++) { + for (int j = 1; j < block_size; j++) { + if (p16[j * stride + i] != p16[i]) { + return 0; + } + } + } + } else { + for (int i = 0; i < block_size; i++) { + for (int j = 1; j < block_size; j++) { + if (p[j * stride + i] != p[i]) { + return 0; + } + } + } + } + return 1; +} + +void av1_get_block_hash_value(uint8_t *y_src, int stride, int block_size, + uint32_t *hash_value1, uint32_t *hash_value2, + int use_highbitdepth, MACROBLOCK *x) { + uint32_t to_hash[4]; + const int add_value = hash_block_size_to_index(block_size) << crc_bits; + assert(add_value >= 0); + const int crc_mask = (1 << crc_bits) - 1; + + // 2x2 subblock hash values in current CU + int sub_block_in_width = (block_size >> 1); + if (use_highbitdepth) { + uint16_t pixel_to_hash[4]; + uint16_t *y16_src = CONVERT_TO_SHORTPTR(y_src); + for (int y_pos = 0; y_pos < block_size; y_pos += 2) { + for (int x_pos = 0; x_pos < block_size; x_pos += 2) { + int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); + get_pixels_in_1D_short_array_by_block_2x2( + y16_src + y_pos * stride + x_pos, stride, pixel_to_hash); + assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); + x->hash_value_buffer[0][0][pos] = + av1_get_crc_value(&x->crc_calculator1, (uint8_t *)pixel_to_hash, + sizeof(pixel_to_hash)); + x->hash_value_buffer[1][0][pos] = + av1_get_crc_value(&x->crc_calculator2, (uint8_t *)pixel_to_hash, + sizeof(pixel_to_hash)); + } + } + } else { + uint8_t pixel_to_hash[4]; + for (int y_pos = 0; y_pos < block_size; y_pos += 2) { + for (int x_pos = 0; x_pos < block_size; x_pos += 2) { + int pos = (y_pos >> 1) * sub_block_in_width + (x_pos >> 1); + get_pixels_in_1D_char_array_by_block_2x2(y_src + y_pos * stride + x_pos, + stride, pixel_to_hash); + assert(pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); + x->hash_value_buffer[0][0][pos] = av1_get_crc_value( + &x->crc_calculator1, pixel_to_hash, sizeof(pixel_to_hash)); + x->hash_value_buffer[1][0][pos] = av1_get_crc_value( + &x->crc_calculator2, pixel_to_hash, sizeof(pixel_to_hash)); + } + } + } + + int src_sub_block_in_width = sub_block_in_width; + sub_block_in_width >>= 1; + + int src_idx = 1; + int dst_idx = 0; + + // 4x4 subblock hash values to current block hash values + for (int sub_width = 4; sub_width <= block_size; sub_width *= 2) { + src_idx = 1 - src_idx; + dst_idx = 1 - dst_idx; + + int dst_pos = 0; + for (int y_pos = 0; y_pos < sub_block_in_width; y_pos++) { + for (int x_pos = 0; x_pos < sub_block_in_width; x_pos++) { + int srcPos = (y_pos << 1) * src_sub_block_in_width + (x_pos << 1); + + assert(srcPos + 1 < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); + assert(srcPos + src_sub_block_in_width + 1 < + AOM_BUFFER_SIZE_FOR_BLOCK_HASH); + assert(dst_pos < AOM_BUFFER_SIZE_FOR_BLOCK_HASH); + to_hash[0] = x->hash_value_buffer[0][src_idx][srcPos]; + to_hash[1] = x->hash_value_buffer[0][src_idx][srcPos + 1]; + to_hash[2] = + x->hash_value_buffer[0][src_idx][srcPos + src_sub_block_in_width]; + to_hash[3] = x->hash_value_buffer[0][src_idx] + [srcPos + src_sub_block_in_width + 1]; + + x->hash_value_buffer[0][dst_idx][dst_pos] = av1_get_crc_value( + &x->crc_calculator1, (uint8_t *)to_hash, sizeof(to_hash)); + + to_hash[0] = x->hash_value_buffer[1][src_idx][srcPos]; + to_hash[1] = x->hash_value_buffer[1][src_idx][srcPos + 1]; + to_hash[2] = + x->hash_value_buffer[1][src_idx][srcPos + src_sub_block_in_width]; + to_hash[3] = x->hash_value_buffer[1][src_idx] + [srcPos + src_sub_block_in_width + 1]; + x->hash_value_buffer[1][dst_idx][dst_pos] = av1_get_crc_value( + &x->crc_calculator2, (uint8_t *)to_hash, sizeof(to_hash)); + dst_pos++; + } + } + + src_sub_block_in_width = sub_block_in_width; + sub_block_in_width >>= 1; + } + + *hash_value1 = (x->hash_value_buffer[0][dst_idx][0] & crc_mask) + add_value; + *hash_value2 = x->hash_value_buffer[1][dst_idx][0]; +} diff --git a/third_party/aom/av1/encoder/hash_motion.h b/third_party/aom/av1/encoder/hash_motion.h new file mode 100644 index 0000000000..df3ec32158 --- /dev/null +++ b/third_party/aom/av1/encoder/hash_motion.h @@ -0,0 +1,78 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_HASH_MOTION_H_ +#define AOM_AV1_ENCODER_HASH_MOTION_H_ + +#include "config/aom_config.h" + +#include "aom/aom_integer.h" +#include "aom_scale/yv12config.h" +#include "third_party/vector/vector.h" +#ifdef __cplusplus +extern "C" { +#endif + +// store a block's hash info. +// x and y are the position from the top left of the picture +// hash_value2 is used to store the second hash value +typedef struct _block_hash { + int16_t x; + int16_t y; + uint32_t hash_value2; +} block_hash; + +typedef struct _hash_table { + Vector **p_lookup_table; +} hash_table; + +void av1_hash_table_init(hash_table *p_hash_table, struct macroblock *x); +void av1_hash_table_destroy(hash_table *p_hash_table); +void av1_hash_table_create(hash_table *p_hash_table); +int32_t av1_hash_table_count(hash_table *p_hash_table, uint32_t hash_value); +Iterator av1_hash_get_first_iterator(hash_table *p_hash_table, + uint32_t hash_value); +int32_t av1_has_exact_match(hash_table *p_hash_table, uint32_t hash_value1, + uint32_t hash_value2); +void av1_generate_block_2x2_hash_value(const YV12_BUFFER_CONFIG *picture, + uint32_t *pic_block_hash[2], + int8_t *pic_block_same_info[3], + struct macroblock *x); +void av1_generate_block_hash_value(const YV12_BUFFER_CONFIG *picture, + int block_size, + uint32_t *src_pic_block_hash[2], + uint32_t *dst_pic_block_hash[2], + int8_t *src_pic_block_same_info[3], + int8_t *dst_pic_block_same_info[3], + struct macroblock *x); +void av1_add_to_hash_map_by_row_with_precal_data(hash_table *p_hash_table, + uint32_t *pic_hash[2], + int8_t *pic_is_same, + int pic_width, int pic_height, + int block_size); + +// check whether the block starts from (x_start, y_start) with the size of +// block_size x block_size has the same color in all rows +int av1_hash_is_horizontal_perfect(const YV12_BUFFER_CONFIG *picture, + int block_size, int x_start, int y_start); +// check whether the block starts from (x_start, y_start) with the size of +// block_size x block_size has the same color in all columns +int av1_hash_is_vertical_perfect(const YV12_BUFFER_CONFIG *picture, + int block_size, int x_start, int y_start); +void av1_get_block_hash_value(uint8_t *y_src, int stride, int block_size, + uint32_t *hash_value1, uint32_t *hash_value2, + int use_highbitdepth, struct macroblock *x); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_HASH_MOTION_H_ diff --git a/third_party/aom/av1/encoder/hybrid_fwd_txfm.c b/third_party/aom/av1/encoder/hybrid_fwd_txfm.c new file mode 100644 index 0000000000..67898fd184 --- /dev/null +++ b/third_party/aom/av1/encoder/hybrid_fwd_txfm.c @@ -0,0 +1,390 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" +#include "config/aom_dsp_rtcd.h" + +#include "av1/common/idct.h" +#include "av1/encoder/hybrid_fwd_txfm.h" + +/* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per + pixel. */ +void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { + int i; + tran_high_t a1, b1, c1, d1, e1; + const int16_t *ip_pass0 = input; + const tran_low_t *ip = NULL; + tran_low_t *op = output; + + for (i = 0; i < 4; i++) { + a1 = ip_pass0[0 * stride]; + b1 = ip_pass0[1 * stride]; + c1 = ip_pass0[2 * stride]; + d1 = ip_pass0[3 * stride]; + + a1 += b1; + d1 = d1 - c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)a1; + op[4] = (tran_low_t)c1; + op[8] = (tran_low_t)d1; + op[12] = (tran_low_t)b1; + + ip_pass0++; + op++; + } + ip = output; + op = output; + + for (i = 0; i < 4; i++) { + a1 = ip[0]; + b1 = ip[1]; + c1 = ip[2]; + d1 = ip[3]; + + a1 += b1; + d1 -= c1; + e1 = (a1 - d1) >> 1; + b1 = e1 - b1; + c1 = e1 - c1; + a1 -= c1; + d1 += b1; + op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); + op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); + op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); + op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); + + ip += 4; + op += 4; + } +} + +void av1_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, + int stride) { + av1_fwht4x4_c(input, output, stride); +} + +static void highbd_fwd_txfm_4x4(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + if (txfm_param->lossless) { + assert(tx_type == DCT_DCT); + av1_highbd_fwht4x4(src_diff, coeff, diff_stride); + return; + } + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_4x4_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_4x4(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_4x8(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_4x8_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_8x4(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_8x4_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_8x16(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_8x16_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_8x16(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_16x8(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_16x8_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_16x8(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_16x32(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_16x32_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_32x16(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_32x16_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_16x4(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_16x4_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_4x16(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_4x16_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_32x8(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_32x8_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_8x32(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + av1_fwd_txfm2d_8x32_c(src_diff, dst_coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} + +static void highbd_fwd_txfm_8x8(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_8x8_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_8x8(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_16x16(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_16x16_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_16x16(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_32x32(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + int32_t *dst_coeff = (int32_t *)coeff; + const TX_TYPE tx_type = txfm_param->tx_type; + const int bd = txfm_param->bd; + switch (tx_type) { + // use the c version for anything including identity for now + case V_DCT: + case H_DCT: + case V_ADST: + case H_ADST: + case V_FLIPADST: + case H_FLIPADST: + case IDTX: + av1_fwd_txfm2d_32x32_c(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + default: + av1_fwd_txfm2d_32x32(src_diff, dst_coeff, diff_stride, tx_type, bd); + break; + } +} + +static void highbd_fwd_txfm_32x64(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(txfm_param->tx_type == DCT_DCT); + int32_t *dst_coeff = (int32_t *)coeff; + const int bd = txfm_param->bd; + av1_fwd_txfm2d_32x64_c(src_diff, dst_coeff, diff_stride, DCT_DCT, bd); +} + +static void highbd_fwd_txfm_64x32(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(txfm_param->tx_type == DCT_DCT); + int32_t *dst_coeff = (int32_t *)coeff; + const int bd = txfm_param->bd; + av1_fwd_txfm2d_64x32_c(src_diff, dst_coeff, diff_stride, DCT_DCT, bd); +} + +static void highbd_fwd_txfm_16x64(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(txfm_param->tx_type == DCT_DCT); + int32_t *dst_coeff = (int32_t *)coeff; + const int bd = txfm_param->bd; + av1_fwd_txfm2d_16x64_c(src_diff, dst_coeff, diff_stride, DCT_DCT, bd); +} + +static void highbd_fwd_txfm_64x16(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(txfm_param->tx_type == DCT_DCT); + int32_t *dst_coeff = (int32_t *)coeff; + const int bd = txfm_param->bd; + av1_fwd_txfm2d_64x16_c(src_diff, dst_coeff, diff_stride, DCT_DCT, bd); +} + +static void highbd_fwd_txfm_64x64(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(txfm_param->tx_type == DCT_DCT); + int32_t *dst_coeff = (int32_t *)coeff; + const int bd = txfm_param->bd; + av1_fwd_txfm2d_64x64(src_diff, dst_coeff, diff_stride, DCT_DCT, bd); +} + +void av1_fwd_txfm(const int16_t *src_diff, tran_low_t *coeff, int diff_stride, + TxfmParam *txfm_param) { + if (txfm_param->bd == 8) + av1_lowbd_fwd_txfm(src_diff, coeff, diff_stride, txfm_param); + else + av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, txfm_param); +} + +void av1_lowbd_fwd_txfm_c(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, txfm_param); +} + +void av1_highbd_fwd_txfm(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]); + const TX_SIZE tx_size = txfm_param->tx_size; + switch (tx_size) { + case TX_64X64: + highbd_fwd_txfm_64x64(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_32X64: + highbd_fwd_txfm_32x64(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_64X32: + highbd_fwd_txfm_64x32(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_16X64: + highbd_fwd_txfm_16x64(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_64X16: + highbd_fwd_txfm_64x16(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_32X32: + highbd_fwd_txfm_32x32(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_16X16: + highbd_fwd_txfm_16x16(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_8X8: + highbd_fwd_txfm_8x8(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_4X8: + highbd_fwd_txfm_4x8(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_8X4: + highbd_fwd_txfm_8x4(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_8X16: + highbd_fwd_txfm_8x16(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_16X8: + highbd_fwd_txfm_16x8(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_16X32: + highbd_fwd_txfm_16x32(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_32X16: + highbd_fwd_txfm_32x16(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_4X4: + highbd_fwd_txfm_4x4(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_4X16: + highbd_fwd_txfm_4x16(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_16X4: + highbd_fwd_txfm_16x4(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_8X32: + highbd_fwd_txfm_8x32(src_diff, coeff, diff_stride, txfm_param); + break; + case TX_32X8: + highbd_fwd_txfm_32x8(src_diff, coeff, diff_stride, txfm_param); + break; + default: assert(0); break; + } +} diff --git a/third_party/aom/av1/encoder/hybrid_fwd_txfm.h b/third_party/aom/av1/encoder/hybrid_fwd_txfm.h new file mode 100644 index 0000000000..daabc7119a --- /dev/null +++ b/third_party/aom/av1/encoder/hybrid_fwd_txfm.h @@ -0,0 +1,31 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_HYBRID_FWD_TXFM_H_ +#define AOM_AV1_ENCODER_HYBRID_FWD_TXFM_H_ + +#include "config/aom_config.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_fwd_txfm(const int16_t *src_diff, tran_low_t *coeff, int diff_stride, + TxfmParam *txfm_param); + +void av1_highbd_fwd_txfm(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_HYBRID_FWD_TXFM_H_ diff --git a/third_party/aom/av1/encoder/k_means_template.h b/third_party/aom/av1/encoder/k_means_template.h new file mode 100644 index 0000000000..9e526b88b7 --- /dev/null +++ b/third_party/aom/av1/encoder/k_means_template.h @@ -0,0 +1,123 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdint.h> +#include <string.h> + +#include "av1/encoder/palette.h" +#include "av1/encoder/random.h" + +#ifndef AV1_K_MEANS_DIM +#error "This template requires AV1_K_MEANS_DIM to be defined" +#endif + +#define RENAME_(x, y) AV1_K_MEANS_RENAME(x, y) +#define RENAME(x) RENAME_(x, AV1_K_MEANS_DIM) + +static int RENAME(calc_dist)(const int *p1, const int *p2) { + int dist = 0; + for (int i = 0; i < AV1_K_MEANS_DIM; ++i) { + const int diff = p1[i] - p2[i]; + dist += diff * diff; + } + return dist; +} + +void RENAME(av1_calc_indices)(const int *data, const int *centroids, + uint8_t *indices, int n, int k) { + for (int i = 0; i < n; ++i) { + int min_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, centroids); + indices[i] = 0; + for (int j = 1; j < k; ++j) { + const int this_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, + centroids + j * AV1_K_MEANS_DIM); + if (this_dist < min_dist) { + min_dist = this_dist; + indices[i] = j; + } + } + } +} + +static void RENAME(calc_centroids)(const int *data, int *centroids, + const uint8_t *indices, int n, int k) { + int i, j; + int count[PALETTE_MAX_SIZE] = { 0 }; + unsigned int rand_state = (unsigned int)data[0]; + assert(n <= 32768); + memset(centroids, 0, sizeof(centroids[0]) * k * AV1_K_MEANS_DIM); + + for (i = 0; i < n; ++i) { + const int index = indices[i]; + assert(index < k); + ++count[index]; + for (j = 0; j < AV1_K_MEANS_DIM; ++j) { + centroids[index * AV1_K_MEANS_DIM + j] += data[i * AV1_K_MEANS_DIM + j]; + } + } + + for (i = 0; i < k; ++i) { + if (count[i] == 0) { + memcpy(centroids + i * AV1_K_MEANS_DIM, + data + (lcg_rand16(&rand_state) % n) * AV1_K_MEANS_DIM, + sizeof(centroids[0]) * AV1_K_MEANS_DIM); + } else { + for (j = 0; j < AV1_K_MEANS_DIM; ++j) { + centroids[i * AV1_K_MEANS_DIM + j] = + DIVIDE_AND_ROUND(centroids[i * AV1_K_MEANS_DIM + j], count[i]); + } + } + } +} + +static int64_t RENAME(calc_total_dist)(const int *data, const int *centroids, + const uint8_t *indices, int n, int k) { + int64_t dist = 0; + (void)k; + for (int i = 0; i < n; ++i) { + dist += RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, + centroids + indices[i] * AV1_K_MEANS_DIM); + } + return dist; +} + +void RENAME(av1_k_means)(const int *data, int *centroids, uint8_t *indices, + int n, int k, int max_itr) { + int pre_centroids[2 * PALETTE_MAX_SIZE]; + uint8_t pre_indices[MAX_SB_SQUARE]; + + RENAME(av1_calc_indices)(data, centroids, indices, n, k); + int64_t this_dist = RENAME(calc_total_dist)(data, centroids, indices, n, k); + + for (int i = 0; i < max_itr; ++i) { + const int64_t pre_dist = this_dist; + memcpy(pre_centroids, centroids, + sizeof(pre_centroids[0]) * k * AV1_K_MEANS_DIM); + memcpy(pre_indices, indices, sizeof(pre_indices[0]) * n); + + RENAME(calc_centroids)(data, centroids, indices, n, k); + RENAME(av1_calc_indices)(data, centroids, indices, n, k); + this_dist = RENAME(calc_total_dist)(data, centroids, indices, n, k); + + if (this_dist > pre_dist) { + memcpy(centroids, pre_centroids, + sizeof(pre_centroids[0]) * k * AV1_K_MEANS_DIM); + memcpy(indices, pre_indices, sizeof(pre_indices[0]) * n); + break; + } + if (!memcmp(centroids, pre_centroids, + sizeof(pre_centroids[0]) * k * AV1_K_MEANS_DIM)) + break; + } +} +#undef RENAME_ +#undef RENAME diff --git a/third_party/aom/av1/encoder/lookahead.c b/third_party/aom/av1/encoder/lookahead.c new file mode 100644 index 0000000000..1bf8ecbacb --- /dev/null +++ b/third_party/aom/av1/encoder/lookahead.c @@ -0,0 +1,210 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#include <assert.h> +#include <stdlib.h> + +#include "config/aom_config.h" + +#include "av1/common/common.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/extend.h" +#include "av1/encoder/lookahead.h" + +/* Return the buffer at the given absolute index and increment the index */ +static struct lookahead_entry *pop(struct lookahead_ctx *ctx, int *idx) { + int index = *idx; + struct lookahead_entry *buf = ctx->buf + index; + + assert(index < ctx->max_sz); + if (++index >= ctx->max_sz) index -= ctx->max_sz; + *idx = index; + return buf; +} + +void av1_lookahead_destroy(struct lookahead_ctx *ctx) { + if (ctx) { + if (ctx->buf) { + int i; + + for (i = 0; i < ctx->max_sz; i++) aom_free_frame_buffer(&ctx->buf[i].img); + free(ctx->buf); + } + free(ctx); + } +} + +struct lookahead_ctx *av1_lookahead_init( + unsigned int width, unsigned int height, unsigned int subsampling_x, + unsigned int subsampling_y, int use_highbitdepth, unsigned int depth) { + struct lookahead_ctx *ctx = NULL; + + // Clamp the lookahead queue depth + depth = clamp(depth, 1, MAX_LAG_BUFFERS); + + // Allocate memory to keep previous source frames available. + depth += MAX_PRE_FRAMES; + + // Allocate the lookahead structures + ctx = calloc(1, sizeof(*ctx)); + if (ctx) { + const int legacy_byte_alignment = 0; + unsigned int i; + ctx->max_sz = depth; + ctx->buf = calloc(depth, sizeof(*ctx->buf)); + if (!ctx->buf) goto bail; + for (i = 0; i < depth; i++) + if (aom_alloc_frame_buffer(&ctx->buf[i].img, width, height, subsampling_x, + subsampling_y, use_highbitdepth, + AOM_BORDER_IN_PIXELS, legacy_byte_alignment)) + goto bail; + } + return ctx; +bail: + av1_lookahead_destroy(ctx); + return NULL; +} + +#define USE_PARTIAL_COPY 0 + +int av1_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, int use_highbitdepth, + aom_enc_frame_flags_t flags) { + struct lookahead_entry *buf; +#if USE_PARTIAL_COPY + int row, col, active_end; + int mb_rows = (src->y_height + 15) >> 4; + int mb_cols = (src->y_width + 15) >> 4; +#endif + int width = src->y_crop_width; + int height = src->y_crop_height; + int uv_width = src->uv_crop_width; + int uv_height = src->uv_crop_height; + int subsampling_x = src->subsampling_x; + int subsampling_y = src->subsampling_y; + int larger_dimensions, new_dimensions; + + if (ctx->sz + 1 + MAX_PRE_FRAMES > ctx->max_sz) return 1; + ctx->sz++; + buf = pop(ctx, &ctx->write_idx); + + new_dimensions = width != buf->img.y_crop_width || + height != buf->img.y_crop_height || + uv_width != buf->img.uv_crop_width || + uv_height != buf->img.uv_crop_height; + larger_dimensions = width > buf->img.y_width || height > buf->img.y_height || + uv_width > buf->img.uv_width || + uv_height > buf->img.uv_height; + assert(!larger_dimensions || new_dimensions); + +#if USE_PARTIAL_COPY + // TODO(jkoleszar): This is disabled for now, as + // av1_copy_and_extend_frame_with_rect is not subsampling/alpha aware. + + // Only do this partial copy if the following conditions are all met: + // 1. Lookahead queue has has size of 1. + // 2. Active map is provided. + // 3. This is not a key frame, golden nor altref frame. + if (!new_dimensions && ctx->max_sz == 1 && active_map && !flags) { + for (row = 0; row < mb_rows; ++row) { + col = 0; + + while (1) { + // Find the first active macroblock in this row. + for (; col < mb_cols; ++col) { + if (active_map[col]) break; + } + + // No more active macroblock in this row. + if (col == mb_cols) break; + + // Find the end of active region in this row. + active_end = col; + + for (; active_end < mb_cols; ++active_end) { + if (!active_map[active_end]) break; + } + + // Only copy this active region. + av1_copy_and_extend_frame_with_rect(src, &buf->img, row << 4, col << 4, + 16, (active_end - col) << 4); + + // Start again from the end of this active region. + col = active_end; + } + + active_map += mb_cols; + } + } else { +#endif + if (larger_dimensions) { + YV12_BUFFER_CONFIG new_img; + memset(&new_img, 0, sizeof(new_img)); + if (aom_alloc_frame_buffer(&new_img, width, height, subsampling_x, + subsampling_y, use_highbitdepth, + AOM_BORDER_IN_PIXELS, 0)) + return 1; + aom_free_frame_buffer(&buf->img); + buf->img = new_img; + } else if (new_dimensions) { + buf->img.y_crop_width = src->y_crop_width; + buf->img.y_crop_height = src->y_crop_height; + buf->img.uv_crop_width = src->uv_crop_width; + buf->img.uv_crop_height = src->uv_crop_height; + buf->img.subsampling_x = src->subsampling_x; + buf->img.subsampling_y = src->subsampling_y; + } + // Partial copy not implemented yet + av1_copy_and_extend_frame(src, &buf->img); +#if USE_PARTIAL_COPY + } +#endif + + buf->ts_start = ts_start; + buf->ts_end = ts_end; + buf->flags = flags; + return 0; +} + +struct lookahead_entry *av1_lookahead_pop(struct lookahead_ctx *ctx, + int drain) { + struct lookahead_entry *buf = NULL; + + if (ctx && ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { + buf = pop(ctx, &ctx->read_idx); + ctx->sz--; + } + return buf; +} + +struct lookahead_entry *av1_lookahead_peek(struct lookahead_ctx *ctx, + int index) { + struct lookahead_entry *buf = NULL; + + if (index >= 0) { + // Forward peek + if (index < ctx->sz) { + index += ctx->read_idx; + if (index >= ctx->max_sz) index -= ctx->max_sz; + buf = ctx->buf + index; + } + } else if (index < 0) { + // Backward peek + if (-index <= MAX_PRE_FRAMES) { + index += (int)(ctx->read_idx); + if (index < 0) index += (int)(ctx->max_sz); + buf = ctx->buf + index; + } + } + + return buf; +} + +unsigned int av1_lookahead_depth(struct lookahead_ctx *ctx) { return ctx->sz; } diff --git a/third_party/aom/av1/encoder/lookahead.h b/third_party/aom/av1/encoder/lookahead.h new file mode 100644 index 0000000000..e55224cf75 --- /dev/null +++ b/third_party/aom/av1/encoder/lookahead.h @@ -0,0 +1,106 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_LOOKAHEAD_H_ +#define AOM_AV1_ENCODER_LOOKAHEAD_H_ + +#include "aom_scale/yv12config.h" +#include "aom/aom_integer.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_LAG_BUFFERS 25 + +struct lookahead_entry { + YV12_BUFFER_CONFIG img; + int64_t ts_start; + int64_t ts_end; + aom_enc_frame_flags_t flags; +}; + +// The max of past frames we want to keep in the queue. +#define MAX_PRE_FRAMES 1 + +struct lookahead_ctx { + int max_sz; /* Absolute size of the queue */ + int sz; /* Number of buffers currently in the queue */ + int read_idx; /* Read index */ + int write_idx; /* Write index */ + struct lookahead_entry *buf; /* Buffer list */ +}; + +/**\brief Initializes the lookahead stage + * + * The lookahead stage is a queue of frame buffers on which some analysis + * may be done when buffers are enqueued. + */ +struct lookahead_ctx *av1_lookahead_init( + unsigned int width, unsigned int height, unsigned int subsampling_x, + unsigned int subsampling_y, int use_highbitdepth, unsigned int depth); + +/**\brief Destroys the lookahead stage + */ +void av1_lookahead_destroy(struct lookahead_ctx *ctx); + +/**\brief Enqueue a source buffer + * + * This function will copy the source image into a new framebuffer with + * the expected stride/border. + * + * If active_map is non-NULL and there is only one frame in the queue, then copy + * only active macroblocks. + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] src Pointer to the image to enqueue + * \param[in] ts_start Timestamp for the start of this frame + * \param[in] ts_end Timestamp for the end of this frame + * \param[in] flags Flags set on this frame + * \param[in] active_map Map that specifies which macroblock is active + */ +int av1_lookahead_push(struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, + int64_t ts_start, int64_t ts_end, int use_highbitdepth, + aom_enc_frame_flags_t flags); + +/**\brief Get the next source buffer to encode + * + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] drain Flag indicating the buffer should be drained + * (return a buffer regardless of the current queue depth) + * + * \retval NULL, if drain set and queue is empty + * \retval NULL, if drain not set and queue not of the configured depth + */ +struct lookahead_entry *av1_lookahead_pop(struct lookahead_ctx *ctx, int drain); + +/**\brief Get a future source buffer to encode + * + * \param[in] ctx Pointer to the lookahead context + * \param[in] index Index of the frame to be returned, 0 == next frame + * + * \retval NULL, if no buffer exists at the specified index + */ +struct lookahead_entry *av1_lookahead_peek(struct lookahead_ctx *ctx, + int index); + +/**\brief Get the number of frames currently in the lookahead queue + * + * \param[in] ctx Pointer to the lookahead context + */ +unsigned int av1_lookahead_depth(struct lookahead_ctx *ctx); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_LOOKAHEAD_H_ diff --git a/third_party/aom/av1/encoder/mathutils.h b/third_party/aom/av1/encoder/mathutils.h new file mode 100644 index 0000000000..64f9361767 --- /dev/null +++ b/third_party/aom/av1/encoder/mathutils.h @@ -0,0 +1,359 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_MATHUTILS_H_ +#define AOM_AV1_ENCODER_MATHUTILS_H_ + +#include <memory.h> +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <assert.h> + +static const double TINY_NEAR_ZERO = 1.0E-16; + +// Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn +static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { + int i, j, k; + double c; + // Forward elimination + for (k = 0; k < n - 1; k++) { + // Bring the largest magnitude to the diagonal position + for (i = n - 1; i > k; i--) { + if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { + for (j = 0; j < n; j++) { + c = A[i * stride + j]; + A[i * stride + j] = A[(i - 1) * stride + j]; + A[(i - 1) * stride + j] = c; + } + c = b[i]; + b[i] = b[i - 1]; + b[i - 1] = c; + } + } + for (i = k; i < n - 1; i++) { + if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; + c = A[(i + 1) * stride + k] / A[k * stride + k]; + for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; + b[i + 1] -= c * b[k]; + } + } + // Backward substitution + for (i = n - 1; i >= 0; i--) { + if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; + c = 0; + for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; + x[i] = (b[i] - c) / A[i * stride + i]; + } + + return 1; +} + +//////////////////////////////////////////////////////////////////////////////// +// Least-squares +// Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 +// The solution is simply x = (A'A)^-1 A'b or simply the solution for +// the system: A'A x = A'b +static INLINE int least_squares(int n, double *A, int rows, int stride, + double *b, double *scratch, double *x) { + int i, j, k; + double *scratch_ = NULL; + double *AtA, *Atb; + if (!scratch) { + scratch_ = (double *)aom_malloc(sizeof(*scratch) * n * (n + 1)); + scratch = scratch_; + } + AtA = scratch; + Atb = scratch + n * n; + + for (i = 0; i < n; ++i) { + for (j = i; j < n; ++j) { + AtA[i * n + j] = 0.0; + for (k = 0; k < rows; ++k) + AtA[i * n + j] += A[k * stride + i] * A[k * stride + j]; + AtA[j * n + i] = AtA[i * n + j]; + } + Atb[i] = 0; + for (k = 0; k < rows; ++k) Atb[i] += A[k * stride + i] * b[k]; + } + int ret = linsolve(n, AtA, n, Atb, x); + if (scratch_) aom_free(scratch_); + return ret; +} + +// Matrix multiply +static INLINE void multiply_mat(const double *m1, const double *m2, double *res, + const int m1_rows, const int inner_dim, + const int m2_cols) { + double sum; + + int row, col, inner; + for (row = 0; row < m1_rows; ++row) { + for (col = 0; col < m2_cols; ++col) { + sum = 0; + for (inner = 0; inner < inner_dim; ++inner) + sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; + *(res++) = sum; + } + } +} + +// +// The functions below are needed only for homography computation +// Remove if the homography models are not used. +// +/////////////////////////////////////////////////////////////////////////////// +// svdcmp +// Adopted from Numerical Recipes in C + +static INLINE double sign(double a, double b) { + return ((b) >= 0 ? fabs(a) : -fabs(a)); +} + +static INLINE double pythag(double a, double b) { + double ct; + const double absa = fabs(a); + const double absb = fabs(b); + + if (absa > absb) { + ct = absb / absa; + return absa * sqrt(1.0 + ct * ct); + } else { + ct = absa / absb; + return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct); + } +} + +static INLINE int svdcmp(double **u, int m, int n, double w[], double **v) { + const int max_its = 30; + int flag, i, its, j, jj, k, l, nm; + double anorm, c, f, g, h, s, scale, x, y, z; + double *rv1 = (double *)aom_malloc(sizeof(*rv1) * (n + 1)); + g = scale = anorm = 0.0; + for (i = 0; i < n; i++) { + l = i + 1; + rv1[i] = scale * g; + g = s = scale = 0.0; + if (i < m) { + for (k = i; k < m; k++) scale += fabs(u[k][i]); + if (scale != 0.) { + for (k = i; k < m; k++) { + u[k][i] /= scale; + s += u[k][i] * u[k][i]; + } + f = u[i][i]; + g = -sign(sqrt(s), f); + h = f * g - s; + u[i][i] = f - g; + for (j = l; j < n; j++) { + for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j]; + f = s / h; + for (k = i; k < m; k++) u[k][j] += f * u[k][i]; + } + for (k = i; k < m; k++) u[k][i] *= scale; + } + } + w[i] = scale * g; + g = s = scale = 0.0; + if (i < m && i != n - 1) { + for (k = l; k < n; k++) scale += fabs(u[i][k]); + if (scale != 0.) { + for (k = l; k < n; k++) { + u[i][k] /= scale; + s += u[i][k] * u[i][k]; + } + f = u[i][l]; + g = -sign(sqrt(s), f); + h = f * g - s; + u[i][l] = f - g; + for (k = l; k < n; k++) rv1[k] = u[i][k] / h; + for (j = l; j < m; j++) { + for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k]; + for (k = l; k < n; k++) u[j][k] += s * rv1[k]; + } + for (k = l; k < n; k++) u[i][k] *= scale; + } + } + anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i]))); + } + + for (i = n - 1; i >= 0; i--) { + if (i < n - 1) { + if (g != 0.) { + for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g; + for (j = l; j < n; j++) { + for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j]; + for (k = l; k < n; k++) v[k][j] += s * v[k][i]; + } + } + for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0; + } + v[i][i] = 1.0; + g = rv1[i]; + l = i; + } + for (i = AOMMIN(m, n) - 1; i >= 0; i--) { + l = i + 1; + g = w[i]; + for (j = l; j < n; j++) u[i][j] = 0.0; + if (g != 0.) { + g = 1.0 / g; + for (j = l; j < n; j++) { + for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j]; + f = (s / u[i][i]) * g; + for (k = i; k < m; k++) u[k][j] += f * u[k][i]; + } + for (j = i; j < m; j++) u[j][i] *= g; + } else { + for (j = i; j < m; j++) u[j][i] = 0.0; + } + ++u[i][i]; + } + for (k = n - 1; k >= 0; k--) { + for (its = 0; its < max_its; its++) { + flag = 1; + for (l = k; l >= 0; l--) { + nm = l - 1; + if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) { + flag = 0; + break; + } + if ((double)(fabs(w[nm]) + anorm) == anorm) break; + } + if (flag) { + c = 0.0; + s = 1.0; + for (i = l; i <= k; i++) { + f = s * rv1[i]; + rv1[i] = c * rv1[i]; + if ((double)(fabs(f) + anorm) == anorm) break; + g = w[i]; + h = pythag(f, g); + w[i] = h; + h = 1.0 / h; + c = g * h; + s = -f * h; + for (j = 0; j < m; j++) { + y = u[j][nm]; + z = u[j][i]; + u[j][nm] = y * c + z * s; + u[j][i] = z * c - y * s; + } + } + } + z = w[k]; + if (l == k) { + if (z < 0.0) { + w[k] = -z; + for (j = 0; j < n; j++) v[j][k] = -v[j][k]; + } + break; + } + if (its == max_its - 1) { + aom_free(rv1); + return 1; + } + assert(k > 0); + x = w[l]; + nm = k - 1; + y = w[nm]; + g = rv1[nm]; + h = rv1[k]; + f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y); + g = pythag(f, 1.0); + f = ((x - z) * (x + z) + h * ((y / (f + sign(g, f))) - h)) / x; + c = s = 1.0; + for (j = l; j <= nm; j++) { + i = j + 1; + g = rv1[i]; + y = w[i]; + h = s * g; + g = c * g; + z = pythag(f, h); + rv1[j] = z; + c = f / z; + s = h / z; + f = x * c + g * s; + g = g * c - x * s; + h = y * s; + y *= c; + for (jj = 0; jj < n; jj++) { + x = v[jj][j]; + z = v[jj][i]; + v[jj][j] = x * c + z * s; + v[jj][i] = z * c - x * s; + } + z = pythag(f, h); + w[j] = z; + if (z != 0.) { + z = 1.0 / z; + c = f * z; + s = h * z; + } + f = c * g + s * y; + x = c * y - s * g; + for (jj = 0; jj < m; jj++) { + y = u[jj][j]; + z = u[jj][i]; + u[jj][j] = y * c + z * s; + u[jj][i] = z * c - y * s; + } + } + rv1[l] = 0.0; + rv1[k] = f; + w[k] = x; + } + } + aom_free(rv1); + return 0; +} + +static INLINE int SVD(double *U, double *W, double *V, double *matx, int M, + int N) { + // Assumes allocation for U is MxN + double **nrU = (double **)aom_malloc((M) * sizeof(*nrU)); + double **nrV = (double **)aom_malloc((N) * sizeof(*nrV)); + int problem, i; + + problem = !(nrU && nrV); + if (!problem) { + for (i = 0; i < M; i++) { + nrU[i] = &U[i * N]; + } + for (i = 0; i < N; i++) { + nrV[i] = &V[i * N]; + } + } else { + if (nrU) aom_free(nrU); + if (nrV) aom_free(nrV); + return 1; + } + + /* copy from given matx into nrU */ + for (i = 0; i < M; i++) { + memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx)); + } + + /* HERE IT IS: do SVD */ + if (svdcmp(nrU, M, N, W, nrV)) { + aom_free(nrU); + aom_free(nrV); + return 1; + } + + /* aom_free Numerical Recipes arrays */ + aom_free(nrU); + aom_free(nrV); + + return 0; +} + +#endif // AOM_AV1_ENCODER_MATHUTILS_H_ diff --git a/third_party/aom/av1/encoder/mbgraph.c b/third_party/aom/av1/encoder/mbgraph.c new file mode 100644 index 0000000000..1a35ff77c7 --- /dev/null +++ b/third_party/aom/av1/encoder/mbgraph.c @@ -0,0 +1,401 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> + +#include "config/av1_rtcd.h" +#include "config/aom_dsp_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/system_state.h" +#include "av1/common/blockd.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/reconinter_enc.h" +#include "av1/encoder/segmentation.h" + +static unsigned int do_16x16_motion_iteration(AV1_COMP *cpi, const MV *ref_mv, + int mb_row, int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; + const aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; + + const MvLimits tmp_mv_limits = x->mv_limits; + MV ref_full; + int cost_list[5]; + + // Further step/diamond searches as necessary + int step_param = mv_sf->reduce_first_step_size; + step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); + + av1_set_mv_search_range(&x->mv_limits, ref_mv); + + ref_full.col = ref_mv->col >> 3; + ref_full.row = ref_mv->row >> 3; + + /*cpi->sf.search_method == HEX*/ + av1_hex_search(x, &ref_full, step_param, x->errorperbit, 0, + cond_cost_list(cpi, cost_list), &v_fn_ptr, 0, ref_mv); + + // Try sub-pixel MC + // if (bestsme > error_thresh && bestsme < INT_MAX) + if (cpi->common.cur_frame_force_integer_mv == 1) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } else { + int distortion; + unsigned int sse; + cpi->find_fractional_mv_step( + x, &cpi->common, mb_row, mb_col, ref_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, &v_fn_ptr, 0, + mv_sf->subpel_iters_per_step, cond_cost_list(cpi, cost_list), NULL, + NULL, &distortion, &sse, NULL, NULL, 0, 0, 0, 0, 0); + } + + if (has_second_ref(xd->mi[0])) + xd->mi[0]->mode = NEW_NEWMV; + else + xd->mi[0]->mode = NEWMV; + + xd->mi[0]->mv[0] = x->best_mv; + xd->mi[0]->ref_frame[1] = NONE_FRAME; + + av1_build_inter_predictors_sby(&cpi->common, xd, mb_row, mb_col, NULL, + BLOCK_16X16); + + /* restore UMV window */ + x->mv_limits = tmp_mv_limits; + + return aom_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].dst.buf, xd->plane[0].dst.stride); +} + +static int do_16x16_motion_search(AV1_COMP *cpi, const MV *ref_mv, int mb_row, + int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + unsigned int err, tmp_err; + MV best_mv; + + // Try zero MV first + // FIXME should really use something like near/nearest MV and/or MV prediction + err = aom_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); + best_mv.col = best_mv.row = 0; + + // Test last reference frame using the previous best mv as the + // starting point (best reference) for the search + tmp_err = do_16x16_motion_iteration(cpi, ref_mv, mb_row, mb_col); + if (tmp_err < err) { + err = tmp_err; + best_mv = x->best_mv.as_mv; + } + + // If the current best reference mv is not centered on 0,0 then do a 0,0 + // based search as well. + if (ref_mv->row != 0 || ref_mv->col != 0) { + MV zero_ref_mv = kZeroMv; + + tmp_err = do_16x16_motion_iteration(cpi, &zero_ref_mv, mb_row, mb_col); + if (tmp_err < err) { + err = tmp_err; + best_mv = x->best_mv.as_mv; + } + } + + x->best_mv.as_mv = best_mv; + return err; +} + +static int do_16x16_zerozero_search(AV1_COMP *cpi, int_mv *dst_mv) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + unsigned int err; + + // Try zero MV first + // FIXME should really use something like near/nearest MV and/or MV prediction + err = aom_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); + + dst_mv->as_int = 0; + + return err; +} +static int find_best_16x16_intra(AV1_COMP *cpi, PREDICTION_MODE *pbest_mode) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + PREDICTION_MODE best_mode = -1, mode; + unsigned int best_err = INT_MAX; + + // calculate SATD for each intra prediction mode; + // we're intentionally not doing 4x4, we just want a rough estimate + for (mode = INTRA_MODE_START; mode < INTRA_MODE_END; mode++) { + unsigned int err; + + xd->mi[0]->mode = mode; + av1_predict_intra_block(cm, xd, 16, 16, TX_16X16, mode, 0, 0, + FILTER_INTRA_MODES, x->plane[0].src.buf, + x->plane[0].src.stride, xd->plane[0].dst.buf, + xd->plane[0].dst.stride, 0, 0, 0); + err = aom_sad16x16(x->plane[0].src.buf, x->plane[0].src.stride, + xd->plane[0].dst.buf, xd->plane[0].dst.stride); + + // find best + if (err < best_err) { + best_err = err; + best_mode = mode; + } + } + + if (pbest_mode) *pbest_mode = best_mode; + + return best_err; +} + +static void update_mbgraph_mb_stats(AV1_COMP *cpi, MBGRAPH_MB_STATS *stats, + YV12_BUFFER_CONFIG *buf, int mb_y_offset, + YV12_BUFFER_CONFIG *golden_ref, + const MV *prev_golden_ref_mv, + YV12_BUFFER_CONFIG *alt_ref, int mb_row, + int mb_col) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + int intra_error; + AV1_COMMON *cm = &cpi->common; + + // FIXME in practice we're completely ignoring chroma here + x->plane[0].src.buf = buf->y_buffer + mb_y_offset; + x->plane[0].src.stride = buf->y_stride; + + xd->plane[0].dst.buf = get_frame_new_buffer(cm)->y_buffer + mb_y_offset; + xd->plane[0].dst.stride = get_frame_new_buffer(cm)->y_stride; + + // do intra 16x16 prediction + intra_error = find_best_16x16_intra(cpi, &stats->ref[INTRA_FRAME].m.mode); + if (intra_error <= 0) intra_error = 1; + stats->ref[INTRA_FRAME].err = intra_error; + + // Golden frame MV search, if it exists and is different than last frame + if (golden_ref) { + int g_motion_error; + xd->plane[0].pre[0].buf = golden_ref->y_buffer + mb_y_offset; + xd->plane[0].pre[0].stride = golden_ref->y_stride; + g_motion_error = + do_16x16_motion_search(cpi, prev_golden_ref_mv, mb_row, mb_col); + stats->ref[GOLDEN_FRAME].m.mv = x->best_mv; + stats->ref[GOLDEN_FRAME].err = g_motion_error; + } else { + stats->ref[GOLDEN_FRAME].err = INT_MAX; + stats->ref[GOLDEN_FRAME].m.mv.as_int = 0; + } + + // Do an Alt-ref frame MV search, if it exists and is different than + // last/golden frame. + if (alt_ref) { + int a_motion_error; + xd->plane[0].pre[0].buf = alt_ref->y_buffer + mb_y_offset; + xd->plane[0].pre[0].stride = alt_ref->y_stride; + a_motion_error = + do_16x16_zerozero_search(cpi, &stats->ref[ALTREF_FRAME].m.mv); + + stats->ref[ALTREF_FRAME].err = a_motion_error; + } else { + stats->ref[ALTREF_FRAME].err = INT_MAX; + stats->ref[ALTREF_FRAME].m.mv.as_int = 0; + } +} + +static void update_mbgraph_frame_stats(AV1_COMP *cpi, + MBGRAPH_FRAME_STATS *stats, + YV12_BUFFER_CONFIG *buf, + YV12_BUFFER_CONFIG *golden_ref, + YV12_BUFFER_CONFIG *alt_ref) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + AV1_COMMON *const cm = &cpi->common; + + int mb_col, mb_row, offset = 0; + int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0; + MV gld_top_mv = kZeroMv; + MB_MODE_INFO mi_local; + + av1_zero(mi_local); + // Set up limit values for motion vectors to prevent them extending outside + // the UMV borders. + x->mv_limits.row_min = -BORDER_MV_PIXELS_B16; + x->mv_limits.row_max = (cm->mb_rows - 1) * 8 + BORDER_MV_PIXELS_B16; + xd->up_available = 0; + xd->plane[0].dst.stride = buf->y_stride; + xd->plane[0].pre[0].stride = buf->y_stride; + xd->plane[1].dst.stride = buf->uv_stride; + xd->mi[0] = &mi_local; + mi_local.sb_type = BLOCK_16X16; + mi_local.ref_frame[0] = LAST_FRAME; + mi_local.ref_frame[1] = NONE_FRAME; + + for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { + MV gld_left_mv = gld_top_mv; + int mb_y_in_offset = mb_y_offset; + int arf_y_in_offset = arf_y_offset; + int gld_y_in_offset = gld_y_offset; + + // Set up limit values for motion vectors to prevent them extending outside + // the UMV borders. + x->mv_limits.col_min = -BORDER_MV_PIXELS_B16; + x->mv_limits.col_max = (cm->mb_cols - 1) * 8 + BORDER_MV_PIXELS_B16; + xd->left_available = 0; + + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { + MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col]; + + update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset, golden_ref, + &gld_left_mv, alt_ref, mb_row, mb_col); + gld_left_mv = mb_stats->ref[GOLDEN_FRAME].m.mv.as_mv; + if (mb_col == 0) { + gld_top_mv = gld_left_mv; + } + xd->left_available = 1; + mb_y_in_offset += 16; + gld_y_in_offset += 16; + arf_y_in_offset += 16; + x->mv_limits.col_min -= 16; + x->mv_limits.col_max -= 16; + } + xd->up_available = 1; + mb_y_offset += buf->y_stride * 16; + gld_y_offset += golden_ref->y_stride * 16; + if (alt_ref) arf_y_offset += alt_ref->y_stride * 16; + x->mv_limits.row_min -= 16; + x->mv_limits.row_max -= 16; + offset += cm->mb_cols; + } +} + +// void separate_arf_mbs_byzz +static void separate_arf_mbs(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + int mb_col, mb_row, offset, i; + int mi_row, mi_col; + int ncnt[4] = { 0 }; + int n_frames = cpi->mbgraph_n_frames; + + int *arf_not_zz; + + CHECK_MEM_ERROR( + cm, arf_not_zz, + aom_calloc(cm->mb_rows * cm->mb_cols * sizeof(*arf_not_zz), 1)); + + // We are not interested in results beyond the alt ref itself. + if (n_frames > cpi->rc.frames_till_gf_update_due) + n_frames = cpi->rc.frames_till_gf_update_due; + + // defer cost to reference frames + for (i = n_frames - 1; i >= 0; i--) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + + for (offset = 0, mb_row = 0; mb_row < cm->mb_rows; + offset += cm->mb_cols, mb_row++) { + for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { + MBGRAPH_MB_STATS *mb_stats = &frame_stats->mb_stats[offset + mb_col]; + + int altref_err = mb_stats->ref[ALTREF_FRAME].err; + int intra_err = mb_stats->ref[INTRA_FRAME].err; + int golden_err = mb_stats->ref[GOLDEN_FRAME].err; + + // Test for altref vs intra and gf and that its mv was 0,0. + if (altref_err > 1000 || altref_err > intra_err || + altref_err > golden_err) { + arf_not_zz[offset + mb_col]++; + } + } + } + } + + // arf_not_zz is indexed by MB, but this loop is indexed by MI to avoid out + // of bound access in segmentation_map + for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) { + for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { + // If any of the blocks in the sequence failed then the MB + // goes in segment 0 + if (arf_not_zz[mi_row / 2 * cm->mb_cols + mi_col / 2]) { + ncnt[0]++; + cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 0; + } else { + cpi->segmentation_map[mi_row * cm->mi_cols + mi_col] = 1; + ncnt[1]++; + } + } + } + + // Only bother with segmentation if over 10% of the MBs in static segment + // if ( ncnt[1] && (ncnt[0] / ncnt[1] < 10) ) + if (1) { + // Note % of blocks that are marked as static + if (cm->MBs) + cpi->static_mb_pct = (ncnt[1] * 100) / (cm->mi_rows * cm->mi_cols); + + // This error case should not be reachable as this function should + // never be called with the common data structure uninitialized. + else + cpi->static_mb_pct = 0; + + av1_enable_segmentation(&cm->seg); + } else { + cpi->static_mb_pct = 0; + av1_disable_segmentation(&cm->seg); + } + + // Free localy allocated storage + aom_free(arf_not_zz); +} + +void av1_update_mbgraph_stats(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + int i, n_frames = av1_lookahead_depth(cpi->lookahead); + YV12_BUFFER_CONFIG *golden_ref = get_ref_frame_buffer(cpi, GOLDEN_FRAME); + + assert(golden_ref != NULL); + + // we need to look ahead beyond where the ARF transitions into + // being a GF - so exit if we don't look ahead beyond that + if (n_frames <= cpi->rc.frames_till_gf_update_due) return; + + if (n_frames > MAX_LAG_BUFFERS) n_frames = MAX_LAG_BUFFERS; + + cpi->mbgraph_n_frames = n_frames; + for (i = 0; i < n_frames; i++) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + memset(frame_stats->mb_stats, 0, + cm->mb_rows * cm->mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats)); + } + + // do motion search to find contribution of each reference to data + // later on in this GF group + // FIXME really, the GF/last MC search should be done forward, and + // the ARF MC search backwards, to get optimal results for MV caching + for (i = 0; i < n_frames; i++) { + MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; + struct lookahead_entry *q_cur = av1_lookahead_peek(cpi->lookahead, i); + + assert(q_cur != NULL); + + update_mbgraph_frame_stats(cpi, frame_stats, &q_cur->img, golden_ref, + cpi->source); + } + + aom_clear_system_state(); + + separate_arf_mbs(cpi); +} diff --git a/third_party/aom/av1/encoder/mbgraph.h b/third_party/aom/av1/encoder/mbgraph.h new file mode 100644 index 0000000000..ba08476f7a --- /dev/null +++ b/third_party/aom/av1/encoder/mbgraph.h @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_MBGRAPH_H_ +#define AOM_AV1_ENCODER_MBGRAPH_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + struct { + int err; + union { + int_mv mv; + PREDICTION_MODE mode; + } m; + } ref[REF_FRAMES]; +} MBGRAPH_MB_STATS; + +typedef struct { + MBGRAPH_MB_STATS *mb_stats; +} MBGRAPH_FRAME_STATS; + +struct AV1_COMP; + +void av1_update_mbgraph_stats(struct AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_MBGRAPH_H_ diff --git a/third_party/aom/av1/encoder/mcomp.c b/third_party/aom/av1/encoder/mcomp.c new file mode 100644 index 0000000000..8f6de9b532 --- /dev/null +++ b/third_party/aom/av1/encoder/mcomp.c @@ -0,0 +1,2885 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> +#include <math.h> +#include <stdio.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" + +#include "av1/common/common.h" +#include "av1/common/mvref_common.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/reconinter.h" + +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/reconinter_enc.h" + +// #define NEW_DIAMOND_SEARCH + +static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf, + const MV *mv) { + return &buf->buf[mv->row * buf->stride + mv->col]; +} + +void av1_set_mv_search_range(MvLimits *mv_limits, const MV *mv) { + int col_min = (mv->col >> 3) - MAX_FULL_PEL_VAL + (mv->col & 7 ? 1 : 0); + int row_min = (mv->row >> 3) - MAX_FULL_PEL_VAL + (mv->row & 7 ? 1 : 0); + int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL; + int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL; + + col_min = AOMMAX(col_min, (MV_LOW >> 3) + 1); + row_min = AOMMAX(row_min, (MV_LOW >> 3) + 1); + col_max = AOMMIN(col_max, (MV_UPP >> 3) - 1); + row_max = AOMMIN(row_max, (MV_UPP >> 3) - 1); + + // Get intersection of UMV window and valid MV window to reduce # of checks + // in diamond search. + if (mv_limits->col_min < col_min) mv_limits->col_min = col_min; + if (mv_limits->col_max > col_max) mv_limits->col_max = col_max; + if (mv_limits->row_min < row_min) mv_limits->row_min = row_min; + if (mv_limits->row_max > row_max) mv_limits->row_max = row_max; +} + +static void set_subpel_mv_search_range(const MvLimits *mv_limits, int *col_min, + int *col_max, int *row_min, int *row_max, + const MV *ref_mv) { + const int max_mv = MAX_FULL_PEL_VAL * 8; + const int minc = AOMMAX(mv_limits->col_min * 8, ref_mv->col - max_mv); + const int maxc = AOMMIN(mv_limits->col_max * 8, ref_mv->col + max_mv); + const int minr = AOMMAX(mv_limits->row_min * 8, ref_mv->row - max_mv); + const int maxr = AOMMIN(mv_limits->row_max * 8, ref_mv->row + max_mv); + + *col_min = AOMMAX(MV_LOW + 1, minc); + *col_max = AOMMIN(MV_UPP - 1, maxc); + *row_min = AOMMAX(MV_LOW + 1, minr); + *row_max = AOMMIN(MV_UPP - 1, maxr); +} + +int av1_init_search_range(int size) { + int sr = 0; + // Minimum search size no matter what the passed in value. + size = AOMMAX(16, size); + + while ((size << sr) < MAX_FULL_PEL_VAL) sr++; + + sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2); + return sr; +} + +static INLINE int mv_cost(const MV *mv, const int *joint_cost, + int *const comp_cost[2]) { + return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] + + comp_cost[1][mv->col]; +} + +int av1_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int weight) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + return ROUND_POWER_OF_TWO(mv_cost(&diff, mvjcost, mvcost) * weight, 7); +} + +#define PIXEL_TRANSFORM_ERROR_SCALE 4 +static int mv_err_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int error_per_bit) { + if (mvcost) { + const MV diff = { mv->row - ref->row, mv->col - ref->col }; + return (int)ROUND_POWER_OF_TWO_64( + (int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit, + RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT + + PIXEL_TRANSFORM_ERROR_SCALE); + } + return 0; +} + +static int mvsad_err_cost(const MACROBLOCK *x, const MV *mv, const MV *ref, + int sad_per_bit) { + const MV diff = { (mv->row - ref->row) * 8, (mv->col - ref->col) * 8 }; + return ROUND_POWER_OF_TWO( + (unsigned)mv_cost(&diff, x->nmvjointcost, x->mvcost) * sad_per_bit, + AV1_PROB_COST_SHIFT); +} + +void av1_init_dsmotion_compensation(search_site_config *cfg, int stride) { + int len, ss_count = 1; + + cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0; + cfg->ss[0].offset = 0; + + for (len = MAX_FIRST_STEP; len > 0; len /= 2) { + // Generate offsets for 4 search sites per step. + const MV ss_mvs[] = { { -len, 0 }, { len, 0 }, { 0, -len }, { 0, len } }; + int i; + for (i = 0; i < 4; ++i) { + search_site *const ss = &cfg->ss[ss_count++]; + ss->mv = ss_mvs[i]; + ss->offset = ss->mv.row * stride + ss->mv.col; + } + } + + cfg->ss_count = ss_count; + cfg->searches_per_step = 4; +} + +void av1_init3smotion_compensation(search_site_config *cfg, int stride) { + int len, ss_count = 1; + + cfg->ss[0].mv.col = cfg->ss[0].mv.row = 0; + cfg->ss[0].offset = 0; + + for (len = MAX_FIRST_STEP; len > 0; len /= 2) { + // Generate offsets for 8 search sites per step. + const MV ss_mvs[8] = { { -len, 0 }, { len, 0 }, { 0, -len }, + { 0, len }, { -len, -len }, { -len, len }, + { len, -len }, { len, len } }; + int i; + for (i = 0; i < 8; ++i) { + search_site *const ss = &cfg->ss[ss_count++]; + ss->mv = ss_mvs[i]; + ss->offset = ss->mv.row * stride + ss->mv.col; + } + } + + cfg->ss_count = ss_count; + cfg->searches_per_step = 8; +} + +/* + * To avoid the penalty for crossing cache-line read, preload the reference + * area in a small buffer, which is aligned to make sure there won't be crossing + * cache-line read while reading from this buffer. This reduced the cpu + * cycles spent on reading ref data in sub-pixel filter functions. + * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x + * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we + * could reduce the area. + */ + +// convert motion vector component to offset for sv[a]f calc +static INLINE int sp(int x) { return x & 7; } + +static INLINE const uint8_t *pre(const uint8_t *buf, int stride, int r, int c) { + const int offset = (r >> 3) * stride + (c >> 3); + return buf + offset; +} + +/* checks if (r, c) has better score than previous best */ +#define CHECK_BETTER(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + MV this_mv = { r, c }; \ + v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \ + if (second_pred == NULL) { \ + thismse = vfp->svf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ + src_address, src_stride, &sse); \ + } else if (mask) { \ + thismse = vfp->msvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ + src_address, src_stride, second_pred, mask, \ + mask_stride, invert_mask, &sse); \ + } else { \ + if (xd->jcp_param.use_jnt_comp_avg) \ + thismse = vfp->jsvaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ + src_address, src_stride, &sse, second_pred, \ + &xd->jcp_param); \ + else \ + thismse = vfp->svaf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), \ + src_address, src_stride, &sse, second_pred); \ + } \ + v += thismse; \ + if (v < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } + +#define CHECK_BETTER0(v, r, c) CHECK_BETTER(v, r, c) + +/* checks if (r, c) has better score than previous best */ +#define CHECK_BETTER1(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + MV this_mv = { r, c }; \ + thismse = upsampled_pref_error( \ + xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, \ + pre(y, y_stride, r, c), y_stride, sp(c), sp(r), second_pred, mask, \ + mask_stride, invert_mask, w, h, &sse, use_accurate_subpel_search); \ + v = mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, error_per_bit); \ + v += thismse; \ + if (v < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } + +#define FIRST_LEVEL_CHECKS \ + { \ + unsigned int left, right, up, down, diag; \ + CHECK_BETTER(left, tr, tc - hstep); \ + CHECK_BETTER(right, tr, tc + hstep); \ + CHECK_BETTER(up, tr - hstep, tc); \ + CHECK_BETTER(down, tr + hstep, tc); \ + whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); \ + switch (whichdir) { \ + case 0: CHECK_BETTER(diag, tr - hstep, tc - hstep); break; \ + case 1: CHECK_BETTER(diag, tr - hstep, tc + hstep); break; \ + case 2: CHECK_BETTER(diag, tr + hstep, tc - hstep); break; \ + case 3: CHECK_BETTER(diag, tr + hstep, tc + hstep); break; \ + } \ + } + +#define SECOND_LEVEL_CHECKS \ + { \ + int kr, kc; \ + unsigned int second; \ + if (tr != br && tc != bc) { \ + kr = br - tr; \ + kc = bc - tc; \ + CHECK_BETTER(second, tr + kr, tc + 2 * kc); \ + CHECK_BETTER(second, tr + 2 * kr, tc + kc); \ + } else if (tr == br && tc != bc) { \ + kc = bc - tc; \ + CHECK_BETTER(second, tr + hstep, tc + 2 * kc); \ + CHECK_BETTER(second, tr - hstep, tc + 2 * kc); \ + switch (whichdir) { \ + case 0: \ + case 1: CHECK_BETTER(second, tr + hstep, tc + kc); break; \ + case 2: \ + case 3: CHECK_BETTER(second, tr - hstep, tc + kc); break; \ + } \ + } else if (tr != br && tc == bc) { \ + kr = br - tr; \ + CHECK_BETTER(second, tr + 2 * kr, tc + hstep); \ + CHECK_BETTER(second, tr + 2 * kr, tc - hstep); \ + switch (whichdir) { \ + case 0: \ + case 2: CHECK_BETTER(second, tr + kr, tc + hstep); break; \ + case 1: \ + case 3: CHECK_BETTER(second, tr + kr, tc - hstep); break; \ + } \ + } \ + } + +// TODO(yunqingwang): SECOND_LEVEL_CHECKS_BEST was a rewrote of +// SECOND_LEVEL_CHECKS, and SECOND_LEVEL_CHECKS should be rewritten +// later in the same way. +#define SECOND_LEVEL_CHECKS_BEST(k) \ + { \ + unsigned int second; \ + int br0 = br; \ + int bc0 = bc; \ + assert(tr == br || tc == bc); \ + if (tr == br && tc != bc) { \ + kc = bc - tc; \ + } else if (tr != br && tc == bc) { \ + kr = br - tr; \ + } \ + CHECK_BETTER##k(second, br0 + kr, bc0); \ + CHECK_BETTER##k(second, br0, bc0 + kc); \ + if (br0 != br || bc0 != bc) { \ + CHECK_BETTER##k(second, br0 + kr, bc0 + kc); \ + } \ + } + +#define SETUP_SUBPEL_SEARCH \ + const uint8_t *const src_address = x->plane[0].src.buf; \ + const int src_stride = x->plane[0].src.stride; \ + const MACROBLOCKD *xd = &x->e_mbd; \ + unsigned int besterr = INT_MAX; \ + unsigned int sse; \ + unsigned int whichdir; \ + int thismse; \ + MV *bestmv = &x->best_mv.as_mv; \ + const unsigned int halfiters = iters_per_step; \ + const unsigned int quarteriters = iters_per_step; \ + const unsigned int eighthiters = iters_per_step; \ + const int y_stride = xd->plane[0].pre[0].stride; \ + const int offset = bestmv->row * y_stride + bestmv->col; \ + const uint8_t *const y = xd->plane[0].pre[0].buf; \ + \ + int br = bestmv->row * 8; \ + int bc = bestmv->col * 8; \ + int hstep = 4; \ + int minc, maxc, minr, maxr; \ + int tr = br; \ + int tc = bc; \ + \ + set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, \ + ref_mv); \ + \ + bestmv->row *= 8; \ + bestmv->col *= 8; + +static unsigned int setup_center_error( + const MACROBLOCKD *xd, const MV *bestmv, const MV *ref_mv, + int error_per_bit, const aom_variance_fn_ptr_t *vfp, + const uint8_t *const src, const int src_stride, const uint8_t *const y, + int y_stride, const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, int offset, int *mvjcost, + int *mvcost[2], unsigned int *sse1, int *distortion) { + unsigned int besterr; + if (second_pred != NULL) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + DECLARE_ALIGNED(16, uint16_t, comp_pred16[MAX_SB_SQUARE]); + uint8_t *comp_pred = CONVERT_TO_BYTEPTR(comp_pred16); + if (mask) { + aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, + y_stride, mask, mask_stride, invert_mask); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + aom_highbd_jnt_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, + y_stride, &xd->jcp_param); + else + aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, + y_stride); + } + besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); + } else { + DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]); + if (mask) { + aom_comp_mask_pred(comp_pred, second_pred, w, h, y + offset, y_stride, + mask, mask_stride, invert_mask); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + aom_jnt_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, + y_stride, &xd->jcp_param); + else + aom_comp_avg_pred(comp_pred, second_pred, w, h, y + offset, y_stride); + } + besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); + } + } else { + besterr = vfp->vf(y + offset, y_stride, src, src_stride, sse1); + } + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + return besterr; +} + +static INLINE int divide_and_round(int n, int d) { + return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d); +} + +static INLINE int is_cost_list_wellbehaved(int *cost_list) { + return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] && + cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4]; +} + +// Returns surface minima estimate at given precision in 1/2^n bits. +// Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C +// For a given set of costs S0, S1, S2, S3, S4 at points +// (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively, +// the solution for the location of the minima (x0, y0) is given by: +// x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0), +// y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0). +// The code below is an integerized version of that. +static void get_cost_surf_min(int *cost_list, int *ir, int *ic, int bits) { + *ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)), + (cost_list[1] - 2 * cost_list[0] + cost_list[3])); + *ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)), + (cost_list[4] - 2 * cost_list[0] + cost_list[2])); +} + +int av1_find_best_sub_pixel_tree_pruned_evenmore( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, + unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + SETUP_SUBPEL_SEARCH; + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, + src_address, src_stride, y, y_stride, + second_pred, mask, mask_stride, invert_mask, w, + h, offset, mvjcost, mvcost, sse1, distortion); + (void)halfiters; + (void)quarteriters; + (void)eighthiters; + (void)whichdir; + (void)allow_hp; + (void)forced_stop; + (void)hstep; + (void)use_accurate_subpel_search; + (void)cm; + (void)mi_row; + (void)mi_col; + + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { + int ir, ic; + unsigned int minpt; + get_cost_surf_min(cost_list, &ir, &ic, 2); + if (ir != 0 || ic != 0) { + CHECK_BETTER(minpt, tr + 2 * ir, tc + 2 * ic); + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + + tr = br; + tc = bc; + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + } + } + + tr = br; + tc = bc; + + if (allow_hp && forced_stop == 0) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +int av1_find_best_sub_pixel_tree_pruned_more( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, + unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + SETUP_SUBPEL_SEARCH; + (void)use_accurate_subpel_search; + (void)cm; + (void)mi_row; + (void)mi_col; + + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, + src_address, src_stride, y, y_stride, + second_pred, mask, mask_stride, invert_mask, w, + h, offset, mvjcost, mvcost, sse1, distortion); + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { + unsigned int minpt; + int ir, ic; + get_cost_surf_min(cost_list, &ir, &ic, 1); + if (ir != 0 || ic != 0) { + CHECK_BETTER(minpt, tr + ir * hstep, tc + ic * hstep); + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + tr = br; + tc = bc; + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + if (allow_hp && forced_stop == 0) { + tr = br; + tc = bc; + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +int av1_find_best_sub_pixel_tree_pruned( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, + unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + SETUP_SUBPEL_SEARCH; + (void)use_accurate_subpel_search; + (void)cm; + (void)mi_row; + (void)mi_col; + + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, + src_address, src_stride, y, y_stride, + second_pred, mask, mask_stride, invert_mask, w, + h, offset, mvjcost, mvcost, sse1, distortion); + if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && + cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && + cost_list[4] != INT_MAX) { + unsigned int left, right, up, down, diag; + whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) + + (cost_list[2] < cost_list[4] ? 0 : 2); + switch (whichdir) { + case 0: + CHECK_BETTER(left, tr, tc - hstep); + CHECK_BETTER(down, tr + hstep, tc); + CHECK_BETTER(diag, tr + hstep, tc - hstep); + break; + case 1: + CHECK_BETTER(right, tr, tc + hstep); + CHECK_BETTER(down, tr + hstep, tc); + CHECK_BETTER(diag, tr + hstep, tc + hstep); + break; + case 2: + CHECK_BETTER(left, tr, tc - hstep); + CHECK_BETTER(up, tr - hstep, tc); + CHECK_BETTER(diag, tr - hstep, tc - hstep); + break; + case 3: + CHECK_BETTER(right, tr, tc + hstep); + CHECK_BETTER(up, tr - hstep, tc); + CHECK_BETTER(diag, tr - hstep, tc + hstep); + break; + } + } else { + FIRST_LEVEL_CHECKS; + if (halfiters > 1) { + SECOND_LEVEL_CHECKS; + } + } + + tr = br; + tc = bc; + + // Each subsequent iteration checks at least one point in common with + // the last iteration could be 2 ( if diag selected) 1/4 pel + + // Note forced_stop: 0 - full, 1 - qtr only, 2 - half only + if (forced_stop != 2) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (quarteriters > 1) { + SECOND_LEVEL_CHECKS; + } + tr = br; + tc = bc; + } + + if (allow_hp && forced_stop == 0) { + hstep >>= 1; + FIRST_LEVEL_CHECKS; + if (eighthiters > 1) { + SECOND_LEVEL_CHECKS; + } + tr = br; + tc = bc; + } + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +/* clang-format off */ +static const MV search_step_table[12] = { + // left, right, up, down + { 0, -4 }, { 0, 4 }, { -4, 0 }, { 4, 0 }, + { 0, -2 }, { 0, 2 }, { -2, 0 }, { 2, 0 }, + { 0, -1 }, { 0, 1 }, { -1, 0 }, { 1, 0 } +}; +/* clang-format on */ + +static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *const cm, + int mi_row, int mi_col, const MV *const mv, + const aom_variance_fn_ptr_t *vfp, + const uint8_t *const src, const int src_stride, + const uint8_t *const y, int y_stride, + int subpel_x_q3, int subpel_y_q3, + const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + unsigned int *sse, int subpel_search) { + unsigned int besterr; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]); + uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred16); + if (second_pred != NULL) { + if (mask) { + aom_highbd_comp_mask_upsampled_pred( + xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, mask, mask_stride, invert_mask, xd->bd, + subpel_search); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + aom_highbd_jnt_comp_avg_upsampled_pred( + xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, xd->bd, &xd->jcp_param, subpel_search); + else + aom_highbd_comp_avg_upsampled_pred( + xd, cm, mi_row, mi_col, mv, pred8, second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, xd->bd, subpel_search); + } + } else { + aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred8, w, h, + subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, + subpel_search); + } + besterr = vfp->vf(pred8, w, src, src_stride, sse); + } else { + DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]); + if (second_pred != NULL) { + if (mask) { + aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, + second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, mask, + mask_stride, invert_mask, subpel_search); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + aom_jnt_comp_avg_upsampled_pred( + xd, cm, mi_row, mi_col, mv, pred, second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, &xd->jcp_param, subpel_search); + else + aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, + second_pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, subpel_search); + } + } else { + aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, subpel_search); + } + + besterr = vfp->vf(pred, w, src, src_stride, sse); + } + return besterr; +} + +static unsigned int upsampled_setup_center_error( + MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *bestmv, const MV *ref_mv, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, + const int src_stride, const uint8_t *const y, int y_stride, + const uint8_t *second_pred, const uint8_t *mask, int mask_stride, + int invert_mask, int w, int h, int offset, int *mvjcost, int *mvcost[2], + unsigned int *sse1, int *distortion, int subpel_search) { + unsigned int besterr = + upsampled_pref_error(xd, cm, mi_row, mi_col, bestmv, vfp, src, src_stride, + y + offset, y_stride, 0, 0, second_pred, mask, + mask_stride, invert_mask, w, h, sse1, subpel_search); + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + return besterr; +} + +// when use_accurate_subpel_search == 0 +static INLINE unsigned int estimate_upsampled_pref_error( + MACROBLOCKD *xd, const aom_variance_fn_ptr_t *vfp, const uint8_t *const src, + const int src_stride, const uint8_t *const pre, int y_stride, + int subpel_x_q3, int subpel_y_q3, const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, int invert_mask, unsigned int *sse) { + if (second_pred == NULL) { + return vfp->svf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, + sse); + } else if (mask) { + return vfp->msvf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, + second_pred, mask, mask_stride, invert_mask, sse); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + return vfp->jsvaf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, + src_stride, sse, second_pred, &xd->jcp_param); + else + return vfp->svaf(pre, y_stride, subpel_x_q3, subpel_y_q3, src, src_stride, + sse, second_pred); + } +} + +int av1_find_best_sub_pixel_tree( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], int *distortion, + unsigned int *sse1, const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + const uint8_t *const src_address = x->plane[0].src.buf; + const int src_stride = x->plane[0].src.stride; + MACROBLOCKD *xd = &x->e_mbd; + unsigned int besterr = INT_MAX; + unsigned int sse; + unsigned int thismse; + const int y_stride = xd->plane[0].pre[0].stride; + MV *bestmv = &x->best_mv.as_mv; + const int offset = bestmv->row * y_stride + bestmv->col; + const uint8_t *const y = xd->plane[0].pre[0].buf; + + int br = bestmv->row * 8; + int bc = bestmv->col * 8; + int hstep = 4; + int iter, round = 3 - forced_stop; + int tr = br; + int tc = bc; + const MV *search_step = search_step_table; + int idx, best_idx = -1; + unsigned int cost_array[5]; + int kr, kc; + int minc, maxc, minr, maxr; + + set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, ref_mv); + + if (!allow_hp) + if (round == 3) round = 2; + + bestmv->row *= 8; + bestmv->col *= 8; + + if (use_accurate_subpel_search) + besterr = upsampled_setup_center_error( + xd, cm, mi_row, mi_col, bestmv, ref_mv, error_per_bit, vfp, src_address, + src_stride, y, y_stride, second_pred, mask, mask_stride, invert_mask, w, + h, offset, mvjcost, mvcost, sse1, distortion, + use_accurate_subpel_search); + else + besterr = setup_center_error(xd, bestmv, ref_mv, error_per_bit, vfp, + src_address, src_stride, y, y_stride, + second_pred, mask, mask_stride, invert_mask, w, + h, offset, mvjcost, mvcost, sse1, distortion); + + (void)cost_list; // to silence compiler warning + + for (iter = 0; iter < round; ++iter) { + // Check vertical and horizontal sub-pixel positions. + for (idx = 0; idx < 4; ++idx) { + tr = br + search_step[idx].row; + tc = bc + search_step[idx].col; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + MV this_mv = { tr, tc }; + + if (use_accurate_subpel_search) { + thismse = upsampled_pref_error( + xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, + pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, + mask, mask_stride, invert_mask, w, h, &sse, + use_accurate_subpel_search); + } else { + thismse = estimate_upsampled_pref_error( + xd, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), + y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, + invert_mask, &sse); + } + + cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, + mvcost, error_per_bit); + + if (cost_array[idx] < besterr) { + best_idx = idx; + besterr = cost_array[idx]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = INT_MAX; + } + } + + // Check diagonal sub-pixel position + kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep); + kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep); + + tc = bc + kc; + tr = br + kr; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + MV this_mv = { tr, tc }; + + if (use_accurate_subpel_search) { + thismse = upsampled_pref_error( + xd, cm, mi_row, mi_col, &this_mv, vfp, src_address, src_stride, + pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), second_pred, + mask, mask_stride, invert_mask, w, h, &sse, + use_accurate_subpel_search); + } else { + thismse = estimate_upsampled_pref_error( + xd, vfp, src_address, src_stride, pre(y, y_stride, tr, tc), + y_stride, sp(tc), sp(tr), second_pred, mask, mask_stride, + invert_mask, &sse); + } + + cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, + error_per_bit); + + if (cost_array[4] < besterr) { + best_idx = 4; + besterr = cost_array[4]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = INT_MAX; + } + + if (best_idx < 4 && best_idx >= 0) { + br += search_step[best_idx].row; + bc += search_step[best_idx].col; + } else if (best_idx == 4) { + br = tr; + bc = tc; + } + + if (iters_per_step > 1 && best_idx != -1) { + if (use_accurate_subpel_search) { + SECOND_LEVEL_CHECKS_BEST(1); + } else { + SECOND_LEVEL_CHECKS_BEST(0); + } + } + + search_step += 4; + hstep >>= 1; + best_idx = -1; + } + + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +#undef PRE +#undef CHECK_BETTER + +unsigned int av1_compute_motion_cost(const AV1_COMP *cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + const MV *this_mv) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + const uint8_t *const src = x->plane[0].src.buf; + const int src_stride = x->plane[0].src.stride; + uint8_t *const dst = xd->plane[0].dst.buf; + const int dst_stride = xd->plane[0].dst.stride; + const aom_variance_fn_ptr_t *vfp = &cpi->fn_ptr[bsize]; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + unsigned int mse; + unsigned int sse; + + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize); + mse = vfp->vf(dst, dst_stride, src, src_stride, &sse); + mse += mv_err_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost, x->mvcost, + x->errorperbit); + return mse; +} + +// Refine MV in a small range +unsigned int av1_refine_warped_mv(const AV1_COMP *cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int *pts0, int *pts_inref0, + int total_samples) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, + { 0, -2 }, { 2, 0 }, { 0, 2 }, { -2, 0 } }; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + int16_t br = mbmi->mv[0].as_mv.row; + int16_t bc = mbmi->mv[0].as_mv.col; + int16_t *tr = &mbmi->mv[0].as_mv.row; + int16_t *tc = &mbmi->mv[0].as_mv.col; + WarpedMotionParams best_wm_params = mbmi->wm_params; + int best_num_proj_ref = mbmi->num_proj_ref; + unsigned int bestmse; + int minc, maxc, minr, maxr; + const int start = cm->allow_high_precision_mv ? 0 : 4; + int ite; + + set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, + &ref_mv.as_mv); + + // Calculate the center position's error + assert(bc >= minc && bc <= maxc && br >= minr && br <= maxr); + bestmse = av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col, + &mbmi->mv[0].as_mv); + + // MV search + for (ite = 0; ite < 2; ++ite) { + int best_idx = -1; + int idx; + + for (idx = start; idx < start + 4; ++idx) { + unsigned int thismse; + + *tr = br + neighbors[idx].row; + *tc = bc + neighbors[idx].col; + + if (*tc >= minc && *tc <= maxc && *tr >= minr && *tr <= maxr) { + MV this_mv = { *tr, *tc }; + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + + memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); + memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); + if (total_samples > 1) + mbmi->num_proj_ref = + selectSamples(&this_mv, pts, pts_inref, total_samples, bsize); + + if (!find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, *tr, + *tc, &mbmi->wm_params, mi_row, mi_col)) { + thismse = + av1_compute_motion_cost(cpi, x, bsize, mi_row, mi_col, &this_mv); + + if (thismse < bestmse) { + best_idx = idx; + best_wm_params = mbmi->wm_params; + best_num_proj_ref = mbmi->num_proj_ref; + bestmse = thismse; + } + } + } + } + + if (best_idx == -1) break; + + if (best_idx >= 0) { + br += neighbors[best_idx].row; + bc += neighbors[best_idx].col; + } + } + + *tr = br; + *tc = bc; + mbmi->wm_params = best_wm_params; + mbmi->num_proj_ref = best_num_proj_ref; + return bestmse; +} + +static INLINE int check_bounds(const MvLimits *mv_limits, int row, int col, + int range) { + return ((row - range) >= mv_limits->row_min) & + ((row + range) <= mv_limits->row_max) & + ((col - range) >= mv_limits->col_min) & + ((col + range) <= mv_limits->col_max); +} + +static INLINE int is_mv_in(const MvLimits *mv_limits, const MV *mv) { + return (mv->col >= mv_limits->col_min) && (mv->col <= mv_limits->col_max) && + (mv->row >= mv_limits->row_min) && (mv->row <= mv_limits->row_max); +} + +#define CHECK_BETTER \ + { \ + if (thissad < bestsad) { \ + if (use_mvcost) \ + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); \ + if (thissad < bestsad) { \ + bestsad = thissad; \ + best_site = i; \ + } \ + } \ + } + +#define MAX_PATTERN_SCALES 11 +#define MAX_PATTERN_CANDIDATES 8 // max number of canddiates per scale +#define PATTERN_CANDIDATES_REF 3 // number of refinement candidates + +// Calculate and return a sad+mvcost list around an integer best pel. +static INLINE void calc_int_cost_list(const MACROBLOCK *x, + const MV *const ref_mv, int sadpb, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *best_mv, int *cost_list) { + static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0]; + const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; + const int br = best_mv->row; + const int bc = best_mv->col; + int i; + unsigned int sse; + const MV this_mv = { br, bc }; + + cost_list[0] = + fn_ptr->vf(what->buf, what->stride, get_buf_from_mv(in_what, &this_mv), + in_what->stride, &sse) + + mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb); + if (check_bounds(&x->mv_limits, br, bc, 1)) { + for (i = 0; i < 4; i++) { + const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + cost_list[i + 1] = fn_ptr->vf(what->buf, what->stride, + get_buf_from_mv(in_what, &neighbor_mv), + in_what->stride, &sse) + + mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmvjointcost, + x->mvcost, x->errorperbit); + } + } else { + for (i = 0; i < 4; i++) { + const MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (!is_mv_in(&x->mv_limits, &neighbor_mv)) + cost_list[i + 1] = INT_MAX; + else + cost_list[i + 1] = + fn_ptr->vf(what->buf, what->stride, + get_buf_from_mv(in_what, &neighbor_mv), in_what->stride, + &sse) + + mv_err_cost(&neighbor_mv, &fcenter_mv, x->nmvjointcost, x->mvcost, + x->errorperbit); + } + } +} + +static INLINE void calc_int_sad_list(const MACROBLOCK *x, + const MV *const ref_mv, int sadpb, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *best_mv, int *cost_list, + const int use_mvcost, const int bestsad) { + static const MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &x->e_mbd.plane[0].pre[0]; + const MV fcenter_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int i; + const int br = best_mv->row; + const int bc = best_mv->col; + + if (cost_list[0] == INT_MAX) { + cost_list[0] = bestsad; + if (check_bounds(&x->mv_limits, br, bc, 1)) { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + cost_list[i + 1] = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + } + } else { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) + cost_list[i + 1] = INT_MAX; + else + cost_list[i + 1] = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + } + } + } else { + if (use_mvcost) { + for (i = 0; i < 4; i++) { + const MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; + if (cost_list[i + 1] != INT_MAX) { + cost_list[i + 1] += mvsad_err_cost(x, &this_mv, &fcenter_mv, sadpb); + } + } + } + } +} + +// Generic pattern search function that searches over multiple scales. +// Each scale can have a different number of candidates and shape of +// candidates as indicated in the num_candidates and candidates arrays +// passed into this function +// +static int pattern_search( + MACROBLOCK *x, MV *start_mv, int search_param, int sad_per_bit, + int do_init_search, int *cost_list, const aom_variance_fn_ptr_t *vfp, + int use_mvcost, const MV *center_mv, + const int num_candidates[MAX_PATTERN_SCALES], + const MV candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES]) { + const MACROBLOCKD *const xd = &x->e_mbd; + static const int search_param_to_steps[MAX_MVSEARCH_STEPS] = { + 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, + }; + int i, s, t; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const int last_is_4 = num_candidates[0] == 4; + int br, bc; + int bestsad = INT_MAX; + int thissad; + int k = -1; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + assert(search_param < MAX_MVSEARCH_STEPS); + int best_init_s = search_param_to_steps[search_param]; + // adjust ref_mv to make sure it is within MV range + clamp_mv(start_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + br = start_mv->row; + bc = start_mv->col; + if (cost_list != NULL) { + cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = + INT_MAX; + } + + // Work out the start point for the search + bestsad = vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, start_mv), in_what->stride) + + mvsad_err_cost(x, start_mv, &fcenter_mv, sad_per_bit); + + // Search all possible scales upto the search param around the center point + // pick the scale of the point that is best as the starting scale of + // further steps around it. + if (do_init_search) { + s = best_init_s; + best_init_s = -1; + for (t = 0; t <= s; ++t) { + int best_site = -1; + if (check_bounds(&x->mv_limits, br, bc, 1 << t)) { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[t]; i++) { + const MV this_mv = { br + candidates[t][i].row, + bc + candidates[t][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + if (best_site == -1) { + continue; + } else { + best_init_s = t; + k = best_site; + } + } + if (best_init_s != -1) { + br += candidates[best_init_s][k].row; + bc += candidates[best_init_s][k].col; + } + } + + // If the center point is still the best, just skip this and move to + // the refinement step. + if (best_init_s != -1) { + const int last_s = (last_is_4 && cost_list != NULL); + int best_site = -1; + s = best_init_s; + + for (; s >= last_s; s--) { + // No need to search all points the 1st time if initial search was used + if (!do_init_search || s != best_init_s) { + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site == -1) { + continue; + } else { + br += candidates[s][best_site].row; + bc += candidates[s][best_site].col; + k = best_site; + } + } + + do { + int next_chkpts_indices[PATTERN_CANDIDATES_REF]; + best_site = -1; + next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; + next_chkpts_indices[1] = k; + next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; + + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + k = next_chkpts_indices[best_site]; + br += candidates[s][k].row; + bc += candidates[s][k].col; + } + } while (best_site != -1); + } + + // Note: If we enter the if below, then cost_list must be non-NULL. + if (s == 0) { + cost_list[0] = bestsad; + if (!do_init_search || s != best_init_s) { + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + cost_list[i + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < num_candidates[s]; i++) { + const MV this_mv = { br + candidates[s][i].row, + bc + candidates[s][i].col }; + if (!is_mv_in(&x->mv_limits, &this_mv)) continue; + cost_list[i + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + br += candidates[s][best_site].row; + bc += candidates[s][best_site].col; + k = best_site; + } + } + while (best_site != -1) { + int next_chkpts_indices[PATTERN_CANDIDATES_REF]; + best_site = -1; + next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; + next_chkpts_indices[1] = k; + next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; + cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; + cost_list[((k + 2) % 4) + 1] = cost_list[0]; + cost_list[0] = bestsad; + + if (check_bounds(&x->mv_limits, br, bc, 1 << s)) { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + cost_list[next_chkpts_indices[i] + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } else { + for (i = 0; i < PATTERN_CANDIDATES_REF; i++) { + const MV this_mv = { + br + candidates[s][next_chkpts_indices[i]].row, + bc + candidates[s][next_chkpts_indices[i]].col + }; + if (!is_mv_in(&x->mv_limits, &this_mv)) { + cost_list[next_chkpts_indices[i] + 1] = INT_MAX; + continue; + } + cost_list[next_chkpts_indices[i] + 1] = thissad = + vfp->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &this_mv), in_what->stride); + CHECK_BETTER + } + } + + if (best_site != -1) { + k = next_chkpts_indices[best_site]; + br += candidates[s][k].row; + bc += candidates[s][k].col; + } + } + } + } + + // Returns the one-away integer pel cost/sad around the best as follows: + // cost_list[0]: cost/sad at the best integer pel + // cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel + // cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel + // cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel + // cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel + if (cost_list) { + const MV best_int_mv = { br, bc }; + if (last_is_4) { + calc_int_sad_list(x, center_mv, sad_per_bit, vfp, &best_int_mv, cost_list, + use_mvcost, bestsad); + } else { + calc_int_cost_list(x, center_mv, sad_per_bit, vfp, &best_int_mv, + cost_list); + } + } + x->best_mv.as_mv.row = br; + x->best_mv.as_mv.col = bc; + return bestsad; +} + +int av1_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const aom_variance_fn_ptr_t *vfp, + int use_mvcost) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + unsigned int unused; + + return vfp->vf(what->buf, what->stride, get_buf_from_mv(in_what, best_mv), + in_what->stride, &unused) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +} + +int av1_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const aom_variance_fn_ptr_t *vfp, int use_mvcost) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + unsigned int unused; + + if (xd->jcp_param.use_jnt_comp_avg) + return vfp->jsvaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0, + what->buf, what->stride, &unused, second_pred, + &xd->jcp_param) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); + else + return vfp->svaf(get_buf_from_mv(in_what, best_mv), in_what->stride, 0, 0, + what->buf, what->stride, &unused, second_pred) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +} + +int av1_get_mvpred_mask_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, + int invert_mask, const aom_variance_fn_ptr_t *vfp, + int use_mvcost) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + unsigned int unused; + + return vfp->msvf(what->buf, what->stride, 0, 0, + get_buf_from_mv(in_what, best_mv), in_what->stride, + second_pred, mask, mask_stride, invert_mask, &unused) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +} + +int av1_hex_search(MACROBLOCK *x, MV *start_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv) { + // First scale has 8-closest points, the rest have 6 points in hex shape + // at increasing scales + static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6, + 6, 6, 6, 6, 6 }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, + { -1, 0 } }, + { { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } }, + { { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } }, + { { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } }, + { { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } }, + { { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 }, + { -32, 0 } }, + { { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 }, + { -64, 0 } }, + { { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 }, + { -128, 0 } }, + { { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 }, + { -256, 0 } }, + { { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 }, + { -512, 0 } }, + { { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 }, + { -512, 1024 }, { -1024, 0 } }, + }; + /* clang-format on */ + return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, + cost_list, vfp, use_mvcost, center_mv, + hex_num_candidates, hex_candidates); +} + +static int bigdia_search(MACROBLOCK *x, MV *start_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv) { + // First scale has 4-closest points, the rest have 8 points in diamond + // shape at increasing scales + static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = { + 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV + bigdia_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }, + { { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 }, + { -1, 1 }, { -2, 0 } }, + { { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 }, + { -2, 2 }, { -4, 0 } }, + { { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 }, + { -4, 4 }, { -8, 0 } }, + { { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 }, + { -8, 8 }, { -16, 0 } }, + { { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 }, + { 0, 32 }, { -16, 16 }, { -32, 0 } }, + { { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 }, + { 0, 64 }, { -32, 32 }, { -64, 0 } }, + { { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 }, + { 0, 128 }, { -64, 64 }, { -128, 0 } }, + { { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 }, + { 0, 256 }, { -128, 128 }, { -256, 0 } }, + { { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 }, + { 0, 512 }, { -256, 256 }, { -512, 0 } }, + { { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 }, + { 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } }, + }; + /* clang-format on */ + return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, + cost_list, vfp, use_mvcost, center_mv, + bigdia_num_candidates, bigdia_candidates); +} + +static int square_search(MACROBLOCK *x, MV *start_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv) { + // All scales have 8 closest points in square shape + static const int square_num_candidates[MAX_PATTERN_SCALES] = { + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + }; + // Note that the largest candidate step at each scale is 2^scale + /* clang-format off */ + static const MV + square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { + { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, + { -1, 1 }, { -1, 0 } }, + { { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 }, + { -2, 2 }, { -2, 0 } }, + { { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 }, + { -4, 4 }, { -4, 0 } }, + { { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 }, + { -8, 8 }, { -8, 0 } }, + { { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 }, + { 0, 16 }, { -16, 16 }, { -16, 0 } }, + { { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 }, + { 0, 32 }, { -32, 32 }, { -32, 0 } }, + { { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 }, + { 0, 64 }, { -64, 64 }, { -64, 0 } }, + { { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 }, + { 0, 128 }, { -128, 128 }, { -128, 0 } }, + { { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 }, + { 0, 256 }, { -256, 256 }, { -256, 0 } }, + { { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 }, + { 0, 512 }, { -512, 512 }, { -512, 0 } }, + { { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 }, + { 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } }, + }; + /* clang-format on */ + return pattern_search(x, start_mv, search_param, sad_per_bit, do_init_search, + cost_list, vfp, use_mvcost, center_mv, + square_num_candidates, square_candidates); +} + +static int fast_hex_search(MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, + int do_init_search, // must be zero for fast_hex + int *cost_list, const aom_variance_fn_ptr_t *vfp, + int use_mvcost, const MV *center_mv) { + return av1_hex_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param), + sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, + center_mv); +} + +static int fast_dia_search(MACROBLOCK *x, MV *ref_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv) { + return bigdia_search(x, ref_mv, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_param), + sad_per_bit, do_init_search, cost_list, vfp, use_mvcost, + center_mv); +} + +#undef CHECK_BETTER + +// Exhuastive motion search around a given centre position with a given +// step size. +static int exhuastive_mesh_search(MACROBLOCK *x, MV *ref_mv, MV *best_mv, + int range, int step, int sad_per_bit, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + MV fcenter_mv = { center_mv->row, center_mv->col }; + unsigned int best_sad = INT_MAX; + int r, c, i; + int start_col, end_col, start_row, end_row; + int col_step = (step > 1) ? step : 4; + + assert(step >= 1); + + clamp_mv(&fcenter_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + *best_mv = fcenter_mv; + best_sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &fcenter_mv), in_what->stride) + + mvsad_err_cost(x, &fcenter_mv, ref_mv, sad_per_bit); + start_row = AOMMAX(-range, x->mv_limits.row_min - fcenter_mv.row); + start_col = AOMMAX(-range, x->mv_limits.col_min - fcenter_mv.col); + end_row = AOMMIN(range, x->mv_limits.row_max - fcenter_mv.row); + end_col = AOMMIN(range, x->mv_limits.col_max - fcenter_mv.col); + + for (r = start_row; r <= end_row; r += step) { + for (c = start_col; c <= end_col; c += col_step) { + // Step > 1 means we are not checking every location in this pass. + if (step > 1) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c }; + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, get_buf_from_mv(in_what, &mv), + in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + x->second_best_mv.as_mv = *best_mv; + *best_mv = mv; + } + } + } else { + // 4 sads in a single call if we are checking every location + if (c + 3 <= end_col) { + unsigned int sads[4]; + const uint8_t *addrs[4]; + for (i = 0; i < 4; ++i) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + addrs[i] = get_buf_from_mv(in_what, &mv); + } + fn_ptr->sdx4df(what->buf, what->stride, addrs, in_what->stride, sads); + + for (i = 0; i < 4; ++i) { + if (sads[i] < best_sad) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + const unsigned int sad = + sads[i] + mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + x->second_best_mv.as_mv = *best_mv; + *best_mv = mv; + } + } + } + } else { + for (i = 0; i < end_col - c; ++i) { + const MV mv = { fcenter_mv.row + r, fcenter_mv.col + c + i }; + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, ref_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + x->second_best_mv.as_mv = *best_mv; + *best_mv = mv; + } + } + } + } + } + } + } + + return best_sad; +} + +int av1_diamond_search_sad_c(MACROBLOCK *x, const search_site_config *cfg, + MV *ref_mv, MV *best_mv, int search_param, + int sad_per_bit, int *num00, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + int i, j, step; + + const MACROBLOCKD *const xd = &x->e_mbd; + uint8_t *what = x->plane[0].src.buf; + const int what_stride = x->plane[0].src.stride; + const uint8_t *in_what; + const int in_what_stride = xd->plane[0].pre[0].stride; + const uint8_t *best_address; + + unsigned int bestsad = INT_MAX; + int best_site = 0; + int last_site = 0; + + int ref_row; + int ref_col; + + // search_param determines the length of the initial step and hence the number + // of iterations. + // 0 = initial step (MAX_FIRST_STEP) pel + // 1 = (MAX_FIRST_STEP/2) pel, + // 2 = (MAX_FIRST_STEP/4) pel... + const search_site *ss = &cfg->ss[search_param * cfg->searches_per_step]; + const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param; + + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + ref_row = ref_mv->row; + ref_col = ref_mv->col; + *num00 = 0; + best_mv->row = ref_row; + best_mv->col = ref_col; + + // Work out the start point for the search + in_what = xd->plane[0].pre[0].buf + ref_row * in_what_stride + ref_col; + best_address = in_what; + + // Check the starting position + bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride) + + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit); + + i = 1; + + for (step = 0; step < tot_steps; step++) { + int all_in = 1, t; + + // All_in is true if every one of the points we are checking are within + // the bounds of the image. + all_in &= ((best_mv->row + ss[i].mv.row) > x->mv_limits.row_min); + all_in &= ((best_mv->row + ss[i + 1].mv.row) < x->mv_limits.row_max); + all_in &= ((best_mv->col + ss[i + 2].mv.col) > x->mv_limits.col_min); + all_in &= ((best_mv->col + ss[i + 3].mv.col) < x->mv_limits.col_max); + + // If all the pixels are within the bounds we don't check whether the + // search point is valid in this loop, otherwise we check each point + // for validity.. + if (all_in) { + unsigned int sad_array[4]; + + for (j = 0; j < cfg->searches_per_step; j += 4) { + unsigned char const *block_offset[4]; + + for (t = 0; t < 4; t++) + block_offset[t] = ss[i + t].offset + best_address; + + fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, + sad_array); + + for (t = 0; t < 4; t++, i++) { + if (sad_array[t] < bestsad) { + const MV this_mv = { best_mv->row + ss[i].mv.row, + best_mv->col + ss[i].mv.col }; + sad_array[t] += + mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (sad_array[t] < bestsad) { + bestsad = sad_array[t]; + best_site = i; + } + } + } + } + } else { + for (j = 0; j < cfg->searches_per_step; j++) { + // Trap illegal vectors + const MV this_mv = { best_mv->row + ss[i].mv.row, + best_mv->col + ss[i].mv.col }; + + if (is_mv_in(&x->mv_limits, &this_mv)) { + const uint8_t *const check_here = ss[i].offset + best_address; + unsigned int thissad = + fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + + if (thissad < bestsad) { + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (thissad < bestsad) { + bestsad = thissad; + best_site = i; + } + } + } + i++; + } + } + if (best_site != last_site) { + x->second_best_mv.as_mv = *best_mv; + best_mv->row += ss[best_site].mv.row; + best_mv->col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + last_site = best_site; +#if defined(NEW_DIAMOND_SEARCH) + while (1) { + const MV this_mv = { best_mv->row + ss[best_site].mv.row, + best_mv->col + ss[best_site].mv.col }; + if (is_mv_in(&x->mv_limits, &this_mv)) { + const uint8_t *const check_here = ss[best_site].offset + best_address; + unsigned int thissad = + fn_ptr->sdf(what, what_stride, check_here, in_what_stride); + if (thissad < bestsad) { + thissad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (thissad < bestsad) { + bestsad = thissad; + best_mv->row += ss[best_site].mv.row; + best_mv->col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + continue; + } + } + } + break; + } +#endif + } else if (best_address == in_what) { + (*num00)++; + } + } + return bestsad; +} + +/* do_refine: If last step (1-away) of n-step search doesn't pick the center + point as the best match, we will do a final 1-away diamond + refining search */ +static int full_pixel_diamond(const AV1_COMP *const cpi, MACROBLOCK *x, + MV *mvp_full, int step_param, int sadpb, + int further_steps, int do_refine, int *cost_list, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv) { + MV temp_mv; + int thissme, n, num00 = 0; + int bestsme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, + step_param, sadpb, &n, fn_ptr, ref_mv); + if (bestsme < INT_MAX) + bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + x->best_mv.as_mv = temp_mv; + + // If there won't be more n-step search, check to see if refining search is + // needed. + if (n > further_steps) do_refine = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + num00--; + } else { + thissme = cpi->diamond_search_sad(x, &cpi->ss_cfg, mvp_full, &temp_mv, + step_param + n, sadpb, &num00, fn_ptr, + ref_mv); + if (thissme < INT_MAX) + thissme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + + // check to see if refining search is needed. + if (num00 > further_steps - n) do_refine = 0; + + if (thissme < bestsme) { + bestsme = thissme; + x->best_mv.as_mv = temp_mv; + } + } + } + + // final 1-away diamond refining search + if (do_refine) { + const int search_range = 8; + MV best_mv = x->best_mv.as_mv; + thissme = av1_refining_search_sad(x, &best_mv, sadpb, search_range, fn_ptr, + ref_mv); + if (thissme < INT_MAX) + thissme = av1_get_mvpred_var(x, &best_mv, ref_mv, fn_ptr, 1); + if (thissme < bestsme) { + bestsme = thissme; + x->best_mv.as_mv = best_mv; + } + } + + // Return cost list. + if (cost_list) { + calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, &x->best_mv.as_mv, cost_list); + } + return bestsme; +} + +#define MIN_RANGE 7 +#define MAX_RANGE 256 +#define MIN_INTERVAL 1 +// Runs an limited range exhaustive mesh search using a pattern set +// according to the encode speed profile. +static int full_pixel_exhaustive(const AV1_COMP *const cpi, MACROBLOCK *x, + const MV *centre_mv_full, int sadpb, + int *cost_list, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv) { + const SPEED_FEATURES *const sf = &cpi->sf; + MV temp_mv = { centre_mv_full->row, centre_mv_full->col }; + MV f_ref_mv = { ref_mv->row >> 3, ref_mv->col >> 3 }; + int bestsme; + int i; + int interval = sf->mesh_patterns[0].interval; + int range = sf->mesh_patterns[0].range; + int baseline_interval_divisor; + + // Keep track of number of exhaustive calls (this frame in this thread). + ++(*x->ex_search_count_ptr); + + // Trap illegal values for interval and range for this function. + if ((range < MIN_RANGE) || (range > MAX_RANGE) || (interval < MIN_INTERVAL) || + (interval > range)) + return INT_MAX; + + baseline_interval_divisor = range / interval; + + // Check size of proposed first range against magnitude of the centre + // value used as a starting point. + range = AOMMAX(range, (5 * AOMMAX(abs(temp_mv.row), abs(temp_mv.col))) / 4); + range = AOMMIN(range, MAX_RANGE); + interval = AOMMAX(interval, range / baseline_interval_divisor); + + // initial search + bestsme = exhuastive_mesh_search(x, &f_ref_mv, &temp_mv, range, interval, + sadpb, fn_ptr, &temp_mv); + + if ((interval > MIN_INTERVAL) && (range > MIN_RANGE)) { + // Progressive searches with range and step size decreasing each time + // till we reach a step size of 1. Then break out. + for (i = 1; i < MAX_MESH_STEP; ++i) { + // First pass with coarser step and longer range + bestsme = exhuastive_mesh_search( + x, &f_ref_mv, &temp_mv, sf->mesh_patterns[i].range, + sf->mesh_patterns[i].interval, sadpb, fn_ptr, &temp_mv); + + if (sf->mesh_patterns[i].interval == 1) break; + } + } + + if (bestsme < INT_MAX) + bestsme = av1_get_mvpred_var(x, &temp_mv, ref_mv, fn_ptr, 1); + *dst_mv = temp_mv; + + // Return cost list. + if (cost_list) { + calc_int_cost_list(x, ref_mv, sadpb, fn_ptr, dst_mv, cost_list); + } + return bestsme; +} + +int av1_refining_search_sad(MACROBLOCK *x, MV *ref_mv, int error_per_bit, + int search_range, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + const uint8_t *best_address = get_buf_from_mv(in_what, ref_mv); + unsigned int best_sad = + fn_ptr->sdf(what->buf, what->stride, best_address, in_what->stride) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); + int i, j; + + for (i = 0; i < search_range; i++) { + int best_site = -1; + const int all_in = ((ref_mv->row - 1) > x->mv_limits.row_min) & + ((ref_mv->row + 1) < x->mv_limits.row_max) & + ((ref_mv->col - 1) > x->mv_limits.col_min) & + ((ref_mv->col + 1) < x->mv_limits.col_max); + + if (all_in) { + unsigned int sads[4]; + const uint8_t *const positions[4] = { best_address - in_what->stride, + best_address - 1, best_address + 1, + best_address + in_what->stride }; + + fn_ptr->sdx4df(what->buf, what->stride, positions, in_what->stride, sads); + + for (j = 0; j < 4; ++j) { + if (sads[j] < best_sad) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + sads[j] += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sads[j] < best_sad) { + best_sad = sads[j]; + best_site = j; + } + } + } + } else { + for (j = 0; j < 4; ++j) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + + if (is_mv_in(&x->mv_limits, &mv)) { + unsigned int sad = + fn_ptr->sdf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = j; + } + } + } + } + } + + if (best_site == -1) { + break; + } else { + x->second_best_mv.as_mv = *ref_mv; + ref_mv->row += neighbors[best_site].row; + ref_mv->col += neighbors[best_site].col; + best_address = get_buf_from_mv(in_what, ref_mv); + } + } + + return best_sad; +} + +// This function is called when we do joint motion search in comp_inter_inter +// mode, or when searching for one component of an ext-inter compound mode. +int av1_refining_search_8p_c(MACROBLOCK *x, int error_per_bit, int search_range, + const aom_variance_fn_ptr_t *fn_ptr, + const uint8_t *mask, int mask_stride, + int invert_mask, const MV *center_mv, + const uint8_t *second_pred) { + static const search_neighbors neighbors[8] = { + { { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 }, + { { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 }, + { { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 }, + { { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 }, + { { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 }, + { { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 }, + { { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 }, + { { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 } + }; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const what = &x->plane[0].src; + const struct buf_2d *const in_what = &xd->plane[0].pre[0]; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + MV *best_mv = &x->best_mv.as_mv; + unsigned int best_sad = INT_MAX; + int i, j; + uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P * SEARCH_GRID_STRIDE_8P] = + { 0 }; + int grid_center = SEARCH_GRID_CENTER_8P; + int grid_coord = grid_center; + + clamp_mv(best_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + if (mask) { + best_sad = fn_ptr->msdf(what->buf, what->stride, + get_buf_from_mv(in_what, best_mv), in_what->stride, + second_pred, mask, mask_stride, invert_mask) + + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + best_sad = fn_ptr->jsdaf(what->buf, what->stride, + get_buf_from_mv(in_what, best_mv), + in_what->stride, second_pred, &xd->jcp_param) + + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); + else + best_sad = fn_ptr->sdaf(what->buf, what->stride, + get_buf_from_mv(in_what, best_mv), + in_what->stride, second_pred) + + mvsad_err_cost(x, best_mv, &fcenter_mv, error_per_bit); + } + + do_refine_search_grid[grid_coord] = 1; + + for (i = 0; i < search_range; ++i) { + int best_site = -1; + + for (j = 0; j < 8; ++j) { + grid_coord = grid_center + neighbors[j].coord_offset; + if (do_refine_search_grid[grid_coord] == 1) { + continue; + } + const MV mv = { best_mv->row + neighbors[j].coord.row, + best_mv->col + neighbors[j].coord.col }; + + do_refine_search_grid[grid_coord] = 1; + if (is_mv_in(&x->mv_limits, &mv)) { + unsigned int sad; + if (mask) { + sad = fn_ptr->msdf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride, + second_pred, mask, mask_stride, invert_mask); + } else { + if (xd->jcp_param.use_jnt_comp_avg) + sad = fn_ptr->jsdaf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride, + second_pred, &xd->jcp_param); + else + sad = fn_ptr->sdaf(what->buf, what->stride, + get_buf_from_mv(in_what, &mv), in_what->stride, + second_pred); + } + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = j; + } + } + } + } + + if (best_site == -1) { + break; + } else { + best_mv->row += neighbors[best_site].coord.row; + best_mv->col += neighbors[best_site].coord.col; + grid_center += neighbors[best_site].coord_offset; + } + } + return best_sad; +} + +#define MIN_EX_SEARCH_LIMIT 128 +static int is_exhaustive_allowed(const AV1_COMP *const cpi, MACROBLOCK *x) { + const SPEED_FEATURES *const sf = &cpi->sf; + const int max_ex = + AOMMAX(MIN_EX_SEARCH_LIMIT, + (*x->m_search_count_ptr * sf->max_exaustive_pct) / 100); + + return sf->allow_exhaustive_searches && + (sf->exhaustive_searches_thresh < INT_MAX) && + (*x->ex_search_count_ptr <= max_ex) && !cpi->rc.is_src_frame_alt_ref; +} + +int av1_full_pixel_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + MV *mvp_full, int step_param, int method, + int run_mesh_search, int error_per_bit, + int *cost_list, const MV *ref_mv, int var_max, int rd, + int x_pos, int y_pos, int intra) { + const SPEED_FEATURES *const sf = &cpi->sf; + const aom_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize]; + int var = 0; + + if (cost_list) { + cost_list[0] = INT_MAX; + cost_list[1] = INT_MAX; + cost_list[2] = INT_MAX; + cost_list[3] = INT_MAX; + cost_list[4] = INT_MAX; + } + + // Keep track of number of searches (this frame in this thread). + ++(*x->m_search_count_ptr); + + switch (method) { + case FAST_DIAMOND: + var = fast_dia_search(x, mvp_full, step_param, error_per_bit, 0, + cost_list, fn_ptr, 1, ref_mv); + break; + case FAST_HEX: + var = fast_hex_search(x, mvp_full, step_param, error_per_bit, 0, + cost_list, fn_ptr, 1, ref_mv); + break; + case HEX: + var = av1_hex_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv); + break; + case SQUARE: + var = square_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv); + break; + case BIGDIA: + var = bigdia_search(x, mvp_full, step_param, error_per_bit, 1, cost_list, + fn_ptr, 1, ref_mv); + break; + case NSTEP: + var = full_pixel_diamond(cpi, x, mvp_full, step_param, error_per_bit, + MAX_MVSEARCH_STEPS - 1 - step_param, 1, + cost_list, fn_ptr, ref_mv); + + // Should we allow a follow on exhaustive search? + if (is_exhaustive_allowed(cpi, x)) { + int exhuastive_thr = sf->exhaustive_searches_thresh; + exhuastive_thr >>= + 10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); + + // Threshold variance for an exhaustive full search. + if (var > exhuastive_thr) { + int var_ex; + MV tmp_mv_ex; + var_ex = + full_pixel_exhaustive(cpi, x, &x->best_mv.as_mv, error_per_bit, + cost_list, fn_ptr, ref_mv, &tmp_mv_ex); + + if (var_ex < var) { + var = var_ex; + x->best_mv.as_mv = tmp_mv_ex; + } + } + } + break; + default: assert(0 && "Invalid search method."); + } + + // Should we allow a follow on exhaustive search? + if (!run_mesh_search) { + if (method == NSTEP) { + if (is_exhaustive_allowed(cpi, x)) { + int exhuastive_thr = sf->exhaustive_searches_thresh; + exhuastive_thr >>= + 10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); + // Threshold variance for an exhaustive full search. + if (var > exhuastive_thr) run_mesh_search = 1; + } + } + } + + if (run_mesh_search) { + int var_ex; + MV tmp_mv_ex; + var_ex = full_pixel_exhaustive(cpi, x, &x->best_mv.as_mv, error_per_bit, + cost_list, fn_ptr, ref_mv, &tmp_mv_ex); + if (var_ex < var) { + var = var_ex; + x->best_mv.as_mv = tmp_mv_ex; + } + } + + if (method != NSTEP && rd && var < var_max) + var = av1_get_mvpred_var(x, &x->best_mv.as_mv, ref_mv, fn_ptr, 1); + + do { + if (!intra || !av1_use_hash_me(&cpi->common)) break; + + // already single ME + // get block size and original buffer of current block + const int block_height = block_size_high[bsize]; + const int block_width = block_size_wide[bsize]; + if (block_height == block_width && x_pos >= 0 && y_pos >= 0) { + if (block_width == 4 || block_width == 8 || block_width == 16 || + block_width == 32 || block_width == 64 || block_width == 128) { + uint8_t *what = x->plane[0].src.buf; + const int what_stride = x->plane[0].src.stride; + uint32_t hash_value1, hash_value2; + MV best_hash_mv; + int best_hash_cost = INT_MAX; + + // for the hashMap + hash_table *ref_frame_hash = + intra + ? &cpi->common.cur_frame->hash_table + : av1_get_ref_frame_hash_map(cpi, x->e_mbd.mi[0]->ref_frame[0]); + + av1_get_block_hash_value( + what, what_stride, block_width, &hash_value1, &hash_value2, + x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, x); + + const int count = av1_hash_table_count(ref_frame_hash, hash_value1); + // for intra, at lest one matching can be found, itself. + if (count <= (intra ? 1 : 0)) { + break; + } + + Iterator iterator = + av1_hash_get_first_iterator(ref_frame_hash, hash_value1); + for (int i = 0; i < count; i++, iterator_increment(&iterator)) { + block_hash ref_block_hash = *(block_hash *)(iterator_get(&iterator)); + if (hash_value2 == ref_block_hash.hash_value2) { + // For intra, make sure the prediction is from valid area. + if (intra) { + const int mi_col = x_pos / MI_SIZE; + const int mi_row = y_pos / MI_SIZE; + const MV dv = { 8 * (ref_block_hash.y - y_pos), + 8 * (ref_block_hash.x - x_pos) }; + if (!av1_is_dv_valid(dv, &cpi->common, &x->e_mbd, mi_row, mi_col, + bsize, cpi->common.seq_params.mib_size_log2)) + continue; + } + MV hash_mv; + hash_mv.col = ref_block_hash.x - x_pos; + hash_mv.row = ref_block_hash.y - y_pos; + if (!is_mv_in(&x->mv_limits, &hash_mv)) continue; + const int refCost = + av1_get_mvpred_var(x, &hash_mv, ref_mv, fn_ptr, 1); + if (refCost < best_hash_cost) { + best_hash_cost = refCost; + best_hash_mv = hash_mv; + } + } + } + if (best_hash_cost < var) { + x->second_best_mv = x->best_mv; + x->best_mv.as_mv = best_hash_mv; + var = best_hash_cost; + } + } + } + } while (0); + + return var; +} + +/* returns subpixel variance error function */ +#define DIST(r, c) \ + vfp->osvf(pre(y, y_stride, r, c), y_stride, sp(c), sp(r), z, mask, &sse) + +/* checks if (r, c) has better score than previous best */ +#define MVC(r, c) \ + (unsigned int)(mvcost \ + ? ((mvjcost[((r) != rr) * 2 + ((c) != rc)] + \ + mvcost[0][((r)-rr)] + (int64_t)mvcost[1][((c)-rc)]) * \ + error_per_bit + \ + 4096) >> \ + 13 \ + : 0) + +#define CHECK_BETTER(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + thismse = (DIST(r, c)); \ + if ((v = MVC(r, c) + thismse) < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } + +#undef CHECK_BETTER0 +#define CHECK_BETTER0(v, r, c) CHECK_BETTER(v, r, c) + +#undef CHECK_BETTER1 +#define CHECK_BETTER1(v, r, c) \ + if (c >= minc && c <= maxc && r >= minr && r <= maxr) { \ + MV this_mv = { r, c }; \ + thismse = upsampled_obmc_pref_error(xd, cm, mi_row, mi_col, &this_mv, \ + mask, vfp, z, pre(y, y_stride, r, c), \ + y_stride, sp(c), sp(r), w, h, &sse, \ + use_accurate_subpel_search); \ + if ((v = MVC(r, c) + thismse) < besterr) { \ + besterr = v; \ + br = r; \ + bc = c; \ + *distortion = thismse; \ + *sse1 = sse; \ + } \ + } else { \ + v = INT_MAX; \ + } + +static unsigned int setup_obmc_center_error( + const int32_t *mask, const MV *bestmv, const MV *ref_mv, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, const int32_t *const wsrc, + const uint8_t *const y, int y_stride, int offset, int *mvjcost, + int *mvcost[2], unsigned int *sse1, int *distortion) { + unsigned int besterr; + besterr = vfp->ovf(y + offset, y_stride, wsrc, mask, sse1); + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + return besterr; +} + +static int upsampled_obmc_pref_error( + MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *const mv, const int32_t *mask, const aom_variance_fn_ptr_t *vfp, + const int32_t *const wsrc, const uint8_t *const y, int y_stride, + int subpel_x_q3, int subpel_y_q3, int w, int h, unsigned int *sse, + int subpel_search) { + unsigned int besterr; + + DECLARE_ALIGNED(16, uint8_t, pred[2 * MAX_SB_SQUARE]); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred); + aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred8, w, h, + subpel_x_q3, subpel_y_q3, y, y_stride, xd->bd, + subpel_search); + besterr = vfp->ovf(pred8, w, wsrc, mask, sse); + } else { + aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, pred, w, h, subpel_x_q3, + subpel_y_q3, y, y_stride, subpel_search); + + besterr = vfp->ovf(pred, w, wsrc, mask, sse); + } + return besterr; +} + +static unsigned int upsampled_setup_obmc_center_error( + MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, + const int32_t *mask, const MV *bestmv, const MV *ref_mv, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, const int32_t *const wsrc, + const uint8_t *const y, int y_stride, int w, int h, int offset, + int *mvjcost, int *mvcost[2], unsigned int *sse1, int *distortion, + int subpel_search) { + unsigned int besterr = upsampled_obmc_pref_error( + xd, cm, mi_row, mi_col, bestmv, mask, vfp, wsrc, y + offset, y_stride, 0, + 0, w, h, sse1, subpel_search); + *distortion = besterr; + besterr += mv_err_cost(bestmv, ref_mv, mvjcost, mvcost, error_per_bit); + return besterr; +} + +int av1_find_best_obmc_sub_pixel_tree_up( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + MV *bestmv, const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, + int is_second, int use_accurate_subpel_search) { + const int32_t *wsrc = x->wsrc_buf; + const int32_t *mask = x->mask_buf; + const int *const z = wsrc; + const int *const src_address = z; + MACROBLOCKD *xd = &x->e_mbd; + struct macroblockd_plane *const pd = &xd->plane[0]; + MB_MODE_INFO *mbmi = xd->mi[0]; + unsigned int besterr = INT_MAX; + unsigned int sse; + unsigned int thismse; + + int rr = ref_mv->row; + int rc = ref_mv->col; + int br = bestmv->row * 8; + int bc = bestmv->col * 8; + int hstep = 4; + int iter; + int round = 3 - forced_stop; + int tr = br; + int tc = bc; + const MV *search_step = search_step_table; + int idx, best_idx = -1; + unsigned int cost_array[5]; + int kr, kc; + const int w = block_size_wide[mbmi->sb_type]; + const int h = block_size_high[mbmi->sb_type]; + int offset; + int y_stride; + const uint8_t *y; + + int minc, maxc, minr, maxr; + + set_subpel_mv_search_range(&x->mv_limits, &minc, &maxc, &minr, &maxr, ref_mv); + + y = pd->pre[is_second].buf; + y_stride = pd->pre[is_second].stride; + offset = bestmv->row * y_stride + bestmv->col; + + if (!allow_hp) + if (round == 3) round = 2; + + bestmv->row *= 8; + bestmv->col *= 8; + // use_accurate_subpel_search can be 0 or 1 or 2 + if (use_accurate_subpel_search) + besterr = upsampled_setup_obmc_center_error( + xd, cm, mi_row, mi_col, mask, bestmv, ref_mv, error_per_bit, vfp, z, y, + y_stride, w, h, offset, mvjcost, mvcost, sse1, distortion, + use_accurate_subpel_search); + else + besterr = setup_obmc_center_error(mask, bestmv, ref_mv, error_per_bit, vfp, + z, y, y_stride, offset, mvjcost, mvcost, + sse1, distortion); + + for (iter = 0; iter < round; ++iter) { + // Check vertical and horizontal sub-pixel positions. + for (idx = 0; idx < 4; ++idx) { + tr = br + search_step[idx].row; + tc = bc + search_step[idx].col; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + MV this_mv = { tr, tc }; + if (use_accurate_subpel_search) { + thismse = upsampled_obmc_pref_error( + xd, cm, mi_row, mi_col, &this_mv, mask, vfp, src_address, + pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), w, h, &sse, + use_accurate_subpel_search); + } else { + thismse = vfp->osvf(pre(y, y_stride, tr, tc), y_stride, sp(tc), + sp(tr), src_address, mask, &sse); + } + + cost_array[idx] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, + mvcost, error_per_bit); + if (cost_array[idx] < besterr) { + best_idx = idx; + besterr = cost_array[idx]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = INT_MAX; + } + } + + // Check diagonal sub-pixel position + kc = (cost_array[0] <= cost_array[1] ? -hstep : hstep); + kr = (cost_array[2] <= cost_array[3] ? -hstep : hstep); + + tc = bc + kc; + tr = br + kr; + if (tc >= minc && tc <= maxc && tr >= minr && tr <= maxr) { + MV this_mv = { tr, tc }; + + if (use_accurate_subpel_search) { + thismse = upsampled_obmc_pref_error( + xd, cm, mi_row, mi_col, &this_mv, mask, vfp, src_address, + pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), w, h, &sse, + use_accurate_subpel_search); + } else { + thismse = vfp->osvf(pre(y, y_stride, tr, tc), y_stride, sp(tc), sp(tr), + src_address, mask, &sse); + } + + cost_array[4] = thismse + mv_err_cost(&this_mv, ref_mv, mvjcost, mvcost, + error_per_bit); + + if (cost_array[4] < besterr) { + best_idx = 4; + besterr = cost_array[4]; + *distortion = thismse; + *sse1 = sse; + } + } else { + cost_array[idx] = INT_MAX; + } + + if (best_idx < 4 && best_idx >= 0) { + br += search_step[best_idx].row; + bc += search_step[best_idx].col; + } else if (best_idx == 4) { + br = tr; + bc = tc; + } + + if (iters_per_step > 1 && best_idx != -1) { + if (use_accurate_subpel_search) { + SECOND_LEVEL_CHECKS_BEST(1); + } else { + SECOND_LEVEL_CHECKS_BEST(0); + } + } + + tr = br; + tc = bc; + + search_step += 4; + hstep >>= 1; + best_idx = -1; + } + + // These lines insure static analysis doesn't warn that + // tr and tc aren't used after the above point. + (void)tr; + (void)tc; + + bestmv->row = br; + bestmv->col = bc; + + return besterr; +} + +#undef DIST +#undef MVC +#undef CHECK_BETTER + +static int get_obmc_mvpred_var(const MACROBLOCK *x, const int32_t *wsrc, + const int32_t *mask, const MV *best_mv, + const MV *center_mv, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + int is_second) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; + const MV mv = { best_mv->row * 8, best_mv->col * 8 }; + unsigned int unused; + + return vfp->ovf(get_buf_from_mv(in_what, best_mv), in_what->stride, wsrc, + mask, &unused) + + (use_mvcost ? mv_err_cost(&mv, center_mv, x->nmvjointcost, x->mvcost, + x->errorperbit) + : 0); +} + +int obmc_refining_search_sad(const MACROBLOCK *x, const int32_t *wsrc, + const int32_t *mask, MV *ref_mv, int error_per_bit, + int search_range, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, int is_second) { + const MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + unsigned int best_sad = fn_ptr->osdf(get_buf_from_mv(in_what, ref_mv), + in_what->stride, wsrc, mask) + + mvsad_err_cost(x, ref_mv, &fcenter_mv, error_per_bit); + int i, j; + + for (i = 0; i < search_range; i++) { + int best_site = -1; + + for (j = 0; j < 4; j++) { + const MV mv = { ref_mv->row + neighbors[j].row, + ref_mv->col + neighbors[j].col }; + if (is_mv_in(&x->mv_limits, &mv)) { + unsigned int sad = fn_ptr->osdf(get_buf_from_mv(in_what, &mv), + in_what->stride, wsrc, mask); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, error_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = j; + } + } + } + } + + if (best_site == -1) { + break; + } else { + ref_mv->row += neighbors[best_site].row; + ref_mv->col += neighbors[best_site].col; + } + } + return best_sad; +} + +int obmc_diamond_search_sad(const MACROBLOCK *x, const search_site_config *cfg, + const int32_t *wsrc, const int32_t *mask, + MV *ref_mv, MV *best_mv, int search_param, + int sad_per_bit, int *num00, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, int is_second) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const in_what = &xd->plane[0].pre[is_second]; + // search_param determines the length of the initial step and hence the number + // of iterations + // 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 = + // (MAX_FIRST_STEP/4) pel... etc. + const search_site *const ss = &cfg->ss[search_param * cfg->searches_per_step]; + const int tot_steps = (cfg->ss_count / cfg->searches_per_step) - search_param; + const MV fcenter_mv = { center_mv->row >> 3, center_mv->col >> 3 }; + const uint8_t *best_address, *in_what_ref; + int best_sad = INT_MAX; + int best_site = 0; + int last_site = 0; + int i, j, step; + + clamp_mv(ref_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + in_what_ref = in_what->buf + ref_mv->row * in_what->stride + ref_mv->col; + best_address = in_what_ref; + *num00 = 0; + *best_mv = *ref_mv; + + // Check the starting position + best_sad = fn_ptr->osdf(best_address, in_what->stride, wsrc, mask) + + mvsad_err_cost(x, best_mv, &fcenter_mv, sad_per_bit); + + i = 1; + + for (step = 0; step < tot_steps; step++) { + for (j = 0; j < cfg->searches_per_step; j++) { + const MV mv = { best_mv->row + ss[i].mv.row, + best_mv->col + ss[i].mv.col }; + if (is_mv_in(&x->mv_limits, &mv)) { + int sad = fn_ptr->osdf(best_address + ss[i].offset, in_what->stride, + wsrc, mask); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &mv, &fcenter_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_site = i; + } + } + } + + i++; + } + + if (best_site != last_site) { + best_mv->row += ss[best_site].mv.row; + best_mv->col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + last_site = best_site; +#if defined(NEW_DIAMOND_SEARCH) + while (1) { + const MV this_mv = { best_mv->row + ss[best_site].mv.row, + best_mv->col + ss[best_site].mv.col }; + if (is_mv_in(&x->mv_limits, &this_mv)) { + int sad = fn_ptr->osdf(best_address + ss[best_site].offset, + in_what->stride, wsrc, mask); + if (sad < best_sad) { + sad += mvsad_err_cost(x, &this_mv, &fcenter_mv, sad_per_bit); + if (sad < best_sad) { + best_sad = sad; + best_mv->row += ss[best_site].mv.row; + best_mv->col += ss[best_site].mv.col; + best_address += ss[best_site].offset; + continue; + } + } + } + break; + } +#endif + } else if (best_address == in_what_ref) { + (*num00)++; + } + } + return best_sad; +} + +static int obmc_full_pixel_diamond(const AV1_COMP *cpi, MACROBLOCK *x, + MV *mvp_full, int step_param, int sadpb, + int further_steps, int do_refine, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv, + int is_second) { + const int32_t *wsrc = x->wsrc_buf; + const int32_t *mask = x->mask_buf; + MV temp_mv; + int thissme, n, num00 = 0; + int bestsme = + obmc_diamond_search_sad(x, &cpi->ss_cfg, wsrc, mask, mvp_full, &temp_mv, + step_param, sadpb, &n, fn_ptr, ref_mv, is_second); + if (bestsme < INT_MAX) + bestsme = get_obmc_mvpred_var(x, wsrc, mask, &temp_mv, ref_mv, fn_ptr, 1, + is_second); + *dst_mv = temp_mv; + + // If there won't be more n-step search, check to see if refining search is + // needed. + if (n > further_steps) do_refine = 0; + + while (n < further_steps) { + ++n; + + if (num00) { + num00--; + } else { + thissme = obmc_diamond_search_sad(x, &cpi->ss_cfg, wsrc, mask, mvp_full, + &temp_mv, step_param + n, sadpb, &num00, + fn_ptr, ref_mv, is_second); + if (thissme < INT_MAX) + thissme = get_obmc_mvpred_var(x, wsrc, mask, &temp_mv, ref_mv, fn_ptr, + 1, is_second); + + // check to see if refining search is needed. + if (num00 > further_steps - n) do_refine = 0; + + if (thissme < bestsme) { + bestsme = thissme; + *dst_mv = temp_mv; + } + } + } + + // final 1-away diamond refining search + if (do_refine) { + const int search_range = 8; + MV best_mv = *dst_mv; + thissme = obmc_refining_search_sad(x, wsrc, mask, &best_mv, sadpb, + search_range, fn_ptr, ref_mv, is_second); + if (thissme < INT_MAX) + thissme = get_obmc_mvpred_var(x, wsrc, mask, &best_mv, ref_mv, fn_ptr, 1, + is_second); + if (thissme < bestsme) { + bestsme = thissme; + *dst_mv = best_mv; + } + } + return bestsme; +} + +int av1_obmc_full_pixel_search(const AV1_COMP *cpi, MACROBLOCK *x, MV *mvp_full, + int step_param, int sadpb, int further_steps, + int do_refine, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv, int is_second) { + if (cpi->sf.obmc_full_pixel_search_level == 0) { + return obmc_full_pixel_diamond(cpi, x, mvp_full, step_param, sadpb, + further_steps, do_refine, fn_ptr, ref_mv, + dst_mv, is_second); + } else { + const int32_t *wsrc = x->wsrc_buf; + const int32_t *mask = x->mask_buf; + const int search_range = 8; + *dst_mv = *mvp_full; + clamp_mv(dst_mv, x->mv_limits.col_min, x->mv_limits.col_max, + x->mv_limits.row_min, x->mv_limits.row_max); + int thissme = obmc_refining_search_sad( + x, wsrc, mask, dst_mv, sadpb, search_range, fn_ptr, ref_mv, is_second); + if (thissme < INT_MAX) + thissme = get_obmc_mvpred_var(x, wsrc, mask, dst_mv, ref_mv, fn_ptr, 1, + is_second); + return thissme; + } +} + +// Note(yunqingwang): The following 2 functions are only used in the motion +// vector unit test, which return extreme motion vectors allowed by the MV +// limits. +#define COMMON_MV_TEST \ + SETUP_SUBPEL_SEARCH; \ + \ + (void)error_per_bit; \ + (void)vfp; \ + (void)src_address; \ + (void)src_stride; \ + (void)y; \ + (void)y_stride; \ + (void)second_pred; \ + (void)w; \ + (void)h; \ + (void)use_accurate_subpel_search; \ + (void)offset; \ + (void)mvjcost; \ + (void)mvcost; \ + (void)sse1; \ + (void)distortion; \ + \ + (void)halfiters; \ + (void)quarteriters; \ + (void)eighthiters; \ + (void)whichdir; \ + (void)forced_stop; \ + (void)hstep; \ + \ + (void)tr; \ + (void)tc; \ + (void)sse; \ + (void)thismse; \ + (void)cost_list; +// Return the maximum MV. +int av1_return_max_sub_pixel_mv(MACROBLOCK *x, const AV1_COMMON *const cm, + int mi_row, int mi_col, const MV *ref_mv, + int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, + int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], + int *distortion, unsigned int *sse1, + const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + COMMON_MV_TEST; + (void)mask; + (void)mask_stride; + (void)invert_mask; + (void)minr; + (void)minc; + + (void)cm; + (void)mi_row; + (void)mi_col; + + bestmv->row = maxr; + bestmv->col = maxc; + besterr = 0; + // In the sub-pel motion search, if hp is not used, then the last bit of mv + // has to be 0. + lower_mv_precision(bestmv, allow_hp, 0); + return besterr; +} +// Return the minimum MV. +int av1_return_min_sub_pixel_mv(MACROBLOCK *x, const AV1_COMMON *const cm, + int mi_row, int mi_col, const MV *ref_mv, + int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, + int forced_stop, int iters_per_step, + int *cost_list, int *mvjcost, int *mvcost[2], + int *distortion, unsigned int *sse1, + const uint8_t *second_pred, const uint8_t *mask, + int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search) { + COMMON_MV_TEST; + (void)maxr; + (void)maxc; + (void)mask; + (void)mask_stride; + (void)invert_mask; + + (void)cm; + (void)mi_row; + (void)mi_col; + + bestmv->row = minr; + bestmv->col = minc; + besterr = 0; + // In the sub-pel motion search, if hp is not used, then the last bit of mv + // has to be 0. + lower_mv_precision(bestmv, allow_hp, 0); + return besterr; +} diff --git a/third_party/aom/av1/encoder/mcomp.h b/third_party/aom/av1/encoder/mcomp.h new file mode 100644 index 0000000000..a975218b09 --- /dev/null +++ b/third_party/aom/av1/encoder/mcomp.h @@ -0,0 +1,161 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_MCOMP_H_ +#define AOM_AV1_ENCODER_MCOMP_H_ + +#include "av1/encoder/block.h" +#include "aom_dsp/variance.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// The maximum number of steps in a step search given the largest +// allowed initial step +#define MAX_MVSEARCH_STEPS 11 +// Max full pel mv specified in the unit of full pixel +// Enable the use of motion vector in range [-1023, 1023]. +#define MAX_FULL_PEL_VAL ((1 << (MAX_MVSEARCH_STEPS - 1)) - 1) +// Maximum size of the first step in full pel units +#define MAX_FIRST_STEP (1 << (MAX_MVSEARCH_STEPS - 1)) +// Allowed motion vector pixel distance outside image border +// for Block_16x16 +#define BORDER_MV_PIXELS_B16 (16 + AOM_INTERP_EXTEND) + +#define SEARCH_RANGE_8P 3 +#define SEARCH_GRID_STRIDE_8P (2 * SEARCH_RANGE_8P + 1) +#define SEARCH_GRID_CENTER_8P \ + (SEARCH_RANGE_8P * SEARCH_GRID_STRIDE_8P + SEARCH_RANGE_8P) + +// motion search site +typedef struct search_site { + MV mv; + int offset; +} search_site; + +typedef struct search_site_config { + search_site ss[8 * MAX_MVSEARCH_STEPS + 1]; + int ss_count; + int searches_per_step; +} search_site_config; + +typedef struct { + MV coord; + int coord_offset; +} search_neighbors; + +void av1_init_dsmotion_compensation(search_site_config *cfg, int stride); +void av1_init3smotion_compensation(search_site_config *cfg, int stride); + +void av1_set_mv_search_range(MvLimits *mv_limits, const MV *mv); + +int av1_mv_bit_cost(const MV *mv, const MV *ref, const int *mvjcost, + int *mvcost[2], int weight); + +// Utility to compute variance + MV rate cost for a given MV +int av1_get_mvpred_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const aom_variance_fn_ptr_t *vfp, + int use_mvcost); +int av1_get_mvpred_av_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const aom_variance_fn_ptr_t *vfp, int use_mvcost); +int av1_get_mvpred_mask_var(const MACROBLOCK *x, const MV *best_mv, + const MV *center_mv, const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, + int invert_mask, const aom_variance_fn_ptr_t *vfp, + int use_mvcost); + +struct AV1_COMP; +struct SPEED_FEATURES; + +int av1_init_search_range(int size); + +int av1_refining_search_sad(struct macroblock *x, MV *ref_mv, int sad_per_bit, + int distance, const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv); + +// Runs sequence of diamond searches in smaller steps for RD. +int av1_full_pixel_diamond(const struct AV1_COMP *cpi, MACROBLOCK *x, + MV *mvp_full, int step_param, int sadpb, + int further_steps, int do_refine, int *cost_list, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv); + +int av1_hex_search(MACROBLOCK *x, MV *start_mv, int search_param, + int sad_per_bit, int do_init_search, int *cost_list, + const aom_variance_fn_ptr_t *vfp, int use_mvcost, + const MV *center_mv); + +typedef int(fractional_mv_step_fp)( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, + int forced_stop, // 0 - full, 1 - qtr only, 2 - half only + int iters_per_step, int *cost_list, int *mvjcost, int *mvcost[2], + int *distortion, unsigned int *sse1, const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, int invert_mask, int w, int h, + int use_accurate_subpel_search); + +extern fractional_mv_step_fp av1_find_best_sub_pixel_tree; +extern fractional_mv_step_fp av1_find_best_sub_pixel_tree_pruned; +extern fractional_mv_step_fp av1_find_best_sub_pixel_tree_pruned_more; +extern fractional_mv_step_fp av1_find_best_sub_pixel_tree_pruned_evenmore; +extern fractional_mv_step_fp av1_return_max_sub_pixel_mv; +extern fractional_mv_step_fp av1_return_min_sub_pixel_mv; + +typedef int (*av1_full_search_fn_t)(const MACROBLOCK *x, const MV *ref_mv, + int sad_per_bit, int distance, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *center_mv, MV *best_mv); + +typedef int (*av1_diamond_search_fn_t)( + MACROBLOCK *x, const search_site_config *cfg, MV *ref_mv, MV *best_mv, + int search_param, int sad_per_bit, int *num00, + const aom_variance_fn_ptr_t *fn_ptr, const MV *center_mv); + +int av1_refining_search_8p_c(MACROBLOCK *x, int error_per_bit, int search_range, + const aom_variance_fn_ptr_t *fn_ptr, + const uint8_t *mask, int mask_stride, + int invert_mask, const MV *center_mv, + const uint8_t *second_pred); + +int av1_full_pixel_search(const struct AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, MV *mvp_full, int step_param, + int method, int run_mesh_search, int error_per_bit, + int *cost_list, const MV *ref_mv, int var_max, int rd, + int x_pos, int y_pos, int intra); + +int av1_obmc_full_pixel_search(const struct AV1_COMP *cpi, MACROBLOCK *x, + MV *mvp_full, int step_param, int sadpb, + int further_steps, int do_refine, + const aom_variance_fn_ptr_t *fn_ptr, + const MV *ref_mv, MV *dst_mv, int is_second); +int av1_find_best_obmc_sub_pixel_tree_up( + MACROBLOCK *x, const AV1_COMMON *const cm, int mi_row, int mi_col, + MV *bestmv, const MV *ref_mv, int allow_hp, int error_per_bit, + const aom_variance_fn_ptr_t *vfp, int forced_stop, int iters_per_step, + int *mvjcost, int *mvcost[2], int *distortion, unsigned int *sse1, + int is_second, int use_accurate_subpel_search); + +unsigned int av1_compute_motion_cost(const struct AV1_COMP *cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, + int mi_row, int mi_col, const MV *this_mv); +unsigned int av1_refine_warped_mv(const struct AV1_COMP *cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, + int mi_row, int mi_col, int *pts0, + int *pts_inref0, int total_samples); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_MCOMP_H_ diff --git a/third_party/aom/av1/encoder/mips/msa/error_msa.c b/third_party/aom/av1/encoder/mips/msa/error_msa.c new file mode 100644 index 0000000000..2e86dee430 --- /dev/null +++ b/third_party/aom/av1/encoder/mips/msa/error_msa.c @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/av1_rtcd.h" + +#include "aom_dsp/mips/macros_msa.h" + +#define BLOCK_ERROR_BLOCKSIZE_MSA(BSize) \ + static int64_t block_error_##BSize##size_msa( \ + const int16_t *coeff_ptr, const int16_t *dq_coeff_ptr, int64_t *ssz) { \ + int64_t err = 0; \ + uint32_t loop_cnt; \ + v8i16 coeff, dq_coeff, coeff_r_h, coeff_l_h; \ + v4i32 diff_r, diff_l, coeff_r_w, coeff_l_w; \ + v2i64 sq_coeff_r, sq_coeff_l; \ + v2i64 err0, err_dup0, err1, err_dup1; \ + \ + coeff = LD_SH(coeff_ptr); \ + dq_coeff = LD_SH(dq_coeff_ptr); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DOTP_SW2_SD(coeff_r_w, coeff_l_w, coeff_r_w, coeff_l_w, sq_coeff_r, \ + sq_coeff_l); \ + DOTP_SW2_SD(diff_r, diff_l, diff_r, diff_l, err0, err1); \ + \ + coeff = LD_SH(coeff_ptr + 8); \ + dq_coeff = LD_SH(dq_coeff_ptr + 8); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff_ptr += 16; \ + dq_coeff_ptr += 16; \ + \ + for (loop_cnt = ((BSize >> 4) - 1); loop_cnt--;) { \ + coeff = LD_SH(coeff_ptr); \ + dq_coeff = LD_SH(dq_coeff_ptr); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff = LD_SH(coeff_ptr + 8); \ + dq_coeff = LD_SH(dq_coeff_ptr + 8); \ + UNPCK_SH_SW(coeff, coeff_r_w, coeff_l_w); \ + ILVRL_H2_SH(coeff, dq_coeff, coeff_r_h, coeff_l_h); \ + HSUB_UH2_SW(coeff_r_h, coeff_l_h, diff_r, diff_l); \ + DPADD_SD2_SD(coeff_r_w, coeff_l_w, sq_coeff_r, sq_coeff_l); \ + DPADD_SD2_SD(diff_r, diff_l, err0, err1); \ + \ + coeff_ptr += 16; \ + dq_coeff_ptr += 16; \ + } \ + \ + err_dup0 = __msa_splati_d(sq_coeff_r, 1); \ + err_dup1 = __msa_splati_d(sq_coeff_l, 1); \ + sq_coeff_r += err_dup0; \ + sq_coeff_l += err_dup1; \ + *ssz = __msa_copy_s_d(sq_coeff_r, 0); \ + *ssz += __msa_copy_s_d(sq_coeff_l, 0); \ + \ + err_dup0 = __msa_splati_d(err0, 1); \ + err_dup1 = __msa_splati_d(err1, 1); \ + err0 += err_dup0; \ + err1 += err_dup1; \ + err = __msa_copy_s_d(err0, 0); \ + err += __msa_copy_s_d(err1, 0); \ + \ + return err; \ + } + +/* clang-format off */ +BLOCK_ERROR_BLOCKSIZE_MSA(16) +BLOCK_ERROR_BLOCKSIZE_MSA(64) +BLOCK_ERROR_BLOCKSIZE_MSA(256) +BLOCK_ERROR_BLOCKSIZE_MSA(1024) +/* clang-format on */ + +int64_t av1_block_error_msa(const tran_low_t *coeff_ptr, + const tran_low_t *dq_coeff_ptr, intptr_t blk_size, + int64_t *ssz) { + int64_t err; + const int16_t *coeff = (const int16_t *)coeff_ptr; + const int16_t *dq_coeff = (const int16_t *)dq_coeff_ptr; + + switch (blk_size) { + case 16: err = block_error_16size_msa(coeff, dq_coeff, ssz); break; + case 64: err = block_error_64size_msa(coeff, dq_coeff, ssz); break; + case 256: err = block_error_256size_msa(coeff, dq_coeff, ssz); break; + case 1024: err = block_error_1024size_msa(coeff, dq_coeff, ssz); break; + default: + err = av1_block_error_c(coeff_ptr, dq_coeff_ptr, blk_size, ssz); + break; + } + + return err; +} diff --git a/third_party/aom/av1/encoder/mips/msa/fdct4x4_msa.c b/third_party/aom/av1/encoder/mips/msa/fdct4x4_msa.c new file mode 100644 index 0000000000..085c08bfb8 --- /dev/null +++ b/third_party/aom/av1/encoder/mips/msa/fdct4x4_msa.c @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "av1/common/enums.h" + +void av1_fwht4x4_msa(const int16_t *input, int16_t *output, + int32_t src_stride) { + v8i16 in0, in1, in2, in3, in4; + + LD_SH4(input, src_stride, in0, in1, in2, in3); + + in0 += in1; + in3 -= in2; + in4 = (in0 - in3) >> 1; + SUB2(in4, in1, in4, in2, in1, in2); + in0 -= in2; + in3 += in1; + + TRANSPOSE4x4_SH_SH(in0, in2, in3, in1, in0, in2, in3, in1); + + in0 += in2; + in1 -= in3; + in4 = (in0 - in1) >> 1; + SUB2(in4, in2, in4, in3, in2, in3); + in0 -= in3; + in1 += in2; + + SLLI_4V(in0, in1, in2, in3, 2); + + TRANSPOSE4x4_SH_SH(in0, in3, in1, in2, in0, in3, in1, in2); + + ST4x2_UB(in0, output, 4); + ST4x2_UB(in3, output + 4, 4); + ST4x2_UB(in1, output + 8, 4); + ST4x2_UB(in2, output + 12, 4); +} diff --git a/third_party/aom/av1/encoder/mips/msa/temporal_filter_msa.c b/third_party/aom/av1/encoder/mips/msa/temporal_filter_msa.c new file mode 100644 index 0000000000..531ae090a3 --- /dev/null +++ b/third_party/aom/av1/encoder/mips/msa/temporal_filter_msa.c @@ -0,0 +1,285 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/av1_rtcd.h" + +#include "aom_dsp/mips/macros_msa.h" + +static void temporal_filter_apply_8size_msa(uint8_t *frm1_ptr, uint32_t stride, + uint8_t *frm2_ptr, int32_t filt_sth, + int32_t filt_wgt, uint32_t *acc, + uint16_t *cnt) { + uint32_t row; + uint64_t f0, f1, f2, f3; + v16i8 frm2, frm1 = { 0 }; + v16i8 frm4, frm3 = { 0 }; + v16u8 frm_r, frm_l; + v8i16 frm2_r, frm2_l; + v8i16 diff0, diff1, mod0_h, mod1_h; + v4i32 cnst3, cnst16, filt_wt, strength; + v4i32 mod0_w, mod1_w, mod2_w, mod3_w; + v4i32 diff0_r, diff0_l, diff1_r, diff1_l; + v4i32 frm2_rr, frm2_rl, frm2_lr, frm2_ll; + v4i32 acc0, acc1, acc2, acc3; + v8i16 cnt0, cnt1; + + filt_wt = __msa_fill_w(filt_wgt); + strength = __msa_fill_w(filt_sth); + cnst3 = __msa_ldi_w(3); + cnst16 = __msa_ldi_w(16); + + for (row = 2; row--;) { + LD4(frm1_ptr, stride, f0, f1, f2, f3); + frm1_ptr += (4 * stride); + + LD_SB2(frm2_ptr, 16, frm2, frm4); + frm2_ptr += 32; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + + INSERT_D2_SB(f0, f1, frm1); + INSERT_D2_SB(f2, f3, frm3); + ILVRL_B2_UB(frm1, frm2, frm_r, frm_l); + HSUB_UB2_SH(frm_r, frm_l, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + + diff0_r = (mod0_w < cnst16); + diff0_l = (mod1_w < cnst16); + diff1_r = (mod2_w < cnst16); + diff1_l = (mod3_w < cnst16); + + SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w, + mod1_w, mod2_w, mod3_w); + + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + + MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt, + mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + UNPCK_UB_SH(frm2, frm2_r, frm2_l); + UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl); + UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll); + MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + + ST_SW2(mod0_w, mod1_w, acc, 4); + acc += 8; + ST_SW2(mod2_w, mod3_w, acc, 4); + acc += 8; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + + ILVRL_B2_UB(frm3, frm4, frm_r, frm_l); + HSUB_UB2_SH(frm_r, frm_l, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + + diff0_r = (mod0_w < cnst16); + diff0_l = (mod1_w < cnst16); + diff1_r = (mod2_w < cnst16); + diff1_l = (mod3_w < cnst16); + + SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w, + mod1_w, mod2_w, mod3_w); + + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + + MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt, + mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + UNPCK_UB_SH(frm4, frm2_r, frm2_l); + UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl); + UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll); + MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + + ST_SW2(mod0_w, mod1_w, acc, 4); + acc += 8; + ST_SW2(mod2_w, mod3_w, acc, 4); + acc += 8; + } +} + +static void temporal_filter_apply_16size_msa(uint8_t *frm1_ptr, uint32_t stride, + uint8_t *frm2_ptr, + int32_t filt_sth, int32_t filt_wgt, + uint32_t *acc, uint16_t *cnt) { + uint32_t row; + v16i8 frm1, frm2, frm3, frm4; + v16u8 frm_r, frm_l; + v16i8 zero = { 0 }; + v8u16 frm2_r, frm2_l; + v8i16 diff0, diff1, mod0_h, mod1_h; + v4i32 cnst3, cnst16, filt_wt, strength; + v4i32 mod0_w, mod1_w, mod2_w, mod3_w; + v4i32 diff0_r, diff0_l, diff1_r, diff1_l; + v4i32 frm2_rr, frm2_rl, frm2_lr, frm2_ll; + v4i32 acc0, acc1, acc2, acc3; + v8i16 cnt0, cnt1; + + filt_wt = __msa_fill_w(filt_wgt); + strength = __msa_fill_w(filt_sth); + cnst3 = __msa_ldi_w(3); + cnst16 = __msa_ldi_w(16); + + for (row = 8; row--;) { + LD_SB2(frm1_ptr, stride, frm1, frm3); + frm1_ptr += stride; + + LD_SB2(frm2_ptr, 16, frm2, frm4); + frm2_ptr += 16; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + + ILVRL_B2_UB(frm1, frm2, frm_r, frm_l); + HSUB_UB2_SH(frm_r, frm_l, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + + diff0_r = (mod0_w < cnst16); + diff0_l = (mod1_w < cnst16); + diff1_r = (mod2_w < cnst16); + diff1_l = (mod3_w < cnst16); + + SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w, + mod1_w, mod2_w, mod3_w); + + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + + MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt, + mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + ILVRL_B2_UH(zero, frm2, frm2_r, frm2_l); + UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl); + UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll); + MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + + ST_SW2(mod0_w, mod1_w, acc, 4); + acc += 8; + ST_SW2(mod2_w, mod3_w, acc, 4); + acc += 8; + + LD_SW2(acc, 4, acc0, acc1); + LD_SW2(acc + 8, 4, acc2, acc3); + LD_SH2(cnt, 8, cnt0, cnt1); + + ILVRL_B2_UB(frm3, frm4, frm_r, frm_l); + HSUB_UB2_SH(frm_r, frm_l, diff0, diff1); + UNPCK_SH_SW(diff0, diff0_r, diff0_l); + UNPCK_SH_SW(diff1, diff1_r, diff1_l); + MUL4(diff0_r, diff0_r, diff0_l, diff0_l, diff1_r, diff1_r, diff1_l, diff1_l, + mod0_w, mod1_w, mod2_w, mod3_w); + MUL4(mod0_w, cnst3, mod1_w, cnst3, mod2_w, cnst3, mod3_w, cnst3, mod0_w, + mod1_w, mod2_w, mod3_w); + SRAR_W4_SW(mod0_w, mod1_w, mod2_w, mod3_w, strength); + + diff0_r = (mod0_w < cnst16); + diff0_l = (mod1_w < cnst16); + diff1_r = (mod2_w < cnst16); + diff1_l = (mod3_w < cnst16); + + SUB4(cnst16, mod0_w, cnst16, mod1_w, cnst16, mod2_w, cnst16, mod3_w, mod0_w, + mod1_w, mod2_w, mod3_w); + + mod0_w = diff0_r & mod0_w; + mod1_w = diff0_l & mod1_w; + mod2_w = diff1_r & mod2_w; + mod3_w = diff1_l & mod3_w; + + MUL4(mod0_w, filt_wt, mod1_w, filt_wt, mod2_w, filt_wt, mod3_w, filt_wt, + mod0_w, mod1_w, mod2_w, mod3_w); + PCKEV_H2_SH(mod1_w, mod0_w, mod3_w, mod2_w, mod0_h, mod1_h); + ADD2(mod0_h, cnt0, mod1_h, cnt1, mod0_h, mod1_h); + ST_SH2(mod0_h, mod1_h, cnt, 8); + cnt += 16; + + ILVRL_B2_UH(zero, frm4, frm2_r, frm2_l); + UNPCK_SH_SW(frm2_r, frm2_rr, frm2_rl); + UNPCK_SH_SW(frm2_l, frm2_lr, frm2_ll); + MUL4(mod0_w, frm2_rr, mod1_w, frm2_rl, mod2_w, frm2_lr, mod3_w, frm2_ll, + mod0_w, mod1_w, mod2_w, mod3_w); + ADD4(mod0_w, acc0, mod1_w, acc1, mod2_w, acc2, mod3_w, acc3, mod0_w, mod1_w, + mod2_w, mod3_w); + ST_SW2(mod0_w, mod1_w, acc, 4); + acc += 8; + ST_SW2(mod2_w, mod3_w, acc, 4); + acc += 8; + + frm1_ptr += stride; + frm2_ptr += 16; + } +} + +void av1_temporal_filter_apply_msa(uint8_t *frame1_ptr, uint32_t stride, + uint8_t *frame2_ptr, uint32_t blk_w, + uint32_t blk_h, int32_t strength, + int32_t filt_wgt, uint32_t *accu, + uint16_t *cnt) { + if (8 == (blk_w * blk_h)) { + temporal_filter_apply_8size_msa(frame1_ptr, stride, frame2_ptr, strength, + filt_wgt, accu, cnt); + } else if (16 == (blk_w * blk_h)) { + temporal_filter_apply_16size_msa(frame1_ptr, stride, frame2_ptr, strength, + filt_wgt, accu, cnt); + } else { + av1_temporal_filter_apply_c(frame1_ptr, stride, frame2_ptr, blk_w, blk_h, + strength, filt_wgt, accu, cnt); + } +} diff --git a/third_party/aom/av1/encoder/ml.c b/third_party/aom/av1/encoder/ml.c new file mode 100644 index 0000000000..d21def43a8 --- /dev/null +++ b/third_party/aom/av1/encoder/ml.c @@ -0,0 +1,73 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <math.h> + +#include "aom_dsp/aom_dsp_common.h" +#include "av1/encoder/ml.h" + +void av1_nn_predict(const float *features, const NN_CONFIG *nn_config, + float *output) { + int num_input_nodes = nn_config->num_inputs; + int buf_index = 0; + float buf[2][NN_MAX_NODES_PER_LAYER]; + const float *input_nodes = features; + + // Propagate hidden layers. + const int num_layers = nn_config->num_hidden_layers; + assert(num_layers <= NN_MAX_HIDDEN_LAYERS); + for (int layer = 0; layer < num_layers; ++layer) { + const float *weights = nn_config->weights[layer]; + const float *bias = nn_config->bias[layer]; + float *output_nodes = buf[buf_index]; + const int num_output_nodes = nn_config->num_hidden_nodes[layer]; + assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); + for (int node = 0; node < num_output_nodes; ++node) { + float val = 0.0f; + for (int i = 0; i < num_input_nodes; ++i) + val += weights[i] * input_nodes[i]; + val += bias[node]; + // ReLU as activation function. + val = val > 0.0f ? val : 0.0f; // Could use AOMMAX(). + output_nodes[node] = val; + weights += num_input_nodes; + } + num_input_nodes = num_output_nodes; + input_nodes = output_nodes; + buf_index = 1 - buf_index; + } + + // Final output layer. + const float *weights = nn_config->weights[num_layers]; + for (int node = 0; node < nn_config->num_outputs; ++node) { + const float *bias = nn_config->bias[num_layers]; + float val = 0.0f; + for (int i = 0; i < num_input_nodes; ++i) + val += weights[i] * input_nodes[i]; + output[node] = val + bias[node]; + weights += num_input_nodes; + } +} + +void av1_nn_softmax(const float *input, float *output, int n) { + // Softmax function is invariant to adding the same constant + // to all input values, so we subtract the maximum input to avoid + // possible overflow. + float max_inp = input[0]; + for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); + float sum_out = 0.0f; + for (int i = 0; i < n; i++) { + output[i] = (float)exp(input[i] - max_inp); + sum_out += output[i]; + } + for (int i = 0; i < n; i++) output[i] /= sum_out; +} diff --git a/third_party/aom/av1/encoder/ml.h b/third_party/aom/av1/encoder/ml.h new file mode 100644 index 0000000000..cb8ef2871b --- /dev/null +++ b/third_party/aom/av1/encoder/ml.h @@ -0,0 +1,49 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_ML_H_ +#define AOM_AV1_ENCODER_ML_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#define NN_MAX_HIDDEN_LAYERS 10 +#define NN_MAX_NODES_PER_LAYER 128 + +typedef struct { + int num_inputs; // Number of input nodes, i.e. features. + int num_outputs; // Number of output nodes. + int num_hidden_layers; // Number of hidden layers, maximum 10. + // Number of nodes for each hidden layer. + int num_hidden_nodes[NN_MAX_HIDDEN_LAYERS]; + // Weight parameters, indexed by layer. + const float *weights[NN_MAX_HIDDEN_LAYERS + 1]; + // Bias parameters, indexed by layer. + const float *bias[NN_MAX_HIDDEN_LAYERS + 1]; +} NN_CONFIG; + +// Calculate prediction based on the given input features and neural net config. +// Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden +// layer. +void av1_nn_predict(const float *features, const NN_CONFIG *nn_config, + float *output); + +// Applies the softmax normalization function to the input +// to get a valid probability distribution in the output: +// output[i] = exp(input[i]) / sum_{k \in [0,n)}(exp(input[k])) +void av1_nn_softmax(const float *input, float *output, int n); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_ML_H_ diff --git a/third_party/aom/av1/encoder/palette.c b/third_party/aom/av1/encoder/palette.c new file mode 100644 index 0000000000..e61cd02ce4 --- /dev/null +++ b/third_party/aom/av1/encoder/palette.c @@ -0,0 +1,154 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> +#include <stdlib.h> + +#include "av1/encoder/cost.h" +#include "av1/encoder/palette.h" +#include "av1/encoder/random.h" + +#define AV1_K_MEANS_DIM 1 +#include "av1/encoder/k_means_template.h" +#undef AV1_K_MEANS_DIM +#define AV1_K_MEANS_DIM 2 +#include "av1/encoder/k_means_template.h" +#undef AV1_K_MEANS_DIM + +static int int_comparer(const void *a, const void *b) { + return (*(int *)a - *(int *)b); +} + +int av1_remove_duplicates(int *centroids, int num_centroids) { + int num_unique; // number of unique centroids + int i; + qsort(centroids, num_centroids, sizeof(*centroids), int_comparer); + // Remove duplicates. + num_unique = 1; + for (i = 1; i < num_centroids; ++i) { + if (centroids[i] != centroids[i - 1]) { // found a new unique centroid + centroids[num_unique++] = centroids[i]; + } + } + return num_unique; +} + +static int delta_encode_cost(const int *colors, int num, int bit_depth, + int min_val) { + if (num <= 0) return 0; + int bits_cost = bit_depth; + if (num == 1) return bits_cost; + bits_cost += 2; + int max_delta = 0; + int deltas[PALETTE_MAX_SIZE]; + const int min_bits = bit_depth - 3; + for (int i = 1; i < num; ++i) { + const int delta = colors[i] - colors[i - 1]; + deltas[i - 1] = delta; + assert(delta >= min_val); + if (delta > max_delta) max_delta = delta; + } + int bits_per_delta = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); + assert(bits_per_delta <= bit_depth); + int range = (1 << bit_depth) - colors[0] - min_val; + for (int i = 0; i < num - 1; ++i) { + bits_cost += bits_per_delta; + range -= deltas[i]; + bits_per_delta = AOMMIN(bits_per_delta, av1_ceil_log2(range)); + } + return bits_cost; +} + +int av1_index_color_cache(const uint16_t *color_cache, int n_cache, + const uint16_t *colors, int n_colors, + uint8_t *cache_color_found, int *out_cache_colors) { + if (n_cache <= 0) { + for (int i = 0; i < n_colors; ++i) out_cache_colors[i] = colors[i]; + return n_colors; + } + memset(cache_color_found, 0, n_cache * sizeof(*cache_color_found)); + int n_in_cache = 0; + int in_cache_flags[PALETTE_MAX_SIZE]; + memset(in_cache_flags, 0, sizeof(in_cache_flags)); + for (int i = 0; i < n_cache && n_in_cache < n_colors; ++i) { + for (int j = 0; j < n_colors; ++j) { + if (colors[j] == color_cache[i]) { + in_cache_flags[j] = 1; + cache_color_found[i] = 1; + ++n_in_cache; + break; + } + } + } + int j = 0; + for (int i = 0; i < n_colors; ++i) + if (!in_cache_flags[i]) out_cache_colors[j++] = colors[i]; + assert(j == n_colors - n_in_cache); + return j; +} + +int av1_get_palette_delta_bits_v(const PALETTE_MODE_INFO *const pmi, + int bit_depth, int *zero_count, + int *min_bits) { + const int n = pmi->palette_size[1]; + const int max_val = 1 << bit_depth; + int max_d = 0; + *min_bits = bit_depth - 4; + *zero_count = 0; + for (int i = 1; i < n; ++i) { + const int delta = pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] - + pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1]; + const int v = abs(delta); + const int d = AOMMIN(v, max_val - v); + if (d > max_d) max_d = d; + if (d == 0) ++(*zero_count); + } + return AOMMAX(av1_ceil_log2(max_d + 1), *min_bits); +} + +int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, + uint16_t *color_cache, int n_cache, + int bit_depth) { + const int n = pmi->palette_size[0]; + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = + av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, + cache_color_found, out_cache_colors); + const int total_bits = + n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 1); + return av1_cost_literal(total_bits); +} + +int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, + uint16_t *color_cache, int n_cache, + int bit_depth) { + const int n = pmi->palette_size[1]; + int total_bits = 0; + // U channel palette color cost. + int out_cache_colors[PALETTE_MAX_SIZE]; + uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; + const int n_out_cache = av1_index_color_cache( + color_cache, n_cache, pmi->palette_colors + PALETTE_MAX_SIZE, n, + cache_color_found, out_cache_colors); + total_bits += + n_cache + delta_encode_cost(out_cache_colors, n_out_cache, bit_depth, 0); + + // V channel palette color cost. + int zero_count = 0, min_bits_v = 0; + const int bits_v = + av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); + const int bits_using_delta = + 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; + const int bits_using_raw = bit_depth * n; + total_bits += 1 + AOMMIN(bits_using_delta, bits_using_raw); + return av1_cost_literal(total_bits); +} diff --git a/third_party/aom/av1/encoder/palette.h b/third_party/aom/av1/encoder/palette.h new file mode 100644 index 0000000000..8b88c4755c --- /dev/null +++ b/third_party/aom/av1/encoder/palette.h @@ -0,0 +1,96 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_PALETTE_H_ +#define AOM_AV1_ENCODER_PALETTE_H_ + +#include "av1/common/blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define AV1_K_MEANS_RENAME(func, dim) func##_dim##dim + +void AV1_K_MEANS_RENAME(av1_calc_indices, 1)(const int *data, + const int *centroids, + uint8_t *indices, int n, int k); +void AV1_K_MEANS_RENAME(av1_calc_indices, 2)(const int *data, + const int *centroids, + uint8_t *indices, int n, int k); +void AV1_K_MEANS_RENAME(av1_k_means, 1)(const int *data, int *centroids, + uint8_t *indices, int n, int k, + int max_itr); +void AV1_K_MEANS_RENAME(av1_k_means, 2)(const int *data, int *centroids, + uint8_t *indices, int n, int k, + int max_itr); + +// Given 'n' 'data' points and 'k' 'centroids' each of dimension 'dim', +// calculate the centroid 'indices' for the data points. +static INLINE void av1_calc_indices(const int *data, const int *centroids, + uint8_t *indices, int n, int k, int dim) { + if (dim == 1) { + AV1_K_MEANS_RENAME(av1_calc_indices, 1)(data, centroids, indices, n, k); + } else if (dim == 2) { + AV1_K_MEANS_RENAME(av1_calc_indices, 2)(data, centroids, indices, n, k); + } else { + assert(0 && "Untemplated k means dimension"); + } +} + +// Given 'n' 'data' points and an initial guess of 'k' 'centroids' each of +// dimension 'dim', runs up to 'max_itr' iterations of k-means algorithm to get +// updated 'centroids' and the centroid 'indices' for elements in 'data'. +// Note: the output centroids are rounded off to nearest integers. +static INLINE void av1_k_means(const int *data, int *centroids, + uint8_t *indices, int n, int k, int dim, + int max_itr) { + if (dim == 1) { + AV1_K_MEANS_RENAME(av1_k_means, 1)(data, centroids, indices, n, k, max_itr); + } else if (dim == 2) { + AV1_K_MEANS_RENAME(av1_k_means, 2)(data, centroids, indices, n, k, max_itr); + } else { + assert(0 && "Untemplated k means dimension"); + } +} + +// Given a list of centroids, returns the unique number of centroids 'k', and +// puts these unique centroids in first 'k' indices of 'centroids' array. +// Ideally, the centroids should be rounded to integers before calling this +// method. +int av1_remove_duplicates(int *centroids, int num_centroids); + +// Given a color cache and a set of base colors, find if each cache color is +// present in the base colors, record the binary results in "cache_color_found". +// Record the colors that are not in the color cache in "out_cache_colors". +int av1_index_color_cache(const uint16_t *color_cache, int n_cache, + const uint16_t *colors, int n_colors, + uint8_t *cache_color_found, int *out_cache_colors); + +// Return the number of bits used to transmit each v palette color delta; +// assign zero_count with the number of deltas being 0. +int av1_get_palette_delta_bits_v(const PALETTE_MODE_INFO *const pmi, + int bit_depth, int *zero_count, int *min_bits); + +// Return the rate cost for transmitting luma palette color values. +int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi, + uint16_t *color_cache, int n_cache, int bit_depth); + +// Return the rate cost for transmitting chroma palette color values. +int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi, + uint16_t *color_cache, int n_cache, + int bit_depth); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_PALETTE_H_ diff --git a/third_party/aom/av1/encoder/partition_model_weights.h b/third_party/aom/av1/encoder/partition_model_weights.h new file mode 100644 index 0000000000..437ea43f9e --- /dev/null +++ b/third_party/aom/av1/encoder/partition_model_weights.h @@ -0,0 +1,2448 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_PARTITION_MODEL_WEIGHTS_H_ +#define AOM_AV1_ENCODER_PARTITION_MODEL_WEIGHTS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/ml.h" + +#define FEATURE_SIZE 10 +#define LABEL_SIZE 16 +// nn model for ab partition pruning, 128x128. +static const float av1_ab_partition_nn_weights_128_layer0[FEATURE_SIZE * 64] = { + -0.715251f, -0.015767f, -0.667353f, -0.345255f, 0.177887f, -0.469759f, + 0.426152f, 0.489798f, 0.469865f, 0.773821f, 0.088517f, 0.074585f, + 0.838754f, 0.048449f, -0.007584f, 0.638968f, 0.233305f, -0.319236f, + -0.257124f, -0.170869f, 0.137180f, 0.114852f, -0.721241f, -0.947962f, + -0.411298f, 0.494306f, -0.060435f, -0.648421f, -0.126624f, 0.072686f, + -0.143904f, -0.115839f, -0.175527f, -0.117728f, 0.040686f, -0.189925f, + 0.134361f, -0.258070f, -0.177558f, 0.158049f, 0.168668f, -0.062919f, + 0.341986f, 0.038100f, -0.435577f, -0.321255f, 0.203213f, 0.213061f, + 0.533304f, 0.359296f, -0.079558f, 0.004637f, 0.663904f, 0.043779f, + 0.383018f, 1.136559f, -0.084155f, 0.333057f, -0.199011f, 0.152059f, + -0.078419f, -0.167752f, -0.093651f, 0.083171f, -0.190143f, 0.086195f, + -0.280632f, -0.160663f, -0.017298f, 0.122628f, -0.138116f, 0.062927f, + 0.222462f, 0.626979f, 0.426928f, 0.117170f, -0.240457f, 0.053750f, + 0.038017f, 0.007359f, -0.017595f, 0.101407f, 0.332891f, 0.074933f, + 0.306498f, 0.219380f, -0.151638f, -0.247976f, 0.343405f, 0.121256f, + 0.049173f, 0.171474f, -0.139608f, -1.016599f, -0.345553f, -0.901138f, + 0.243401f, 0.059928f, -0.089396f, -0.195565f, 0.364705f, -0.020400f, + -1.383672f, 0.413018f, 0.536950f, -0.020904f, -1.335306f, -0.732290f, + 0.102885f, 0.315290f, -0.208521f, -0.081811f, 0.182300f, 0.125712f, + -0.593833f, -0.220639f, -0.314155f, 0.188327f, 0.118503f, 0.524427f, + -1.083859f, -1.130640f, 0.390352f, -0.045591f, 0.113160f, -0.009149f, + -0.096183f, 0.115829f, 0.377752f, 0.318396f, -0.591983f, 0.004797f, + -0.497377f, -0.342248f, 0.079546f, -0.025249f, -0.295972f, 0.615501f, + -0.464372f, 0.418315f, -0.173556f, 0.105217f, 0.298073f, 0.082478f, + 0.033223f, 0.977341f, -0.372982f, -0.052337f, 0.154124f, 0.396787f, + 0.536654f, -0.139061f, -0.223702f, 0.229666f, -0.846766f, 0.107723f, + 0.563839f, -0.483141f, 0.304813f, -0.765283f, 0.070964f, 0.151101f, + 0.275188f, 0.490303f, 1.175892f, 0.085377f, -0.191200f, 0.544532f, + -0.365075f, 0.167546f, 0.052183f, -0.220529f, -0.212227f, -0.144988f, + -0.273356f, -0.062023f, 0.103993f, -0.238493f, -0.161204f, -0.054611f, + -0.166672f, 0.128327f, 0.461751f, -0.545822f, 0.739798f, 0.594386f, + -0.163192f, -0.332501f, 0.363834f, -0.065043f, 0.474812f, -0.138811f, + 0.170924f, -0.778142f, -0.316474f, -0.508065f, -0.039986f, -0.478001f, + 0.340591f, 0.041783f, 0.055419f, 0.015155f, -0.981830f, -1.355237f, + 0.347516f, 1.155327f, 0.081319f, 0.274163f, -0.327230f, -0.113478f, + 0.556552f, -0.055986f, 0.217318f, -0.445351f, 0.325759f, 0.526547f, + -0.657434f, -0.572214f, -0.037087f, 0.081384f, 0.064518f, 0.014892f, + 0.215279f, 1.834504f, -0.242107f, 0.079810f, 0.129558f, 0.079588f, + -0.035189f, -0.221745f, -0.163414f, 0.043978f, -1.028662f, -0.623609f, + 1.130336f, 0.664661f, -0.063975f, -0.415863f, 0.018581f, 0.157758f, + 0.200570f, 0.063420f, 0.901039f, -0.746286f, 0.196230f, -0.290592f, + 0.042373f, -0.502500f, 0.183638f, 0.103394f, -0.298858f, 0.145436f, + 0.196916f, 0.108319f, -0.448572f, -0.881385f, 0.302497f, 0.121679f, + -0.021327f, 0.025150f, 0.481306f, -0.359634f, 0.350257f, -0.228647f, + -0.669860f, 0.260025f, -0.034182f, 0.619247f, -0.158826f, -0.405864f, + 0.674112f, -0.027885f, -0.325274f, -0.241492f, 0.036024f, -0.437685f, + -0.091458f, -0.109295f, -0.350676f, 0.044706f, 0.297059f, 0.016290f, + 1.121203f, 1.289062f, -1.299476f, -1.129221f, 0.103752f, 0.131302f, + -0.263265f, 0.222155f, -0.229908f, 0.013922f, -0.226001f, -0.248383f, + -0.004415f, -0.020958f, 0.055634f, 0.086200f, 0.114556f, -0.184061f, + -0.096210f, -0.146466f, -0.249618f, -0.195998f, 0.088758f, 0.023781f, + -0.264460f, 0.157026f, -0.235228f, -0.102564f, 0.043463f, -0.187823f, + -0.257500f, -0.199049f, -0.242210f, 0.030448f, 0.221604f, 0.151804f, + -0.100404f, -0.073931f, 0.144749f, -0.001572f, -1.438079f, -0.233716f, + 0.733422f, 1.727080f, -0.036397f, 0.027551f, 0.425321f, 0.085703f, + 0.031186f, 0.032333f, -0.675130f, 1.437733f, -0.202392f, -0.525003f, + 0.087048f, 0.328194f, -0.079989f, -0.391088f, -0.238732f, -0.120660f, + -0.139600f, 0.154665f, 0.026202f, -0.233501f, -0.009046f, -0.149187f, + -0.199646f, 0.115375f, 0.209762f, -0.014875f, 0.124038f, -0.119985f, + 1.079625f, -0.461513f, 0.614114f, 0.021003f, 0.439449f, -0.824834f, + -0.299701f, 0.193817f, -0.870551f, -1.262313f, -0.079517f, 0.341570f, + 0.305310f, -0.089721f, -0.317314f, -0.075631f, 0.127172f, -0.208635f, + 1.191922f, 0.163141f, 0.564285f, 0.286352f, 0.480865f, 0.173094f, + -0.094034f, -0.071339f, -0.328992f, -0.006382f, 0.314705f, 0.090258f, + -0.016099f, 0.193230f, 0.188061f, 0.398144f, 0.722781f, 0.769949f, + 0.025442f, -0.162016f, 0.070192f, -0.056946f, -0.100957f, -0.219934f, + -0.203492f, -0.015454f, -0.013272f, -0.098008f, 0.051707f, -0.017493f, + 0.527446f, 0.083605f, 0.588318f, 0.878215f, 0.028747f, -0.146479f, + -0.345170f, -0.136059f, -0.152005f, -0.203634f, 0.232702f, -0.101340f, + -0.027733f, -0.282611f, 0.265366f, 0.082362f, -0.265420f, -0.131124f, + 0.166303f, 0.040194f, -0.100710f, 0.579151f, -0.530136f, 0.163422f, + -0.998821f, -1.565311f, -1.774785f, -2.493372f, 0.116970f, -0.090302f, + 1.723272f, 0.552370f, -0.295954f, -0.439095f, -0.266730f, 0.027936f, + 0.539616f, -0.234902f, -0.167601f, -0.149877f, -0.242983f, 0.122353f, + -0.121620f, -0.205517f, -0.180144f, -0.264208f, 0.151500f, -0.159378f, + 0.029145f, -0.050892f, -0.223407f, -0.246239f, 0.043152f, -0.018460f, + 0.169972f, -0.187769f, -0.034670f, -0.238330f, 0.288070f, -0.093243f, + -0.437105f, -0.573376f, 0.660073f, 0.285727f, 0.408470f, 0.158475f, + 0.032699f, 0.056280f, -0.237176f, -0.083003f, 0.105598f, -0.169522f, + -0.260420f, -0.121100f, -0.173983f, -0.195693f, -0.232028f, 0.224940f, + 0.029124f, 0.009580f, -0.252034f, 0.103087f, 1.156561f, 0.603848f, + -0.562805f, -1.652742f, -0.568288f, -1.829395f, 0.046169f, 0.076095f, + 1.490819f, 0.415893f, -0.277788f, -0.115787f, 0.093750f, 0.270726f, + -0.395983f, -0.353742f, 0.034605f, 0.005342f, 0.184537f, 0.086445f, + 0.156417f, 1.476367f, 0.122587f, 0.002145f, 0.431057f, -0.381184f, + -1.646457f, -0.014009f, -0.671224f, 0.193726f, -0.019247f, -0.031267f, + -0.046208f, 0.298733f, 0.064734f, 0.616984f, 0.039381f, 0.182722f, + -0.116670f, 0.233093f, -1.214374f, -0.817970f, -0.064394f, -0.584783f, + 0.077697f, -0.266720f, 0.130875f, -0.235295f, -0.265754f, -0.159999f, + -0.250114f, -0.183017f, 0.194403f, -0.105808f, -0.169215f, -0.240866f, + -0.026662f, -0.045123f, -0.036175f, -0.167471f, -0.192908f, -0.232602f, + -0.267036f, -0.112500f, -0.257944f, -0.111909f, -0.802226f, -0.008800f, + 0.881460f, -0.678603f, 0.008666f, -0.252053f, -0.341035f, -0.175290f, + 0.183012f, 0.385991f, 0.079888f, -0.014039f, -0.148653f, 0.671778f, + -0.130219f, 1.086467f, 0.129267f, -0.040400f, -0.201221f, -0.077005f, + 0.015890f, 0.000781f, 0.137764f, 1.389546f, 0.172152f, 0.047279f, + -0.042783f, 0.127740f, 0.141467f, -0.335738f, -1.396392f, 0.031496f, + 0.357385f, 0.343602f, -0.714553f, 0.311014f, 0.132845f, 0.061149f, + 0.006796f, 0.568106f, -0.255949f, 0.104134f, -0.993447f, 0.298135f, + -0.406590f, -0.049228f, -0.578570f, -0.188561f, -0.107046f, 0.374095f, + 0.068481f, 0.036240f, -0.495801f, 0.180574f, -0.766129f, 0.886967f, + -0.568868f, -0.936062f, -0.418886f, -0.058735f, -0.511964f, -0.438596f, + 0.019016f, -0.015837f, 0.600197f, 0.429773f, 0.315026f, 0.319667f, + 0.214617f, -0.017316f, 0.270257f, -0.040524f, 0.695803f, -0.015223f, + -1.554965f, 0.356997f, -1.472428f, 0.024637f, -0.562958f, 0.870351f, + 0.193635f, 0.036063f, 0.328638f, 0.200274f, -1.634707f, 0.110534f, + 0.420104f, -0.072042f, -0.006404f, 0.171680f, +}; + +static const float av1_ab_partition_nn_bias_128_layer0[64] = { + 0.643147f, -1.348826f, 0.431627f, 0.000000f, 0.102717f, -0.772628f, + -0.034351f, -0.761977f, -0.638397f, 0.541969f, -0.391311f, 0.563076f, + 0.148553f, 0.267217f, -0.788092f, 0.544573f, -0.546280f, 0.000000f, + -0.446945f, 0.127732f, 0.270624f, -0.219435f, -1.220203f, 0.324584f, + 0.110885f, 0.276547f, 0.179726f, -0.375160f, 0.026401f, -0.032595f, + 0.000000f, -0.047932f, -0.648602f, -0.512637f, -0.031661f, -0.236761f, + 0.476453f, -0.028021f, -0.013673f, -0.015578f, -0.920077f, 0.000000f, + 0.915351f, -0.209962f, 0.000000f, -0.025731f, 0.218288f, 0.000000f, + 0.047726f, -0.813077f, -1.263281f, 0.239087f, 0.278614f, -0.030753f, + 0.000000f, 0.346744f, -0.948543f, -1.174211f, 0.216377f, 0.498913f, + 0.853918f, 0.002504f, -0.190403f, 0.452050f, +}; + +static const float av1_ab_partition_nn_weights_128_layer1[64 * LABEL_SIZE] = { + 0.179769f, 1.499417f, -0.445135f, -0.142278f, -0.337661f, 0.682064f, + -0.203213f, 0.302171f, 0.226877f, -0.422169f, 1.687586f, 0.783773f, + 0.220995f, 0.253482f, 0.370435f, -1.342775f, 0.337229f, -0.271473f, + 0.291796f, 1.362227f, -1.751397f, -0.086178f, 0.725496f, -0.118597f, + 0.227963f, -0.501577f, 0.223849f, -0.122421f, -0.123437f, -0.051045f, + -0.020115f, 0.212711f, 0.246025f, 0.088120f, -0.168995f, 1.740190f, + -0.195098f, 0.680339f, -0.589572f, -0.075244f, 0.878766f, 0.064092f, + -3.548527f, 0.001660f, 0.107926f, -0.169501f, -0.455212f, 0.123045f, + -1.836998f, 0.330365f, 1.301475f, 0.454761f, -0.576552f, -0.190761f, + 0.208459f, 0.618483f, 1.383364f, 0.970718f, 0.390174f, 0.406252f, + -0.564519f, -0.312062f, 1.345712f, -0.151873f, 0.109290f, 0.408847f, + 0.391243f, 0.152024f, 0.181764f, -0.036263f, -0.160466f, 0.153595f, + 0.049163f, -0.753012f, -1.804062f, 0.347475f, -2.746580f, 0.575618f, + 0.261799f, 0.210505f, -0.302054f, -0.109872f, 0.199506f, -1.182971f, + 0.723668f, 0.177758f, -0.338202f, 0.254396f, -0.220023f, 0.043504f, + 0.669866f, -0.040816f, -0.402730f, 0.017990f, 0.215523f, -0.216816f, + 0.454826f, -0.726067f, -0.018750f, -0.928679f, 0.154315f, -0.465641f, + 0.144566f, -0.030064f, -0.054667f, -0.154055f, 0.625384f, 1.323795f, + -0.159496f, 0.097072f, -0.463197f, -0.057938f, 0.750290f, -0.233061f, + 0.412631f, -0.535223f, -0.151423f, -0.154583f, 0.024721f, -0.494448f, + 0.230594f, -0.980138f, -0.653968f, 0.126079f, 0.051814f, -0.053219f, + -0.421708f, -0.228853f, 0.237885f, 0.888157f, 0.059655f, 0.241295f, + 0.210443f, 0.228238f, 0.119127f, -0.051989f, -0.355408f, 0.182215f, + 0.244277f, -0.104577f, -0.558035f, -0.023270f, 0.054571f, 0.700646f, + -0.223006f, 0.115523f, 0.023391f, 0.437264f, 0.709477f, -0.531212f, + -0.094731f, 0.328161f, -0.105418f, -0.133511f, 0.497168f, -0.030948f, + -0.407132f, -0.043943f, 0.155505f, 0.251945f, 0.205010f, 0.167160f, + 0.083654f, -0.636810f, 0.401315f, -0.398414f, 0.290046f, 0.206846f, + 0.042218f, 0.168150f, 0.843181f, -0.671242f, -0.202392f, -0.073301f, + 0.142895f, 0.237466f, 0.212145f, -0.091828f, 0.187038f, -0.720841f, + -0.616069f, -0.238021f, 0.065365f, 0.434119f, 0.179023f, -0.040107f, + -0.430734f, -0.297368f, 0.575954f, 0.382619f, -0.709787f, -0.320810f, + 0.242342f, -0.047614f, 0.705216f, 0.098077f, 0.357179f, 0.046017f, + 0.115074f, -0.412305f, -0.272304f, 0.048096f, -0.803811f, 0.275000f, + 0.642198f, 0.180286f, -0.087178f, -0.112707f, -0.394443f, 0.201989f, + 0.241759f, -1.038870f, 0.728124f, 0.800559f, -1.296268f, 0.198612f, + -0.053478f, 0.414344f, -0.510529f, 0.124179f, -2.219115f, -0.074583f, + -0.143055f, 0.001697f, 0.810811f, -0.657140f, 0.186818f, -0.936414f, + 0.539578f, -0.308244f, -0.126624f, -0.204767f, 0.091145f, -0.049340f, + 0.252014f, 0.394582f, 0.018764f, -0.060377f, -0.019133f, 0.064083f, + 0.069211f, -0.526693f, 0.209850f, -0.481466f, -0.468302f, -0.100407f, + 0.241018f, -1.037781f, 0.038539f, -2.113840f, -0.974895f, 0.163187f, + 0.425132f, -0.772546f, -1.261254f, -0.217488f, -0.971748f, -0.805640f, + -0.745175f, -0.177077f, 0.217658f, 0.381431f, -0.052338f, 0.087176f, + -0.165972f, 0.085937f, 0.472564f, -0.796627f, -2.453307f, 0.569664f, + -0.233010f, -0.192134f, 0.064339f, -0.111411f, -0.262469f, -0.410022f, + 0.519993f, -0.684620f, 0.393460f, -0.277753f, -0.153624f, 0.528984f, + -0.415558f, -0.445863f, 0.588512f, -0.142439f, -0.132127f, 0.199776f, + -0.579284f, 0.119488f, -0.033590f, -0.503846f, -0.674979f, 0.335125f, + 0.020519f, 0.233973f, -0.297998f, -0.051511f, 0.518626f, -0.412782f, + -0.074045f, 0.130523f, 0.465751f, -0.117795f, 2.535813f, 0.352108f, + -0.499228f, 0.379784f, 0.056699f, 0.173142f, -0.076519f, -0.026666f, + 0.017834f, 0.492333f, 0.093364f, 0.037867f, -0.165420f, -0.356429f, + -0.562334f, 0.057656f, -0.307544f, 0.085857f, -0.559851f, 0.107230f, + -0.398633f, 0.152618f, -0.216835f, -0.024539f, 0.026044f, -0.249519f, + -0.563594f, -0.746025f, 0.025265f, -0.298888f, -0.185243f, 0.058794f, + 0.233696f, -0.115223f, 0.144617f, -0.864390f, 0.619944f, -0.023980f, + 0.019481f, 0.225252f, 0.416552f, -0.115993f, 0.935387f, 0.744386f, + 0.053353f, -0.052582f, -0.065650f, 0.228488f, -0.032042f, -0.371252f, + -0.003638f, -0.736984f, -0.203776f, 0.030922f, -0.065577f, -0.031643f, + -0.049253f, -0.054640f, 0.787134f, 0.545414f, -0.140297f, -0.124274f, + -0.110011f, -0.029552f, 0.657005f, 0.214973f, -0.374300f, 0.251642f, + 0.276591f, 0.030566f, -0.145470f, 0.350579f, -0.356436f, -0.052694f, + -0.063966f, -0.751008f, -1.042392f, 0.328892f, -0.425058f, -0.421571f, + -0.571889f, -1.141472f, -0.125216f, 0.212713f, -0.485170f, -0.088791f, + 0.124589f, 0.023237f, 0.077635f, 0.020901f, -0.271402f, -0.321424f, + -0.513946f, -0.867872f, -0.284593f, 0.106276f, 0.220192f, -0.143532f, + -0.014648f, 0.073402f, 0.327256f, -0.139803f, 0.168763f, 0.048199f, + -0.122526f, 0.111713f, -0.134257f, 0.810364f, -0.085222f, -0.259221f, + -0.239349f, 0.044448f, 0.205031f, 0.413113f, -0.107720f, -0.018816f, + -0.247741f, -0.004963f, 0.041170f, -0.158019f, 0.134839f, 0.129502f, + 0.800488f, -1.041584f, -0.129336f, 0.170834f, 0.566586f, -0.230443f, + 0.437937f, -0.149922f, -0.046665f, -0.094646f, 0.200070f, 0.072943f, + -0.076943f, -0.084971f, -0.515843f, -0.146720f, 0.472869f, -0.444731f, + -0.100877f, 0.545196f, -1.786626f, -0.482946f, 0.500509f, -0.843257f, + 0.200374f, 0.045103f, -0.575718f, -0.164335f, -0.232522f, -0.021825f, + -0.139490f, 0.356058f, -0.352075f, 0.061751f, -0.200616f, -1.180921f, + -0.181355f, -0.137459f, 0.247574f, 0.181541f, 0.184314f, -0.961482f, + 0.493615f, 0.910261f, -2.279238f, 0.648631f, -0.055526f, -0.037137f, + 0.038643f, 0.136609f, -0.819373f, -0.040840f, -0.265989f, 0.006877f, + 0.454651f, -0.595323f, -0.099500f, -0.263717f, 0.150456f, 0.245077f, + -0.268666f, 0.162232f, -0.516451f, -0.024501f, 0.188046f, -0.002262f, + 0.261319f, 0.004173f, 0.746982f, 0.174761f, 0.470447f, -0.159558f, + -0.385240f, 0.023084f, -0.133520f, -0.220607f, -0.018731f, -0.373558f, + -0.707763f, -1.850150f, -0.807404f, -0.168063f, -0.071435f, -0.160740f, + -0.478789f, -1.070674f, -0.489740f, -0.255796f, 0.100486f, -0.153361f, + 0.334394f, -0.569472f, -0.198118f, 0.255922f, 0.104717f, -0.065179f, + 0.111879f, -0.447237f, 1.373623f, -0.190191f, -0.063311f, 0.337529f, + -0.138800f, 0.057009f, -0.137006f, 0.641378f, 0.883147f, -0.679655f, + 0.267717f, -0.351602f, -0.135225f, 0.229398f, -0.513225f, -1.120345f, + 0.528786f, -0.051081f, 0.086653f, 0.140141f, -0.563969f, 0.333402f, + -0.174745f, 0.321093f, -0.438641f, -0.005131f, 0.247415f, 0.110120f, + -0.076308f, -0.083244f, 0.838944f, -0.113043f, -0.013258f, -0.175028f, + -0.179941f, 0.272676f, -0.047946f, -0.088076f, -0.450031f, 0.053929f, + -0.083549f, -0.089952f, -0.186253f, 0.257483f, 0.011019f, 0.586435f, + 0.060580f, -0.052078f, 0.090277f, -0.780869f, 0.969811f, -0.025349f, + -0.281917f, 0.014857f, 0.231863f, -0.228601f, -0.003861f, 0.226550f, + 0.141825f, -0.102171f, -0.010387f, 0.220378f, -2.561975f, -0.497071f, + -0.315117f, 0.371981f, 0.138247f, 0.625031f, -0.308133f, -0.217876f, + 0.005615f, -0.860179f, 0.747491f, 0.006356f, -0.057024f, -0.483189f, + 0.055592f, -0.316834f, 0.069858f, 0.218788f, -0.200044f, 0.227588f, + 0.215496f, -0.055324f, -0.393147f, -0.394062f, -0.253264f, -0.075619f, + -0.152512f, -0.332995f, 0.129053f, 0.178668f, -0.302694f, 0.030678f, + 0.925896f, 0.964375f, 0.169021f, -0.218657f, -0.627204f, 0.206437f, + -0.521336f, 0.176206f, 0.142733f, 0.139248f, 0.411682f, 0.181544f, + 0.224850f, -0.935547f, -0.558208f, 0.348096f, 0.342129f, -0.389340f, + -0.236308f, -0.132099f, 0.073642f, 0.089391f, -0.306901f, -0.397842f, + 0.444282f, 0.074623f, -0.051075f, -0.106617f, -0.184037f, -0.239046f, + -0.138761f, 0.120794f, -0.647577f, -0.336471f, 0.527899f, -0.164234f, + -0.028354f, 1.083678f, -0.251534f, -0.145903f, -0.182783f, 0.070976f, + -0.199590f, -0.400306f, -0.029763f, -0.548042f, -0.266270f, -0.118084f, + -1.152632f, 0.383685f, -0.105895f, -0.096829f, 0.118382f, 0.047447f, + -0.019051f, 0.310180f, -0.162793f, -0.029574f, 0.058054f, -0.636017f, + 0.490639f, 0.158347f, -0.385701f, -0.147057f, 1.285825f, -1.276083f, + -0.021795f, -0.101600f, 0.163254f, 0.267160f, -2.317864f, -0.098598f, + -0.296337f, -0.309017f, 0.164127f, -0.270012f, -0.071187f, -0.262270f, + 0.075415f, -0.368328f, 0.186728f, -0.158031f, 0.481663f, 0.515950f, + -0.162551f, 0.497981f, 0.262196f, 0.168479f, 0.726066f, -0.243856f, + -0.058998f, 0.140168f, 0.053242f, -0.624623f, -0.249480f, 0.055197f, + -1.376804f, 0.417571f, 0.203784f, 0.174370f, -0.155531f, -0.029400f, + -0.491473f, 0.079811f, -0.080123f, 1.345900f, 0.637077f, 0.434862f, + -1.787438f, 0.005756f, -0.362706f, 0.179458f, -0.288263f, 0.516788f, + -0.921248f, 0.043794f, -0.137729f, -0.196171f, -0.046295f, -0.793781f, + -0.156532f, -0.132566f, 0.517989f, -0.154321f, -0.054174f, -0.077900f, + -0.373316f, -0.117718f, 0.188986f, -0.476188f, -0.245312f, 0.181439f, + -0.161024f, -0.229059f, -3.079907f, -0.225452f, -0.594355f, -0.558027f, + -0.135429f, 0.125766f, -0.081314f, -0.350894f, -0.163165f, -1.936507f, + -0.205966f, 0.031472f, 0.744446f, -0.006680f, -0.837551f, 0.605862f, + -0.854929f, -1.543750f, -0.307704f, -0.240517f, 0.178240f, -0.183586f, + -0.010307f, 0.099373f, -0.228278f, 0.175236f, -0.000133f, 0.104491f, + -1.540545f, -0.570971f, -0.252885f, 0.483036f, 0.052531f, 0.260214f, + -0.515016f, -0.602081f, -0.485690f, -0.730710f, 0.163719f, -1.775975f, + -0.298634f, 0.323626f, -0.373579f, -0.872977f, 0.619574f, 0.026862f, + -0.122531f, -0.084698f, -2.436297f, 0.483996f, -0.203640f, -0.302157f, + -0.150666f, -0.238320f, 0.089250f, 0.236485f, -0.668654f, -0.122863f, + 0.491152f, -0.226444f, -0.181248f, 0.120158f, 0.294027f, 0.250056f, + 0.307601f, 0.357875f, -1.746455f, -0.175670f, 0.385447f, -0.108808f, + -0.090235f, -0.642504f, -0.486004f, -0.055160f, -0.068692f, 0.009736f, + 0.607555f, -0.489426f, 0.150624f, 0.598114f, -0.128816f, -0.445793f, + -0.066524f, -0.254380f, 0.227106f, -0.406495f, -0.121632f, -0.275960f, + -0.136494f, 0.339457f, -1.318132f, -0.417572f, -2.614077f, 0.324603f, + -0.001211f, 0.375192f, -0.473448f, -0.162510f, 0.099329f, -0.277965f, + 0.101221f, -0.060263f, 0.121867f, -1.042140f, 0.440851f, 0.078898f, + -0.209007f, -0.243699f, 0.715197f, -0.093997f, 0.086022f, -0.178203f, + -2.275496f, -0.098413f, 0.199352f, -0.526791f, -0.162086f, -0.197806f, + -0.231657f, -0.269202f, -0.794294f, -0.223461f, 0.503584f, 0.416236f, + 0.064082f, 0.197655f, 0.340871f, -0.186645f, -0.291498f, 0.433938f, + -1.110063f, 0.003751f, 0.392738f, 0.069360f, 0.102088f, -0.302128f, + -1.518457f, 0.106939f, 0.404527f, -0.306868f, -0.286928f, 0.729276f, + -0.531710f, 0.745048f, -0.168837f, -1.953886f, -0.258828f, -0.190252f, + 0.241877f, -0.916744f, -0.030326f, -0.070541f, -0.271037f, 0.211303f, + -0.489957f, 0.100850f, 0.323999f, -0.802837f, -0.462408f, -0.079350f, + -0.029374f, 0.131213f, -0.825032f, 0.040202f, 0.351821f, 0.002869f, + -0.132516f, -0.471264f, -0.297002f, 0.263913f, 0.033478f, 0.146161f, + 0.533229f, -0.228608f, -0.200639f, -0.170955f, -0.915037f, 0.724491f, + 0.005151f, 0.018584f, -0.029771f, -0.396038f, -0.159236f, 0.038691f, + -1.197056f, 0.146302f, 0.226840f, -0.852126f, 0.031214f, 0.108880f, + 0.562000f, -0.134633f, -0.713343f, -0.342252f, -1.764521f, -0.114653f, + 0.515073f, -0.080515f, -0.121155f, -0.865139f, -0.833694f, -0.368553f, + 0.347673f, 0.623379f, 0.722067f, -0.492458f, -0.513263f, 0.585167f, + 0.721518f, -0.693499f, 0.343725f, -0.273861f, -0.040230f, -0.785664f, + -0.157500f, -0.308445f, 0.054062f, 0.600131f, -0.860887f, 0.434470f, + -0.191382f, -0.306150f, -0.243965f, 0.705444f, 0.007789f, -0.146154f, + -0.054499f, -0.073500f, -1.067364f, 0.404936f, -2.864590f, 0.182323f, + 0.326126f, 0.102405f, -0.135800f, 1.128095f, -0.012267f, -0.023996f, + -0.264834f, -0.108967f, -1.176746f, -0.926666f, 0.082999f, -0.498361f, + 0.083560f, -0.210074f, 0.019225f, -0.201614f, -0.904760f, 0.181421f, + 0.586384f, -0.177706f, 0.065471f, 0.168552f, 0.054705f, 0.045241f, + 0.048057f, -0.410957f, -2.188854f, -0.169812f, 0.015521f, 0.176856f, + -0.179331f, -0.352640f, -0.491735f, -1.743206f, 0.044227f, 0.010454f, + 0.823643f, -0.119781f, -0.098359f, 0.093119f, +}; + +static const float av1_ab_partition_nn_bias_128_layer1[LABEL_SIZE] = { + -0.433195f, -0.120488f, -0.116721f, 0.112134f, 0.118170f, -0.259769f, + -0.077530f, 0.394044f, 0.279167f, -0.317988f, 0.189538f, 0.314776f, + 0.325655f, -0.107123f, 0.591049f, 0.358744f, +}; + +static const NN_CONFIG av1_ab_partition_nnconfig_128 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 64, // num_hidden_nodes + }, + { + av1_ab_partition_nn_weights_128_layer0, + av1_ab_partition_nn_weights_128_layer1, + }, + { + av1_ab_partition_nn_bias_128_layer0, + av1_ab_partition_nn_bias_128_layer1, + }, +}; + +// nn model for ab partition pruning, 64x64. +static const float av1_ab_partition_nn_weights_64_layer0[FEATURE_SIZE * 64] = { + -0.495347f, -0.049498f, -0.026804f, 0.030474f, -0.289308f, -0.264193f, + -0.141121f, -0.072562f, -0.391665f, -0.051491f, -0.234761f, 0.027155f, + -0.038217f, 0.014872f, -0.289728f, -0.233577f, -0.415875f, -0.343615f, + -0.442543f, -0.482492f, 0.073510f, 0.007503f, 2.162329f, -0.362849f, + 2.145915f, -0.883135f, 0.185636f, -0.062859f, -0.465574f, -0.486205f, + -0.056710f, -0.330642f, -0.321860f, 0.042321f, -0.348965f, 0.003542f, + -0.291365f, -0.078164f, -0.345093f, -0.220272f, -0.471270f, -0.763853f, + 0.246622f, 0.199651f, -0.663420f, -0.154152f, -1.220383f, 0.047138f, + 0.816811f, 0.083247f, -0.218839f, 0.038143f, -0.063436f, 0.015517f, + -0.307320f, -0.166956f, -0.169499f, -0.399005f, -0.234638f, -0.162266f, + 0.050425f, -0.221723f, -0.256942f, -0.287285f, 0.144011f, -0.033245f, + 0.083649f, 0.119428f, -0.056706f, -0.117805f, 0.021866f, -0.257300f, + -0.201378f, -0.217484f, -0.413780f, -0.145793f, 0.082792f, -0.347247f, + 0.042539f, -0.302697f, 1.652316f, 0.000701f, -0.482843f, -0.160332f, + -0.450099f, 0.212399f, -4.715360f, -5.336774f, -5.375758f, -6.048339f, + 0.085956f, -0.037767f, 1.052409f, -0.931924f, -2.221907f, 0.268946f, + 0.015512f, 1.237094f, -1.092185f, 0.418247f, -0.082143f, -0.076914f, + -0.060749f, -0.325440f, -0.296960f, -0.066815f, -0.158477f, -0.373945f, + -0.122322f, -0.113495f, -0.097978f, -0.192816f, -0.270418f, 0.035840f, + -0.015458f, -0.121071f, -0.279582f, -0.067683f, 0.097855f, 0.019839f, + 0.451127f, 0.004376f, 1.410392f, 3.255835f, -0.344815f, 0.145202f, + 0.204132f, 0.171948f, -0.527736f, -0.110353f, 0.901448f, 0.003238f, + -3.822090f, 0.235462f, 1.024823f, -0.821244f, 0.876056f, 2.553762f, + -3.478597f, -2.076582f, -0.265515f, -0.055923f, -0.156980f, -0.164097f, + -0.246040f, 0.039430f, -0.071769f, -0.118847f, -0.304053f, -0.281541f, + -0.226021f, -0.263091f, -0.127359f, -0.249410f, -0.051023f, 0.083911f, + 0.084721f, 0.168089f, -0.272169f, -0.204998f, -0.008303f, -0.173998f, + 0.079376f, -0.197426f, -0.199052f, -0.118794f, -0.063753f, -0.094769f, + 0.066176f, -0.175832f, -0.238752f, -0.287960f, -0.134307f, -0.185953f, + -0.385845f, 0.119769f, -0.006567f, -0.382126f, -0.214221f, 0.038449f, + -0.253484f, -0.282766f, -0.020249f, -0.193929f, 0.016281f, -0.114423f, + -0.145940f, -0.281621f, -0.007588f, -0.131470f, -0.189012f, -0.185699f, + -0.279011f, -0.008132f, 0.208463f, 0.020569f, -0.206803f, -0.213408f, + -0.206131f, -0.290245f, 0.069701f, -0.000371f, -0.307572f, -0.451785f, + -0.300838f, -0.453186f, -0.301691f, 0.046327f, -0.312668f, 0.058272f, + -0.303131f, -0.376252f, 0.108384f, -0.086623f, -0.100630f, -0.027330f, + -0.003969f, 0.089502f, -0.200722f, -0.107889f, 0.061843f, -0.008478f, + -0.265057f, -0.271132f, -0.073562f, 0.129337f, -0.283698f, -0.353414f, + 0.076420f, -0.244280f, -0.119537f, -0.105366f, -0.184692f, -0.038817f, + -0.478507f, -0.118808f, -0.472979f, -0.305884f, -0.462813f, -0.189581f, + -0.011932f, -0.585700f, 0.253212f, -1.061900f, -0.205116f, -0.336407f, + -0.762199f, 0.577737f, 0.230832f, 0.434440f, -0.096713f, 0.038552f, + -0.147800f, -0.213553f, 0.041740f, -0.281907f, -0.026154f, -0.082356f, + -0.331871f, -0.408247f, -0.129022f, -0.037550f, -0.310233f, -0.320883f, + -0.391963f, -0.467392f, 0.027453f, -0.394761f, -0.045544f, 0.076052f, + 0.483985f, 0.067093f, 0.141361f, 0.576772f, 0.859718f, 2.566515f, + -0.025476f, 0.769738f, -0.680235f, -1.683309f, -2.394131f, -0.000714f, + -0.615021f, -0.195856f, -0.434035f, -0.295010f, -0.668659f, -0.245959f, + 0.551148f, 1.777227f, -0.461630f, 0.043093f, 0.012293f, -0.255841f, + -0.097070f, -0.371156f, -0.146323f, -0.015508f, -0.103873f, -0.087476f, + -0.297266f, -0.128699f, -0.149555f, 0.016534f, -0.375498f, -0.346759f, + -0.455156f, -0.147509f, -0.427076f, -0.354431f, -0.158025f, -0.164604f, + -0.237038f, -0.010314f, -0.092884f, -0.397084f, -0.217980f, -0.127184f, + -0.048421f, -0.144133f, 0.889073f, 0.012606f, 3.007608f, -0.602584f, + -1.849480f, -0.373159f, -1.890695f, -3.609938f, 0.811923f, -1.867208f, + -0.244326f, -0.018012f, -0.211192f, -0.220196f, 0.169363f, 0.119141f, + -0.230715f, 0.083247f, 0.020367f, -0.128629f, -0.217455f, -0.159640f, + 1.815952f, -0.369238f, -1.186447f, -0.658753f, -0.511026f, -0.096934f, + 0.662971f, 0.486475f, 0.159746f, -0.018932f, 3.692397f, 1.384353f, + -0.401984f, -0.248380f, -0.140861f, 0.215248f, -0.023711f, 0.059679f, + -0.072260f, 0.004271f, 0.039545f, -0.347971f, -0.081851f, -0.474896f, + -0.181572f, 0.066736f, -0.157822f, -0.163760f, -0.171113f, -0.089935f, + -0.338281f, -0.421444f, -0.306687f, -0.085283f, -0.377953f, -0.138750f, + -0.102701f, -0.312336f, 0.149831f, 0.007229f, -0.155700f, -0.173611f, + 4.074261f, 1.342306f, -1.272712f, 1.570899f, -0.545093f, -0.317605f, + -0.189440f, -0.133910f, -0.273190f, -0.108020f, -0.166107f, 0.021413f, + -0.239130f, -0.067211f, 0.041957f, -0.039234f, -1.003587f, -0.094412f, + 0.532512f, -0.870538f, -1.118023f, -1.160983f, -0.736307f, -0.418752f, + 0.419466f, 0.492122f, -0.004368f, -0.022096f, -1.115132f, 0.150886f, + 2.396852f, 2.660000f, -0.376537f, 0.468628f, 0.149413f, -0.074898f, + -0.067154f, 0.021245f, 0.127857f, 0.294189f, 0.508056f, 0.390232f, + -3.899177f, -3.414681f, -3.929195f, -4.160545f, -0.274323f, -0.052583f, + -0.003545f, -0.433084f, -0.404891f, -0.145051f, -0.312367f, 0.004579f, + -0.398724f, -0.372068f, -0.234279f, 0.017799f, -0.424760f, -0.646717f, + -0.047568f, 2.924664f, -0.644165f, 0.359349f, -0.294800f, 0.591746f, + -0.404710f, -0.092358f, -0.250729f, 0.030829f, -0.147149f, -0.476023f, + -0.071803f, -0.482516f, -0.293117f, -0.215923f, -0.373122f, -0.085315f, + -0.377052f, -0.449899f, -0.056452f, 0.138081f, -0.085350f, -0.308391f, + 0.106661f, 0.176234f, 0.258869f, -0.230172f, -0.233029f, -0.241208f, + -0.067509f, -0.223172f, -0.118353f, -0.302478f, -0.579632f, -0.561326f, + -0.158114f, -0.223167f, -0.026689f, 0.051863f, 0.212834f, -0.304714f, + -0.169071f, -0.193695f, -0.075682f, -0.170860f, -0.241008f, -0.044648f, + 0.280815f, -0.002585f, -0.283552f, -0.037701f, -0.681169f, -0.274535f, + -0.380595f, 0.109504f, -0.111141f, -0.437685f, -0.094459f, 0.144206f, + -0.106139f, -0.211832f, -0.054742f, -0.172813f, -0.295905f, -0.071907f, + -0.418429f, -0.183240f, 0.031319f, -0.095785f, -0.315447f, 0.069404f, + -0.422910f, -0.029867f, -0.357321f, -0.199976f, -0.337707f, -0.070188f, + -0.178198f, 0.177208f, 0.134688f, -0.081933f, -0.229452f, -0.208872f, + 0.026287f, -0.364040f, -0.063696f, -0.227443f, -0.234401f, -0.205699f, + -0.267238f, -0.494125f, -0.056255f, 0.053715f, -0.487754f, 0.014818f, + 0.087383f, -0.077556f, -0.168085f, -0.436851f, -0.276286f, -0.137845f, + -0.107606f, -0.103653f, -0.233766f, -0.419083f, 0.169185f, 0.010186f, + -0.001587f, 0.086735f, -2.465718f, 1.482185f, 1.621193f, -2.081680f, + 1.386553f, -3.204335f, -0.267111f, -0.004508f, 0.164712f, 0.274147f, + 1.724306f, -2.273659f, 0.749574f, -0.891905f, 0.105965f, -0.030428f, + -0.416018f, -0.300762f, 0.122911f, -0.316908f, -0.292504f, 0.138666f, + -0.161327f, -0.042143f, -0.249128f, 0.149210f, -0.088987f, -0.654101f, + -1.501843f, 0.216777f, 0.955914f, 0.524158f, -1.642561f, -1.643626f, + 0.864797f, -0.425451f, -2.115764f, -0.012502f, 0.065172f, 1.297270f, + 0.018845f, 1.167276f, -0.470970f, -0.244995f, 0.374782f, -1.811056f, + -0.055430f, -0.024102f, -0.376519f, -0.339640f, -0.119177f, -0.277995f, + -0.290095f, -0.081362f, -0.144139f, -0.118037f, -0.180357f, -0.217559f, + -0.370683f, 0.172816f, -0.265069f, 0.194321f, -0.273478f, 0.037442f, + -0.235552f, -0.078625f, -0.447541f, 0.016836f, -0.271123f, -0.171481f, + -0.321477f, -0.184826f, -0.442981f, -0.227273f, -0.370666f, -0.237232f, + -0.257493f, -0.225714f, -0.153716f, -0.283487f, -0.155399f, 0.067697f, + 0.230343f, -0.034318f, -0.022687f, -0.047090f, +}; + +static const float av1_ab_partition_nn_bias_64_layer0[64] = { + -0.212182f, -0.233725f, -0.758846f, -0.158162f, 0.614743f, -0.150944f, + -0.075727f, -0.208414f, 1.054996f, 0.713758f, -0.300051f, -0.151482f, + -2.443570f, 0.430590f, -0.129001f, -0.160733f, -0.230547f, -0.143228f, + -0.140577f, -0.086812f, -0.212298f, -0.159557f, -0.055647f, -0.211423f, + 0.578161f, -0.220318f, -0.210107f, -3.111584f, 0.604419f, -0.232622f, + -0.209924f, -0.130794f, -0.084097f, -0.036005f, 0.294594f, -2.535531f, + -0.209783f, -0.211189f, -2.766337f, 0.000000f, 0.450177f, -1.754884f, + 3.262664f, -0.209691f, -0.614886f, -0.211257f, -0.109096f, -0.190492f, + -0.109007f, -0.026910f, -0.136035f, -0.212321f, -0.139320f, -0.212233f, + -0.305430f, 0.739171f, 0.991277f, -0.088150f, 0.086313f, -0.023379f, + -0.125366f, -0.063576f, -0.212169f, -0.047463f, +}; + +static const float av1_ab_partition_nn_weights_64_layer1[64 * LABEL_SIZE] = { + -0.036800f, 0.528721f, 0.490767f, 0.144409f, 1.103640f, 0.361910f, + -0.180069f, 0.068033f, -14.868382f, 0.359013f, 0.322567f, -0.199212f, + 0.906164f, -0.488254f, 0.149653f, -0.216394f, -0.099347f, 0.004936f, + -0.111391f, 0.074848f, -0.041709f, 0.147627f, -0.018905f, 0.096116f, + 0.184817f, -0.016241f, 0.115739f, 2.376754f, 0.637097f, 0.052954f, + 0.136428f, 0.225267f, -0.181873f, -0.142876f, 0.684048f, 0.658791f, + 0.105795f, 0.241705f, 1.381114f, -0.209379f, 1.145949f, 0.795293f, + -9.361877f, 0.198302f, 0.539600f, 0.092317f, -0.081695f, 0.200777f, + 0.102334f, 0.081583f, 0.060948f, -0.025110f, 0.160951f, -0.020170f, + 0.234006f, -0.029369f, 0.375036f, 0.270209f, -0.556529f, 1.402949f, + 0.101777f, -0.027331f, 0.004502f, -0.153166f, -0.116651f, 0.151573f, + -0.022187f, 0.144044f, -0.108719f, -0.129942f, -0.270321f, 0.227363f, + 1.892330f, -0.661052f, -0.219398f, -0.229417f, -0.856438f, -1.196988f, + -0.081774f, 0.078847f, -0.207057f, -0.048947f, 0.152073f, -0.243056f, + -0.233329f, -0.288689f, -0.158333f, -0.141177f, -0.715436f, 0.016947f, + -0.093752f, 0.204984f, -1.209782f, 0.155683f, 0.092239f, 0.146495f, + 0.813146f, -0.027757f, 0.330982f, 2.173948f, -0.028867f, -0.141815f, + 0.292708f, -0.204794f, 0.014496f, 1.032799f, 1.312155f, 0.107020f, + 0.824752f, -0.013945f, 0.184829f, -0.041633f, 0.215300f, -0.476088f, + -0.053213f, 0.126862f, -0.020777f, 0.082893f, -0.223727f, -0.923063f, + 0.466529f, 0.082140f, -0.845758f, -1.140791f, -0.262033f, 0.138491f, + 0.151717f, -0.182479f, -0.131128f, 0.055411f, 0.106771f, 0.125552f, + 0.297184f, -0.257403f, -0.059884f, -0.274903f, 2.694357f, -0.108244f, + 0.025377f, 0.043092f, -0.558317f, 3.517159f, -0.270833f, -0.240676f, + 0.205100f, -0.057068f, -0.140445f, -0.193449f, -0.030061f, -0.286762f, + -0.467523f, -0.012647f, 0.190564f, 0.022394f, -0.101479f, 0.339684f, + -0.902743f, -0.169578f, -0.178029f, -0.041836f, -3.952108f, -0.028298f, + -0.221137f, -0.733895f, -0.223895f, 0.039012f, 0.687867f, 0.021423f, + 0.113063f, 0.676087f, -0.961000f, -0.064847f, 0.712856f, -0.192765f, + -0.001132f, 0.016689f, -0.236020f, -0.766186f, -0.175729f, 0.012879f, + -0.251064f, -0.105523f, -0.039212f, -0.347584f, 0.304352f, -0.034174f, + -0.364258f, -0.685252f, -0.266115f, -0.247345f, -0.155905f, 0.152283f, + -0.156315f, 0.174082f, -0.757654f, 0.102303f, -2.192316f, -0.245815f, + 0.119882f, -0.086542f, 1.987246f, -1.353163f, -0.374813f, -0.233504f, + -1.980895f, 0.692093f, -0.168351f, 0.172700f, -0.009052f, -0.015734f, + 0.106679f, -0.060472f, -0.256813f, -0.074874f, -0.207488f, -0.329515f, + -0.418268f, -0.017940f, -0.036081f, 0.064719f, -1.488016f, 0.020591f, + -0.176325f, -0.141074f, 0.944494f, 0.150237f, -0.249805f, -0.277280f, + 0.012686f, 0.132483f, 0.116123f, 0.013737f, -0.116091f, 0.750340f, + 3.251343f, -0.188864f, 1.096992f, 0.058467f, -0.041433f, -0.037937f, + -0.133294f, -0.137908f, -0.171132f, 0.106362f, 0.069383f, -0.052662f, + -0.177883f, -0.408049f, 0.680221f, -0.117035f, -0.904240f, -1.395228f, + 0.154527f, 0.134427f, 0.022767f, -0.158886f, -0.230316f, 0.161096f, + 0.362213f, -0.235060f, -0.941620f, 0.055912f, -0.049458f, -0.166632f, + 0.481418f, 0.930146f, 0.041108f, 0.033674f, 1.372066f, -1.847709f, + 0.003324f, 0.259534f, 0.177014f, -0.202761f, -0.262017f, -0.190852f, + -0.102839f, 0.028338f, 0.187193f, -0.041684f, 0.123973f, -0.198576f, + -0.110369f, -1.431400f, 0.208369f, -0.302370f, -0.248549f, 0.062985f, + 0.673409f, 0.036662f, -0.711340f, -0.120584f, -0.189789f, 0.098812f, + 2.947819f, 0.216567f, -0.414472f, -0.181742f, 1.873779f, -0.222726f, + -0.782870f, 0.007889f, 0.015062f, -0.554328f, 0.182928f, -0.191430f, + 0.123636f, -0.215460f, -0.225245f, 0.251516f, -0.013025f, -1.359595f, + -0.750602f, 0.342667f, -0.141899f, -0.687493f, -0.072639f, 0.048018f, + -0.242107f, -0.031917f, -0.287472f, -0.046088f, 0.832197f, -0.016576f, + -1.553349f, -0.216341f, 0.023077f, -0.410867f, 4.243743f, -0.514878f, + -0.066007f, -0.160696f, -0.262678f, -0.648790f, -0.430586f, 0.199940f, + -0.202496f, -0.222241f, -0.016406f, -0.121473f, 0.000828f, -0.081584f, + -0.152641f, -0.190166f, 0.644400f, 0.040196f, -0.302104f, -1.143654f, + -0.160327f, -0.320780f, -0.187006f, 0.037311f, 0.440618f, -0.070733f, + -0.117785f, 1.527539f, -0.419310f, 0.001300f, 1.389956f, -0.036366f, + -0.269203f, 0.612265f, 2.721897f, -0.086836f, -0.446999f, 0.012525f, + -0.078317f, -0.287052f, -0.111188f, -0.085181f, -0.164667f, -0.010466f, + -0.569722f, -0.018888f, -0.101663f, -1.147130f, -0.465204f, 0.114524f, + -2.192402f, -0.221325f, 0.375748f, 0.206284f, -0.261548f, -0.246257f, + -0.143004f, -0.069981f, -0.057306f, -0.116481f, -0.435903f, -0.314970f, + 0.013210f, -0.010175f, 4.630571f, -0.473226f, -0.197199f, -0.028204f, + 0.122907f, 2.475548f, 0.025011f, -0.092603f, -0.127561f, -0.151330f, + -0.077295f, 0.245016f, -0.045005f, 0.183396f, -0.330556f, -0.384887f, + 0.356374f, -0.016618f, -0.463353f, -1.291546f, -0.071986f, -0.311599f, + 0.072385f, -0.430786f, -2.094788f, 0.202733f, -0.910109f, -1.336543f, + -0.086800f, -0.096413f, 1.544383f, 0.031860f, -0.796211f, 0.762786f, + 3.250022f, -0.441798f, -0.698537f, 0.062839f, 0.033525f, -0.362996f, + 0.027022f, -1.131264f, -0.228926f, 0.053885f, -0.338628f, 0.155037f, + -0.046844f, -0.888172f, -0.241767f, 0.084965f, -0.617743f, -0.049896f, + -0.036894f, -0.304783f, -0.002639f, 0.137957f, 0.052121f, -0.131161f, + -0.117200f, -0.253380f, -0.205561f, -0.302450f, -0.047397f, -0.330518f, + 3.613420f, -1.525951f, -0.026738f, 0.209150f, -2.103534f, 2.019689f, + -0.366199f, -0.095260f, 0.027417f, -0.242512f, 0.162579f, 0.052113f, + -0.293851f, -0.068138f, -0.005799f, -0.344696f, -0.114824f, -0.431107f, + -0.120058f, -1.139926f, -1.048379f, 0.036446f, -0.323020f, -0.432945f, + 0.454151f, -0.140058f, 0.050649f, -0.094900f, -0.017278f, -0.238719f, + 1.193153f, 0.120447f, -0.496061f, 0.917431f, 2.936126f, -0.115521f, + -0.347397f, -0.435325f, -0.004383f, -0.211864f, 0.162383f, -1.040726f, + 0.089537f, -0.128579f, -0.133505f, 0.107129f, -0.435657f, -0.180388f, + 0.043650f, 0.018709f, -0.773242f, -0.687192f, -0.120633f, -0.063626f, + 0.029912f, 0.113972f, -0.403502f, -0.127640f, -0.269625f, 0.129794f, + -0.188539f, 0.041641f, 0.029769f, -0.198374f, 1.401407f, 0.353887f, + -0.219925f, 0.260515f, 1.157034f, -2.992044f, -0.097618f, -0.064417f, + -0.203626f, -0.008217f, -0.112339f, -0.227407f, -0.155118f, 0.247705f, + -0.012304f, -0.248447f, -0.913463f, -0.064788f, -0.214619f, -0.251761f, + -0.386861f, -0.040574f, -0.163219f, -0.100700f, 1.488274f, -0.071684f, + -0.033626f, -0.006497f, -0.246945f, -0.145221f, -3.747390f, 0.149609f, + -0.263326f, -0.297385f, -1.039896f, -0.083174f, -0.025473f, -0.235586f, + -0.001087f, 0.254286f, 0.265106f, 0.007325f, 0.199239f, 0.134103f, + -0.578211f, -0.259801f, -0.062373f, 2.368348f, 0.560556f, -0.252260f, + 0.889997f, -0.447872f, -0.059218f, -0.095315f, -0.061667f, 0.183580f, + -0.157479f, 0.055387f, -0.831734f, 0.007606f, -1.104906f, 0.301180f, + -0.117115f, 0.212959f, 4.727223f, -0.243833f, -0.397495f, -0.025021f, + -0.367587f, -2.082058f, -0.217699f, 0.148111f, 0.252430f, 0.111088f, + -0.260692f, 0.095124f, -0.407774f, -0.322169f, 0.002927f, 0.126169f, + -1.272325f, -0.279772f, -0.373680f, -0.485177f, -0.605458f, 0.021225f, + -0.092031f, -0.226585f, 1.895162f, 0.037866f, -0.275475f, 1.614360f, + -0.014972f, -0.277679f, -3.449082f, -0.092060f, -0.747873f, 0.020716f, + 2.776178f, -0.049963f, 0.183999f, -0.295259f, -0.028868f, 0.221895f, + 0.001265f, 0.336823f, 0.219372f, 0.112824f, 0.408132f, -0.017940f, + -0.311666f, 1.489606f, -0.058093f, -0.305659f, -0.491933f, -0.143847f, + 0.166115f, 0.042867f, -0.123447f, -0.087099f, -0.305395f, -0.365079f, + -0.755801f, -0.160649f, 0.736260f, -0.008611f, 0.095836f, -0.017345f, + 5.697515f, -0.498971f, -0.125280f, 0.199907f, 0.300053f, 0.605026f, + -0.228225f, -0.259523f, 0.016384f, 0.146973f, 0.210258f, 0.226766f, + -0.075178f, -0.050924f, 0.188496f, -0.415266f, -0.484880f, -0.236384f, + 0.071931f, -0.331863f, -0.601243f, -0.232479f, -0.285272f, 0.123789f, + -1.341333f, 0.037082f, -0.315202f, -1.587215f, -0.271576f, 0.003216f, + -4.437186f, -0.256205f, -0.576589f, -0.114147f, 2.153916f, -0.369618f, + 0.271415f, 0.145036f, -0.158731f, -0.240938f, -0.187369f, 0.036325f, + 0.254771f, 0.211488f, -0.240297f, 0.098417f, -0.415011f, 2.334793f, + -0.127252f, 0.020069f, -0.168755f, -0.448922f, -0.219207f, 0.016232f, + -0.221935f, -0.269500f, -0.100636f, 0.102545f, -0.809376f, -0.054979f, + 0.360713f, -0.326541f, 0.112933f, 0.138073f, 4.229404f, -0.763801f, + -0.305429f, 0.199955f, -1.787713f, 0.272866f, 0.109895f, 0.138466f, + -0.250259f, -0.167162f, -0.212588f, -0.217589f, -0.067125f, -0.077490f, + -0.208970f, -0.006863f, -0.671146f, -0.298320f, -0.165509f, 0.044597f, + -1.408624f, -0.213957f, -0.220947f, 0.129718f, 1.316777f, -0.098928f, + -0.008121f, -0.558293f, -0.297290f, -0.218873f, -4.346638f, -0.228174f, + -0.204710f, -0.388864f, 2.697919f, 0.025260f, 0.857020f, 0.009921f, + 0.036915f, -0.320275f, -0.087937f, 0.022636f, 0.236667f, 0.135496f, + -0.059616f, -0.192955f, 0.009470f, 2.139589f, -0.200449f, 0.129818f, + 1.017444f, -0.608299f, 0.257914f, -0.134306f, -0.033327f, 0.002855f, + -0.338598f, 0.015559f, 0.117362f, -0.166760f, 0.086903f, -0.167666f, + 0.193523f, 0.033852f, -1.147686f, 0.489468f, -0.006969f, 0.125630f, + 1.557907f, -1.604449f, -0.071114f, 0.096178f, 0.007065f, 0.200013f, + 0.213393f, 0.168466f, -0.100568f, -0.117861f, -0.161542f, -0.072561f, + -1.069871f, -0.470138f, -0.352578f, -1.503513f, -0.001394f, -0.380109f, + 0.065089f, -0.281668f, 0.988953f, -0.002778f, -0.659026f, -0.470692f, + -0.407292f, 0.011710f, -1.362085f, 0.184738f, -0.135786f, -1.374241f, + 4.487930f, -0.067274f, -0.956404f, -0.233995f, 0.224527f, -0.454556f, + 0.037900f, -0.281658f, 0.208224f, -0.254753f, 0.045740f, 0.051444f, + -0.388281f, 0.257112f, -0.485030f, -0.082659f, 0.148103f, -1.007456f, + -0.022295f, 0.036984f, -0.369401f, -0.076943f, -0.007636f, -0.293022f, + 0.470466f, 0.199012f, -2.158182f, 0.036577f, -0.014725f, -0.229516f, + 2.236929f, 0.030945f, -0.400045f, 0.109348f, 0.214691f, -0.891516f, + -0.251379f, -0.217358f, 0.013733f, 0.205573f, -0.151725f, -0.191782f, + -0.339630f, -0.163905f, -0.119191f, -0.032516f, 0.503015f, 0.025772f, + 0.029094f, -1.146153f, 0.216723f, -0.330023f, 0.064695f, -0.262521f, + 0.425612f, -0.093080f, -0.489648f, 1.051293f, -0.092332f, 0.095557f, + -0.874132f, 0.218483f, -0.127648f, -1.605802f, 2.763617f, -0.186734f, + -1.243166f, -0.193514f, -0.173748f, 0.337822f, 0.183873f, -0.251594f, + -0.211582f, 0.144081f, 0.029620f, -0.024853f, -0.385140f, 0.467341f, + -0.928316f, -0.195442f, 0.917783f, 0.357084f, 0.174445f, -0.073659f, + -0.012811f, -0.115420f, -0.181147f, -0.364449f, -0.567395f, -0.012969f, + -1.680714f, 0.065323f, 0.198063f, -0.244201f, 1.428545f, -0.432539f, + -0.208931f, -0.091205f, 0.957125f, 0.813519f, -0.262677f, 0.246852f, + 0.015536f, 0.055026f, 0.067054f, 0.262103f, -0.358115f, -0.095206f, + -0.267522f, -0.402710f, -0.680397f, -0.123627f, -0.385590f, -1.504680f, + -0.169513f, -0.215338f, 0.043633f, -0.079052f, -0.464410f, 0.122894f, + -0.278231f, -2.456445f, -0.159917f, -0.015597f, -0.735449f, -0.078854f, + -0.400290f, -1.153870f, 3.657228f, -0.287093f, -1.174355f, -0.102001f, + -0.288281f, 0.185209f, -0.145228f, -0.200449f, -0.099914f, -0.138354f, + 0.254428f, -0.161751f, -0.118206f, 0.296043f, -0.482613f, 0.080932f, + 1.097605f, -0.010190f, 0.232439f, 0.447617f, -0.133508f, 0.115763f, + -0.388589f, 0.174695f, -0.236014f, 0.006284f, -1.374129f, 0.092015f, + -0.241419f, -0.231667f, 2.763950f, -0.922932f, -0.061605f, 0.208740f, + -1.597190f, 1.353325f, -0.198528f, 0.250498f, -0.013950f, -0.203861f, + -0.254563f, 0.081931f, -0.413369f, 0.011844f, 0.080961f, -0.231161f, + -1.234909f, -0.440843f, -0.174980f, -0.315283f, -0.337474f, -0.123243f, + -0.310001f, -0.271028f, 0.364179f, 0.022845f, -0.535517f, -0.772936f, + -0.188435f, 0.039667f, -0.807463f, 0.266550f, -0.288857f, -1.630789f, + 1.280155f, 0.065712f, -0.279960f, -0.300056f, 0.258440f, -0.073781f, + 0.213878f, 0.042196f, 0.021360f, 0.211698f, -0.003751f, -0.192673f, + -0.137008f, 0.247878f, -0.470604f, 0.073164f, 1.523241f, 0.734755f, + -0.114126f, -0.193834f, -0.025759f, 0.263183f, +}; + +static const float av1_ab_partition_nn_bias_64_layer1[LABEL_SIZE] = { + -0.343508f, -0.706936f, -0.160676f, -0.877101f, -0.517567f, -0.253254f, + -0.148074f, 0.923430f, -0.364770f, 0.203550f, 0.401216f, 0.938246f, + -0.872737f, 0.718723f, 0.703398f, 2.560015f, +}; + +static const NN_CONFIG av1_ab_partition_nnconfig_64 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 64, // num_hidden_nodes + }, + { + av1_ab_partition_nn_weights_64_layer0, + av1_ab_partition_nn_weights_64_layer1, + }, + { + av1_ab_partition_nn_bias_64_layer0, + av1_ab_partition_nn_bias_64_layer1, + }, +}; + +// nn model for ab partition pruning, 32x32. +static const float av1_ab_partition_nn_weights_32_layer0[FEATURE_SIZE * 64] = { + -0.323723f, -0.214013f, -0.007772f, -0.458851f, -0.125542f, -0.123860f, + -0.410973f, -0.209389f, -0.087580f, -0.272881f, -0.168500f, -1.130845f, + 0.344916f, -0.475017f, -0.362262f, -0.195662f, -0.566124f, 0.782163f, + 0.411575f, -0.013378f, -0.318650f, -0.124678f, -0.612909f, -0.315788f, + -0.263990f, -0.508783f, -0.048938f, -0.416407f, -0.402648f, -0.156644f, + 0.225887f, -0.000493f, 2.682241f, 0.871204f, 0.059014f, 0.803542f, + -1.407028f, -1.154669f, 1.388148f, -0.293348f, -0.003669f, -0.009607f, + 1.330030f, -0.337841f, 2.118617f, 1.033059f, -0.084788f, 0.212904f, + 0.082405f, -0.070579f, -0.494005f, -0.173392f, 0.039546f, -0.463865f, + 0.077163f, -0.434066f, 0.030835f, -0.427139f, -0.560520f, -0.031606f, + -0.368541f, -0.027458f, 0.370574f, 0.461418f, 1.087682f, -0.572137f, + -1.509596f, -0.765697f, -0.499383f, -0.277998f, -0.106492f, -0.129564f, + -0.169133f, -0.269834f, -0.114270f, -0.275431f, 0.016339f, -0.156744f, + -0.267922f, 0.171216f, 0.110556f, 0.002954f, -0.200327f, -0.187663f, + 3.691601f, 1.234152f, 0.186315f, -0.125370f, -0.211235f, -0.554432f, + -0.131072f, -0.124982f, -0.130339f, -0.235350f, 0.018903f, 0.012896f, + -0.159372f, -0.269571f, -0.025709f, -0.221251f, 0.061919f, 0.016307f, + 0.384673f, -0.134525f, -1.599126f, -0.416459f, -0.743052f, 0.670249f, + -0.169709f, 0.421681f, -0.033360f, -0.072817f, 0.003647f, -0.110632f, + -0.158651f, -0.095136f, 0.223759f, 0.165767f, -0.269129f, -0.196075f, + -0.023183f, -0.293420f, 0.014875f, 0.018688f, -0.153407f, -0.172009f, + -0.259947f, -0.124015f, 0.173653f, -0.089103f, -0.021001f, -0.334230f, + 0.027177f, 0.103371f, -0.183860f, -0.204051f, -0.023721f, -0.192297f, + -0.143771f, -0.247106f, 0.218116f, -0.013240f, 2.831783f, 1.483928f, + -0.877025f, -0.313462f, -0.411320f, -0.447825f, 0.605977f, 0.234684f, + -0.119150f, -0.075182f, -0.330463f, 0.071503f, -0.254924f, -0.360071f, + -0.037022f, 0.063261f, -0.148759f, -0.238254f, -0.462018f, -0.027166f, + 0.065318f, -0.235743f, -0.257194f, -0.094784f, 0.022423f, 0.055925f, + 0.086672f, -0.021010f, 0.009965f, -0.001648f, -0.104917f, -0.387443f, + -0.102673f, -0.281706f, 0.145923f, -0.233391f, -0.378365f, -0.145584f, + -0.077751f, -0.121166f, 1.134565f, -0.097500f, -0.749202f, -0.544566f, + -1.361374f, -0.102494f, 1.089275f, 0.375299f, -0.105091f, 0.037641f, + -0.054248f, -0.282691f, -0.377797f, -0.066427f, -0.253815f, -0.329677f, + -0.339326f, -0.128217f, -0.282905f, 0.014937f, 1.067185f, -0.171764f, + 0.484458f, 0.396706f, -0.557055f, -0.891596f, -0.257839f, -0.720879f, + -0.218449f, -0.004755f, 1.572857f, 0.006229f, 1.962895f, -0.029746f, + -4.137691f, -2.185991f, -2.763477f, -0.520437f, -0.208708f, 0.006444f, + -1.263078f, -0.304560f, 1.072374f, 2.556429f, 0.312850f, 0.257488f, + -0.634264f, 0.156769f, -0.188943f, 0.040295f, -0.389915f, 0.085250f, + -0.248525f, 0.045667f, -0.776115f, -0.274680f, -0.448145f, -0.566161f, + -1.285316f, 0.079060f, 0.389124f, -0.510401f, -0.015299f, -0.664661f, + 0.099901f, -0.470694f, -0.051593f, -1.076381f, -0.442104f, -0.197867f, + -0.330011f, -0.448523f, -0.301018f, -0.442093f, -0.491953f, -0.582091f, + -0.064569f, -0.156516f, 0.543522f, -0.005924f, 0.161432f, 0.974793f, + 0.273712f, 1.104850f, -0.290312f, 0.313417f, -0.125370f, 0.136234f, + -0.191227f, -0.165054f, 0.011872f, -0.298871f, 0.095740f, 0.142760f, + -0.215771f, -0.031437f, 0.101041f, -0.085620f, 0.435387f, 0.002786f, + 1.971375f, 0.018392f, -1.771940f, -0.401433f, 0.808263f, -3.350013f, + 2.296952f, -1.024403f, -0.041645f, -0.034799f, -0.024078f, -0.347301f, + -0.276088f, -0.455907f, 0.266021f, 0.087348f, -0.146566f, 0.040492f, + -0.539866f, -0.206851f, -0.387874f, -0.125508f, -0.496676f, -0.373845f, + -0.472356f, -0.357082f, -0.081254f, -0.456466f, 0.554713f, 0.002185f, + -4.225019f, 0.344025f, 0.728796f, -0.262936f, 1.383924f, 1.577300f, + -2.653320f, -2.516156f, -0.301604f, -0.204105f, -0.138252f, -0.587536f, + -0.097889f, -0.352414f, -0.288276f, -0.184340f, -0.122741f, -0.243376f, + 0.031970f, -0.373402f, -0.396079f, 0.045566f, 0.072595f, -0.222681f, + -0.243802f, -0.340129f, -0.258494f, -0.192041f, -0.386112f, -0.240940f, + -0.047268f, -0.555802f, -0.032514f, -0.241341f, -0.167463f, -0.478308f, + -0.205936f, -0.316275f, 0.103729f, -0.197893f, -0.128029f, -0.218796f, + -0.167362f, -0.111814f, -0.126062f, -0.394260f, -0.025357f, -0.402697f, + -0.587395f, -0.400385f, -0.259664f, -0.415588f, -0.338503f, -0.399166f, + -0.270504f, 0.234505f, 0.272144f, 0.266938f, -0.392395f, -0.011717f, + -0.384221f, -0.473446f, -0.038420f, -0.241101f, -0.234402f, -0.275567f, + -0.410454f, -0.377599f, -0.179099f, -0.138432f, -0.248083f, -0.543026f, + -0.428043f, -0.239895f, -0.333193f, -0.103346f, -0.039038f, -0.171109f, + -0.119432f, -0.222351f, 0.000450f, 0.208724f, -0.510526f, -0.144656f, + -0.316721f, -0.344846f, -0.244794f, -0.129134f, -0.045634f, -0.400183f, + 0.043714f, -0.235414f, 0.115594f, -0.195616f, -0.106693f, -0.124242f, + 0.083990f, 0.049110f, -0.196130f, -0.059860f, -0.464235f, -0.516443f, + -0.101521f, -0.422379f, -0.413955f, -0.042991f, -0.345263f, -0.129264f, + -0.106911f, -0.140156f, -0.457841f, -0.199848f, -0.218954f, -0.329850f, + -0.364097f, -0.335262f, -0.312254f, -0.299331f, -0.052710f, -0.251019f, + -0.023459f, -0.222538f, 0.028849f, -0.088038f, -0.301550f, -0.273566f, + 0.067295f, -0.174608f, -0.445784f, -0.158366f, -0.567275f, -0.557652f, + -0.353503f, -0.302092f, -0.302049f, -0.551793f, -0.034535f, -0.225190f, + -0.210733f, -0.219377f, -0.057197f, -0.430933f, -0.025185f, -0.388150f, + -0.086147f, -0.430088f, 0.058466f, -0.152129f, -0.058411f, -0.236392f, + -0.547669f, -0.613849f, -0.893774f, -0.351715f, -0.399227f, -0.454909f, + -0.324501f, 0.000490f, -0.282167f, -0.073163f, -0.281452f, 0.047932f, + -0.175500f, 0.165220f, -0.276212f, 0.062153f, -0.217054f, -0.255487f, + -0.146416f, -0.097718f, -0.173809f, -0.559328f, -0.055695f, -0.391193f, + -0.132020f, -0.561184f, -0.308666f, -0.474053f, -0.219149f, -0.246558f, + -0.158325f, 0.151907f, -0.266835f, -0.144697f, -0.193960f, -0.046587f, + -0.220028f, -0.247355f, 0.135584f, 0.016511f, 0.367705f, -1.855877f, + 0.435622f, 0.444710f, -3.372301f, -3.030489f, 1.013267f, 0.380951f, + -0.170011f, -0.111415f, -0.456146f, -0.107254f, -0.095220f, -0.053078f, + -0.135864f, -0.591949f, -0.252810f, -0.324799f, -0.094796f, -0.260969f, + -0.391981f, -0.063170f, -0.336130f, -0.470127f, -0.405168f, -0.433219f, + -0.309563f, -0.295462f, -0.552270f, -0.012300f, -0.057793f, -0.034494f, + -0.446843f, -0.640160f, -1.188681f, -0.791361f, 0.543271f, 1.189112f, + 1.458468f, -0.005876f, -0.927475f, 0.062038f, -1.170818f, 0.338227f, + -3.007096f, -4.559296f, -4.045457f, -5.953635f, -0.228386f, -0.266890f, + -0.092595f, -0.377440f, -0.044534f, -0.053565f, -0.349268f, -0.415030f, + -0.310094f, 0.062721f, 0.251422f, -0.014350f, -1.282910f, 1.619560f, + 1.180566f, -0.032163f, -1.322951f, -0.603601f, 1.443710f, 0.654650f, + -0.393227f, 0.003536f, 0.029725f, -0.108925f, -0.053911f, 0.133977f, + -0.036145f, -0.168438f, 0.046989f, -0.331463f, -0.176983f, -0.311922f, + -0.272389f, -0.379592f, -0.399993f, -0.297873f, -0.193425f, -0.177524f, + -0.258309f, -0.567312f, -0.260217f, -0.241869f, 0.024010f, -0.032867f, + -0.039424f, -0.063670f, 0.193808f, -0.303514f, -0.013376f, -0.057761f, + 0.187922f, 0.006938f, 0.031810f, 0.180594f, -1.198427f, 2.820662f, + 0.154986f, -0.375518f, 0.116925f, -0.795782f, -0.085139f, -0.079365f, + -0.197936f, -0.321468f, -0.205271f, -0.558203f, -0.296235f, -0.151193f, + -0.158282f, -0.245402f, -0.208504f, -0.042335f, -0.087426f, -0.557129f, + -0.381427f, -0.441551f, -0.541011f, -0.060567f, -0.469305f, -0.032326f, + -2.453587f, -0.045568f, -0.296932f, 0.613061f, -0.320284f, 0.191620f, + -0.827145f, -0.225277f, 0.275800f, 1.696635f, +}; + +static const float av1_ab_partition_nn_bias_32_layer0[64] = { + -0.176206f, 0.660189f, -0.186156f, -2.481963f, -1.564218f, -0.280424f, + 0.732684f, -0.135581f, -2.193132f, -0.172771f, 0.605001f, -0.060392f, + -0.067190f, -0.132969f, -1.410812f, -0.298701f, -0.105963f, -0.086173f, + 0.632779f, 0.005585f, 1.310169f, 1.392136f, -0.563860f, -0.051053f, + 0.660998f, -0.214726f, -1.894342f, -0.128288f, -0.330721f, -0.053988f, + -0.177726f, 1.200859f, -0.178902f, -0.172620f, -0.184476f, -0.175559f, + 0.538503f, -0.322158f, -0.219080f, -0.058208f, -0.171347f, -0.216060f, + -0.174950f, -0.295740f, -0.184820f, -0.213896f, 1.317728f, -0.020116f, + -0.208096f, 0.000000f, 1.246166f, -0.225421f, -0.181555f, 0.861761f, + 1.172429f, -0.172892f, -0.737092f, -0.189904f, -0.179385f, -0.114618f, + -1.384604f, -0.201713f, -0.271948f, 0.372351f, +}; + +static const float av1_ab_partition_nn_weights_32_layer1[64 * 16] = { + -0.037828f, 1.529029f, 0.004927f, 1.475763f, 0.627172f, 0.325872f, + -0.990757f, 0.129476f, 0.889958f, -0.082031f, 0.332133f, 0.074422f, + -0.176212f, -0.074355f, 0.774378f, 0.110987f, -0.155469f, 0.253310f, + 0.882538f, 0.253605f, 0.332436f, -5.389474f, 0.278470f, 0.168644f, + 0.914611f, 0.154165f, 0.809262f, -0.174734f, 0.923673f, 0.064716f, + -0.070228f, -0.228735f, 0.002312f, 0.112222f, -0.045502f, -0.046004f, + 0.514101f, 0.306480f, 0.021232f, -0.015955f, -0.288260f, 0.189177f, + -0.104158f, 0.103273f, 0.096910f, -0.086328f, 1.327289f, -0.154247f, + 0.056676f, -0.243327f, -0.646676f, 0.177221f, -0.086761f, 0.729729f, + -14.710893f, -0.044881f, 0.339003f, -0.134737f, 0.073621f, -0.162913f, + 1.215237f, 0.140723f, 0.138630f, 1.241719f, 0.204092f, -0.463080f, + -0.176086f, 1.125868f, 1.034814f, 0.225455f, -0.203421f, -0.078787f, + -0.527498f, 0.012491f, -0.563307f, -0.170792f, 0.002679f, 0.116153f, + 0.211348f, -0.191900f, -0.212505f, 0.263445f, -0.074679f, -0.081441f, + -0.815405f, 2.448215f, 0.781299f, 0.149542f, -1.045162f, 0.043014f, + 0.217381f, -0.094500f, -0.090427f, 0.025784f, -0.228906f, -2.741798f, + 0.230475f, -0.256112f, -0.103297f, 0.159121f, -0.229793f, -0.014883f, + -0.104131f, -0.123816f, 0.164148f, -0.052279f, -0.071845f, -0.041197f, + 0.208527f, -0.234197f, -0.542336f, 0.020053f, 0.088870f, 0.014346f, + 2.502164f, -0.010244f, -0.267792f, 0.844394f, 2.711486f, -0.015262f, + -0.868053f, -0.295704f, 0.222289f, -0.000286f, -0.352098f, -0.079000f, + 0.021267f, -0.721739f, -0.240558f, -0.384775f, 0.065974f, -2.161058f, + 0.195889f, 0.268966f, -0.009329f, 0.014949f, 0.314943f, 0.235885f, + 0.072591f, -0.127120f, 0.150784f, 0.105697f, -1.297403f, -0.207509f, + -0.217688f, -0.076752f, 0.170952f, -0.294235f, 0.449973f, -1.712690f, + 0.860989f, 0.054757f, -0.812627f, -0.105316f, -0.736230f, -0.133192f, + -3.741608f, 0.495660f, -0.288936f, 4.654852f, -0.021305f, -0.308916f, + 0.049205f, -0.259996f, 0.114248f, -0.252647f, -0.253180f, -0.449314f, + 0.022979f, 0.063281f, -0.196154f, 0.078295f, -0.322317f, -0.145142f, + 0.300573f, 0.048385f, -0.254787f, 0.123939f, -1.263088f, -0.228565f, + -0.389061f, 0.391084f, 2.322438f, 0.075009f, 0.225743f, -0.198808f, + -0.280538f, -0.173939f, -0.120543f, -0.070792f, -0.417187f, -0.781056f, + -0.102756f, -1.760965f, 0.019149f, -0.867342f, 0.347141f, 0.031588f, + 0.302572f, -0.203573f, -0.357320f, -0.096078f, -0.527528f, 0.046699f, + -0.108561f, -0.167077f, -2.851509f, -0.307116f, 0.202720f, -0.160280f, + -0.215525f, 0.064355f, -0.427220f, 1.516230f, 0.634453f, 0.099400f, + -1.013887f, -0.029740f, -0.093426f, -0.044272f, -1.297636f, -0.237614f, + -0.160953f, 0.399036f, -0.030685f, -0.113619f, -0.184704f, 0.040519f, + -0.588252f, -0.210235f, -0.067623f, -0.031841f, -0.107261f, -0.192582f, + -0.253959f, -0.430821f, -0.103184f, -0.280185f, -0.357723f, 0.197761f, + -0.175087f, -0.055171f, 1.642014f, -0.192559f, -0.288147f, 0.610311f, + 4.688195f, -0.128728f, -0.914869f, -0.108286f, 0.013789f, 0.092125f, + 0.019770f, -0.178386f, 0.074164f, -1.152658f, -0.216738f, -0.277286f, + 0.012381f, 0.418259f, -0.680727f, -0.221917f, -0.485946f, 0.101672f, + 2.009457f, 0.054302f, 1.019838f, -0.116170f, 0.165134f, -0.112567f, + 0.852632f, -0.385796f, -0.108666f, 0.053181f, -0.311797f, -0.372875f, + -0.675717f, 2.409268f, -0.514720f, -0.214245f, -0.646596f, 0.009756f, + 0.203993f, 0.093617f, -0.301290f, 0.253551f, -0.128909f, -1.448442f, + -0.186823f, -0.278001f, -0.294993f, -0.176928f, -0.473605f, 0.062049f, + -0.212084f, -0.137326f, 0.012505f, 0.087850f, -0.200413f, -0.394119f, + -0.132224f, 0.146917f, 0.155746f, 0.198725f, -0.322541f, 0.196391f, + -0.945500f, 0.036736f, -0.155646f, -0.677341f, 1.130545f, -0.339554f, + 0.411628f, -0.355813f, -0.249843f, 0.213694f, -2.035607f, 0.055694f, + -0.111669f, 0.408696f, -0.067043f, -0.048182f, 0.398110f, -0.067542f, + 1.459801f, 0.236833f, -0.178806f, 0.168758f, 0.492387f, 0.099691f, + -0.776680f, -0.172865f, 0.204225f, 0.193982f, 0.575685f, -0.062248f, + 0.011486f, 0.058571f, -0.493391f, 0.026893f, -0.900467f, 3.793129f, + -0.634613f, -0.064660f, -0.048262f, 0.361905f, 0.033641f, 0.245171f, + -0.064671f, 0.034954f, 0.204358f, -0.904023f, -0.052714f, -0.250134f, + 0.136700f, 0.000734f, -0.371720f, 0.226483f, 0.217958f, 0.060559f, + 0.180111f, 0.000970f, 0.079556f, -0.096775f, 0.093855f, -0.026224f, + -0.243664f, 0.004290f, 0.123281f, -0.239476f, 1.230374f, -0.107826f, + -0.101982f, -0.153917f, 5.464427f, 0.304375f, -0.809957f, 0.090564f, + -0.278416f, -0.245555f, -2.078421f, 0.243093f, -0.127666f, 0.052451f, + -0.126662f, -0.783505f, 0.025149f, -1.422675f, -0.207769f, -0.362547f, + 0.115310f, 0.133390f, 1.264754f, -0.027055f, -0.485312f, -0.240717f, + -0.239722f, 0.146818f, -1.265043f, -0.235553f, 0.267104f, -0.021357f, + -0.435949f, -0.309371f, 0.049920f, 1.302721f, -0.233978f, -0.097551f, + -0.240631f, -0.287821f, -0.378380f, -0.273131f, -3.075169f, 0.226404f, + -0.029361f, 2.703590f, -0.430659f, 0.067927f, -0.387520f, -0.370630f, + -0.229236f, 0.085653f, -0.370956f, -0.065556f, -0.187859f, 0.068309f, + -0.109299f, -0.259898f, -0.103644f, -0.271199f, -0.209350f, 0.140993f, + -0.196713f, -0.135508f, -1.423209f, -0.406385f, -0.019956f, -0.864694f, + 5.963707f, -0.201157f, 0.726377f, -0.011076f, 0.010553f, -0.102918f, + -2.230088f, -0.258098f, -0.039547f, -0.029262f, -0.082324f, -0.860222f, + -0.094735f, -1.381839f, 0.587298f, -0.173048f, 0.721360f, 0.241900f, + 0.764302f, -0.023609f, -1.173755f, 0.103912f, -0.185363f, 0.078435f, + -2.245062f, -0.127269f, 0.202234f, 0.158975f, -0.260909f, 0.098608f, + -0.348247f, 1.732502f, -0.412298f, -0.269602f, -0.425771f, -0.146243f, + -0.530730f, 0.125716f, -1.004419f, 0.145109f, -0.059289f, 1.096304f, + 0.012891f, 0.045033f, -0.306875f, 0.003514f, -0.176110f, 0.037544f, + -0.441537f, -0.518921f, -0.262149f, -0.060407f, -0.379419f, -0.141245f, + -0.128894f, -0.176537f, -1.161318f, -0.249100f, -0.118330f, 0.042816f, + 1.173404f, 0.088312f, -0.393568f, -0.175134f, 6.529819f, -0.326652f, + -0.631917f, -0.393476f, 0.057781f, -0.217748f, -1.781139f, -0.012614f, + -0.212621f, -0.720322f, -0.218498f, -0.388556f, -0.254796f, -0.248399f, + -0.608744f, -0.265146f, 0.238517f, 0.066882f, -2.916806f, 0.054642f, + 0.282590f, 0.075248f, 0.010188f, -0.133486f, 0.985945f, -0.045849f, + -0.347564f, 0.057320f, -0.417920f, 0.063664f, 0.387062f, -2.692059f, + -0.535549f, 0.263736f, 0.327889f, -0.070273f, -0.775254f, 0.147250f, + 3.309425f, -0.212191f, -0.067204f, -2.912663f, -0.061496f, 0.084233f, + 0.022907f, 0.138421f, -0.112159f, -0.288447f, -0.010799f, 0.056049f, + -0.036527f, 0.021525f, 0.106649f, -0.291883f, 0.088424f, -0.057773f, + -0.086031f, 0.015277f, -0.318505f, -0.269049f, -1.008913f, -0.224785f, + -0.025820f, -0.649037f, 0.706381f, 0.096410f, 0.643776f, -0.046743f, + -0.009654f, -0.024246f, 1.469255f, -0.183536f, -0.370046f, -0.048442f, + -0.376527f, -0.431264f, -0.245109f, -0.093951f, 0.203683f, -0.099872f, + 0.087210f, 0.160692f, -3.527694f, -0.068891f, -0.228994f, -0.231817f, + -0.241949f, 0.193613f, 0.979597f, -0.091259f, 0.414424f, -0.047341f, + -0.209582f, -0.295134f, -0.016824f, 0.460327f, -0.072671f, 0.246234f, + 0.235896f, 0.127238f, -1.068683f, 0.035648f, 2.254888f, 0.180105f, + -0.260098f, -2.322120f, -0.184249f, -0.314801f, -0.099969f, -0.272117f, + -0.237916f, 0.031103f, -0.274063f, -0.049384f, -0.044917f, 0.102477f, + -0.342148f, -0.257558f, -0.346300f, 0.115333f, -0.115456f, 0.208354f, + -0.359301f, -0.167395f, 1.146514f, -0.177861f, -0.098658f, -0.444570f, + 6.759993f, -0.369772f, -0.831118f, 0.001866f, -0.073298f, -0.072095f, + 0.811902f, -0.431997f, -0.286587f, -0.269500f, 0.111492f, -0.525364f, + -0.351785f, -2.463474f, -1.852659f, 0.135325f, 0.138267f, 0.100643f, + -2.373278f, -0.285514f, -0.395388f, -0.185016f, -0.030249f, -0.005767f, + -0.716424f, -0.031674f, 0.011147f, 0.057405f, -0.215873f, -0.094401f, + 0.573528f, -1.223820f, 0.414852f, -0.059053f, -0.076488f, -0.287168f, + -0.842640f, 0.174084f, -0.567186f, 0.336629f, -0.062514f, 2.075448f, + -0.061680f, -0.131529f, -0.098994f, -0.204111f, -0.347865f, 0.108516f, + -0.049616f, -0.069212f, -0.273935f, -0.096545f, -0.210784f, -0.284698f, + 0.141501f, -0.176924f, -0.361341f, -0.251197f, -0.286694f, 0.245569f, + -1.521661f, -0.122639f, -0.015760f, -0.718912f, 5.877828f, 0.146916f, + 0.151767f, 0.220785f, -0.032298f, 0.230902f, 0.663943f, -0.252613f, + 0.057718f, -0.436038f, -0.323994f, -1.139787f, -0.042489f, -1.326298f, + -1.031206f, -0.104136f, 0.389897f, 0.127602f, -2.667789f, -0.212366f, + -0.506262f, -0.009115f, -0.213202f, 0.076167f, -1.629405f, 0.055129f, + 0.375393f, -0.150272f, -0.241515f, -0.326497f, 0.100069f, 0.410703f, + 0.340622f, 0.042437f, -0.349945f, 0.041176f, -1.178950f, 0.030992f, + 0.933908f, -0.035844f, -0.098660f, 1.030584f, -0.092043f, -0.355739f, + -0.305562f, 0.036161f, -0.049558f, -0.033225f, -0.403856f, -0.088276f, + 0.215493f, -0.149105f, -0.013363f, 0.025886f, -0.101306f, -0.205781f, + -1.072487f, -0.076019f, 0.077555f, 0.131003f, 1.267763f, -0.008954f, + -0.327617f, -0.246539f, 6.664081f, -0.404403f, -1.442489f, 0.191301f, + -0.336361f, 0.181156f, 0.833108f, 0.007879f, -0.194464f, -1.029408f, + -0.036268f, -0.927110f, -0.379190f, -0.293443f, -1.848579f, -0.242548f, + -0.065990f, 0.203160f, -0.291788f, 0.000680f, 0.587011f, -0.241289f, + 0.037034f, 0.000552f, 1.072308f, -0.387230f, -0.230050f, 0.292322f, + -0.720001f, 0.034109f, -0.467260f, 2.211644f, -1.839191f, -0.048797f, + -0.083469f, -0.334686f, -0.269056f, 0.051295f, 1.319904f, -0.035603f, + -0.018457f, -0.824915f, -0.212285f, -0.230516f, -0.035093f, -0.400843f, + -0.305469f, -0.099011f, 0.014225f, -0.452772f, 0.170331f, -0.389312f, + -0.115084f, -0.014770f, -0.429387f, -0.155961f, -0.568200f, -0.037853f, + -0.125137f, 0.067228f, -1.329271f, -0.117874f, -0.132499f, -0.218376f, + -0.588325f, -0.320024f, 0.085695f, -0.235047f, -0.217790f, 0.103015f, + -0.698644f, 0.017766f, -0.058299f, 0.199411f, -0.122485f, -0.563949f, + -0.349011f, -0.557045f, -0.131165f, 0.002281f, 0.118559f, -0.210302f, + -1.153815f, 0.116738f, -0.236007f, -0.003487f, -0.006885f, -0.244816f, + 0.953222f, 0.093748f, 0.266869f, 0.241869f, -0.860832f, -0.387012f, + -0.338986f, 2.097515f, -1.942512f, -0.298021f, 0.543911f, -0.043214f, + 0.082125f, -0.120242f, 0.712231f, 0.213327f, -0.301687f, -0.544011f, + -0.392131f, 0.004302f, 0.004825f, -0.317440f, -0.107518f, -0.293407f, + -0.159111f, -0.080367f, 0.132663f, -0.017726f, -0.237521f, -0.190297f, + -0.361633f, 0.200518f, -0.538296f, -0.027975f, -0.381704f, -0.016963f, + 0.630105f, -0.190997f, -0.287840f, -0.603488f, 3.605598f, -0.276614f, + -1.346383f, 0.186912f, -0.047575f, -0.189232f, -1.519072f, 0.097816f, + -0.223722f, 0.304924f, -0.213022f, -1.052433f, -0.322283f, -1.706734f, + -2.458027f, 0.237976f, 0.171050f, -0.103139f, -0.278689f, 0.329824f, + -0.262448f, -0.122916f, -0.236398f, -0.013848f, -0.969160f, -0.374907f, + 0.091018f, -0.386471f, -0.723940f, 0.064956f, -0.057652f, 1.321024f, + -1.397418f, -0.143136f, 0.272468f, -0.030749f, 0.037324f, 0.069316f, + -0.904925f, -0.333693f, -0.117709f, 2.279598f, -0.428065f, -0.131157f, + -0.014288f, -0.402862f, -0.666090f, 0.017070f, -0.028333f, 0.002481f, + 0.197156f, -0.038120f, -0.271062f, -0.188275f, -0.021370f, -0.070849f, + -0.905007f, -0.095886f, -0.093055f, -0.121821f, -1.239812f, -0.411799f, + -0.089948f, -0.936827f, 1.437569f, -0.388908f, 0.126170f, 0.186162f, + -0.018819f, -0.138364f, -1.066412f, -0.138222f, -0.022186f, 0.107331f, + -0.230436f, -1.352605f, -0.161323f, -1.081810f, -0.933825f, -0.136675f, + 0.378157f, 0.113377f, -0.850610f, 0.080245f, -0.087305f, -0.002852f, + 0.044408f, -0.188172f, -1.891998f, 0.092189f, 0.125325f, -0.105090f, + -0.848510f, -0.396308f, -0.384130f, 2.007509f, -1.480787f, -0.126946f, + 0.314767f, 0.000195f, -0.285628f, -0.110442f, -0.293948f, 0.258559f, + -0.417603f, 1.570705f, 0.092459f, -0.340974f, -0.284754f, -0.007801f, + -0.324610f, -0.004734f, -0.207716f, -0.057175f, 0.055467f, -0.210830f, + -0.113005f, -0.299177f, 0.068074f, 0.017929f, -2.897598f, -0.260074f, + -0.014422f, -0.206467f, 1.246997f, -0.372863f, -0.214160f, -0.114035f, + 5.805862f, 0.003611f, -1.340990f, -0.021085f, -0.260431f, -0.002720f, + -1.251640f, -0.353531f, -0.304009f, -0.153376f, +}; + +static const float av1_ab_partition_nn_bias_32_layer1[LABEL_SIZE] = { + -0.521497f, -1.061572f, -0.078756f, -0.660662f, -0.403741f, -0.960163f, + 0.001427f, 0.523607f, 0.225068f, -0.055273f, 1.019519f, 1.181880f, + -0.010198f, 0.130597f, 1.276752f, 2.028188f, +}; + +static const NN_CONFIG av1_ab_partition_nnconfig_32 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 64, // num_hidden_nodes + }, + { + av1_ab_partition_nn_weights_32_layer0, + av1_ab_partition_nn_weights_32_layer1, + }, + { + av1_ab_partition_nn_bias_32_layer0, + av1_ab_partition_nn_bias_32_layer1, + }, +}; + +// nn model for ab partition pruning, 16x16. +static const float av1_ab_partition_nn_weights_16_layer0[FEATURE_SIZE * 64] = { + 0.151902f, 0.007947f, -1.788454f, 0.431869f, -2.971387f, 0.923566f, + 1.632542f, -1.665136f, -0.338632f, -5.075884f, 0.398267f, 0.030467f, + 2.263534f, -0.045532f, -1.066128f, 0.915139f, -0.560500f, -3.293125f, + 2.072793f, -1.011414f, 0.122716f, -0.060169f, -0.388860f, 0.031019f, + -0.381861f, 0.001551f, -0.328472f, 0.038296f, -0.060398f, -0.375556f, + 0.209226f, 0.014764f, -1.443469f, -0.345486f, 2.409269f, 1.524846f, + -0.640666f, 1.322139f, -2.074771f, -0.580944f, -0.203960f, -0.072893f, + 0.329701f, 0.115339f, -1.339542f, 0.249024f, -0.421545f, -0.409151f, + -0.258293f, 0.836288f, -0.073685f, -0.009624f, 0.895712f, 0.320639f, + 0.451002f, -1.544558f, 0.193709f, -1.389012f, 1.305451f, 0.089795f, + 0.050338f, -0.017433f, -0.304667f, 0.500729f, 0.504346f, 0.073757f, + 0.582649f, -0.993623f, 1.766766f, -3.067265f, -0.415774f, -0.006036f, + -1.245281f, 0.253205f, -0.591245f, -0.626238f, 0.551852f, 0.593755f, + 0.491023f, 1.099384f, -0.348448f, 0.054564f, -0.451422f, -0.375781f, + -0.248390f, -0.052548f, -0.380069f, -0.165391f, -0.297968f, -0.052142f, + -0.316381f, -0.045246f, -0.243905f, -0.034169f, -0.247523f, -0.180773f, + 0.068066f, -0.374920f, 0.057536f, -0.189748f, 0.058375f, -0.267749f, + -0.147286f, -0.246153f, 0.006183f, -0.202029f, -0.059128f, 0.116852f, + 0.134719f, -0.126900f, -0.064646f, -0.196458f, -0.182331f, 0.108029f, + -0.264499f, 0.155816f, -0.107255f, -0.056983f, -0.209771f, -0.099070f, + 0.007313f, -0.254124f, -0.231964f, -0.275972f, 0.032098f, -0.264564f, + -0.208743f, 0.155599f, -0.121511f, -0.156145f, -0.162315f, -0.059788f, + -0.257073f, -0.076654f, -0.110616f, -0.321675f, -0.051952f, 0.006301f, + -0.154114f, 0.017032f, -0.017364f, -0.233247f, 0.009918f, -0.179289f, + -0.190722f, 0.147106f, -0.063910f, -0.396872f, -0.263123f, -0.003850f, + -0.040718f, -0.324699f, 0.118660f, -0.170727f, -0.316788f, 0.100886f, + -0.202842f, 0.045371f, 0.150561f, -0.057054f, -0.308150f, 0.028346f, + -0.381473f, -0.195365f, 0.026221f, -0.281795f, 0.087204f, 0.047689f, + -0.027643f, -0.104724f, -0.089030f, -0.117661f, -0.349160f, 0.056982f, + -0.340273f, 0.048086f, 0.046103f, -0.121527f, 0.021697f, 0.054109f, + -0.002768f, -0.008461f, -2.297240f, 0.124651f, 3.621661f, -0.057120f, + -1.151656f, 2.296894f, -3.678720f, -0.290240f, 0.087683f, -0.186389f, + 0.007656f, -0.090236f, -0.245217f, 0.110389f, -0.251719f, -0.029084f, + -0.128203f, -0.100005f, -0.032779f, 0.007281f, -0.366596f, -0.267870f, + -0.215620f, 0.047687f, 0.010303f, 0.097980f, -0.191569f, -0.341162f, + 0.119249f, 0.026279f, -2.161546f, 0.459591f, 1.290566f, 1.791797f, + -0.409835f, 0.127081f, -1.156367f, 0.198286f, 0.099561f, -0.067445f, + -0.034352f, 0.017966f, -0.277380f, -0.057220f, -0.174198f, -0.014164f, + 0.146090f, -0.357530f, 0.097644f, -0.000932f, 0.446603f, -0.066793f, + 2.448620f, 0.937617f, -1.232922f, 0.313183f, 0.816827f, -0.275115f, + -0.245205f, -0.126895f, 0.156668f, -0.186977f, -0.273505f, 0.013315f, + 0.168629f, -0.089084f, 0.006166f, -0.116107f, -0.199316f, -0.024010f, + -0.242303f, 0.011612f, -0.218485f, -0.229661f, -0.123922f, 0.136699f, + 0.006732f, -0.148718f, -0.164225f, 0.116063f, 1.587898f, 0.690519f, + 0.360566f, 0.009739f, -0.678702f, -0.046003f, 0.126984f, 0.605212f, + 1.240663f, -0.000228f, -1.119369f, -0.415589f, -0.721003f, 0.097936f, + -1.410586f, -2.358833f, -2.773129f, -3.983361f, -0.087144f, -0.050029f, + -0.242255f, 0.137424f, -0.307490f, -0.084637f, -0.023812f, -0.196582f, + -0.078695f, 0.038257f, -0.012110f, -0.263521f, 0.009839f, -0.109125f, + -0.226036f, 0.060712f, 0.093671f, 0.153143f, 0.039116f, -0.290891f, + 0.227057f, -0.204633f, -0.207539f, -0.148242f, 0.046204f, -0.231268f, + -0.209315f, -0.307579f, -0.436556f, 0.023475f, 0.131793f, -0.038301f, + 1.650584f, 0.392570f, 1.446576f, 1.254380f, -0.516867f, -0.057116f, + 0.149320f, 0.414424f, -0.246309f, 0.003877f, -0.480238f, -1.037035f, + -0.830779f, -1.122244f, -0.408267f, -0.253956f, 0.382005f, 0.940609f, + -1.113370f, -0.018554f, 0.141064f, -0.182504f, 1.270707f, 0.414904f, + -0.216036f, 0.203831f, 0.450716f, -0.452909f, 0.139358f, -0.027143f, + 1.956892f, 1.643732f, -0.867839f, -0.620520f, -0.334607f, -0.519982f, + 0.205023f, 0.661159f, -0.000809f, 0.049033f, -0.348579f, -0.200338f, + -0.362144f, -0.346590f, -0.230096f, 0.180746f, -0.149954f, -0.253429f, + -0.378170f, -0.040724f, -0.041597f, 0.243659f, -0.472181f, 0.015401f, + -0.180376f, 0.153139f, -0.247738f, -0.010485f, -0.157158f, 0.016825f, + -0.238925f, -0.265798f, -0.318374f, 0.142352f, -0.210520f, 0.051928f, + -0.352190f, -0.179052f, -0.185498f, 0.025540f, -0.111667f, -0.235187f, + -0.215454f, 0.010931f, -0.238372f, -0.126659f, 0.075691f, -0.091167f, + -2.462379f, -0.007950f, -0.637990f, 0.285554f, -0.051275f, 0.282279f, + -0.744083f, -0.570646f, 0.592198f, 1.421332f, -0.256027f, -0.140315f, + 0.160247f, -0.063185f, -0.055895f, -0.199864f, -0.287353f, -0.074561f, + -0.071228f, 0.055864f, -1.084764f, -0.263409f, 0.779266f, 0.228187f, + 0.375013f, 0.121204f, -0.656948f, 0.533561f, 0.272671f, -0.015423f, + -0.124180f, -0.009127f, 2.934838f, -0.150998f, 1.163152f, 0.081997f, + -4.715939f, -3.676595f, -1.524886f, -0.167593f, 0.281186f, 0.024046f, + -1.451709f, 0.332558f, 0.990504f, 0.376290f, -1.466773f, -0.448439f, + -2.929108f, -4.255188f, 0.065238f, 0.019950f, 1.372393f, 0.444052f, + -2.538772f, 1.579767f, -0.464911f, -1.866114f, 1.053958f, 0.434467f, + -0.125964f, 0.034671f, 0.077116f, -0.138466f, -0.413395f, -0.223453f, + -0.172127f, -0.251265f, -0.048239f, -0.395519f, 0.023141f, 0.037459f, + -0.249593f, -0.062215f, -0.047209f, -0.435189f, -0.164155f, -0.077590f, + -0.241164f, -0.126128f, -0.038243f, -0.180888f, 0.198840f, -0.328036f, + -0.169790f, 0.036506f, 0.052572f, -0.183570f, -0.073617f, -0.244959f, + 0.266498f, 0.032846f, -1.902106f, 0.486078f, 2.414993f, 0.975182f, + -0.382875f, 1.647810f, -2.197017f, -0.890107f, 0.221287f, 0.010889f, + 3.817042f, 0.572728f, 0.092466f, 0.473337f, -1.634659f, -1.069455f, + 1.486776f, -1.023850f, 0.088184f, 0.008842f, 0.518202f, 0.270259f, + 1.757191f, -0.121839f, -2.912229f, -1.250866f, -2.381808f, 0.335309f, + -0.120079f, -0.061294f, -0.058725f, -0.315169f, -0.262443f, 0.072434f, + -0.267836f, -0.319354f, -0.274975f, 0.068970f, -0.406467f, 0.044074f, + -0.152311f, -0.333656f, -0.228355f, -0.185613f, 0.017346f, -0.177674f, + -0.090675f, -0.102047f, -0.011768f, -0.025280f, -0.271661f, 0.098099f, + -0.312272f, -0.222217f, -0.100548f, 0.106260f, -0.034655f, 0.135109f, + -0.021276f, 0.018177f, -0.353097f, -0.011128f, 0.061136f, -0.511662f, + -0.223236f, -0.308841f, 0.118789f, -0.154628f, -0.053178f, -0.055973f, + 0.013175f, -0.368337f, -0.090863f, -0.116920f, 0.178990f, -0.025278f, + -0.190553f, -0.238092f, 0.303943f, -0.024944f, 0.719373f, 0.384332f, + -0.378480f, -0.423316f, 0.709922f, 0.758514f, -1.559023f, -2.503173f, + 0.068652f, -0.234741f, -0.182932f, 0.037878f, 0.020684f, -0.174142f, + -0.182300f, -0.052796f, -0.219145f, 0.113028f, -1.041826f, 0.035317f, + 0.919904f, -0.676011f, 0.652297f, 1.456447f, -0.166904f, -0.861823f, + 0.895827f, 0.429821f, -0.180376f, -0.076587f, -0.273945f, -0.288990f, + -0.206692f, -0.080745f, -0.085444f, 0.186953f, -0.050135f, 0.044243f, + -0.391706f, -0.160498f, -0.292268f, 0.164060f, 0.412649f, 0.211611f, + -0.327294f, -0.919399f, 0.320297f, 0.385284f, -0.088848f, -0.072556f, + -0.384813f, -0.176267f, -0.065918f, 0.134724f, -0.231104f, -0.337707f, + -0.195442f, -0.263569f, 0.098090f, -0.341411f, -0.189211f, -0.439276f, + -0.404046f, 0.262491f, -0.311093f, -0.086454f, -0.013400f, -0.061447f, + -0.026945f, -0.112036f, -0.322985f, 0.078500f, -0.230205f, -0.344535f, + -0.021087f, 0.110220f, -0.128671f, 0.044219f, +}; + +static const float av1_ab_partition_nn_bias_16_layer0[64] = { + 2.936406f, -0.396539f, -0.110456f, -1.254954f, 0.785350f, 0.516290f, + -0.172341f, 0.254386f, -0.192465f, -0.106751f, -0.055518f, -0.094994f, + 0.000000f, -0.065018f, -0.004908f, -0.130483f, -0.119580f, -0.142072f, + 0.457446f, -0.125051f, -0.107712f, 0.714607f, -0.140809f, -1.788650f, + -0.087199f, 0.000000f, -1.290050f, 0.443930f, -0.110634f, -0.109380f, + -0.188213f, -1.414179f, 1.193579f, 0.388775f, -0.873193f, -0.110050f, + -0.072565f, -0.117050f, -0.119132f, 0.456959f, -0.132069f, 0.131974f, + 1.160474f, 1.746465f, 0.442628f, -0.188849f, -0.207794f, -0.108364f, + -0.856655f, -2.141620f, 0.335476f, -0.105508f, -0.212162f, -0.109319f, + -0.237213f, -0.109980f, -0.291044f, -0.137877f, 0.470191f, -0.023908f, + 0.123809f, -0.109797f, 0.200510f, -0.147542f, +}; + +static const float av1_ab_partition_nn_weights_16_layer1[64 * LABEL_SIZE] = { + -6.823716f, 1.406568f, -0.144009f, 2.228765f, 0.838336f, 0.738107f, + -0.319014f, -0.148756f, 0.240862f, -0.111089f, -0.004241f, 0.025758f, + -0.193820f, -0.246362f, -0.181363f, -0.201556f, 0.024268f, 0.252994f, + -0.289443f, 0.194932f, 0.057467f, 0.724735f, 0.014063f, 1.361352f, + 0.025191f, 0.024274f, 0.231462f, -7.227959f, -0.094515f, 0.039946f, + 0.412719f, 0.812318f, 3.038903f, -0.286289f, 0.647482f, -0.115114f, + 0.053590f, 0.066069f, 0.153134f, 0.996250f, -0.125700f, 0.951365f, + -6.243494f, -4.827697f, 0.566320f, 0.239515f, -0.099702f, 0.054546f, + 1.847330f, 3.680076f, -3.049829f, -0.127709f, 0.068469f, -0.017794f, + 0.223864f, -0.106778f, -0.020425f, -0.040226f, -0.251890f, -0.168673f, + -0.552073f, 0.043311f, 0.218668f, 0.033209f, -3.199210f, 0.193079f, + 0.321406f, 0.718307f, -0.181418f, -0.459612f, -1.981170f, 0.968496f, + -0.029757f, -0.130065f, 0.043782f, 0.072394f, -0.088686f, 0.025322f, + 0.129882f, 0.101324f, 0.335707f, 0.072714f, -2.079774f, 0.203997f, + 0.239321f, -0.301757f, 0.257845f, 1.288382f, -0.031275f, -0.234194f, + 0.310722f, 2.045469f, 0.034716f, 0.135638f, -0.251388f, 0.320071f, + -1.065301f, -0.322731f, -0.545028f, 0.226276f, 0.090799f, 0.019289f, + 0.048950f, -1.079300f, 0.231938f, 0.083683f, 4.762127f, 0.145037f, + -0.145549f, 0.075592f, 0.172336f, 0.108175f, 0.333751f, 1.090501f, + 1.056114f, 0.047073f, 0.182052f, -0.081587f, 0.089900f, 0.339286f, + 2.049988f, 0.073585f, 0.537355f, -0.243322f, -0.010179f, -0.052601f, + -0.174915f, 0.117793f, 2.222990f, -2.520837f, -0.092699f, 1.199887f, + 0.138720f, 0.679918f, -0.463155f, -0.659496f, -0.109913f, -0.003398f, + 0.114633f, -0.128377f, 0.092970f, -0.107489f, -0.191078f, 0.185182f, + 0.216980f, -0.019343f, 3.443133f, 0.287953f, 0.099314f, 0.985958f, + 0.157268f, -0.606516f, 0.049418f, -0.221809f, -0.453081f, -0.344796f, + -0.003735f, -0.107269f, -0.128541f, -0.259543f, -0.934806f, -0.542456f, + -1.011192f, 0.022795f, 0.186363f, -0.076356f, -0.050932f, -0.165098f, + 0.168177f, -0.101596f, -5.270886f, 2.553943f, -0.440870f, -0.017494f, + 0.215208f, -0.017032f, 1.495915f, -4.304677f, 0.762211f, 0.182937f, + 0.254406f, -0.029433f, -0.088364f, -0.110160f, -0.108257f, -0.036538f, + 0.737697f, -0.234989f, 0.168095f, 0.245118f, -0.077262f, 0.195718f, + 0.753302f, -1.637869f, 0.126227f, 0.982129f, -0.121444f, -0.295570f, + -1.215799f, 0.147867f, -0.068496f, 0.132726f, -0.005772f, -0.181774f, + 0.126513f, 0.204723f, -0.366123f, 0.103906f, -0.148053f, -0.075272f, + 0.243884f, -0.104828f, 0.198988f, 0.501034f, -0.112671f, 0.111421f, + 0.167508f, -0.117803f, -0.738624f, 2.046292f, 0.124011f, 0.057983f, + -0.359154f, -0.648883f, -0.259462f, -0.459041f, -2.501223f, -0.065138f, + 0.122417f, 0.060291f, -0.129033f, -0.843086f, 0.268241f, -0.399927f, + 1.585888f, 1.816393f, -0.631427f, 0.127826f, 0.088105f, 0.073488f, + 0.717694f, -1.497362f, 2.608528f, 0.066896f, -0.079230f, 0.223436f, + -0.010530f, 0.175310f, 1.120365f, 0.034391f, 0.835312f, 0.071652f, + -0.080615f, 0.111395f, 0.162742f, 0.079927f, -3.859582f, -0.638431f, + -0.167880f, -0.992659f, -0.885355f, -1.276197f, 1.334344f, 0.931940f, + -0.078244f, -0.149030f, -0.070974f, -0.133566f, 0.200034f, 0.102793f, + -0.048546f, 0.063545f, 0.023864f, -0.190863f, 1.934257f, -0.136286f, + -0.107916f, -0.637468f, 0.066449f, 1.089693f, -0.214047f, -0.265780f, + 0.899660f, -0.130333f, 0.288311f, -0.049024f, 0.090202f, 0.487969f, + 0.339704f, 0.858479f, 0.841253f, -0.184100f, -0.637070f, -0.125071f, + -0.077650f, -0.087877f, 0.202268f, -0.027300f, 2.842862f, -0.100698f, + -0.259080f, 0.260556f, 0.157912f, -0.070364f, 0.467190f, 1.200037f, + 1.419317f, -0.033588f, -0.227824f, 0.292617f, 0.228574f, 0.213839f, + -1.091099f, -0.022258f, -1.294681f, 0.136118f, 0.081652f, -0.185359f, + -0.039706f, 0.191407f, -2.053219f, -0.261934f, 0.047812f, -0.029536f, + -0.823869f, -1.090534f, -0.755890f, 0.441035f, -0.167945f, 0.231441f, + -0.135013f, -0.260762f, 0.256872f, 0.130339f, -0.243751f, 0.189760f, + -0.288454f, 0.145363f, 0.338490f, 0.403898f, -0.022814f, -1.263598f, + -0.101315f, 0.860135f, 0.136511f, 0.028942f, 0.574047f, 2.656370f, + 0.037587f, -0.188690f, -0.125312f, 1.100435f, -1.080402f, 0.380905f, + 0.004635f, 0.097144f, -0.214309f, 0.085552f, -0.285066f, -0.705134f, + -0.054704f, -0.319951f, 5.486626f, 0.958158f, -1.380585f, 0.223340f, + -0.169167f, -0.170697f, -0.216748f, 0.324232f, 2.684204f, -0.008490f, + -0.211052f, -0.201190f, 0.123466f, -0.000234f, 0.579907f, 0.096938f, + -0.042745f, 0.201855f, 0.157195f, -0.261440f, 0.029699f, -0.046599f, + 1.618216f, -2.596280f, -0.377420f, -0.526725f, -0.493592f, -0.579615f, + 0.579699f, -0.100392f, 0.150694f, 0.061794f, 0.200425f, -0.062515f, + -0.179122f, 0.250112f, -0.344675f, -0.118359f, -0.095670f, 0.152311f, + 3.662276f, -0.154921f, -0.312991f, 0.972008f, -0.308596f, -0.190426f, + 0.133889f, -0.238673f, -0.094726f, 1.683835f, -0.215629f, -0.198890f, + -0.035278f, -0.367973f, -0.822435f, 0.240848f, -0.194656f, 0.034655f, + -0.079424f, 0.146670f, 0.026646f, -0.034507f, 0.059467f, -0.153109f, + -0.431033f, 2.552991f, -1.894091f, -0.180462f, -0.306839f, -0.025648f, + 1.026326f, -3.096230f, 1.346935f, 0.033633f, -0.181827f, 0.094376f, + 0.001696f, -0.379264f, -1.069503f, -0.140972f, -0.208769f, -0.195239f, + 0.281795f, -0.127251f, 0.180776f, 0.067763f, 0.697124f, -1.040779f, + 0.111280f, 0.188351f, -0.340234f, -0.207790f, -0.720075f, -0.137409f, + -0.070310f, -0.032918f, -0.060787f, 0.131484f, -0.077845f, -0.258652f, + 0.056911f, -0.062034f, 0.007663f, -0.185100f, 1.340361f, 0.014096f, + -0.124602f, 0.194241f, 0.128383f, 0.360465f, 0.082979f, -0.050475f, + -0.519294f, 3.323262f, 0.067014f, 0.221203f, -0.085082f, -0.228606f, + -0.916668f, -0.022643f, -1.386737f, -0.131902f, -0.349952f, -0.032874f, + -0.189190f, -0.898790f, -0.102394f, -1.017387f, 2.214050f, 1.790253f, + -1.913561f, -0.043716f, -0.214924f, -0.194598f, -0.064723f, -1.671793f, + 2.251166f, -0.146007f, 0.138527f, -0.003134f, 0.103665f, 0.006928f, + -0.240253f, -0.227464f, 0.578437f, -0.214724f, 0.503085f, 0.158093f, + 0.033091f, 0.008061f, 4.815371f, 2.132264f, 0.281850f, -2.288560f, + -0.145012f, 1.296832f, -0.362401f, -0.403252f, 0.109873f, 0.185746f, + 0.244764f, 0.172367f, -0.185588f, 0.139801f, -0.178254f, 0.068629f, + 0.358488f, -0.153969f, -6.433524f, 0.225983f, -0.138123f, -0.095971f, + -0.036089f, -1.400083f, 0.265908f, 0.257787f, 0.181144f, -1.647228f, + -0.136289f, -0.074206f, 0.122988f, -0.088895f, -1.266717f, 0.006010f, + 0.536681f, 0.263061f, -0.032207f, -0.155136f, 0.086431f, 0.441950f, + -0.060755f, -0.280683f, -0.783475f, -2.567033f, 1.093221f, 0.117667f, + -0.000408f, 0.225719f, -2.199698f, 0.141447f, -1.459051f, 0.051315f, + 0.203228f, 0.354432f, -0.005775f, -0.028073f, -0.965817f, 0.231083f, + -0.666884f, 0.026283f, -0.317486f, 0.210754f, 0.123897f, 0.223827f, + 4.214405f, 1.457334f, -0.253945f, -1.306733f, -0.391235f, 0.451154f, + -1.553888f, -0.353429f, 0.069533f, 0.159278f, -0.173836f, -0.004952f, + -0.137033f, 0.127012f, 0.143600f, 0.051587f, -0.070549f, 0.066509f, + -5.776547f, 0.180021f, -0.189183f, -1.288504f, -0.233575f, -1.473873f, + 0.140940f, 0.144451f, -0.104534f, 2.089873f, -0.168168f, 0.110726f, + 0.132134f, -0.215223f, -1.682754f, 0.157757f, -0.146163f, 0.064882f, + 0.117313f, -0.038780f, -0.124720f, -0.501697f, 0.092047f, -0.233992f, + 3.324976f, 0.516601f, 1.294202f, 0.119989f, 0.061055f, 0.043420f, + -2.750727f, -0.382812f, -0.648496f, -0.115353f, -0.334205f, 0.024354f, + -0.282998f, -0.282705f, 0.073798f, 0.169851f, 0.135651f, 0.182677f, + -0.040220f, 0.132462f, -0.303120f, -0.230113f, 6.165739f, -0.258596f, + 0.024127f, -1.388283f, -0.006042f, 0.572600f, 0.348411f, -0.387376f, + -0.075845f, 0.122319f, -0.029616f, 0.077873f, 0.154763f, 0.049073f, + 0.018597f, 0.102688f, -0.204165f, 0.020734f, -1.389133f, -0.032854f, + -0.147561f, 0.853944f, 0.132100f, -3.259659f, 0.243745f, 0.181529f, + -0.738414f, 1.509994f, 0.023470f, -0.005329f, 0.066115f, -1.345081f, + -1.455402f, -0.172023f, -0.194625f, 0.071885f, -0.201742f, -0.262402f, + 0.077601f, -0.048938f, 0.257993f, -0.504029f, -2.032415f, 1.158880f, + 0.448647f, -0.025633f, 0.117586f, -0.072275f, -0.673744f, -3.854342f, + -0.983843f, 0.047766f, -0.017193f, -0.215775f, -0.158743f, -0.232042f, + -0.509112f, 0.148812f, 0.130122f, 0.006486f, -0.099016f, 0.022514f, + -0.486850f, -0.059623f, 4.012731f, 0.025454f, 0.029059f, -0.783546f, + -0.295260f, 0.322521f, -0.473201f, -0.172100f, -0.100087f, -0.076516f, + -0.258367f, -0.112897f, 0.269364f, -0.065912f, 0.169022f, -0.178783f, + -0.095114f, 0.122089f, -2.790099f, -0.100431f, -0.087963f, -0.009431f, + -0.087819f, -2.774399f, -0.100757f, 0.013005f, -0.964533f, 3.236665f, + -0.354903f, -0.144169f, -0.166869f, -1.396513f, -0.931271f, -0.046261f, + -1.799262f, -0.365269f, 0.108611f, 0.037994f, 0.024747f, -1.073639f, + -0.203158f, -0.935006f, 1.880891f, 1.578385f, 0.726272f, -0.024546f, + -0.011626f, -0.151363f, -1.121716f, -1.787484f, 0.232806f, 0.075451f, + 0.182899f, 0.092215f, -0.207347f, -0.030111f, 0.054316f, 0.192481f, + 0.594639f, -0.247694f, 0.547471f, -0.032094f, -0.065000f, 0.007198f, + 1.605377f, -0.155945f, -0.066200f, -2.343716f, -1.016283f, -0.079321f, + 0.919365f, 0.599980f, 0.125545f, 0.265813f, 0.246884f, 0.095385f, + -0.260374f, -0.202916f, -0.042770f, 0.234967f, -0.233139f, -0.326994f, + -1.375256f, 0.121766f, 0.077433f, -1.103569f, 0.019497f, -1.029185f, + 0.253905f, 0.206569f, 0.187334f, -0.237089f, -0.294351f, 0.164137f, + 0.149696f, -0.749787f, -0.413433f, 0.976587f, 1.027976f, -0.285264f, + 0.209273f, -0.124762f, 0.050884f, 0.250764f, -0.082031f, -0.646520f, + 4.116680f, 0.437336f, 0.671684f, 0.129509f, -0.078462f, 0.014072f, + -0.678232f, 0.094831f, 1.125624f, 0.207070f, -0.154750f, -0.025780f, + -0.103030f, 0.118019f, -0.908186f, -0.263546f, -1.555324f, -0.236887f, + -0.217854f, -0.051790f, 0.017915f, 0.171001f, 1.355562f, 0.094603f, + -0.233929f, -1.282169f, -0.773183f, -0.161682f, -0.834565f, -0.286776f, + -0.298901f, 0.038162f, 0.251899f, 0.039612f, -0.022935f, -0.232308f, + -0.043855f, -0.192892f, -0.279009f, -0.182234f, -1.272808f, -0.070344f, + -0.092432f, -1.915946f, -0.134373f, -1.405496f, -0.067071f, -0.131922f, + 0.185269f, 1.465082f, 0.040240f, 0.112665f, 0.144329f, -0.286112f, + -0.617649f, 0.916177f, 0.221044f, -0.079867f, 0.170251f, -0.093638f, + -0.212620f, -0.305945f, -0.234356f, -0.482501f, 3.928472f, 1.241179f, + 0.355922f, -0.170848f, -0.189168f, 0.080225f, -1.357793f, 0.190890f, + 0.976800f, -0.068070f, -0.016295f, -0.088623f, -0.129560f, -0.212267f, + -0.071537f, -0.219501f, -0.655198f, -0.225188f, -0.116024f, 0.224174f, + -0.049715f, -0.178005f, 3.029985f, -1.141546f, 0.080066f, -1.932316f, + -0.641137f, -0.189564f, 0.935080f, 0.136119f, 0.015558f, -0.179331f, + 0.204571f, 0.020350f, 0.009362f, 0.108478f, 0.037076f, -0.049009f, + 0.081090f, -0.180202f, 1.455561f, -0.081559f, 0.059361f, 0.484971f, + 0.160923f, -2.170744f, -0.013204f, 0.126561f, -0.407122f, 1.223661f, + 0.044262f, 0.118044f, 0.058274f, -1.747100f, -0.171318f, 0.971374f, + 0.306995f, -0.103268f, -0.319443f, -0.333176f, -0.038608f, 0.119674f, + -0.106479f, -0.907933f, 1.121231f, 1.673840f, -0.421458f, -0.021146f, + -0.254838f, 0.097632f, 0.235109f, -2.901782f, 0.289518f, -0.355459f, + -0.068264f, -0.179121f, 0.068560f, -0.047570f, -0.522523f, -0.228963f, + -1.037158f, -0.163723f, 0.280563f, -0.000868f, -0.197220f, -0.239329f, + 1.985274f, -0.256181f, -0.064341f, -0.822417f, -0.465140f, -0.010942f, + -0.792024f, -0.114290f, 0.060969f, 0.104106f, -0.252123f, -0.150400f, + -0.133277f, 0.267147f, 0.274413f, 0.223744f, -0.180223f, -0.345415f, + -0.104883f, 0.119210f, -0.095041f, -0.301635f, 0.013175f, -2.128121f, + -0.147208f, -0.151509f, -0.692013f, 3.418555f, -0.016541f, 0.171511f, + 0.107159f, -1.516672f, 0.127408f, 0.687035f, -0.906486f, -0.145463f, + -0.169382f, -0.143906f, 0.125091f, -0.960645f, -0.180869f, -0.716908f, + 2.840951f, 1.904919f, -0.416268f, -0.425181f, -0.194697f, -0.075932f, + -0.950604f, -1.599800f, 0.943671f, -0.022744f, -0.270492f, 0.080843f, + -0.372916f, 0.047838f, -0.100300f, -0.026600f, 0.011733f, -0.226051f, + 0.172790f, -0.172982f, 0.041258f, -0.299379f, +}; + +static const float av1_ab_partition_nn_bias_16_layer1[LABEL_SIZE] = { + -0.053805f, -1.248639f, 0.520965f, -0.904962f, -0.126425f, -0.118798f, + 0.748430f, 0.203096f, 0.059317f, 0.418219f, 0.841294f, 0.402693f, + -0.658522f, 0.723479f, 0.544264f, 1.035225f, +}; + +static const NN_CONFIG av1_ab_partition_nnconfig_16 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 64, // num_hidden_nodes + }, + { + av1_ab_partition_nn_weights_16_layer0, + av1_ab_partition_nn_weights_16_layer1, + }, + { + av1_ab_partition_nn_bias_16_layer0, + av1_ab_partition_nn_bias_16_layer1, + }, +}; + +#undef FEATURE_SIZE +#undef LABEL_SIZE + +#define FEATURE_SIZE 18 +#define LABEL_SIZE 4 + +static const float av1_4_partition_nn_weights_16_layer0[FEATURE_SIZE * 24] = { + -2.032866f, 0.056691f, 0.495960f, 0.778785f, 0.548153f, -0.806942f, + 0.481155f, 0.282298f, 0.584980f, 0.504688f, 0.209648f, 0.234616f, + 0.213484f, 0.221969f, 0.205862f, 0.235054f, 0.317863f, 0.257139f, + 0.529478f, 0.098122f, -0.657532f, 0.036296f, 0.327728f, 1.323180f, + -0.813082f, 0.160216f, -0.702030f, 0.722733f, -0.270576f, -0.347416f, + -0.264700f, -0.254248f, 0.159820f, 0.087995f, -0.184163f, 0.117357f, + 0.074194f, -0.667369f, 0.498246f, 0.420506f, 0.072409f, -0.121581f, + 0.315788f, 0.000525f, 0.414986f, 0.678166f, -0.011230f, 0.188131f, + -0.227749f, 0.009564f, 0.108672f, 0.106923f, -0.080695f, -0.279382f, + -0.061339f, -0.297835f, -0.134707f, 0.145865f, -0.009655f, -0.000842f, + -0.047436f, -0.159149f, -0.320353f, -0.089646f, -0.344765f, 0.313416f, + -0.143413f, 0.279668f, 0.000885f, -0.022380f, -0.140194f, -0.310473f, + 0.252699f, 0.066204f, 0.477568f, 0.994609f, -0.276000f, 1.213182f, + 0.277028f, -0.411570f, -0.211559f, 0.377815f, 0.121488f, -0.100559f, + -0.317082f, -0.251039f, -0.335181f, -0.154114f, -0.052726f, -0.332558f, + -0.143196f, -0.334035f, 0.162305f, 0.142279f, -0.001210f, -0.135252f, + -0.033562f, 0.204307f, -0.039757f, -0.394174f, 0.126617f, -0.128648f, + -0.410979f, 0.107641f, -0.117573f, -0.326512f, 0.235166f, 0.084959f, + 0.290063f, -0.005838f, 0.459894f, 1.023709f, -0.196145f, 1.100137f, + -0.319815f, -0.308526f, -0.443389f, -0.272769f, -0.035259f, -0.026932f, + -0.029743f, 0.125113f, -0.131024f, -0.321458f, -0.143996f, 0.008714f, + -0.101234f, 0.079706f, -1.128615f, -0.467381f, 0.220563f, -0.409900f, + -0.435353f, 0.759499f, -0.465799f, -0.394309f, 0.176282f, -0.086275f, + -0.161225f, -0.354814f, 0.562871f, 0.418253f, 0.414361f, 0.445480f, + -0.995903f, -0.086632f, -0.230645f, 0.354656f, -0.317576f, 0.079926f, + 0.424369f, 0.997232f, -0.304388f, 1.071667f, -0.023540f, 0.029677f, + 0.108564f, 0.183581f, -0.201395f, -0.054854f, -0.193039f, -0.049899f, + -0.271949f, -0.358483f, 0.304930f, 0.023823f, -0.009319f, -0.214247f, + 0.100712f, -0.050162f, 0.327103f, -0.212999f, -0.030496f, 0.316380f, + -0.439589f, -0.249959f, 0.229777f, -0.353664f, -0.384559f, 0.114236f, + 0.023119f, 0.007927f, 0.618368f, 0.957759f, -0.019780f, -1.002389f, + 0.564277f, -0.839531f, 1.040445f, 0.054340f, 0.031908f, -0.032893f, + -0.019170f, -0.042011f, 0.568928f, 0.362567f, -0.559999f, -0.605344f, + -0.586146f, -0.290778f, 0.195943f, -0.109580f, -0.088898f, -0.113054f, + 0.293282f, 0.429019f, 0.306136f, 0.863025f, 0.021234f, 0.125770f, + -0.097108f, -0.072659f, -0.137053f, -0.191631f, 0.106281f, 0.064151f, + 0.029883f, 0.076287f, 0.757543f, 0.276713f, -2.529775f, -0.351727f, + -1.832316f, 0.544780f, -0.944529f, 0.509705f, -0.010236f, -0.016181f, + 0.021520f, 0.086417f, 0.041312f, 0.296853f, -0.372378f, 0.354446f, + -1.366762f, 0.048875f, 0.464918f, -0.007450f, 0.750013f, -0.360261f, + 0.518532f, 0.753776f, 0.641448f, 0.710746f, 0.250866f, 0.257063f, + 0.283421f, 0.253585f, 0.170303f, 0.210426f, 0.208842f, 0.158000f, + -0.033144f, 0.130748f, 0.907147f, 0.409248f, -0.854301f, -0.981307f, + 0.294427f, -0.507137f, 1.079967f, 0.203203f, 0.383890f, 0.368278f, + 0.305122f, 0.449288f, -0.044507f, -0.547263f, -0.298245f, -0.497834f, + 0.007016f, -0.101982f, -0.073488f, -0.096111f, -0.479418f, -0.045497f, + 0.033502f, -0.018578f, -0.231531f, 0.177949f, 0.099564f, -0.010233f, + -0.333055f, -0.078586f, -0.417867f, 0.171271f, 0.013662f, -0.143599f, + -0.117296f, 0.135382f, 0.048321f, 0.000924f, -0.055024f, -0.405595f, + -0.068260f, -0.271011f, -0.436425f, 0.206751f, -0.899890f, 0.605510f, + 0.535649f, -0.238919f, -0.037619f, -0.213734f, -0.391360f, -0.132344f, + 0.004660f, 0.176644f, -1.008475f, -0.038895f, 0.155429f, -0.095229f, + -0.680124f, -0.258063f, -0.261901f, 0.110380f, -0.337649f, -0.505870f, + -1.428536f, 0.610629f, 0.254905f, 0.045098f, 0.044109f, 0.172329f, + 0.060001f, -0.234009f, -0.184855f, -0.153028f, -0.140897f, -0.152006f, + -0.312134f, 0.081261f, 0.160166f, 0.112690f, 0.266081f, 0.030175f, + -0.242746f, 0.000754f, -0.341811f, -0.149774f, -0.017484f, -0.301342f, + -0.121466f, 0.067300f, 0.342176f, 0.474538f, 0.085441f, -0.263935f, + 0.479235f, -0.003713f, -0.784840f, 0.119480f, 0.456632f, -0.640082f, + -0.080575f, -0.744403f, 0.259970f, 0.034667f, -0.274641f, -0.257594f, + -1.121124f, -0.003745f, -0.420693f, 0.300441f, -0.100976f, -1.049016f, + 0.201960f, 0.113054f, 0.187010f, 1.237427f, 0.054803f, -0.028673f, + 0.003596f, -0.034724f, 0.117246f, 0.190977f, 0.278915f, 0.224307f, + 0.017852f, -0.336233f, -0.372311f, -0.182284f, -0.143510f, 0.331466f, + 0.045698f, -0.301095f, 0.184447f, 0.348240f, -0.017021f, -0.145064f, + -0.000221f, -0.382256f, -0.302683f, -0.083927f, -0.008070f, 0.217907f, + 0.647597f, -0.050490f, -0.572736f, -0.985748f, -0.289943f, 0.041391f, + -0.795464f, -0.186680f, -0.354062f, -0.617400f, -0.282783f, -0.170450f, + -0.197197f, -0.146496f, -0.173692f, -0.106277f, -0.071004f, -0.124405f, + -0.971412f, 0.038542f, 0.705204f, 0.887113f, 0.150430f, -0.243676f, + 0.638410f, 0.320953f, 0.776676f, 0.527584f, 0.070389f, 0.051554f, + 0.177519f, 0.140451f, 0.128892f, 0.087771f, 0.197660f, 0.194764f, +}; + +static const float av1_4_partition_nn_bias_16_layer0[24] = { + 0.614063f, -0.384872f, 0.084884f, -0.023980f, -0.378765f, -0.082312f, + -0.458271f, 0.189578f, -0.046169f, -0.073308f, -0.372322f, 0.162793f, + 0.148803f, 0.829214f, -0.221162f, -0.111157f, -0.017484f, -0.280596f, + -0.031905f, -0.143459f, 0.078823f, -0.021940f, 0.026834f, 0.257472f, +}; + +static const float av1_4_partition_nn_weights_16_layer1[24 * LABEL_SIZE] = { + -0.985391f, 0.587616f, 0.740683f, 0.192066f, 0.447080f, -0.016585f, + 0.680449f, 0.028983f, 0.643111f, 0.234338f, 0.107148f, 0.328456f, + -0.216394f, 1.106838f, -0.179062f, -0.129108f, -0.121655f, -0.151340f, + -0.306017f, -0.350989f, 0.859284f, -0.372831f, -0.954419f, 0.250495f, + 1.046732f, 0.287923f, -0.421088f, 0.326613f, -0.314396f, -0.084757f, + -0.474228f, 0.687999f, 0.052334f, 0.441708f, -0.630698f, -0.350348f, + -0.602067f, -0.434161f, -0.489824f, -0.313193f, 0.315568f, 0.603119f, + 0.120245f, 0.182920f, -1.117797f, -0.239594f, -0.296296f, -0.718093f, + 0.489497f, -0.527019f, 0.102453f, 0.426731f, 0.034606f, 0.311461f, + -0.012723f, -0.229877f, -0.284290f, 0.383227f, 0.065696f, -0.222400f, + 1.279248f, -0.862190f, 0.629766f, -0.250011f, -0.325060f, -0.360115f, + -0.159540f, -0.291856f, -0.038348f, 0.224639f, 0.600934f, 0.030205f, + 1.337615f, -0.286409f, -0.473710f, -0.418995f, -1.035249f, 0.004359f, + -0.481860f, 0.563625f, -0.154709f, -0.101198f, -0.758796f, -0.507616f, + -0.095253f, -0.711135f, 0.207759f, 0.076313f, -0.056087f, -0.162719f, + -0.232918f, -0.128402f, -0.444620f, -0.447344f, 1.126012f, -1.504446f, +}; + +static const float av1_4_partition_nn_bias_16_layer1[LABEL_SIZE] = { + -0.462133f, + 0.465060f, + 0.062211f, + 0.401786f, +}; + +static const NN_CONFIG av1_4_partition_nnconfig_16 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 24, // num_hidden_nodes + }, + { + av1_4_partition_nn_weights_16_layer0, + av1_4_partition_nn_weights_16_layer1, + }, + { + av1_4_partition_nn_bias_16_layer0, + av1_4_partition_nn_bias_16_layer1, + }, +}; + +static const float av1_4_partition_nn_weights_32_layer0[FEATURE_SIZE * 32] = { + -0.219494f, -0.428273f, 0.471006f, 0.448210f, -0.152935f, 0.440435f, + 0.922857f, -0.074436f, 1.002195f, 0.414176f, -0.327202f, -0.380066f, + -0.212346f, 0.061868f, -0.056620f, 0.594134f, 0.617995f, 0.308358f, + 0.232484f, 0.129849f, 1.483593f, -0.071460f, 1.984515f, 1.116422f, + -1.141762f, -0.306220f, 0.089075f, -0.271845f, 0.187524f, 0.050396f, + -0.061025f, 0.030809f, 0.172799f, -0.458151f, -0.318357f, 0.122052f, + -0.414329f, 0.089366f, 0.118898f, -0.376213f, -0.206151f, -0.519946f, + -0.463252f, -0.206694f, -0.254383f, -0.379487f, 0.093059f, -0.245280f, + -0.205044f, -0.280060f, -0.171229f, -0.045389f, -0.179481f, -0.306245f, + -0.500856f, 0.003388f, -0.527397f, -0.449330f, -0.174272f, 0.123769f, + 0.023005f, 0.157273f, 0.073400f, 0.019099f, -0.113848f, -0.098601f, + -0.290946f, -0.046770f, -0.314592f, -0.179914f, -0.391411f, -0.235631f, + -1.282604f, 0.048505f, -0.746382f, 0.093740f, -0.706583f, -0.085729f, + 0.947382f, -0.002961f, 1.175362f, 1.007309f, 0.141638f, -0.037608f, + -0.118807f, -0.021474f, -0.146763f, 0.069363f, -0.074372f, -0.215713f, + -0.004134f, -0.114110f, -0.330438f, -0.031136f, 0.111821f, -0.534598f, + -0.357759f, -0.455950f, 0.139469f, 0.036582f, -0.384743f, -0.168828f, + -0.239250f, 0.003520f, -0.049003f, 0.075702f, -0.025809f, -0.225972f, + -0.228905f, -0.412489f, 0.060570f, -0.328819f, -0.206446f, -0.080231f, + -0.372008f, -0.218118f, -0.011954f, 0.024155f, 0.156014f, 0.020679f, + 0.194398f, -0.283491f, -0.024463f, -0.275099f, 0.028031f, 0.026340f, + -0.254668f, 0.103637f, 2.178693f, 0.552284f, 0.109366f, -0.474806f, + -0.379286f, -0.026315f, 2.487924f, -0.089466f, 0.206428f, 0.114578f, + 0.152248f, 0.184050f, -0.631948f, -0.014793f, -0.283782f, -0.830353f, + 0.009343f, -0.021029f, -0.060534f, -0.025164f, 1.841311f, 1.842748f, + -1.979708f, 0.450985f, -1.606357f, -0.785454f, -0.212679f, -0.344342f, + 0.198991f, -0.258070f, 0.055974f, 0.224069f, 0.453051f, 0.408053f, + 0.027873f, -0.180538f, 0.056609f, 0.207654f, 0.104086f, -0.194426f, + -0.359789f, -0.381143f, -0.331212f, -0.203973f, -0.324313f, -0.160825f, + -0.160439f, -0.044856f, -0.346647f, 0.044859f, 0.231398f, -0.023643f, + -0.140316f, -0.260177f, 0.206965f, -0.425386f, -0.420268f, -0.409748f, + 0.006971f, 0.066186f, -0.034950f, -0.345518f, 0.018633f, -0.122489f, + -0.038506f, -0.330942f, 0.161236f, -0.314119f, -0.050202f, -0.179597f, + 0.731897f, -0.184481f, 0.153598f, -0.539501f, -0.301493f, -0.184967f, + -0.883754f, -0.586959f, -0.136292f, -1.772065f, -0.196276f, -0.053272f, + -0.101083f, -0.064142f, 0.161190f, 0.430826f, 0.355647f, 0.138266f, + 0.051114f, -0.028893f, -0.477673f, -0.238663f, -0.354117f, -0.056747f, + -0.334273f, -0.497688f, -0.486004f, -0.092033f, -0.241304f, -0.373250f, + 0.120193f, 0.011360f, -0.010475f, -0.092739f, -0.159650f, -0.033129f, + -0.259893f, -0.073217f, 0.200128f, 0.103407f, -0.229233f, 0.128831f, + -0.063450f, -0.241732f, -0.408428f, -0.342239f, -0.264326f, -0.105403f, + -0.442879f, -0.310456f, -0.112881f, 0.263696f, -0.205014f, -0.497936f, + -0.261734f, -0.382312f, -0.426807f, -0.021995f, -0.152794f, -0.301494f, + 0.117232f, -0.577809f, 0.154596f, -0.409522f, -0.413113f, -0.359199f, + 0.307294f, -0.008746f, -0.310522f, 0.347620f, -0.384845f, -0.451398f, + -0.226199f, 0.054154f, -0.167608f, 0.046836f, -0.013285f, -0.408119f, + -0.177973f, -0.248293f, -0.465830f, 0.035827f, -0.222208f, -0.221717f, + 0.066392f, -0.349769f, -0.428029f, -0.516692f, 0.022398f, -0.251682f, + 0.134746f, 0.011167f, -2.078787f, 0.173592f, -1.948348f, 0.330060f, + 1.993785f, -0.052859f, -0.004795f, -3.703177f, 0.013450f, -0.011687f, + 0.073079f, 0.034803f, 0.025515f, 0.005994f, 0.101731f, 0.074303f, + -0.109962f, -0.270825f, -0.068273f, -0.163268f, -0.252826f, 0.137190f, + 0.007667f, -0.358453f, 0.027412f, 0.033492f, 0.021197f, -0.049991f, + 0.104468f, -0.012157f, -0.056252f, -0.380756f, -0.338483f, 0.233235f, + -0.048631f, -0.441209f, -0.158482f, -0.148108f, -0.263453f, 0.138847f, + -0.304073f, -0.336312f, -0.017941f, -0.135563f, 0.075137f, -0.246475f, + -0.229144f, -0.087744f, -0.346909f, 0.172611f, 0.004377f, -0.009386f, + -0.023104f, 0.008000f, -0.029390f, -0.317842f, 0.549674f, -0.195337f, + -0.863979f, 0.160889f, -0.269014f, -0.442104f, -1.799191f, 1.396533f, + -0.112837f, 0.881303f, 0.000764f, -0.035415f, -0.141877f, 0.184831f, + -0.363566f, -0.178569f, 0.254134f, -0.326893f, 0.127325f, 0.310620f, + -0.384621f, 0.146058f, -0.287682f, -0.373447f, 0.026930f, 0.251650f, + 0.053817f, 0.227509f, 0.121396f, 0.396514f, -0.278381f, -0.038969f, + -1.538756f, -0.002856f, -0.892900f, 0.363426f, -1.257922f, 0.743795f, + 0.941177f, 0.219345f, 0.684189f, 1.396858f, 0.026299f, -0.093433f, + -0.066182f, 0.057868f, -0.089278f, -0.159680f, -0.262035f, -0.236656f, + 0.005349f, -0.031314f, 0.027917f, -0.182113f, -0.212086f, -0.160774f, + 0.051468f, 0.036787f, 0.183881f, -0.288205f, -0.349691f, 0.162511f, + 0.117878f, -0.294534f, -0.365037f, -0.246313f, 0.073977f, -0.072378f, + -0.173579f, -0.584560f, 0.547194f, 0.259853f, -0.405287f, -0.421146f, + 0.165788f, -0.146964f, 0.257415f, 0.772394f, -0.475302f, -0.310906f, + 0.058723f, 0.276833f, 0.586842f, 0.248998f, -0.061135f, 0.255779f, + 0.152158f, -0.024781f, 2.821834f, 1.365141f, 0.914744f, 0.165752f, + -1.048304f, -0.333891f, 1.804087f, -0.437028f, -0.120211f, -0.020443f, + 0.040077f, 0.258600f, -0.598893f, -0.494579f, -0.281054f, -0.517041f, + 0.005258f, 0.053986f, 0.322755f, 0.429495f, -1.992364f, -0.717192f, + -1.774802f, 2.047362f, -0.016194f, 0.312606f, 0.019331f, 0.060950f, + 0.116428f, 0.168458f, -0.307001f, -0.420734f, 0.475843f, 0.425346f, + -0.107119f, 0.049892f, -1.168619f, 0.010878f, 0.354872f, 0.902717f, + -0.391407f, 0.332772f, -1.335037f, -0.447100f, 0.481719f, -0.101069f, + -1.806565f, 0.925280f, 0.346999f, 0.093809f, 0.006275f, 0.270814f, + -0.691123f, 0.230748f, 0.137033f, 0.068228f, 1.555975f, -0.271637f, + -0.370403f, 0.236131f, 0.367464f, -0.136562f, 0.428838f, 0.181750f, + 0.338762f, 0.292449f, -0.748204f, -0.922731f, -0.959445f, -0.806418f, + -0.140501f, 0.070525f, 1.248748f, 0.637990f, -1.307246f, -0.514055f, + 0.393858f, -1.858727f, 0.713591f, -0.141044f, 0.080723f, 0.120220f, + -0.031175f, 0.224488f, 0.753818f, -0.833351f, -1.099132f, 0.651100f, + -0.135061f, -0.043820f, 0.026983f, -0.059259f, 0.001345f, -0.281775f, + 0.006958f, 0.046103f, -0.246539f, 0.057630f, -0.360778f, -0.160681f, + -0.414870f, -0.301979f, 0.000683f, 0.132957f, -0.477609f, 0.106110f, + -0.637769f, -0.078374f, -0.229494f, 0.583108f, -0.822973f, -0.107540f, + 1.063426f, -0.268346f, 1.105787f, 2.587550f, -0.020314f, -0.002161f, + -0.063836f, -0.099990f, -0.103975f, -0.114078f, -0.094199f, -0.065181f, + -0.019870f, -0.018920f, -0.219732f, 0.035608f, -1.789450f, 0.483032f, + -0.464729f, 1.563277f, -1.054195f, 0.359991f, 0.065204f, 0.135623f, + 0.158380f, -0.103815f, -1.398726f, -1.436666f, -0.356311f, 0.507752f, +}; + +static const float av1_4_partition_nn_bias_32_layer0[32] = { + 0.421645f, -0.620548f, -0.187819f, -0.189414f, -0.204975f, -0.189600f, + -0.174917f, -0.651928f, -0.799655f, -0.086105f, -0.163449f, -0.089212f, + -0.214495f, -0.108500f, -0.065777f, -0.127704f, 1.544948f, -0.032831f, + -0.165621f, 0.145844f, -0.032104f, -0.453246f, -0.113444f, 0.321589f, + -0.862375f, -0.108826f, -0.486259f, 0.685325f, 0.072569f, -0.187961f, + 0.109579f, -0.082685f, +}; + +static const float av1_4_partition_nn_weights_32_layer1[32 * LABEL_SIZE] = { + 0.255012f, 0.658860f, 0.216907f, 0.165947f, 0.241182f, 0.340854f, + 0.409445f, 0.165220f, 0.553373f, -0.242385f, -0.209571f, 0.255515f, + 0.222500f, 0.037032f, 0.238590f, 0.061624f, -2.038693f, 0.264167f, + -0.230144f, 0.129952f, -0.027979f, 0.847761f, 0.438922f, 0.462323f, + 0.555345f, 0.030689f, 0.336357f, -0.357326f, -0.113137f, 0.272631f, + 0.421022f, 0.367776f, -0.197094f, 0.157117f, -0.015008f, -0.056123f, + -0.283913f, 0.186417f, 0.178561f, -0.763041f, 0.602038f, 0.341092f, + 0.320453f, -0.312776f, -0.371240f, -0.356279f, 0.220117f, -0.131871f, + 1.517429f, 0.162223f, -0.255069f, 0.451861f, 0.045071f, -0.223257f, + 0.003257f, 0.015734f, -0.630447f, -0.672588f, 0.670164f, 0.571031f, + -0.657948f, 0.034506f, -0.249076f, 0.790293f, 0.066491f, -0.131245f, + 0.355173f, 0.564622f, 0.374048f, 0.033974f, 0.253970f, 0.495498f, + -0.556321f, -0.104651f, 0.276947f, 0.057148f, -0.039126f, -0.170050f, + -0.141542f, 0.158541f, 0.582763f, -0.100992f, 0.096705f, -0.209029f, + 0.008449f, 0.255865f, 0.103565f, 0.317719f, 0.479499f, 0.599126f, + -0.065613f, -0.268614f, 0.508736f, 0.180813f, -0.815868f, 0.051238f, + 0.001223f, -0.305423f, -0.270079f, 0.036180f, 0.304342f, 0.202634f, + 0.218348f, -0.304304f, -0.438297f, 0.241123f, 0.200230f, 0.151804f, + 0.051944f, 0.160422f, -0.262981f, -0.417412f, 1.845729f, -0.086183f, + 0.403517f, 0.059667f, 0.564543f, -0.081752f, 0.114907f, -0.284489f, + -0.673943f, 0.056965f, 0.362221f, 0.403224f, -0.000233f, -0.209552f, + -0.800926f, -0.134132f, +}; + +static const float av1_4_partition_nn_bias_32_layer1[LABEL_SIZE] = { + -0.019518f, + 0.198546f, + 0.339015f, + -0.261961f, +}; + +static const NN_CONFIG av1_4_partition_nnconfig_32 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 32, // num_hidden_nodes + }, + { + av1_4_partition_nn_weights_32_layer0, + av1_4_partition_nn_weights_32_layer1, + }, + { + av1_4_partition_nn_bias_32_layer0, + av1_4_partition_nn_bias_32_layer1, + }, +}; + +static const float av1_4_partition_nn_weights_64_layer0[FEATURE_SIZE * 24] = { + -0.152649f, 0.074509f, 1.000136f, 0.601661f, -1.416694f, -1.932396f, + -1.163850f, 0.640931f, -0.888625f, -0.345711f, 0.161799f, 0.103165f, + 0.147513f, 0.089956f, 0.204329f, 0.196922f, 0.014927f, 0.283714f, + -0.110422f, 0.062005f, -0.531870f, -0.075287f, -0.448349f, -0.218881f, + -0.005592f, -0.130490f, -0.015779f, 0.093521f, -0.158487f, 0.072241f, + 0.066879f, -0.418566f, -0.206281f, 0.025634f, 0.048334f, -0.534750f, + 0.302081f, 0.028707f, -1.543248f, 0.103799f, -1.214052f, 0.395870f, + 0.394754f, -0.272170f, -0.702953f, -4.057464f, -0.033497f, -0.042142f, + 0.014742f, 0.065263f, 0.000879f, -0.019768f, 0.101275f, 0.163059f, + -0.371392f, -0.283484f, 0.241915f, 0.012684f, -0.210101f, -0.166534f, + -0.024894f, 0.274696f, 0.098993f, 0.104086f, 0.055044f, -0.289378f, + 0.146571f, -0.147441f, 0.004056f, 0.112244f, -0.416162f, -0.033176f, + -0.214836f, -0.213787f, 0.023197f, -0.339043f, 0.301109f, -0.408551f, + 0.284922f, -0.344418f, -0.039255f, 0.158748f, -0.344169f, 0.078286f, + -0.043957f, -0.302162f, -0.310826f, 0.063425f, 0.198166f, -0.285324f, + -0.108252f, 0.038992f, -1.053110f, -1.663290f, -0.417185f, 1.504443f, + 0.643206f, -0.850240f, 0.889641f, -0.733214f, 0.147302f, 0.060291f, + -0.052954f, 0.167453f, 0.111870f, 0.085471f, 0.035107f, 0.064361f, + 0.176053f, 0.184373f, 0.676576f, 0.066164f, 1.455569f, 0.925111f, + -0.640845f, 0.803795f, -0.653782f, -0.201038f, 0.060033f, 0.016964f, + -0.047590f, 0.045908f, 0.354162f, 0.014812f, 0.156978f, 0.058792f, + -0.238119f, 0.002450f, -0.094388f, -0.155229f, 0.194858f, -0.355429f, + -0.187098f, -0.119264f, -0.088694f, -0.102845f, 0.184905f, -0.425339f, + -0.157808f, -0.104599f, -0.393248f, -0.379842f, 0.027741f, -0.185816f, + -0.317294f, 0.002453f, -0.498241f, -0.204302f, -0.079093f, 0.020646f, + -0.412850f, -0.426039f, -0.177050f, -0.419304f, -0.064478f, -0.191802f, + -0.146812f, 0.171111f, 0.090261f, -0.367033f, -0.299051f, -0.322132f, + 0.428192f, -0.252613f, 0.488498f, -0.559682f, 0.486720f, -0.511084f, + 0.992506f, 0.346765f, -0.118697f, -0.065127f, -0.376612f, -0.345137f, + -0.426517f, -0.516836f, 0.307083f, 0.609362f, 0.369555f, 0.093775f, + -0.375664f, -0.221595f, -0.025465f, 0.134374f, -0.387031f, 0.096236f, + 0.337465f, -0.124029f, -0.157340f, -0.368790f, -0.104490f, -0.279507f, + -0.247705f, 0.146559f, -0.236206f, -0.036073f, 0.064206f, -0.330919f, + 0.516591f, -0.013492f, 1.269568f, 1.182530f, -0.455390f, -1.328091f, + -0.200950f, -0.380513f, -0.195532f, -0.341479f, 0.016064f, 0.021176f, + 0.169119f, 0.103707f, -0.174504f, -0.462719f, -0.079445f, -0.247128f, + 0.459111f, 0.036129f, 0.769570f, -0.080405f, 1.667107f, 0.355567f, + -2.433896f, 0.627572f, -0.600090f, -0.651872f, -0.059769f, -0.041945f, + -0.009933f, 0.014864f, -0.049378f, -0.041561f, 0.075180f, 0.138307f, + 0.122366f, -0.160756f, 0.215327f, 0.013572f, 0.198194f, -0.762650f, + 0.054466f, 1.110332f, 1.692853f, 0.658654f, -0.409549f, 0.506085f, + 0.330962f, -0.223008f, 0.007448f, -0.289062f, -0.476231f, -0.228359f, + 0.013977f, -0.000609f, -0.673604f, 0.275996f, 0.405291f, 1.693561f, + -1.079768f, 1.122516f, -0.203227f, 0.099265f, -0.165207f, -0.323899f, + -0.269973f, -0.080122f, 0.127700f, 0.190201f, 0.219527f, 0.306194f, + 0.026049f, -0.003779f, 1.107357f, 1.720315f, 1.017908f, 0.078664f, + -1.599813f, -0.482636f, -0.117450f, 0.122249f, 0.030220f, 0.039794f, + 0.176350f, 0.129715f, -0.305755f, -0.274044f, -0.299640f, -0.187335f, + -0.073616f, -0.564507f, -0.127758f, 0.044855f, -0.191090f, 0.039095f, + 0.115378f, 0.969352f, -0.088360f, 0.301443f, 0.065726f, -0.019740f, + -0.102350f, -0.084913f, -0.194615f, 0.118582f, 0.920789f, -0.171615f, + -1.436553f, -0.026419f, -0.730864f, 0.615697f, -0.795079f, 0.119701f, + 0.601782f, 0.792902f, 0.184920f, 1.635090f, -0.085860f, -0.033187f, + -0.166883f, 0.008487f, -0.128300f, -0.089923f, -0.108781f, -0.133719f, + -0.011988f, -0.239816f, -0.092563f, -0.238471f, -0.339722f, 0.177432f, + -0.063101f, -0.121002f, 0.058072f, -0.031166f, 0.086413f, -0.016203f, + -0.305075f, -0.005420f, -0.168796f, 0.148745f, -0.116737f, -0.050222f, + -0.287952f, -0.290982f, -0.090449f, 0.076098f, -0.345632f, -0.061309f, + 0.142218f, 0.035692f, 0.304517f, -0.228031f, 0.119608f, -0.120350f, + 0.163404f, -0.105605f, -0.305462f, -0.176657f, 0.210070f, -0.227600f, + -0.081965f, -0.464027f, -0.053782f, -0.018367f, 0.119159f, 0.017162f, + -0.069792f, 0.305768f, -0.421095f, 0.187740f, -0.032059f, 0.575115f, + -0.064283f, -0.091828f, 0.772648f, -0.393189f, -0.297098f, 0.141420f, + 0.826389f, -0.071586f, -0.893968f, -0.346793f, -1.151655f, 0.039393f, + 1.546000f, -0.094029f, -0.005786f, -0.195764f, -0.169724f, -0.133167f, + -0.129312f, -0.418860f, -0.026553f, -0.053667f, -0.091976f, -0.106275f, + -0.492625f, 0.025350f, -0.332075f, -0.475638f, -0.076667f, -0.065779f, + 0.108957f, 0.246298f, -0.289007f, -0.442552f, -0.206692f, -0.257453f, + 0.073806f, -0.458606f, -0.410390f, -0.312674f, -0.144813f, 0.170128f, + 0.018810f, -0.098241f, 1.027369f, 0.479328f, 1.129707f, 0.484813f, + -0.085207f, 0.621873f, -0.520981f, 0.236175f, 0.273487f, 0.061426f, + 0.306085f, 0.161487f, 0.220991f, 0.223783f, -0.091826f, 0.391031f, +}; + +static const float av1_4_partition_nn_bias_64_layer0[24] = { + 0.580225f, -0.191304f, 1.091767f, -0.134522f, -0.089361f, 0.398750f, + -0.882708f, -0.213102f, -0.119981f, 0.378296f, -0.075719f, 0.426598f, + -2.015505f, 0.202534f, -1.044792f, -0.841519f, 0.266421f, -0.047115f, + -0.131147f, -0.075066f, -0.009441f, 0.853007f, -0.175606f, -0.868306f, +}; + +static const float av1_4_partition_nn_weights_64_layer1[24 * LABEL_SIZE] = { + -0.851937f, -0.211148f, -2.289513f, -0.275071f, 0.251340f, -0.340847f, + 0.498032f, 0.308652f, -0.051574f, 0.323146f, -0.097547f, -0.040269f, + 1.909655f, 0.098348f, 0.588136f, 0.568112f, 0.313297f, 0.920848f, + -0.014486f, 0.386014f, 0.029199f, -0.537330f, -0.021502f, 0.349073f, + -0.524715f, -0.351848f, 1.565454f, -0.297148f, 0.020177f, 0.648369f, + 0.027321f, -0.096052f, -0.363163f, -0.132642f, 0.024292f, -0.734176f, + -0.782700f, 0.408299f, 0.476945f, -0.489512f, -0.728318f, -0.632042f, + 0.405417f, 0.184086f, -0.400730f, 0.359032f, 0.019710f, -0.217409f, + 0.519159f, -0.136316f, 0.993592f, -0.147128f, 0.097495f, 0.426189f, + -0.295233f, 0.278799f, 0.080667f, -0.025052f, -0.307757f, 0.418716f, + -0.853388f, -0.374878f, -0.322725f, 0.696335f, -0.380649f, -0.160356f, + -0.140060f, 0.502455f, 0.656728f, -0.095023f, -0.184198f, -0.347069f, + 0.456372f, -0.029754f, 0.907923f, 0.265710f, -0.065505f, 0.226763f, + -0.277798f, 0.413292f, -0.593899f, -0.060740f, -0.313358f, -0.249944f, + -0.627329f, -0.327151f, -0.853788f, -1.163807f, -0.388944f, -0.228788f, + -0.057382f, 0.334741f, -0.283083f, 0.368280f, -0.407197f, -0.441849f, +}; + +static const float av1_4_partition_nn_bias_64_layer1[LABEL_SIZE] = { + -0.478735f, + 0.292948f, + 0.293172f, + 0.040013f, +}; + +static const NN_CONFIG av1_4_partition_nnconfig_64 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + 24, // num_hidden_nodes + }, + { + av1_4_partition_nn_weights_64_layer0, + av1_4_partition_nn_weights_64_layer1, + }, + { + av1_4_partition_nn_bias_64_layer0, + av1_4_partition_nn_bias_64_layer1, + }, +}; + +#undef FEATURE_SIZE +#undef LABEL_SIZE + +#define FEATURE_SIZE 4 +static const float + av1_partition_breakout_nn_weights_128_layer0[FEATURE_SIZE * 32] = { + -0.331785f, 0.068675f, -0.323814f, 0.033714f, -0.237835f, 0.166316f, + -0.498766f, -0.545634f, -0.266173f, -0.476957f, -0.120409f, -0.021042f, + 0.124056f, -0.278750f, -0.110120f, -0.372812f, 4.547939f, 0.097618f, + -0.002710f, -0.064169f, -1.841173f, -0.403833f, 0.005536f, 0.067188f, + -0.434935f, -0.227421f, -0.000011f, -0.139961f, -0.174056f, -0.652384f, + -0.000015f, -0.262847f, -3.319706f, -0.947693f, 0.002981f, 0.016717f, + -10.408850f, -0.014568f, -0.000018f, 0.019084f, 1.523383f, 0.074525f, + -0.002076f, -0.020734f, 4.881495f, 0.002799f, 0.000342f, -0.019623f, + 1.786154f, 0.037462f, -0.019037f, 0.052833f, 11.408153f, -0.044602f, + 0.026155f, -0.518627f, -0.474499f, -0.427430f, -0.442733f, -0.011116f, + -22.379410f, -0.000549f, -0.001418f, 0.008090f, -0.295090f, -0.230268f, + -0.337278f, -0.001127f, -0.644282f, -0.598783f, -0.539417f, -0.003303f, + 9.189824f, 0.038066f, -0.004097f, -0.460045f, -0.308858f, -0.242691f, + -0.230835f, -0.273057f, 0.152226f, 0.179239f, -0.146382f, -0.004655f, + -0.242940f, -0.718862f, -0.001685f, -0.214736f, 3.263186f, 0.079463f, + -0.003854f, -0.187461f, -0.599144f, -0.419808f, -0.000597f, -0.136980f, + 0.184813f, -0.319525f, -0.007246f, 0.079709f, -0.883229f, -0.343748f, + -0.000077f, -0.172214f, -0.548759f, -0.194674f, -0.144786f, 0.043896f, + -0.176364f, -0.248394f, -0.090215f, -0.294743f, -0.280980f, -0.181436f, + -0.115681f, -0.071915f, -13.035494f, -0.075623f, 0.017052f, -0.171152f, + 5.910803f, 0.128344f, 0.010256f, -1.073301f, 2.387826f, 0.166183f, + -0.007193f, -0.257836f, + }; + +static const float av1_partition_breakout_nn_bias_128_layer0[32] = { + 0.115591f, -0.100178f, -0.165523f, -0.122997f, 11.045759f, 1.034761f, + -0.323672f, -0.189087f, 2.850950f, 7.010029f, -21.447067f, 1.877031f, + 0.437442f, 5.929414f, -0.117274f, 4.462253f, -0.135198f, -0.145927f, + 8.727211f, 0.000000f, -3.532987f, -0.405898f, 11.364439f, -0.141728f, + -5.994947f, -0.362574f, 1.857687f, -0.100400f, -0.130312f, 0.006080f, + 0.429660f, -8.439470f, +}; + +static const float av1_partition_breakout_nn_weights_128_layer1[32] = { + -0.013738f, 0.022052f, -0.074437f, -0.211377f, -0.080433f, 0.015543f, + 0.002091f, 0.014252f, 0.134834f, 0.190263f, 0.244175f, -0.031747f, + 0.020068f, -0.068326f, 0.185471f, 0.660268f, -0.134898f, -0.010376f, + -0.276023f, -0.282921f, -0.022769f, 0.007070f, -0.186235f, 0.024407f, + -0.024837f, 0.005764f, 0.016599f, -0.040077f, 0.020990f, 0.095054f, + -0.039662f, 0.131499f, +}; + +static const float av1_partition_breakout_nn_bias_128_layer1[1] = { + 0.86678213f, +}; + +static const NN_CONFIG av1_partition_breakout_nnconfig_128 = { + FEATURE_SIZE, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 32, // num_hidden_nodes + }, + { + av1_partition_breakout_nn_weights_128_layer0, + av1_partition_breakout_nn_weights_128_layer1, + }, + { + av1_partition_breakout_nn_bias_128_layer0, + av1_partition_breakout_nn_bias_128_layer1, + }, +}; + +static const float + av1_partition_breakout_nn_weights_64_layer0[FEATURE_SIZE * 16] = { + 0.872892f, -0.235539f, -0.412159f, -0.142533f, -2.251479f, -0.057073f, + -0.001373f, 0.112147f, 5.281734f, 0.060704f, 0.000838f, -0.961554f, + 0.244995f, 0.154515f, -0.292654f, -0.167177f, -3.759112f, -0.486347f, + 0.003208f, -0.418226f, 2.618152f, 0.026832f, 0.003988f, -0.404406f, + -0.405434f, 0.102791f, -0.033406f, -0.029820f, -4.492342f, -0.154291f, + 0.012947f, -0.195075f, 0.009311f, -0.411410f, -0.010986f, -0.554822f, + 0.160576f, 0.020796f, -0.457230f, -0.191111f, -7.759542f, -0.065039f, + -0.001322f, 0.055691f, 0.291924f, -0.053076f, -0.148379f, -0.298383f, + 1.022023f, -0.033668f, -0.000804f, -0.825778f, -3.902254f, -0.085812f, + -0.052520f, -0.035012f, -0.465468f, -0.319231f, -0.497529f, -0.183068f, + -2.407131f, -0.062304f, 0.000874f, 0.108786f, + }; + +static const float av1_partition_breakout_nn_bias_64_layer0[16] = { + 0.081425f, -14.404084f, 11.511393f, -0.930053f, 1.841889f, 15.020920f, + -1.872288f, 5.392535f, -0.329335f, -0.005358f, 12.600776f, 0.000000f, + -0.337413f, 4.492778f, 0.000000f, 17.043072f, +}; + +static const float av1_partition_breakout_nn_weights_64_layer1[16] = { + -0.465338f, -0.103023f, -0.174808f, -0.005156f, -0.016366f, -0.172494f, + 0.014185f, 0.067030f, -0.001939f, -0.175049f, 0.245992f, -0.181660f, + -0.038572f, 0.307899f, -0.294283f, 0.118323f, +}; + +static const float av1_partition_breakout_nn_bias_64_layer1[1] = { + -1.33438122f, +}; + +static const NN_CONFIG av1_partition_breakout_nnconfig_64 = { + FEATURE_SIZE, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, // num_hidden_nodes + }, + { + av1_partition_breakout_nn_weights_64_layer0, + av1_partition_breakout_nn_weights_64_layer1, + }, + { + av1_partition_breakout_nn_bias_64_layer0, + av1_partition_breakout_nn_bias_64_layer1, + }, +}; + +static const float + av1_partition_breakout_nn_weights_32_layer0[FEATURE_SIZE * 16] = { + -4.825528f, -0.145737f, 0.001907f, 0.145415f, -1.858153f, -0.080744f, + 0.000601f, 0.211991f, 0.384265f, -0.043945f, -0.521332f, -0.170622f, + -0.046866f, -0.600506f, -0.001216f, -0.332760f, -0.447677f, -0.605844f, + -0.121008f, -0.119936f, -0.215739f, -0.269665f, -0.668587f, 0.071318f, + -1.202551f, -0.729727f, -0.370084f, 0.088215f, -1.926800f, -0.086519f, + 0.000359f, 0.215120f, 0.718749f, 0.022942f, 0.003840f, -0.176518f, + 1.213451f, 0.080786f, 0.001557f, -1.053430f, 0.202698f, -0.583919f, + -0.535512f, -0.239927f, -0.110151f, -0.128832f, -0.441087f, -0.145575f, + -0.178518f, -0.585784f, 0.000029f, -0.833014f, -0.331358f, -0.520297f, + -0.088676f, -0.178487f, -1.430755f, 0.022981f, -0.106931f, 0.015573f, + -0.520814f, -0.045386f, -0.443123f, -0.484209f, + }; + +static const float av1_partition_breakout_nn_bias_32_layer0[16] = { + 11.747026f, -9.337718f, 0.341648f, -0.155847f, -0.104005f, 4.666283f, + 6.669584f, 16.625504f, 9.885626f, 15.439183f, -0.346080f, 0.000000f, + -0.423808f, 0.000000f, 6.352258f, -0.155787f, +}; + +static const float av1_partition_breakout_nn_weights_32_layer1[16] = { + 0.168561f, -0.122519f, 0.524667f, 0.032474f, 0.059097f, 0.011900f, + 0.166445f, 0.127256f, -0.034838f, -0.212586f, -0.317973f, 0.348419f, + -0.004171f, 0.157694f, 0.117845f, 0.272115f, +}; + +static const float av1_partition_breakout_nn_bias_32_layer1[1] = { + 0.09049262f, +}; + +static const NN_CONFIG av1_partition_breakout_nnconfig_32 = { + FEATURE_SIZE, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, // num_hidden_nodes + }, + { + av1_partition_breakout_nn_weights_32_layer0, + av1_partition_breakout_nn_weights_32_layer1, + }, + { + av1_partition_breakout_nn_bias_32_layer0, + av1_partition_breakout_nn_bias_32_layer1, + }, +}; + +static const float + av1_partition_breakout_nn_weights_16_layer0[FEATURE_SIZE * 16] = { + 0.209371f, 0.028758f, 0.005764f, -0.384401f, -0.625777f, -0.005647f, + -0.316867f, 0.042985f, 0.127344f, 0.025461f, 0.011465f, -0.071043f, + -0.295977f, -0.076093f, -0.209681f, -0.311653f, -0.147538f, 0.009910f, + -0.130997f, -0.012326f, 0.024124f, -0.323578f, -0.005790f, -0.085664f, + -1.575066f, -0.119221f, 0.015018f, 0.187204f, 0.238117f, 0.084924f, + -0.004444f, -1.271538f, -0.709860f, -0.006226f, -0.903111f, 0.090573f, + -0.278642f, -0.011114f, 0.021162f, 0.081290f, -0.467486f, -0.040771f, + -0.224069f, -0.714390f, -0.281905f, -0.001336f, -0.761212f, -0.060385f, + -0.814479f, -0.050450f, -0.003666f, 0.085668f, -0.272589f, 0.057330f, + -0.206540f, -0.303418f, 0.075335f, -0.180468f, -0.064872f, -0.755948f, + -0.509287f, -0.048877f, -0.001512f, 0.077086f, + }; + +static const float av1_partition_breakout_nn_bias_16_layer0[16] = { + 16.421495f, 4.012273f, -1.828571f, 0.000000f, -0.263564f, -0.201972f, + 6.564987f, 14.651000f, -3.227779f, 2.241833f, -0.137116f, 0.762876f, + 5.625762f, 0.615822f, 0.040057f, 16.668884f, +}; + +static const float av1_partition_breakout_nn_weights_16_layer1[16] = { + -0.096440f, 0.184316f, -0.021148f, 0.424974f, 0.003743f, 0.006310f, + 0.046266f, -0.219224f, -0.087004f, 0.024623f, -0.275798f, 0.120164f, + 0.269773f, -0.021105f, -0.146698f, 0.188764f, +}; + +static const float av1_partition_breakout_nn_bias_16_layer1[1] = { + 1.60751927f, +}; + +static const NN_CONFIG av1_partition_breakout_nnconfig_16 = { + FEATURE_SIZE, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, // num_hidden_nodes + }, + { + av1_partition_breakout_nn_weights_16_layer0, + av1_partition_breakout_nn_weights_16_layer1, + }, + { + av1_partition_breakout_nn_bias_16_layer0, + av1_partition_breakout_nn_bias_16_layer1, + }, +}; + +static const float + av1_partition_breakout_nn_weights_8_layer0[FEATURE_SIZE * 16] = { + -0.255885f, 0.109548f, -0.111054f, -0.476119f, -1.083031f, -0.342003f, + 0.048241f, -0.356013f, -0.085054f, 0.124908f, 0.000084f, -0.149906f, + -0.729829f, 0.133535f, -0.002125f, 0.207516f, -0.210163f, -0.567365f, + -0.590103f, 0.045308f, -0.539406f, 0.130550f, -0.663879f, -0.170549f, + 0.017587f, -0.054187f, 0.000550f, 0.038297f, -0.112891f, -0.012751f, + -0.048067f, 0.095564f, 0.079892f, 0.077285f, -0.749708f, -0.286312f, + -0.054334f, 0.132242f, -0.004152f, -0.209758f, -0.073407f, 0.082306f, + -0.001034f, -0.090990f, 0.122823f, -0.109794f, -0.230066f, -0.391155f, + -0.262245f, -0.004744f, -0.232246f, 0.099290f, -0.637484f, 0.111937f, + -0.548556f, -0.598344f, 0.123265f, -0.281395f, -0.399711f, -0.525671f, + -0.596269f, 0.098494f, -0.005765f, 0.173652f, + }; + +static const float av1_partition_breakout_nn_bias_8_layer0[16] = { + 0.194141f, -0.111223f, 2.503733f, -7.155602f, -0.695068f, 0.114874f, + 2.056990f, 5.284306f, 0.639643f, -2.792049f, -2.232339f, -0.232209f, + 2.336705f, -0.278834f, 0.231905f, 7.954366f, +}; + +static const float av1_partition_breakout_nn_weights_8_layer1[16] = { + -0.014439f, 0.010171f, 0.048116f, -0.090659f, -0.081235f, -0.021840f, + -0.017360f, 0.031063f, -0.031737f, -0.023439f, -0.037725f, 0.021954f, + 0.055858f, 0.230970f, -0.056466f, 0.119780f, +}; + +static const float av1_partition_breakout_nn_bias_8_layer1[1] = { + 1.27784479f, +}; + +static const NN_CONFIG av1_partition_breakout_nnconfig_8 = { + FEATURE_SIZE, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, // num_hidden_nodes + }, + { + av1_partition_breakout_nn_weights_8_layer0, + av1_partition_breakout_nn_weights_8_layer1, + }, + { + av1_partition_breakout_nn_bias_8_layer0, + av1_partition_breakout_nn_bias_8_layer1, + }, +}; +#undef FEATURE_SIZE + +#define FEATURE_SIZE 9 // Input layer size +#define NUM_NODES 32 // Hidden layer size +#define LABEL_SIZE 3 // Output layer size + +static const float av1_rect_partition_nn_weights_8_layer0[FEATURE_SIZE * + NUM_NODES] = { + 0.22151f, 0.99424f, 0.23415f, -1.13841f, -0.11277f, 0.09530f, 0.14769f, + -1.18895f, -0.96640f, -0.21421f, -0.13974f, 0.03236f, 0.15777f, -0.03176f, + 0.02729f, -0.37344f, -0.01727f, -0.05469f, 0.19402f, -3.45508f, 0.90106f, + -2.91557f, 0.19379f, 0.14356f, -0.13291f, 0.05734f, -0.03032f, -0.13060f, + 0.35744f, 1.31630f, -1.54493f, -0.20749f, -0.24413f, -0.04524f, -0.12400f, + 1.08305f, -0.21596f, 0.76244f, 1.10616f, -1.71706f, 0.05768f, 0.10966f, + 0.00949f, -0.12680f, 0.00699f, -0.11522f, -0.38566f, 0.34283f, -0.35266f, + -0.40643f, -0.22462f, 0.32300f, -0.39737f, -0.20587f, -0.16096f, 1.07543f, + 0.30314f, -1.35659f, -0.38212f, 0.45857f, 0.76615f, 0.16819f, -1.24459f, + 0.39677f, 0.87436f, -2.33757f, 1.27471f, 0.27488f, 0.01019f, -0.01221f, + -0.07461f, -0.14577f, -0.01231f, -0.64426f, -1.02733f, -1.96242f, 0.95143f, + -0.06777f, -1.13868f, 0.01354f, -0.75590f, -0.78222f, -0.07453f, 0.61788f, + 0.56899f, 1.17144f, 0.70899f, 0.48568f, 0.11266f, 0.81579f, -0.03929f, + 0.01088f, 0.33599f, -0.22401f, -0.49654f, -0.02598f, 0.04509f, -0.08217f, + -0.30687f, 0.19851f, -2.96860f, -2.30698f, 0.01848f, 0.11801f, 0.06614f, + 0.01673f, -0.11002f, -0.08168f, 0.09204f, -0.06379f, 0.27972f, -0.31716f, + -0.00566f, -0.13651f, -0.37276f, 0.01511f, -0.23697f, 0.21696f, -0.19480f, + 0.60758f, -0.43506f, -0.02247f, -1.45073f, 0.84442f, -0.94018f, 0.32550f, + 0.03985f, -0.06581f, 0.21665f, 0.79472f, -2.41080f, 0.04788f, -0.09492f, + -0.10677f, 0.07250f, 0.14329f, -0.37319f, 0.53043f, -0.49108f, 0.25792f, + -0.36569f, -0.28669f, -0.18416f, -0.52385f, -1.17081f, -1.32153f, -1.13403f, + -0.26196f, 0.93379f, 0.72115f, 0.54464f, 0.27642f, 0.04757f, 2.01629f, + 1.55787f, -0.11665f, 1.00722f, -0.24352f, 0.53308f, 0.57719f, 0.39344f, + 0.19174f, 0.06339f, -0.02530f, 0.07724f, -0.32416f, -0.26992f, -0.35887f, + -0.35285f, -0.33379f, -0.37475f, -0.77335f, 1.70027f, -1.52153f, -0.26503f, + 0.97552f, -2.96705f, -0.91220f, -0.11827f, 0.00406f, -0.14514f, 0.18417f, + -0.20874f, 0.27293f, -0.34072f, -0.34838f, -0.19054f, -0.29806f, -0.27960f, + -0.19293f, -0.18275f, -0.05902f, 0.58625f, -0.05470f, -0.48814f, -0.45382f, + -0.05959f, 2.01250f, -0.30014f, 0.69546f, -1.24180f, 1.34923f, 0.20337f, + 0.16850f, 0.07187f, 0.72630f, -0.15380f, -2.40973f, -2.73561f, -1.71375f, + -1.61695f, 0.50052f, 0.09730f, 0.00579f, 0.06133f, -0.06512f, -0.61439f, + -1.16173f, -0.58716f, 1.60438f, 0.23242f, 0.91847f, 0.49041f, -0.16277f, + -0.02574f, -0.64593f, 1.17028f, 0.46852f, 0.14926f, 0.73853f, -0.78521f, + 0.05959f, -0.35590f, 0.02039f, 0.10812f, -0.28650f, 1.34038f, -0.72188f, + 0.62385f, -0.35271f, -0.39599f, 0.41543f, 0.53124f, -0.23510f, -0.15480f, + -0.05066f, -0.33529f, 0.05238f, -0.35311f, -0.26983f, -0.39764f, 0.01085f, + 0.26593f, -0.18411f, -0.29945f, 0.50090f, -0.03397f, 0.78562f, -0.33068f, + 1.21308f, -2.23273f, -0.33366f, -0.15164f, -1.13270f, 0.17394f, 0.65567f, + 0.76496f, 0.44325f, 0.01368f, -0.33619f, -0.64256f, 0.64478f, 0.84553f, + 1.74183f, 0.22563f, -0.14550f, -0.16258f, 0.03010f, 0.49922f, 0.64575f, + -0.29187f, -0.10348f, -1.43619f, -0.56540f, -0.14779f, 0.04616f, 0.87411f, + -1.08228f, +}; + +static const float av1_rect_partition_nn_bias_8_layer0[NUM_NODES] = { + 0.33919f, -0.03003f, 0.79073f, -0.18508f, 0.00668f, -0.12017f, 0.35362f, + -0.51642f, 0.06536f, 0.41668f, -0.06509f, 0.94606f, -0.15385f, 0.14936f, + 1.46274f, -0.06961f, 2.82537f, -1.95576f, -0.09457f, 0.02042f, -0.07480f, + -0.55083f, 0.26170f, 4.39883f, 0.33999f, -0.10502f, 0.70884f, -0.06992f, + -0.22638f, 1.40940f, -0.09309f, 0.05828f, +}; + +static const float av1_rect_partition_nn_weights_8_layer1[NUM_NODES * + LABEL_SIZE] = { + 0.09209f, 0.26236f, 0.62136f, 0.76324f, -1.14678f, 0.42289f, -0.08895f, + -0.97267f, 2.05958f, 0.00843f, 0.35335f, 1.12096f, -0.11679f, 0.07350f, + -1.23231f, -0.61990f, 1.51379f, -1.99450f, 0.22441f, 2.41974f, -0.30488f, + -0.37869f, 0.47168f, -3.70132f, 0.00061f, 0.19432f, 0.11512f, 0.26200f, + -0.35285f, 0.37985f, 0.90571f, 0.27344f, 0.74840f, -0.17965f, -2.51433f, + 0.59235f, 1.16670f, -0.53446f, 0.67897f, 0.04505f, -0.86874f, 0.45361f, + -0.35033f, 1.21283f, 0.31426f, -0.20841f, 0.56757f, 0.45909f, -1.23683f, + 0.09835f, -0.17214f, -0.96323f, 0.01138f, -0.50233f, 0.30104f, 2.01814f, + 1.15821f, -0.11947f, 0.74574f, -0.30714f, -0.39646f, -1.30086f, -0.88541f, + -0.12259f, -0.54977f, 0.30069f, 1.84299f, -0.95141f, -0.65887f, -0.25888f, + -0.63265f, 1.29531f, -0.56672f, 0.10837f, -0.21297f, -2.19131f, 0.01156f, + 0.51912f, 0.46704f, 0.42810f, -0.59271f, 0.98469f, -0.17914f, -1.91163f, + -0.32807f, 0.48199f, -0.99525f, 1.67108f, -0.87631f, -0.60258f, -0.78731f, + -0.32877f, 0.44237f, 0.01087f, 0.07489f, -0.28224f, +}; + +static const float av1_rect_partition_nn_bias_8_layer1[LABEL_SIZE] = { + 1.70665f, + -0.77954f, + -0.92709f, +}; + +static const NN_CONFIG av1_rect_partition_nnconfig_8 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + NUM_NODES, + }, // num_hidden_nodes + { av1_rect_partition_nn_weights_8_layer0, + av1_rect_partition_nn_weights_8_layer1 }, + { av1_rect_partition_nn_bias_8_layer0, av1_rect_partition_nn_bias_8_layer1 } +}; + +static const float av1_rect_partition_nn_weights_16_layer0[FEATURE_SIZE * + NUM_NODES] = { + -0.18480f, -0.05410f, -0.18957f, 0.15451f, -0.38649f, -0.26162f, -0.22727f, + -0.38555f, -0.36738f, 0.74384f, -1.85999f, 0.98491f, -0.72119f, 1.77321f, + 0.39983f, 0.96314f, 0.23695f, 0.30200f, 0.30629f, -0.47617f, -1.43320f, + -1.81730f, 0.36554f, -0.07142f, -1.27242f, -1.27697f, 0.00110f, -0.32179f, + 0.27460f, 0.45428f, 0.15308f, -0.73906f, -0.28577f, -0.01238f, -0.16958f, + -0.85390f, 1.05484f, -1.62812f, 0.77632f, -0.27327f, -0.32527f, 0.32726f, + 1.73255f, 0.53763f, 0.59121f, -0.39068f, -0.32451f, -0.31869f, 0.17777f, + 0.07519f, -0.18066f, -0.11250f, -0.14616f, -0.16882f, -0.04099f, -0.67959f, + 0.39674f, -0.08596f, 0.18587f, -2.04097f, -1.73993f, 1.57212f, 1.42410f, + -1.36762f, -0.41485f, -1.12103f, 0.56959f, 0.11500f, 0.48945f, -0.13585f, + 1.22125f, 0.67071f, -1.11812f, -0.20660f, -0.52856f, 0.70663f, 0.74382f, + 0.61114f, -0.11454f, 1.14687f, 0.80322f, -0.45965f, -0.44466f, -0.05830f, + 0.13206f, -0.53750f, -0.11324f, -0.37971f, -0.13491f, -0.21268f, 1.93407f, + 1.34433f, 2.49427f, 2.91955f, 1.71730f, 0.03295f, 0.03587f, -0.14550f, + 0.08189f, -0.38655f, -0.35432f, -0.62706f, -0.01849f, -0.57882f, -0.60438f, + -1.01334f, -0.57302f, 0.22592f, 0.05916f, -0.05305f, -0.89824f, -0.52969f, + -0.24542f, 0.27029f, -0.40924f, -0.82452f, -0.60665f, -5.03025f, 0.83302f, + 1.83695f, 2.19716f, 2.31001f, 0.03657f, 0.00063f, -0.04379f, 0.05835f, + -0.08623f, 0.20557f, -0.17791f, 0.07874f, -0.25456f, -0.19513f, -0.27753f, + -0.31982f, 0.00245f, -0.33183f, 0.26059f, -0.22165f, 0.37582f, -0.30411f, + -0.22639f, -0.14739f, -0.20201f, -0.37507f, -1.30653f, 0.49570f, 1.03673f, + 0.66139f, 0.44941f, -0.44461f, -0.50376f, -0.49664f, 0.18608f, -0.26175f, + 0.14844f, 0.78715f, -0.70344f, -0.87624f, -0.98535f, -0.35346f, 0.37094f, + -0.43135f, -0.22571f, 3.46263f, 3.13580f, -1.33203f, -0.15247f, -0.15866f, + -0.11214f, 0.12211f, 0.03964f, -1.87597f, -4.81597f, -4.80195f, -4.98096f, + -5.62336f, -0.05337f, -0.00943f, 0.00792f, 0.02742f, 1.05679f, 2.41455f, + 0.85382f, 1.42504f, 0.58096f, 0.21443f, 1.02694f, 1.06746f, 1.20242f, + 0.60767f, 1.98667f, -0.80879f, -0.63495f, 1.95508f, 0.23952f, -0.15019f, + -0.16097f, 0.30155f, -3.42407f, -1.34998f, 9.07689f, -2.22559f, 2.22562f, + -0.03348f, -0.05229f, 0.05931f, 0.03042f, -0.18068f, -0.05732f, -0.33010f, + -0.32279f, -0.26607f, -0.02723f, -0.04067f, 0.08700f, -0.16366f, -0.24935f, + -0.69124f, 0.58508f, 0.50654f, 0.04492f, 1.38340f, -1.51487f, 1.72889f, + -1.95618f, -3.65013f, -1.38525f, -3.05516f, -2.40448f, 2.47467f, 0.03784f, + 0.08052f, -0.01971f, -0.08918f, -0.84997f, -0.55302f, -1.07861f, -0.62626f, + 0.61751f, -0.11012f, -0.24185f, -0.39201f, -1.85390f, -0.31261f, -0.11927f, + 0.15671f, -0.23450f, -0.14916f, -0.31715f, -0.19350f, 0.01795f, -0.11533f, + -0.05799f, -0.03142f, 0.20218f, -0.39499f, -0.33859f, -0.13201f, -0.19527f, + -0.28459f, -0.20346f, 0.89457f, -2.22103f, -2.37455f, -2.00221f, 2.44553f, + 0.33915f, 0.50047f, -0.34625f, -0.19667f, -0.56333f, -0.84328f, 1.25767f, + -1.70297f, 1.00482f, -0.00103f, -1.40813f, 0.21311f, 0.39230f, -0.07302f, + -3.49100f, 1.60675f, -2.90692f, 0.11022f, 0.13507f, -0.13308f, 0.15201f, + -0.05573f, +}; + +static const float av1_rect_partition_nn_bias_16_layer0[NUM_NODES] = { + -0.16783f, -0.16023f, 0.52215f, -0.04109f, 2.00122f, -0.11633f, 0.25535f, + 1.80638f, 1.69273f, -0.25998f, -6.83550f, -0.79682f, -1.03466f, 1.42721f, + 0.00000f, -0.00000f, -0.11665f, -0.12047f, -1.01497f, 7.27181f, -0.78548f, + -1.39335f, -5.42248f, -0.10388f, 0.07634f, 2.81012f, -0.57429f, -0.15629f, + -0.12044f, 1.65478f, -0.75153f, 1.18441f, +}; + +static const float av1_rect_partition_nn_weights_16_layer1[NUM_NODES * + LABEL_SIZE] = { + -0.26407f, 0.06322f, 0.87932f, 0.17772f, 0.71686f, -0.12283f, 0.08454f, + 0.20098f, -0.31763f, -0.33178f, -4.59535f, -0.04367f, 0.17099f, 3.80486f, + 0.16750f, 0.29218f, 0.57234f, -0.96550f, -0.10599f, -4.91130f, -0.14658f, + 0.95803f, -4.13925f, 0.24567f, 0.25708f, 1.60547f, -1.03251f, -0.31053f, + -0.05659f, -0.94121f, -0.68926f, -0.24738f, -0.38019f, 0.98950f, 0.13689f, + 0.24504f, 0.49623f, 0.19980f, 0.38349f, 0.37481f, 0.54540f, -0.02198f, + 3.43385f, 1.02543f, -0.40921f, -3.07235f, 0.02996f, 0.00323f, -0.35414f, + 0.71099f, 1.39334f, 2.43741f, -1.11007f, -0.22739f, -4.21757f, 0.11905f, + 0.00353f, -1.69637f, 0.45944f, -0.19884f, 0.03624f, 0.25729f, 0.23659f, + -2.08405f, 0.08573f, -0.53393f, -1.28103f, -0.53970f, -0.65465f, 0.31821f, + -0.09884f, -0.69026f, -0.37284f, 0.04622f, 1.32973f, -0.15414f, 0.19138f, + -0.67927f, -0.17658f, 0.36008f, -0.51832f, 0.09887f, -1.94414f, 2.95227f, + 1.76937f, -0.26687f, 8.50976f, 0.26247f, 0.60262f, -0.27910f, 0.30061f, + -0.05117f, 0.16018f, 0.71195f, 0.57871f, 1.57794f, +}; + +static const float av1_rect_partition_nn_bias_16_layer1[3] = { + 2.68750f, + -1.31894f, + -1.36768f, +}; + +static const NN_CONFIG av1_rect_partition_nnconfig_16 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + NUM_NODES, + }, // num_hidden_nodes + { av1_rect_partition_nn_weights_16_layer0, + av1_rect_partition_nn_weights_16_layer1 }, + { av1_rect_partition_nn_bias_16_layer0, av1_rect_partition_nn_bias_16_layer1 } +}; + +static const float av1_rect_partition_nn_weights_32_layer0[FEATURE_SIZE * + NUM_NODES] = { + -0.54654f, -0.43537f, -0.10620f, -0.48051f, -0.43543f, -0.22737f, -0.15429f, + -0.09858f, -0.09438f, 0.37306f, 0.23934f, -1.86375f, -1.18307f, -0.32995f, + -0.09745f, 0.05431f, -0.13799f, 0.14734f, -0.33219f, 0.18057f, -0.23792f, + -0.28126f, 0.02977f, -0.07431f, 0.07860f, 0.00067f, -0.01927f, 1.01841f, + -0.57739f, 0.08412f, -1.33843f, -1.05563f, -0.28693f, -0.39425f, -0.69572f, + -0.16703f, 0.02808f, 0.11994f, -0.26267f, 0.19706f, -0.29707f, -0.25305f, + -0.07050f, -0.02704f, -0.31528f, -0.42301f, 0.22496f, -0.37001f, -0.23319f, + -0.11139f, -0.30513f, 0.04213f, -0.12550f, 0.02504f, 0.33245f, 0.01102f, + -0.35950f, -0.05949f, -0.19590f, -0.27457f, -0.28339f, -0.15676f, -0.21538f, + 0.65066f, 0.28443f, -1.24943f, -3.00246f, -1.01897f, 0.09304f, 0.70052f, + -0.12877f, 0.21120f, -0.37476f, 0.23261f, -0.28401f, 0.09837f, 0.00020f, + -0.12106f, -0.32354f, -0.02472f, -0.19772f, 1.01886f, 0.16596f, -0.06532f, + 1.72938f, 1.57754f, 0.55963f, 0.33246f, -0.20023f, 0.30715f, 0.08629f, + 0.18945f, -0.45988f, -1.22610f, -0.05152f, -0.48859f, -1.02104f, -0.27315f, + -0.57698f, 0.04157f, -0.92428f, -1.31268f, 1.78210f, 0.10291f, 1.55042f, + -1.26793f, 1.39042f, -1.43729f, 0.25600f, 5.21263f, 5.31955f, 5.19316f, + 5.43430f, 0.00294f, -0.00970f, -0.02333f, 0.00250f, 1.17672f, 6.27544f, + 4.95973f, 3.54009f, 4.51269f, 0.30750f, 0.78780f, -0.44741f, -0.76442f, + 0.75050f, 0.58799f, 0.03400f, -2.09859f, 1.67313f, 0.12503f, 0.28609f, + 1.15809f, 2.46530f, -0.04898f, 0.23072f, -0.12635f, -0.82097f, -0.63827f, + 2.16779f, 1.77132f, 0.15434f, -1.06427f, 0.06206f, -0.87732f, -0.61897f, + -0.44593f, -0.77131f, -0.15979f, -0.02282f, -0.74381f, 0.66052f, -0.22992f, + 1.74638f, 1.29199f, -0.55464f, 0.98316f, 0.06665f, 0.50254f, -0.66292f, + 0.17113f, -0.32633f, -1.85803f, -0.92759f, 4.44965f, 1.33057f, 0.02135f, + -0.27446f, -0.26018f, -0.12613f, -0.14470f, -0.23355f, -0.09717f, -0.24123f, + -0.05535f, -0.19146f, -0.36222f, -0.30458f, -0.40323f, 0.21779f, 0.14248f, + -0.48630f, 0.18840f, 0.11040f, 0.17287f, -0.51880f, 1.12466f, -0.38888f, + -0.16421f, -0.31784f, -0.36112f, -0.25386f, -0.01636f, 0.10029f, -0.26881f, + -0.17051f, -0.30903f, -0.08573f, -0.28774f, -0.01173f, -0.09706f, -0.23089f, + -0.12922f, -0.17463f, -0.12433f, -0.23074f, 0.15220f, 1.29826f, 0.23788f, + 0.04189f, 2.66416f, 0.48815f, -0.06803f, 0.96742f, 1.27165f, -0.70348f, + -0.09941f, -0.42948f, -0.20243f, -0.02364f, -0.26689f, -0.40629f, -0.68217f, + -0.48073f, 2.43657f, -2.60191f, -1.82837f, 0.50440f, 0.71829f, 0.76491f, + 0.28293f, 0.20568f, 0.92642f, -0.02496f, 1.43637f, -0.24474f, -1.21030f, + 0.54084f, 1.05130f, 1.29572f, 0.03750f, -0.36894f, 0.74548f, -1.33857f, + -0.84858f, 1.35230f, 0.80175f, 0.66136f, 1.06473f, 0.18701f, 1.42413f, + 0.04661f, -0.07820f, 0.64990f, -0.43595f, 1.18304f, -0.11437f, -0.06365f, + 0.03558f, 0.78260f, -1.74890f, 1.56217f, -1.23424f, 4.59193f, -3.35072f, + 0.01180f, -0.18296f, -0.20870f, 0.04510f, 1.52595f, -1.37402f, -0.33123f, + -0.85957f, 0.80598f, 0.03743f, 0.02354f, 0.37707f, 1.62095f, -0.29627f, + -0.31778f, -0.45789f, -0.14906f, 0.25315f, -0.10817f, -0.32610f, -0.40890f, + 0.33984f, +}; + +static const float av1_rect_partition_nn_bias_32_layer0[NUM_NODES] = { + -0.17482f, 0.39042f, 0.00000f, 1.69677f, 0.08792f, -0.09301f, 0.13809f, + 4.84061f, 0.00000f, 0.40515f, 0.46246f, 0.20644f, -5.77478f, -1.54510f, + 0.05660f, -0.32013f, 0.23649f, 0.03778f, -2.53710f, -0.27869f, 0.45623f, + -0.04155f, -0.18445f, -0.73405f, -0.50243f, 2.23191f, 1.93272f, -1.07032f, + -0.27602f, -1.98063f, 0.20816f, -0.01315f, +}; + +static const float av1_rect_partition_nn_weights_32_layer1[NUM_NODES * + LABEL_SIZE] = { + 0.02827f, 1.02560f, -0.07137f, -0.31911f, 0.11365f, 0.13684f, -0.07816f, + -5.23036f, -0.34340f, 0.84526f, -1.51845f, 0.07017f, -8.12570f, 6.24061f, + 0.35739f, -0.09937f, -0.30978f, 0.22032f, 0.74968f, -0.34557f, 0.45547f, + -0.16512f, 0.07118f, 1.66415f, 0.41320f, -1.81533f, -1.96004f, 1.04666f, + 0.84049f, 4.31009f, 0.68850f, 0.26322f, -0.24634f, -1.25889f, 0.31952f, + 0.63632f, 0.05801f, -0.10664f, -0.21992f, 2.44386f, 0.19526f, -0.09838f, + 1.53049f, -0.26630f, 3.54126f, -3.40574f, 0.72730f, 0.04557f, 0.92652f, + 0.15522f, 2.35895f, -0.13347f, 0.56907f, 0.15352f, 0.01823f, -0.73939f, + 0.43104f, 1.90321f, 0.31267f, -0.51972f, 0.50094f, -3.98372f, -3.41518f, + -0.48183f, 0.26661f, 0.64146f, 0.14500f, -0.01695f, 0.16653f, -0.37846f, + 0.08412f, 2.69714f, -0.20258f, -0.75786f, 0.11201f, 0.61878f, 4.22231f, + -3.55330f, -1.14137f, -0.37722f, -0.28000f, -0.72581f, -2.62827f, -0.19448f, + -0.59398f, -0.30136f, -0.17725f, -0.69630f, -0.41132f, 0.12208f, 2.11441f, + -1.08794f, -1.41694f, 0.02620f, 2.18792f, 0.04271f, +}; + +static const float av1_rect_partition_nn_bias_32_layer1[3] = { + 2.47332f, + -1.65756f, + -0.81573f, +}; + +static const NN_CONFIG av1_rect_partition_nnconfig_32 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + NUM_NODES, + }, // num_hidden_nodes + { av1_rect_partition_nn_weights_32_layer0, + av1_rect_partition_nn_weights_32_layer1 }, + { av1_rect_partition_nn_bias_32_layer0, av1_rect_partition_nn_bias_32_layer1 } +}; + +static const float av1_rect_partition_nn_weights_64_layer0[FEATURE_SIZE * + NUM_NODES] = { + 0.08972f, 4.09095f, -0.31398f, -2.43631f, -0.74767f, 1.42471f, 1.60926f, + 1.44721f, 1.88259f, 2.35375f, 1.88299f, 2.01109f, 0.98679f, 2.24131f, + 0.06279f, -0.08315f, 0.32107f, 0.91334f, -0.36569f, 5.55049f, 5.44943f, + 5.20471f, 5.39099f, -0.01943f, -0.00284f, 0.02203f, -0.01309f, 1.41917f, + 6.68460f, -6.15986f, 6.41341f, -3.20630f, -0.00567f, -0.00038f, 0.05960f, + 0.04308f, 0.95366f, 3.48535f, 2.98266f, 4.11784f, 3.44255f, 0.61630f, + 0.71405f, 0.63945f, -0.00713f, 0.39193f, 1.91621f, 3.32755f, 0.71674f, + -0.11647f, 2.07090f, 2.64191f, 0.07949f, -0.05023f, 0.99935f, 0.83145f, + 0.75898f, -0.98764f, -0.58731f, 1.21734f, -0.08076f, -3.26780f, 1.66278f, + 0.04189f, -0.33177f, -1.58648f, 1.00883f, -0.56132f, -2.34877f, 0.67056f, + -2.32297f, -0.91641f, -1.02909f, 4.19781f, 3.87484f, 4.32778f, -1.97171f, + -0.24734f, 0.00822f, 0.05892f, 0.12697f, -3.62915f, -2.93127f, 7.94856f, + -3.29311f, 3.26001f, -0.02231f, 0.02741f, 0.05919f, 0.08190f, -1.49344f, + -0.64475f, -0.24627f, 4.03324f, -1.14799f, -0.18465f, -0.17829f, 0.10394f, + 0.08580f, -5.74721f, 4.42467f, 3.63964f, 3.00258f, -1.22744f, -0.29408f, + 0.00767f, 0.12305f, 0.05249f, -0.17166f, -0.20120f, -0.32941f, -0.31901f, + 0.04628f, -0.35249f, -0.18272f, 0.03956f, -0.19329f, -0.33564f, 0.09856f, + -0.00173f, -0.31751f, -0.05702f, -0.20558f, -0.31464f, -0.02488f, -0.00729f, + -0.35854f, -0.14762f, -0.34897f, -0.12746f, 0.04011f, -0.24918f, -0.53516f, + -0.28440f, -0.36789f, -1.34889f, -9.10044f, -9.19238f, 4.48042f, 6.54429f, + -0.00226f, 0.00430f, 0.00321f, 0.00442f, 0.87551f, -0.16224f, -0.22832f, + -0.60640f, -0.28738f, 0.18062f, 0.22008f, -0.47406f, 0.80302f, 0.12149f, + 1.49530f, 1.05069f, -2.02985f, -0.92833f, 0.25616f, 0.12852f, 3.51840f, + 0.25226f, -2.63283f, -4.04386f, 8.46300f, -2.93408f, 0.44069f, 0.08276f, + 0.34482f, -0.22615f, 0.28666f, 3.02962f, -1.20055f, -1.04832f, -0.97632f, + -0.99530f, 1.44196f, 1.68550f, 0.49360f, 1.08155f, -0.26059f, -0.02876f, + -0.27492f, -0.06205f, -0.09496f, -0.12314f, -0.30228f, -0.07453f, -0.38857f, + 1.17443f, 2.41497f, 1.90537f, 2.37716f, 2.91495f, -0.44455f, -0.51176f, + 0.48195f, 0.53032f, 0.23696f, -1.06211f, 1.47459f, -0.89029f, 0.29521f, + 0.66291f, -0.42653f, 1.82308f, -1.30372f, -0.36192f, -3.40388f, -1.61476f, + -2.29745f, -0.66886f, -2.08252f, -0.54552f, -4.06849f, 0.02948f, 0.27297f, + -4.81472f, 4.60404f, -0.11053f, 0.14765f, 0.02826f, -0.14688f, -0.07066f, + -0.01224f, 1.20377f, 7.02725f, -6.02627f, 6.87255f, -3.14257f, 0.01074f, + 0.02397f, -0.02359f, 0.01901f, 0.14956f, -1.67671f, 2.26714f, 2.57043f, + -0.45888f, -1.60265f, -2.11475f, -2.74029f, -2.74658f, -0.35630f, -2.63013f, + -2.14814f, -0.67266f, -1.56850f, 0.57137f, -1.14428f, -0.34265f, -0.12521f, + 0.01220f, -0.74906f, -0.19270f, 0.68110f, -0.24737f, -0.70568f, -1.64826f, + -0.35847f, -0.15984f, -1.17932f, -8.72306f, -8.72834f, 3.93701f, 6.17812f, + -0.03191f, -0.00104f, 0.01402f, -0.00046f, -0.94517f, 1.51266f, -0.56318f, + 0.72260f, -0.09253f, -0.09069f, -2.16695f, -0.23653f, 0.24418f, 2.21148f, + -1.47954f, -1.01439f, 0.31536f, 0.77238f, -0.85083f, -0.15758f, -0.50886f, + 0.09101f, +}; + +static const float av1_rect_partition_nn_bias_64_layer0[NUM_NODES] = { + 0.91706f, -1.31328f, -5.16196f, 1.13191f, -0.98044f, -1.61122f, 1.03039f, + -0.98537f, -4.45568f, -4.34802f, -0.92116f, 0.66836f, -0.10752f, -0.13065f, + -0.35567f, -0.35693f, 1.74941f, 1.17379f, -3.45555f, 5.66321f, -0.24917f, + -1.11940f, -0.73656f, -0.19299f, -0.04181f, 1.11010f, -2.97859f, -0.16774f, + 0.59835f, -0.31269f, -0.30585f, -1.66212f, +}; + +static const float av1_rect_partition_nn_weights_64_layer1[NUM_NODES * + LABEL_SIZE] = { + 0.58963f, 4.20320f, -8.62465f, -6.54014f, 5.41108f, 2.33581f, -0.10354f, + -1.17753f, -3.45909f, -2.24722f, 2.20881f, 3.21971f, -0.09087f, -0.21624f, + 0.16529f, -8.40985f, -1.60205f, -1.41538f, 4.41826f, -4.63069f, -0.27742f, + 4.08710f, 0.26439f, -1.46028f, 0.51234f, 6.25212f, -3.35650f, -1.21348f, + 1.37201f, 8.89151f, 0.28859f, -0.97328f, -0.36196f, -2.71701f, 4.54196f, + -0.62476f, -2.43814f, -1.34209f, 0.12850f, 1.73859f, 3.09809f, -4.42434f, + -1.82552f, -3.66420f, -0.31535f, 0.00968f, -0.02019f, 9.66824f, 0.58835f, + 1.50425f, 2.84487f, 2.55522f, 0.01409f, -2.27594f, -0.31800f, 0.91076f, + -0.66808f, 0.33120f, -0.12460f, 0.64457f, -0.36416f, -10.30843f, 1.51013f, + 2.06861f, -0.20989f, -0.87119f, 3.68642f, 7.33662f, -2.88037f, -0.52414f, + -0.35036f, -0.45947f, -0.07406f, 6.46346f, -0.16031f, 0.27071f, 0.38845f, + -0.21940f, 0.08583f, -1.39526f, 0.50554f, 0.45279f, -6.61856f, 1.84069f, + -0.19149f, -1.77235f, 0.75136f, 1.11797f, 0.32677f, -7.10427f, 3.82908f, + 1.04238f, -0.91435f, 1.93317f, -1.84946f, -0.48909f, +}; + +static const float av1_rect_partition_nn_bias_64_layer1[3] = { + 0.32215f, + -0.57522f, + 0.25314f, +}; + +static const NN_CONFIG av1_rect_partition_nnconfig_64 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + NUM_NODES, + }, // num_hidden_nodes + { av1_rect_partition_nn_weights_64_layer0, + av1_rect_partition_nn_weights_64_layer1 }, + { av1_rect_partition_nn_bias_64_layer0, av1_rect_partition_nn_bias_64_layer1 } +}; + +static const float av1_rect_partition_nn_weights_128_layer0[FEATURE_SIZE * + NUM_NODES] = { + -0.70901f, -3.03481f, 3.30604f, -1.28803f, -0.08610f, -0.33320f, -0.30716f, + 0.25100f, 0.14323f, -0.98422f, -0.89084f, -0.24508f, -1.10785f, -0.82524f, + 0.11766f, -0.42777f, 1.08965f, 4.35125f, -1.19388f, 4.22042f, 4.96306f, + 6.32406f, 3.29899f, -0.90768f, 0.05203f, 0.38467f, 1.74257f, -0.19918f, + -0.11335f, 0.00140f, -0.42303f, -0.04419f, 0.03583f, -0.05441f, -0.19586f, + 0.01484f, -1.19964f, 0.25497f, 3.04502f, 0.05446f, -0.23253f, 0.00266f, + 0.07117f, -2.78986f, -4.62953f, 1.45331f, 0.43923f, 0.92298f, -0.47736f, + 1.49165f, 0.45942f, -1.99787f, 3.33510f, 0.17234f, 0.04024f, -1.42780f, + 0.23566f, -0.90970f, 1.18041f, -1.45865f, 2.30878f, -1.28507f, 1.87290f, + 1.91186f, 4.74826f, -3.70735f, 4.49808f, -4.72275f, -0.02696f, -0.02642f, + -0.06093f, -0.01121f, -0.70683f, 2.69737f, -1.88563f, 2.48637f, 1.10922f, + 0.74624f, 0.40308f, 2.06396f, 1.39289f, 0.00909f, -2.05271f, -1.53539f, + -1.38323f, 0.83303f, -0.32250f, 0.51172f, 3.91249f, 1.66373f, 1.13184f, + -2.22874f, -1.13448f, -0.11185f, 0.19387f, 0.36770f, -0.58933f, 0.22789f, + 1.17307f, 0.77461f, 0.20817f, 0.33417f, 0.54037f, 0.32961f, -0.18456f, + -9.78171f, -0.17216f, -3.44703f, -2.42158f, 0.51946f, 4.35949f, -0.73335f, + -1.61515f, -0.29622f, -0.37617f, -0.42316f, 0.74922f, 1.44386f, 3.92704f, + -3.76274f, 4.19775f, -3.86958f, 0.00074f, -0.02418f, -0.12944f, 0.05857f, + -0.85507f, 5.42546f, 5.40338f, 5.54347f, 5.59791f, -0.01611f, 0.01618f, + -0.01654f, -0.00270f, -0.39608f, -0.40410f, -0.24551f, 0.09124f, -0.34413f, + -0.11504f, 0.12793f, -0.31523f, 0.09148f, -0.08567f, -0.05140f, -0.13310f, + -0.81200f, 0.06882f, -0.52537f, -12.74048f, -0.45395f, -4.04775f, -1.84887f, + -1.02573f, 0.32788f, 1.06828f, -1.25503f, -0.42693f, 2.01413f, -2.29103f, + 0.62271f, 1.11764f, -1.83113f, -1.32325f, -1.65651f, -2.87826f, 1.46910f, + 0.60885f, 0.16079f, 0.00171f, -0.25658f, -0.25465f, -0.14149f, 0.19497f, + -0.07866f, -0.37080f, -0.05778f, -0.08870f, -0.20491f, 0.84521f, -0.18214f, + -1.38441f, -1.08932f, -1.76627f, 0.73172f, 0.05967f, 1.28057f, 3.42722f, + 1.69287f, 0.77169f, 0.44528f, 1.85513f, 0.07840f, 1.31252f, 2.89948f, + 1.49489f, 0.15281f, 0.54708f, -1.14185f, -2.51063f, 0.36618f, -0.55322f, + 0.96671f, 1.59470f, 1.38252f, 1.99697f, 0.03266f, -0.23200f, -0.01127f, + -0.18918f, -0.37598f, -0.03119f, -0.36039f, -0.21192f, -0.11565f, -4.22635f, + 1.41252f, 0.56608f, -0.08867f, 3.11924f, -0.54597f, -0.12504f, -0.05289f, + -0.28665f, -0.58297f, -1.18362f, -0.76201f, -1.22011f, -0.58756f, 0.14740f, + 1.43971f, 0.98381f, -0.02998f, -0.40678f, -0.23047f, -0.12979f, 0.04003f, + -0.22081f, -0.09294f, -0.15955f, -0.10379f, -0.10192f, -1.51316f, 2.39482f, + -1.69975f, 3.58976f, -0.91032f, -0.03498f, 0.48982f, -0.13418f, 0.76256f, + 1.61003f, -2.01676f, -1.24430f, -3.25763f, 1.12314f, 2.00740f, 0.04613f, + -0.14746f, -0.57374f, 3.44511f, -0.56767f, -4.08432f, -2.04894f, 2.35951f, + -0.00458f, 0.18512f, 0.09916f, -0.04084f, -1.56207f, 1.38034f, 4.17302f, + -1.47326f, -2.03530f, -0.00210f, 0.27469f, -0.17423f, 0.86860f, 2.76195f, + 2.43269f, -3.57331f, 2.08715f, -1.44171f, -0.17389f, 2.26157f, -0.07852f, + 2.02519f, +}; + +static const float av1_rect_partition_nn_bias_128_layer0[NUM_NODES] = { + 2.53427f, 1.66678f, -0.84914f, -0.15070f, -1.74769f, 0.45218f, -0.26067f, + 2.05916f, 0.08978f, 5.30984f, 2.66243f, -1.62740f, 0.70018f, 1.96403f, + -4.97152f, -0.05425f, -3.84474f, -1.28006f, 3.47490f, -0.08373f, 0.00225f, + -1.40692f, -0.27569f, -0.30253f, 0.77377f, -0.67636f, -0.26379f, 1.82348f, + 0.66120f, 0.61119f, -1.42293f, 0.32676f, +}; + +static const float av1_rect_partition_nn_weights_128_layer1[NUM_NODES * + LABEL_SIZE] = { + 1.53453f, -0.23707f, 7.88368f, 0.33340f, 0.97523f, 1.38538f, -0.16746f, + 4.42070f, 3.18678f, -5.03545f, -2.27029f, -3.75719f, -0.26850f, -4.93432f, + -8.75673f, 0.27398f, -5.77882f, -0.91616f, -2.62725f, -0.23961f, 0.31249f, + 3.32134f, 0.25375f, -0.00394f, 2.30213f, -0.14183f, 0.14544f, -1.42830f, + 1.31101f, 3.99389f, -0.00017f, -2.90184f, -2.11444f, 2.16734f, -3.05133f, + 0.39206f, 4.61489f, -2.88181f, -0.47745f, 2.86649f, -1.20621f, 3.70550f, + 1.58029f, -4.58731f, -2.29350f, -0.76930f, 5.19135f, -0.22521f, -5.08782f, + 2.17316f, 1.30563f, 0.16777f, -2.17767f, -2.09904f, 1.37001f, 0.25091f, + -1.76743f, 1.57940f, 0.30544f, -2.39895f, -0.08532f, -1.77122f, 1.84010f, + -0.88449f, 0.79299f, -1.35368f, -4.54110f, 0.02244f, -5.11580f, 1.60883f, + 0.29352f, -6.47042f, -1.81426f, 1.24013f, 0.90980f, 7.93977f, 2.12555f, + 5.24720f, 4.19508f, 0.21499f, 11.06045f, -0.74752f, 0.89396f, 0.26422f, + 1.72332f, -1.25113f, -1.71136f, 0.13676f, -0.07867f, -0.96929f, 0.19911f, + 3.58233f, -0.76470f, -2.24162f, -2.87465f, 3.18736f, +}; + +static const float av1_rect_partition_nn_bias_128_layer1[3] = { + 1.09014f, + -0.53317f, + -0.55668f, +}; + +static const NN_CONFIG av1_rect_partition_nnconfig_128 = { + FEATURE_SIZE, // num_inputs + LABEL_SIZE, // num_outputs + 1, // num_hidden_layers + { + NUM_NODES, + }, // num_hidden_nodes + { av1_rect_partition_nn_weights_128_layer0, + av1_rect_partition_nn_weights_128_layer1 }, + { av1_rect_partition_nn_bias_128_layer0, + av1_rect_partition_nn_bias_128_layer1 } +}; +#undef FEATURE_SIZE +#undef NUM_NODES +#undef LABEL_SIZE + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_PARTITION_MODEL_WEIGHTS_H_ diff --git a/third_party/aom/av1/encoder/pickcdef.c b/third_party/aom/av1/encoder/pickcdef.c new file mode 100644 index 0000000000..6d154a7d22 --- /dev/null +++ b/third_party/aom/av1/encoder/pickcdef.c @@ -0,0 +1,526 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> +#include <string.h> + +#include "config/aom_scale_rtcd.h" + +#include "aom/aom_integer.h" +#include "av1/common/cdef.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/reconinter.h" +#include "av1/encoder/encoder.h" + +#define REDUCED_PRI_STRENGTHS 8 +#define REDUCED_TOTAL_STRENGTHS (REDUCED_PRI_STRENGTHS * CDEF_SEC_STRENGTHS) +#define TOTAL_STRENGTHS (CDEF_PRI_STRENGTHS * CDEF_SEC_STRENGTHS) + +static int priconv[REDUCED_PRI_STRENGTHS] = { 0, 1, 2, 3, 5, 7, 10, 13 }; + +/* Search for the best strength to add as an option, knowing we + already selected nb_strengths options. */ +static uint64_t search_one(int *lev, int nb_strengths, + uint64_t mse[][TOTAL_STRENGTHS], int sb_count, + int fast) { + uint64_t tot_mse[TOTAL_STRENGTHS]; + const int total_strengths = fast ? REDUCED_TOTAL_STRENGTHS : TOTAL_STRENGTHS; + int i, j; + uint64_t best_tot_mse = (uint64_t)1 << 63; + int best_id = 0; + memset(tot_mse, 0, sizeof(tot_mse)); + for (i = 0; i < sb_count; i++) { + int gi; + uint64_t best_mse = (uint64_t)1 << 63; + /* Find best mse among already selected options. */ + for (gi = 0; gi < nb_strengths; gi++) { + if (mse[i][lev[gi]] < best_mse) { + best_mse = mse[i][lev[gi]]; + } + } + /* Find best mse when adding each possible new option. */ + for (j = 0; j < total_strengths; j++) { + uint64_t best = best_mse; + if (mse[i][j] < best) best = mse[i][j]; + tot_mse[j] += best; + } + } + for (j = 0; j < total_strengths; j++) { + if (tot_mse[j] < best_tot_mse) { + best_tot_mse = tot_mse[j]; + best_id = j; + } + } + lev[nb_strengths] = best_id; + return best_tot_mse; +} + +/* Search for the best luma+chroma strength to add as an option, knowing we + already selected nb_strengths options. */ +static uint64_t search_one_dual(int *lev0, int *lev1, int nb_strengths, + uint64_t (**mse)[TOTAL_STRENGTHS], int sb_count, + int fast) { + uint64_t tot_mse[TOTAL_STRENGTHS][TOTAL_STRENGTHS]; + int i, j; + uint64_t best_tot_mse = (uint64_t)1 << 63; + int best_id0 = 0; + int best_id1 = 0; + const int total_strengths = fast ? REDUCED_TOTAL_STRENGTHS : TOTAL_STRENGTHS; + memset(tot_mse, 0, sizeof(tot_mse)); + for (i = 0; i < sb_count; i++) { + int gi; + uint64_t best_mse = (uint64_t)1 << 63; + /* Find best mse among already selected options. */ + for (gi = 0; gi < nb_strengths; gi++) { + uint64_t curr = mse[0][i][lev0[gi]]; + curr += mse[1][i][lev1[gi]]; + if (curr < best_mse) { + best_mse = curr; + } + } + /* Find best mse when adding each possible new option. */ + for (j = 0; j < total_strengths; j++) { + int k; + for (k = 0; k < total_strengths; k++) { + uint64_t best = best_mse; + uint64_t curr = mse[0][i][j]; + curr += mse[1][i][k]; + if (curr < best) best = curr; + tot_mse[j][k] += best; + } + } + } + for (j = 0; j < total_strengths; j++) { + int k; + for (k = 0; k < total_strengths; k++) { + if (tot_mse[j][k] < best_tot_mse) { + best_tot_mse = tot_mse[j][k]; + best_id0 = j; + best_id1 = k; + } + } + } + lev0[nb_strengths] = best_id0; + lev1[nb_strengths] = best_id1; + return best_tot_mse; +} + +/* Search for the set of strengths that minimizes mse. */ +static uint64_t joint_strength_search(int *best_lev, int nb_strengths, + uint64_t mse[][TOTAL_STRENGTHS], + int sb_count, int fast) { + uint64_t best_tot_mse; + int i; + best_tot_mse = (uint64_t)1 << 63; + /* Greedy search: add one strength options at a time. */ + for (i = 0; i < nb_strengths; i++) { + best_tot_mse = search_one(best_lev, i, mse, sb_count, fast); + } + /* Trying to refine the greedy search by reconsidering each + already-selected option. */ + if (!fast) { + for (i = 0; i < 4 * nb_strengths; i++) { + int j; + for (j = 0; j < nb_strengths - 1; j++) best_lev[j] = best_lev[j + 1]; + best_tot_mse = + search_one(best_lev, nb_strengths - 1, mse, sb_count, fast); + } + } + return best_tot_mse; +} + +/* Search for the set of luma+chroma strengths that minimizes mse. */ +static uint64_t joint_strength_search_dual(int *best_lev0, int *best_lev1, + int nb_strengths, + uint64_t (**mse)[TOTAL_STRENGTHS], + int sb_count, int fast) { + uint64_t best_tot_mse; + int i; + best_tot_mse = (uint64_t)1 << 63; + /* Greedy search: add one strength options at a time. */ + for (i = 0; i < nb_strengths; i++) { + best_tot_mse = + search_one_dual(best_lev0, best_lev1, i, mse, sb_count, fast); + } + /* Trying to refine the greedy search by reconsidering each + already-selected option. */ + for (i = 0; i < 4 * nb_strengths; i++) { + int j; + for (j = 0; j < nb_strengths - 1; j++) { + best_lev0[j] = best_lev0[j + 1]; + best_lev1[j] = best_lev1[j + 1]; + } + best_tot_mse = search_one_dual(best_lev0, best_lev1, nb_strengths - 1, mse, + sb_count, fast); + } + return best_tot_mse; +} + +/* FIXME: SSE-optimize this. */ +static void copy_sb16_16(uint16_t *dst, int dstride, const uint16_t *src, + int src_voffset, int src_hoffset, int sstride, + int vsize, int hsize) { + int r, c; + const uint16_t *base = &src[src_voffset * sstride + src_hoffset]; + for (r = 0; r < vsize; r++) { + for (c = 0; c < hsize; c++) { + dst[r * dstride + c] = base[r * sstride + c]; + } + } +} + +static INLINE uint64_t dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, + int sstride, int coeff_shift) { + uint64_t svar = 0; + uint64_t dvar = 0; + uint64_t sum_s = 0; + uint64_t sum_d = 0; + uint64_t sum_s2 = 0; + uint64_t sum_d2 = 0; + uint64_t sum_sd = 0; + int i, j; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + sum_s += src[i * sstride + j]; + sum_d += dst[i * dstride + j]; + sum_s2 += src[i * sstride + j] * src[i * sstride + j]; + sum_d2 += dst[i * dstride + j] * dst[i * dstride + j]; + sum_sd += src[i * sstride + j] * dst[i * dstride + j]; + } + } + /* Compute the variance -- the calculation cannot go negative. */ + svar = sum_s2 - ((sum_s * sum_s + 32) >> 6); + dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6); + return (uint64_t)floor( + .5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * + (svar + dvar + (400 << 2 * coeff_shift)) / + (sqrt((20000 << 4 * coeff_shift) + svar * (double)dvar))); +} + +static INLINE uint64_t mse_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, + int sstride) { + uint64_t sum = 0; + int i, j; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + int e = dst[i * dstride + j] - src[i * sstride + j]; + sum += e * e; + } + } + return sum; +} + +static INLINE uint64_t mse_4x4_16bit(uint16_t *dst, int dstride, uint16_t *src, + int sstride) { + uint64_t sum = 0; + int i, j; + for (i = 0; i < 4; i++) { + for (j = 0; j < 4; j++) { + int e = dst[i * dstride + j] - src[i * sstride + j]; + sum += e * e; + } + } + return sum; +} + +/* Compute MSE only on the blocks we filtered. */ +uint64_t compute_cdef_dist(uint16_t *dst, int dstride, uint16_t *src, + cdef_list *dlist, int cdef_count, BLOCK_SIZE bsize, + int coeff_shift, int pli) { + uint64_t sum = 0; + int bi, bx, by; + if (bsize == BLOCK_8X8) { + for (bi = 0; bi < cdef_count; bi++) { + by = dlist[bi].by; + bx = dlist[bi].bx; + if (pli == 0) { + sum += dist_8x8_16bit(&dst[(by << 3) * dstride + (bx << 3)], dstride, + &src[bi << (3 + 3)], 8, coeff_shift); + } else { + sum += mse_8x8_16bit(&dst[(by << 3) * dstride + (bx << 3)], dstride, + &src[bi << (3 + 3)], 8); + } + } + } else if (bsize == BLOCK_4X8) { + for (bi = 0; bi < cdef_count; bi++) { + by = dlist[bi].by; + bx = dlist[bi].bx; + sum += mse_4x4_16bit(&dst[(by << 3) * dstride + (bx << 2)], dstride, + &src[bi << (3 + 2)], 4); + sum += mse_4x4_16bit(&dst[((by << 3) + 4) * dstride + (bx << 2)], dstride, + &src[(bi << (3 + 2)) + 4 * 4], 4); + } + } else if (bsize == BLOCK_8X4) { + for (bi = 0; bi < cdef_count; bi++) { + by = dlist[bi].by; + bx = dlist[bi].bx; + sum += mse_4x4_16bit(&dst[(by << 2) * dstride + (bx << 3)], dstride, + &src[bi << (2 + 3)], 8); + sum += mse_4x4_16bit(&dst[(by << 2) * dstride + (bx << 3) + 4], dstride, + &src[(bi << (2 + 3)) + 4], 8); + } + } else { + assert(bsize == BLOCK_4X4); + for (bi = 0; bi < cdef_count; bi++) { + by = dlist[bi].by; + bx = dlist[bi].bx; + sum += mse_4x4_16bit(&dst[(by << 2) * dstride + (bx << 2)], dstride, + &src[bi << (2 + 2)], 4); + } + } + return sum >> 2 * coeff_shift; +} + +void av1_cdef_search(YV12_BUFFER_CONFIG *frame, const YV12_BUFFER_CONFIG *ref, + AV1_COMMON *cm, MACROBLOCKD *xd, int fast) { + int r, c; + int fbr, fbc; + uint16_t *src[3]; + uint16_t *ref_coeff[3]; + static cdef_list dlist[MI_SIZE_128X128 * MI_SIZE_128X128]; + int dir[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } }; + int var[CDEF_NBLOCKS][CDEF_NBLOCKS] = { { 0 } }; + int stride[3]; + int bsize[3]; + int mi_wide_l2[3]; + int mi_high_l2[3]; + int xdec[3]; + int ydec[3]; + int pli; + int cdef_count; + int coeff_shift = AOMMAX(cm->seq_params.bit_depth - 8, 0); + uint64_t best_tot_mse = (uint64_t)1 << 63; + uint64_t tot_mse; + int sb_count; + int nvfb = (cm->mi_rows + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; + int nhfb = (cm->mi_cols + MI_SIZE_64X64 - 1) / MI_SIZE_64X64; + int *sb_index = aom_malloc(nvfb * nhfb * sizeof(*sb_index)); + int *selected_strength = aom_malloc(nvfb * nhfb * sizeof(*sb_index)); + uint64_t(*mse[2])[TOTAL_STRENGTHS]; + int pri_damping = 3 + (cm->base_qindex >> 6); + int sec_damping = 3 + (cm->base_qindex >> 6); + int i; + int nb_strengths; + int nb_strength_bits; + int quantizer; + double lambda; + const int num_planes = av1_num_planes(cm); + const int total_strengths = fast ? REDUCED_TOTAL_STRENGTHS : TOTAL_STRENGTHS; + DECLARE_ALIGNED(32, uint16_t, inbuf[CDEF_INBUF_SIZE]); + uint16_t *in; + DECLARE_ALIGNED(32, uint16_t, tmp_dst[1 << (MAX_SB_SIZE_LOG2 * 2)]); + quantizer = av1_ac_quant_Q3(cm->base_qindex, 0, cm->seq_params.bit_depth) >> + (cm->seq_params.bit_depth - 8); + lambda = .12 * quantizer * quantizer / 256.; + + av1_setup_dst_planes(xd->plane, cm->seq_params.sb_size, frame, 0, 0, 0, + num_planes); + mse[0] = aom_malloc(sizeof(**mse) * nvfb * nhfb); + mse[1] = aom_malloc(sizeof(**mse) * nvfb * nhfb); + for (pli = 0; pli < num_planes; pli++) { + uint8_t *ref_buffer; + int ref_stride; + switch (pli) { + case 0: + ref_buffer = ref->y_buffer; + ref_stride = ref->y_stride; + break; + case 1: + ref_buffer = ref->u_buffer; + ref_stride = ref->uv_stride; + break; + case 2: + ref_buffer = ref->v_buffer; + ref_stride = ref->uv_stride; + break; + } + src[pli] = aom_memalign( + 32, sizeof(*src) * cm->mi_rows * cm->mi_cols * MI_SIZE * MI_SIZE); + ref_coeff[pli] = aom_memalign( + 32, sizeof(*ref_coeff) * cm->mi_rows * cm->mi_cols * MI_SIZE * MI_SIZE); + xdec[pli] = xd->plane[pli].subsampling_x; + ydec[pli] = xd->plane[pli].subsampling_y; + bsize[pli] = ydec[pli] ? (xdec[pli] ? BLOCK_4X4 : BLOCK_8X4) + : (xdec[pli] ? BLOCK_4X8 : BLOCK_8X8); + stride[pli] = cm->mi_cols << MI_SIZE_LOG2; + mi_wide_l2[pli] = MI_SIZE_LOG2 - xd->plane[pli].subsampling_x; + mi_high_l2[pli] = MI_SIZE_LOG2 - xd->plane[pli].subsampling_y; + + const int frame_height = + (cm->mi_rows * MI_SIZE) >> xd->plane[pli].subsampling_y; + const int frame_width = + (cm->mi_cols * MI_SIZE) >> xd->plane[pli].subsampling_x; + + for (r = 0; r < frame_height; ++r) { + for (c = 0; c < frame_width; ++c) { + if (cm->seq_params.use_highbitdepth) { + src[pli][r * stride[pli] + c] = CONVERT_TO_SHORTPTR( + xd->plane[pli].dst.buf)[r * xd->plane[pli].dst.stride + c]; + ref_coeff[pli][r * stride[pli] + c] = + CONVERT_TO_SHORTPTR(ref_buffer)[r * ref_stride + c]; + } else { + src[pli][r * stride[pli] + c] = + xd->plane[pli].dst.buf[r * xd->plane[pli].dst.stride + c]; + ref_coeff[pli][r * stride[pli] + c] = ref_buffer[r * ref_stride + c]; + } + } + } + } + in = inbuf + CDEF_VBORDER * CDEF_BSTRIDE + CDEF_HBORDER; + sb_count = 0; + for (fbr = 0; fbr < nvfb; ++fbr) { + for (fbc = 0; fbc < nhfb; ++fbc) { + int nvb, nhb; + int gi; + int dirinit = 0; + nhb = AOMMIN(MI_SIZE_64X64, cm->mi_cols - MI_SIZE_64X64 * fbc); + nvb = AOMMIN(MI_SIZE_64X64, cm->mi_rows - MI_SIZE_64X64 * fbr); + int hb_step = 1; + int vb_step = 1; + BLOCK_SIZE bs = BLOCK_64X64; + MB_MODE_INFO *const mbmi = + cm->mi_grid_visible[MI_SIZE_64X64 * fbr * cm->mi_stride + + MI_SIZE_64X64 * fbc]; + if (((fbc & 1) && + (mbmi->sb_type == BLOCK_128X128 || mbmi->sb_type == BLOCK_128X64)) || + ((fbr & 1) && + (mbmi->sb_type == BLOCK_128X128 || mbmi->sb_type == BLOCK_64X128))) + continue; + if (mbmi->sb_type == BLOCK_128X128 || mbmi->sb_type == BLOCK_128X64 || + mbmi->sb_type == BLOCK_64X128) + bs = mbmi->sb_type; + if (bs == BLOCK_128X128 || bs == BLOCK_128X64) { + nhb = AOMMIN(MI_SIZE_128X128, cm->mi_cols - MI_SIZE_64X64 * fbc); + hb_step = 2; + } + if (bs == BLOCK_128X128 || bs == BLOCK_64X128) { + nvb = AOMMIN(MI_SIZE_128X128, cm->mi_rows - MI_SIZE_64X64 * fbr); + vb_step = 2; + } + // No filtering if the entire filter block is skipped + if (sb_all_skip(cm, fbr * MI_SIZE_64X64, fbc * MI_SIZE_64X64)) continue; + cdef_count = sb_compute_cdef_list(cm, fbr * MI_SIZE_64X64, + fbc * MI_SIZE_64X64, dlist, bs); + for (pli = 0; pli < num_planes; pli++) { + for (i = 0; i < CDEF_INBUF_SIZE; i++) inbuf[i] = CDEF_VERY_LARGE; + for (gi = 0; gi < total_strengths; gi++) { + int threshold; + uint64_t curr_mse; + int sec_strength; + threshold = gi / CDEF_SEC_STRENGTHS; + if (fast) threshold = priconv[threshold]; + /* We avoid filtering the pixels for which some of the pixels to + average + are outside the frame. We could change the filter instead, but it + would add special cases for any future vectorization. */ + int yoff = CDEF_VBORDER * (fbr != 0); + int xoff = CDEF_HBORDER * (fbc != 0); + int ysize = (nvb << mi_high_l2[pli]) + + CDEF_VBORDER * (fbr + vb_step < nvfb) + yoff; + int xsize = (nhb << mi_wide_l2[pli]) + + CDEF_HBORDER * (fbc + hb_step < nhfb) + xoff; + sec_strength = gi % CDEF_SEC_STRENGTHS; + copy_sb16_16(&in[(-yoff * CDEF_BSTRIDE - xoff)], CDEF_BSTRIDE, + src[pli], + (fbr * MI_SIZE_64X64 << mi_high_l2[pli]) - yoff, + (fbc * MI_SIZE_64X64 << mi_wide_l2[pli]) - xoff, + stride[pli], ysize, xsize); + cdef_filter_fb(NULL, tmp_dst, CDEF_BSTRIDE, in, xdec[pli], ydec[pli], + dir, &dirinit, var, pli, dlist, cdef_count, threshold, + sec_strength + (sec_strength == 3), pri_damping, + sec_damping, coeff_shift); + curr_mse = compute_cdef_dist( + ref_coeff[pli] + + (fbr * MI_SIZE_64X64 << mi_high_l2[pli]) * stride[pli] + + (fbc * MI_SIZE_64X64 << mi_wide_l2[pli]), + stride[pli], tmp_dst, dlist, cdef_count, bsize[pli], coeff_shift, + pli); + if (pli < 2) + mse[pli][sb_count][gi] = curr_mse; + else + mse[1][sb_count][gi] += curr_mse; + sb_index[sb_count] = + MI_SIZE_64X64 * fbr * cm->mi_stride + MI_SIZE_64X64 * fbc; + } + } + sb_count++; + } + } + nb_strength_bits = 0; + /* Search for different number of signalling bits. */ + for (i = 0; i <= 3; i++) { + int j; + int best_lev0[CDEF_MAX_STRENGTHS]; + int best_lev1[CDEF_MAX_STRENGTHS] = { 0 }; + nb_strengths = 1 << i; + if (num_planes >= 3) + tot_mse = joint_strength_search_dual(best_lev0, best_lev1, nb_strengths, + mse, sb_count, fast); + else + tot_mse = joint_strength_search(best_lev0, nb_strengths, mse[0], sb_count, + fast); + /* Count superblock signalling cost. */ + tot_mse += (uint64_t)(sb_count * lambda * i); + /* Count header signalling cost. */ + tot_mse += (uint64_t)(nb_strengths * lambda * CDEF_STRENGTH_BITS); + if (tot_mse < best_tot_mse) { + best_tot_mse = tot_mse; + nb_strength_bits = i; + for (j = 0; j < 1 << nb_strength_bits; j++) { + cm->cdef_strengths[j] = best_lev0[j]; + cm->cdef_uv_strengths[j] = best_lev1[j]; + } + } + } + nb_strengths = 1 << nb_strength_bits; + + cm->cdef_bits = nb_strength_bits; + cm->nb_cdef_strengths = nb_strengths; + for (i = 0; i < sb_count; i++) { + int gi; + int best_gi; + uint64_t best_mse = (uint64_t)1 << 63; + best_gi = 0; + for (gi = 0; gi < cm->nb_cdef_strengths; gi++) { + uint64_t curr = mse[0][i][cm->cdef_strengths[gi]]; + if (num_planes >= 3) curr += mse[1][i][cm->cdef_uv_strengths[gi]]; + if (curr < best_mse) { + best_gi = gi; + best_mse = curr; + } + } + selected_strength[i] = best_gi; + cm->mi_grid_visible[sb_index[i]]->cdef_strength = best_gi; + } + + if (fast) { + for (int j = 0; j < nb_strengths; j++) { + cm->cdef_strengths[j] = + priconv[cm->cdef_strengths[j] / CDEF_SEC_STRENGTHS] * + CDEF_SEC_STRENGTHS + + (cm->cdef_strengths[j] % CDEF_SEC_STRENGTHS); + cm->cdef_uv_strengths[j] = + priconv[cm->cdef_uv_strengths[j] / CDEF_SEC_STRENGTHS] * + CDEF_SEC_STRENGTHS + + (cm->cdef_uv_strengths[j] % CDEF_SEC_STRENGTHS); + } + } + cm->cdef_pri_damping = pri_damping; + cm->cdef_sec_damping = sec_damping; + aom_free(mse[0]); + aom_free(mse[1]); + for (pli = 0; pli < num_planes; pli++) { + aom_free(src[pli]); + aom_free(ref_coeff[pli]); + } + aom_free(sb_index); + aom_free(selected_strength); +} diff --git a/third_party/aom/av1/encoder/picklpf.c b/third_party/aom/av1/encoder/picklpf.c new file mode 100644 index 0000000000..c5508e25c4 --- /dev/null +++ b/third_party/aom/av1/encoder/picklpf.c @@ -0,0 +1,263 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <limits.h> + +#include "config/aom_scale_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/psnr.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" + +#include "av1/common/av1_loopfilter.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/quant_common.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/picklpf.h" + +static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc, + YV12_BUFFER_CONFIG *dst_bc, int plane) { + switch (plane) { + case 0: aom_yv12_copy_y(src_bc, dst_bc); break; + case 1: aom_yv12_copy_u(src_bc, dst_bc); break; + case 2: aom_yv12_copy_v(src_bc, dst_bc); break; + default: assert(plane >= 0 && plane <= 2); break; + } +} + +int av1_get_max_filter_level(const AV1_COMP *cpi) { + if (cpi->oxcf.pass == 2) { + return cpi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4 + : MAX_LOOP_FILTER; + } else { + return MAX_LOOP_FILTER; + } +} + +static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd, + AV1_COMP *const cpi, int filt_level, + int partial_frame, int plane, int dir) { + AV1_COMMON *const cm = &cpi->common; + int64_t filt_err; + + assert(plane >= 0 && plane <= 2); + int filter_level[2] = { filt_level, filt_level }; + if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1]; + if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0]; + + // set base filters for use of get_filter_level when in DELTA_Q_LF mode + switch (plane) { + case 0: + cm->lf.filter_level[0] = filter_level[0]; + cm->lf.filter_level[1] = filter_level[1]; + break; + case 1: cm->lf.filter_level_u = filter_level[0]; break; + case 2: cm->lf.filter_level_v = filter_level[0]; break; + } + + // TODO(any): please enable multi-thread and remove the flag when loop + // filter mask is compatible with multi-thread. +#if LOOP_FILTER_BITMASK + av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, 0, plane, + plane + 1, partial_frame); +#else + if (cpi->num_workers > 1) + av1_loop_filter_frame_mt(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, plane, + plane + 1, partial_frame, cpi->workers, + cpi->num_workers, &cpi->lf_row_sync); + else + av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, plane, + plane + 1, partial_frame); +#endif + + filt_err = aom_get_sse_plane(sd, cm->frame_to_show, plane, + cm->seq_params.use_highbitdepth); + + // Re-instate the unfiltered frame + yv12_copy_plane(&cpi->last_frame_uf, cm->frame_to_show, plane); + + return filt_err; +} + +static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, + int partial_frame, + const int *last_frame_filter_level, + double *best_cost_ret, int plane, int dir) { + const AV1_COMMON *const cm = &cpi->common; + const int min_filter_level = 0; + const int max_filter_level = av1_get_max_filter_level(cpi); + int filt_direction = 0; + int64_t best_err; + int filt_best; + MACROBLOCK *x = &cpi->td.mb; + + // Start the search at the previous frame filter level unless it is now out of + // range. + int lvl; + switch (plane) { + case 0: lvl = last_frame_filter_level[dir]; break; + case 1: lvl = last_frame_filter_level[2]; break; + case 2: lvl = last_frame_filter_level[3]; break; + default: assert(plane >= 0 && plane <= 2); return 0; + } + int filt_mid = clamp(lvl, min_filter_level, max_filter_level); + int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; + // Sum squared error at each filter level + int64_t ss_err[MAX_LOOP_FILTER + 1]; + + // Set each entry to -1 + memset(ss_err, 0xFF, sizeof(ss_err)); + yv12_copy_plane(cm->frame_to_show, &cpi->last_frame_uf, plane); + best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir); + filt_best = filt_mid; + ss_err[filt_mid] = best_err; + + while (filter_step > 0) { + const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level); + const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level); + + // Bias against raising loop filter in favor of lowering it. + int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; + + if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20)) + bias = (bias * cpi->twopass.section_intra_rating) / 20; + + // yx, bias less for large block size + if (cm->tx_mode != ONLY_4X4) bias >>= 1; + + if (filt_direction <= 0 && filt_low != filt_mid) { + // Get Low filter error score + if (ss_err[filt_low] < 0) { + ss_err[filt_low] = + try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir); + } + // If value is close to the best so far then bias towards a lower loop + // filter value. + if (ss_err[filt_low] < (best_err + bias)) { + // Was it actually better than the previous best? + if (ss_err[filt_low] < best_err) { + best_err = ss_err[filt_low]; + } + filt_best = filt_low; + } + } + + // Now look at filt_high + if (filt_direction >= 0 && filt_high != filt_mid) { + if (ss_err[filt_high] < 0) { + ss_err[filt_high] = + try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir); + } + // If value is significantly better than previous best, bias added against + // raising filter value + if (ss_err[filt_high] < (best_err - bias)) { + best_err = ss_err[filt_high]; + filt_best = filt_high; + } + } + + // Half the step distance if the best filter value was the same as last time + if (filt_best == filt_mid) { + filter_step /= 2; + filt_direction = 0; + } else { + filt_direction = (filt_best < filt_mid) ? -1 : 1; + filt_mid = filt_best; + } + } + + // Update best error + best_err = ss_err[filt_best]; + + if (best_cost_ret) *best_cost_ret = RDCOST_DBL(x->rdmult, 0, best_err); + return filt_best; +} + +void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, + LPF_PICK_METHOD method) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + struct loopfilter *const lf = &cm->lf; + (void)sd; + + lf->sharpness_level = 0; + cpi->td.mb.rdmult = cpi->rd.RDMULT; + + if (method == LPF_PICK_MINIMAL_LPF) { + lf->filter_level[0] = 0; + lf->filter_level[1] = 0; + } else if (method >= LPF_PICK_FROM_Q) { + const int min_filter_level = 0; + const int max_filter_level = av1_get_max_filter_level(cpi); + const int q = av1_ac_quant_Q3(cm->base_qindex, 0, cm->seq_params.bit_depth); + // These values were determined by linear fitting the result of the + // searched level for 8 bit depth: + // Keyframes: filt_guess = q * 0.06699 - 1.60817 + // Other frames: filt_guess = q * 0.02295 + 2.48225 + // + // And high bit depth separately: + // filt_guess = q * 0.316206 + 3.87252 + int filt_guess; + switch (cm->seq_params.bit_depth) { + case AOM_BITS_8: + filt_guess = (cm->frame_type == KEY_FRAME) + ? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18) + : ROUND_POWER_OF_TWO(q * 6017 + 650707, 18); + break; + case AOM_BITS_10: + filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); + break; + case AOM_BITS_12: + filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); + break; + default: + assert(0 && + "bit_depth should be AOM_BITS_8, AOM_BITS_10 " + "or AOM_BITS_12"); + return; + } + if (cm->seq_params.bit_depth != AOM_BITS_8 && cm->frame_type == KEY_FRAME) + filt_guess -= 4; + // TODO(chengchen): retrain the model for Y, U, V filter levels + lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level); + lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level); + lf->filter_level_u = clamp(filt_guess, min_filter_level, max_filter_level); + lf->filter_level_v = clamp(filt_guess, min_filter_level, max_filter_level); + } else { + const int last_frame_filter_level[4] = { lf->filter_level[0], + lf->filter_level[1], + lf->filter_level_u, + lf->filter_level_v }; + + lf->filter_level[0] = lf->filter_level[1] = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, + last_frame_filter_level, NULL, 0, 2); + lf->filter_level[0] = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, + last_frame_filter_level, NULL, 0, 0); + lf->filter_level[1] = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, + last_frame_filter_level, NULL, 0, 1); + + if (num_planes > 1) { + lf->filter_level_u = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, + last_frame_filter_level, NULL, 1, 0); + lf->filter_level_v = + search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, + last_frame_filter_level, NULL, 2, 0); + } + } +} diff --git a/third_party/aom/av1/encoder/picklpf.h b/third_party/aom/av1/encoder/picklpf.h new file mode 100644 index 0000000000..357097ae1b --- /dev/null +++ b/third_party/aom/av1/encoder/picklpf.h @@ -0,0 +1,30 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_PICKLPF_H_ +#define AOM_AV1_ENCODER_PICKLPF_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/encoder.h" + +struct yv12_buffer_config; +struct AV1_COMP; +int av1_get_max_filter_level(const AV1_COMP *cpi); +void av1_pick_filter_level(const struct yv12_buffer_config *sd, + struct AV1_COMP *cpi, LPF_PICK_METHOD method); +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_PICKLPF_H_ diff --git a/third_party/aom/av1/encoder/pickrst.c b/third_party/aom/av1/encoder/pickrst.c new file mode 100644 index 0000000000..e7804f6b44 --- /dev/null +++ b/third_party/aom/av1/encoder/pickrst.c @@ -0,0 +1,1362 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <float.h> +#include <limits.h> +#include <math.h> + +#include "config/aom_scale_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/binary_codes_writer.h" +#include "aom_dsp/psnr.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/quant_common.h" +#include "av1/common/restoration.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/mathutils.h" +#include "av1/encoder/picklpf.h" +#include "av1/encoder/pickrst.h" + +// When set to RESTORE_WIENER or RESTORE_SGRPROJ only those are allowed. +// When set to RESTORE_TYPES we allow switchable. +static const RestorationType force_restore_type = RESTORE_TYPES; + +// Number of Wiener iterations +#define NUM_WIENER_ITERS 5 + +// Penalty factor for use of dual sgr +#define DUAL_SGR_PENALTY_MULT 0.01 + +const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 2, 2 }; + +typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b); +typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, + const YV12_BUFFER_CONFIG *b, + int hstart, int width, int vstart, + int height); + +#define NUM_EXTRACTORS (3 * (1 + 1)) + +static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { + aom_get_y_sse_part, aom_get_u_sse_part, + aom_get_v_sse_part, aom_highbd_get_y_sse_part, + aom_highbd_get_u_sse_part, aom_highbd_get_v_sse_part, +}; + +static int64_t sse_restoration_unit(const RestorationTileLimits *limits, + const YV12_BUFFER_CONFIG *src, + const YV12_BUFFER_CONFIG *dst, int plane, + int highbd) { + return sse_part_extractors[3 * highbd + plane]( + src, dst, limits->h_start, limits->h_end - limits->h_start, + limits->v_start, limits->v_end - limits->v_start); +} + +typedef struct { + // The best coefficients for Wiener or Sgrproj restoration + WienerInfo wiener; + SgrprojInfo sgrproj; + + // The sum of squared errors for this rtype. + int64_t sse[RESTORE_SWITCHABLE_TYPES]; + + // The rtype to use for this unit given a frame rtype as + // index. Indices: WIENER, SGRPROJ, SWITCHABLE. + RestorationType best_rtype[RESTORE_TYPES - 1]; +} RestUnitSearchInfo; + +typedef struct { + const YV12_BUFFER_CONFIG *src; + YV12_BUFFER_CONFIG *dst; + + const AV1_COMMON *cm; + const MACROBLOCK *x; + int plane; + int plane_width; + int plane_height; + RestUnitSearchInfo *rusi; + + // Speed features + const SPEED_FEATURES *sf; + + uint8_t *dgd_buffer; + int dgd_stride; + const uint8_t *src_buffer; + int src_stride; + + // sse and bits are initialised by reset_rsc in search_rest_type + int64_t sse; + int64_t bits; + int tile_y0, tile_stripe0; + + // sgrproj and wiener are initialised by rsc_on_tile when starting the first + // tile in the frame. + SgrprojInfo sgrproj; + WienerInfo wiener; + AV1PixelRect tile_rect; +} RestSearchCtxt; + +static void rsc_on_tile(int tile_row, int tile_col, void *priv) { + (void)tile_col; + + RestSearchCtxt *rsc = (RestSearchCtxt *)priv; + set_default_sgrproj(&rsc->sgrproj); + set_default_wiener(&rsc->wiener); + + rsc->tile_stripe0 = + (tile_row == 0) ? 0 : rsc->cm->rst_end_stripe[tile_row - 1]; +} + +static void reset_rsc(RestSearchCtxt *rsc) { + rsc->sse = 0; + rsc->bits = 0; +} + +static void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm, + const MACROBLOCK *x, const SPEED_FEATURES *sf, int plane, + RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst, + RestSearchCtxt *rsc) { + rsc->src = src; + rsc->dst = dst; + rsc->cm = cm; + rsc->x = x; + rsc->plane = plane; + rsc->rusi = rusi; + rsc->sf = sf; + + const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; + const int is_uv = plane != AOM_PLANE_Y; + rsc->plane_width = src->crop_widths[is_uv]; + rsc->plane_height = src->crop_heights[is_uv]; + rsc->src_buffer = src->buffers[plane]; + rsc->src_stride = src->strides[is_uv]; + rsc->dgd_buffer = dgd->buffers[plane]; + rsc->dgd_stride = dgd->strides[is_uv]; + rsc->tile_rect = av1_whole_frame_rect(cm, is_uv); + assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); + assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); +} + +static int64_t try_restoration_unit(const RestSearchCtxt *rsc, + const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, + const RestorationUnitInfo *rui) { + const AV1_COMMON *const cm = rsc->cm; + const int plane = rsc->plane; + const int is_uv = plane > 0; + const RestorationInfo *rsi = &cm->rst_info[plane]; + RestorationLineBuffers rlbs; + const int bit_depth = cm->seq_params.bit_depth; + const int highbd = cm->seq_params.use_highbitdepth; + + const YV12_BUFFER_CONFIG *fts = cm->frame_to_show; + // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be + // also used in encoder. + const int optimized_lr = 0; + + av1_loop_restoration_filter_unit( + limits, rui, &rsi->boundaries, &rlbs, tile_rect, rsc->tile_stripe0, + is_uv && cm->seq_params.subsampling_x, + is_uv && cm->seq_params.subsampling_y, highbd, bit_depth, + fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], + rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr); + + return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); +} + +int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, + int src_stride, const uint8_t *dat8, + int dat_stride, int32_t *flt0, + int flt0_stride, int32_t *flt1, + int flt1_stride, int xq[2], + const sgr_params_type *params) { + int i, j; + const uint8_t *src = src8; + const uint8_t *dat = dat8; + int64_t err = 0; + if (params->r[0] > 0 && params->r[1] > 0) { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); + assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); + const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); + int32_t v = u << SGRPROJ_PRJ_BITS; + v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); + const int32_t e = + ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + flt1 += flt1_stride; + } + } else if (params->r[0] > 0) { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); + const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); + int32_t v = u << SGRPROJ_PRJ_BITS; + v += xq[0] * (flt0[j] - u); + const int32_t e = + ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + } + } else if (params->r[1] > 0) { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); + const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); + int32_t v = u << SGRPROJ_PRJ_BITS; + v += xq[1] * (flt1[j] - u); + const int32_t e = + ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt1 += flt1_stride; + } + } else { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int32_t e = (int32_t)(dat[j]) - src[j]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + } + } + + return err; +} + +static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, + int src_stride, const uint8_t *dat8, + int dat_stride, int use_highbitdepth, + int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int *xqd, + const sgr_params_type *params) { + int i, j; + int64_t err = 0; + int xq[2]; + decode_xq(xqd, xq, params); + if (!use_highbitdepth) { + err = av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, + dat_stride, flt0, flt0_stride, flt1, + flt1_stride, xq, params); + } else { + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); + const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); + if (params->r[0] > 0 && params->r[1] > 0) { + int xq0 = xq[0]; + int xq1 = xq[1]; + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int32_t d = dat[j]; + const int32_t s = src[j]; + const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); + int32_t v0 = flt0[j] - u; + int32_t v1 = flt1[j] - u; + int32_t v = half; + v += xq0 * v0; + v += xq1 * v1; + const int32_t e = + (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; + err += e * e; + } + dat += dat_stride; + flt0 += flt0_stride; + flt1 += flt1_stride; + src += src_stride; + } + } else if (params->r[0] > 0 || params->r[1] > 0) { + int exq; + int32_t *flt; + int flt_stride; + if (params->r[0] > 0) { + exq = xq[0]; + flt = flt0; + flt_stride = flt0_stride; + } else { + exq = xq[1]; + flt = flt1; + flt_stride = flt1_stride; + } + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int32_t d = dat[j]; + const int32_t s = src[j]; + const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); + int32_t v = half; + v += exq * (flt[j] - u); + const int32_t e = + (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; + err += e * e; + } + dat += dat_stride; + flt += flt_stride; + src += src_stride; + } + } else { + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const int32_t d = dat[j]; + const int32_t s = src[j]; + const int32_t e = d - s; + err += e * e; + } + dat += dat_stride; + src += src_stride; + } + } + } + return err; +} + +#define USE_SGRPROJ_REFINEMENT_SEARCH 1 +static int64_t finer_search_pixel_proj_error( + const uint8_t *src8, int width, int height, int src_stride, + const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, + int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, + const sgr_params_type *params) { + int64_t err = get_pixel_proj_error( + src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, + flt0_stride, flt1, flt1_stride, xqd, params); + (void)start_step; +#if USE_SGRPROJ_REFINEMENT_SEARCH + int64_t err2; + int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; + int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; + for (int s = start_step; s >= 1; s >>= 1) { + for (int p = 0; p < 2; ++p) { + if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { + continue; + } + int skip = 0; + do { + if (xqd[p] - s >= tap_min[p]) { + xqd[p] -= s; + err2 = + get_pixel_proj_error(src8, width, height, src_stride, dat8, + dat_stride, use_highbitdepth, flt0, + flt0_stride, flt1, flt1_stride, xqd, params); + if (err2 > err) { + xqd[p] += s; + } else { + err = err2; + skip = 1; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + if (skip) break; + do { + if (xqd[p] + s <= tap_max[p]) { + xqd[p] += s; + err2 = + get_pixel_proj_error(src8, width, height, src_stride, dat8, + dat_stride, use_highbitdepth, flt0, + flt0_stride, flt1, flt1_stride, xqd, params); + if (err2 > err) { + xqd[p] -= s; + } else { + err = err2; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + } + } +#endif // USE_SGRPROJ_REFINEMENT_SEARCH + return err; +} + +static void get_proj_subspace(const uint8_t *src8, int width, int height, + int src_stride, const uint8_t *dat8, + int dat_stride, int use_highbitdepth, + int32_t *flt0, int flt0_stride, int32_t *flt1, + int flt1_stride, int *xq, + const sgr_params_type *params) { + int i, j; + double H[2][2] = { { 0, 0 }, { 0, 0 } }; + double C[2] = { 0, 0 }; + double Det; + double x[2]; + const int size = width * height; + + aom_clear_system_state(); + + // Default + xq[0] = 0; + xq[1] = 0; + if (!use_highbitdepth) { + const uint8_t *src = src8; + const uint8_t *dat = dat8; + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); + const double s = + (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; + const double f1 = + (params->r[0] > 0) ? (double)flt0[i * flt0_stride + j] - u : 0; + const double f2 = + (params->r[1] > 0) ? (double)flt1[i * flt1_stride + j] - u : 0; + H[0][0] += f1 * f1; + H[1][1] += f2 * f2; + H[0][1] += f1 * f2; + C[0] += f1 * s; + C[1] += f2 * s; + } + } + } else { + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); + for (i = 0; i < height; ++i) { + for (j = 0; j < width; ++j) { + const double u = (double)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); + const double s = + (double)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; + const double f1 = + (params->r[0] > 0) ? (double)flt0[i * flt0_stride + j] - u : 0; + const double f2 = + (params->r[1] > 0) ? (double)flt1[i * flt1_stride + j] - u : 0; + H[0][0] += f1 * f1; + H[1][1] += f2 * f2; + H[0][1] += f1 * f2; + C[0] += f1 * s; + C[1] += f2 * s; + } + } + } + H[0][0] /= size; + H[0][1] /= size; + H[1][1] /= size; + H[1][0] = H[0][1]; + C[0] /= size; + C[1] /= size; + if (params->r[0] == 0) { + // H matrix is now only the scalar H[1][1] + // C vector is now only the scalar C[1] + Det = H[1][1]; + if (Det < 1e-8) return; // ill-posed, return default values + x[0] = 0; + x[1] = C[1] / Det; + + xq[0] = 0; + xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS)); + } else if (params->r[1] == 0) { + // H matrix is now only the scalar H[0][0] + // C vector is now only the scalar C[0] + Det = H[0][0]; + if (Det < 1e-8) return; // ill-posed, return default values + x[0] = C[0] / Det; + x[1] = 0; + + xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS)); + xq[1] = 0; + } else { + Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]); + if (Det < 1e-8) return; // ill-posed, return default values + x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det; + x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det; + + xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS)); + xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS)); + } +} + +void encode_xq(int *xq, int *xqd, const sgr_params_type *params) { + if (params->r[0] == 0) { + xqd[0] = 0; + xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, + SGRPROJ_PRJ_MAX1); + } else if (params->r[1] == 0) { + xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); + xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, + SGRPROJ_PRJ_MAX1); + } else { + xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); + xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, + SGRPROJ_PRJ_MAX1); + } +} + +// Apply the self-guided filter across an entire restoration unit. +static void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width, + int height, int dat_stride, int use_highbd, int bit_depth, + int pu_width, int pu_height, int32_t *flt0, int32_t *flt1, + int flt_stride) { + for (int i = 0; i < height; i += pu_height) { + const int h = AOMMIN(pu_height, height - i); + int32_t *flt0_row = flt0 + i * flt_stride; + int32_t *flt1_row = flt1 + i * flt_stride; + const uint8_t *dat8_row = dat8 + i * dat_stride; + + // Iterate over the stripe in blocks of width pu_width + for (int j = 0; j < width; j += pu_width) { + const int w = AOMMIN(pu_width, width - j); + const int ret = av1_selfguided_restoration( + dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, + flt_stride, sgr_params_idx, bit_depth, use_highbd); + (void)ret; + assert(!ret); + } + } +} + +static SgrprojInfo search_selfguided_restoration( + const uint8_t *dat8, int width, int height, int dat_stride, + const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, + int pu_width, int pu_height, int32_t *rstbuf) { + int32_t *flt0 = rstbuf; + int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; + int ep, bestep = 0; + int64_t besterr = -1; + int exqd[2], bestxqd[2] = { 0, 0 }; + int flt_stride = ((width + 7) & ~7) + 8; + assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || + pu_width == RESTORATION_PROC_UNIT_SIZE); + assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || + pu_height == RESTORATION_PROC_UNIT_SIZE); + + for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { + int exq[2]; + apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, + pu_width, pu_height, flt0, flt1, flt_stride); + aom_clear_system_state(); + const sgr_params_type *const params = &sgr_params[ep]; + get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, + use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, + params); + aom_clear_system_state(); + encode_xq(exq, exqd, params); + int64_t err = finer_search_pixel_proj_error( + src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, + flt0, flt_stride, flt1, flt_stride, 2, exqd, params); + if (besterr == -1 || err < besterr) { + bestep = ep; + besterr = err; + bestxqd[0] = exqd[0]; + bestxqd[1] = exqd[1]; + } + } + + SgrprojInfo ret; + ret.ep = bestep; + ret.xqd[0] = bestxqd[0]; + ret.xqd[1] = bestxqd[1]; + return ret; +} + +static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, + SgrprojInfo *ref_sgrproj_info) { + int bits = SGRPROJ_PARAMS_BITS; + const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; + if (params->r[0] > 0) + bits += aom_count_primitive_refsubexpfin( + SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, + sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); + if (params->r[1] > 0) + bits += aom_count_primitive_refsubexpfin( + SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, + ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, + sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); + return bits; +} + +static void search_sgrproj(const RestorationTileLimits *limits, + const AV1PixelRect *tile, int rest_unit_idx, + void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + (void)rlbs; + RestSearchCtxt *rsc = (RestSearchCtxt *)priv; + RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; + + const MACROBLOCK *const x = rsc->x; + const AV1_COMMON *const cm = rsc->cm; + const int highbd = cm->seq_params.use_highbitdepth; + const int bit_depth = cm->seq_params.bit_depth; + + uint8_t *dgd_start = + rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; + const uint8_t *src_start = + rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; + + const int is_uv = rsc->plane > 0; + const int ss_x = is_uv && cm->seq_params.subsampling_x; + const int ss_y = is_uv && cm->seq_params.subsampling_y; + const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; + const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; + + rusi->sgrproj = search_selfguided_restoration( + dgd_start, limits->h_end - limits->h_start, + limits->v_end - limits->v_start, rsc->dgd_stride, src_start, + rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, + tmpbuf); + + RestorationUnitInfo rui; + rui.restoration_type = RESTORE_SGRPROJ; + rui.sgrproj_info = rusi->sgrproj; + + rusi->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, tile, &rui); + + const int64_t bits_none = x->sgrproj_restore_cost[0]; + const int64_t bits_sgr = x->sgrproj_restore_cost[1] + + (count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj) + << AV1_PROB_COST_SHIFT); + + double cost_none = + RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]); + double cost_sgr = + RDCOST_DBL(x->rdmult, bits_sgr >> 4, rusi->sse[RESTORE_SGRPROJ]); + if (rusi->sgrproj.ep < 10) + cost_sgr *= (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->dual_sgr_penalty_level); + + RestorationType rtype = + (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; + rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; + + rsc->sse += rusi->sse[rtype]; + rsc->bits += (cost_sgr < cost_none) ? bits_sgr : bits_none; + if (cost_sgr < cost_none) rsc->sgrproj = rusi->sgrproj; +} + +void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, + int h_start, int h_end, int v_start, int v_end, + int dgd_stride, int src_stride, double *M, double *H) { + int i, j, k, l; + double Y[WIENER_WIN2]; + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const double avg = + find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + memset(M, 0, sizeof(*M) * wiener_win2); + memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); + for (i = v_start; i < v_end; i++) { + for (j = h_start; j < h_end; j++) { + const double X = (double)src[i * src_stride + j] - avg; + int idx = 0; + for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { + for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { + Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; + idx++; + } + } + assert(idx == wiener_win2); + for (k = 0; k < wiener_win2; ++k) { + M[k] += Y[k] * X; + for (l = k; l < wiener_win2; ++l) { + // H is a symmetric matrix, so we only need to fill out the upper + // triangle here. We can copy it down to the lower triangle outside + // the (i, j) loops. + H[k * wiener_win2 + l] += Y[k] * Y[l]; + } + } + } + } + for (k = 0; k < wiener_win2; ++k) { + for (l = k + 1; l < wiener_win2; ++l) { + H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; + } + } +} + +static double find_average_highbd(const uint16_t *src, int h_start, int h_end, + int v_start, int v_end, int stride) { + uint64_t sum = 0; + double avg = 0; + int i, j; + aom_clear_system_state(); + for (i = v_start; i < v_end; i++) + for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; + avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); + return avg; +} + +static AOM_FORCE_INLINE void compute_stats_highbd( + int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int h_start, + int h_end, int v_start, int v_end, int dgd_stride, int src_stride, + double *M, double *H) { + int i, j, k, l; + double Y[WIENER_WIN2]; + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); + const double avg = + find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + memset(M, 0, sizeof(*M) * wiener_win2); + memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); + for (i = v_start; i < v_end; i++) { + for (j = h_start; j < h_end; j++) { + const double X = (double)src[i * src_stride + j] - avg; + int idx = 0; + for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { + for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { + Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; + idx++; + } + } + assert(idx == wiener_win2); + for (k = 0; k < wiener_win2; ++k) { + double Yk = Y[k]; + M[k] += Yk * X; + double *H2 = &H[k * wiener_win2]; + H2[k] += Yk * Yk; + for (l = k + 1; l < wiener_win2; ++l) { + // H is a symmetric matrix, so we only need to fill out the upper + // triangle here. We can copy it down to the lower triangle outside + // the (i, j) loops. + H2[l] += Yk * Y[l]; + } + } + } + } + for (k = 0; k < wiener_win2; ++k) { + for (l = k + 1; l < wiener_win2; ++l) { + H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; + } + } +} + +static INLINE int wrap_index(int i, int wiener_win) { + const int wiener_halfwin1 = (wiener_win >> 1) + 1; + return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); +} + +// Fix vector b, update vector a +static void update_a_sep_sym(int wiener_win, double **Mc, double **Hc, + double *a, double *b) { + int i, j; + double S[WIENER_WIN]; + double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin1 = (wiener_win >> 1) + 1; + memset(A, 0, sizeof(A)); + memset(B, 0, sizeof(B)); + for (i = 0; i < wiener_win; i++) { + for (j = 0; j < wiener_win; ++j) { + const int jj = wrap_index(j, wiener_win); + A[jj] += Mc[i][j] * b[i]; + } + } + for (i = 0; i < wiener_win; i++) { + for (j = 0; j < wiener_win; j++) { + int k, l; + for (k = 0; k < wiener_win; ++k) + for (l = 0; l < wiener_win; ++l) { + const int kk = wrap_index(k, wiener_win); + const int ll = wrap_index(l, wiener_win); + B[ll * wiener_halfwin1 + kk] += + Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] * b[j]; + } + } + } + // Normalization enforcement in the system of equations itself + for (i = 0; i < wiener_halfwin1 - 1; ++i) + A[i] -= + A[wiener_halfwin1 - 1] * 2 + + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - + 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; + for (i = 0; i < wiener_halfwin1 - 1; ++i) + for (j = 0; j < wiener_halfwin1 - 1; ++j) + B[i * wiener_halfwin1 + j] -= + 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - + 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + + (wiener_halfwin1 - 1)]); + if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { + S[wiener_halfwin1 - 1] = 1.0; + for (i = wiener_halfwin1; i < wiener_win; ++i) { + S[i] = S[wiener_win - 1 - i]; + S[wiener_halfwin1 - 1] -= 2 * S[i]; + } + memcpy(a, S, wiener_win * sizeof(*a)); + } +} + +// Fix vector a, update vector b +static void update_b_sep_sym(int wiener_win, double **Mc, double **Hc, + double *a, double *b) { + int i, j; + double S[WIENER_WIN]; + double A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin1 = (wiener_win >> 1) + 1; + memset(A, 0, sizeof(A)); + memset(B, 0, sizeof(B)); + for (i = 0; i < wiener_win; i++) { + const int ii = wrap_index(i, wiener_win); + for (j = 0; j < wiener_win; j++) A[ii] += Mc[i][j] * a[j]; + } + + for (i = 0; i < wiener_win; i++) { + for (j = 0; j < wiener_win; j++) { + const int ii = wrap_index(i, wiener_win); + const int jj = wrap_index(j, wiener_win); + int k, l; + for (k = 0; k < wiener_win; ++k) + for (l = 0; l < wiener_win; ++l) + B[jj * wiener_halfwin1 + ii] += + Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] * a[l]; + } + } + // Normalization enforcement in the system of equations itself + for (i = 0; i < wiener_halfwin1 - 1; ++i) + A[i] -= + A[wiener_halfwin1 - 1] * 2 + + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - + 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; + for (i = 0; i < wiener_halfwin1 - 1; ++i) + for (j = 0; j < wiener_halfwin1 - 1; ++j) + B[i * wiener_halfwin1 + j] -= + 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - + 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + + (wiener_halfwin1 - 1)]); + if (linsolve(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { + S[wiener_halfwin1 - 1] = 1.0; + for (i = wiener_halfwin1; i < wiener_win; ++i) { + S[i] = S[wiener_win - 1 - i]; + S[wiener_halfwin1 - 1] -= 2 * S[i]; + } + memcpy(b, S, wiener_win * sizeof(*b)); + } +} + +static int wiener_decompose_sep_sym(int wiener_win, double *M, double *H, + double *a, double *b) { + static const int init_filt[WIENER_WIN] = { + WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, + WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, + WIENER_FILT_TAP0_MIDV, + }; + double *Hc[WIENER_WIN2]; + double *Mc[WIENER_WIN]; + int i, j, iter; + const int plane_off = (WIENER_WIN - wiener_win) >> 1; + const int wiener_win2 = wiener_win * wiener_win; + for (i = 0; i < wiener_win; i++) { + a[i] = b[i] = (double)init_filt[i + plane_off] / WIENER_FILT_STEP; + } + for (i = 0; i < wiener_win; i++) { + Mc[i] = M + i * wiener_win; + for (j = 0; j < wiener_win; j++) { + Hc[i * wiener_win + j] = + H + i * wiener_win * wiener_win2 + j * wiener_win; + } + } + + iter = 1; + while (iter < NUM_WIENER_ITERS) { + update_a_sep_sym(wiener_win, Mc, Hc, a, b); + update_b_sep_sym(wiener_win, Mc, Hc, a, b); + iter++; + } + return 1; +} + +// Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares +// against identity filters; Final score is defined as the difference between +// the function values +static double compute_score(int wiener_win, double *M, double *H, + InterpKernel vfilt, InterpKernel hfilt) { + double ab[WIENER_WIN * WIENER_WIN]; + int i, k, l; + double P = 0, Q = 0; + double iP = 0, iQ = 0; + double Score, iScore; + double a[WIENER_WIN], b[WIENER_WIN]; + const int plane_off = (WIENER_WIN - wiener_win) >> 1; + const int wiener_win2 = wiener_win * wiener_win; + + aom_clear_system_state(); + + a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = 1.0; + for (i = 0; i < WIENER_HALFWIN; ++i) { + a[i] = a[WIENER_WIN - i - 1] = (double)vfilt[i] / WIENER_FILT_STEP; + b[i] = b[WIENER_WIN - i - 1] = (double)hfilt[i] / WIENER_FILT_STEP; + a[WIENER_HALFWIN] -= 2 * a[i]; + b[WIENER_HALFWIN] -= 2 * b[i]; + } + memset(ab, 0, sizeof(ab)); + for (k = 0; k < wiener_win; ++k) { + for (l = 0; l < wiener_win; ++l) + ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; + } + for (k = 0; k < wiener_win2; ++k) { + P += ab[k] * M[k]; + for (l = 0; l < wiener_win2; ++l) + Q += ab[k] * H[k * wiener_win2 + l] * ab[l]; + } + Score = Q - 2 * P; + + iP = M[wiener_win2 >> 1]; + iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; + iScore = iQ - 2 * iP; + + return Score - iScore; +} + +static void quantize_sym_filter(int wiener_win, double *f, InterpKernel fi) { + int i; + const int wiener_halfwin = (wiener_win >> 1); + for (i = 0; i < wiener_halfwin; ++i) { + fi[i] = RINT(f[i] * WIENER_FILT_STEP); + } + // Specialize for 7-tap filter + if (wiener_win == WIENER_WIN) { + fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); + fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); + fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); + } else { + fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); + fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); + fi[0] = 0; + } + // Satisfy filter constraints + fi[WIENER_WIN - 1] = fi[0]; + fi[WIENER_WIN - 2] = fi[1]; + fi[WIENER_WIN - 3] = fi[2]; + // The central element has an implicit +WIENER_FILT_STEP + fi[3] = -2 * (fi[0] + fi[1] + fi[2]); +} + +static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, + WienerInfo *ref_wiener_info) { + int bits = 0; + if (wiener_win == WIENER_WIN) + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); + if (wiener_win == WIENER_WIN) + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, + WIENER_FILT_TAP0_SUBEXP_K, + ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, + wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, + WIENER_FILT_TAP1_SUBEXP_K, + ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, + wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); + bits += aom_count_primitive_refsubexpfin( + WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, + WIENER_FILT_TAP2_SUBEXP_K, + ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, + wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); + return bits; +} + +#define USE_WIENER_REFINEMENT_SEARCH 1 +static int64_t finer_tile_search_wiener(const RestSearchCtxt *rsc, + const RestorationTileLimits *limits, + const AV1PixelRect *tile, + RestorationUnitInfo *rui, + int wiener_win) { + const int plane_off = (WIENER_WIN - wiener_win) >> 1; + int64_t err = try_restoration_unit(rsc, limits, tile, rui); +#if USE_WIENER_REFINEMENT_SEARCH + int64_t err2; + int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, + WIENER_FILT_TAP2_MINV }; + int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, + WIENER_FILT_TAP2_MAXV }; + + WienerInfo *plane_wiener = &rui->wiener_info; + + // printf("err pre = %"PRId64"\n", err); + const int start_step = 4; + for (int s = start_step; s >= 1; s >>= 1) { + for (int p = plane_off; p < WIENER_HALFWIN; ++p) { + int skip = 0; + do { + if (plane_wiener->hfilter[p] - s >= tap_min[p]) { + plane_wiener->hfilter[p] -= s; + plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; + plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; + err2 = try_restoration_unit(rsc, limits, tile, rui); + if (err2 > err) { + plane_wiener->hfilter[p] += s; + plane_wiener->hfilter[WIENER_WIN - p - 1] += s; + plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; + } else { + err = err2; + skip = 1; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + if (skip) break; + do { + if (plane_wiener->hfilter[p] + s <= tap_max[p]) { + plane_wiener->hfilter[p] += s; + plane_wiener->hfilter[WIENER_WIN - p - 1] += s; + plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; + err2 = try_restoration_unit(rsc, limits, tile, rui); + if (err2 > err) { + plane_wiener->hfilter[p] -= s; + plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; + plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; + } else { + err = err2; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + } + for (int p = plane_off; p < WIENER_HALFWIN; ++p) { + int skip = 0; + do { + if (plane_wiener->vfilter[p] - s >= tap_min[p]) { + plane_wiener->vfilter[p] -= s; + plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; + plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; + err2 = try_restoration_unit(rsc, limits, tile, rui); + if (err2 > err) { + plane_wiener->vfilter[p] += s; + plane_wiener->vfilter[WIENER_WIN - p - 1] += s; + plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; + } else { + err = err2; + skip = 1; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + if (skip) break; + do { + if (plane_wiener->vfilter[p] + s <= tap_max[p]) { + plane_wiener->vfilter[p] += s; + plane_wiener->vfilter[WIENER_WIN - p - 1] += s; + plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; + err2 = try_restoration_unit(rsc, limits, tile, rui); + if (err2 > err) { + plane_wiener->vfilter[p] -= s; + plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; + plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; + } else { + err = err2; + // At the highest step size continue moving in the same direction + if (s == start_step) continue; + } + } + break; + } while (1); + } + } +// printf("err post = %"PRId64"\n", err); +#endif // USE_WIENER_REFINEMENT_SEARCH + return err; +} + +static void search_wiener(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, int rest_unit_idx, + void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + (void)tmpbuf; + (void)rlbs; + RestSearchCtxt *rsc = (RestSearchCtxt *)priv; + RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; + + const int wiener_win = + (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; + + double M[WIENER_WIN2]; + double H[WIENER_WIN2 * WIENER_WIN2]; + double vfilterd[WIENER_WIN], hfilterd[WIENER_WIN]; + + const AV1_COMMON *const cm = rsc->cm; + if (cm->seq_params.use_highbitdepth) { + compute_stats_highbd(wiener_win, rsc->dgd_buffer, rsc->src_buffer, + limits->h_start, limits->h_end, limits->v_start, + limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H); + } else { + av1_compute_stats(wiener_win, rsc->dgd_buffer, rsc->src_buffer, + limits->h_start, limits->h_end, limits->v_start, + limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H); + } + + const MACROBLOCK *const x = rsc->x; + const int64_t bits_none = x->wiener_restore_cost[0]; + + if (!wiener_decompose_sep_sym(wiener_win, M, H, vfilterd, hfilterd)) { + rsc->bits += bits_none; + rsc->sse += rusi->sse[RESTORE_NONE]; + rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; + rusi->sse[RESTORE_WIENER] = INT64_MAX; + return; + } + + RestorationUnitInfo rui; + memset(&rui, 0, sizeof(rui)); + rui.restoration_type = RESTORE_WIENER; + quantize_sym_filter(wiener_win, vfilterd, rui.wiener_info.vfilter); + quantize_sym_filter(wiener_win, hfilterd, rui.wiener_info.hfilter); + + // Filter score computes the value of the function x'*A*x - x'*b for the + // learned filter and compares it against identity filer. If there is no + // reduction in the function, the filter is reverted back to identity + if (compute_score(wiener_win, M, H, rui.wiener_info.vfilter, + rui.wiener_info.hfilter) > 0) { + rsc->bits += bits_none; + rsc->sse += rusi->sse[RESTORE_NONE]; + rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; + rusi->sse[RESTORE_WIENER] = INT64_MAX; + return; + } + + aom_clear_system_state(); + + rusi->sse[RESTORE_WIENER] = + finer_tile_search_wiener(rsc, limits, tile_rect, &rui, wiener_win); + rusi->wiener = rui.wiener_info; + + if (wiener_win != WIENER_WIN) { + assert(rui.wiener_info.vfilter[0] == 0 && + rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); + assert(rui.wiener_info.hfilter[0] == 0 && + rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); + } + + const int64_t bits_wiener = + x->wiener_restore_cost[1] + + (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener) + << AV1_PROB_COST_SHIFT); + + double cost_none = + RDCOST_DBL(x->rdmult, bits_none >> 4, rusi->sse[RESTORE_NONE]); + double cost_wiener = + RDCOST_DBL(x->rdmult, bits_wiener >> 4, rusi->sse[RESTORE_WIENER]); + + RestorationType rtype = + (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; + rusi->best_rtype[RESTORE_WIENER - 1] = rtype; + + rsc->sse += rusi->sse[rtype]; + rsc->bits += (cost_wiener < cost_none) ? bits_wiener : bits_none; + if (cost_wiener < cost_none) rsc->wiener = rusi->wiener; +} + +static void search_norestore(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, int rest_unit_idx, + void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + (void)tile_rect; + (void)tmpbuf; + (void)rlbs; + + RestSearchCtxt *rsc = (RestSearchCtxt *)priv; + RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; + + const int highbd = rsc->cm->seq_params.use_highbitdepth; + rusi->sse[RESTORE_NONE] = sse_restoration_unit( + limits, rsc->src, rsc->cm->frame_to_show, rsc->plane, highbd); + + rsc->sse += rusi->sse[RESTORE_NONE]; +} + +static void search_switchable(const RestorationTileLimits *limits, + const AV1PixelRect *tile_rect, int rest_unit_idx, + void *priv, int32_t *tmpbuf, + RestorationLineBuffers *rlbs) { + (void)limits; + (void)tile_rect; + (void)tmpbuf; + (void)rlbs; + RestSearchCtxt *rsc = (RestSearchCtxt *)priv; + RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; + + const MACROBLOCK *const x = rsc->x; + + const int wiener_win = + (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; + + double best_cost = 0; + int64_t best_bits = 0; + RestorationType best_rtype = RESTORE_NONE; + + for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { + // Check for the condition that wiener or sgrproj search could not + // find a solution or the solution was worse than RESTORE_NONE. + // In either case the best_rtype will be set as RESTORE_NONE. These + // should be skipped from the test below. + if (r > RESTORE_NONE) { + if (rusi->best_rtype[r - 1] == RESTORE_NONE) continue; + } + + const int64_t sse = rusi->sse[r]; + int64_t coeff_pcost = 0; + switch (r) { + case RESTORE_NONE: coeff_pcost = 0; break; + case RESTORE_WIENER: + coeff_pcost = + count_wiener_bits(wiener_win, &rusi->wiener, &rsc->wiener); + break; + case RESTORE_SGRPROJ: + coeff_pcost = count_sgrproj_bits(&rusi->sgrproj, &rsc->sgrproj); + break; + default: assert(0); break; + } + const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; + const int64_t bits = x->switchable_restore_cost[r] + coeff_bits; + double cost = RDCOST_DBL(x->rdmult, bits >> 4, sse); + if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) + cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->sf->dual_sgr_penalty_level); + if (r == 0 || cost < best_cost) { + best_cost = cost; + best_bits = bits; + best_rtype = r; + } + } + + rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; + + rsc->sse += rusi->sse[best_rtype]; + rsc->bits += best_bits; + if (best_rtype == RESTORE_WIENER) rsc->wiener = rusi->wiener; + if (best_rtype == RESTORE_SGRPROJ) rsc->sgrproj = rusi->sgrproj; +} + +static void copy_unit_info(RestorationType frame_rtype, + const RestUnitSearchInfo *rusi, + RestorationUnitInfo *rui) { + assert(frame_rtype > 0); + rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; + if (rui->restoration_type == RESTORE_WIENER) + rui->wiener_info = rusi->wiener; + else + rui->sgrproj_info = rusi->sgrproj; +} + +static double search_rest_type(RestSearchCtxt *rsc, RestorationType rtype) { + static const rest_unit_visitor_t funs[RESTORE_TYPES] = { + search_norestore, search_wiener, search_sgrproj, search_switchable + }; + + reset_rsc(rsc); + rsc_on_tile(LR_TILE_ROW, LR_TILE_COL, rsc); + av1_foreach_rest_unit_in_plane(rsc->cm, rsc->plane, funs[rtype], rsc, + &rsc->tile_rect, rsc->cm->rst_tmpbuf, NULL); + return RDCOST_DBL(rsc->x->rdmult, rsc->bits >> 4, rsc->sse); +} + +static int rest_tiles_in_plane(const AV1_COMMON *cm, int plane) { + const RestorationInfo *rsi = &cm->rst_info[plane]; + return rsi->units_per_tile; +} + +void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + assert(!cm->all_lossless); + + int ntiles[2]; + for (int is_uv = 0; is_uv < 2; ++is_uv) + ntiles[is_uv] = rest_tiles_in_plane(cm, is_uv); + + assert(ntiles[1] <= ntiles[0]); + RestUnitSearchInfo *rusi = + (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * ntiles[0]); + + // If the restoration unit dimensions are not multiples of + // rsi->restoration_unit_size then some elements of the rusi array may be + // left uninitialised when we reach copy_unit_info(...). This is not a + // problem, as these elements are ignored later, but in order to quiet + // Valgrind's warnings we initialise the array below. + memset(rusi, 0, sizeof(*rusi) * ntiles[0]); + cpi->td.mb.rdmult = cpi->rd.RDMULT; + + RestSearchCtxt rsc; + const int plane_start = AOM_PLANE_Y; + const int plane_end = num_planes > 1 ? AOM_PLANE_V : AOM_PLANE_Y; + for (int plane = plane_start; plane <= plane_end; ++plane) { + init_rsc(src, &cpi->common, &cpi->td.mb, &cpi->sf, plane, rusi, + &cpi->trial_frame_rst, &rsc); + + const int plane_ntiles = ntiles[plane > 0]; + const RestorationType num_rtypes = + (plane_ntiles > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; + + double best_cost = 0; + RestorationType best_rtype = RESTORE_NONE; + + const int highbd = rsc.cm->seq_params.use_highbitdepth; + extend_frame(rsc.dgd_buffer, rsc.plane_width, rsc.plane_height, + rsc.dgd_stride, RESTORATION_BORDER, RESTORATION_BORDER, + highbd); + + for (RestorationType r = 0; r < num_rtypes; ++r) { + if ((force_restore_type != RESTORE_TYPES) && (r != RESTORE_NONE) && + (r != force_restore_type)) + continue; + + double cost = search_rest_type(&rsc, r); + + if (r == 0 || cost < best_cost) { + best_cost = cost; + best_rtype = r; + } + } + + cm->rst_info[plane].frame_restoration_type = best_rtype; + if (force_restore_type != RESTORE_TYPES) + assert(best_rtype == force_restore_type || best_rtype == RESTORE_NONE); + + if (best_rtype != RESTORE_NONE) { + for (int u = 0; u < plane_ntiles; ++u) { + copy_unit_info(best_rtype, &rusi[u], &cm->rst_info[plane].unit_info[u]); + } + } + } + + aom_free(rusi); +} diff --git a/third_party/aom/av1/encoder/pickrst.h b/third_party/aom/av1/encoder/pickrst.h new file mode 100644 index 0000000000..3fec0c34b3 --- /dev/null +++ b/third_party/aom/av1/encoder/pickrst.h @@ -0,0 +1,46 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_ENCODER_PICKRST_H_ +#define AOM_AV1_ENCODER_PICKRST_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/encoder.h" +#include "aom_ports/system_state.h" + +struct yv12_buffer_config; +struct AV1_COMP; + +static const uint8_t g_shuffle_stats_data[16] = { + 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, +}; + +static INLINE double find_average(const uint8_t *src, int h_start, int h_end, + int v_start, int v_end, int stride) { + uint64_t sum = 0; + double avg = 0; + int i, j; + aom_clear_system_state(); + for (i = v_start; i < v_end; i++) + for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; + avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); + return avg; +} + +void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_PICKRST_H_ diff --git a/third_party/aom/av1/encoder/pustats.h b/third_party/aom/av1/encoder/pustats.h new file mode 100644 index 0000000000..40dd467689 --- /dev/null +++ b/third_party/aom/av1/encoder/pustats.h @@ -0,0 +1,198 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_PUSTATS_H_ +#define AOM_AV1_ENCODER_PUSTATS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/ml.h" + +#define NUM_FEATURES_PUSTATS 8 +#define NUM_HIDDEN_LAYERS 2 +#define HIDDEN_LAYERS_0_NODES 12 +#define HIDDEN_LAYERS_1_NODES 10 +#define LOGITS_NODES 1 + +static const float + av1_pustats_rate_hiddenlayer_0_kernel[NUM_FEATURES_PUSTATS * + HIDDEN_LAYERS_0_NODES] = { + -0.1758f, -0.0499f, -10.0069f, -2.2838f, -0.3359f, 0.3459f, -0.3285f, + -0.0515f, -0.5417f, 0.2357f, -0.0575f, -69.0782f, 0.5348f, 1.4068f, + 0.2213f, -1.0490f, -0.0636f, 0.1654f, 1.1002f, 33.4924f, 0.4358f, + 1.2499f, 0.1143f, 0.0592f, -1.6335f, -0.0092f, 1.2207f, -28.4543f, + -0.4973f, 0.4368f, 0.2341f, -0.1623f, -3.8986f, 0.1311f, -1.8789f, + -3.9079f, -0.8158f, -0.8420f, 1.4295f, -2.3629f, -1.4825f, 0.6498f, + -5.3669f, 6.4434f, 1.8393f, -35.0678f, 3.7459f, -2.8504f, 2.0502f, + -0.1812f, -3.9011f, -1.0155f, 1.8375f, -1.4517f, 1.3917f, 3.8664f, + 0.8345f, -0.3472f, 5.7740f, -1.1196f, -0.3264f, -1.2481f, -0.9284f, + -4.9657f, 2.2831f, 0.7337f, 2.3176f, 0.6416f, 0.8804f, 1.9988f, + -1.3426f, 1.2728f, 1.2249f, -0.1551f, 5.6045f, 0.2046f, -2.1464f, + -2.4922f, -0.5334f, 12.1055f, 7.2467f, -0.0070f, 0.0234f, 0.0021f, + 0.0215f, -0.0098f, -0.0682f, -6.1494f, -0.3176f, -1.6069f, -0.2119f, + -1.0533f, -0.3566f, 0.5294f, -0.4335f, 0.1626f, + }; + +static const float av1_pustats_rate_hiddenlayer_0_bias[HIDDEN_LAYERS_0_NODES] = + { + 10.5266f, 5.3268f, -1.0678f, 7.7411f, 8.7164f, -0.3235f, + 7.3028f, 9.0874f, -6.4594f, -1.0102f, -1.1146f, 10.8419f, + }; + +static const float + av1_pustats_rate_hiddenlayer_1_kernel[HIDDEN_LAYERS_0_NODES * + HIDDEN_LAYERS_1_NODES] = { + 10.5932f, 2.5192f, -0.0015f, 5.9479f, 5.2426f, -0.4091f, 5.3220f, + 6.0469f, 0.7200f, 3.3241f, 5.5006f, 12.8290f, -1.6396f, 0.5743f, + -0.8370f, 1.9956f, -4.9270f, -1.5295f, 2.1350f, -9.4415f, -0.7094f, + 5.1822f, 19.7287f, -3.0444f, -0.3320f, 0.0031f, -0.2709f, -0.5249f, + 0.3281f, -0.2240f, 0.2225f, -0.2386f, -0.4370f, -0.2438f, -0.4928f, + -0.2842f, -2.1772f, 9.2570f, -17.6655f, 3.5448f, -2.8394f, -1.0167f, + -0.5115f, -1.9260f, -0.2111f, -0.7528f, -1.2387f, -0.0401f, 5.0716f, + -3.3763f, -0.2898f, -0.4956f, -7.9993f, 0.1526f, -0.0242f, 0.7354f, + 6.0432f, 4.8043f, 7.4790f, -0.6295f, 1.7565f, 3.7197f, -2.3963f, + 6.8945f, 2.9717f, -3.1623f, 3.4241f, 4.4676f, -1.8154f, -2.9401f, + -8.5657f, -3.0240f, -1.4661f, 8.1145f, -12.7858f, 3.3624f, -1.0819f, + -4.2856f, 1.1801f, -0.5587f, -1.6062f, -1.1813f, -3.5882f, -0.2490f, + -24.9566f, -0.4140f, -0.1113f, 3.5537f, 4.4112f, 0.1367f, -1.5876f, + 1.6605f, 1.3903f, -0.0253f, -2.1419f, -2.2197f, -0.7659f, -0.4249f, + -0.0424f, 0.1486f, 0.4643f, -0.9068f, -0.3619f, -0.7624f, -0.9132f, + -0.4947f, -0.3527f, -0.5445f, -0.4768f, -1.7761f, -1.0686f, 0.5462f, + 1.3371f, 4.3116f, 0.0777f, -2.7216f, -1.8908f, 3.4989f, 7.7269f, + -2.7566f, + }; + +static const float av1_pustats_rate_hiddenlayer_1_bias[HIDDEN_LAYERS_1_NODES] = + { + 13.2435f, -8.5477f, -0.0998f, -1.5131f, -12.0187f, + 6.1715f, 0.5094f, 7.6433f, -0.3992f, -1.3555f, + }; + +static const float + av1_pustats_rate_logits_kernel[HIDDEN_LAYERS_1_NODES * LOGITS_NODES] = { + 4.3078f, -17.3497f, 0.0195f, 34.6032f, -5.0127f, + 5.3079f, 10.0077f, -13.129f, 0.0087f, -8.4009f, + }; + +static const float av1_pustats_rate_logits_bias[LOGITS_NODES] = { + 4.5103f, +}; + +static const NN_CONFIG av1_pustats_rate_nnconfig = { + NUM_FEATURES_PUSTATS, // num_inputs + LOGITS_NODES, // num_outputs + NUM_HIDDEN_LAYERS, // num_hidden_layers + { HIDDEN_LAYERS_0_NODES, HIDDEN_LAYERS_1_NODES }, // num_hidden_nodes + { + av1_pustats_rate_hiddenlayer_0_kernel, + av1_pustats_rate_hiddenlayer_1_kernel, + av1_pustats_rate_logits_kernel, + }, + { + av1_pustats_rate_hiddenlayer_0_bias, + av1_pustats_rate_hiddenlayer_1_bias, + av1_pustats_rate_logits_bias, + }, +}; + +static const float + av1_pustats_dist_hiddenlayer_0_kernel[NUM_FEATURES_PUSTATS * + HIDDEN_LAYERS_0_NODES] = { + -0.2560f, 0.1105f, -0.8434f, -0.0132f, -8.9371f, -1.1176f, -0.3655f, + 0.4885f, 1.7518f, 0.4985f, 0.5582f, -0.3739f, 0.9403f, 0.3874f, + 0.3265f, 1.7383f, 3.1747f, 0.0285f, 3.3942f, -0.0123f, 0.5057f, + 0.1584f, 0.2697f, 4.6151f, 3.6251f, -0.0121f, -1.0047f, -0.0037f, + 0.0127f, 0.1935f, -0.5277f, -2.7144f, 0.0729f, -0.1457f, -0.0816f, + -0.5462f, 0.4738f, 0.3599f, -0.0564f, 0.0910f, 0.0126f, -0.0310f, + -2.1311f, -0.4666f, -0.0074f, -0.0765f, 0.0287f, -0.2662f, -0.0999f, + -0.2983f, -0.4899f, -0.2314f, 0.2873f, -0.3614f, 0.1783f, -0.1210f, + 0.3569f, 0.5436f, -8.0536f, -0.0044f, -1.5255f, -0.8247f, -0.4556f, + 1.9045f, 0.5463f, 0.1102f, -0.9293f, -0.0185f, -0.8302f, -0.4378f, + -0.3531f, -1.3095f, 0.6099f, 0.7977f, 4.1950f, -0.0067f, -0.2762f, + -0.1574f, -0.2149f, 0.6104f, -1.7053f, 0.1904f, 4.2402f, -0.2671f, + 0.8940f, 0.6820f, 0.2241f, -0.9459f, 1.4571f, 0.5255f, 2.3352f, + -0.0806f, 0.5231f, 0.3928f, 0.4146f, 2.0956f, + }; + +static const float av1_pustats_dist_hiddenlayer_0_bias[HIDDEN_LAYERS_0_NODES] = + { + 1.1597f, 0.0836f, -0.7471f, -0.2439f, -0.0438f, 2.4626f, + 0.f, 1.1485f, 2.7085f, -4.7897f, 1.4093f, -1.657f, + }; + +static const float + av1_pustats_dist_hiddenlayer_1_kernel[HIDDEN_LAYERS_0_NODES * + HIDDEN_LAYERS_1_NODES] = { + -0.5203f, -1.3468f, 0.3865f, -0.6859f, 0.0058f, 4.0682f, 0.4807f, + -0.1380f, 0.6050f, 0.8958f, 0.7748f, -0.1311f, 1.7317f, 1.1265f, + 0.0827f, 0.1407f, -0.3605f, 0.5429f, 0.1880f, -0.1439f, 0.2837f, + 1.6477f, 0.0832f, 0.0593f, -1.8464f, -0.7241f, -1.0672f, -0.3546f, + -0.3842f, -2.3637f, 0.2514f, 0.8263f, -0.1872f, 0.5774f, -0.3610f, + -0.0205f, 1.3977f, -0.1083f, 0.6923f, 1.3039f, -0.2870f, 1.0622f, + -0.0566f, 0.2697f, -0.5429f, -0.6193f, 1.7559f, 0.3246f, 1.9159f, + 0.3744f, 0.0686f, 1.0191f, -0.4212f, 1.9591f, -0.0691f, -0.1085f, + -1.2034f, 0.0606f, 1.0116f, 0.5565f, -0.1874f, -0.7898f, 0.4796f, + 0.2290f, 0.4334f, -0.5817f, -0.2949f, 0.1367f, -0.2932f, -1.1265f, + 0.0133f, -0.5309f, -3.3191f, 0.0939f, 0.3895f, -2.5812f, -0.0066f, + -3.0063f, -0.2982f, 0.7309f, -0.2422f, -0.2770f, -0.7152f, 0.1700f, + 1.9630f, 0.1988f, 0.4194f, 0.8762f, 0.3402f, 0.1051f, -0.1598f, + 0.2405f, 0.0392f, 1.1256f, 1.5245f, 0.0950f, 0.2160f, -0.5023f, + 0.2584f, 0.2074f, 0.2218f, 0.3966f, -0.0921f, -0.2435f, -0.4560f, + -1.1923f, -0.3716f, -0.3286f, -1.3225f, 0.1896f, -0.3342f, -0.7888f, + -0.4488f, -1.7168f, 0.3341f, 0.1146f, 0.5226f, 0.2610f, -0.4574f, + -0.4164f, + }; + +static const float av1_pustats_dist_hiddenlayer_1_bias[HIDDEN_LAYERS_1_NODES] = + { + -2.3014f, -2.4292f, 1.3317f, -3.2361f, -1.918f, + 2.7149f, -2.5649f, 2.7765f, 2.9617f, 2.7684f, + }; + +static const float + av1_pustats_dist_logits_kernel[HIDDEN_LAYERS_1_NODES * LOGITS_NODES] = { + -0.6868f, -0.6715f, 0.449f, -1.293f, 0.6214f, + 0.9894f, -0.4342f, 0.7002f, 1.4363f, 0.6951f, + }; + +static const float av1_pustats_dist_logits_bias[LOGITS_NODES] = { + 2.3371f, +}; + +static const NN_CONFIG av1_pustats_dist_nnconfig = { + NUM_FEATURES_PUSTATS, // num_inputs + LOGITS_NODES, // num_outputs + NUM_HIDDEN_LAYERS, // num_hidden_layers + { HIDDEN_LAYERS_0_NODES, HIDDEN_LAYERS_1_NODES }, // num_hidden_nodes + { + av1_pustats_dist_hiddenlayer_0_kernel, + av1_pustats_dist_hiddenlayer_1_kernel, + av1_pustats_dist_logits_kernel, + }, + { + av1_pustats_dist_hiddenlayer_0_bias, + av1_pustats_dist_hiddenlayer_1_bias, + av1_pustats_dist_logits_bias, + }, +}; + +#undef NUM_HIDDEN_LAYERS +#undef HIDDEN_LAYERS_0_NODES +#undef HIDDEN_LAYERS_1_NODES +#undef LOGITS_NODES + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_PUSTATS_H_ diff --git a/third_party/aom/av1/encoder/random.h b/third_party/aom/av1/encoder/random.h new file mode 100644 index 0000000000..0bca391029 --- /dev/null +++ b/third_party/aom/av1/encoder/random.h @@ -0,0 +1,29 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RANDOM_H_ +#define AOM_AV1_ENCODER_RANDOM_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +// Generate a random number in the range [0, 32768). +static INLINE unsigned int lcg_rand16(unsigned int *state) { + *state = (unsigned int)(*state * 1103515245ULL + 12345); + return *state / 65536 % 32768; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RANDOM_H_ diff --git a/third_party/aom/av1/encoder/ransac.c b/third_party/aom/av1/encoder/ransac.c new file mode 100644 index 0000000000..781f528ebf --- /dev/null +++ b/third_party/aom/av1/encoder/ransac.c @@ -0,0 +1,603 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#include <memory.h> +#include <math.h> +#include <time.h> +#include <stdio.h> +#include <stdlib.h> +#include <assert.h> + +#include "av1/encoder/ransac.h" +#include "av1/encoder/mathutils.h" +#include "av1/encoder/random.h" + +#define MAX_MINPTS 4 +#define MAX_DEGENERATE_ITER 10 +#define MINPTS_MULTIPLIER 5 + +#define INLIER_THRESHOLD 1.0 +#define MIN_TRIALS 20 + +//////////////////////////////////////////////////////////////////////////////// +// ransac +typedef int (*IsDegenerateFunc)(double *p); +typedef void (*NormalizeFunc)(double *p, int np, double *T); +typedef void (*DenormalizeFunc)(double *params, double *T1, double *T2); +typedef int (*FindTransformationFunc)(int points, double *points1, + double *points2, double *params); +typedef void (*ProjectPointsDoubleFunc)(double *mat, double *points, + double *proj, const int n, + const int stride_points, + const int stride_proj); + +static void project_points_double_translation(double *mat, double *points, + double *proj, const int n, + const int stride_points, + const int stride_proj) { + int i; + for (i = 0; i < n; ++i) { + const double x = *(points++), y = *(points++); + *(proj++) = x + mat[0]; + *(proj++) = y + mat[1]; + points += stride_points - 2; + proj += stride_proj - 2; + } +} + +static void project_points_double_rotzoom(double *mat, double *points, + double *proj, const int n, + const int stride_points, + const int stride_proj) { + int i; + for (i = 0; i < n; ++i) { + const double x = *(points++), y = *(points++); + *(proj++) = mat[2] * x + mat[3] * y + mat[0]; + *(proj++) = -mat[3] * x + mat[2] * y + mat[1]; + points += stride_points - 2; + proj += stride_proj - 2; + } +} + +static void project_points_double_affine(double *mat, double *points, + double *proj, const int n, + const int stride_points, + const int stride_proj) { + int i; + for (i = 0; i < n; ++i) { + const double x = *(points++), y = *(points++); + *(proj++) = mat[2] * x + mat[3] * y + mat[0]; + *(proj++) = mat[4] * x + mat[5] * y + mat[1]; + points += stride_points - 2; + proj += stride_proj - 2; + } +} + +static void normalize_homography(double *pts, int n, double *T) { + double *p = pts; + double mean[2] = { 0, 0 }; + double msqe = 0; + double scale; + int i; + + assert(n > 0); + for (i = 0; i < n; ++i, p += 2) { + mean[0] += p[0]; + mean[1] += p[1]; + } + mean[0] /= n; + mean[1] /= n; + for (p = pts, i = 0; i < n; ++i, p += 2) { + p[0] -= mean[0]; + p[1] -= mean[1]; + msqe += sqrt(p[0] * p[0] + p[1] * p[1]); + } + msqe /= n; + scale = (msqe == 0 ? 1.0 : sqrt(2) / msqe); + T[0] = scale; + T[1] = 0; + T[2] = -scale * mean[0]; + T[3] = 0; + T[4] = scale; + T[5] = -scale * mean[1]; + T[6] = 0; + T[7] = 0; + T[8] = 1; + for (p = pts, i = 0; i < n; ++i, p += 2) { + p[0] *= scale; + p[1] *= scale; + } +} + +static void invnormalize_mat(double *T, double *iT) { + double is = 1.0 / T[0]; + double m0 = -T[2] * is; + double m1 = -T[5] * is; + iT[0] = is; + iT[1] = 0; + iT[2] = m0; + iT[3] = 0; + iT[4] = is; + iT[5] = m1; + iT[6] = 0; + iT[7] = 0; + iT[8] = 1; +} + +static void denormalize_homography(double *params, double *T1, double *T2) { + double iT2[9]; + double params2[9]; + invnormalize_mat(T2, iT2); + multiply_mat(params, T1, params2, 3, 3, 3); + multiply_mat(iT2, params2, params, 3, 3, 3); +} + +static void denormalize_affine_reorder(double *params, double *T1, double *T2) { + double params_denorm[MAX_PARAMDIM]; + params_denorm[0] = params[0]; + params_denorm[1] = params[1]; + params_denorm[2] = params[4]; + params_denorm[3] = params[2]; + params_denorm[4] = params[3]; + params_denorm[5] = params[5]; + params_denorm[6] = params_denorm[7] = 0; + params_denorm[8] = 1; + denormalize_homography(params_denorm, T1, T2); + params[0] = params_denorm[2]; + params[1] = params_denorm[5]; + params[2] = params_denorm[0]; + params[3] = params_denorm[1]; + params[4] = params_denorm[3]; + params[5] = params_denorm[4]; + params[6] = params[7] = 0; +} + +static void denormalize_rotzoom_reorder(double *params, double *T1, + double *T2) { + double params_denorm[MAX_PARAMDIM]; + params_denorm[0] = params[0]; + params_denorm[1] = params[1]; + params_denorm[2] = params[2]; + params_denorm[3] = -params[1]; + params_denorm[4] = params[0]; + params_denorm[5] = params[3]; + params_denorm[6] = params_denorm[7] = 0; + params_denorm[8] = 1; + denormalize_homography(params_denorm, T1, T2); + params[0] = params_denorm[2]; + params[1] = params_denorm[5]; + params[2] = params_denorm[0]; + params[3] = params_denorm[1]; + params[4] = -params[3]; + params[5] = params[2]; + params[6] = params[7] = 0; +} + +static void denormalize_translation_reorder(double *params, double *T1, + double *T2) { + double params_denorm[MAX_PARAMDIM]; + params_denorm[0] = 1; + params_denorm[1] = 0; + params_denorm[2] = params[0]; + params_denorm[3] = 0; + params_denorm[4] = 1; + params_denorm[5] = params[1]; + params_denorm[6] = params_denorm[7] = 0; + params_denorm[8] = 1; + denormalize_homography(params_denorm, T1, T2); + params[0] = params_denorm[2]; + params[1] = params_denorm[5]; + params[2] = params[5] = 1; + params[3] = params[4] = 0; + params[6] = params[7] = 0; +} + +static int find_translation(int np, double *pts1, double *pts2, double *mat) { + int i; + double sx, sy, dx, dy; + double sumx, sumy; + + double T1[9], T2[9]; + normalize_homography(pts1, np, T1); + normalize_homography(pts2, np, T2); + + sumx = 0; + sumy = 0; + for (i = 0; i < np; ++i) { + dx = *(pts2++); + dy = *(pts2++); + sx = *(pts1++); + sy = *(pts1++); + + sumx += dx - sx; + sumy += dy - sy; + } + mat[0] = sumx / np; + mat[1] = sumy / np; + denormalize_translation_reorder(mat, T1, T2); + return 0; +} + +static int find_rotzoom(int np, double *pts1, double *pts2, double *mat) { + const int np2 = np * 2; + double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 5 + 20)); + double *b = a + np2 * 4; + double *temp = b + np2; + int i; + double sx, sy, dx, dy; + + double T1[9], T2[9]; + normalize_homography(pts1, np, T1); + normalize_homography(pts2, np, T2); + + for (i = 0; i < np; ++i) { + dx = *(pts2++); + dy = *(pts2++); + sx = *(pts1++); + sy = *(pts1++); + + a[i * 2 * 4 + 0] = sx; + a[i * 2 * 4 + 1] = sy; + a[i * 2 * 4 + 2] = 1; + a[i * 2 * 4 + 3] = 0; + a[(i * 2 + 1) * 4 + 0] = sy; + a[(i * 2 + 1) * 4 + 1] = -sx; + a[(i * 2 + 1) * 4 + 2] = 0; + a[(i * 2 + 1) * 4 + 3] = 1; + + b[2 * i] = dx; + b[2 * i + 1] = dy; + } + if (!least_squares(4, a, np2, 4, b, temp, mat)) { + aom_free(a); + return 1; + } + denormalize_rotzoom_reorder(mat, T1, T2); + aom_free(a); + return 0; +} + +static int find_affine(int np, double *pts1, double *pts2, double *mat) { + const int np2 = np * 2; + double *a = (double *)aom_malloc(sizeof(*a) * (np2 * 7 + 42)); + double *b = a + np2 * 6; + double *temp = b + np2; + int i; + double sx, sy, dx, dy; + + double T1[9], T2[9]; + normalize_homography(pts1, np, T1); + normalize_homography(pts2, np, T2); + + for (i = 0; i < np; ++i) { + dx = *(pts2++); + dy = *(pts2++); + sx = *(pts1++); + sy = *(pts1++); + + a[i * 2 * 6 + 0] = sx; + a[i * 2 * 6 + 1] = sy; + a[i * 2 * 6 + 2] = 0; + a[i * 2 * 6 + 3] = 0; + a[i * 2 * 6 + 4] = 1; + a[i * 2 * 6 + 5] = 0; + a[(i * 2 + 1) * 6 + 0] = 0; + a[(i * 2 + 1) * 6 + 1] = 0; + a[(i * 2 + 1) * 6 + 2] = sx; + a[(i * 2 + 1) * 6 + 3] = sy; + a[(i * 2 + 1) * 6 + 4] = 0; + a[(i * 2 + 1) * 6 + 5] = 1; + + b[2 * i] = dx; + b[2 * i + 1] = dy; + } + if (!least_squares(6, a, np2, 6, b, temp, mat)) { + aom_free(a); + return 1; + } + denormalize_affine_reorder(mat, T1, T2); + aom_free(a); + return 0; +} + +static int get_rand_indices(int npoints, int minpts, int *indices, + unsigned int *seed) { + int i, j; + int ptr = lcg_rand16(seed) % npoints; + if (minpts > npoints) return 0; + indices[0] = ptr; + ptr = (ptr == npoints - 1 ? 0 : ptr + 1); + i = 1; + while (i < minpts) { + int index = lcg_rand16(seed) % npoints; + while (index) { + ptr = (ptr == npoints - 1 ? 0 : ptr + 1); + for (j = 0; j < i; ++j) { + if (indices[j] == ptr) break; + } + if (j == i) index--; + } + indices[i++] = ptr; + } + return 1; +} + +typedef struct { + int num_inliers; + double variance; + int *inlier_indices; +} RANSAC_MOTION; + +// Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. +static int compare_motions(const void *arg_a, const void *arg_b) { + const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; + const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; + + if (motion_a->num_inliers > motion_b->num_inliers) return -1; + if (motion_a->num_inliers < motion_b->num_inliers) return 1; + if (motion_a->variance < motion_b->variance) return -1; + if (motion_a->variance > motion_b->variance) return 1; + return 0; +} + +static int is_better_motion(const RANSAC_MOTION *motion_a, + const RANSAC_MOTION *motion_b) { + return compare_motions(motion_a, motion_b) < 0; +} + +static void copy_points_at_indices(double *dest, const double *src, + const int *indices, int num_points) { + for (int i = 0; i < num_points; ++i) { + const int index = indices[i]; + dest[i * 2] = src[index * 2]; + dest[i * 2 + 1] = src[index * 2 + 1]; + } +} + +static const double kInfiniteVariance = 1e12; + +static void clear_motion(RANSAC_MOTION *motion, int num_points) { + motion->num_inliers = 0; + motion->variance = kInfiniteVariance; + memset(motion->inlier_indices, 0, + sizeof(*motion->inlier_indices * num_points)); +} + +static int ransac(const int *matched_points, int npoints, + int *num_inliers_by_motion, double *params_by_motion, + int num_desired_motions, const int minpts, + IsDegenerateFunc is_degenerate, + FindTransformationFunc find_transformation, + ProjectPointsDoubleFunc projectpoints) { + static const double PROBABILITY_REQUIRED = 0.9; + static const double EPS = 1e-12; + + int N = 10000, trial_count = 0; + int i = 0; + int ret_val = 0; + + unsigned int seed = (unsigned int)npoints; + + int indices[MAX_MINPTS] = { 0 }; + + double *points1, *points2; + double *corners1, *corners2; + double *image1_coord; + + // Store information for the num_desired_motions best transformations found + // and the worst motion among them, as well as the motion currently under + // consideration. + RANSAC_MOTION *motions, *worst_kept_motion = NULL; + RANSAC_MOTION current_motion; + + // Store the parameters and the indices of the inlier points for the motion + // currently under consideration. + double params_this_motion[MAX_PARAMDIM]; + + double *cnp1, *cnp2; + + for (i = 0; i < num_desired_motions; ++i) { + num_inliers_by_motion[i] = 0; + } + if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { + return 1; + } + + points1 = (double *)aom_malloc(sizeof(*points1) * npoints * 2); + points2 = (double *)aom_malloc(sizeof(*points2) * npoints * 2); + corners1 = (double *)aom_malloc(sizeof(*corners1) * npoints * 2); + corners2 = (double *)aom_malloc(sizeof(*corners2) * npoints * 2); + image1_coord = (double *)aom_malloc(sizeof(*image1_coord) * npoints * 2); + + motions = + (RANSAC_MOTION *)aom_malloc(sizeof(RANSAC_MOTION) * num_desired_motions); + for (i = 0; i < num_desired_motions; ++i) { + motions[i].inlier_indices = + (int *)aom_malloc(sizeof(*motions->inlier_indices) * npoints); + clear_motion(motions + i, npoints); + } + current_motion.inlier_indices = + (int *)aom_malloc(sizeof(*current_motion.inlier_indices) * npoints); + clear_motion(¤t_motion, npoints); + + worst_kept_motion = motions; + + if (!(points1 && points2 && corners1 && corners2 && image1_coord && motions && + current_motion.inlier_indices)) { + ret_val = 1; + goto finish_ransac; + } + + cnp1 = corners1; + cnp2 = corners2; + for (i = 0; i < npoints; ++i) { + *(cnp1++) = *(matched_points++); + *(cnp1++) = *(matched_points++); + *(cnp2++) = *(matched_points++); + *(cnp2++) = *(matched_points++); + } + + while (N > trial_count) { + double sum_distance = 0.0; + double sum_distance_squared = 0.0; + + clear_motion(¤t_motion, npoints); + + int degenerate = 1; + int num_degenerate_iter = 0; + + while (degenerate) { + num_degenerate_iter++; + if (!get_rand_indices(npoints, minpts, indices, &seed)) { + ret_val = 1; + goto finish_ransac; + } + + copy_points_at_indices(points1, corners1, indices, minpts); + copy_points_at_indices(points2, corners2, indices, minpts); + + degenerate = is_degenerate(points1); + if (num_degenerate_iter > MAX_DEGENERATE_ITER) { + ret_val = 1; + goto finish_ransac; + } + } + + if (find_transformation(minpts, points1, points2, params_this_motion)) { + trial_count++; + continue; + } + + projectpoints(params_this_motion, corners1, image1_coord, npoints, 2, 2); + + for (i = 0; i < npoints; ++i) { + double dx = image1_coord[i * 2] - corners2[i * 2]; + double dy = image1_coord[i * 2 + 1] - corners2[i * 2 + 1]; + double distance = sqrt(dx * dx + dy * dy); + + if (distance < INLIER_THRESHOLD) { + current_motion.inlier_indices[current_motion.num_inliers++] = i; + sum_distance += distance; + sum_distance_squared += distance * distance; + } + } + + if (current_motion.num_inliers >= worst_kept_motion->num_inliers && + current_motion.num_inliers > 1) { + int temp; + double fracinliers, pNoOutliers, mean_distance, dtemp; + mean_distance = sum_distance / ((double)current_motion.num_inliers); + current_motion.variance = + sum_distance_squared / ((double)current_motion.num_inliers - 1.0) - + mean_distance * mean_distance * ((double)current_motion.num_inliers) / + ((double)current_motion.num_inliers - 1.0); + if (is_better_motion(¤t_motion, worst_kept_motion)) { + // This motion is better than the worst currently kept motion. Remember + // the inlier points and variance. The parameters for each kept motion + // will be recomputed later using only the inliers. + worst_kept_motion->num_inliers = current_motion.num_inliers; + worst_kept_motion->variance = current_motion.variance; + memcpy(worst_kept_motion->inlier_indices, current_motion.inlier_indices, + sizeof(*current_motion.inlier_indices) * npoints); + + assert(npoints > 0); + fracinliers = (double)current_motion.num_inliers / (double)npoints; + pNoOutliers = 1 - pow(fracinliers, minpts); + pNoOutliers = fmax(EPS, pNoOutliers); + pNoOutliers = fmin(1 - EPS, pNoOutliers); + dtemp = log(1.0 - PROBABILITY_REQUIRED) / log(pNoOutliers); + temp = (dtemp > (double)INT32_MAX) + ? INT32_MAX + : dtemp < (double)INT32_MIN ? INT32_MIN : (int)dtemp; + + if (temp > 0 && temp < N) { + N = AOMMAX(temp, MIN_TRIALS); + } + + // Determine the new worst kept motion and its num_inliers and variance. + for (i = 0; i < num_desired_motions; ++i) { + if (is_better_motion(worst_kept_motion, &motions[i])) { + worst_kept_motion = &motions[i]; + } + } + } + } + trial_count++; + } + + // Sort the motions, best first. + qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); + + // Recompute the motions using only the inliers. + for (i = 0; i < num_desired_motions; ++i) { + if (motions[i].num_inliers >= minpts) { + copy_points_at_indices(points1, corners1, motions[i].inlier_indices, + motions[i].num_inliers); + copy_points_at_indices(points2, corners2, motions[i].inlier_indices, + motions[i].num_inliers); + + find_transformation(motions[i].num_inliers, points1, points2, + params_by_motion + (MAX_PARAMDIM - 1) * i); + } + num_inliers_by_motion[i] = motions[i].num_inliers; + } + +finish_ransac: + aom_free(points1); + aom_free(points2); + aom_free(corners1); + aom_free(corners2); + aom_free(image1_coord); + aom_free(current_motion.inlier_indices); + for (i = 0; i < num_desired_motions; ++i) { + aom_free(motions[i].inlier_indices); + } + aom_free(motions); + + return ret_val; +} + +static int is_collinear3(double *p1, double *p2, double *p3) { + static const double collinear_eps = 1e-3; + const double v = + (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0]); + return fabs(v) < collinear_eps; +} + +static int is_degenerate_translation(double *p) { + return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2; +} + +static int is_degenerate_affine(double *p) { + return is_collinear3(p, p + 2, p + 4); +} + +int ransac_translation(int *matched_points, int npoints, + int *num_inliers_by_motion, double *params_by_motion, + int num_desired_motions) { + return ransac(matched_points, npoints, num_inliers_by_motion, + params_by_motion, num_desired_motions, 3, + is_degenerate_translation, find_translation, + project_points_double_translation); +} + +int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion, + double *params_by_motion, int num_desired_motions) { + return ransac(matched_points, npoints, num_inliers_by_motion, + params_by_motion, num_desired_motions, 3, is_degenerate_affine, + find_rotzoom, project_points_double_rotzoom); +} + +int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion, + double *params_by_motion, int num_desired_motions) { + return ransac(matched_points, npoints, num_inliers_by_motion, + params_by_motion, num_desired_motions, 3, is_degenerate_affine, + find_affine, project_points_double_affine); +} diff --git a/third_party/aom/av1/encoder/ransac.h b/third_party/aom/av1/encoder/ransac.h new file mode 100644 index 0000000000..c429f2ce5e --- /dev/null +++ b/third_party/aom/av1/encoder/ransac.h @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RANSAC_H_ +#define AOM_AV1_ENCODER_RANSAC_H_ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> +#include <memory.h> + +#include "av1/common/warped_motion.h" + +typedef int (*RansacFunc)(int *matched_points, int npoints, + int *num_inliers_by_motion, double *params_by_motion, + int num_motions); + +/* Each of these functions fits a motion model from a set of + corresponding points in 2 frames using RANSAC. */ +int ransac_affine(int *matched_points, int npoints, int *num_inliers_by_motion, + double *params_by_motion, int num_motions); +int ransac_rotzoom(int *matched_points, int npoints, int *num_inliers_by_motion, + double *params_by_motion, int num_motions); +int ransac_translation(int *matched_points, int npoints, + int *num_inliers_by_motion, double *params_by_motion, + int num_motions); +#endif // AOM_AV1_ENCODER_RANSAC_H_ diff --git a/third_party/aom/av1/encoder/rate_distortion_model_params.h b/third_party/aom/av1/encoder/rate_distortion_model_params.h new file mode 100644 index 0000000000..7cd0962c57 --- /dev/null +++ b/third_party/aom/av1/encoder/rate_distortion_model_params.h @@ -0,0 +1,591 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RATE_DISTORTION_MODEL_PARAMS_H_ +#define AOM_AV1_ENCODER_RATE_DISTORTION_MODEL_PARAMS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/ml.h" + +// 22 float features + +// 2 categorical features with 4 possible values, converted to one-hot vectors. +// So, total 22 + 2 * 4 = 30 features. +#define NUM_FEATURES 30 +#define NUM_HIDDEN_LAYERS 1 +#define NUM_HIDDEN_NODES 96 +#define NUM_OUTPUTS 1 + +//------------------------------------------------------------------------------ +// RDCost model + +static const float + av1_rdcost_model_nn_weights_layer0[NUM_FEATURES * NUM_HIDDEN_NODES] = { + -0.0699f, 0.2790f, 0.1915f, 0.2669f, 0.4637f, 0.4095f, + 0.2129f, 0.0634f, 0.2306f, -0.2232f, -0.5711f, -0.6493f, + -0.7406f, -0.8440f, 0.4105f, 0.1392f, 0.5218f, -0.1618f, + -0.1719f, 0.3409f, 0.1111f, -0.3609f, -0.2929f, 0.3869f, + -0.5373f, 0.0700f, 0.2572f, 0.2483f, -0.0314f, 0.5228f, + 0.0169f, -0.1357f, 0.0419f, -0.1722f, 0.1303f, 0.1198f, + -0.0013f, 0.1309f, 0.0293f, -0.1941f, 0.0668f, -0.0643f, + -0.0381f, 0.1249f, -0.0731f, -0.1649f, 0.0964f, 0.0270f, + 0.1354f, 0.0538f, -0.2064f, -0.2067f, -0.0569f, 0.0449f, + 0.1680f, -0.0732f, -0.0785f, 0.1884f, -0.2137f, -0.0189f, + 0.2976f, 0.2818f, -0.0222f, 0.2658f, 0.0488f, 0.2778f, + -0.1110f, 0.2069f, -0.0072f, -0.0095f, -0.1105f, -0.1365f, + -0.4245f, -0.4751f, -0.0736f, 0.2333f, 0.0653f, -0.0249f, + 0.0055f, -0.0838f, -0.0489f, -0.2597f, 0.2621f, -0.0251f, + -0.0545f, 0.0816f, -0.0816f, 0.3396f, -0.1047f, 0.3678f, + 0.1487f, -0.0270f, 0.2574f, 0.1018f, 0.2560f, -0.0598f, + -0.0446f, -0.1792f, 0.5336f, -0.1590f, -0.9820f, -0.6514f, + -0.6304f, -0.8359f, -0.0699f, 0.0295f, -0.0057f, -0.3088f, + -0.1466f, 0.2220f, -0.1980f, -0.3400f, -0.1228f, 0.2667f, + -0.4816f, 0.0155f, -0.0194f, 0.2051f, 0.0513f, 0.1575f, + -121.4240f, -126.6840f, -124.1106f, -127.6184f, -85.0333f, -26.6396f, + 2.7020f, 102.0452f, -85.5128f, 0.0076f, 122.2206f, 107.5265f, + 108.3773f, 93.4847f, 20.3705f, -89.6993f, -176.9070f, -41.7543f, + -123.0293f, -91.6437f, -205.7099f, -62.5346f, -83.2987f, 21.3830f, + 56.6341f, -120.8647f, -127.7562f, -121.6688f, -127.4225f, -74.8045f, + -15.9247f, -14.6468f, -14.7788f, -15.4498f, -18.5514f, -11.1579f, + -5.8164f, -3.4318f, 0.8100f, 0.0642f, 203.5111f, 189.6872f, + 190.4776f, 176.4784f, -4.9427f, -12.5324f, -7.6861f, 21.9182f, + -6.7864f, -7.1906f, -8.1292f, 21.4780f, -7.8016f, -5.2653f, + 61.8526f, -15.5105f, -14.6900f, -14.1459f, -15.4350f, -19.1379f, + -0.7876f, -1.8558f, -4.6035f, -6.8405f, -0.2904f, 2.3202f, + 1.8127f, -2.9397f, -0.8187f, -0.6098f, 22.6173f, 10.3668f, + 12.9363f, 2.4541f, 6.6700f, 0.3804f, -3.3117f, 8.5464f, + -25.8348f, 1.8698f, -9.5753f, 8.5558f, -16.3576f, 7.2217f, + 35.3115f, -1.1447f, -2.6530f, -4.7027f, -5.7024f, -0.9513f, + 0.8393f, 0.7085f, 0.7879f, 0.3728f, 3.0574f, 1.1360f, + 26.0531f, 4.1084f, -1.7340f, 0.1683f, -450.7927f, -444.5818f, + -442.5239f, -438.1168f, 2.4924f, -0.0147f, -0.0797f, -47.5322f, + -1.7638f, -0.8608f, -0.6500f, -44.4326f, -0.9027f, 2.5560f, + -267.6517f, 0.2642f, 0.9457f, 0.7944f, 0.3609f, 3.2742f, + -74.3400f, -81.6894f, -76.2162f, -69.2979f, -90.2476f, -39.7389f, + 2.2545f, 36.5095f, -60.1129f, -1.0383f, 87.0348f, 83.9940f, + 83.7199f, 80.8609f, 14.9075f, -78.7405f, -74.3549f, -4.2382f, + -23.9739f, -91.8469f, -67.2654f, -21.5293f, -9.9857f, 11.8391f, + 35.8223f, -74.2551f, -81.0729f, -73.8347f, -70.3798f, -86.8052f, + 0.1701f, -0.1136f, 0.0060f, -0.0496f, -0.1727f, 0.0195f, + -0.1040f, 0.1027f, 0.0467f, -0.2538f, -0.1322f, 0.0860f, + 0.0093f, -0.2801f, -0.0958f, 0.0497f, -0.0582f, -0.0311f, + 0.1840f, 0.0752f, 0.0282f, 0.0297f, 0.0607f, 0.0650f, + 0.0893f, 0.1297f, 0.0373f, 0.0040f, -0.0973f, 0.0248f, + -0.1419f, 0.0322f, -0.0712f, 0.0860f, -0.0426f, -0.1989f, + 0.1393f, -0.1183f, 0.0735f, -0.1895f, 0.1447f, -0.0056f, + -0.1833f, 0.0884f, 0.0949f, 0.0476f, 0.0551f, 0.2125f, + -0.1537f, -0.0141f, -0.2182f, 0.1567f, 0.0457f, -0.1485f, + -0.1177f, 0.0391f, 0.1982f, -0.1288f, 0.1165f, -0.2019f, + 0.4550f, 0.5179f, 0.4311f, 0.1861f, 0.6199f, 0.4542f, + 0.2034f, 0.1128f, 1.3489f, -0.2525f, -2.1139f, -2.2444f, + -2.3679f, -2.3378f, 0.5682f, 0.1348f, 0.3032f, -1.5835f, + 0.2883f, 0.1693f, 0.0439f, -1.4556f, 0.3818f, 0.4875f, + -1.8899f, 0.2510f, 0.6450f, 0.6082f, 0.5962f, 0.8131f, + 12.0281f, 13.3899f, 13.6249f, 15.8068f, -1.5453f, 6.7456f, + -6.0877f, 26.2596f, 6.2223f, -0.5922f, 134.1428f, 128.8985f, + 128.7538f, 123.0920f, 1.3207f, 18.3069f, 15.7436f, 46.5230f, + 24.7455f, 15.0688f, 19.9965f, 34.7236f, 19.7171f, 1.2018f, + 49.7274f, 11.8957f, 13.1578f, 14.0451f, 15.3544f, -3.5601f, + 1.0048f, 0.9479f, 1.1832f, 2.0635f, -2.9808f, 2.0803f, + -7.5815f, 8.4733f, -4.2008f, 0.1217f, 226.5257f, 210.7018f, + 211.6235f, 195.2605f, 0.8283f, 1.0977f, 1.4858f, 41.1242f, + 1.5822f, 0.8742f, 2.0440f, 33.6213f, 1.6177f, 0.9661f, + 65.0014f, 1.4197f, 1.0109f, 1.3153f, 1.5470f, -3.2833f, + 2.0858f, 2.0012f, 2.1088f, 2.5593f, -0.9422f, 1.8554f, + -6.5378f, 0.6780f, 2.3186f, 0.0506f, 218.3285f, 203.4055f, + 204.0362f, 188.7854f, 0.3701f, 2.5257f, 3.5172f, 28.8144f, + 2.1511f, 3.4676f, 2.6337f, 28.5113f, 2.4254f, -0.0548f, + 59.4511f, 2.0757f, 2.1551f, 2.2271f, 2.5300f, -1.4173f, + 91.9240f, 88.2142f, 83.6155f, 82.2482f, -9.2566f, 10.9654f, + -2.6974f, 62.6750f, -3.6298f, -0.1245f, 69.6721f, 67.1340f, + 66.9162f, 64.1994f, -83.6778f, 76.8107f, 69.7832f, 64.9261f, + 68.4901f, 76.3615f, 70.8108f, 63.5435f, 69.1973f, -83.6034f, + 24.8275f, 90.1923f, 87.6831f, 82.9783f, 81.8558f, -7.1010f, + 95.1656f, 88.3853f, 80.5835f, 79.5990f, -3.0720f, 8.1290f, + -0.6151f, 63.6425f, -4.5833f, -0.0063f, 70.1861f, 66.6250f, + 66.6148f, 63.0886f, -89.2863f, 74.7684f, 64.8897f, 60.4134f, + 62.5241f, 78.7076f, 61.7234f, 60.1688f, 61.9509f, -89.4098f, + 30.3361f, 92.9144f, 88.5954f, 79.6336f, 79.2453f, -0.4101f, + 0.6287f, 0.8050f, 0.4417f, 0.5419f, 0.5972f, 1.3037f, + 0.4316f, -0.0013f, -0.3673f, -0.4952f, 6.1773f, 5.7825f, + 6.1705f, 5.3848f, 1.7607f, -0.0152f, -0.2924f, 0.8199f, + 1.3326f, 0.7197f, -0.6332f, 1.1127f, 1.0472f, 1.8468f, + 3.4419f, 0.8233f, 0.7175f, 0.8514f, 0.6372f, 0.9472f, + -0.0813f, -0.0197f, -0.0096f, -0.2015f, 0.1133f, -0.0305f, + 0.0578f, 0.1375f, -0.0750f, -0.1702f, 0.1246f, -0.1782f, + 0.2017f, 0.0425f, -0.0602f, 0.1837f, 0.1044f, -0.1273f, + -0.1431f, 0.0672f, -0.1807f, -0.1045f, -0.1355f, -0.0497f, + -0.0561f, -0.0633f, 0.1907f, -0.0777f, 0.1203f, 0.0754f, + 0.4079f, 0.2001f, 0.0558f, 0.0622f, 0.2951f, 0.6541f, + -0.0068f, 0.1070f, 0.4469f, -0.1266f, -1.3035f, -1.3324f, + -1.3612f, -0.9966f, 0.7986f, 0.3192f, -0.5028f, -0.3844f, + -0.4079f, 0.6690f, -0.5109f, -0.2719f, -0.4958f, 1.0310f, + -0.8044f, 0.1447f, 0.4221f, 0.3194f, 0.3063f, 0.5520f, + 0.4667f, -5.7238f, -0.5602f, 12.6339f, -15.1865f, -14.9035f, + -3.0726f, 9.5347f, -24.6225f, -2.7086f, 89.8557f, 95.0657f, + 93.8693f, 99.1085f, -35.9483f, -18.0363f, -1.6298f, 25.3484f, + 39.3975f, -15.3199f, 5.7664f, 17.2367f, 25.2788f, -36.5648f, + 29.1426f, 0.3857f, -5.2117f, 0.0533f, 12.1707f, -11.1735f, + 0.2673f, 0.0090f, 0.1574f, 0.0904f, 0.0281f, 0.1144f, + 0.1123f, -0.0061f, 0.0954f, -0.0094f, -0.4387f, -0.5006f, + -0.2560f, -0.2326f, -0.1769f, 0.0465f, 0.1273f, -0.1627f, + 0.2987f, -0.3041f, 0.1131f, -0.3620f, 0.0932f, -0.0649f, + -0.4597f, 0.2535f, -0.0994f, 0.1390f, 0.1279f, 0.4207f, + -39.1159f, -42.6382f, -38.4225f, -31.2301f, -28.2382f, -28.1176f, + -9.5822f, 1.1886f, -1.2964f, -0.7908f, 154.9819f, 147.1914f, + 147.0482f, 138.7535f, -21.7014f, -35.7117f, -28.8802f, -3.8968f, + -21.5007f, -28.2213f, -28.4878f, -3.7558f, -26.8317f, -22.8491f, + 50.9464f, -37.0918f, -42.8811f, -39.3079f, -32.1904f, -26.6354f, + -72.5346f, -75.5751f, -72.6896f, -71.3671f, -35.3279f, -21.6077f, + -5.8259f, 38.7516f, -6.8012f, 0.0172f, 170.0685f, 157.4452f, + 158.2334f, 145.0102f, 10.0653f, -45.1775f, -56.4571f, -5.1165f, + -75.8980f, -46.8672f, -55.3642f, -6.5631f, -81.0258f, 10.1348f, + 55.9786f, -70.8124f, -75.7040f, -73.9831f, -70.8786f, -34.9723f, + 88.6239f, 86.5330f, 80.9333f, 79.6833f, -10.0096f, 10.6312f, + -4.2350f, 62.6230f, -3.2991f, -0.0843f, 75.8659f, 72.7886f, + 72.5301f, 68.8265f, -81.8276f, 70.3025f, 62.9511f, 62.5706f, + 69.1842f, 69.3637f, 65.4820f, 65.4357f, 71.5347f, -82.1064f, + 24.1925f, 86.2418f, 85.4985f, 80.4091f, 79.5378f, -9.3877f, + -7.6594f, -4.9581f, -10.6385f, -20.2307f, -44.2261f, -13.7557f, + -4.5344f, 18.1793f, -10.5522f, -1.5878f, 110.3187f, 102.4945f, + 102.3305f, 94.1324f, -25.2665f, 9.8172f, -4.4791f, 69.4972f, + -6.7571f, 5.8378f, -11.6101f, 70.7066f, -4.9327f, -24.0513f, + 41.4598f, -7.0600f, -7.0940f, -10.2478f, -18.9616f, -46.7505f, + 90.9365f, 86.0260f, 73.2934f, 69.3406f, 3.3863f, 3.8524f, + 0.6536f, 63.2150f, -10.6304f, 0.0291f, 73.0071f, 69.7660f, + 69.0457f, 65.5611f, -92.3379f, 74.2756f, 54.5025f, 84.3183f, + 53.7481f, 73.5624f, 55.3827f, 82.3242f, 53.5432f, -92.5355f, + 25.3457f, 89.1858f, 84.4763f, 72.9840f, 69.1889f, 4.6719f, + -0.0129f, 0.1995f, 0.2069f, 0.0358f, 0.1209f, -0.1185f, + -0.1217f, -0.1456f, 0.0125f, -0.1354f, 0.0510f, -0.0572f, + 0.1397f, 0.1453f, -0.0086f, 0.0107f, 0.0232f, 0.1508f, + 0.0884f, -0.0967f, -0.1786f, 0.1361f, -0.1399f, -0.2021f, + -0.0242f, -0.2169f, 0.0133f, 0.0116f, -0.1489f, -0.0093f, + -0.0796f, 0.1507f, 0.0906f, 0.0228f, -0.0166f, -0.1875f, + 0.0471f, 0.1184f, -0.0007f, -0.2732f, -0.1386f, -0.2057f, + -0.0213f, -0.1699f, 0.0996f, 0.1562f, 0.1850f, -0.0362f, + -0.2059f, 0.0258f, -0.0135f, -0.1276f, 0.0034f, 0.2023f, + 0.0857f, -0.0085f, -0.1955f, -0.1666f, -0.0920f, 0.0971f, + -0.0292f, -0.0512f, -0.0753f, -0.0739f, -0.0873f, -0.1200f, + 0.0220f, -0.1359f, 0.2013f, -0.0445f, 0.1143f, -0.1484f, + -0.1556f, -0.0003f, 0.1711f, -0.0724f, -0.0531f, 0.1126f, + 0.0476f, -0.0057f, 0.0088f, 0.0792f, -0.0438f, -0.1118f, + -0.0244f, 0.0712f, 0.0930f, -0.0203f, 0.1662f, -0.0695f, + -12.3872f, -18.7022f, -13.4237f, -1.4731f, -18.6843f, -14.1515f, + -7.5057f, 40.2090f, -2.7774f, -1.8433f, 123.6006f, 119.0557f, + 118.2758f, 113.6423f, -32.6216f, -19.5865f, -16.2897f, 17.2068f, + 6.3559f, -17.8742f, 0.7098f, 11.5970f, -10.1104f, -33.1830f, + 39.5617f, -10.5499f, -17.8137f, -14.7185f, -2.6172f, -14.6004f, + 0.3893f, 0.4443f, 0.5305f, 0.3049f, 0.8316f, 0.8679f, + 0.2265f, 0.2393f, 1.1970f, -0.2891f, -1.8666f, -1.8266f, + -1.6984f, -1.8787f, 0.8706f, 0.4208f, 0.5076f, -0.8436f, + -0.1623f, 0.8008f, 0.1512f, -1.0839f, -0.3002f, 0.9263f, + -1.3031f, 0.5964f, 0.3413f, 0.5551f, 0.2618f, 0.7018f, + -0.1320f, -0.1944f, -0.0209f, -0.0877f, 0.0721f, -0.0840f, + 0.0589f, 0.1019f, 0.1927f, -0.2011f, -0.1117f, 0.1575f, + 0.1080f, -0.0516f, 0.2154f, -0.1231f, 0.0426f, -0.0522f, + -0.1824f, -0.1923f, -0.1206f, -0.1724f, -0.0798f, 0.0401f, + -0.2170f, 0.0293f, -0.0853f, 0.1517f, 0.2128f, -0.1934f, + 0.0406f, 0.0517f, 0.0822f, -0.0150f, 0.0943f, -0.0989f, + -0.1802f, -0.1453f, -0.1967f, -0.1797f, 0.1545f, -0.1217f, + 0.1755f, -0.1604f, -0.0515f, 0.0509f, 0.0310f, -0.1220f, + -0.1770f, -0.0157f, 0.1989f, -0.0069f, 0.1766f, 0.1267f, + -0.0517f, -0.0396f, 0.0346f, 0.1946f, 0.1162f, -0.1345f, + -106.6179f, -110.5917f, -107.5476f, -108.0601f, -61.1687f, -22.4247f, + 2.6632f, 109.5208f, -66.1177f, 0.0062f, 159.9339f, 144.7755f, + 145.5032f, 128.9872f, 18.9180f, -75.3569f, -105.0866f, -52.0704f, + -119.1299f, -74.7543f, -109.9468f, -59.0682f, -104.5754f, 19.2878f, + 67.2573f, -104.8061f, -111.8610f, -106.6751f, -107.3537f, -56.4758f, + -0.6967f, -0.8495f, -0.9586f, -1.0461f, 1.4522f, -0.2762f, + 28.2828f, 2.9157f, -2.1062f, 0.1566f, -467.2388f, -461.0685f, + -459.0092f, -453.8370f, 1.5422f, -0.8186f, -0.4884f, -53.0399f, + -2.0255f, -1.1348f, -1.1039f, -50.2489f, -1.4821f, 1.8021f, + -258.0319f, -1.0865f, -0.5542f, -1.0443f, -1.2732f, 1.8413f, + 0.2377f, 0.1937f, -0.0116f, 0.0935f, -0.0599f, 0.0118f, + -0.0875f, 0.0455f, -0.1301f, -0.1081f, -0.2622f, -0.1960f, + 0.0393f, -0.1490f, 0.1852f, -0.0964f, -0.0741f, 0.0419f, + 0.1162f, -0.0274f, 0.1200f, -0.0333f, -0.1337f, 0.2141f, + 0.0664f, 0.1044f, -0.1744f, 0.1060f, -0.1468f, 0.0679f, + 0.0218f, 0.0494f, 0.1064f, 0.1363f, 0.0013f, 0.1331f, + -0.2095f, 0.2088f, -0.0399f, -0.1811f, 0.0678f, -0.1974f, + 0.1855f, -0.0968f, -0.2008f, 0.0162f, -0.0096f, -0.1493f, + 0.2170f, -0.1248f, -0.2055f, 0.1276f, -0.0269f, -0.1697f, + -0.0662f, 0.1073f, -0.0029f, -0.1051f, -0.1573f, 0.2106f, + -0.2020f, -0.1565f, 0.0335f, -0.1818f, -0.1665f, 0.2169f, + 0.1974f, -0.1470f, -0.1738f, -0.2038f, 0.0558f, -0.0441f, + 0.0065f, -0.1485f, -0.1366f, -0.2131f, 0.1042f, 0.0349f, + -0.1804f, -0.1361f, -0.0116f, -0.1012f, -0.0860f, 0.0606f, + -0.2077f, 0.1826f, -0.1014f, -0.0721f, -0.1517f, 0.1022f, + -0.1110f, -0.0186f, 0.1505f, 0.1797f, 0.0911f, 0.0340f, + 0.1702f, -0.1404f, -0.0566f, -0.2744f, -0.1943f, -0.1871f, + 0.0046f, 0.0306f, -0.0436f, 0.1625f, -0.1302f, 0.0175f, + 0.1570f, -0.1425f, 0.0779f, 0.1398f, 0.0929f, 0.0897f, + 0.0458f, -0.0936f, 0.1321f, -0.1355f, 0.0974f, 0.0457f, + -73.3516f, -75.0655f, -72.1062f, -72.4624f, -34.8640f, -14.3727f, + -4.4720f, 66.4982f, -18.8358f, 0.0397f, 174.2172f, 160.4959f, + 161.1034f, 147.3250f, 9.5507f, -45.0180f, -73.1609f, -1.5230f, + -74.8677f, -43.8559f, -68.7622f, -4.8971f, -82.1922f, 9.6490f, + 64.7115f, -71.8566f, -75.3879f, -72.5479f, -71.7161f, -34.8056f, + 0.1442f, 0.1558f, 0.1267f, -0.1261f, -0.0506f, -0.0823f, + -0.1807f, -0.0889f, -0.2098f, -0.1295f, -0.2046f, -0.1749f, + -0.1197f, -0.1380f, 0.0799f, -0.0889f, -0.1209f, 0.1919f, + 0.1947f, -0.2086f, -0.1042f, -0.0468f, 0.0232f, 0.1052f, + -0.0535f, 0.1398f, 0.1713f, -0.1522f, 0.1453f, 0.0286f, + -64.8503f, -67.6746f, -63.6497f, -60.4614f, -35.6091f, -20.1605f, + -3.6082f, 84.2801f, -37.8552f, -2.2371f, 132.4947f, 123.5057f, + 123.5776f, 113.9060f, -14.8772f, -40.7130f, -79.1391f, -10.7024f, + -65.7831f, -43.6078f, -79.6847f, -13.0743f, -69.2533f, -16.0171f, + 50.4868f, -64.3678f, -68.7061f, -64.0823f, -59.3413f, -28.9405f, + 77.1601f, 75.4899f, 69.8696f, 67.8764f, -22.7548f, 5.9814f, + -3.2826f, 57.9754f, -5.9500f, -0.0014f, 77.2251f, 74.0737f, + 73.7004f, 70.5072f, -80.9661f, 69.3065f, 55.8337f, 76.8831f, + 57.9902f, 63.4765f, 56.4748f, 70.0282f, 61.0874f, -81.3960f, + 26.2594f, 76.0367f, 74.9115f, 69.2361f, 66.9262f, -20.1637f, + 0.1886f, -0.1108f, 0.1262f, 0.0189f, 0.1382f, 0.0859f, + -0.1874f, -0.1986f, -0.0171f, -0.1400f, -0.2944f, -0.0750f, + -0.0395f, -0.2092f, -0.0878f, 0.1216f, -0.0870f, -0.1613f, + 0.2495f, 0.0754f, 0.0244f, -0.1205f, -0.0196f, -0.1729f, + 0.1170f, 0.1585f, 0.1482f, -0.1705f, -0.1337f, 0.0199f, + 13.0897f, 9.1111f, 6.7413f, 6.3907f, -28.1187f, 0.4556f, + -5.3116f, 30.7293f, -16.3644f, -0.0365f, 118.9118f, 111.6125f, + 111.3227f, 103.4680f, -30.1883f, 8.9328f, -4.1876f, 79.3936f, + -9.0522f, 12.7861f, -1.2736f, 78.0446f, -5.9485f, -30.5716f, + 27.8951f, 13.9613f, 6.7173f, 5.2345f, 8.3271f, -27.3705f, + 1.0488f, 1.0864f, 1.0710f, 1.7332f, -3.0561f, 1.1622f, + -7.6688f, 3.0491f, -1.3865f, 0.0769f, 222.5451f, 207.8170f, + 208.1767f, 193.1396f, 0.4447f, 2.1654f, 1.8929f, 35.1469f, + 1.1783f, 2.6199f, 1.1611f, 26.2989f, 3.4446f, 0.1551f, + 65.6529f, 1.2229f, 0.9851f, 1.0241f, 1.4373f, -3.3421f, + 0.1388f, 0.0756f, 0.2047f, 0.1140f, 0.0945f, 0.2038f, + 0.1038f, -0.2068f, -0.0626f, -0.1937f, 0.1347f, -0.0464f, + -0.0866f, 0.0250f, 0.0264f, -0.1556f, -0.1625f, 0.1028f, + -0.1255f, -0.0854f, 0.1033f, 0.0008f, -0.2133f, -0.0317f, + 0.1725f, -0.1054f, -0.1900f, 0.0383f, 0.0440f, -0.1900f, + -30.0811f, -30.9929f, -29.3194f, -26.8347f, -20.5957f, -4.1595f, + -1.9066f, 42.4707f, -9.0435f, 0.0064f, 175.7328f, 163.1350f, + 163.5085f, 151.1648f, 4.4620f, -20.6011f, -19.3402f, 1.5468f, + -32.0920f, -25.4581f, -12.3706f, -2.1636f, -32.4569f, 3.9365f, + 61.0117f, -28.4195f, -31.0837f, -30.2749f, -27.5522f, -22.8688f, + -0.3000f, 0.0092f, -0.3675f, -0.4113f, 0.0033f, 0.1138f, + 0.2182f, -0.5803f, 0.7507f, -0.2529f, -1.7724f, -1.4702f, + -1.5805f, -1.4294f, 0.1435f, -0.0168f, 0.2356f, -0.4373f, + -0.4500f, -0.4803f, -0.0041f, -0.3878f, 0.1321f, 0.2761f, + -1.1975f, -0.3509f, -0.0465f, -0.4050f, -0.1110f, 0.2233f, + 0.0950f, 0.0974f, -0.1600f, -0.1753f, -0.0328f, 0.0741f, + -0.0706f, 0.1839f, -0.0833f, -0.1367f, -0.1094f, -0.1739f, + -0.1069f, 0.0370f, -0.1404f, 0.1631f, -0.1570f, 0.2117f, + -0.1891f, 0.0395f, 0.1081f, 0.1760f, 0.0997f, 0.0853f, + -0.1018f, 0.1306f, -0.0924f, -0.2078f, 0.0801f, -0.0949f, + 0.5803f, 0.5578f, 0.4089f, 0.1912f, 0.6774f, 0.3145f, + 0.3992f, -0.1316f, 1.3142f, -0.2457f, -2.3536f, -2.4939f, + -2.3165f, -2.4879f, 0.2321f, 0.1901f, 0.1789f, -1.5215f, + 0.2645f, 0.2231f, 0.2411f, -1.2361f, 0.2971f, 0.1421f, + -1.6715f, 0.3158f, 0.2476f, 0.3596f, 0.3029f, 0.9297f, + -88.8401f, -89.5209f, -86.1926f, -87.4196f, -39.6504f, -17.9684f, + -4.2702f, 80.2017f, -29.1676f, -0.4190f, 150.2820f, 138.4751f, + 139.1087f, 126.6569f, 13.7188f, -57.0739f, -80.3383f, -18.8351f, + -87.4103f, -56.0072f, -82.7707f, -23.1871f, -93.6787f, 13.9287f, + 59.6213f, -87.4843f, -90.4227f, -86.2635f, -86.6841f, -37.9086f, + 0.1184f, -0.2169f, -0.1915f, 0.0543f, 0.1253f, -0.1370f, + 0.0836f, -0.1198f, 0.1544f, -0.2004f, -0.1118f, -0.0786f, + 0.1517f, -0.1000f, -0.1055f, 0.0936f, -0.1579f, 0.1098f, + -0.0234f, -0.0499f, 0.0951f, -0.1711f, 0.0186f, -0.2008f, + 0.1777f, 0.1386f, -0.1495f, -0.0684f, -0.2149f, -0.1198f, + -0.6205f, -0.7209f, -0.5487f, -0.9080f, 1.3400f, 0.0085f, + 28.2837f, 3.2217f, -1.8463f, 0.1620f, -464.3599f, -458.4327f, + -455.9967f, -451.0393f, 1.6619f, -0.6944f, -0.3167f, -52.3630f, + -1.6971f, -0.7340f, -0.8923f, -49.2771f, -1.1177f, 1.8810f, + -258.9386f, -1.0765f, -0.7279f, -0.5208f, -0.8839f, 1.8175f, + -78.8510f, -80.5740f, -77.8843f, -77.9798f, -36.5560f, -16.0818f, + -5.5362f, 66.4228f, -16.8150f, 0.0036f, 181.8365f, 167.7181f, + 168.2344f, 153.9725f, 11.2659f, -47.5786f, -92.6978f, 6.7573f, + -68.7704f, -48.3850f, -95.3637f, 8.8888f, -76.9497f, 11.2243f, + 60.9020f, -77.6515f, -80.7610f, -78.4537f, -77.4659f, -36.2872f, + -0.0936f, 0.1966f, -0.2121f, 0.0193f, 0.0489f, -0.1445f, + 0.0060f, 0.0358f, -0.0783f, -0.0985f, -0.2072f, -0.0802f, + -0.0185f, 0.1868f, -0.0631f, 0.1260f, -0.0675f, 0.2167f, + -0.2174f, -0.1085f, 0.1483f, -0.1655f, -0.1040f, 0.1605f, + -0.1673f, -0.0148f, -0.1856f, -0.1454f, 0.1603f, -0.1620f, + -0.9205f, -1.2716f, -3.6561f, -5.0834f, -0.7934f, 1.8710f, + 2.2999f, -2.9516f, -1.7631f, -0.3804f, 41.2998f, 26.2358f, + 28.9763f, 15.7315f, 5.2164f, 3.2963f, -5.4457f, 18.6310f, + -25.0076f, 5.4368f, -12.0085f, 17.1462f, -14.6992f, 5.6365f, + 48.6207f, -1.0921f, -1.8723f, -3.5354f, -5.1774f, -1.0200f, + -0.1065f, -0.2021f, 0.0332f, 0.1692f, -0.1239f, 0.1325f, + -0.0660f, -0.0567f, 0.2107f, -0.2084f, -0.0263f, 0.1411f, + 0.0178f, 0.0451f, 0.2024f, -0.1756f, -0.0771f, -0.1690f, + -0.2097f, -0.2130f, 0.0714f, 0.0172f, -0.0310f, 0.0649f, + -0.1550f, 0.0701f, 0.0306f, -0.1750f, -0.1988f, -0.2060f, + 0.0005f, -0.1325f, -0.1823f, -0.0900f, -0.1291f, -0.1817f, + 0.0144f, 0.0951f, -0.1954f, -0.0171f, -0.1985f, 0.0875f, + 0.0901f, -0.0857f, 0.1681f, 0.0465f, 0.1023f, 0.0985f, + -0.2152f, -0.1723f, -0.0825f, 0.0203f, -0.1206f, -0.1431f, + -0.1552f, 0.1344f, 0.0398f, 0.0169f, 0.2180f, -0.1530f, + 2.7964f, 2.7312f, 2.8831f, 3.4729f, -3.1366f, 2.4043f, + -7.2004f, 1.4128f, 2.8648f, 0.0578f, 225.5640f, 210.3712f, + 210.6907f, 195.0339f, 0.3140f, 1.8060f, 2.7355f, 33.6917f, + 3.3542f, 3.3682f, 1.7371f, 31.2424f, 3.4094f, -0.1192f, + 63.0864f, 3.0562f, 2.8633f, 2.6777f, 3.5495f, -4.2616f, + -1.4034f, 0.3930f, -4.6756f, -9.9870f, -27.8511f, 5.6071f, + -1.0862f, 34.4907f, -10.4831f, -0.0281f, 117.2617f, 104.9590f, + 106.1515f, 93.9707f, -16.8801f, 5.3036f, -21.7458f, 98.5306f, + -20.7596f, 6.4733f, -17.6440f, 98.3097f, -31.9540f, -17.0600f, + 27.4543f, -0.6140f, -1.6182f, -4.9167f, -8.9017f, -26.2485f, + -0.1952f, -0.0462f, -0.1958f, 0.1679f, -0.1592f, -0.1634f, + -0.0507f, -0.0542f, 0.0038f, -0.0343f, 0.0567f, -0.1983f, + 0.0250f, -0.0762f, 0.0902f, -0.0343f, 0.1240f, 0.1161f, + 0.1237f, 0.1870f, 0.0346f, 0.0340f, 0.0625f, -0.0355f, + 0.0278f, -0.1043f, 0.1755f, 0.0253f, 0.1750f, -0.2070f, + -5.5531f, -5.3122f, -4.9348f, -4.4782f, -7.5686f, -1.5478f, + -5.4341f, 0.5087f, -2.1382f, 0.0798f, 208.3677f, 194.0083f, + 194.4168f, 179.3082f, 1.4443f, -1.5038f, -1.4021f, 25.9363f, + -4.0635f, -2.6785f, -1.6640f, 22.2589f, -1.4910f, 1.4715f, + 59.1972f, -4.9638f, -5.1920f, -4.9193f, -5.2649f, -8.0556f, + 20.1226f, 12.0195f, 9.7385f, 10.7058f, -27.4201f, 8.4869f, + -5.0826f, 32.9212f, -2.0674f, -0.0290f, 120.5002f, 112.3222f, + 112.3287f, 104.1107f, -20.6293f, 14.8534f, -0.8748f, 103.1141f, + -1.1368f, 15.3716f, 2.7653f, 91.7285f, -0.5991f, -20.7338f, + 35.9363f, 20.5104f, 11.1988f, 9.0368f, 10.6355f, -26.5309f, + -0.2058f, -0.2176f, 0.1331f, -0.1415f, -0.0825f, -0.0470f, + -0.0615f, 0.1274f, 0.0076f, -0.0575f, -0.2065f, 0.0866f, + 0.2166f, -0.1942f, -0.1952f, 0.1323f, -0.1016f, 0.1803f, + -0.0424f, 0.1555f, 0.1118f, 0.1559f, 0.0337f, -0.0341f, + -0.0430f, 0.1988f, -0.0553f, -0.0255f, 0.1817f, 0.0608f, + 0.1431f, 0.0686f, -0.0245f, -0.2107f, 0.2001f, -0.0964f, + -0.0090f, 0.1151f, -0.0365f, -0.1986f, 0.1740f, -0.2098f, + 0.0013f, 0.1369f, 0.1910f, 0.1801f, -0.2019f, 0.0348f, + -0.1175f, 0.0627f, -0.1929f, -0.0099f, 0.1349f, 0.1804f, + -0.1071f, -0.1651f, -0.1146f, -0.0259f, 0.1626f, -0.0271f, + 0.1393f, 0.1304f, -0.0200f, 0.0924f, -0.0839f, -0.0031f, + -0.1311f, 0.0350f, -0.1330f, -0.0911f, 0.1949f, -0.0209f, + -0.1883f, 0.0269f, 0.2040f, 0.1552f, 0.1532f, 0.1157f, + -0.1102f, -0.1220f, -0.0808f, -0.1050f, 0.1716f, 0.0846f, + -0.0180f, -0.1037f, 0.2063f, 0.1237f, 0.1253f, -0.0496f, + -0.0183f, 0.0491f, 0.1703f, -0.0824f, -0.0702f, -0.1100f, + -0.0965f, 0.0130f, -0.1222f, -0.1081f, 0.0329f, 0.2115f, + -0.1438f, 0.0799f, -0.1602f, -0.0330f, 0.0501f, 0.1072f, + -0.0744f, -0.1783f, -0.0240f, 0.0777f, -0.1944f, 0.0438f, + -0.0033f, -0.1873f, 0.0984f, -0.0318f, 0.0773f, 0.1489f, + 0.3966f, 0.4711f, 0.3972f, 0.0623f, 0.5970f, 0.1018f, + 0.1375f, -0.1881f, 0.8921f, -0.1854f, -2.1138f, -2.1178f, + -1.8295f, -2.1703f, 0.5784f, -0.1937f, -0.0728f, -0.9953f, + 0.2442f, -0.4074f, -0.1591f, -1.1660f, 0.4832f, 0.2203f, + -1.4957f, 0.1544f, 0.1810f, 0.2275f, 0.4075f, 0.8153f, + 0.0715f, 0.0222f, 0.0463f, -0.0201f, 0.0396f, 0.5951f, + -0.2779f, -0.0306f, 0.7532f, -0.1596f, -4.1080f, -3.7925f, + -3.8522f, -3.2468f, 0.7728f, 0.0188f, -0.1448f, 0.4084f, + -0.4666f, -0.1036f, -1.1469f, 0.4243f, 0.2778f, 0.9023f, + -3.0216f, 0.0384f, -0.3348f, -0.0314f, -0.2788f, 0.0479f, + 139.0773f, 131.6164f, 115.0392f, 111.1817f, 41.7596f, 9.5379f, + 1.8542f, 46.9890f, -12.8221f, 0.0241f, 52.9779f, 51.5268f, + 50.8060f, 48.7028f, -132.9665f, 118.3478f, 101.1239f, 81.4608f, + 75.4251f, 121.0643f, 97.8947f, 86.8911f, 74.5576f, -133.7606f, + 29.2657f, 135.8916f, 131.3661f, 114.1687f, 111.0784f, 31.3790f, + -0.0807f, -0.0657f, -0.0027f, 0.0410f, 0.0765f, 0.1194f, + 0.0953f, -0.0060f, 0.1531f, -0.2339f, 0.1488f, -0.0615f, + -0.0579f, 0.0761f, 0.1250f, -0.0469f, 0.1480f, 0.0683f, + -0.0049f, 0.1558f, 0.2168f, -0.0736f, 0.1135f, -0.1244f, + 0.0725f, -0.1297f, -0.0215f, -0.0412f, -0.1632f, -0.0200f, + -0.1346f, -0.1954f, 0.0053f, 0.0151f, 0.1379f, -0.1497f, + -0.0102f, -0.0336f, 0.0900f, -0.1706f, -0.0932f, -0.2084f, + 0.1242f, -0.2027f, 0.0849f, -0.2139f, -0.2015f, 0.0944f, + -0.0984f, 0.2082f, 0.1625f, -0.0227f, -0.1676f, 0.1021f, + 0.1516f, 0.0245f, 0.0955f, -0.1488f, -0.0057f, 0.1783f, + -0.8568f, -0.8175f, -0.6282f, -1.3107f, 1.5712f, 0.1044f, + 28.2289f, 3.0885f, -1.9829f, 0.1600f, -465.9583f, -459.5893f, + -457.5055f, -452.7600f, 1.7229f, -0.6620f, -0.1065f, -52.8017f, + -2.0293f, -0.8224f, -1.0389f, -49.9049f, -1.2250f, 1.7647f, + -259.2465f, -1.0978f, -0.5169f, -0.8721f, -0.8197f, 1.9158f, + 16.2234f, 15.8523f, 13.8343f, 9.8509f, -21.4326f, 15.7650f, + -6.4451f, 34.8575f, 1.1387f, -0.0223f, 117.7213f, 109.8494f, + 109.7624f, 101.8532f, -20.3275f, 16.0812f, 4.9165f, 92.4919f, + 4.1615f, 13.8451f, 9.2112f, 97.1580f, -8.7037f, -20.4420f, + 27.1105f, 17.4922f, 13.9998f, 12.3888f, 11.4705f, -20.9568f, + 0.5457f, 0.5322f, 0.2823f, 0.3581f, 0.5359f, 0.1576f, + 0.1969f, -0.0136f, -0.2748f, -0.3168f, -0.3918f, -0.2167f, + -0.1797f, -0.1869f, 0.2986f, -0.2116f, -0.4226f, -0.2022f, + 0.9452f, 0.5474f, -0.1218f, 0.2067f, -0.1600f, 0.1937f, + 0.0808f, 0.4877f, 0.5106f, 0.2626f, 0.5076f, 0.6228f, + 0.5124f, 0.4044f, 0.4023f, 0.1222f, 2.5446f, 0.9623f, + 24.9875f, 4.7442f, -2.0551f, 0.1642f, -449.9478f, -444.1841f, + -442.0153f, -437.1498f, 2.3209f, -0.6986f, -0.3456f, -47.4074f, + -1.2374f, -1.0939f, -0.9112f, -41.1851f, -0.5064f, 2.4209f, + -263.4446f, -0.0433f, 0.3460f, 0.1475f, 0.3770f, 2.9154f, + 0.2032f, 0.1527f, 0.2161f, -0.1981f, 0.1893f, -0.2003f, + 0.1734f, 0.1713f, 0.1207f, -0.2073f, -0.1018f, 0.0770f, + 0.0728f, 0.1665f, 0.0689f, 0.1884f, -0.1399f, -0.1326f, + -0.0518f, -0.1948f, 0.1576f, -0.1835f, 0.1436f, 0.0497f, + 0.0883f, -0.1253f, -0.0417f, -0.0507f, -0.1555f, 0.2076f, + -2.4080f, 6.1616f, -0.8564f, -13.6773f, -32.7238f, -16.3144f, + -1.9828f, 20.5110f, -17.0191f, -1.7154f, 103.6642f, 95.3675f, + 95.5662f, 86.9504f, -35.5340f, 19.6681f, -2.4900f, 65.0847f, + -15.8119f, 13.7256f, -4.6753f, 63.4713f, -6.5992f, -34.2369f, + 41.3959f, -1.5528f, 3.8106f, -0.7762f, -12.3204f, -35.1734f, + -83.9509f, -87.4861f, -83.5925f, -81.5047f, -54.1256f, -45.7506f, + -13.5325f, -6.0331f, -8.5062f, 0.0261f, 189.9450f, 177.7870f, + 178.6945f, 164.9762f, 9.8521f, -68.0619f, -68.6145f, 6.5056f, + -55.9651f, -66.9540f, -65.3349f, -2.1954f, -57.2408f, 8.6577f, + 60.6966f, -82.1056f, -88.5245f, -83.3057f, -80.7283f, -50.5285f, + -0.1397f, 0.1862f, -0.0691f, -0.0906f, 0.1560f, 0.1377f, + -0.0066f, -0.0213f, 0.0708f, -0.0386f, -0.0015f, -0.0020f, + -0.2122f, 0.0747f, 0.0795f, 0.0229f, 0.1923f, -0.1661f, + 0.0895f, 0.1176f, 0.1398f, -0.0443f, 0.0934f, 0.0638f, + -0.1924f, 0.0602f, 0.0404f, 0.1597f, 0.1387f, -0.0601f, + -28.3967f, -21.8483f, -25.5175f, -29.9252f, 2.0161f, -3.0092f, + 7.7435f, 28.2367f, -35.0188f, -0.1578f, 105.0164f, 93.4495f, + 94.9134f, 81.0315f, 4.3602f, 8.1303f, -37.7665f, -16.6986f, + -40.8902f, 8.2542f, -33.3215f, -2.0457f, -69.0245f, 4.1016f, + 47.2770f, -25.8268f, -23.6034f, -26.4339f, -27.8305f, 8.4468f, + 13.8742f, 8.3874f, 4.2044f, 1.4619f, -40.2909f, -0.6358f, + -0.7982f, 36.1931f, -17.3147f, -0.3348f, 106.8135f, 96.5298f, + 97.8829f, 86.9994f, -25.8170f, 15.0652f, -0.9181f, 85.8544f, + 2.5475f, 9.8009f, -3.5931f, 89.2017f, -3.7252f, -25.2986f, + 22.5505f, 14.0434f, 7.0708f, 4.6646f, 1.5807f, -39.4024f, + -0.1436f, 0.0256f, 0.0274f, -0.2126f, 0.0401f, 0.0745f, + -0.0379f, -0.0357f, 0.0777f, -0.0709f, -0.1093f, -0.2047f, + -0.0713f, -0.0478f, -0.0908f, 0.1963f, 0.1282f, 0.0977f, + 0.1304f, 0.2058f, 0.0700f, 0.0518f, 0.0239f, 0.0686f, + -0.1909f, 0.0828f, -0.1243f, -0.1920f, 0.1908f, -0.0808f, + 90.8028f, 89.2894f, 84.5339f, 83.3491f, -13.3838f, 12.0240f, + -3.9443f, 63.0867f, -2.5321f, -0.0099f, 68.9140f, 66.3206f, + 66.0278f, 63.1498f, -83.7261f, 74.3448f, 73.4998f, 64.8477f, + 69.7701f, 74.5878f, 71.0331f, 63.2116f, 74.3162f, -83.9282f, + 20.8163f, 89.6818f, 88.6452f, 83.7338f, 82.9360f, -13.2357f, + 0.1299f, -0.1765f, -0.0168f, -0.1372f, -0.1183f, 0.0472f, + 0.1312f, 0.0267f, 0.0194f, -0.1593f, 0.0059f, 0.1775f, + 0.0668f, -0.1239f, -0.1982f, -0.1415f, -0.1659f, -0.1148f, + 0.0136f, 0.0913f, -0.1254f, -0.0357f, 0.0892f, 0.0835f, + -0.0554f, 0.1969f, -0.0888f, -0.0623f, -0.0236f, -0.1492f, + 0.4196f, 0.3218f, 0.2287f, 0.5095f, 0.7210f, 0.2279f, + 0.4523f, -0.1832f, 1.3095f, -0.2041f, -2.1443f, -2.1947f, + -1.9292f, -2.1142f, 0.5840f, 0.1018f, 0.1011f, -1.6565f, + 0.4325f, 0.0424f, 0.2836f, -1.7183f, 0.2595f, 0.2686f, + -1.8784f, 0.3891f, 0.3050f, 0.6195f, 0.2896f, 0.5905f, + -5.3024f, -3.2518f, -12.5192f, -29.1732f, 1.6538f, -1.8315f, + 9.9788f, 10.5155f, 6.3234f, -0.3460f, 76.9925f, 51.3785f, + 55.7120f, 29.0432f, 5.5901f, 25.6578f, -3.9565f, 13.0509f, + -106.0371f, 23.2124f, -18.2004f, 8.4618f, -69.3585f, 5.5651f, + 80.0565f, -6.4941f, -5.3742f, -14.4209f, -24.1565f, 6.6801f, + -22.0585f, -20.9909f, -26.7939f, -29.6890f, -14.5085f, 2.1866f, + -4.2608f, 17.3977f, -30.8824f, -0.4017f, 135.6957f, 126.9320f, + 127.0044f, 118.1835f, -1.8768f, -0.8629f, -32.0882f, 44.7862f, + -23.9174f, 1.6485f, -27.9940f, 51.9078f, -48.5279f, -1.7550f, + 49.9230f, -19.9785f, -22.4647f, -27.6911f, -27.3197f, -10.6545f, + -0.1922f, -0.1999f, -0.1396f, 0.1065f, 0.0085f, -0.1940f, + 0.0351f, 0.1285f, -0.0292f, -0.1296f, 0.1543f, -0.2082f, + -0.1758f, 0.0719f, 0.0764f, 0.1394f, -0.0255f, -0.0370f, + 0.1615f, -0.0568f, 0.1920f, -0.1631f, 0.0199f, 0.1884f, + 0.0693f, 0.1074f, -0.0273f, 0.1540f, 0.0098f, 0.2111f, + 0.1805f, -0.0555f, 0.1159f, 0.0469f, 0.1789f, -0.1711f, + -0.1304f, 0.1912f, -0.0737f, -0.1408f, 0.1804f, -0.2023f, + -0.0467f, -0.1019f, -0.0136f, 0.0691f, 0.1454f, -0.0213f, + 0.0929f, -0.0958f, 0.1299f, 0.1137f, 0.1175f, 0.1042f, + -0.2081f, -0.0737f, 0.0582f, 0.1640f, 0.2120f, -0.0646f, + -0.0326f, 0.1976f, 0.1182f, -0.1365f, -0.1784f, 0.2113f, + 0.0469f, 0.0763f, -0.0197f, -0.1902f, 0.1259f, 0.1598f, + -0.0180f, -0.1339f, -0.1675f, -0.1884f, -0.1973f, 0.1529f, + 0.1160f, 0.2154f, -0.1446f, -0.1395f, 0.0355f, 0.1513f, + -0.2086f, -0.1135f, -0.1502f, -0.0018f, 0.0486f, -0.0110f, + -0.0843f, -0.0716f, -0.1367f, 0.0753f, 0.0114f, 0.0475f, + -0.0632f, 0.2045f, -0.0512f, -0.0906f, -0.1071f, -0.1957f, + 0.1361f, 0.1821f, -0.1684f, -0.1383f, 0.1059f, 0.1579f, + -0.0064f, -0.1205f, -0.0718f, -0.1323f, -0.0174f, -0.1092f, + -0.1915f, 0.1978f, -0.1245f, 0.1297f, -0.1542f, 0.1556f, + -0.1752f, 0.0718f, -0.1020f, -0.1970f, 0.0518f, -0.0888f, + 0.0541f, -0.1922f, -0.1467f, -0.0653f, -0.1940f, -0.0800f, + -0.1096f, -0.0796f, -0.1310f, 0.0191f, -0.1077f, -0.0973f, + 0.1566f, 0.0074f, 0.0500f, -0.0415f, -0.2116f, 0.0227f, + 0.0895f, 0.1528f, 0.1404f, 0.0467f, 0.0462f, -0.0973f, + -0.1669f, 0.0551f, 0.1167f, -0.1470f, -0.0542f, -0.1006f, + 0.2104f, 0.1039f, -0.0211f, -0.1726f, -0.0694f, -0.0270f, + 0.0277f, -0.0715f, -0.2055f, -0.1502f, -0.1718f, -0.0043f, + 0.0174f, 0.1019f, -0.0233f, -0.1518f, -0.1331f, -0.0001f, + -0.1483f, -0.2115f, 0.0666f, 0.0014f, 0.1601f, -0.0690f, + }; + +static const float av1_rdcost_model_nn_biases_layer0[NUM_HIDDEN_NODES] = { + 0.156824f, 0.f, 0.130013f, 0.084482f, -129.058197f, -15.090252f, + -3.859116f, 0.736356f, -81.361557f, -0.001922f, -0.000713f, 0.440181f, + 14.982646f, 1.282223f, 2.23122f, 94.26635f, 93.920929f, 0.614672f, + 0.f, 0.315858f, 4.746014f, 0.116901f, -35.661354f, -75.148285f, + 92.006989f, -14.112332f, 86.673157f, -0.000307f, -0.000544f, 0.f, + -7.851313f, 0.505186f, 0.f, 0.f, -111.681091f, -0.937782f, + 0.035789f, 0.f, 0.f, -0.00102f, -75.180527f, 0.f, + -63.821148f, 79.592392f, 0.085068f, 11.184906f, 1.25406f, 0.f, + -29.779242f, -0.181732f, 0.f, 0.425554f, -90.78405f, 0.f, + -0.828326f, -81.132179f, 0.f, -2.757063f, 0.f, 0.f, + 2.967951f, -4.440599f, 0.f, -5.105355f, 14.734543f, 0.f, + 0.f, 0.f, 0.f, 0.295342f, -0.026907f, 133.375412f, + -0.000855f, 0.f, -0.875029f, 15.665165f, 0.437296f, 0.321257f, + -0.001932f, -4.235782f, -87.187782f, 0.f, -28.84696f, 7.055514f, + 0.f, 95.548302f, -0.000425f, 0.38969f, -13.88008f, -27.347931f, + 0.f, 0.f, 0.f, -0.000026f, 0.f, 0.f, +}; + +static const float + av1_rdcost_model_nn_weights_layer1[NUM_HIDDEN_NODES * NUM_OUTPUTS] = { + -0.101706f, -0.14411f, -0.139118f, -0.132945f, 118.811302f, + 3.137232f, -32.969776f, -4.150725f, 26.263071f, 0.092841f, + 0.174125f, -0.028195f, 15.712872f, 17.722702f, 5.666006f, + -121.143929f, -131.933731f, -3.000318f, -0.032063f, -0.380065f, + -1.660653f, -0.164802f, 7.177527f, 87.759155f, -119.564224f, + -98.051651f, -110.581116f, -0.069982f, 0.023906f, 0.183792f, + 40.606274f, -0.080804f, -0.053744f, -0.187848f, 157.44313f, + -4.820149f, 0.089499f, 0.070232f, -0.043038f, 0.072996f, + 93.347313f, 0.225259f, 103.223228f, -110.682541f, 0.14314f, + -89.827538f, 6.505952f, -0.076949f, 73.816132f, -0.063416f, + -0.23736f, -0.066059f, 116.049599f, 0.120871f, -4.708246f, + 107.501671f, -0.206708f, -32.688675f, 0.047608f, -0.105907f, + 6.505825f, -75.461891f, -0.160341f, 6.532121f, -84.868111f, + -0.065622f, 0.044756f, 0.008672f, 0.017155f, 0.046108f, + -0.218818f, -126.507957f, 0.028271f, 0.180625f, -4.707376f, + -121.524307f, -0.03853f, -4.103166f, -0.018947f, -95.768463f, + 15.941695f, 0.147154f, -102.863029f, -72.521698f, -0.037133f, + -138.1492f, 0.210016f, -0.084692f, -68.693665f, -52.523472f, + -0.133385f, -0.17438f, 0.008654f, -0.035642f, -0.145202f, + 0.211135f, + }; + +static const float av1_rdcost_model_nn_biases_layer1[NUM_OUTPUTS] = { + 0.251909f +}; + +static const NN_CONFIG av1_rdcost_model_nnconfig = { + NUM_FEATURES, + NUM_OUTPUTS, + NUM_HIDDEN_LAYERS, + { + NUM_HIDDEN_NODES, + }, + { + av1_rdcost_model_nn_weights_layer0, + av1_rdcost_model_nn_weights_layer1, + }, + { + av1_rdcost_model_nn_biases_layer0, + av1_rdcost_model_nn_biases_layer1, + }, +}; + +//------------------------------------------------------------------------------ + +#undef NUM_FEATURES +#undef NUM_HIDDEN_LAYERS +#undef NUM_HIDDEN_NODES +#undef NUM_OUTPUTS + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RATE_DISTORTION_MODEL_PARAMS_H_ diff --git a/third_party/aom/av1/encoder/ratectrl.c b/third_party/aom/av1/encoder/ratectrl.c new file mode 100644 index 0000000000..2597fb9908 --- /dev/null +++ b/third_party/aom/av1/encoder/ratectrl.c @@ -0,0 +1,1776 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <limits.h> +#include <math.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +#include "av1/common/alloccommon.h" +#include "av1/encoder/aq_cyclicrefresh.h" +#include "av1/common/common.h" +#include "av1/common/entropymode.h" +#include "av1/common/quant_common.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/encodemv.h" +#include "av1/encoder/random.h" +#include "av1/encoder/ratectrl.h" + +// Max rate target for 1080P and below encodes under normal circumstances +// (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB +#define MAX_MB_RATE 250 +#define MAXRATE_1080P 2025000 + +#define DEFAULT_KF_BOOST 2000 +#define DEFAULT_GF_BOOST 2000 + +#define MIN_BPB_FACTOR 0.005 +#define MAX_BPB_FACTOR 50 + +#define FRAME_OVERHEAD_BITS 200 +#define ASSIGN_MINQ_TABLE(bit_depth, name) \ + do { \ + switch (bit_depth) { \ + case AOM_BITS_8: name = name##_8; break; \ + case AOM_BITS_10: name = name##_10; break; \ + case AOM_BITS_12: name = name##_12; break; \ + default: \ + assert(0 && \ + "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ + " or AOM_BITS_12"); \ + name = NULL; \ + } \ + } while (0) + +// Tables relating active max Q to active min Q +static int kf_low_motion_minq_8[QINDEX_RANGE]; +static int kf_high_motion_minq_8[QINDEX_RANGE]; +static int arfgf_low_motion_minq_8[QINDEX_RANGE]; +static int arfgf_high_motion_minq_8[QINDEX_RANGE]; +static int inter_minq_8[QINDEX_RANGE]; +static int rtc_minq_8[QINDEX_RANGE]; + +static int kf_low_motion_minq_10[QINDEX_RANGE]; +static int kf_high_motion_minq_10[QINDEX_RANGE]; +static int arfgf_low_motion_minq_10[QINDEX_RANGE]; +static int arfgf_high_motion_minq_10[QINDEX_RANGE]; +static int inter_minq_10[QINDEX_RANGE]; +static int rtc_minq_10[QINDEX_RANGE]; +static int kf_low_motion_minq_12[QINDEX_RANGE]; +static int kf_high_motion_minq_12[QINDEX_RANGE]; +static int arfgf_low_motion_minq_12[QINDEX_RANGE]; +static int arfgf_high_motion_minq_12[QINDEX_RANGE]; +static int inter_minq_12[QINDEX_RANGE]; +static int rtc_minq_12[QINDEX_RANGE]; + +static int gf_high = 2000; +static int gf_low = 400; +static int kf_high = 5000; +static int kf_low = 400; + +// How many times less pixels there are to encode given the current scaling. +// Temporary replacement for rcf_mult and rate_thresh_mult. +static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) { + return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height); +} + +// Functions to compute the active minq lookup table entries based on a +// formulaic approach to facilitate easier adjustment of the Q tables. +// The formulae were derived from computing a 3rd order polynomial best +// fit to the original data (after plotting real maxq vs minq (not q index)) +static int get_minq_index(double maxq, double x3, double x2, double x1, + aom_bit_depth_t bit_depth) { + int i; + const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); + + // Special case handling to deal with the step from q2.0 + // down to lossless mode represented by q 1.0. + if (minqtarget <= 2.0) return 0; + + for (i = 0; i < QINDEX_RANGE; i++) { + if (minqtarget <= av1_convert_qindex_to_q(i, bit_depth)) return i; + } + + return QINDEX_RANGE - 1; +} + +static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, + int *arfgf_high, int *inter, int *rtc, + aom_bit_depth_t bit_depth) { + int i; + for (i = 0; i < QINDEX_RANGE; i++) { + const double maxq = av1_convert_qindex_to_q(i, bit_depth); + kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); + kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth); + arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); + arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); + inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); + rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); + } +} + +void av1_rc_init_minq_luts(void) { + init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, + arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, + inter_minq_8, rtc_minq_8, AOM_BITS_8); + init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, + arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, + inter_minq_10, rtc_minq_10, AOM_BITS_10); + init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, + arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, + inter_minq_12, rtc_minq_12, AOM_BITS_12); +} + +// These functions use formulaic calculations to make playing with the +// quantizer tables easier. If necessary they can be replaced by lookup +// tables if and when things settle down in the experimental bitstream +double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { + // Convert the index to a real Q value (scaled down to match old Q values) + switch (bit_depth) { + case AOM_BITS_8: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 4.0; + case AOM_BITS_10: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 16.0; + case AOM_BITS_12: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 64.0; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1.0; + } +} + +int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, + double correction_factor, aom_bit_depth_t bit_depth) { + const double q = av1_convert_qindex_to_q(qindex, bit_depth); + int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; + + assert(correction_factor <= MAX_BPB_FACTOR && + correction_factor >= MIN_BPB_FACTOR); + + // q based adjustment to baseline enumerator + enumerator += (int)(enumerator * q) >> 12; + return (int)(enumerator * correction_factor / q); +} + +int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, + double correction_factor, + aom_bit_depth_t bit_depth) { + const int bpm = + (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth)); + return AOMMAX(FRAME_OVERHEAD_BITS, + (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); +} + +int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const AV1EncoderConfig *oxcf = &cpi->oxcf; + const int min_frame_target = + AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); + // Clip the frame target to the minimum setup value. + if (cpi->rc.is_src_frame_alt_ref) { + // If there is an active ARF at this location use the minimum + // bits on this frame even if it is a constructed arf. + // The active maximum quantizer insures that an appropriate + // number of bits will be spent if needed for constructed ARFs. + target = min_frame_target; + } else if (target < min_frame_target) { + target = min_frame_target; + } + + // Clip the frame target to the maximum allowed value. + if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; + target = AOMMIN(target, max_rate); + } + + return target; +} + +int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) { + const RATE_CONTROL *rc = &cpi->rc; + const AV1EncoderConfig *oxcf = &cpi->oxcf; + if (oxcf->rc_max_intra_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100; + target = AOMMIN(target, max_rate); + } + if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; + return target; +} + +// Update the buffer level: leaky bucket model. +static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { + const AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + // Non-viewable frames are a special case and are treated as pure overhead. + // TODO(zoeliu): To further explore whether we should treat BWDREF_FRAME + // differently, since it is a no-show frame. + if (!cm->show_frame && !rc->is_bwd_ref_frame) + rc->bits_off_target -= encoded_frame_size; + else + rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; + + // Clip the buffer level to the maximum specified buffer size. + rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size); + rc->buffer_level = rc->bits_off_target; +} + +int av1_rc_get_default_min_gf_interval(int width, int height, + double framerate) { + // Assume we do not need any constraint lower than 4K 20 fps + static const double factor_safe = 3840 * 2160 * 20.0; + const double factor = width * height * framerate; + const int default_interval = + clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); + + if (factor <= factor_safe) + return default_interval; + else + return AOMMAX(default_interval, + (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); + // Note this logic makes: + // 4K24: 5 + // 4K30: 6 + // 4K60: 12 +} + +int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { + int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); + interval += (interval & 0x01); // Round to even value +#if CONFIG_FIX_GF_LENGTH + interval = AOMMAX(FIXED_GF_LENGTH, interval); +#endif + return AOMMAX(interval, min_gf_interval); +} + +void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { + int i; + + if (pass == 0 && oxcf->rc_mode == AOM_CBR) { + rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; + rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; + } else { + rc->avg_frame_qindex[KEY_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + rc->avg_frame_qindex[INTER_FRAME] = + (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; + } + + rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; + rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; + + rc->buffer_level = rc->starting_buffer_level; + rc->bits_off_target = rc->starting_buffer_level; + + rc->rolling_target_bits = rc->avg_frame_bandwidth; + rc->rolling_actual_bits = rc->avg_frame_bandwidth; + rc->long_rolling_target_bits = rc->avg_frame_bandwidth; + rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; + + rc->total_actual_bits = 0; + rc->total_target_bits = 0; + rc->total_target_vs_actual = 0; + + rc->frames_since_key = 8; // Sensible default for first frame. + rc->this_key_frame_forced = 0; + rc->next_key_frame_forced = 0; + rc->source_alt_ref_pending = 0; + rc->source_alt_ref_active = 0; + + rc->frames_till_gf_update_due = 0; + rc->ni_av_qi = oxcf->worst_allowed_q; + rc->ni_tot_qi = 0; + rc->ni_frames = 0; + + rc->tot_q = 0.0; + rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); + + for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { + rc->rate_correction_factors[i] = 0.7; + } + rc->rate_correction_factors[KF_STD] = 1.0; + rc->min_gf_interval = oxcf->min_gf_interval; + rc->max_gf_interval = oxcf->max_gf_interval; + if (rc->min_gf_interval == 0) + rc->min_gf_interval = av1_rc_get_default_min_gf_interval( + oxcf->width, oxcf->height, oxcf->init_framerate); + if (rc->max_gf_interval == 0) + rc->max_gf_interval = av1_rc_get_default_max_gf_interval( + oxcf->init_framerate, rc->min_gf_interval); + rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; +} + +int av1_rc_drop_frame(AV1_COMP *cpi) { + const AV1EncoderConfig *oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + + if (!oxcf->drop_frames_water_mark) { + return 0; + } else { + if (rc->buffer_level < 0) { + // Always drop if buffer is below 0. + return 1; + } else { + // If buffer is below drop_mark, for now just drop every other frame + // (starting with the next frame) until it increases back over drop_mark. + int drop_mark = + (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100); + if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) { + --rc->decimation_factor; + } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) { + rc->decimation_factor = 1; + } + if (rc->decimation_factor > 0) { + if (rc->decimation_count > 0) { + --rc->decimation_count; + return 1; + } else { + rc->decimation_count = rc->decimation_factor; + return 0; + } + } else { + rc->decimation_count = 0; + return 0; + } + } + } +} + +static double get_rate_correction_factor(const AV1_COMP *cpi, int width, + int height) { + const RATE_CONTROL *const rc = &cpi->rc; + double rcf; + + if (cpi->common.frame_type == KEY_FRAME) { + rcf = rc->rate_correction_factors[KF_STD]; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rcf = rc->rate_correction_factors[rf_lvl]; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && + (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) + rcf = rc->rate_correction_factors[GF_ARF_STD]; + else + rcf = rc->rate_correction_factors[INTER_NORMAL]; + } + rcf *= resize_rate_factor(cpi, width, height); + return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); +} + +static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width, + int height) { + RATE_CONTROL *const rc = &cpi->rc; + + // Normalize RCF to account for the size-dependent scaling factor. + factor /= resize_rate_factor(cpi, width, height); + + factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); + + if (cpi->common.frame_type == KEY_FRAME) { + rc->rate_correction_factors[KF_STD] = factor; + } else if (cpi->oxcf.pass == 2) { + RATE_FACTOR_LEVEL rf_lvl = + cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; + rc->rate_correction_factors[rf_lvl] = factor; + } else { + if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && + !rc->is_src_frame_alt_ref && + (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) + rc->rate_correction_factors[GF_ARF_STD] = factor; + else + rc->rate_correction_factors[INTER_NORMAL] = factor; + } +} + +void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width, + int height) { + const AV1_COMMON *const cm = &cpi->common; + int correction_factor = 100; + double rate_correction_factor = + get_rate_correction_factor(cpi, width, height); + double adjustment_limit; + const int MBs = av1_get_MBs(width, height); + + int projected_size_based_on_q = 0; + + // Do not update the rate factors for arf overlay frames. + if (cpi->rc.is_src_frame_alt_ref) return; + + // Clear down mmx registers to allow floating point in what follows + aom_clear_system_state(); + + // Work out how big we would have expected the frame to be at this Q given + // the current correction factor. + // Stay in double to avoid int overflow when values are large + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { + projected_size_based_on_q = + av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); + } else { + projected_size_based_on_q = av1_estimate_bits_at_q( + cpi->common.frame_type, cm->base_qindex, MBs, rate_correction_factor, + cm->seq_params.bit_depth); + } + // Work out a size correction factor. + if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) + correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / + projected_size_based_on_q); + + // More heavily damped adjustment used if we have been oscillating either side + // of target. + if (correction_factor > 0) { + adjustment_limit = + 0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor))); + } else { + adjustment_limit = 0.75; + } + + cpi->rc.q_2_frame = cpi->rc.q_1_frame; + cpi->rc.q_1_frame = cm->base_qindex; + cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; + if (correction_factor > 110) + cpi->rc.rc_1_frame = -1; + else if (correction_factor < 90) + cpi->rc.rc_1_frame = 1; + else + cpi->rc.rc_1_frame = 0; + + if (correction_factor > 102) { + // We are not already at the worst allowable quality + correction_factor = + (int)(100 + ((correction_factor - 100) * adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + // Keep rate_correction_factor within limits + if (rate_correction_factor > MAX_BPB_FACTOR) + rate_correction_factor = MAX_BPB_FACTOR; + } else if (correction_factor < 99) { + // We are not already at the best allowable quality + correction_factor = + (int)(100 - ((100 - correction_factor) * adjustment_limit)); + rate_correction_factor = (rate_correction_factor * correction_factor) / 100; + + // Keep rate_correction_factor within limits + if (rate_correction_factor < MIN_BPB_FACTOR) + rate_correction_factor = MIN_BPB_FACTOR; + } + + set_rate_correction_factor(cpi, rate_correction_factor, width, height); +} + +int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, + int active_best_quality, int active_worst_quality, + int width, int height) { + const AV1_COMMON *const cm = &cpi->common; + int q = active_worst_quality; + int last_error = INT_MAX; + int i, target_bits_per_mb, bits_per_mb_at_this_q; + const int MBs = av1_get_MBs(width, height); + const double correction_factor = + get_rate_correction_factor(cpi, width, height); + + // Calculate required scaling factor based on target frame size and size of + // frame produced using previous Q. + target_bits_per_mb = + (int)((uint64_t)(target_bits_per_frame) << BPER_MB_NORMBITS) / MBs; + + i = active_best_quality; + + do { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { + bits_per_mb_at_this_q = + (int)av1_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); + } else { + bits_per_mb_at_this_q = (int)av1_rc_bits_per_mb( + cm->frame_type, i, correction_factor, cm->seq_params.bit_depth); + } + + if (bits_per_mb_at_this_q <= target_bits_per_mb) { + if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) + q = i; + else + q = i - 1; + + break; + } else { + last_error = bits_per_mb_at_this_q - target_bits_per_mb; + } + } while (++i <= active_worst_quality); + + // In CBR mode, this makes sure q is between oscillating Qs to prevent + // resonance. + if (cpi->oxcf.rc_mode == AOM_CBR && + (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && + cpi->rc.q_1_frame != cpi->rc.q_2_frame) { + q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), + AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); + } + return q; +} + +static int get_active_quality(int q, int gfu_boost, int low, int high, + int *low_motion_minq, int *high_motion_minq) { + if (gfu_boost > high) { + return low_motion_minq[q]; + } else if (gfu_boost < low) { + return high_motion_minq[q]; + } else { + const int gap = high - low; + const int offset = high - gfu_boost; + const int qdiff = high_motion_minq[q] - low_motion_minq[q]; + const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; + return low_motion_minq[q] + adjustment; + } +} + +static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, + aom_bit_depth_t bit_depth) { + int *kf_low_motion_minq; + int *kf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); + return get_active_quality(q, rc->kf_boost, kf_low, kf_high, + kf_low_motion_minq, kf_high_motion_minq); +} + +static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, + aom_bit_depth_t bit_depth) { + int *arfgf_low_motion_minq; + int *arfgf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); + ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); + return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, + arfgf_low_motion_minq, arfgf_high_motion_minq); +} + +#if REDUCE_LAST_ALT_BOOST +static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) { + int *arfgf_high_motion_minq; + ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); + return arfgf_high_motion_minq[q]; +} +#endif + +static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) { + const RATE_CONTROL *const rc = &cpi->rc; + const unsigned int curr_frame = cpi->common.current_video_frame; + int active_worst_quality; + + if (cpi->common.frame_type == KEY_FRAME) { + active_worst_quality = + curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2; + } else { + if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || + cpi->refresh_alt_ref_frame)) { + active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4 + : rc->last_q[INTER_FRAME]; + } else { + active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2 + : rc->last_q[INTER_FRAME] * 2; + } + } + return AOMMIN(active_worst_quality, rc->worst_quality); +} + +// Adjust active_worst_quality level based on buffer level. +static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) { + // Adjust active_worst_quality: If buffer is above the optimal/target level, + // bring active_worst_quality down depending on fullness of buffer. + // If buffer is below the optimal level, let the active_worst_quality go from + // ambient Q (at buffer = optimal level) to worst_quality level + // (at buffer = critical level). + const AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *rc = &cpi->rc; + // Buffer level below which we push active_worst to worst_quality. + int64_t critical_level = rc->optimal_buffer_level >> 3; + int64_t buff_lvl_step = 0; + int adjustment = 0; + int active_worst_quality; + int ambient_qp; + if (cm->frame_type == KEY_FRAME) return rc->worst_quality; + // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] + // for the first few frames following key frame. These are both initialized + // to worst_quality and updated with (3/4, 1/4) average in postencode_update. + // So for first few frames following key, the qp of that key frame is weighted + // into the active_worst_quality setting. + ambient_qp = (cm->current_video_frame < 5) + ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME], + rc->avg_frame_qindex[KEY_FRAME]) + : rc->avg_frame_qindex[INTER_FRAME]; + active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); + if (rc->buffer_level > rc->optimal_buffer_level) { + // Adjust down. + // Maximum limit for down adjustment, ~30%. + int max_adjustment_down = active_worst_quality / 3; + if (max_adjustment_down) { + buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) / + max_adjustment_down); + if (buff_lvl_step) + adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / + buff_lvl_step); + active_worst_quality -= adjustment; + } + } else if (rc->buffer_level > critical_level) { + // Adjust up from ambient Q. + if (critical_level) { + buff_lvl_step = (rc->optimal_buffer_level - critical_level); + if (buff_lvl_step) { + adjustment = (int)((rc->worst_quality - ambient_qp) * + (rc->optimal_buffer_level - rc->buffer_level) / + buff_lvl_step); + } + active_worst_quality = ambient_qp + adjustment; + } + } else { + // Set to worst_quality if buffer is below critical level. + active_worst_quality = rc->worst_quality; + } + return active_worst_quality; +} + +static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width, + int height, int *bottom_index, + int *top_index) { + const AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); + int q; + int *rtc_minq; + const int bit_depth = cm->seq_params.bit_depth; + ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); + + if (frame_is_intra_only(cm)) { + active_best_quality = rc->best_quality; + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + int qindex = rc->last_boosted_qindex; + double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); + int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, + (last_boosted_q * 0.75), bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } else if (cm->current_video_frame > 0) { + // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + double q_val; + + active_best_quality = + get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((width * height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); + active_best_quality += + av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + active_best_quality = get_gf_active_quality(rc, q, bit_depth); + } else { + // Use the lower of active_worst_quality and recent/average Q. + if (cm->current_video_frame > 1) { + if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } else { + if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) + active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; + else + active_best_quality = rtc_minq[active_worst_quality]; + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + + // Limit Q range for the adaptive loop. + if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + int qdelta = 0; + aom_clear_system_state(); + qdelta = av1_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, + active_worst_quality, 2.0, bit_depth); + *top_index = active_worst_quality + qdelta; + *top_index = AOMMAX(*top_index, *bottom_index); + } + + // Special case code to try and match quality with forced key frames + if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality, width, height); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +static int get_active_cq_level(const RATE_CONTROL *rc, + const AV1EncoderConfig *const oxcf) { + static const double cq_adjust_threshold = 0.1; + int active_cq_level = oxcf->cq_level; + if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) { + const double x = (double)rc->total_actual_bits / rc->total_target_bits; + if (x < cq_adjust_threshold) { + active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); + } + } + return active_cq_level; +} + +static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width, + int height, int *bottom_index, + int *top_index) { + const AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const int cq_level = get_active_cq_level(rc, oxcf); + int active_best_quality; + int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); + int q; + int *inter_minq; + const int bit_depth = cm->seq_params.bit_depth; + ASSIGN_MINQ_TABLE(bit_depth, inter_minq); + + if (frame_is_intra_only(cm)) { + if (oxcf->rc_mode == AOM_Q) { + const int qindex = cq_level; + const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); + const int delta_qindex = + av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } else if (rc->this_key_frame_forced) { + const int qindex = rc->last_boosted_qindex; + const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); + const int delta_qindex = av1_compute_qdelta( + rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } else { // not first frame of one pass and kf_boost is set + double q_adj_factor = 1.0; + + active_best_quality = + get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((width * height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Convert the adjustment factor to a qindex delta on active_best_quality. + { + const double q_val = + av1_convert_qindex_to_q(active_best_quality, bit_depth); + active_best_quality += + av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); + } + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + q = (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) + ? rc->avg_frame_qindex[INTER_FRAME] + : rc->avg_frame_qindex[KEY_FRAME]; + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == AOM_CQ) { + if (q < cq_level) q = cq_level; + active_best_quality = get_gf_active_quality(rc, q, bit_depth); + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; + } else if (oxcf->rc_mode == AOM_Q) { + const int qindex = cq_level; + const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); + const int delta_qindex = + (cpi->refresh_alt_ref_frame) + ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) + : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } else { + active_best_quality = get_gf_active_quality(rc, q, bit_depth); + } + } else { + if (oxcf->rc_mode == AOM_Q) { + const int qindex = cq_level; + const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); + const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, + 0.70, 1.0, 0.85, 1.0 }; + const int delta_qindex = av1_compute_qdelta( + rc, q_val, + q_val * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL], + bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } else { + // Use the lower of active_worst_quality and recent/average Q. + active_best_quality = (cm->current_video_frame > 1) + ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]] + : inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Clip the active best and worst quality values to limits + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + + // Limit Q range for the adaptive loop. + { + int qdelta = 0; + aom_clear_system_state(); + if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && + !(cm->current_video_frame == 0)) { + qdelta = av1_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, + active_worst_quality, 2.0, bit_depth); + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { + qdelta = av1_compute_qdelta_by_rate( + &cpi->rc, cm->frame_type, active_worst_quality, 1.75, bit_depth); + } + *top_index = active_worst_quality + qdelta; + *top_index = AOMMAX(*top_index, *bottom_index); + } + + if (oxcf->rc_mode == AOM_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames + } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { + q = rc->last_boosted_qindex; + } else { + q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality, width, height); + if (q > *top_index) { + // Special case when we are targeting the max allowed rate + if (rc->this_frame_target >= rc->max_frame_bandwidth) + *top_index = q; + else + q = *top_index; + } + } + + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int av1_frame_type_qdelta(const AV1_COMP *cpi, int rf_level, int q) { + static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = { + INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME + }; + const AV1_COMMON *const cm = &cpi->common; + int qdelta = av1_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q, + rate_factor_deltas[rf_level], + cm->seq_params.bit_depth); + return qdelta; +} + +#define STATIC_MOTION_THRESH 95 +static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width, + int height, int *bottom_index, + int *top_index, int *arf_q) { + const AV1_COMMON *const cm = &cpi->common; + const RATE_CONTROL *const rc = &cpi->rc; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const GF_GROUP *gf_group = &cpi->twopass.gf_group; + const int cq_level = get_active_cq_level(rc, oxcf); + int active_best_quality; + int active_worst_quality = cpi->twopass.active_worst_quality; + int q; + int *inter_minq; + const int bit_depth = cm->seq_params.bit_depth; + ASSIGN_MINQ_TABLE(bit_depth, inter_minq); + +#if CUSTOMIZED_GF + const int is_intrl_arf_boost = + gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE; +#else + const int is_intrl_arf_boost = cpi->refresh_alt2_ref_frame; +#endif // CUSTOMIZED_GF + + if (frame_is_intra_only(cm)) { + // Handle the special case for key frames forced when we have reached + // the maximum key frame interval. Here force the Q to a range + // based on the ambient Q to reduce the risk of popping. + if (rc->this_key_frame_forced) { + double last_boosted_q; + int delta_qindex; + int qindex; + + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex); + active_best_quality = qindex; + last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); + delta_qindex = av1_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 1.25, bit_depth); + active_worst_quality = + AOMMIN(qindex + delta_qindex, active_worst_quality); + } else { + qindex = rc->last_boosted_qindex; + last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); + delta_qindex = av1_compute_qdelta(rc, last_boosted_q, + last_boosted_q * 0.5, bit_depth); + active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); + } + } else { + // Not forced keyframe. + double q_adj_factor = 1.0; + double q_val; + + // Baseline value derived from cpi->active_worst_quality and kf boost. + active_best_quality = + get_kf_active_quality(rc, active_worst_quality, bit_depth); + + // Allow somewhat lower kf minq with small image formats. + if ((width * height) <= (352 * 288)) { + q_adj_factor -= 0.25; + } + + // Make a further adjustment based on the kf zero motion measure. + q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); + + // Convert the adjustment factor to a qindex delta + // on active_best_quality. + q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); + active_best_quality += + av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); + } + } else if (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || is_intrl_arf_boost || + cpi->refresh_alt_ref_frame)) { + // Use the lower of active_worst_quality and recent + // average Q as basis for GF/ARF best Q limit unless last frame was + // a key frame. + if (rc->frames_since_key > 1 && + rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { + q = rc->avg_frame_qindex[INTER_FRAME]; + } else { + q = active_worst_quality; + } + // For constrained quality dont allow Q less than the cq level + if (oxcf->rc_mode == AOM_CQ) { + if (q < cq_level) q = cq_level; +#if USE_SYMM_MULTI_LAYER && MULTI_LVL_BOOST_VBR_CQ + if (gf_group->update_type[gf_group->index] == ARF_UPDATE || + (is_intrl_arf_boost && !cpi->new_bwdref_update_rule)) { +#endif // USE_SYMM_MULTI_LAYER && MULTI_LVL_BOOST_VBR_CQ + active_best_quality = get_gf_active_quality(rc, q, bit_depth); + + // Constrained quality use slightly lower active best. + active_best_quality = active_best_quality * 15 / 16; +#if REDUCE_LAST_ALT_BOOST + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + const int min_boost = get_gf_high_motion_quality(q, bit_depth); + const int boost = min_boost - active_best_quality; + + active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor); + } +#endif + *arf_q = active_best_quality; +#if USE_SYMM_MULTI_LAYER && MULTI_LVL_BOOST_VBR_CQ + } else { + active_best_quality = rc->arf_q; + int this_height = gf_group->pyramid_level[gf_group->index]; + while (this_height < gf_group->pyramid_height) { + active_best_quality = (active_best_quality + cq_level + 1) / 2; + ++this_height; + } + } +#endif // USE_SYMM_MULTI_LAYER && MULTI_LVL_BOOST_VBR_CQ + } else if (oxcf->rc_mode == AOM_Q) { + if (!cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) { + active_best_quality = cq_level; + } else { + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + active_best_quality = get_gf_active_quality(rc, q, bit_depth); + *arf_q = active_best_quality; +#if REDUCE_LAST_ALT_BOOST + const int min_boost = get_gf_high_motion_quality(q, bit_depth); + const int boost = min_boost - active_best_quality; + + active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor); +#endif + } else { + active_best_quality = rc->arf_q; + } +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule && is_intrl_arf_boost) { + int this_height = gf_group->pyramid_level[gf_group->index]; + while (this_height < gf_group->pyramid_height) { + active_best_quality = (active_best_quality + cq_level + 1) / 2; + ++this_height; + } + } else { +#endif + // Modify best quality for second level arfs. For mode AOM_Q this + // becomes the baseline frame q. + if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) + active_best_quality = (active_best_quality + cq_level + 1) / 2; +#if USE_SYMM_MULTI_LAYER + } +#endif + } + } else { + active_best_quality = get_gf_active_quality(rc, q, bit_depth); +#if REDUCE_LAST_ALT_BOOST + const int min_boost = get_gf_high_motion_quality(q, bit_depth); + const int boost = min_boost - active_best_quality; + + active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor); +#endif +#if USE_SYMM_MULTI_LAYER + if (cpi->new_bwdref_update_rule && is_intrl_arf_boost) { + int this_height = gf_group->pyramid_level[gf_group->index]; + while (this_height < gf_group->pyramid_height) { + active_best_quality = + (active_best_quality + active_worst_quality + 1) / 2; + ++this_height; + } + } +#endif + } + } else { + if (oxcf->rc_mode == AOM_Q) { + active_best_quality = cq_level; + } else { + active_best_quality = inter_minq[active_worst_quality]; + + // For the constrained quality mode we don't want + // q to fall below the cq level. + if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { + active_best_quality = cq_level; + } + } + } + + // Extension to max or min Q if undershoot or overshoot is outside + // the permitted range. + if ((cpi->oxcf.rc_mode != AOM_Q) && + (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD)) { + if (frame_is_intra_only(cm) || + (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || is_intrl_arf_boost || + cpi->refresh_alt_ref_frame))) { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); + active_worst_quality += (cpi->twopass.extend_maxq / 2); + } else { + active_best_quality -= + (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; + active_worst_quality += cpi->twopass.extend_maxq; + } + } + + aom_clear_system_state(); + // Static forced key frames Q restrictions dealt with elsewhere. + if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced || + (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { + int qdelta = av1_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], + active_worst_quality); + active_worst_quality = + AOMMAX(active_worst_quality + qdelta, active_best_quality); + } + + // Modify active_best_quality for downscaled normal frames. + if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { + int qdelta = av1_compute_qdelta_by_rate( + rc, cm->frame_type, active_best_quality, 2.0, bit_depth); + active_best_quality = + AOMMAX(active_best_quality + qdelta, rc->best_quality); + } + + active_best_quality = + clamp(active_best_quality, rc->best_quality, rc->worst_quality); + active_worst_quality = + clamp(active_worst_quality, active_best_quality, rc->worst_quality); + + if (oxcf->rc_mode == AOM_Q) { + q = active_best_quality; + // Special case code to try and match quality with forced key frames. + } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) { + // If static since last kf use better of last boosted and last kf q. + if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { + q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex); + } else { + q = AOMMIN(rc->last_boosted_qindex, + (active_best_quality + active_worst_quality) / 2); + } + } else { + q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, + active_worst_quality, width, height); + if (q > active_worst_quality) { + // Special case when we are targeting the max allowed rate. + if (rc->this_frame_target >= rc->max_frame_bandwidth) + active_worst_quality = q; + else + q = active_worst_quality; + } + } + clamp(q, active_best_quality, active_worst_quality); + + *top_index = active_worst_quality; + *bottom_index = active_best_quality; + + assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); + assert(*bottom_index <= rc->worst_quality && + *bottom_index >= rc->best_quality); + assert(q <= rc->worst_quality && q >= rc->best_quality); + return q; +} + +int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, + int *bottom_index, int *top_index) { + int q; + if (cpi->oxcf.pass == 0) { + if (cpi->oxcf.rc_mode == AOM_CBR) + q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index, + top_index); + else + q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index, + top_index); + } else { + assert(cpi->oxcf.pass == 2 && "invalid encode pass"); + + GF_GROUP *gf_group = &cpi->twopass.gf_group; + int arf_q = 0; + + q = rc_pick_q_and_bounds_two_pass(cpi, width, height, bottom_index, + top_index, &arf_q); + + if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { + cpi->rc.arf_q = arf_q; + } + } + + return q; +} + +void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit) { + if (cpi->oxcf.rc_mode == AOM_Q) { + *frame_under_shoot_limit = 0; + *frame_over_shoot_limit = INT_MAX; + } else { + // For very small rate targets where the fractional adjustment + // may be tiny make sure there is at least a minimum range. + const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; + *frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0); + *frame_over_shoot_limit = + AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth); + } +} + +static void rc_set_frame_target(AV1_COMP *cpi, int target, int width, + int height) { + const AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + + rc->this_frame_target = target; + + // Modify frame size target when down-scaled. + if (av1_frame_scaled(cm)) + rc->this_frame_target = + (int)(rc->this_frame_target * resize_rate_factor(cpi, width, height)); + + // Target rate per SB64 (including partial SB64s. + rc->sb64_target_rate = + (int)((int64_t)rc->this_frame_target * 64 * 64) / (width * height); +} + +static void update_alt_ref_frame_stats(AV1_COMP *cpi) { + // this frame refreshes means next frames don't unless specified by user + RATE_CONTROL *const rc = &cpi->rc; + rc->frames_since_golden = 0; + + // Mark the alt ref as done (setting to 0 means no further alt refs pending). + rc->source_alt_ref_pending = 0; + + // Set the alternate reference frame active flag + rc->source_alt_ref_active = 1; +} + +static void update_golden_frame_stats(AV1_COMP *cpi) { + RATE_CONTROL *const rc = &cpi->rc; +#if CUSTOMIZED_GF + const TWO_PASS *const twopass = &cpi->twopass; + const GF_GROUP *const gf_group = &twopass->gf_group; + const int is_intrnl_arf = + cpi->oxcf.pass == 2 + ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE + : cpi->refresh_alt2_ref_frame; +#else + const int is_intnl_arf = cpi->refresh_alt2_ref_frame; +#endif + + // Update the Golden frame usage counts. + // NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame, + // only the virtual indices for the reference frame will be + // updated and cpi->refresh_golden_frame will still be zero. + if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) { + // We will not use internal overlay frames to replace the golden frame + if (!rc->is_src_frame_ext_arf) + // this frame refreshes means next frames don't unless specified by user + rc->frames_since_golden = 0; + + // If we are not using alt ref in the up and coming group clear the arf + // active flag. In multi arf group case, if the index is not 0 then + // we are overlaying a mid group arf so should not reset the flag. + if (cpi->oxcf.pass == 2) { + if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0)) + rc->source_alt_ref_active = 0; + } else if (!rc->source_alt_ref_pending) { + rc->source_alt_ref_active = 0; + } + } else if (!cpi->refresh_alt_ref_frame && !is_intrnl_arf) { + rc->frames_since_golden++; + } +} + +void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { + const AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; +#if CUSTOMIZED_GF + const TWO_PASS *const twopass = &cpi->twopass; + const GF_GROUP *const gf_group = &twopass->gf_group; + const int is_intrnl_arf = + cpi->oxcf.pass == 2 + ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE + : cpi->refresh_alt2_ref_frame; +#else + const int is_intrnl_arf = cpi->refresh_alt2_ref_frame; +#endif + + const int qindex = cm->base_qindex; + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { + av1_cyclic_refresh_postencode(cpi); + } + + // Update rate control heuristics + rc->projected_frame_size = (int)(bytes_used << 3); + + // Post encode loop adjustment of Q prediction. + av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height); + + // Keep a record of last Q and ambient average Q. + if (cm->frame_type == KEY_FRAME) { + rc->last_q[KEY_FRAME] = qindex; + rc->avg_frame_qindex[KEY_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); + } else { + if (!rc->is_src_frame_alt_ref && + !(cpi->refresh_golden_frame || is_intrnl_arf || + cpi->refresh_alt_ref_frame)) { + rc->last_q[INTER_FRAME] = qindex; + rc->avg_frame_qindex[INTER_FRAME] = + ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); + rc->ni_frames++; + rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth); + rc->avg_q = rc->tot_q / rc->ni_frames; + // Calculate the average Q for normal inter frames (not key or GFU + // frames). + rc->ni_tot_qi += qindex; + rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; + } + } + + // Keep record of last boosted (KF/GF/ARF) Q value. + // If the current frame is coded at a lower Q then we also update it. + // If all mbs in this group are skipped only update if the Q value is + // better than that already stored. + // This is used to help set quality in forced key frames to reduce popping + if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) || + (!rc->constrained_gf_group && + (cpi->refresh_alt_ref_frame || is_intrnl_arf || + (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { + rc->last_boosted_qindex = qindex; + } + if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex; + + update_buffer_level(cpi, rc->projected_frame_size); + + // Rolling monitors of whether we are over or underspending used to help + // regulate min and Max Q in two pass. + if (av1_frame_scaled(cm)) + rc->this_frame_target = + (int)(rc->this_frame_target / + resize_rate_factor(cpi, cm->width, cm->height)); + if (cm->frame_type != KEY_FRAME) { + rc->rolling_target_bits = ROUND_POWER_OF_TWO( + rc->rolling_target_bits * 3 + rc->this_frame_target, 2); + rc->rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); + rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); + rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( + rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); + } + + // Actual bits spent + rc->total_actual_bits += rc->projected_frame_size; + // TODO(zoeliu): To investigate whether we should treat BWDREF_FRAME + // differently here for rc->avg_frame_bandwidth. + rc->total_target_bits += + (cm->show_frame || rc->is_bwd_ref_frame) ? rc->avg_frame_bandwidth : 0; + + rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; + + if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && + (cm->frame_type != KEY_FRAME)) + // Update the alternate reference frame stats as appropriate. + update_alt_ref_frame_stats(cpi); + else + // Update the Golden frame stats as appropriate. + update_golden_frame_stats(cpi); + + if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0; + // if (cm->current_video_frame == 1 && cm->show_frame) + /* + rc->this_frame_target = + (int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width, + cm->height)); + */ +} + +void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { + // Update buffer level with zero size, update frame counters, and return. + update_buffer_level(cpi, 0); + cpi->rc.frames_since_key++; + cpi->rc.frames_to_key--; + cpi->rc.rc_2_frame = 0; + cpi->rc.rc_1_frame = 0; +} + +// Use this macro to turn on/off use of alt-refs in one-pass mode. +#define USE_ALTREF_FOR_ONE_PASS 1 + +static int calc_pframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { + static const int af_ratio = 10; + const RATE_CONTROL *const rc = &cpi->rc; + int target; +#if USE_ALTREF_FOR_ONE_PASS + target = + (!rc->is_src_frame_alt_ref && + (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) + ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / + (rc->baseline_gf_interval + af_ratio - 1) + : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / + (rc->baseline_gf_interval + af_ratio - 1); +#else + target = rc->avg_frame_bandwidth; +#endif + return av1_rc_clamp_pframe_target_size(cpi, target); +} + +static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { + static const int kf_ratio = 25; + const RATE_CONTROL *rc = &cpi->rc; + const int target = rc->avg_frame_bandwidth * kf_ratio; + return av1_rc_clamp_iframe_target_size(cpi, target); +} + +void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + int altref_enabled = is_altref_enabled(cpi); + int sframe_dist = cpi->oxcf.sframe_dist; + int sframe_mode = cpi->oxcf.sframe_mode; + int sframe_enabled = cpi->oxcf.sframe_enabled; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if (!cpi->refresh_alt_ref_frame && + (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = + cm->current_video_frame != 0 && rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + if (sframe_enabled) { + if (altref_enabled) { + if (sframe_mode == 1) { + // sframe_mode == 1: insert sframe if it matches altref frame. + + if (cm->current_video_frame % sframe_dist == 0 && + cm->frame_type != KEY_FRAME && cm->current_video_frame != 0 && + cpi->refresh_alt_ref_frame) { + cm->frame_type = S_FRAME; + } + } else { + // sframe_mode != 1: if sframe will be inserted at the next available + // altref frame + + if (cm->current_video_frame % sframe_dist == 0 && + cm->frame_type != KEY_FRAME && cm->current_video_frame != 0) { + rc->sframe_due = 1; + } + + if (rc->sframe_due && cpi->refresh_alt_ref_frame) { + cm->frame_type = S_FRAME; + rc->sframe_due = 0; + } + } + } else { + if (cm->current_video_frame % sframe_dist == 0 && + cm->frame_type != KEY_FRAME && cm->current_video_frame != 0) { + cm->frame_type = S_FRAME; + } + } + } + } + if (rc->frames_till_gf_update_due == 0) { + rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // NOTE: frames_till_gf_update_due must be <= frames_to_key. + if (rc->frames_till_gf_update_due > rc->frames_to_key) { + rc->frames_till_gf_update_due = rc->frames_to_key; + rc->constrained_gf_group = 1; + } else { + rc->constrained_gf_group = 0; + } + cpi->refresh_golden_frame = 1; + rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; + rc->gfu_boost = DEFAULT_GF_BOOST; + } + + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + av1_cyclic_refresh_update_parameters(cpi); + + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_vbr(cpi); + else + target = calc_pframe_target_size_one_pass_vbr(cpi); + rc_set_frame_target(cpi, target, cm->width, cm->height); +} + +static int calc_pframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { + const AV1EncoderConfig *oxcf = &cpi->oxcf; + const RATE_CONTROL *rc = &cpi->rc; + const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; + const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; + int min_frame_target = + AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); + int target; + + if (oxcf->gf_cbr_boost_pct) { + const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; + target = cpi->refresh_golden_frame + ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * + af_ratio_pct) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) + : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / + (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); + } else { + target = rc->avg_frame_bandwidth; + } + + if (diff > 0) { + // Lower the target bandwidth for this frame. + const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct); + target -= (target * pct_low) / 200; + } else if (diff < 0) { + // Increase the target bandwidth for this frame. + const int pct_high = + (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct); + target += (target * pct_high) / 200; + } + if (oxcf->rc_max_inter_bitrate_pct) { + const int max_rate = + rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; + target = AOMMIN(target, max_rate); + } + return AOMMAX(min_frame_target, target); +} + +static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { + const RATE_CONTROL *rc = &cpi->rc; + int target; + if (cpi->common.current_video_frame == 0) { + target = ((rc->starting_buffer_level / 2) > INT_MAX) + ? INT_MAX + : (int)(rc->starting_buffer_level / 2); + } else { + int kf_boost = 32; + double framerate = cpi->framerate; + + kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); + if (rc->frames_since_key < framerate / 2) { + kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); + } + target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; + } + return av1_rc_clamp_iframe_target_size(cpi, target); +} + +void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + RATE_CONTROL *const rc = &cpi->rc; + int target; + // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. + if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || + rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { + cm->frame_type = KEY_FRAME; + rc->this_key_frame_forced = + cm->current_video_frame != 0 && rc->frames_to_key == 0; + rc->frames_to_key = cpi->oxcf.key_freq; + rc->kf_boost = DEFAULT_KF_BOOST; + rc->source_alt_ref_active = 0; + } else { + cm->frame_type = INTER_FRAME; + } + if (rc->frames_till_gf_update_due == 0) { + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + av1_cyclic_refresh_set_golden_update(cpi); + else + rc->baseline_gf_interval = + (rc->min_gf_interval + rc->max_gf_interval) / 2; + rc->frames_till_gf_update_due = rc->baseline_gf_interval; + // NOTE: frames_till_gf_update_due must be <= frames_to_key. + if (rc->frames_till_gf_update_due > rc->frames_to_key) + rc->frames_till_gf_update_due = rc->frames_to_key; + cpi->refresh_golden_frame = 1; + rc->gfu_boost = DEFAULT_GF_BOOST; + } + + // Any update/change of global cyclic refresh parameters (amount/delta-qp) + // should be done here, before the frame qp is selected. + if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) + av1_cyclic_refresh_update_parameters(cpi); + + if (cm->frame_type == KEY_FRAME) + target = calc_iframe_target_size_one_pass_cbr(cpi); + else + target = calc_pframe_target_size_one_pass_cbr(cpi); + + rc_set_frame_target(cpi, target, cm->width, cm->height); + // TODO(afergs): Decide whether to scale up, down, or not at all +} + +int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, + aom_bit_depth_t bit_depth) { + int start_index = rc->worst_quality; + int target_index = rc->worst_quality; + int i; + + // Convert the average q value to an index. + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + start_index = i; + if (av1_convert_qindex_to_q(i, bit_depth) >= qstart) break; + } + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + target_index = i; + if (av1_convert_qindex_to_q(i, bit_depth) >= qtarget) break; + } + + return target_index - start_index; +} + +int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, + int qindex, double rate_target_ratio, + aom_bit_depth_t bit_depth) { + int target_index = rc->worst_quality; + int i; + + // Look up the current projected bits per block for the base index + const int base_bits_per_mb = + av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth); + + // Find the target bits per mb based on the base value and given ratio. + const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); + + // Convert the q target to an index + for (i = rc->best_quality; i < rc->worst_quality; ++i) { + if (av1_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= + target_bits_per_mb) { + target_index = i; + break; + } + } + return target_index - qindex; +} + +void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, + RATE_CONTROL *const rc) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + + // Special case code for 1 pass fixed Q mode tests + if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) { + rc->max_gf_interval = FIXED_GF_INTERVAL; + rc->min_gf_interval = FIXED_GF_INTERVAL; + rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL; + } else { + // Set Maximum gf/arf interval + rc->max_gf_interval = oxcf->max_gf_interval; + rc->min_gf_interval = oxcf->min_gf_interval; + if (rc->min_gf_interval == 0) + rc->min_gf_interval = av1_rc_get_default_min_gf_interval( + oxcf->width, oxcf->height, cpi->framerate); + if (rc->max_gf_interval == 0) + rc->max_gf_interval = av1_rc_get_default_max_gf_interval( + cpi->framerate, rc->min_gf_interval); + + // Extended interval for genuinely static scenes + rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; + + if (is_altref_enabled(cpi)) { + if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) + rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; + } + + if (rc->max_gf_interval > rc->static_scene_max_gf_interval) + rc->max_gf_interval = rc->static_scene_max_gf_interval; + + // Clamp min to max + rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); + } +} + +void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + RATE_CONTROL *const rc = &cpi->rc; + int vbr_max_bits; + const int MBs = av1_get_MBs(width, height); + + rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); + rc->min_frame_bandwidth = + (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); + + rc->min_frame_bandwidth = + AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); + + // A maximum bitrate for a frame is defined. + // The baseline for this aligns with HW implementations that + // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits + // per 16x16 MB (averaged over a frame). However this limit is extended if + // a very high rate is given on the command line or the the rate cannnot + // be acheived because of a user specificed max q (e.g. when the user + // specifies lossless encode. + vbr_max_bits = + (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / + 100); + rc->max_frame_bandwidth = + AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); + + av1_rc_set_gf_interval_range(cpi, rc); +} + +#define VBR_PCT_ADJUSTMENT_LIMIT 50 +// For VBR...adjustment to the frame target based on error from previous frames +static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { + RATE_CONTROL *const rc = &cpi->rc; + int64_t vbr_bits_off_target = rc->vbr_bits_off_target; + int max_delta; + double position_factor = 1.0; + + // How far through the clip are we. + // This number is used to damp the per frame rate correction. + // Range 0 - 1.0 + if (cpi->twopass.total_stats.count != 0.) { + position_factor = sqrt((double)cpi->common.current_video_frame / + cpi->twopass.total_stats.count); + } + max_delta = (int)(position_factor * + ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); + + // vbr_bits_off_target > 0 means we have extra bits to spend + if (vbr_bits_off_target > 0) { + *this_frame_target += (vbr_bits_off_target > max_delta) + ? max_delta + : (int)vbr_bits_off_target; + } else { + *this_frame_target -= (vbr_bits_off_target < -max_delta) + ? max_delta + : (int)-vbr_bits_off_target; + } + + // Fast redistribution of bits arising from massive local undershoot. + // Dont do it for kf,arf,gf or overlay frames. + if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && + rc->vbr_bits_off_target_fast) { + int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); + int fast_extra_bits; + fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits); + fast_extra_bits = (int)AOMMIN( + fast_extra_bits, + AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); + *this_frame_target += (int)fast_extra_bits; + rc->vbr_bits_off_target_fast -= fast_extra_bits; + } +} + +void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { + RATE_CONTROL *const rc = &cpi->rc; + int target_rate = rc->base_frame_target; + + // Correction to rate target based on prior over or under shoot. + if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ) + vbr_rate_correction(cpi, &target_rate); + rc_set_frame_target(cpi, target_rate, width, height); +} diff --git a/third_party/aom/av1/encoder/ratectrl.h b/third_party/aom/av1/encoder/ratectrl.h new file mode 100644 index 0000000000..49d1ae15c1 --- /dev/null +++ b/third_party/aom/av1/encoder/ratectrl.h @@ -0,0 +1,295 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RATECTRL_H_ +#define AOM_AV1_ENCODER_RATECTRL_H_ + +#include "aom/aom_codec.h" +#include "aom/aom_integer.h" + +#include "av1/common/blockd.h" + +#ifdef __cplusplus +extern "C" { +#endif + +// Bits Per MB at different Q (Multiplied by 512) +#define BPER_MB_NORMBITS 9 + +#define CUSTOMIZED_GF 1 + +#if CONFIG_FIX_GF_LENGTH +#define FIXED_GF_LENGTH 16 +#define MAX_PYRAMID_LVL 4 +// We allow a frame to have at most two left/right descendants before changing +// them into to a subtree, i.e., we allow the following structure: +/* OUT_OF_ORDER_FRAME + / / \ \ +(two left children) F F F F (two right children) */ +// Therefore the max gf size supported by 4 layer structure is +// 1 (KEY/OVERLAY) + 1 + 2 + 4 + 16 (two children on both side of their parent) +#define MAX_PYRAMID_SIZE 24 +#define USE_SYMM_MULTI_LAYER 1 +#define REDUCE_LAST_ALT_BOOST 1 +#define REDUCE_LAST_GF_LENGTH 1 +#define MULTI_LVL_BOOST_VBR_CQ 1 +#else +#define USE_SYMM_MULTI_LAYER 0 +#define REDUCE_LAST_ALT_BOOST 0 +#define REDUCE_LAST_GF_LENGTH 0 +#define MULTI_LVL_BOOST_VBR_CQ 0 +#endif + +#if USE_SYMM_MULTI_LAYER +#define USE_MANUAL_GF4_STRUCT 0 +#endif + +#define MIN_GF_INTERVAL 4 +#define MAX_GF_INTERVAL 16 +#define FIXED_GF_INTERVAL 8 // Used in some testing modes only + +typedef enum { + INTER_NORMAL = 0, + INTER_LOW = 1, + INTER_HIGH = 2, + GF_ARF_LOW = 3, + GF_ARF_STD = 4, + KF_STD = 5, + RATE_FACTOR_LEVELS = 6 +} RATE_FACTOR_LEVEL; + +static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { + 1.00, // INTER_NORMAL + 0.80, // INTER_LOW + 1.50, // INTER_HIGH + 1.25, // GF_ARF_LOW + 2.00, // GF_ARF_STD + 2.00, // KF_STD +}; + +typedef struct { + int resize_width; + int resize_height; + uint8_t superres_denom; +} size_params_type; + +typedef struct { + // Rate targetting variables + int base_frame_target; // A baseline frame target before adjustment + // for previous under or over shoot. + int this_frame_target; // Actual frame target after rc adjustment. + int projected_frame_size; + int sb64_target_rate; + int last_q[FRAME_TYPES]; // Separate values for Intra/Inter + int last_boosted_qindex; // Last boosted GF/KF/ARF q + int last_kf_qindex; // Q index of the last key frame coded. + + int gfu_boost; + int last_boost; + int kf_boost; + + double rate_correction_factors[RATE_FACTOR_LEVELS]; + + int frames_since_golden; + int frames_till_gf_update_due; + int min_gf_interval; + int max_gf_interval; + int static_scene_max_gf_interval; + int baseline_gf_interval; + int constrained_gf_group; + int frames_to_key; + int frames_since_key; + int this_key_frame_forced; + int next_key_frame_forced; + int source_alt_ref_pending; + int source_alt_ref_active; + int is_src_frame_alt_ref; + int sframe_due; + + // Length of the bi-predictive frame group interval + int bipred_group_interval; + + // NOTE: Different types of frames may have different bits allocated + // accordingly, aiming to achieve the overall optimal RD performance. + int is_bwd_ref_frame; + int is_last_bipred_frame; + int is_bipred_frame; + int is_src_frame_ext_arf; + + int avg_frame_bandwidth; // Average frame size target for clip + int min_frame_bandwidth; // Minimum allocation used for any frame + int max_frame_bandwidth; // Maximum burst rate allowed for a frame. + + int ni_av_qi; + int ni_tot_qi; + int ni_frames; + int avg_frame_qindex[FRAME_TYPES]; + double tot_q; + double avg_q; + + int64_t buffer_level; + int64_t bits_off_target; + int64_t vbr_bits_off_target; + int64_t vbr_bits_off_target_fast; + + int decimation_factor; + int decimation_count; + + int rolling_target_bits; + int rolling_actual_bits; + + int long_rolling_target_bits; + int long_rolling_actual_bits; + + int rate_error_estimate; + + int64_t total_actual_bits; + int64_t total_target_bits; + int64_t total_target_vs_actual; + + int worst_quality; + int best_quality; + + int64_t starting_buffer_level; + int64_t optimal_buffer_level; + int64_t maximum_buffer_size; + + // rate control history for last frame(1) and the frame before(2). + // -1: undershot + // 1: overshoot + // 0: not initialized. + int rc_1_frame; + int rc_2_frame; + int q_1_frame; + int q_2_frame; + + // Auto frame-scaling variables. + int rf_level_maxq[RATE_FACTOR_LEVELS]; + float arf_boost_factor; + // Q index used for ALT frame + int arf_q; +} RATE_CONTROL; + +struct AV1_COMP; +struct AV1EncoderConfig; + +void av1_rc_init(const struct AV1EncoderConfig *oxcf, int pass, + RATE_CONTROL *rc); + +int av1_estimate_bits_at_q(FRAME_TYPE frame_kind, int q, int mbs, + double correction_factor, aom_bit_depth_t bit_depth); + +double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth); + +void av1_rc_init_minq_luts(void); + +int av1_rc_get_default_min_gf_interval(int width, int height, double framerate); +// Note av1_rc_get_default_max_gf_interval() requires the min_gf_interval to +// be passed in to ensure that the max_gf_interval returned is at least as bis +// as that. +int av1_rc_get_default_max_gf_interval(double framerate, int min_frame_rate); + +// Generally at the high level, the following flow is expected +// to be enforced for rate control: +// First call per frame, one of: +// av1_rc_get_one_pass_vbr_params() +// av1_rc_get_one_pass_cbr_params() +// av1_rc_get_first_pass_params() +// av1_rc_get_second_pass_params() +// depending on the usage to set the rate control encode parameters desired. +// +// Then, call encode_frame_to_data_rate() to perform the +// actual encode. This function will in turn call encode_frame() +// one or more times, followed by one of: +// av1_rc_postencode_update() +// av1_rc_postencode_update_drop_frame() +// +// The majority of rate control parameters are only expected +// to be set in the av1_rc_get_..._params() functions and +// updated during the av1_rc_postencode_update...() functions. +// The only exceptions are av1_rc_drop_frame() and +// av1_rc_update_rate_correction_factors() functions. + +// Functions to set parameters for encoding before the actual +// encode_frame_to_data_rate() function. +void av1_rc_get_one_pass_vbr_params(struct AV1_COMP *cpi); +void av1_rc_get_one_pass_cbr_params(struct AV1_COMP *cpi); + +// Post encode update of the rate control parameters based +// on bytes used +void av1_rc_postencode_update(struct AV1_COMP *cpi, uint64_t bytes_used); +// Post encode update of the rate control parameters for dropped frames +void av1_rc_postencode_update_drop_frame(struct AV1_COMP *cpi); + +// Updates rate correction factors +// Changes only the rate correction factors in the rate control structure. +void av1_rc_update_rate_correction_factors(struct AV1_COMP *cpi, int width, + int height); + +// Decide if we should drop this frame: For 1-pass CBR. +// Changes only the decimation count in the rate control structure +int av1_rc_drop_frame(struct AV1_COMP *cpi); + +// Computes frame size bounds. +void av1_rc_compute_frame_size_bounds(const struct AV1_COMP *cpi, + int this_frame_target, + int *frame_under_shoot_limit, + int *frame_over_shoot_limit); + +// Picks q and q bounds given the target for bits +int av1_rc_pick_q_and_bounds(struct AV1_COMP *cpi, int width, int height, + int *bottom_index, int *top_index); + +// Estimates q to achieve a target bits per frame +int av1_rc_regulate_q(const struct AV1_COMP *cpi, int target_bits_per_frame, + int active_best_quality, int active_worst_quality, + int width, int height); + +// Estimates bits per mb for a given qindex and correction factor. +int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, + double correction_factor, aom_bit_depth_t bit_depth); + +// Clamping utilities for bitrate targets for iframes and pframes. +int av1_rc_clamp_iframe_target_size(const struct AV1_COMP *const cpi, + int target); +int av1_rc_clamp_pframe_target_size(const struct AV1_COMP *const cpi, + int target); +// Utility to set frame_target into the RATE_CONTROL structure +// This function is called only from the av1_rc_get_..._params() functions. +void av1_rc_set_frame_target(struct AV1_COMP *cpi, int target); + +// Computes a q delta (in "q index" terms) to get from a starting q value +// to a target q value +int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, + aom_bit_depth_t bit_depth); + +// Computes a q delta (in "q index" terms) to get from a starting q value +// to a value that should equate to the given rate ratio. +int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, + int qindex, double rate_target_ratio, + aom_bit_depth_t bit_depth); + +int av1_frame_type_qdelta(const struct AV1_COMP *cpi, int rf_level, int q); + +void av1_rc_update_framerate(struct AV1_COMP *cpi, int width, int height); + +void av1_rc_set_gf_interval_range(const struct AV1_COMP *const cpi, + RATE_CONTROL *const rc); + +void av1_set_target_rate(struct AV1_COMP *cpi, int width, int height); + +int av1_resize_one_pass_cbr(struct AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RATECTRL_H_ diff --git a/third_party/aom/av1/encoder/rd.c b/third_party/aom/av1/encoder/rd.c new file mode 100644 index 0000000000..b87d89e50b --- /dev/null +++ b/third_party/aom/av1/encoder/rd.c @@ -0,0 +1,1512 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <math.h> +#include <stdio.h> + +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/bitops.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +#include "av1/common/common.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/mvref_common.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/tokenize.h" + +#define RD_THRESH_POW 1.25 + +// The baseline rd thresholds for breaking out of the rd loop for +// certain modes are assumed to be based on 8x8 blocks. +// This table is used to correct for block size. +// The factors here are << 2 (2 = x0.5, 32 = x8 etc). +static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { + 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16 +}; + +static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA][EXT_TX_SIZES] = + { + { 1, 1, 1, 1 }, // unused + { 1, 1, 0, 0 }, + { 0, 0, 1, 0 }, + }; + +static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER][EXT_TX_SIZES] = + { + { 1, 1, 1, 1 }, // unused + { 1, 1, 0, 0 }, + { 0, 0, 1, 0 }, + { 0, 0, 0, 1 }, + }; + +static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA, + EXT_TX_SETS_INTER)] = { + { + // Intra + EXT_TX_SET_DCTONLY, + EXT_TX_SET_DTT4_IDTX_1DDCT, + EXT_TX_SET_DTT4_IDTX, + }, + { + // Inter + EXT_TX_SET_DCTONLY, + EXT_TX_SET_ALL16, + EXT_TX_SET_DTT9_IDTX_1DDCT, + EXT_TX_SET_DCT_IDTX, + }, +}; + +void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x, + FRAME_CONTEXT *fc) { + int i, j; + + for (i = 0; i < PARTITION_CONTEXTS; ++i) + av1_cost_tokens_from_cdf(x->partition_cost[i], fc->partition_cdf[i], NULL); + + if (cm->skip_mode_flag) { + for (i = 0; i < SKIP_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->skip_mode_cost[i], fc->skip_mode_cdfs[i], + NULL); + } + } + + for (i = 0; i < SKIP_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->skip_cost[i], fc->skip_cdfs[i], NULL); + } + + for (i = 0; i < KF_MODE_CONTEXTS; ++i) + for (j = 0; j < KF_MODE_CONTEXTS; ++j) + av1_cost_tokens_from_cdf(x->y_mode_costs[i][j], fc->kf_y_cdf[i][j], NULL); + + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) + av1_cost_tokens_from_cdf(x->mbmode_cost[i], fc->y_mode_cdf[i], NULL); + for (i = 0; i < CFL_ALLOWED_TYPES; ++i) + for (j = 0; j < INTRA_MODES; ++j) + av1_cost_tokens_from_cdf(x->intra_uv_mode_cost[i][j], + fc->uv_mode_cdf[i][j], NULL); + + av1_cost_tokens_from_cdf(x->filter_intra_mode_cost, fc->filter_intra_mode_cdf, + NULL); + for (i = 0; i < BLOCK_SIZES_ALL; ++i) { + if (av1_filter_intra_allowed_bsize(cm, i)) + av1_cost_tokens_from_cdf(x->filter_intra_cost[i], + fc->filter_intra_cdfs[i], NULL); + } + + for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) + av1_cost_tokens_from_cdf(x->switchable_interp_costs[i], + fc->switchable_interp_cdf[i], NULL); + + for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) { + av1_cost_tokens_from_cdf(x->palette_y_size_cost[i], + fc->palette_y_size_cdf[i], NULL); + av1_cost_tokens_from_cdf(x->palette_uv_size_cost[i], + fc->palette_uv_size_cdf[i], NULL); + for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { + av1_cost_tokens_from_cdf(x->palette_y_mode_cost[i][j], + fc->palette_y_mode_cdf[i][j], NULL); + } + } + + for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->palette_uv_mode_cost[i], + fc->palette_uv_mode_cdf[i], NULL); + } + + for (i = 0; i < PALETTE_SIZES; ++i) { + for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { + av1_cost_tokens_from_cdf(x->palette_y_color_cost[i][j], + fc->palette_y_color_index_cdf[i][j], NULL); + av1_cost_tokens_from_cdf(x->palette_uv_color_cost[i][j], + fc->palette_uv_color_index_cdf[i][j], NULL); + } + } + + int sign_cost[CFL_JOINT_SIGNS]; + av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); + for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { + int *cost_u = x->cfl_cost[joint_sign][CFL_PRED_U]; + int *cost_v = x->cfl_cost[joint_sign][CFL_PRED_V]; + if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) { + memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); + } else { + const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; + av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); + } + if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) { + memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); + } else { + const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; + av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); + } + for (int u = 0; u < CFL_ALPHABET_SIZE; u++) + cost_u[u] += sign_cost[joint_sign]; + } + + for (i = 0; i < MAX_TX_CATS; ++i) + for (j = 0; j < TX_SIZE_CONTEXTS; ++j) + av1_cost_tokens_from_cdf(x->tx_size_cost[i][j], fc->tx_size_cdf[i][j], + NULL); + + for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->txfm_partition_cost[i], + fc->txfm_partition_cdf[i], NULL); + } + + for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { + int s; + for (s = 1; s < EXT_TX_SETS_INTER; ++s) { + if (use_inter_ext_tx_for_txsize[s][i]) { + av1_cost_tokens_from_cdf( + x->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], + av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); + } + } + for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { + if (use_intra_ext_tx_for_txsize[s][i]) { + for (j = 0; j < INTRA_MODES; ++j) { + av1_cost_tokens_from_cdf( + x->intra_tx_type_costs[s][i][j], fc->intra_ext_tx_cdf[s][i][j], + av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]); + } + } + } + } + for (i = 0; i < DIRECTIONAL_MODES; ++i) { + av1_cost_tokens_from_cdf(x->angle_delta_cost[i], fc->angle_delta_cdf[i], + NULL); + } + av1_cost_tokens_from_cdf(x->switchable_restore_cost, + fc->switchable_restore_cdf, NULL); + av1_cost_tokens_from_cdf(x->wiener_restore_cost, fc->wiener_restore_cdf, + NULL); + av1_cost_tokens_from_cdf(x->sgrproj_restore_cost, fc->sgrproj_restore_cdf, + NULL); + av1_cost_tokens_from_cdf(x->intrabc_cost, fc->intrabc_cdf, NULL); + + if (!frame_is_intra_only(cm)) { + for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->comp_inter_cost[i], fc->comp_inter_cdf[i], + NULL); + } + + for (i = 0; i < REF_CONTEXTS; ++i) { + for (j = 0; j < SINGLE_REFS - 1; ++j) { + av1_cost_tokens_from_cdf(x->single_ref_cost[i][j], + fc->single_ref_cdf[i][j], NULL); + } + } + + for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->comp_ref_type_cost[i], + fc->comp_ref_type_cdf[i], NULL); + } + + for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) { + for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) { + av1_cost_tokens_from_cdf(x->uni_comp_ref_cost[i][j], + fc->uni_comp_ref_cdf[i][j], NULL); + } + } + + for (i = 0; i < REF_CONTEXTS; ++i) { + for (j = 0; j < FWD_REFS - 1; ++j) { + av1_cost_tokens_from_cdf(x->comp_ref_cost[i][j], fc->comp_ref_cdf[i][j], + NULL); + } + } + + for (i = 0; i < REF_CONTEXTS; ++i) { + for (j = 0; j < BWD_REFS - 1; ++j) { + av1_cost_tokens_from_cdf(x->comp_bwdref_cost[i][j], + fc->comp_bwdref_cdf[i][j], NULL); + } + } + + for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->intra_inter_cost[i], fc->intra_inter_cdf[i], + NULL); + } + + for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->newmv_mode_cost[i], fc->newmv_cdf[i], NULL); + } + + for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->zeromv_mode_cost[i], fc->zeromv_cdf[i], NULL); + } + + for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->refmv_mode_cost[i], fc->refmv_cdf[i], NULL); + } + + for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->drl_mode_cost0[i], fc->drl_cdf[i], NULL); + } + for (i = 0; i < INTER_MODE_CONTEXTS; ++i) + av1_cost_tokens_from_cdf(x->inter_compound_mode_cost[i], + fc->inter_compound_mode_cdf[i], NULL); + for (i = 0; i < BLOCK_SIZES_ALL; ++i) + av1_cost_tokens_from_cdf(x->compound_type_cost[i], + fc->compound_type_cdf[i], NULL); + for (i = 0; i < BLOCK_SIZES_ALL; ++i) { + if (get_interinter_wedge_bits(i)) { + av1_cost_tokens_from_cdf(x->wedge_idx_cost[i], fc->wedge_idx_cdf[i], + NULL); + } + } + for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { + av1_cost_tokens_from_cdf(x->interintra_cost[i], fc->interintra_cdf[i], + NULL); + av1_cost_tokens_from_cdf(x->interintra_mode_cost[i], + fc->interintra_mode_cdf[i], NULL); + } + for (i = 0; i < BLOCK_SIZES_ALL; ++i) { + av1_cost_tokens_from_cdf(x->wedge_interintra_cost[i], + fc->wedge_interintra_cdf[i], NULL); + } + for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { + av1_cost_tokens_from_cdf(x->motion_mode_cost[i], fc->motion_mode_cdf[i], + NULL); + } + for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { + av1_cost_tokens_from_cdf(x->motion_mode_cost1[i], fc->obmc_cdf[i], NULL); + } + for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->comp_idx_cost[i], fc->compound_index_cdf[i], + NULL); + } + for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) { + av1_cost_tokens_from_cdf(x->comp_group_idx_cost[i], + fc->comp_group_idx_cdf[i], NULL); + } + } +} + +// Values are now correlated to quantizer. +static int sad_per_bit16lut_8[QINDEX_RANGE]; +static int sad_per_bit4lut_8[QINDEX_RANGE]; +static int sad_per_bit16lut_10[QINDEX_RANGE]; +static int sad_per_bit4lut_10[QINDEX_RANGE]; +static int sad_per_bit16lut_12[QINDEX_RANGE]; +static int sad_per_bit4lut_12[QINDEX_RANGE]; + +static void init_me_luts_bd(int *bit16lut, int *bit4lut, int range, + aom_bit_depth_t bit_depth) { + int i; + // Initialize the sad lut tables using a formulaic calculation for now. + // This is to make it easier to resolve the impact of experimental changes + // to the quantizer tables. + for (i = 0; i < range; i++) { + const double q = av1_convert_qindex_to_q(i, bit_depth); + bit16lut[i] = (int)(0.0418 * q + 2.4107); + bit4lut[i] = (int)(0.063 * q + 2.742); + } +} + +void av1_init_me_luts(void) { + init_me_luts_bd(sad_per_bit16lut_8, sad_per_bit4lut_8, QINDEX_RANGE, + AOM_BITS_8); + init_me_luts_bd(sad_per_bit16lut_10, sad_per_bit4lut_10, QINDEX_RANGE, + AOM_BITS_10); + init_me_luts_bd(sad_per_bit16lut_12, sad_per_bit4lut_12, QINDEX_RANGE, + AOM_BITS_12); +} + +static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, + 8, 8, 4, 4, 2, 2, 1, 0 }; +static const int rd_frame_type_factor[FRAME_UPDATE_TYPES] = { + 128, 144, 128, 128, 144, + // TODO(zoeliu): To adjust further following factor values. + 128, 128, 128, + // TODO(weitinglin): We should investigate if the values should be the same + // as the value used by OVERLAY frame + 144, // INTNL_OVERLAY_UPDATE + 128 // INTNL_ARF_UPDATE +}; + +int av1_compute_rd_mult(const AV1_COMP *cpi, int qindex) { + const int64_t q = + av1_dc_quant_Q3(qindex, 0, cpi->common.seq_params.bit_depth); + int64_t rdmult = 0; + switch (cpi->common.seq_params.bit_depth) { + case AOM_BITS_8: rdmult = 88 * q * q / 24; break; + case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 4); break; + case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(88 * q * q / 24, 8); break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } + if (cpi->oxcf.pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + const FRAME_UPDATE_TYPE frame_type = gf_group->update_type[gf_group->index]; + const int boost_index = AOMMIN(15, (cpi->rc.gfu_boost / 100)); + + rdmult = (rdmult * rd_frame_type_factor[frame_type]) >> 7; + rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); + } + if (rdmult < 1) rdmult = 1; + return (int)rdmult; +} + +static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { + double q; + switch (bit_depth) { + case AOM_BITS_8: q = av1_dc_quant_Q3(qindex, 0, AOM_BITS_8) / 4.0; break; + case AOM_BITS_10: q = av1_dc_quant_Q3(qindex, 0, AOM_BITS_10) / 16.0; break; + case AOM_BITS_12: q = av1_dc_quant_Q3(qindex, 0, AOM_BITS_12) / 64.0; break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } + // TODO(debargha): Adjust the function below. + return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); +} + +void av1_initialize_me_consts(const AV1_COMP *cpi, MACROBLOCK *x, int qindex) { + switch (cpi->common.seq_params.bit_depth) { + case AOM_BITS_8: + x->sadperbit16 = sad_per_bit16lut_8[qindex]; + x->sadperbit4 = sad_per_bit4lut_8[qindex]; + break; + case AOM_BITS_10: + x->sadperbit16 = sad_per_bit16lut_10[qindex]; + x->sadperbit4 = sad_per_bit4lut_10[qindex]; + break; + case AOM_BITS_12: + x->sadperbit16 = sad_per_bit16lut_12[qindex]; + x->sadperbit4 = sad_per_bit4lut_12[qindex]; + break; + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + } +} + +static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd) { + int i, bsize, segment_id; + + for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { + const int qindex = + clamp(av1_get_qindex(&cm->seg, segment_id, cm->base_qindex) + + cm->y_dc_delta_q, + 0, MAXQ); + const int q = compute_rd_thresh_factor(qindex, cm->seq_params.bit_depth); + + for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { + // Threshold here seems unnecessarily harsh but fine given actual + // range of values used for cpi->sf.thresh_mult[]. + const int t = q * rd_thresh_block_size_factor[bsize]; + const int thresh_max = INT_MAX / t; + + for (i = 0; i < MAX_MODES; ++i) + rd->threshes[segment_id][bsize][i] = rd->thresh_mult[i] < thresh_max + ? rd->thresh_mult[i] * t / 4 + : INT_MAX; + } + } +} + +void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx) { + (void)ref; + (void)ref_mv_idx; + x->mvcost = x->mv_cost_stack; + x->nmvjointcost = x->nmv_vec_cost; +} + +void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc, + const int num_planes) { + const int nplanes = AOMMIN(num_planes, PLANE_TYPES); + for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) { + for (int plane = 0; plane < nplanes; ++plane) { + LV_MAP_EOB_COST *pcost = &x->eob_costs[eob_multi_size][plane]; + + for (int ctx = 0; ctx < 2; ++ctx) { + aom_cdf_prob *pcdf; + switch (eob_multi_size) { + case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break; + case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break; + case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break; + case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break; + case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break; + case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break; + case 6: + default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break; + } + av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL); + } + } + } + for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { + for (int plane = 0; plane < nplanes; ++plane) { + LV_MAP_COEFF_COST *pcost = &x->coeff_costs[tx_size][plane]; + + for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) + av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], + fc->txb_skip_cdf[tx_size][ctx], NULL); + + for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) + av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx], + fc->coeff_base_eob_cdf[tx_size][plane][ctx], + NULL); + for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) + av1_cost_tokens_from_cdf(pcost->base_cost[ctx], + fc->coeff_base_cdf[tx_size][plane][ctx], NULL); + + for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) + av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], + fc->eob_extra_cdf[tx_size][plane][ctx], NULL); + + for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) + av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], + fc->dc_sign_cdf[plane][ctx], NULL); + + for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { + int br_rate[BR_CDF_SIZE]; + int prev_cost = 0; + int i, j; + av1_cost_tokens_from_cdf(br_rate, fc->coeff_br_cdf[tx_size][plane][ctx], + NULL); + // printf("br_rate: "); + // for(j = 0; j < BR_CDF_SIZE; j++) + // printf("%4d ", br_rate[j]); + // printf("\n"); + for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { + for (j = 0; j < BR_CDF_SIZE - 1; j++) { + pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j]; + } + prev_cost += br_rate[j]; + } + pcost->lps_cost[ctx][i] = prev_cost; + // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx); + // for (i = 0; i <= COEFF_BASE_RANGE; i++) + // printf("%5d ", pcost->lps_cost[ctx][i]); + // printf("\n"); + } + } + } +} + +void av1_initialize_rd_consts(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + MACROBLOCK *const x = &cpi->td.mb; + RD_OPT *const rd = &cpi->rd; + + aom_clear_system_state(); + + rd->RDMULT = av1_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q); + + set_error_per_bit(x, rd->RDMULT); + + set_block_thresholds(cm, rd); + + if (cm->cur_frame_force_integer_mv) { + av1_build_nmv_cost_table(x->nmv_vec_cost, x->nmvcost, &cm->fc->nmvc, + MV_SUBPEL_NONE); + } else { + av1_build_nmv_cost_table( + x->nmv_vec_cost, + cm->allow_high_precision_mv ? x->nmvcost_hp : x->nmvcost, &cm->fc->nmvc, + cm->allow_high_precision_mv); + } + + x->mvcost = x->mv_cost_stack; + x->nmvjointcost = x->nmv_vec_cost; + + if (frame_is_intra_only(cm) && cm->allow_screen_content_tools && + cpi->oxcf.pass != 1) { + int *dvcost[2] = { &cpi->dv_cost[0][MV_MAX], &cpi->dv_cost[1][MV_MAX] }; + av1_build_nmv_cost_table(cpi->dv_joint_cost, dvcost, &cm->fc->ndvc, + MV_SUBPEL_NONE); + } + + if (cpi->oxcf.pass != 1) { + for (int i = 0; i < TRANS_TYPES; ++i) + // IDENTITY: 1 bit + // TRANSLATION: 3 bits + // ROTZOOM: 2 bits + // AFFINE: 3 bits + cpi->gmtype_cost[i] = (1 + (i > 0 ? (i == ROTZOOM ? 1 : 2) : 0)) + << AV1_PROB_COST_SHIFT; + } +} + +static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { + // NOTE: The tables below must be of the same size. + + // The functions described below are sampled at the four most significant + // bits of x^2 + 8 / 256. + + // Normalized rate: + // This table models the rate for a Laplacian source with given variance + // when quantized with a uniform quantizer with given stepsize. The + // closed form expression is: + // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], + // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), + // and H(x) is the binary entropy function. + static const int rate_tab_q10[] = { + 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, + 4044, 3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, + 3133, 3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, + 2290, 2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, + 1608, 1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, + 911, 864, 821, 781, 745, 680, 623, 574, 530, 490, 455, 424, + 395, 345, 304, 269, 239, 213, 190, 171, 154, 126, 104, 87, + 73, 61, 52, 44, 38, 28, 21, 16, 12, 10, 8, 6, + 5, 3, 2, 1, 1, 1, 0, 0, + }; + // Normalized distortion: + // This table models the normalized distortion for a Laplacian source + // with given variance when quantized with a uniform quantizer + // with given stepsize. The closed form expression is: + // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) + // where x = qpstep / sqrt(variance). + // Note the actual distortion is Dn * variance. + static const int dist_tab_q10[] = { + 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, + 5, 6, 7, 7, 8, 9, 11, 12, 13, 15, 16, 17, + 18, 21, 24, 26, 29, 31, 34, 36, 39, 44, 49, 54, + 59, 64, 69, 73, 78, 88, 97, 106, 115, 124, 133, 142, + 151, 167, 184, 200, 215, 231, 245, 260, 274, 301, 327, 351, + 375, 397, 418, 439, 458, 495, 528, 559, 587, 613, 637, 659, + 680, 717, 749, 777, 801, 823, 842, 859, 874, 899, 919, 936, + 949, 960, 969, 977, 983, 994, 1001, 1006, 1010, 1013, 1015, 1017, + 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, + }; + static const int xsq_iq_q10[] = { + 0, 4, 8, 12, 16, 20, 24, 28, 32, + 40, 48, 56, 64, 72, 80, 88, 96, 112, + 128, 144, 160, 176, 192, 208, 224, 256, 288, + 320, 352, 384, 416, 448, 480, 544, 608, 672, + 736, 800, 864, 928, 992, 1120, 1248, 1376, 1504, + 1632, 1760, 1888, 2016, 2272, 2528, 2784, 3040, 3296, + 3552, 3808, 4064, 4576, 5088, 5600, 6112, 6624, 7136, + 7648, 8160, 9184, 10208, 11232, 12256, 13280, 14304, 15328, + 16352, 18400, 20448, 22496, 24544, 26592, 28640, 30688, 32736, + 36832, 40928, 45024, 49120, 53216, 57312, 61408, 65504, 73696, + 81888, 90080, 98272, 106464, 114656, 122848, 131040, 147424, 163808, + 180192, 196576, 212960, 229344, 245728, + }; + const int tmp = (xsq_q10 >> 2) + 8; + const int k = get_msb(tmp) - 3; + const int xq = (k << 3) + ((tmp >> k) & 0x7); + const int one_q10 = 1 << 10; + const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); + const int b_q10 = one_q10 - a_q10; + *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; + *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; +} + +void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, + unsigned int qstep, int *rate, + int64_t *dist) { + // This function models the rate and distortion for a Laplacian + // source with given variance when quantized with a uniform quantizer + // with given stepsize. The closed form expressions are in: + // Hang and Chen, "Source Model for transform video coder and its + // application - Part I: Fundamental Theory", IEEE Trans. Circ. + // Sys. for Video Tech., April 1997. + if (var == 0) { + *rate = 0; + *dist = 0; + } else { + int d_q10, r_q10; + static const uint32_t MAX_XSQ_Q10 = 245727; + const uint64_t xsq_q10_64 = + (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; + const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); + model_rd_norm(xsq_q10, &r_q10, &d_q10); + *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); + *dist = (var * (int64_t)d_q10 + 512) >> 10; + } +} + +static double interp_cubic(const double *p, double x) { + return p[1] + 0.5 * x * + (p[2] - p[0] + + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + + x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); +} + +static double interp_bicubic(const double *p, int p_stride, double x, + double y) { + double q[4]; + q[0] = interp_cubic(p, x); + q[1] = interp_cubic(p + p_stride, x); + q[2] = interp_cubic(p + 2 * p_stride, x); + q[3] = interp_cubic(p + 3 * p_stride, x); + return interp_cubic(q, y); +} + +static const double interp_rgrid_surf[65 * 18] = { + 0.104019, 0.245714, 0.293686, 0.358635, 0.382167, 0.412446, + 0.419955, 0.421388, 0.426672, 0.427990, 0.428531, 0.456868, + 0.569880, 0.638822, 1.016319, 2.143453, 3.565229, 4.720880, + 0.124618, 0.294211, 0.352023, 0.429991, 0.458206, 0.494510, + 0.503513, 0.505232, 0.511566, 0.513234, 0.519365, 0.570225, + 0.697373, 0.840624, 1.462198, 3.289054, 6.256517, 6.852788, + 0.118630, 0.269669, 0.346620, 0.430999, 0.459385, 0.495783, + 0.504808, 0.506532, 0.512884, 0.514988, 0.543437, 0.662772, + 0.795876, 1.313596, 2.403841, 4.163098, 7.440589, 8.616275, + 0.093329, 0.168205, 0.321320, 0.430607, 0.459385, 0.495783, + 0.504813, 0.506548, 0.512975, 0.520662, 0.571659, 0.701841, + 1.010727, 2.138851, 3.460626, 6.317955, 10.098127, 14.418553, + 0.087021, 0.142905, 0.315011, 0.430509, 0.459385, 0.495787, + 0.505075, 0.507599, 0.513584, 0.543182, 0.669941, 0.825620, + 1.362800, 2.572187, 4.205047, 7.498399, 12.303118, 16.641735, + 0.086923, 0.142513, 0.314913, 0.430508, 0.459385, 0.495803, + 0.506126, 0.511816, 0.514810, 0.549705, 0.725350, 1.127334, + 2.168597, 3.463686, 6.318605, 10.162284, 18.556041, 19.847042, + 0.086923, 0.142513, 0.314913, 0.430506, 0.459376, 0.495805, + 0.506388, 0.512954, 0.520772, 0.580215, 0.810474, 1.391548, + 2.579442, 4.205160, 7.498399, 12.381597, 21.703618, 24.015457, + 0.086923, 0.142513, 0.314911, 0.430353, 0.458765, 0.495652, + 0.506391, 0.513406, 0.544098, 0.702950, 1.121860, 2.168961, + 3.463798, 6.318607, 10.162284, 18.685361, 28.188192, 37.638872, + 0.086923, 0.142513, 0.314901, 0.429742, 0.456313, 0.495045, + 0.506484, 0.519195, 0.580104, 0.810126, 1.391462, 2.579441, + 4.205160, 7.498399, 12.381597, 21.848607, 33.367199, 42.623190, + 0.086923, 0.142513, 0.314899, 0.429589, 0.455706, 0.495155, + 0.507882, 0.542426, 0.702360, 1.119921, 2.168478, 3.463791, + 6.318607, 10.162284, 18.685361, 28.345760, 47.802028, 49.163533, + 0.086924, 0.142548, 0.315086, 0.429842, 0.455870, 0.496336, + 0.512412, 0.556953, 0.773373, 1.266396, 2.548277, 4.204676, + 7.498399, 12.381597, 21.848607, 33.548250, 54.301011, 56.262859, + 0.087067, 0.144957, 0.327436, 0.446616, 0.466362, 0.505706, + 0.522077, 0.610747, 0.972543, 1.666916, 3.338812, 6.316669, + 10.162284, 18.685361, 28.345760, 48.065311, 66.145302, 78.396020, + 0.094295, 0.164235, 0.393722, 0.534219, 0.530922, 0.579308, + 0.603889, 0.760870, 1.229961, 2.423214, 4.173513, 7.497916, + 12.381597, 21.848607, 33.548250, 54.589585, 74.875848, 86.468182, + 0.124096, 0.213005, 0.497188, 0.665176, 0.685973, 0.800200, + 0.911394, 1.077971, 1.677290, 3.332129, 6.314960, 10.162257, + 18.685361, 28.345760, 48.065311, 66.453506, 98.275189, 96.862588, + 0.140999, 0.270140, 0.658212, 0.867661, 0.970183, 1.149516, + 1.480599, 1.664833, 2.421893, 3.857981, 7.418830, 12.380371, + 21.848607, 33.548250, 54.589585, 75.188867, 106.657971, 99.762997, + 0.178353, 0.398001, 0.988462, 1.241473, 1.340967, 1.713568, + 2.335030, 2.701432, 3.348532, 5.077158, 9.829903, 18.676528, + 28.345700, 48.065311, 66.453506, 98.588283, 117.057193, 101.130722, + 0.281079, 0.548300, 1.395825, 1.780770, 2.000508, 2.702964, + 3.638454, 4.573843, 5.051641, 7.079129, 11.293332, 21.594861, + 33.544335, 54.589585, 75.188867, 106.971065, 119.957601, 101.466632, + 0.476762, 0.842189, 2.019678, 2.723895, 3.188467, 4.011610, + 5.545111, 7.508984, 8.176339, 9.774504, 14.720782, 27.334416, + 48.049609, 66.453506, 98.588283, 117.370357, 121.329855, 101.509242, + 0.993999, 1.520111, 3.013605, 4.203530, 4.982992, 6.074944, + 8.583581, 11.818375, 14.192544, 14.937517, 21.258160, 33.305953, + 54.585735, 75.188867, 106.971135, 120.279824, 121.976055, 102.690130, + 1.776487, 2.613655, 4.356487, 6.161726, 7.622196, 9.464193, + 13.077233, 18.051656, 23.221051, 24.080068, 30.085038, 48.345269, + 66.457698, 98.588353, 117.379415, 121.976128, 124.356210, 107.713202, + 3.191085, 4.495201, 5.686033, 8.365566, 11.275339, 14.706437, + 20.300969, 28.152237, 35.688355, 39.341382, 41.030743, 55.752262, + 75.211764, 106.980285, 120.608403, 124.680746, 130.222528, 112.260098, + 6.136611, 7.305215, 7.272532, 10.646713, 15.630815, 22.383168, + 31.349131, 42.419822, 52.301680, 58.983454, 58.915405, 69.161305, + 98.992460, 117.713855, 124.344836, 130.623638, 138.442401, 127.846670, + 11.707980, 13.490761, 11.640845, 14.176132, 22.131124, 33.776462, + 47.365711, 61.603834, 75.281056, 83.463985, 85.510533, 86.026513, + 108.787480, 123.031136, 130.607284, 138.954406, 160.867784, 158.958882, + 27.062874, 32.195139, 24.147297, 22.114632, 35.580506, 52.551674, + 71.652956, 88.606776, 102.107193, 110.703186, 114.398733, 111.118539, + 121.503578, 132.455924, 139.490806, 161.412674, 193.563210, 172.203945, + 35.625692, 47.953028, 42.639820, 42.276254, 58.815664, 84.977282, + 110.656412, 126.168446, 134.658126, 140.604482, 144.006012, 141.702382, + 140.125323, 153.122630, 164.748041, 194.156197, 206.854650, 174.013079, + 49.516447, 65.335381, 71.738306, 81.872819, 98.400740, 136.840488, + 163.775802, 169.440078, 172.747876, 171.222919, 171.679604, 172.173550, + 168.200129, 187.617133, 199.683394, 207.768200, 210.062520, 175.478356, + 60.341673, 92.487135, 119.907299, 136.068010, 144.778950, 189.443534, + 220.120077, 219.641635, 214.616503, 205.894657, 198.453924, 200.013069, + 195.938103, 206.118661, 210.447375, 212.061379, 216.078218, 181.162805, + 78.422159, 112.242899, 158.416312, 181.404320, 193.188690, 229.296967, + 270.461799, 275.168977, 256.511701, 244.706786, 231.344608, 226.065087, + 222.248618, 218.662324, 217.966722, 218.248574, 218.818588, 182.740573, + 88.713664, 123.594164, 172.928179, 213.781414, 245.800351, 252.063414, + 313.283141, 331.703831, 305.866639, 285.177142, 269.759635, 251.988739, + 245.998388, 232.688076, 230.588702, 230.882657, 230.319053, 192.120741, + 102.540561, 152.905927, 189.137131, 241.806756, 273.868497, 284.258017, + 339.689853, 373.561104, 362.657463, 326.291984, 311.922687, 290.460189, + 276.774381, 273.012072, 277.751792, 279.123748, 278.820447, 233.813798, + 132.983118, 176.307242, 197.415684, 243.307787, 280.893995, 332.922370, + 340.329043, 404.530166, 419.475405, 375.775209, 351.300889, 340.042759, + 315.683832, 306.123530, 306.359319, 306.733063, 307.609556, 261.647847, + 149.579109, 185.925581, 207.937033, 245.159084, 301.890957, 350.040480, + 352.250771, 418.742329, 458.112686, 430.125208, 386.460441, 380.346839, + 354.679150, 337.305620, 334.504124, 335.889932, 341.060725, 286.898578, + 153.576812, 202.105624, 219.366967, 248.524506, 314.255692, 350.607526, + 390.567688, 408.629209, 488.000213, 480.563823, 432.461799, 410.412624, + 398.607371, 400.188740, 402.780916, 408.853470, 430.449735, 363.777088, + 161.353129, 214.848904, 231.549852, 258.536466, 313.163177, 368.140577, + 412.136393, 413.409032, 499.838438, 519.571063, 485.833867, 444.562715, + 435.738129, 442.358549, 450.166531, 453.208524, 458.424358, 385.823139, + 175.109034, 227.608058, 250.069563, 286.101747, 312.256740, 378.421485, + 413.344147, 435.058646, 476.960941, 542.448886, 530.189154, 495.408402, + 475.326752, 465.017144, 464.694045, 465.144689, 466.905382, 398.669138, + 184.750180, 240.766694, 283.240772, 305.480150, 322.409001, 374.526162, + 427.141326, 452.840323, 472.604139, 545.366105, 567.676694, 541.666203, + 509.591873, 492.044219, 492.778569, 493.765684, 493.235693, 413.684325, + 194.728357, 254.928927, 289.991157, 300.193195, 324.194589, 371.563147, + 439.226438, 468.295088, 495.654854, 533.506353, 587.476353, 578.298989, + 548.041942, 527.393885, 538.965146, 545.070442, 544.295454, 454.012211, + 205.195287, 283.135677, 297.921431, 319.295927, 355.621830, 392.466463, + 446.696167, 485.053519, 516.426615, 532.264584, 588.481600, 615.906737, + 589.319634, 555.754316, 558.389367, 569.094521, 569.779764, 475.384946, + 218.552054, 298.511016, 319.188338, 351.781666, 372.789510, 412.827434, + 464.569387, 506.270203, 533.049810, 553.347364, 580.644599, 632.759854, + 622.235843, 569.960552, 580.799340, 586.553714, 579.488366, 491.826482, + 244.803348, 299.790203, 324.187975, 363.280782, 403.710443, 441.724083, + 492.732682, 534.722691, 552.193622, 575.112647, 586.097705, 635.224970, + 644.642944, 606.017786, 640.321218, 642.316989, 616.397020, 548.300111, + 256.957358, 318.638991, 355.063346, 389.889307, 433.607315, 468.209001, + 515.178157, 573.556591, 578.113115, 587.246475, 601.762801, 638.454644, + 656.574853, 641.184609, 676.908189, 684.198162, 678.387412, 574.805864, + 251.211502, 323.448532, 364.227424, 411.792704, 462.226488, 503.572288, + 549.299249, 599.124071, 601.227977, 597.118176, 613.247552, 633.278532, + 658.074755, 664.930719, 685.731531, 693.632845, 693.076350, 578.326477, + 267.695377, 354.273736, 389.976833, 438.518178, 493.332686, 544.343027, + 588.895829, 620.206193, 628.327410, 606.067827, 620.998532, 657.985256, + 683.936059, 691.345257, 693.894723, 695.175306, 693.618786, 578.517148, + 274.290725, 363.465288, 411.808596, 463.369805, 515.310226, 581.009306, + 613.070738, 636.638714, 647.333929, 629.867603, 644.646319, 687.796202, + 702.859596, 713.495479, 704.068069, 704.991807, 704.188594, 587.283658, + 302.538449, 389.174737, 438.518422, 493.398902, 547.662399, 601.981814, + 624.773046, 641.629484, 644.699451, 645.848784, 668.033340, 703.643523, + 707.422408, 717.329600, 726.298973, 744.127507, 745.365167, 617.954068, + 310.328188, 410.984766, 463.369805, 515.315010, 581.309832, 613.787792, + 634.988538, 654.145284, 662.632978, 668.413496, 706.494057, 750.545471, + 730.724808, 730.002100, 743.625262, 750.801609, 745.308457, 606.505800, + 329.948756, 437.600191, 493.398902, 547.661910, 601.917884, 622.557745, + 633.244395, 644.055898, 648.224221, 665.062911, 763.555733, 812.391078, + 769.063582, 744.865168, 727.579796, 724.950408, 722.179707, 598.564510, + 350.848328, 462.437458, 515.315010, 581.309823, 613.779123, 634.465309, + 652.056257, 662.179143, 671.466297, 726.881256, 819.824030, 880.232789, + 810.371672, 754.246481, 725.053473, 724.253390, 723.503395, 603.394909, + 373.704088, 492.408266, 547.661910, 601.917884, 622.557620, 633.236320, + 644.023513, 648.232514, 666.381639, 785.498283, 929.441612, 999.772800, + 890.339033, 775.852504, 731.840181, 726.905100, 725.251844, 604.899901, + 394.473422, 514.261306, 581.309823, 613.779123, 634.465309, 652.056257, + 662.179143, 671.466557, 727.134512, 835.764144, 981.747089, 1018.462934, + 939.686967, 811.276731, 739.398459, 727.365647, 725.285425, 604.923525, + 419.976505, 546.538939, 601.917884, 622.557620, 633.236320, 644.023513, + 648.232514, 666.381639, 785.545191, 932.841398, 1036.609617, 1026.945092, + 963.822765, 840.827315, 755.532423, 730.241865, 725.366847, 604.924155, + 437.281359, 580.116337, 613.779123, 634.465309, 652.056257, 662.179143, + 671.466557, 727.134512, 835.764859, 981.996194, 1031.896881, 1002.544732, + 881.157178, 828.151494, 799.340975, 751.314325, 728.316587, 605.005504, + 464.713920, 600.649281, 622.557620, 633.236320, 644.023513, 648.232514, + 666.381639, 785.545191, 932.841398, 1036.735329, 1035.037004, 995.478339, + 858.093733, 823.471976, 819.881754, 798.749289, 749.440463, 607.955244, + 495.880237, 612.473139, 634.465309, 652.056257, 662.179143, 671.466557, + 727.134512, 835.764859, 981.996194, 1032.339788, 1031.105117, 995.303259, + 857.733663, 823.435877, 822.822791, 819.873050, 796.882480, 629.038445, + 510.391280, 621.158273, 633.236320, 644.023513, 648.232514, 666.381639, + 785.545191, 932.841398, 1036.735329, 1035.566013, 1029.599350, 994.926093, + 857.645648, 823.435143, 822.904139, 822.822791, 817.965681, 673.856962, + 514.588176, 632.947715, 652.056257, 662.179143, 671.466557, 727.134512, + 835.764859, 981.996194, 1032.339788, 1031.547475, 1023.835377, 972.158629, + 851.968626, 823.347128, 822.904770, 822.904139, 820.752301, 684.418900, + 520.013294, 631.668183, 644.023513, 648.232514, 666.381639, 785.545191, + 932.841398, 1036.735329, 1035.567378, 1029.776746, 1001.044108, 880.853721, + 829.201546, 822.994150, 822.904770, 822.904770, 820.792975, 684.582020, + 531.253628, 650.479606, 662.179143, 671.466557, 727.134512, 835.764859, + 981.996194, 1032.339788, 1031.636855, 1029.601779, 995.366703, 858.086641, + 823.524524, 822.906135, 822.904770, 822.904770, 820.792975, 684.582020, + 528.531744, 642.424501, 648.232514, 666.381639, 785.545191, 932.841398, + 1036.735329, 1035.567378, 1030.219103, 1029.576226, 995.278687, 857.733663, + 823.436508, 822.904770, 822.904770, 822.904770, 820.792975, 684.582020, + 545.401164, 660.550678, 671.508859, 727.304161, 835.807162, 981.996850, + 1032.339788, 1031.636855, 1030.130788, 1029.487827, 994.925709, 857.645648, + 823.435143, 822.904770, 822.904770, 822.904770, 820.792975, 684.582020, + 537.684760, 646.650947, 669.110131, 796.487512, 935.569890, 1036.777631, + 1035.567378, 1030.219103, 1030.018584, 1023.810805, 972.158629, 851.968626, + 823.347128, 822.904770, 822.904770, 822.904770, 820.792975, 684.582020, + 552.408370, 670.001885, 738.246482, 879.690154, 992.939171, 1032.509436, + 1031.636855, 1030.132153, 1029.665223, 1001.043724, 880.853721, 829.201546, + 822.994150, 822.904770, 822.904770, 822.904770, 820.792975, 684.582020, + 539.835902, 667.496388, 799.216004, 946.512211, 1039.506123, 1035.609680, + 1030.219103, 1030.107964, 1029.577207, 995.366703, 858.086641, 823.524524, + 822.906135, 822.904770, 822.904770, 822.904770, 820.792975, 684.582020, + 558.362529, 734.277451, 877.197218, 990.478243, 1029.908393, 1028.993978, + 1027.488620, 1027.464048, 1026.933674, 992.724534, 855.532488, 821.323349, + 820.792975, 820.792975, 820.792975, 820.792975, 818.686600, 682.825198, + 453.127195, 649.075095, 780.278390, 867.165890, 862.469711, 857.067460, + 856.956321, 856.955937, 856.513579, 827.981461, 713.556496, 685.024378, + 684.582020, 684.582020, 684.582020, 684.582020, 682.825198, 569.510056, +}; + +static const double interp_dgrid_surf[65 * 18] = { + 10.650434, 12.204694, 12.040917, 11.843008, 11.845578, 12.051535, 12.103583, + 12.136780, 12.266709, 12.299107, 12.299673, 12.303120, 12.316337, 12.293431, + 12.092165, 11.602421, 11.141559, 8.864495, 12.770003, 14.634889, 14.437149, + 14.199413, 14.202487, 14.449423, 14.511827, 14.551629, 14.707410, 14.746265, + 14.747610, 14.753705, 14.762194, 14.699395, 14.390525, 13.690970, 12.874168, + 10.367121, 12.832328, 14.790730, 14.503765, 14.236403, 14.239028, 14.486600, + 14.549164, 14.589069, 14.745250, 14.784258, 14.788320, 14.801930, 14.762798, + 14.499088, 14.021544, 13.469684, 12.661560, 10.108384, 12.950520, 15.264726, + 14.621957, 14.238236, 14.239028, 14.486601, 14.549264, 14.589469, 14.745361, + 14.784949, 14.791572, 14.798652, 14.660251, 14.119394, 13.651131, 12.935657, + 12.176082, 9.228999, 12.979992, 15.382918, 14.651428, 14.238693, 14.239028, + 14.486701, 14.555710, 14.615321, 14.751849, 14.787700, 14.797104, 14.743189, + 14.475057, 13.944406, 13.450468, 12.687876, 11.824993, 8.906683, 12.980449, + 15.384750, 14.651885, 14.238700, 14.239028, 14.487102, 14.581562, 14.718998, + 14.777721, 14.788445, 14.778661, 14.582790, 14.099785, 13.649637, 12.935359, + 12.201859, 10.891931, 8.482221, 12.980449, 15.384750, 14.651886, 14.238801, + 14.239434, 14.487303, 14.588010, 14.744860, 14.784773, 14.786094, 14.735647, + 14.455704, 13.939591, 13.450393, 12.687876, 11.849334, 10.476658, 8.043672, + 12.980449, 15.384750, 14.651987, 14.245320, 14.265579, 14.493824, 14.588211, + 14.745312, 14.787263, 14.775934, 14.582036, 14.099475, 13.649563, 12.935358, + 12.201859, 10.911285, 9.730570, 6.696921, 12.980449, 15.384750, 14.652393, + 14.271466, 14.370434, 14.520069, 14.589027, 14.746028, 14.785482, 14.735605, + 14.455693, 13.939590, 13.450393, 12.687876, 11.849334, 10.494514, 9.195398, + 6.215460, 12.980449, 15.384750, 14.652494, 14.277985, 14.396679, 14.533035, + 14.615021, 14.754825, 14.775610, 14.582796, 14.099664, 13.649565, 12.935358, + 12.201859, 10.911285, 9.747361, 7.779960, 5.617541, 12.980448, 15.384731, + 14.652415, 14.278078, 14.397578, 14.559053, 14.718657, 14.776398, 14.747044, + 14.504690, 13.951810, 13.450583, 12.687876, 11.849334, 10.494514, 9.210817, + 7.210003, 5.164575, 12.980446, 15.383448, 14.647073, 14.277541, 14.403813, + 14.569546, 14.744956, 14.765103, 14.629073, 14.296161, 13.698573, 12.936118, + 12.201859, 10.911285, 9.747361, 7.790897, 6.322998, 3.931551, 12.981550, + 15.376916, 14.615597, 14.274820, 14.437479, 14.575942, 14.707492, 14.734111, + 14.515975, 14.000806, 13.462803, 12.688066, 11.849334, 10.494514, 9.210817, + 7.219566, 5.781392, 3.486081, 12.991899, 15.376201, 14.579444, 14.296898, + 14.473361, 14.522910, 14.491600, 14.543267, 14.288580, 13.700311, 12.936579, + 12.201867, 10.911285, 9.747361, 7.790897, 6.331506, 4.480348, 2.923138, + 13.019848, 15.383477, 14.582260, 14.385262, 14.452673, 14.436019, 14.238174, + 14.255993, 13.977481, 13.532342, 12.705591, 11.849605, 10.494514, 9.210817, + 7.219566, 5.789642, 4.018194, 2.766222, 13.028558, 15.315782, 14.439141, + 14.326286, 14.452429, 14.311731, 14.033235, 13.922587, 13.665868, 13.207897, + 12.274375, 10.912967, 9.747371, 7.790897, 6.331506, 4.488594, 3.454993, + 2.692682, 12.992752, 15.321471, 14.409573, 14.236340, 14.322969, 14.049072, + 13.764823, 13.479242, 13.250105, 12.759133, 12.019174, 10.532951, 9.211409, + 7.219566, 5.789642, 4.026440, 3.298077, 2.674624, 12.945493, 15.276596, + 14.315745, 14.026198, 14.085774, 13.844563, 13.447576, 12.964935, 12.735525, + 12.288592, 11.511693, 9.900227, 7.793270, 6.331506, 4.488594, 3.463236, + 3.224318, 2.672433, 12.757570, 15.056661, 14.095011, 13.722362, 13.812624, + 13.608480, 13.021206, 12.367627, 11.937931, 11.581049, 10.599552, 9.247860, + 7.220151, 5.789642, 4.026437, 3.305882, 3.191260, 2.615317, 12.581293, + 14.824658, 13.909074, 13.496158, 13.491402, 13.221550, 12.514140, 11.677229, + 10.936895, 10.619912, 9.634779, 7.763570, 6.331082, 4.488590, 3.462798, + 3.216460, 3.076315, 2.373499, 12.283499, 14.455760, 13.890593, 13.427587, + 13.183783, 12.763833, 11.861006, 10.740618, 9.820756, 9.354945, 8.669862, + 7.123268, 5.787860, 4.025994, 3.290000, 3.084410, 2.810905, 2.222916, + 12.010893, 14.300919, 13.986624, 13.484026, 13.025385, 12.224281, 11.064265, + 9.631040, 8.594396, 8.003736, 7.561587, 6.274418, 4.466637, 3.446574, + 3.102467, 2.816989, 2.598688, 1.951541, 11.581477, 13.831132, 13.632027, + 13.380414, 12.807880, 11.665651, 10.218236, 8.562237, 7.222614, 6.611808, + 6.261676, 5.402793, 3.938544, 3.174375, 2.818166, 2.602758, 2.213911, + 1.434763, 11.050735, 12.893449, 12.363152, 12.712829, 12.012961, 10.887854, + 9.109699, 7.421701, 5.965603, 5.272129, 4.991435, 4.423000, 3.369988, + 2.800371, 2.593901, 2.217431, 1.670917, 1.215265, 10.641194, 11.766277, + 10.777082, 10.972917, 10.689298, 9.701545, 7.719947, 6.145654, 4.872442, + 4.099600, 3.880934, 3.514159, 2.786474, 2.368963, 2.162376, 1.673670, + 1.450770, 1.185424, 10.071964, 11.107701, 9.172361, 8.551313, 8.412080, + 7.641397, 6.174246, 4.853916, 3.904549, 3.246810, 2.959903, 2.785066, + 2.240001, 1.793166, 1.585520, 1.449824, 1.405368, 1.168856, 9.213182, + 9.173278, 7.219231, 6.242951, 5.626013, 5.768007, 4.908666, 3.809589, + 3.115109, 2.617899, 2.274793, 2.172960, 1.838597, 1.505915, 1.414333, + 1.392666, 1.338173, 1.105611, 7.365015, 7.471370, 5.622346, 4.520127, + 3.936272, 4.208822, 3.623024, 2.977794, 2.450003, 2.097261, 1.824090, + 1.643270, 1.473525, 1.351388, 1.327504, 1.323865, 1.307894, 1.088234, + 6.198210, 6.580712, 4.682511, 3.416952, 2.941929, 2.766637, 2.650686, + 2.315439, 1.925838, 1.659784, 1.464419, 1.252806, 1.162722, 1.197518, + 1.199875, 1.197365, 1.194040, 0.995797, 5.402507, 5.055466, 3.728724, + 2.624359, 2.165810, 1.943189, 1.918190, 1.738078, 1.516328, 1.290520, + 1.155793, 1.015962, 0.881900, 0.807203, 0.754242, 0.743378, 0.740288, + 0.614158, 3.937867, 3.862507, 2.884664, 2.088147, 1.648496, 1.473584, + 1.340123, 1.291769, 1.165381, 1.000224, 0.893316, 0.821333, 0.691363, + 0.610501, 0.586766, 0.583762, 0.577840, 0.468733, 3.104660, 3.181078, + 2.420208, 1.747442, 1.297956, 1.109835, 0.970385, 0.943229, 0.876923, + 0.777584, 0.678183, 0.628623, 0.553745, 0.523430, 0.519490, 0.514394, + 0.492259, 0.403172, 2.593833, 2.533720, 2.010452, 1.480944, 1.060302, + 0.846383, 0.738703, 0.673144, 0.658010, 0.592449, 0.518236, 0.470335, + 0.425088, 0.393168, 0.378116, 0.355846, 0.275469, 0.213128, 2.176988, + 2.089575, 1.671284, 1.225008, 0.895382, 0.672008, 0.566241, 0.496746, + 0.488005, 0.449874, 0.400899, 0.354002, 0.318150, 0.281533, 0.238545, + 0.224159, 0.202399, 0.160681, 1.874679, 1.769165, 1.430124, 1.068727, + 0.780272, 0.557801, 0.441643, 0.377256, 0.352957, 0.338452, 0.304965, + 0.273172, 0.240052, 0.208724, 0.193431, 0.190845, 0.185025, 0.138166, + 1.590226, 1.502830, 1.193127, 0.917885, 0.670432, 0.474546, 0.355420, + 0.292305, 0.259035, 0.249937, 0.232079, 0.208943, 0.181936, 0.160038, + 0.152257, 0.151235, 0.149583, 0.120747, 1.331730, 1.255907, 1.012871, + 0.778422, 0.578977, 0.412432, 0.293155, 0.231824, 0.197187, 0.183921, + 0.174876, 0.157252, 0.140263, 0.127050, 0.110244, 0.105041, 0.104323, + 0.086944, 1.153994, 1.118771, 0.822355, 0.612321, 0.478249, 0.348222, + 0.247408, 0.186141, 0.152714, 0.135445, 0.129810, 0.119994, 0.115619, + 0.131626, 0.095612, 0.079343, 0.077502, 0.064550, 0.946317, 0.925894, + 0.677969, 0.499906, 0.397101, 0.297931, 0.214467, 0.152333, 0.120731, + 0.102686, 0.095062, 0.090361, 0.122319, 0.240194, 0.112687, 0.070690, + 0.070461, 0.054194, 0.824155, 0.787241, 0.581856, 0.419228, 0.313167, + 0.245582, 0.183500, 0.128101, 0.096577, 0.080267, 0.071022, 0.066851, + 0.085754, 0.154163, 0.075884, 0.052401, 0.054270, 0.026656, 0.716310, + 0.671378, 0.489580, 0.349569, 0.256155, 0.206343, 0.157853, 0.111950, + 0.079271, 0.062518, 0.053441, 0.049660, 0.051400, 0.063778, 0.039993, + 0.029133, 0.023382, 0.013725, 0.614125, 0.579096, 0.417126, 0.299465, + 0.217849, 0.165515, 0.129040, 0.093127, 0.065612, 0.049543, 0.041429, + 0.036850, 0.034416, 0.033989, 0.024216, 0.017377, 0.014833, 0.011987, + 0.520407, 0.487239, 0.349473, 0.251741, 0.184897, 0.135813, 0.107098, + 0.073607, 0.053938, 0.040531, 0.032931, 0.028876, 0.025759, 0.022168, + 0.016739, 0.014638, 0.014333, 0.011947, 0.449954, 0.415124, 0.299452, + 0.216942, 0.158874, 0.115334, 0.088821, 0.060105, 0.042610, 0.032566, + 0.026903, 0.023123, 0.019913, 0.016835, 0.014306, 0.013625, 0.013535, + 0.011284, 0.377618, 0.347773, 0.251741, 0.184839, 0.132857, 0.095439, + 0.070462, 0.052244, 0.036078, 0.026025, 0.021518, 0.018487, 0.015361, + 0.012905, 0.011470, 0.010569, 0.010283, 0.008297, 0.319953, 0.297976, + 0.216942, 0.158842, 0.113280, 0.080426, 0.057367, 0.041987, 0.030135, + 0.022295, 0.017901, 0.015121, 0.012224, 0.010035, 0.009353, 0.009108, + 0.008695, 0.006139, 0.267864, 0.250502, 0.184839, 0.132851, 0.095039, + 0.068220, 0.049135, 0.035315, 0.025144, 0.018237, 0.013857, 0.012094, + 0.009715, 0.007743, 0.006937, 0.006446, 0.006243, 0.004929, 0.230449, + 0.215895, 0.158842, 0.113280, 0.080417, 0.057174, 0.041304, 0.029959, + 0.021866, 0.015673, 0.012133, 0.010083, 0.007801, 0.006053, 0.005401, + 0.003834, 0.003429, 0.002851, 0.193984, 0.183963, 0.132851, 0.095039, + 0.068220, 0.049133, 0.035305, 0.025140, 0.018150, 0.013175, 0.010422, + 0.008491, 0.006397, 0.004567, 0.003494, 0.002933, 0.002825, 0.002355, + 0.167298, 0.158088, 0.113280, 0.080417, 0.057174, 0.041304, 0.029959, + 0.021866, 0.015669, 0.011955, 0.009257, 0.007051, 0.005543, 0.003905, + 0.002984, 0.002825, 0.002814, 0.002347, 0.143228, 0.132220, 0.095039, + 0.068220, 0.049133, 0.035305, 0.025140, 0.018150, 0.013174, 0.010394, + 0.008403, 0.006661, 0.005378, 0.003545, 0.002876, 0.002818, 0.002814, + 0.002347, 0.122934, 0.112735, 0.080417, 0.057174, 0.041304, 0.029959, + 0.021866, 0.015669, 0.011955, 0.009258, 0.007182, 0.006012, 0.003762, + 0.002866, 0.002739, 0.002788, 0.002810, 0.002347, 0.101934, 0.094569, + 0.068220, 0.049133, 0.035305, 0.025140, 0.018150, 0.013174, 0.010394, + 0.008405, 0.006797, 0.005845, 0.003333, 0.002703, 0.002695, 0.002723, + 0.002781, 0.002343, 0.086702, 0.080014, 0.057174, 0.041304, 0.029959, + 0.021866, 0.015669, 0.011955, 0.009258, 0.007190, 0.006533, 0.005839, + 0.003326, 0.002700, 0.002690, 0.002694, 0.002716, 0.002314, 0.073040, + 0.067886, 0.049133, 0.035305, 0.025140, 0.018150, 0.013174, 0.010394, + 0.008405, 0.006807, 0.006468, 0.005831, 0.003325, 0.002700, 0.002690, + 0.002690, 0.002687, 0.002253, 0.061685, 0.056890, 0.041304, 0.029959, + 0.021866, 0.015669, 0.011955, 0.009258, 0.007190, 0.006542, 0.006360, + 0.005416, 0.003221, 0.002698, 0.002690, 0.002690, 0.002683, 0.002238, + 0.052465, 0.048894, 0.035305, 0.025140, 0.018150, 0.013174, 0.010394, + 0.008405, 0.006807, 0.006472, 0.005943, 0.003748, 0.002805, 0.002692, + 0.002690, 0.002690, 0.002683, 0.002238, 0.043838, 0.041101, 0.029959, + 0.021866, 0.015669, 0.011955, 0.009258, 0.007190, 0.006543, 0.006465, + 0.005839, 0.003333, 0.002702, 0.002690, 0.002690, 0.002690, 0.002683, + 0.002238, 0.037824, 0.035133, 0.025140, 0.018150, 0.013174, 0.010394, + 0.008405, 0.006807, 0.006480, 0.006464, 0.005838, 0.003326, 0.002700, + 0.002690, 0.002690, 0.002690, 0.002683, 0.002238, 0.031865, 0.029815, + 0.021866, 0.015668, 0.011955, 0.009258, 0.007190, 0.006543, 0.006475, + 0.006462, 0.005831, 0.003325, 0.002700, 0.002690, 0.002690, 0.002690, + 0.002683, 0.002238, 0.027150, 0.025016, 0.018128, 0.013083, 0.010371, + 0.008405, 0.006807, 0.006480, 0.006472, 0.006359, 0.005416, 0.003221, + 0.002698, 0.002690, 0.002690, 0.002690, 0.002683, 0.002238, 0.023094, + 0.021760, 0.015577, 0.011590, 0.009167, 0.007188, 0.006543, 0.006475, + 0.006466, 0.005943, 0.003748, 0.002805, 0.002692, 0.002690, 0.002690, + 0.002690, 0.002683, 0.002238, 0.019269, 0.018038, 0.013060, 0.010280, + 0.008382, 0.006806, 0.006480, 0.006474, 0.006464, 0.005839, 0.003333, + 0.002702, 0.002690, 0.002690, 0.002690, 0.002690, 0.002683, 0.002238, + 0.016874, 0.015472, 0.011566, 0.009148, 0.007171, 0.006527, 0.006458, + 0.006457, 0.006447, 0.005823, 0.003318, 0.002693, 0.002683, 0.002683, + 0.002683, 0.002683, 0.002676, 0.002232, 0.011968, 0.011056, 0.008762, + 0.007219, 0.005717, 0.005391, 0.005386, 0.005386, 0.005377, 0.004856, + 0.002767, 0.002246, 0.002238, 0.002238, 0.002238, 0.002238, 0.002232, + 0.001862, +}; + +void av1_model_rd_surffit(double xm, double yl, double *rate_f, + double *dist_f) { + const double x_start = -0.5; + const double x_end = 16.5; + const double x_step = 1; + const double y_start = -15.5; + const double y_end = 16.5; + const double y_step = 0.5; + const double epsilon = 1e-6; + const int stride = (int)rint((x_end - x_start) / x_step) + 1; + (void)y_end; + + xm = AOMMAX(xm, x_start + x_step + epsilon); + xm = AOMMIN(xm, x_end - x_step - epsilon); + yl = AOMMAX(yl, y_start + y_step + epsilon); + yl = AOMMIN(yl, y_end - y_step - epsilon); + + const double y = (yl - y_start) / y_step; + const double x = (xm - x_start) / x_step; + + const int yi = (int)floor(y); + const int xi = (int)floor(x); + assert(xi > 0); + assert(yi > 0); + + const double yo = y - yi; + const double xo = x - xi; + const double *prate = &interp_rgrid_surf[(yi - 1) * stride + (xi - 1)]; + const double *pdist = &interp_dgrid_surf[(yi - 1) * stride + (xi - 1)]; + *rate_f = interp_bicubic(prate, stride, xo, yo); + *dist_f = interp_bicubic(pdist, stride, xo, yo); +} + +static const double interp_rgrid_curv[65] = { + 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 4.759876, + 8.132086, 13.651828, 21.908271, 33.522054, 48.782376, 71.530983, + 106.728649, 151.942795, 199.893011, 242.850965, 283.933923, 322.154203, + 360.684608, 394.801656, 426.879017, 460.234313, 484.103987, 508.261495, + 536.486763, 558.196737, 586.285894, 614.764511, 634.166333, 647.706472, + 658.211478, 681.360407, 701.052141, 727.007310, 768.663973, 804.407660, + 884.627751, 1065.658131, 1238.875214, 1440.185176, 1678.377931, 1962.243390, + 2300.571467, 2702.152072, 3175.775119, 3730.230519, 4374.308184, 5116.798028, + 5966.489961, 6932.173897, 8022.639747, 9246.677424, 10613.076839, +}; + +static const double interp_dgrid_curv[65] = { + 14.604855, 14.604855, 14.604855, 14.604855, 14.604855, 14.604855, 14.604855, + 14.604855, 14.604855, 14.604855, 14.604855, 14.604855, 14.555776, 14.533692, + 14.439920, 14.257791, 13.977230, 13.623229, 13.064884, 12.355411, 11.560773, + 10.728960, 9.861975, 8.643612, 6.916021, 5.154769, 3.734940, 2.680051, + 1.925506, 1.408410, 1.042223, 0.767641, 0.565392, 0.420116, 0.310427, + 0.231711, 0.172999, 0.128293, 0.094992, 0.072171, 0.052972, 0.039354, + 0.029555, 0.022857, 0.016832, 0.013297, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, + 0.000000, 0.000000, +}; + +void av1_model_rd_curvfit(double xqr, double *rate_f, double *distbysse_f) { + const double x_start = -15.5; + const double x_end = 16.5; + const double x_step = 0.5; + const double epsilon = 1e-6; + (void)x_end; + + xqr = AOMMAX(xqr, x_start + x_step + epsilon); + xqr = AOMMIN(xqr, x_end - x_step - epsilon); + const double x = (xqr - x_start) / x_step; + const int xi = (int)floor(x); + const double xo = x - xi; + + assert(xi > 0); + + const double *prate = &interp_rgrid_curv[(xi - 1)]; + const double *pdist = &interp_dgrid_curv[(xi - 1)]; + *rate_f = interp_cubic(prate, xo); + *distbysse_f = interp_cubic(pdist, xo); +} + +static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], + ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { + const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const ENTROPY_CONTEXT *const above = pd->above_context; + const ENTROPY_CONTEXT *const left = pd->left_context; + + memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); + memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); +} + +void av1_get_entropy_contexts(BLOCK_SIZE bsize, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], + ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left); +} + +void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, + int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { + int i; + int zero_seen = 0; + int best_sad = INT_MAX; + int this_sad = INT_MAX; + int max_mv = 0; + uint8_t *src_y_ptr = x->plane[0].src.buf; + uint8_t *ref_y_ptr; + MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; + int num_mv_refs = 0; + const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; + const int_mv ref_mv = + av1_get_ref_mv_from_stack(0, ref_frames, 0, x->mbmi_ext); + const int_mv ref_mv1 = + av1_get_ref_mv_from_stack(0, ref_frames, 1, x->mbmi_ext); + + pred_mv[num_mv_refs++] = ref_mv.as_mv; + if (ref_mv.as_int != ref_mv1.as_int) { + pred_mv[num_mv_refs++] = ref_mv1.as_mv; + } + if (cpi->sf.adaptive_motion_search && block_size < x->max_partition_size) + pred_mv[num_mv_refs++] = x->pred_mv[ref_frame]; + + assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); + + // Get the sad for each candidate reference mv. + for (i = 0; i < num_mv_refs; ++i) { + const MV *this_mv = &pred_mv[i]; + int fp_row, fp_col; + fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; + fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; + max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); + + if (fp_row == 0 && fp_col == 0 && zero_seen) continue; + zero_seen |= (fp_row == 0 && fp_col == 0); + + ref_y_ptr = &ref_y_buffer[ref_y_stride * fp_row + fp_col]; + // Find sad for current vector. + this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, + ref_y_ptr, ref_y_stride); + // Note if it is the best so far. + if (this_sad < best_sad) { + best_sad = this_sad; + } + } + + // Note the index of the mv that worked best in the reference list. + x->max_mv_context[ref_frame] = max_mv; + x->pred_mv_sad[ref_frame] = best_sad; +} + +void av1_setup_pred_block(const MACROBLOCKD *xd, + struct buf_2d dst[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *scale, + const struct scale_factors *scale_uv, + const int num_planes) { + int i; + + dst[0].buf = src->y_buffer; + dst[0].stride = src->y_stride; + dst[1].buf = src->u_buffer; + dst[2].buf = src->v_buffer; + dst[1].stride = dst[2].stride = src->uv_stride; + + for (i = 0; i < num_planes; ++i) { + setup_pred_plane(dst + i, xd->mi[0]->sb_type, dst[i].buf, + i ? src->uv_crop_width : src->y_crop_width, + i ? src->uv_crop_height : src->y_crop_height, + dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, + xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); + } +} + +int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, + int stride) { + const int bw = mi_size_wide_log2[plane_bsize]; + const int y = 4 * (raster_block >> bw); + const int x = 4 * (raster_block & ((1 << bw) - 1)); + return y * stride + x; +} + +int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, + int16_t *base) { + const int stride = block_size_wide[plane_bsize]; + return base + av1_raster_block_offset(plane_bsize, raster_block, stride); +} + +YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, + int ref_frame) { + const AV1_COMMON *const cm = &cpi->common; + const int scaled_idx = cpi->scaled_ref_idx[ref_frame - 1]; + const int ref_idx = get_ref_frame_buf_idx(cpi, ref_frame); + return (scaled_idx != ref_idx && scaled_idx != INVALID_IDX) + ? &cm->buffer_pool->frame_bufs[scaled_idx].buf + : NULL; +} + +int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x, + const MACROBLOCKD *xd) { + if (cm->interp_filter == SWITCHABLE) { + const MB_MODE_INFO *const mbmi = xd->mi[0]; + int inter_filter_cost = 0; + int dir; + + for (dir = 0; dir < 2; ++dir) { + const int ctx = av1_get_pred_context_switchable_interp(xd, dir); + const InterpFilter filter = + av1_extract_interp_filter(mbmi->interp_filters, dir); + inter_filter_cost += x->switchable_interp_costs[ctx][filter]; + } + return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; + } else { + return 0; + } +} + +void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { + int i; + RD_OPT *const rd = &cpi->rd; + SPEED_FEATURES *const sf = &cpi->sf; + + // Set baseline threshold values. + for (i = 0; i < MAX_MODES; ++i) rd->thresh_mult[i] = cpi->oxcf.mode == 0; + + if (sf->adaptive_rd_thresh) { + rd->thresh_mult[THR_NEARESTMV] = 300; + rd->thresh_mult[THR_NEARESTL2] = 300; + rd->thresh_mult[THR_NEARESTL3] = 300; + rd->thresh_mult[THR_NEARESTB] = 300; + rd->thresh_mult[THR_NEARESTA2] = 300; + rd->thresh_mult[THR_NEARESTA] = 300; + rd->thresh_mult[THR_NEARESTG] = 300; + } else { + rd->thresh_mult[THR_NEARESTMV] = 0; + rd->thresh_mult[THR_NEARESTL2] = 0; + rd->thresh_mult[THR_NEARESTL3] = 0; + rd->thresh_mult[THR_NEARESTB] = 0; + rd->thresh_mult[THR_NEARESTA2] = 0; + rd->thresh_mult[THR_NEARESTA] = 0; + rd->thresh_mult[THR_NEARESTG] = 0; + } + + rd->thresh_mult[THR_NEWMV] += 1000; + rd->thresh_mult[THR_NEWL2] += 1000; + rd->thresh_mult[THR_NEWL3] += 1000; + rd->thresh_mult[THR_NEWB] += 1000; + rd->thresh_mult[THR_NEWA2] = 1000; + rd->thresh_mult[THR_NEWA] += 1000; + rd->thresh_mult[THR_NEWG] += 1000; + + rd->thresh_mult[THR_NEARMV] += 1000; + rd->thresh_mult[THR_NEARL2] += 1000; + rd->thresh_mult[THR_NEARL3] += 1000; + rd->thresh_mult[THR_NEARB] += 1000; + rd->thresh_mult[THR_NEARA2] = 1000; + rd->thresh_mult[THR_NEARA] += 1000; + rd->thresh_mult[THR_NEARG] += 1000; + + rd->thresh_mult[THR_GLOBALMV] += 2000; + rd->thresh_mult[THR_GLOBALL2] += 2000; + rd->thresh_mult[THR_GLOBALL3] += 2000; + rd->thresh_mult[THR_GLOBALB] += 2000; + rd->thresh_mult[THR_GLOBALA2] = 2000; + rd->thresh_mult[THR_GLOBALG] += 2000; + rd->thresh_mult[THR_GLOBALA] += 2000; + + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] += 1000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] += 1000; + + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] += 2000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] += 2000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] += 2000; + rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] += 2000; + + rd->thresh_mult[THR_COMP_NEAR_NEARLA] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWLA] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTLA] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWLA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARLA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWLA] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL2A] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL2A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL2A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL2A] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL3A] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL3A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL3A] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL3A] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARGA] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWGA] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTGA] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWGA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARGA] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWGA] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARLB] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWLB] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTLB] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWLB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARLB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWLB] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL2B] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL2B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL2B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL2B] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL3B] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL3B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL3B] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL3B] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARGB] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWGB] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTGB] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWGB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARGB] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWGB] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARLA2] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWLA2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARLA2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWLA2] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL2A2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL2A2] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARL3A2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWL3A2] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARGA2] += 1200; + rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] += 1500; + rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] += 1500; + rd->thresh_mult[THR_COMP_NEAR_NEWGA2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEARGA2] += 1700; + rd->thresh_mult[THR_COMP_NEW_NEWGA2] += 2000; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] += 2500; + + rd->thresh_mult[THR_COMP_NEAR_NEARLL2] += 1600; + rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] += 2000; + rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] += 2000; + rd->thresh_mult[THR_COMP_NEAR_NEWLL2] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEARLL2] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEWLL2] += 2400; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] += 3200; + + rd->thresh_mult[THR_COMP_NEAR_NEARLL3] += 1600; + rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] += 2000; + rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] += 2000; + rd->thresh_mult[THR_COMP_NEAR_NEWLL3] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEARLL3] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEWLL3] += 2400; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] += 3200; + + rd->thresh_mult[THR_COMP_NEAR_NEARLG] += 1600; + rd->thresh_mult[THR_COMP_NEAREST_NEWLG] += 2000; + rd->thresh_mult[THR_COMP_NEW_NEARESTLG] += 2000; + rd->thresh_mult[THR_COMP_NEAR_NEWLG] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEARLG] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEWLG] += 2400; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] += 3200; + + rd->thresh_mult[THR_COMP_NEAR_NEARBA] += 1600; + rd->thresh_mult[THR_COMP_NEAREST_NEWBA] += 2000; + rd->thresh_mult[THR_COMP_NEW_NEARESTBA] += 2000; + rd->thresh_mult[THR_COMP_NEAR_NEWBA] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEARBA] += 2200; + rd->thresh_mult[THR_COMP_NEW_NEWBA] += 2400; + rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] += 3200; + + rd->thresh_mult[THR_DC] += 1000; + rd->thresh_mult[THR_PAETH] += 1000; + rd->thresh_mult[THR_SMOOTH] += 2000; + rd->thresh_mult[THR_SMOOTH_V] += 2000; + rd->thresh_mult[THR_SMOOTH_H] += 2000; + rd->thresh_mult[THR_H_PRED] += 2000; + rd->thresh_mult[THR_V_PRED] += 2000; + rd->thresh_mult[THR_D135_PRED] += 2500; + rd->thresh_mult[THR_D203_PRED] += 2500; + rd->thresh_mult[THR_D157_PRED] += 2500; + rd->thresh_mult[THR_D67_PRED] += 2500; + rd->thresh_mult[THR_D113_PRED] += 2500; + rd->thresh_mult[THR_D45_PRED] += 2500; +} + +void av1_set_rd_speed_thresholds_sub8x8(AV1_COMP *cpi) { + static const int thresh_mult[MAX_REFS] = { 2500, 2500, 2500, 2500, 2500, + 2500, 2500, 4500, 4500, 4500, + 4500, 4500, 4500, 4500, 4500, + 4500, 4500, 4500, 4500, 2500 }; + RD_OPT *const rd = &cpi->rd; + memcpy(rd->thresh_mult_sub8x8, thresh_mult, sizeof(thresh_mult)); +} + +void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, + int (*factor_buf)[MAX_MODES], int rd_thresh, + int bsize, int best_mode_index) { + if (rd_thresh > 0) { + const int top_mode = MAX_MODES; + int mode; + for (mode = 0; mode < top_mode; ++mode) { + const BLOCK_SIZE min_size = AOMMAX(bsize - 1, BLOCK_4X4); + const BLOCK_SIZE max_size = + AOMMIN(bsize + 2, (int)cm->seq_params.sb_size); + BLOCK_SIZE bs; + for (bs = min_size; bs <= max_size; ++bs) { + int *const fact = &factor_buf[bs][mode]; + if (mode == best_mode_index) { + *fact -= (*fact >> 4); + } else { + *fact = AOMMIN(*fact + RD_THRESH_INC, rd_thresh * RD_THRESH_MAX_FACT); + } + } + } + } +} + +int av1_get_intra_cost_penalty(int qindex, int qdelta, + aom_bit_depth_t bit_depth) { + const int q = av1_dc_quant_Q3(qindex, qdelta, bit_depth); + switch (bit_depth) { + case AOM_BITS_8: return 20 * q; + case AOM_BITS_10: return 5 * q; + case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); + default: + assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); + return -1; + } +} diff --git a/third_party/aom/av1/encoder/rd.h b/third_party/aom/av1/encoder/rd.h new file mode 100644 index 0000000000..755b61df50 --- /dev/null +++ b/third_party/aom/av1/encoder/rd.h @@ -0,0 +1,464 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RD_H_ +#define AOM_AV1_ENCODER_RD_H_ + +#include <limits.h> + +#include "av1/common/blockd.h" + +#include "av1/encoder/block.h" +#include "av1/encoder/context_tree.h" +#include "av1/encoder/cost.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define RDDIV_BITS 7 +#define RD_EPB_SHIFT 6 + +#define RDCOST(RM, R, D) \ + (ROUND_POWER_OF_TWO(((int64_t)(R)) * (RM), AV1_PROB_COST_SHIFT) + \ + ((D) * (1 << RDDIV_BITS))) + +#define RDCOST_DBL(RM, R, D) \ + (((((double)(R)) * (RM)) / (double)(1 << AV1_PROB_COST_SHIFT)) + \ + ((double)(D) * (1 << RDDIV_BITS))) + +#define QIDX_SKIP_THRESH 115 + +#define MV_COST_WEIGHT 108 +#define MV_COST_WEIGHT_SUB 120 + +#define RD_THRESH_MAX_FACT 64 +#define RD_THRESH_INC 1 + +// Factor to weigh the rate for switchable interp filters. +#define SWITCHABLE_INTERP_RATE_FACTOR 1 + +// This enumerator type needs to be kept aligned with the mode order in +// const MODE_DEFINITION av1_mode_order[MAX_MODES] used in the rd code. +typedef enum { + THR_NEARESTMV, + THR_NEARESTL2, + THR_NEARESTL3, + THR_NEARESTB, + THR_NEARESTA2, + THR_NEARESTA, + THR_NEARESTG, + + THR_NEWMV, + THR_NEWL2, + THR_NEWL3, + THR_NEWB, + THR_NEWA2, + THR_NEWA, + THR_NEWG, + + THR_NEARMV, + THR_NEARL2, + THR_NEARL3, + THR_NEARB, + THR_NEARA2, + THR_NEARA, + THR_NEARG, + + THR_GLOBALMV, + THR_GLOBALL2, + THR_GLOBALL3, + THR_GLOBALB, + THR_GLOBALA2, + THR_GLOBALA, + THR_GLOBALG, + + THR_COMP_NEAREST_NEARESTLA, + THR_COMP_NEAREST_NEARESTL2A, + THR_COMP_NEAREST_NEARESTL3A, + THR_COMP_NEAREST_NEARESTGA, + THR_COMP_NEAREST_NEARESTLB, + THR_COMP_NEAREST_NEARESTL2B, + THR_COMP_NEAREST_NEARESTL3B, + THR_COMP_NEAREST_NEARESTGB, + THR_COMP_NEAREST_NEARESTLA2, + THR_COMP_NEAREST_NEARESTL2A2, + THR_COMP_NEAREST_NEARESTL3A2, + THR_COMP_NEAREST_NEARESTGA2, + THR_COMP_NEAREST_NEARESTLL2, + THR_COMP_NEAREST_NEARESTLL3, + THR_COMP_NEAREST_NEARESTLG, + THR_COMP_NEAREST_NEARESTBA, + + THR_COMP_NEAR_NEARLA, + THR_COMP_NEW_NEARESTLA, + THR_COMP_NEAREST_NEWLA, + THR_COMP_NEW_NEARLA, + THR_COMP_NEAR_NEWLA, + THR_COMP_NEW_NEWLA, + THR_COMP_GLOBAL_GLOBALLA, + + THR_COMP_NEAR_NEARL2A, + THR_COMP_NEW_NEARESTL2A, + THR_COMP_NEAREST_NEWL2A, + THR_COMP_NEW_NEARL2A, + THR_COMP_NEAR_NEWL2A, + THR_COMP_NEW_NEWL2A, + THR_COMP_GLOBAL_GLOBALL2A, + + THR_COMP_NEAR_NEARL3A, + THR_COMP_NEW_NEARESTL3A, + THR_COMP_NEAREST_NEWL3A, + THR_COMP_NEW_NEARL3A, + THR_COMP_NEAR_NEWL3A, + THR_COMP_NEW_NEWL3A, + THR_COMP_GLOBAL_GLOBALL3A, + + THR_COMP_NEAR_NEARGA, + THR_COMP_NEW_NEARESTGA, + THR_COMP_NEAREST_NEWGA, + THR_COMP_NEW_NEARGA, + THR_COMP_NEAR_NEWGA, + THR_COMP_NEW_NEWGA, + THR_COMP_GLOBAL_GLOBALGA, + + THR_COMP_NEAR_NEARLB, + THR_COMP_NEW_NEARESTLB, + THR_COMP_NEAREST_NEWLB, + THR_COMP_NEW_NEARLB, + THR_COMP_NEAR_NEWLB, + THR_COMP_NEW_NEWLB, + THR_COMP_GLOBAL_GLOBALLB, + + THR_COMP_NEAR_NEARL2B, + THR_COMP_NEW_NEARESTL2B, + THR_COMP_NEAREST_NEWL2B, + THR_COMP_NEW_NEARL2B, + THR_COMP_NEAR_NEWL2B, + THR_COMP_NEW_NEWL2B, + THR_COMP_GLOBAL_GLOBALL2B, + + THR_COMP_NEAR_NEARL3B, + THR_COMP_NEW_NEARESTL3B, + THR_COMP_NEAREST_NEWL3B, + THR_COMP_NEW_NEARL3B, + THR_COMP_NEAR_NEWL3B, + THR_COMP_NEW_NEWL3B, + THR_COMP_GLOBAL_GLOBALL3B, + + THR_COMP_NEAR_NEARGB, + THR_COMP_NEW_NEARESTGB, + THR_COMP_NEAREST_NEWGB, + THR_COMP_NEW_NEARGB, + THR_COMP_NEAR_NEWGB, + THR_COMP_NEW_NEWGB, + THR_COMP_GLOBAL_GLOBALGB, + + THR_COMP_NEAR_NEARLA2, + THR_COMP_NEW_NEARESTLA2, + THR_COMP_NEAREST_NEWLA2, + THR_COMP_NEW_NEARLA2, + THR_COMP_NEAR_NEWLA2, + THR_COMP_NEW_NEWLA2, + THR_COMP_GLOBAL_GLOBALLA2, + + THR_COMP_NEAR_NEARL2A2, + THR_COMP_NEW_NEARESTL2A2, + THR_COMP_NEAREST_NEWL2A2, + THR_COMP_NEW_NEARL2A2, + THR_COMP_NEAR_NEWL2A2, + THR_COMP_NEW_NEWL2A2, + THR_COMP_GLOBAL_GLOBALL2A2, + + THR_COMP_NEAR_NEARL3A2, + THR_COMP_NEW_NEARESTL3A2, + THR_COMP_NEAREST_NEWL3A2, + THR_COMP_NEW_NEARL3A2, + THR_COMP_NEAR_NEWL3A2, + THR_COMP_NEW_NEWL3A2, + THR_COMP_GLOBAL_GLOBALL3A2, + + THR_COMP_NEAR_NEARGA2, + THR_COMP_NEW_NEARESTGA2, + THR_COMP_NEAREST_NEWGA2, + THR_COMP_NEW_NEARGA2, + THR_COMP_NEAR_NEWGA2, + THR_COMP_NEW_NEWGA2, + THR_COMP_GLOBAL_GLOBALGA2, + + THR_COMP_NEAR_NEARLL2, + THR_COMP_NEW_NEARESTLL2, + THR_COMP_NEAREST_NEWLL2, + THR_COMP_NEW_NEARLL2, + THR_COMP_NEAR_NEWLL2, + THR_COMP_NEW_NEWLL2, + THR_COMP_GLOBAL_GLOBALLL2, + + THR_COMP_NEAR_NEARLL3, + THR_COMP_NEW_NEARESTLL3, + THR_COMP_NEAREST_NEWLL3, + THR_COMP_NEW_NEARLL3, + THR_COMP_NEAR_NEWLL3, + THR_COMP_NEW_NEWLL3, + THR_COMP_GLOBAL_GLOBALLL3, + + THR_COMP_NEAR_NEARLG, + THR_COMP_NEW_NEARESTLG, + THR_COMP_NEAREST_NEWLG, + THR_COMP_NEW_NEARLG, + THR_COMP_NEAR_NEWLG, + THR_COMP_NEW_NEWLG, + THR_COMP_GLOBAL_GLOBALLG, + + THR_COMP_NEAR_NEARBA, + THR_COMP_NEW_NEARESTBA, + THR_COMP_NEAREST_NEWBA, + THR_COMP_NEW_NEARBA, + THR_COMP_NEAR_NEWBA, + THR_COMP_NEW_NEWBA, + THR_COMP_GLOBAL_GLOBALBA, + + THR_DC, + THR_PAETH, + THR_SMOOTH, + THR_SMOOTH_V, + THR_SMOOTH_H, + THR_H_PRED, + THR_V_PRED, + THR_D135_PRED, + THR_D203_PRED, + THR_D157_PRED, + THR_D67_PRED, + THR_D113_PRED, + THR_D45_PRED, + + MAX_MODES, + + LAST_SINGLE_REF_MODES = THR_GLOBALG, + MAX_SINGLE_REF_MODES = LAST_SINGLE_REF_MODES + 1, + LAST_COMP_REF_MODES = THR_COMP_GLOBAL_GLOBALBA, + MAX_COMP_REF_MODES = LAST_COMP_REF_MODES + 1 +} THR_MODES; + +typedef enum { + THR_LAST, + THR_LAST2, + THR_LAST3, + THR_BWDR, + THR_ALTR2, + THR_GOLD, + THR_ALTR, + + THR_COMP_LA, + THR_COMP_L2A, + THR_COMP_L3A, + THR_COMP_GA, + + THR_COMP_LB, + THR_COMP_L2B, + THR_COMP_L3B, + THR_COMP_GB, + + THR_COMP_LA2, + THR_COMP_L2A2, + THR_COMP_L3A2, + THR_COMP_GA2, + + THR_INTRA, + + MAX_REFS +} THR_MODES_SUB8X8; + +typedef struct RD_OPT { + // Thresh_mult is used to set a threshold for the rd score. A higher value + // means that we will accept the best mode so far more often. This number + // is used in combination with the current block size, and thresh_freq_fact + // to pick a threshold. + int thresh_mult[MAX_MODES]; + int thresh_mult_sub8x8[MAX_REFS]; + + int threshes[MAX_SEGMENTS][BLOCK_SIZES_ALL][MAX_MODES]; + + int64_t prediction_type_threshes[REF_FRAMES][REFERENCE_MODES]; + + int RDMULT; +} RD_OPT; + +static INLINE void av1_init_rd_stats(RD_STATS *rd_stats) { +#if CONFIG_RD_DEBUG + int plane; +#endif + rd_stats->rate = 0; + rd_stats->dist = 0; + rd_stats->rdcost = 0; + rd_stats->sse = 0; + rd_stats->skip = 1; + rd_stats->zero_rate = 0; + rd_stats->invalid_rate = 0; + rd_stats->ref_rdcost = INT64_MAX; +#if CONFIG_RD_DEBUG + // This may run into problems when monochrome video is + // encoded, as there will only be 1 plane + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + rd_stats->txb_coeff_cost[plane] = 0; + { + int r, c; + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) + rd_stats->txb_coeff_cost_map[plane][r][c] = 0; + } + } +#endif +} + +static INLINE void av1_invalid_rd_stats(RD_STATS *rd_stats) { +#if CONFIG_RD_DEBUG + int plane; +#endif + rd_stats->rate = INT_MAX; + rd_stats->dist = INT64_MAX; + rd_stats->rdcost = INT64_MAX; + rd_stats->sse = INT64_MAX; + rd_stats->skip = 0; + rd_stats->zero_rate = 0; + rd_stats->invalid_rate = 1; + rd_stats->ref_rdcost = INT64_MAX; +#if CONFIG_RD_DEBUG + // This may run into problems when monochrome video is + // encoded, as there will only be 1 plane + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + rd_stats->txb_coeff_cost[plane] = INT_MAX; + { + int r, c; + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) + rd_stats->txb_coeff_cost_map[plane][r][c] = INT_MAX; + } + } +#endif +} + +static INLINE void av1_merge_rd_stats(RD_STATS *rd_stats_dst, + const RD_STATS *rd_stats_src) { +#if CONFIG_RD_DEBUG + int plane; +#endif + rd_stats_dst->rate += rd_stats_src->rate; + if (!rd_stats_dst->zero_rate) + rd_stats_dst->zero_rate = rd_stats_src->zero_rate; + rd_stats_dst->dist += rd_stats_src->dist; + rd_stats_dst->sse += rd_stats_src->sse; + rd_stats_dst->skip &= rd_stats_src->skip; + rd_stats_dst->invalid_rate &= rd_stats_src->invalid_rate; +#if CONFIG_RD_DEBUG + // This may run into problems when monochrome video is + // encoded, as there will only be 1 plane + for (plane = 0; plane < MAX_MB_PLANE; ++plane) { + rd_stats_dst->txb_coeff_cost[plane] += rd_stats_src->txb_coeff_cost[plane]; + { + // TODO(angiebird): optimize this part + int r, c; + int ref_txb_coeff_cost = 0; + for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) + for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { + rd_stats_dst->txb_coeff_cost_map[plane][r][c] += + rd_stats_src->txb_coeff_cost_map[plane][r][c]; + ref_txb_coeff_cost += rd_stats_dst->txb_coeff_cost_map[plane][r][c]; + } + assert(ref_txb_coeff_cost == rd_stats_dst->txb_coeff_cost[plane]); + } + } +#endif +} + +struct TileInfo; +struct TileDataEnc; +struct AV1_COMP; +struct macroblock; + +int av1_compute_rd_mult(const struct AV1_COMP *cpi, int qindex); + +void av1_initialize_rd_consts(struct AV1_COMP *cpi); + +void av1_initialize_me_consts(const struct AV1_COMP *cpi, MACROBLOCK *x, + int qindex); + +void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n, + unsigned int qstep, int *rate, int64_t *dist); + +void av1_model_rd_curvfit(double xqr, double *rate_f, double *distbysse_f); +void av1_model_rd_surffit(double xm, double yl, double *rate_f, + double *distbysse_f); + +int av1_get_switchable_rate(const AV1_COMMON *const cm, MACROBLOCK *x, + const MACROBLOCKD *xd); + +int av1_raster_block_offset(BLOCK_SIZE plane_bsize, int raster_block, + int stride); + +int16_t *av1_raster_block_offset_int16(BLOCK_SIZE plane_bsize, int raster_block, + int16_t *base); + +YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const struct AV1_COMP *cpi, + int ref_frame); + +void av1_init_me_luts(void); + +void av1_set_mvcost(MACROBLOCK *x, int ref, int ref_mv_idx); + +void av1_get_entropy_contexts(BLOCK_SIZE bsize, + const struct macroblockd_plane *pd, + ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], + ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]); + +void av1_set_rd_speed_thresholds(struct AV1_COMP *cpi); + +void av1_set_rd_speed_thresholds_sub8x8(struct AV1_COMP *cpi); + +void av1_update_rd_thresh_fact(const AV1_COMMON *const cm, + int (*fact)[MAX_MODES], int rd_thresh, int bsize, + int best_mode_index); + +static INLINE int rd_less_than_thresh(int64_t best_rd, int thresh, + int thresh_fact) { + return best_rd < ((int64_t)thresh * thresh_fact >> 5) || thresh == INT_MAX; +} + +void av1_mv_pred(const struct AV1_COMP *cpi, MACROBLOCK *x, + uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame, + BLOCK_SIZE block_size); + +static INLINE void set_error_per_bit(MACROBLOCK *x, int rdmult) { + x->errorperbit = rdmult >> RD_EPB_SHIFT; + x->errorperbit += (x->errorperbit == 0); +} + +void av1_setup_pred_block(const MACROBLOCKD *xd, + struct buf_2d dst[MAX_MB_PLANE], + const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, + const struct scale_factors *scale, + const struct scale_factors *scale_uv, + const int num_planes); + +int av1_get_intra_cost_penalty(int qindex, int qdelta, + aom_bit_depth_t bit_depth); + +void av1_fill_mode_rates(AV1_COMMON *const cm, MACROBLOCK *x, + FRAME_CONTEXT *fc); + +void av1_fill_coeff_costs(MACROBLOCK *x, FRAME_CONTEXT *fc, + const int num_planes); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RD_H_ diff --git a/third_party/aom/av1/encoder/rdopt.c b/third_party/aom/av1/encoder/rdopt.c new file mode 100644 index 0000000000..c2d15534f0 --- /dev/null +++ b/third_party/aom/av1/encoder/rdopt.c @@ -0,0 +1,12199 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <math.h> + +#include "config/aom_dsp_rtcd.h" +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/blend.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_ports/mem.h" +#include "aom_ports/system_state.h" + +#include "av1/common/cfl.h" +#include "av1/common/common.h" +#include "av1/common/common_data.h" +#include "av1/common/entropy.h" +#include "av1/common/entropymode.h" +#include "av1/common/idct.h" +#include "av1/common/mvref_common.h" +#include "av1/common/obmc.h" +#include "av1/common/pred_common.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/scan.h" +#include "av1/common/seg_common.h" +#include "av1/common/txb_common.h" +#include "av1/common/warped_motion.h" + +#include "av1/encoder/aq_variance.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/cost.h" +#include "av1/encoder/encodemb.h" +#include "av1/encoder/encodemv.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/hybrid_fwd_txfm.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/ml.h" +#include "av1/encoder/palette.h" +#include "av1/encoder/pustats.h" +#include "av1/encoder/random.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/rd.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/reconinter_enc.h" +#include "av1/encoder/tokenize.h" +#include "av1/encoder/tx_prune_model_weights.h" + +typedef void (*model_rd_for_sb_type)( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); + +static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int mi_row, int mi_col, + int *out_rate_sum, int64_t *out_dist_sum, + int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, + int64_t *plane_dist); +static void model_rd_for_sb_with_curvfit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_surffit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_dnn( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_for_sb_with_fullrdy( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); +static void model_rd_from_sse(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist); +static void model_rd_with_dnn(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist); +static void model_rd_with_curvfit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); +static void model_rd_with_surffit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist); + +typedef enum { + MODELRD_LEGACY, + MODELRD_CURVFIT, + MODELRD_SUFFIT, + MODELRD_DNN, + MODELRD_FULLRDY, + MODELRD_TYPES +} ModelRdType; + +static model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = { + model_rd_for_sb, model_rd_for_sb_with_curvfit, model_rd_for_sb_with_surffit, + model_rd_for_sb_with_dnn, model_rd_for_sb_with_fullrdy +}; + +static model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = { + model_rd_from_sse, model_rd_with_curvfit, model_rd_with_surffit, + model_rd_with_dnn, NULL +}; + +// 0: Legacy model +// 1: Curve fit model +// 2: Surface fit model +// 3: DNN regression model +// 4: Full rd model +#define MODELRD_TYPE_INTERP_FILTER 1 +#define MODELRD_TYPE_TX_SEARCH_PRUNE 2 +#define MODELRD_TYPE_MASKED_COMPOUND 1 +#define MODELRD_TYPE_INTERINTRA 1 +#define MODELRD_TYPE_INTRA 1 +#define MODELRD_TYPE_JNT_COMPOUND 1 + +#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS) +static const InterpFilters filter_sets[DUAL_FILTER_SET_SIZE] = { + 0x00000000, 0x00010000, 0x00020000, // y = 0 + 0x00000001, 0x00010001, 0x00020001, // y = 1 + 0x00000002, 0x00010002, 0x00020002, // y = 2 +}; + +#define SECOND_REF_FRAME_MASK \ + ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \ + (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01) + +#define ANGLE_SKIP_THRESH 10 + +static const double ADST_FLIP_SVM[8] = { + /* vertical */ + -6.6623, -2.8062, -3.2531, 3.1671, + /* horizontal */ + -7.7051, -3.2234, -3.6193, 3.4533 +}; + +typedef struct { + PREDICTION_MODE mode; + MV_REFERENCE_FRAME ref_frame[2]; +} MODE_DEFINITION; + +typedef struct { + MV_REFERENCE_FRAME ref_frame[2]; +} REF_DEFINITION; + +typedef enum { + FTXS_NONE = 0, + FTXS_DCT_AND_1D_DCT_ONLY = 1 << 0, + FTXS_DISABLE_TRELLIS_OPT = 1 << 1, + FTXS_USE_TRANSFORM_DOMAIN = 1 << 2 +} FAST_TX_SEARCH_MODE; + +static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row, + int mi_col, int64_t ref_best_rd); + +static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t non_skip_ref_best_rd, + int64_t skip_ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode); + +struct rdcost_block_args { + const AV1_COMP *cpi; + MACROBLOCK *x; + ENTROPY_CONTEXT t_above[MAX_MIB_SIZE]; + ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]; + RD_STATS rd_stats; + int64_t this_rd; + int64_t best_rd; + int exit_early; + int incomplete_exit; + int use_fast_coef_costing; + FAST_TX_SEARCH_MODE ftxs_mode; +}; + +#define LAST_NEW_MV_INDEX 6 +static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { + { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, + { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, + { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, + { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { NEWMV, { LAST_FRAME, NONE_FRAME } }, + { NEWMV, { LAST2_FRAME, NONE_FRAME } }, + { NEWMV, { LAST3_FRAME, NONE_FRAME } }, + { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEWMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { NEARMV, { LAST_FRAME, NONE_FRAME } }, + { NEARMV, { LAST2_FRAME, NONE_FRAME } }, + { NEARMV, { LAST3_FRAME, NONE_FRAME } }, + { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, + { NEARMV, { ALTREF2_FRAME, NONE_FRAME } }, + { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, + { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, + + { GLOBALMV, { LAST_FRAME, NONE_FRAME } }, + { GLOBALMV, { LAST2_FRAME, NONE_FRAME } }, + { GLOBALMV, { LAST3_FRAME, NONE_FRAME } }, + { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } }, + { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } }, + { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } }, + { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } }, + + // TODO(zoeliu): May need to reconsider the order on the modes to check + + { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + + { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } }, + + { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, + { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } }, + + { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, + { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } }, + + // intra modes + { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, + { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } }, + { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } }, + { H_PRED, { INTRA_FRAME, NONE_FRAME } }, + { V_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D203_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D157_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D67_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D113_PRED, { INTRA_FRAME, NONE_FRAME } }, + { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, +}; + +static const int16_t intra_to_mode_idx[INTRA_MODE_NUM] = { + 7, // DC_PRED, + 134, // V_PRED, + 133, // H_PRED, + 140, // D45_PRED, + 135, // D135_PRED, + 139, // D113_PRED, + 137, // D157_PRED, + 136, // D203_PRED, + 138, // D67_PRED, + 46, // SMOOTH_PRED, + 47, // SMOOTH_V_PRED, + 48, // SMOOTH_H_PRED, + 45, // PAETH_PRED, +}; + +/* clang-format off */ +static const int16_t single_inter_to_mode_idx[SINGLE_INTER_MODE_NUM] + [REF_FRAMES] = { + // NEARESTMV, + { -1, 0, 1, 2, 6, 3, 4, 5, }, + // NEARMV, + { -1, 15, 16, 17, 21, 18, 19, 20, }, + // GLOBALMV, + { -1, 22, 23, 24, 27, 25, 26, 28, }, + // NEWMV, + { -1, 8, 9, 10, 14, 11, 12, 13, }, +}; +/* clang-format on */ + +/* clang-format off */ +static const int16_t comp_inter_to_mode_idx[COMP_INTER_MODE_NUM][REF_FRAMES] + [REF_FRAMES] = { + // NEAREST_NEARESTMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 41, 42, 43, 33, 37, 29, }, + { -1, -1, -1, -1, -1, 34, 38, 30, }, + { -1, -1, -1, -1, -1, 35, 39, 31, }, + { -1, -1, -1, -1, -1, 36, 40, 32, }, + { -1, -1, -1, -1, -1, -1, -1, 44, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAR_NEARMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 141, 148, 155, 77, 105, 49, }, + { -1, -1, -1, -1, -1, 84, 112, 56, }, + { -1, -1, -1, -1, -1, 91, 119, 63, }, + { -1, -1, -1, -1, -1, 98, 126, 70, }, + { -1, -1, -1, -1, -1, -1, -1, 162, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAREST_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 143, 150, 157, 79, 107, 51, }, + { -1, -1, -1, -1, -1, 86, 114, 58, }, + { -1, -1, -1, -1, -1, 93, 121, 65, }, + { -1, -1, -1, -1, -1, 100, 128, 72, }, + { -1, -1, -1, -1, -1, -1, -1, 164, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEARESTMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 142, 149, 156, 78, 106, 50, }, + { -1, -1, -1, -1, -1, 85, 113, 57, }, + { -1, -1, -1, -1, -1, 92, 120, 64, }, + { -1, -1, -1, -1, -1, 99, 127, 71, }, + { -1, -1, -1, -1, -1, -1, -1, 163, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEAR_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 145, 152, 159, 81, 109, 53, }, + { -1, -1, -1, -1, -1, 88, 116, 60, }, + { -1, -1, -1, -1, -1, 95, 123, 67, }, + { -1, -1, -1, -1, -1, 102, 130, 74, }, + { -1, -1, -1, -1, -1, -1, -1, 166, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEARMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 144, 151, 158, 80, 108, 52, }, + { -1, -1, -1, -1, -1, 87, 115, 59, }, + { -1, -1, -1, -1, -1, 94, 122, 66, }, + { -1, -1, -1, -1, -1, 101, 129, 73, }, + { -1, -1, -1, -1, -1, -1, -1, 165, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // GLOBAL_GLOBALMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 147, 154, 161, 83, 111, 55, }, + { -1, -1, -1, -1, -1, 90, 118, 62, }, + { -1, -1, -1, -1, -1, 97, 125, 69, }, + { -1, -1, -1, -1, -1, 104, 132, 76, }, + { -1, -1, -1, -1, -1, -1, -1, 168, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, + // NEW_NEWMV, + { + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, 146, 153, 160, 82, 110, 54, }, + { -1, -1, -1, -1, -1, 89, 117, 61, }, + { -1, -1, -1, -1, -1, 96, 124, 68, }, + { -1, -1, -1, -1, -1, 103, 131, 75, }, + { -1, -1, -1, -1, -1, -1, -1, 167, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + { -1, -1, -1, -1, -1, -1, -1, -1, }, + }, +}; +/* clang-format on */ + +static int get_prediction_mode_idx(PREDICTION_MODE this_mode, + MV_REFERENCE_FRAME ref_frame, + MV_REFERENCE_FRAME second_ref_frame) { + if (this_mode < INTRA_MODE_END) { + assert(ref_frame == INTRA_FRAME); + assert(second_ref_frame == NONE_FRAME); + return intra_to_mode_idx[this_mode - INTRA_MODE_START]; + } + if (this_mode >= SINGLE_INTER_MODE_START && + this_mode < SINGLE_INTER_MODE_END) { + assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); + return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START] + [ref_frame]; + } + if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END) { + assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); + assert((second_ref_frame > INTRA_FRAME) && + (second_ref_frame <= ALTREF_FRAME)); + return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame] + [second_ref_frame]; + } + assert(0); + return -1; +} + +static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { + DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, + SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, + D67_PRED, D113_PRED, D45_PRED, +}; + +static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { + UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, + UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, + UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, + UV_D113_PRED, UV_D45_PRED, +}; + +typedef struct SingleInterModeState { + int64_t rd; + MV_REFERENCE_FRAME ref_frame; + int valid; +} SingleInterModeState; + +typedef struct InterModeSearchState { + int64_t best_rd; + MB_MODE_INFO best_mbmode; + int best_rate_y; + int best_rate_uv; + int best_mode_skippable; + int best_skip2; + int best_mode_index; + int skip_intra_modes; + int num_available_refs; + int64_t dist_refs[REF_FRAMES]; + int dist_order_refs[REF_FRAMES]; + int64_t mode_threshold[MAX_MODES]; + PREDICTION_MODE best_intra_mode; + int64_t best_intra_rd; + int angle_stats_ready; + uint8_t directional_mode_skip_mask[INTRA_MODES]; + unsigned int best_pred_sse; + int rate_uv_intra[TX_SIZES_ALL]; + int rate_uv_tokenonly[TX_SIZES_ALL]; + int64_t dist_uvs[TX_SIZES_ALL]; + int skip_uvs[TX_SIZES_ALL]; + UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL]; + PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL]; + int8_t uv_angle_delta[TX_SIZES_ALL]; + int64_t best_pred_rd[REFERENCE_MODES]; + int64_t best_pred_diff[REFERENCE_MODES]; + // Save a set of single_newmv for each checked ref_mv. + int_mv single_newmv[MAX_REF_MV_SERCH][REF_FRAMES]; + int single_newmv_rate[MAX_REF_MV_SERCH][REF_FRAMES]; + int single_newmv_valid[MAX_REF_MV_SERCH][REF_FRAMES]; + int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES]; + // The rd of simple translation in single inter modes + int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SERCH][REF_FRAMES]; + + // Single search results by [directions][modes][reference frames] + SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; + int single_state_cnt[2][SINGLE_INTER_MODE_NUM]; + SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM] + [FWD_REFS]; + int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM]; + + MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; +} InterModeSearchState; + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +int inter_mode_data_block_idx(BLOCK_SIZE bsize) { + if (bsize == BLOCK_8X8) return 1; + if (bsize == BLOCK_16X16) return 2; + if (bsize == BLOCK_32X32) return 3; + return -1; +} + +void av1_inter_mode_data_init(TileDataEnc *tile_data) { + for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { + InterModeRdModel *md = &tile_data->inter_mode_rd_models[i]; + md->ready = 0; + md->num = 0; + md->dist_sum = 0; + md->ld_sum = 0; + md->sse_sum = 0; + md->sse_sse_sum = 0; + md->sse_ld_sum = 0; + } +} + +static int get_est_rate_dist(TileDataEnc *tile_data, BLOCK_SIZE bsize, + int64_t sse, int *est_residue_cost, + int64_t *est_dist) { + aom_clear_system_state(); + const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + if (md->ready) { + const double est_ld = md->a * sse + md->b; + if (sse < md->dist_mean) { + *est_residue_cost = 0; + *est_dist = sse; + } else { + *est_residue_cost = (int)round((sse - md->dist_mean) / est_ld); + *est_dist = (int64_t)round(md->dist_mean); + } + return 1; + } + return 0; +} + +static int64_t get_est_rd(TileDataEnc *tile_data, BLOCK_SIZE bsize, int rdmult, + int64_t sse, int curr_cost) { + int est_residue_cost; + int64_t est_dist; + if (get_est_rate_dist(tile_data, bsize, sse, &est_residue_cost, &est_dist)) { + int rate = est_residue_cost + curr_cost; + int64_t est_rd = RDCOST(rdmult, rate, est_dist); + return est_rd; + } + return 0; +} + +void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) { + aom_clear_system_state(); + for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { + const int block_idx = inter_mode_data_block_idx(bsize); + InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + if (block_idx == -1) continue; + if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) { + continue; + } else { + if (md->ready == 0) { + md->dist_mean = md->dist_sum / md->num; + md->ld_mean = md->ld_sum / md->num; + md->sse_mean = md->sse_sum / md->num; + md->sse_sse_mean = md->sse_sse_sum / md->num; + md->sse_ld_mean = md->sse_ld_sum / md->num; + } else { + const double factor = 3; + md->dist_mean = + (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1); + md->ld_mean = + (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1); + md->sse_mean = + (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1); + md->sse_sse_mean = + (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) / + (factor + 1); + md->sse_ld_mean = + (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) / + (factor + 1); + } + + const double my = md->ld_mean; + const double mx = md->sse_mean; + const double dx = sqrt(md->sse_sse_mean); + const double dxy = md->sse_ld_mean; + + md->a = (dxy - mx * my) / (dx * dx - mx * mx); + md->b = my - md->a * mx; + md->ready = 1; + + md->num = 0; + md->dist_sum = 0; + md->ld_sum = 0; + md->sse_sum = 0; + md->sse_sse_sum = 0; + md->sse_ld_sum = 0; + } + (void)rdmult; + } +} + +static void inter_mode_data_push(TileDataEnc *tile_data, BLOCK_SIZE bsize, + int64_t sse, int64_t dist, int residue_cost) { + if (residue_cost == 0 || sse == dist) return; + const int block_idx = inter_mode_data_block_idx(bsize); + if (block_idx == -1) return; + InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize]; + if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) { + aom_clear_system_state(); + const double ld = (sse - dist) * 1. / residue_cost; + ++rd_model->num; + rd_model->dist_sum += dist; + rd_model->ld_sum += ld; + rd_model->sse_sum += sse; + rd_model->sse_sse_sum += sse * sse; + rd_model->sse_ld_sum += sse * ld; + } +} + +static void inter_modes_info_push(InterModesInfo *inter_modes_info, + int mode_rate, int64_t sse, int64_t est_rd, + const MB_MODE_INFO *mbmi) { + const int num = inter_modes_info->num; + assert(num < MAX_INTER_MODES); + inter_modes_info->mbmi_arr[num] = *mbmi; + inter_modes_info->mode_rate_arr[num] = mode_rate; + inter_modes_info->sse_arr[num] = sse; + inter_modes_info->est_rd_arr[num] = est_rd; + ++inter_modes_info->num; +} + +static int compare_rd_idx_pair(const void *a, const void *b) { + if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) { + return 0; + } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) { + return 1; + } else { + return -1; + } +} + +static void inter_modes_info_sort(const InterModesInfo *inter_modes_info, + RdIdxPair *rd_idx_pair_arr) { + if (inter_modes_info->num == 0) { + return; + } + for (int i = 0; i < inter_modes_info->num; ++i) { + rd_idx_pair_arr[i].idx = i; + rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i]; + } + qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]), + compare_rd_idx_pair); +} +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + +static INLINE int write_uniform_cost(int n, int v) { + const int l = get_unsigned_bits(n); + const int m = (1 << l) - n; + if (l == 0) return 0; + if (v < m) + return av1_cost_literal(l - 1); + else + return av1_cost_literal(l); +} + +// Similar to store_cfl_required(), but for use during the RDO process, +// where we haven't yet determined whether this block uses CfL. +static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm, + const MACROBLOCK *x) { + const MACROBLOCKD *xd = &x->e_mbd; + + if (cm->seq_params.monochrome || x->skip_chroma_rd) return CFL_DISALLOWED; + + if (!xd->cfl.is_chroma_reference) { + // For non-chroma-reference blocks, we should always store the luma pixels, + // in case the corresponding chroma-reference block uses CfL. + // Note that this can only happen for block sizes which are <8 on + // their shortest side, as otherwise they would be chroma reference + // blocks. + return CFL_ALLOWED; + } + + // For chroma reference blocks, we should store data in the encoder iff we're + // allowed to try out CfL. + return is_cfl_allowed(xd); +} + +// constants for prune 1 and prune 2 decision boundaries +#define FAST_EXT_TX_CORR_MID 0.0 +#define FAST_EXT_TX_EDST_MID 0.1 +#define FAST_EXT_TX_CORR_MARGIN 0.5 +#define FAST_EXT_TX_EDST_MARGIN 0.3 + +static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode); + +static unsigned pixel_dist_visible_only( + const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, + const int src_stride, const uint8_t *dst, const int dst_stride, + const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, + int visible_cols) { + unsigned sse; + + if (txb_rows == visible_rows && txb_cols == visible_cols) { + cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); + return sse; + } + const MACROBLOCKD *xd = &x->e_mbd; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, + visible_cols, visible_rows); + return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); + } + sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, + visible_rows); + return sse; +} + +#if CONFIG_DIST_8X8 +static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, + int sstride, int coeff_shift) { + uint64_t svar = 0; + uint64_t dvar = 0; + uint64_t sum_s = 0; + uint64_t sum_d = 0; + uint64_t sum_s2 = 0; + uint64_t sum_d2 = 0; + uint64_t sum_sd = 0; + uint64_t dist = 0; + + int i, j; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) { + sum_s += src[i * sstride + j]; + sum_d += dst[i * dstride + j]; + sum_s2 += src[i * sstride + j] * src[i * sstride + j]; + sum_d2 += dst[i * dstride + j] * dst[i * dstride + j]; + sum_sd += src[i * sstride + j] * dst[i * dstride + j]; + } + } + /* Compute the variance -- the calculation cannot go negative. */ + svar = sum_s2 - ((sum_s * sum_s + 32) >> 6); + dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6); + + // Tuning of jm's original dering distortion metric used in CDEF tool, + // suggested by jm + const uint64_t a = 4; + const uint64_t b = 2; + const uint64_t c1 = (400 * a << 2 * coeff_shift); + const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift); + + dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * + (svar + dvar + c1) / + (sqrt(svar * (double)dvar + c2))); + + // Calibrate dist to have similar rate for the same QP with MSE only + // distortion (as in master branch) + dist = (uint64_t)((float)dist * 0.75); + + return dist; +} + +static int od_compute_var_4x4(uint16_t *x, int stride) { + int sum; + int s2; + int i; + sum = 0; + s2 = 0; + for (i = 0; i < 4; i++) { + int j; + for (j = 0; j < 4; j++) { + int t; + + t = x[i * stride + j]; + sum += t; + s2 += t * t; + } + } + + return (s2 - (sum * sum >> 4)) >> 4; +} + +/* OD_DIST_LP_MID controls the frequency weighting filter used for computing + the distortion. For a value X, the filter is [1 X 1]/(X + 2) and + is applied both horizontally and vertically. For X=5, the filter is + a good approximation for the OD_QM8_Q4_HVS quantization matrix. */ +#define OD_DIST_LP_MID (5) +#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2) + +static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x, + uint16_t *y, od_coeff *e_lp, int stride) { + double sum; + int min_var; + double mean_var; + double var_stat; + double activity; + double calibration; + int i; + int j; + double vardist; + + vardist = 0; + +#if 1 + min_var = INT_MAX; + mean_var = 0; + for (i = 0; i < 3; i++) { + for (j = 0; j < 3; j++) { + int varx; + int vary; + varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride); + vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride); + min_var = OD_MINI(min_var, varx); + mean_var += 1. / (1 + varx); + /* The cast to (double) is to avoid an overflow before the sqrt.*/ + vardist += varx - 2 * sqrt(varx * (double)vary) + vary; + } + } + /* We use a different variance statistic depending on whether activity + masking is used, since the harmonic mean appeared slightly worse with + masking off. The calibration constant just ensures that we preserve the + rate compared to activity=1. */ + if (use_activity_masking) { + calibration = 1.95; + var_stat = 9. / mean_var; + } else { + calibration = 1.62; + var_stat = min_var; + } + /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the + activity masking constant. */ + activity = calibration * pow(.25 + var_stat, -1. / 6); +#else + activity = 1; +#endif // 1 + sum = 0; + for (i = 0; i < 8; i++) { + for (j = 0; j < 8; j++) + sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j]; + } + /* Normalize the filter to unit DC response. */ + sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM * + OD_DIST_LP_NORM); + return activity * activity * (sum + vardist); +} + +// Note : Inputs x and y are in a pixel domain +static double od_compute_dist_common(int activity_masking, uint16_t *x, + uint16_t *y, int bsize_w, int bsize_h, + int qindex, od_coeff *tmp, + od_coeff *e_lp) { + int i, j; + double sum = 0; + const int mid = OD_DIST_LP_MID; + + for (j = 0; j < bsize_w; j++) { + e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j]; + e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] + + 2 * tmp[(bsize_h - 2) * bsize_w + j]; + } + for (i = 1; i < bsize_h - 1; i++) { + for (j = 0; j < bsize_w; j++) { + e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] + + tmp[(i - 1) * bsize_w + j] + + tmp[(i + 1) * bsize_w + j]; + } + } + for (i = 0; i < bsize_h; i += 8) { + for (j = 0; j < bsize_w; j += 8) { + sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j], + &y[i * bsize_w + j], &e_lp[i * bsize_w + j], + bsize_w); + } + } + /* Scale according to linear regression against SSE, for 8x8 blocks. */ + if (activity_masking) { + sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) + + (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0); + } else { + sum *= qindex >= 128 + ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128) + : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43) + : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43); + } + + return sum; +} + +static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w, + int bsize_h, int qindex) { + assert(bsize_w >= 8 && bsize_h >= 8); + + int activity_masking = 0; + + int i, j; + DECLARE_ALIGNED(16, od_coeff, e[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); + for (i = 0; i < bsize_h; i++) { + for (j = 0; j < bsize_w; j++) { + e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j]; + } + } + int mid = OD_DIST_LP_MID; + for (i = 0; i < bsize_h; i++) { + tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; + tmp[i * bsize_w + bsize_w - 1] = + mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; + for (j = 1; j < bsize_w - 1; j++) { + tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + + e[i * bsize_w + j + 1]; + } + } + return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, + qindex, tmp, e_lp); +} + +static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w, + int bsize_h, int qindex) { + assert(bsize_w >= 8 && bsize_h >= 8); + + int activity_masking = 0; + + DECLARE_ALIGNED(16, uint16_t, y[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); + int i, j; + for (i = 0; i < bsize_h; i++) { + for (j = 0; j < bsize_w; j++) { + y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j]; + } + } + int mid = OD_DIST_LP_MID; + for (i = 0; i < bsize_h; i++) { + tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; + tmp[i * bsize_w + bsize_w - 1] = + mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; + for (j = 1; j < bsize_w - 1; j++) { + tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + + e[i * bsize_w + j + 1]; + } + } + return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, + qindex, tmp, e_lp); +} + +int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x, + const uint8_t *src, int src_stride, const uint8_t *dst, + int dst_stride, const BLOCK_SIZE tx_bsize, int bsw, + int bsh, int visible_w, int visible_h, int qindex) { + int64_t d = 0; + int i, j; + const MACROBLOCKD *xd = &x->e_mbd; + + DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, uint16_t, rec[MAX_SB_SQUARE]); + + assert(bsw >= 8); + assert(bsh >= 8); + assert((bsw & 0x07) == 0); + assert((bsh & 0x07) == 0); + + if (x->tune_metric == AOM_TUNE_CDEF_DIST || + x->tune_metric == AOM_TUNE_DAALA_DIST) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } + } + } else { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + rec[j * bsw + i] = dst[j * dst_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) + rec[j * bsw + i] = src[j * src_stride + i]; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) + rec[j * bsw + i] = src[j * src_stride + i]; + } + } + } + } + + if (x->tune_metric == AOM_TUNE_DAALA_DIST) { + d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex); + } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { + int coeff_shift = AOMMAX(xd->bd - 8, 0); + + for (i = 0; i < bsh; i += 8) { + for (j = 0; j < bsw; j += 8) { + d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j], + bsw, coeff_shift); + } + } + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + d = ((uint64_t)d) >> 2 * coeff_shift; + } else { + // Otherwise, MSE by default + d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride, + tx_bsize, bsh, bsw, visible_h, visible_w); + } + + return d; +} + +static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src, + int src_stride, const int16_t *diff, + int diff_stride, int bsw, int bsh, int visible_w, + int visible_h, int qindex) { + int64_t d = 0; + int i, j; + const MACROBLOCKD *xd = &x->e_mbd; + + DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); + DECLARE_ALIGNED(16, int16_t, diff16[MAX_SB_SQUARE]); + + assert(bsw >= 8); + assert(bsh >= 8); + assert((bsw & 0x07) == 0); + assert((bsh & 0x07) == 0); + + if (x->tune_metric == AOM_TUNE_CDEF_DIST || + x->tune_metric == AOM_TUNE_DAALA_DIST) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; + } else { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; + } + + if ((bsw == visible_w) && (bsh == visible_h)) { + for (j = 0; j < bsh; j++) + for (i = 0; i < bsw; i++) + diff16[j * bsw + i] = diff[j * diff_stride + i]; + } else { + for (j = 0; j < visible_h; j++) + for (i = 0; i < visible_w; i++) + diff16[j * bsw + i] = diff[j * diff_stride + i]; + + if (visible_w < bsw) { + for (j = 0; j < bsh; j++) + for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0; + } + + if (visible_h < bsh) { + for (j = visible_h; j < bsh; j++) + for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0; + } + } + } + + if (x->tune_metric == AOM_TUNE_DAALA_DIST) { + d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex); + } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { + int coeff_shift = AOMMAX(xd->bd - 8, 0); + DECLARE_ALIGNED(16, uint16_t, dst16[MAX_SB_SQUARE]); + + for (i = 0; i < bsh; i++) { + for (j = 0; j < bsw; j++) { + dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j]; + } + } + + for (i = 0; i < bsh; i += 8) { + for (j = 0; j < bsw; j += 8) { + d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j], + bsw, coeff_shift); + } + } + // Don't scale 'd' for HBD since it will be done by caller side for diff + // input + } else { + // Otherwise, MSE by default + d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h); + } + + return d; +} +#endif // CONFIG_DIST_8X8 + +static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride, + int need_4th, double *hordist, + double *verdist) { + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + + if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) { + // Special cases: calculate 'esq' values manually, as we don't have 'vf' + // functions for the 16 (very small) sub-blocks of this block. + const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3; + const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3; + assert(bw <= 32); + assert(bh <= 32); + assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15); + if (cpi->common.seq_params.use_highbitdepth) { + const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); + for (int i = 0; i < bh; ++i) + for (int j = 0; j < bw; ++j) { + const int index = (j >> w_shift) + ((i >> h_shift) << 2); + esq[index] += + (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * + (src16[j + i * src_stride] - dst16[j + i * dst_stride]); + } + } else { + for (int i = 0; i < bh; ++i) + for (int j = 0; j < bw; ++j) { + const int index = (j >> w_shift) + ((i >> h_shift) << 2); + esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * + (src[j + i * src_stride] - dst[j + i * dst_stride]); + } + } + } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks. + const int f_index = + (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16; + assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL); + const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index; + assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]); + assert(block_size_high[bsize] == 4 * block_size_high[subsize]); + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[1]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[2]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[3]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[5]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[6]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[7]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[9]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[10]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[11]); + src += bh / 4 * src_stride; + dst += bh / 4 * dst_stride; + + cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]); + cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, + &esq[13]); + cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, + &esq[14]); + cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, + dst_stride, &esq[15]); + } + + double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + + esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + + esq[12] + esq[13] + esq[14] + esq[15]; + if (total > 0) { + const double e_recip = 1.0 / total; + hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; + hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; + hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; + if (need_4th) { + hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip; + } + verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; + verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; + verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; + if (need_4th) { + verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip; + } + } else { + hordist[0] = verdist[0] = 0.25; + hordist[1] = verdist[1] = 0.25; + hordist[2] = verdist[2] = 0.25; + if (need_4th) { + hordist[3] = verdist[3] = 0.25; + } + } +} + +static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const uint8_t *src, int src_stride, + const uint8_t *dst, int dst_stride) { + int prune_bitmask = 0; + double svm_proj_h = 0, svm_proj_v = 0; + double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; + get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, 0, + hdist, vdist); + + svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] + + vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3]; + svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] + + hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7]; + if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << FLIPADST_1D; + else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << ADST_1D; + + if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << (FLIPADST_1D + 8); + else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) + prune_bitmask |= 1 << (ADST_1D + 8); + + return prune_bitmask; +} + +static void get_horver_correlation(const int16_t *diff, int stride, int w, + int h, double *hcorr, double *vcorr) { + // Returns hor/ver correlation coefficient + const int num = (h - 1) * (w - 1); + double num_r; + int i, j; + int64_t xy_sum = 0, xz_sum = 0; + int64_t x_sum = 0, y_sum = 0, z_sum = 0; + int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0; + double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n; + *hcorr = *vcorr = 1; + + assert(num > 0); + num_r = 1.0 / num; + for (i = 1; i < h; ++i) { + for (j = 1; j < w; ++j) { + const int16_t x = diff[i * stride + j]; + const int16_t y = diff[i * stride + j - 1]; + const int16_t z = diff[(i - 1) * stride + j]; + xy_sum += x * y; + xz_sum += x * z; + x_sum += x; + y_sum += y; + z_sum += z; + x2_sum += x * x; + y2_sum += y * y; + z2_sum += z * z; + } + } + x_var_n = x2_sum - (x_sum * x_sum) * num_r; + y_var_n = y2_sum - (y_sum * y_sum) * num_r; + z_var_n = z2_sum - (z_sum * z_sum) * num_r; + xy_var_n = xy_sum - (x_sum * y_sum) * num_r; + xz_var_n = xz_sum - (x_sum * z_sum) * num_r; + if (x_var_n > 0 && y_var_n > 0) { + *hcorr = xy_var_n / sqrt(x_var_n * y_var_n); + *hcorr = *hcorr < 0 ? 0 : *hcorr; + } + if (x_var_n > 0 && z_var_n > 0) { + *vcorr = xz_var_n / sqrt(x_var_n * z_var_n); + *vcorr = *vcorr < 0 ? 0 : *vcorr; + } +} + +static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) { + double hcorr, vcorr; + int prune_bitmask = 0; + get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr); + + if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << IDTX_1D; + else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << DCT_1D; + + if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << (IDTX_1D + 8); + else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) + prune_bitmask |= 1 << (DCT_1D + 8); + return prune_bitmask; +} + +// Performance drop: 0.5%, Speed improvement: 24% +static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, const MACROBLOCKD *xd, + int adst_flipadst, int dct_idtx) { + int prune = 0; + + if (adst_flipadst) { + const struct macroblock_plane *const p = &x->plane[0]; + const struct macroblockd_plane *const pd = &xd->plane[0]; + prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, + pd->dst.buf, pd->dst.stride); + } + if (dct_idtx) { + av1_subtract_plane(x, bsize, 0); + const struct macroblock_plane *const p = &x->plane[0]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + prune |= dct_vs_idtx(p->src_diff, bw, bw, bh); + } + + return prune; +} + +// Performance drop: 0.3%, Speed improvement: 5% +static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, + const MACROBLOCK *x, const MACROBLOCKD *xd) { + const struct macroblock_plane *const p = &x->plane[0]; + const struct macroblockd_plane *const pd = &xd->plane[0]; + return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride); +} + +// 1D Transforms used in inter set, this needs to be changed if +// ext_tx_used_inter is changed +static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = { + { 1, 0, 0, 0 }, + { 1, 1, 1, 1 }, + { 1, 1, 1, 1 }, + { 1, 0, 0, 1 }, +}; + +static void get_energy_distribution_finer(const int16_t *diff, int stride, + int bw, int bh, float *hordist, + float *verdist) { + // First compute downscaled block energy values (esq); downscale factors + // are defined by w_shift and h_shift. + unsigned int esq[256]; + const int w_shift = bw <= 8 ? 0 : 1; + const int h_shift = bh <= 8 ? 0 : 1; + const int esq_w = bw >> w_shift; + const int esq_h = bh >> h_shift; + const int esq_sz = esq_w * esq_h; + int i, j; + memset(esq, 0, esq_sz * sizeof(esq[0])); + if (w_shift) { + for (i = 0; i < bh; i++) { + unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; + const int16_t *cur_diff_row = diff + i * stride; + for (j = 0; j < bw; j += 2) { + cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] + + cur_diff_row[j + 1] * cur_diff_row[j + 1]); + } + } + } else { + for (i = 0; i < bh; i++) { + unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; + const int16_t *cur_diff_row = diff + i * stride; + for (j = 0; j < bw; j++) { + cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j]; + } + } + } + + uint64_t total = 0; + for (i = 0; i < esq_sz; i++) total += esq[i]; + + // Output hordist and verdist arrays are normalized 1D projections of esq + if (total == 0) { + float hor_val = 1.0f / esq_w; + for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; + float ver_val = 1.0f / esq_h; + for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; + return; + } + + const float e_recip = 1.0f / (float)total; + memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); + memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); + const unsigned int *cur_esq_row; + for (i = 0; i < esq_h - 1; i++) { + cur_esq_row = esq + i * esq_w; + for (j = 0; j < esq_w - 1; j++) { + hordist[j] += (float)cur_esq_row[j]; + verdist[i] += (float)cur_esq_row[j]; + } + verdist[i] += (float)cur_esq_row[j]; + } + cur_esq_row = esq + i * esq_w; + for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; + + for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; + for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; +} + +// Similar to get_horver_correlation, but also takes into account first +// row/column, when computing horizontal/vertical correlation. +static void get_horver_correlation_full(const int16_t *diff, int stride, int w, + int h, float *hcorr, float *vcorr) { + const float num_hor = (float)(h * (w - 1)); + const float num_ver = (float)((h - 1) * w); + int i, j; + + // The following notation is used: + // x - current pixel + // y - left neighbor pixel + // z - top neighbor pixel + int64_t xy_sum = 0, xz_sum = 0; + int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0; + int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0; + + int16_t x, y, z; + for (j = 1; j < w; ++j) { + x = diff[j]; + y = diff[j - 1]; + xy_sum += x * y; + xhor_sum += x; + y_sum += y; + x2hor_sum += x * x; + y2_sum += y * y; + } + for (i = 1; i < h; ++i) { + x = diff[i * stride]; + z = diff[(i - 1) * stride]; + xz_sum += x * z; + xver_sum += x; + z_sum += z; + x2ver_sum += x * x; + z2_sum += z * z; + for (j = 1; j < w; ++j) { + x = diff[i * stride + j]; + y = diff[i * stride + j - 1]; + z = diff[(i - 1) * stride + j]; + xy_sum += x * y; + xz_sum += x * z; + xhor_sum += x; + xver_sum += x; + y_sum += y; + z_sum += z; + x2hor_sum += x * x; + x2ver_sum += x * x; + y2_sum += y * y; + z2_sum += z * z; + } + } + const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; + const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; + const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; + const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; + const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; + const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; + + *hcorr = *vcorr = 1; + if (xhor_var_n > 0 && y_var_n > 0) { + *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); + *hcorr = *hcorr < 0 ? 0 : *hcorr; + } + if (xver_var_n > 0 && z_var_n > 0) { + *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); + *vcorr = *vcorr < 0 ? 0 : *vcorr; + } +} + +// Transforms raw scores into a probability distribution across 16 TX types +static void score_2D_transform_pow8(float *scores_2D, float shift) { + float sum = 0.0f; + int i; + + for (i = 0; i < 16; i++) { + float v, v2, v4; + v = AOMMAX(scores_2D[i] + shift, 0.0f); + v2 = v * v; + v4 = v2 * v2; + scores_2D[i] = v4 * v4; + sum += scores_2D[i]; + } + for (i = 0; i < 16; i++) scores_2D[i] /= sum; +} + +// These thresholds were calibrated to provide a certain number of TX types +// pruned by the model on average, i.e. selecting a threshold with index i +// will lead to pruning i+1 TX types on average +static const float *prune_2D_adaptive_thresholds[] = { + // TX_4X4 + (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f, + 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f, + 0.09778f, 0.11780f }, + // TX_8X8 + (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f, + 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f, + 0.10803f, 0.14124f }, + // TX_16X16 + (float[]){ 0.01404f, 0.02820f, 0.04211f, 0.05164f, 0.05798f, 0.06335f, + 0.06897f, 0.07629f, 0.08875f, 0.11169f }, + // TX_32X32 + NULL, + // TX_64X64 + NULL, + // TX_4X8 + (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f, + 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f, + 0.10168f, 0.12585f }, + // TX_8X4 + (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f, + 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f, + 0.10583f, 0.13123f }, + // TX_8X16 + (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f, + 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f, + 0.10730f, 0.14221f }, + // TX_16X8 + (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f, + 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f, + 0.10339f, 0.13464f }, + // TX_16X32 + NULL, + // TX_32X16 + NULL, + // TX_32X64 + NULL, + // TX_64X32 + NULL, + // TX_4X16 + (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f, + 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f, + 0.10242f, 0.12878f }, + // TX_16X4 + (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f, + 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f, + 0.10217f, 0.12610f }, + // TX_8X32 + NULL, + // TX_32X8 + NULL, + // TX_16X64 + NULL, + // TX_64X16 + NULL, +}; + +static uint16_t prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size, + int blk_row, int blk_col, TxSetType tx_set_type, + TX_TYPE_PRUNE_MODE prune_mode) { + static const int tx_type_table_2D[16] = { + DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, + ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, + FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, + H_DCT, H_ADST, H_FLIPADST, IDTX + }; + if (tx_set_type != EXT_TX_SET_ALL16 && + tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT) + return 0; + const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; + const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; + if (!nn_config_hor || !nn_config_ver) return 0; // Model not established yet. + + aom_clear_system_state(); + float hfeatures[16], vfeatures[16]; + float hscores[4], vscores[4]; + float scores_2D[16]; + const int bw = tx_size_wide[tx_size]; + const int bh = tx_size_high[tx_size]; + const int hfeatures_num = bw <= 8 ? bw : bw / 2; + const int vfeatures_num = bh <= 8 ? bh : bh / 2; + assert(hfeatures_num <= 16); + assert(vfeatures_num <= 16); + + const struct macroblock_plane *const p = &x->plane[0]; + const int diff_stride = block_size_wide[bsize]; + const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col; + get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures, + vfeatures); + get_horver_correlation_full(diff, diff_stride, bw, bh, + &hfeatures[hfeatures_num - 1], + &vfeatures[vfeatures_num - 1]); + av1_nn_predict(hfeatures, nn_config_hor, hscores); + av1_nn_predict(vfeatures, nn_config_ver, vscores); + + float score_2D_average = 0.0f; + for (int i = 0; i < 4; i++) { + float *cur_scores_2D = scores_2D + i * 4; + cur_scores_2D[0] = vscores[i] * hscores[0]; + cur_scores_2D[1] = vscores[i] * hscores[1]; + cur_scores_2D[2] = vscores[i] * hscores[2]; + cur_scores_2D[3] = vscores[i] * hscores[3]; + score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] + + cur_scores_2D[3]; + } + score_2D_average /= 16; + + const int prune_aggr_table[2][2] = { { 6, 4 }, { 10, 7 } }; + int pruning_aggressiveness = 1; + if (tx_set_type == EXT_TX_SET_ALL16) { + score_2D_transform_pow8(scores_2D, (10 - score_2D_average)); + pruning_aggressiveness = + prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][0]; + } else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) { + score_2D_transform_pow8(scores_2D, (20 - score_2D_average)); + pruning_aggressiveness = + prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][1]; + } + + // Always keep the TX type with the highest score, prune all others with + // score below score_thresh. + int max_score_i = 0; + float max_score = 0.0f; + for (int i = 0; i < 16; i++) { + if (scores_2D[i] > max_score && + av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) { + max_score = scores_2D[i]; + max_score_i = i; + } + } + + const float score_thresh = + prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness - 1]; + + uint16_t prune_bitmask = 0; + for (int i = 0; i < 16; i++) { + if (scores_2D[i] < score_thresh && i != max_score_i) + prune_bitmask |= (1 << tx_type_table_2D[i]); + } + return prune_bitmask; +} + +// ((prune >> vtx_tab[tx_type]) & 1) +static const uint16_t prune_v_mask[] = { + 0x0000, 0x0425, 0x108a, 0x14af, 0x4150, 0x4575, 0x51da, 0x55ff, + 0xaa00, 0xae25, 0xba8a, 0xbeaf, 0xeb50, 0xef75, 0xfbda, 0xffff, +}; + +// ((prune >> (htx_tab[tx_type] + 8)) & 1) +static const uint16_t prune_h_mask[] = { + 0x0000, 0x0813, 0x210c, 0x291f, 0x80e0, 0x88f3, 0xa1ec, 0xa9ff, + 0x5600, 0x5e13, 0x770c, 0x7f1f, 0xd6e0, 0xdef3, 0xf7ec, 0xffff, +}; + +static INLINE uint16_t gen_tx_search_prune_mask(int tx_search_prune) { + uint8_t prune_v = tx_search_prune & 0x0F; + uint8_t prune_h = (tx_search_prune >> 8) & 0x0F; + return (prune_v_mask[prune_v] & prune_h_mask[prune_h]); +} + +static void prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, + const MACROBLOCKD *const xd, int tx_set_type) { + x->tx_search_prune[tx_set_type] = 0; + x->tx_split_prune_flag = 0; + const MB_MODE_INFO *mbmi = xd->mi[0]; + if (!is_inter_block(mbmi) || cpi->sf.tx_type_search.prune_mode == NO_PRUNE || + x->use_default_inter_tx_type || xd->lossless[mbmi->segment_id] || + x->cb_partition_scan) + return; + int tx_set = ext_tx_set_index[1][tx_set_type]; + assert(tx_set >= 0); + const int *tx_set_1D = ext_tx_used_inter_1D[tx_set]; + int prune = 0; + switch (cpi->sf.tx_type_search.prune_mode) { + case NO_PRUNE: return; + case PRUNE_ONE: + if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return; + prune = prune_one_for_sby(cpi, bsize, x, xd); + x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune); + break; + case PRUNE_TWO: + if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) { + if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return; + prune = prune_two_for_sby(cpi, bsize, x, xd, 0, 1); + } else if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) { + prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 0); + } else { + prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 1); + } + x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune); + break; + case PRUNE_2D_ACCURATE: + case PRUNE_2D_FAST: break; + default: assert(0); + } +} + +static void model_rd_from_sse(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist) { + (void)num_samples; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + + // Fast approximate the modelling function. + if (cpi->sf.simple_model_rd_from_var) { + const int64_t square_error = sse; + int quantizer = pd->dequant_Q3[1] >> dequant_shift; + if (quantizer < 120) + *rate = (int)AOMMIN( + (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT), + INT_MAX); + else + *rate = 0; + assert(*rate >= 0); + *dist = (square_error * quantizer) >> 8; + } else { + av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize], + pd->dequant_Q3[1] >> dequant_shift, rate, + dist); + } + *dist <<= 4; +} + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const MACROBLOCKD *xd = &x->e_mbd; + const MB_MODE_INFO *mbmi = xd->mi[0]; + int64_t total_sse = 0; + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bs = get_plane_block_size(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y); + unsigned int sse; + + if (x->skip_chroma_rd && plane) continue; + + cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + &sse); + total_sse += sse; + } + total_sse <<= 4; + return total_sse; +} +#endif + +static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int mi_row, int mi_col, + int *out_rate_sum, int64_t *out_dist_sum, + int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, + int64_t *plane_dist) { + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + int plane; + (void)mi_row; + (void)mi_col; + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + int64_t sse; + int rate; + int64_t dist; + + if (x->skip_chroma_rd && plane) continue; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); + + model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + assert(rate_sum >= 0); + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + rate_sum = AOMMIN(rate_sum, INT_MAX); + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static void check_block_skip(const AV1_COMP *const cpi, BLOCK_SIZE bsize, + MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, + int plane_to, int *skip_txfm_sb) { + *skip_txfm_sb = 1; + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bs = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + unsigned int sse; + + if (x->skip_chroma_rd && plane) continue; + + // Since fast HBD variance functions scale down sse by 4 bit, we first use + // fast vf implementation to rule out blocks with non-zero scaled sse. Then, + // only if the source is HBD and the scaled sse is 0, accurate sse + // computation is applied to determine if the sse is really 0. This step is + // necessary for HBD lossless coding. + cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + &sse); + if (sse) { + *skip_txfm_sb = 0; + return; + } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint64_t sse64 = aom_highbd_sse_odd_size( + p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, + block_size_wide[bs], block_size_high[bs]); + + if (sse64) { + *skip_txfm_sb = 0; + return; + } + } + } + return; +} + +int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz) { + int i; + int64_t error = 0, sqcoeff = 0; + + for (i = 0; i < block_size; i++) { + const int diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += coeff[i] * coeff[i]; + } + + *ssz = sqcoeff; + return error; +} + +int64_t av1_highbd_block_error_c(const tran_low_t *coeff, + const tran_low_t *dqcoeff, intptr_t block_size, + int64_t *ssz, int bd) { + int i; + int64_t error = 0, sqcoeff = 0; + int shift = 2 * (bd - 8); + int rounding = shift > 0 ? 1 << (shift - 1) : 0; + + for (i = 0; i < block_size; i++) { + const int64_t diff = coeff[i] - dqcoeff[i]; + error += diff * diff; + sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; + } + assert(error >= 0 && sqcoeff >= 0); + error = (error + rounding) >> shift; + sqcoeff = (sqcoeff + rounding) >> shift; + + *ssz = sqcoeff; + return error; +} + +// Get transform block visible dimensions cropped to the MI units. +static void get_txb_dimensions(const MACROBLOCKD *xd, int plane, + BLOCK_SIZE plane_bsize, int blk_row, int blk_col, + BLOCK_SIZE tx_bsize, int *width, int *height, + int *visible_width, int *visible_height) { + assert(tx_bsize <= plane_bsize); + int txb_height = block_size_high[tx_bsize]; + int txb_width = block_size_wide[tx_bsize]; + const int block_height = block_size_high[plane_bsize]; + const int block_width = block_size_wide[plane_bsize]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + // TODO(aconverse@google.com): Investigate using crop_width/height here rather + // than the MI size + const int block_rows = + (xd->mb_to_bottom_edge >= 0) + ? block_height + : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; + const int block_cols = + (xd->mb_to_right_edge >= 0) + ? block_width + : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; + const int tx_unit_size = tx_size_wide_log2[0]; + if (width) *width = txb_width; + if (height) *height = txb_height; + *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width); + *visible_height = + clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height); +} + +// Compute the pixel domain distortion from src and dst on all visible 4x4s in +// the +// transform block. +static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, + int plane, const uint8_t *src, const int src_stride, + const uint8_t *dst, const int dst_stride, + int blk_row, int blk_col, + const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + int txb_rows, txb_cols, visible_rows, visible_cols; + const MACROBLOCKD *xd = &x->e_mbd; + + get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, + &txb_cols, &txb_rows, &visible_cols, &visible_rows); + assert(visible_rows > 0); + assert(visible_cols > 0); + +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8 && plane == 0) + return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, + tx_bsize, txb_cols, txb_rows, visible_cols, + visible_rows, x->qindex); +#endif // CONFIG_DIST_8X8 + + unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, + dst_stride, tx_bsize, txb_rows, + txb_cols, visible_rows, visible_cols); + + return sse; +} + +// Compute the pixel domain distortion from diff on all visible 4x4s in the +// transform block. +static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane, + int blk_row, int blk_col, + const BLOCK_SIZE plane_bsize, + const BLOCK_SIZE tx_bsize) { + int visible_rows, visible_cols; + const MACROBLOCKD *xd = &x->e_mbd; + get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, + NULL, &visible_cols, &visible_rows); + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *diff = x->plane[plane].src_diff; +#if CONFIG_DIST_8X8 + int txb_height = block_size_high[tx_bsize]; + int txb_width = block_size_wide[tx_bsize]; + if (x->using_dist_8x8 && plane == 0) { + const int src_stride = x->plane[plane].src.stride; + const int src_idx = (blk_row * src_stride + blk_col) + << tx_size_wide_log2[0]; + const int diff_idx = (blk_row * diff_stride + blk_col) + << tx_size_wide_log2[0]; + const uint8_t *src = &x->plane[plane].src.buf[src_idx]; + return dist_8x8_diff(x, src, src_stride, diff + diff_idx, diff_stride, + txb_width, txb_height, visible_cols, visible_rows, + x->qindex); + } +#endif + diff += ((blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]); + return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); +} + +int av1_count_colors(const uint8_t *src, int stride, int rows, int cols, + int *val_count) { + const int max_pix_val = 1 << 8; + memset(val_count, 0, max_pix_val * sizeof(val_count[0])); + for (int r = 0; r < rows; ++r) { + for (int c = 0; c < cols; ++c) { + const int this_val = src[r * stride + c]; + assert(this_val < max_pix_val); + ++val_count[this_val]; + } + } + int n = 0; + for (int i = 0; i < max_pix_val; ++i) { + if (val_count[i]) ++n; + } + return n; +} + +int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, + int bit_depth, int *val_count) { + assert(bit_depth <= 12); + const int max_pix_val = 1 << bit_depth; + const uint16_t *src = CONVERT_TO_SHORTPTR(src8); + memset(val_count, 0, max_pix_val * sizeof(val_count[0])); + for (int r = 0; r < rows; ++r) { + for (int c = 0; c < cols; ++c) { + const int this_val = src[r * stride + c]; + assert(this_val < max_pix_val); + if (this_val >= max_pix_val) return 0; + ++val_count[this_val]; + } + } + int n = 0; + for (int i = 0; i < max_pix_val; ++i) { + if (val_count[i]) ++n; + } + return n; +} + +static void inverse_transform_block_facade(MACROBLOCKD *xd, int plane, + int block, int blk_row, int blk_col, + int eob, int reduced_tx_set) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + const PLANE_TYPE plane_type = get_plane_type(plane); + const TX_SIZE tx_size = av1_get_tx_size(plane, xd); + const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, + tx_size, reduced_tx_set); + const int dst_stride = pd->dst.stride; + uint8_t *dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, + dst_stride, eob, reduced_tx_set); +} + +static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, const uint32_t hash); + +static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size) { + int16_t tmp_data[64 * 64]; + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *diff = x->plane[plane].src_diff; + const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col; + const int txb_w = tx_size_wide[tx_size]; + const int txb_h = tx_size_high[tx_size]; + uint8_t *hash_data = (uint8_t *)cur_diff_row; + if (txb_w != diff_stride) { + int16_t *cur_hash_row = tmp_data; + for (int i = 0; i < txb_h; i++) { + memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w); + cur_hash_row += txb_w; + cur_diff_row += diff_stride; + } + hash_data = (uint8_t *)tmp_data; + } + CRC32C *crc = &x->mb_rd_record.crc_calculator; + const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h); + return (hash << 5) + tx_size; +} + +static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block, + TX_SIZE tx_size, int64_t *out_dist, + int64_t *out_sse) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + // Transform domain distortion computation is more efficient as it does + // not involve an inverse transform, but it is less accurate. + const int buffer_length = av1_get_max_eob(tx_size); + int64_t this_sse; + // TX-domain results need to shift down to Q2/D10 to match pixel + // domain distortion values which are in Q2^2 + int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; + tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); + tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, + xd->bd); + else + *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); + + *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); + *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); +} + +static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x, + int plane, BLOCK_SIZE plane_bsize, + int block, int blk_row, int blk_col, + TX_SIZE tx_size) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const uint16_t eob = p->eobs[block]; + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const int bsw = block_size_wide[tx_bsize]; + const int bsh = block_size_high[tx_bsize]; + const int src_stride = x->plane[plane].src.stride; + const int dst_stride = xd->plane[plane].dst.stride; + // Scale the transform block index to pixel unit. + const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0]; + const int dst_idx = (blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]; + const uint8_t *src = &x->plane[plane].src.buf[src_idx]; + const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; + const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); + + assert(cpi != NULL); + assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); + + uint8_t *recon; + DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + recon = CONVERT_TO_BYTEPTR(recon16); + av1_highbd_convolve_2d_copy_sr(CONVERT_TO_SHORTPTR(dst), dst_stride, + CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, + bsh, NULL, NULL, 0, 0, NULL, xd->bd); + } else { + recon = (uint8_t *)recon16; + av1_convolve_2d_copy_sr(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh, NULL, + NULL, 0, 0, NULL); + } + + const PLANE_TYPE plane_type = get_plane_type(plane); + TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, + cpi->common.reduced_tx_set_used); + av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, + MAX_TX_SIZE, eob, + cpi->common.reduced_tx_set_used); + + return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, + blk_row, blk_col, plane_bsize, tx_bsize); +} + +static double get_mean(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + sum += diff[j * stride + i]; + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static double get_sse_norm(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + const int err = diff[j * stride + i]; + sum += err * err; + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static double get_sad_norm(const int16_t *diff, int stride, int w, int h) { + double sum = 0.0; + for (int j = 0; j < h; ++j) { + for (int i = 0; i < w; ++i) { + sum += abs(diff[j * stride + i]); + } + } + assert(w > 0 && h > 0); + return sum / (w * h); +} + +static void get_2x2_normalized_sses_and_sads( + const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src, + int src_stride, const uint8_t *const dst, int dst_stride, + const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr, + double *const sad_norm_arr) { + const BLOCK_SIZE tx_bsize_half = + get_partition_subsize(tx_bsize, PARTITION_SPLIT); + if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats + const int half_width = block_size_wide[tx_bsize] / 2; + const int half_height = block_size_high[tx_bsize] / 2; + for (int row = 0; row < 2; ++row) { + for (int col = 0; col < 2; ++col) { + const int16_t *const this_src_diff = + src_diff + row * half_height * diff_stride + col * half_width; + if (sse_norm_arr) { + sse_norm_arr[row * 2 + col] = + get_sse_norm(this_src_diff, diff_stride, half_width, half_height); + } + if (sad_norm_arr) { + sad_norm_arr[row * 2 + col] = + get_sad_norm(this_src_diff, diff_stride, half_width, half_height); + } + } + } + } else { // use function pointers to calculate stats + const int half_width = block_size_wide[tx_bsize_half]; + const int half_height = block_size_high[tx_bsize_half]; + const int num_samples_half = half_width * half_height; + for (int row = 0; row < 2; ++row) { + for (int col = 0; col < 2; ++col) { + const uint8_t *const this_src = + src + row * half_height * src_stride + col * half_width; + const uint8_t *const this_dst = + dst + row * half_height * dst_stride + col * half_width; + + if (sse_norm_arr) { + unsigned int this_sse; + cpi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst, + dst_stride, &this_sse); + sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half; + } + + if (sad_norm_arr) { + const unsigned int this_sad = cpi->fn_ptr[tx_bsize_half].sdf( + this_src, src_stride, this_dst, dst_stride); + sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half; + } + } + } + } +} + +// NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values +// 0: Do not collect any RD stats +// 1: Collect RD stats for transform units +// 2: Collect RD stats for partition units +#if CONFIG_COLLECT_RD_STATS + +#if CONFIG_COLLECT_RD_STATS == 1 +static void PrintTransformUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x, + const RD_STATS *const rd_stats, int blk_row, + int blk_col, BLOCK_SIZE plane_bsize, + TX_SIZE tx_size, TX_TYPE tx_type, + int64_t rd) { + if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; + + // Generate small sample to restrict output size. + static unsigned int seed = 21743; + if (lcg_rand16(&seed) % 256 > 0) return; + + const char output_file[] = "tu_stats.txt"; + FILE *fout = fopen(output_file, "a"); + if (!fout) return; + + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + const MACROBLOCKD *const xd = &x->e_mbd; + const int plane = 0; + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int txw = tx_size_wide[tx_size]; + const int txh = tx_size_high[tx_size]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = pd->dequant_Q3[1] >> dequant_shift; + const double num_samples = txw * txh; + + const double rate_norm = (double)rd_stats->rate / num_samples; + const double dist_norm = (double)rd_stats->dist / num_samples; + + fprintf(fout, "%g %g", rate_norm, dist_norm); + + const int src_stride = p->src.stride; + const uint8_t *const src = + &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = + &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; + unsigned int sse; + cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); + const double sse_norm = (double)sse / num_samples; + + const unsigned int sad = + cpi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride); + const double sad_norm = (double)sad / num_samples; + + fprintf(fout, " %g %g", sse_norm, sad_norm); + + const int diff_stride = block_size_wide[plane_bsize]; + const int16_t *const src_diff = + &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; + + double sse_norm_arr[4], sad_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, sad_norm_arr); + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sse_norm_arr[i]); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sad_norm_arr[i]); + } + + const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; + const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; + + fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size], + tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col); + + int model_rate; + int64_t model_dist; + model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + const double model_rate_norm = (double)model_rate / num_samples; + const double model_dist_norm = (double)model_dist / num_samples; + fprintf(fout, " %g %g", model_rate_norm, model_dist_norm); + + const double mean = get_mean(src_diff, diff_stride, txw, txh); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, txw, txh, &hor_corr, + &vert_corr); + fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); + + double hdist[4] = { 0 }, vdist[4] = { 0 }; + get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride, + 1, hdist, vdist); + fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], + hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); + + fprintf(fout, " %d %" PRId64, x->rdmult, rd); + + fprintf(fout, "\n"); + fclose(fout); +} +#endif // CONFIG_COLLECT_RD_STATS == 1 + +#if CONFIG_COLLECT_RD_STATS >= 2 +static void PrintPredictionUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x, + const RD_STATS *const rd_stats, + BLOCK_SIZE plane_bsize) { + if (rd_stats->invalid_rate) return; + if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; + + // Generate small sample to restrict output size. + static unsigned int seed = 95014; + if (lcg_rand16(&seed) % 256 > 0) return; + + const char output_file[] = "pu_stats.txt"; + FILE *fout = fopen(output_file, "a"); + if (!fout) return; + + const MACROBLOCKD *const xd = &x->e_mbd; + const int plane = 0; + struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int diff_stride = block_size_wide[plane_bsize]; + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, + &bh); + const int num_samples = bw * bh; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = pd->dequant_Q3[1] >> dequant_shift; + + const double rate_norm = (double)rd_stats->rate / num_samples; + const double dist_norm = (double)rd_stats->dist / num_samples; + const double rdcost_norm = + (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples; + + fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm); + + const int src_stride = p->src.stride; + const uint8_t *const src = p->src.buf; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = pd->dst.buf; + const int16_t *const src_diff = p->src_diff; + const int shift = (xd->bd - 8); + + int64_t sse = aom_sum_squares_2d_i16(src_diff, diff_stride, bw, bh); + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + const double sse_norm = (double)sse / num_samples; + + const unsigned int sad = + cpi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride); + const double sad_norm = + (double)sad / (1 << num_pels_log2_lookup[plane_bsize]); + + fprintf(fout, " %g %g", sse_norm, sad_norm); + + double sse_norm_arr[4], sad_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, sad_norm_arr); + if (shift) { + for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); + for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sse_norm_arr[i]); + } + for (int i = 0; i < 4; ++i) { + fprintf(fout, " %g", sad_norm_arr[i]); + } + + fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh); + + int model_rate; + int64_t model_dist; + model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + const double model_rdcost_norm = + (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples; + const double model_rate_norm = (double)model_rate / num_samples; + const double model_dist_norm = (double)model_dist / num_samples; + fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm, + model_rdcost_norm); + + double mean = get_mean(src_diff, diff_stride, bw, bh); + mean /= (1 << shift); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr); + fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); + + double hdist[4] = { 0 }, vdist[4] = { 0 }; + get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst, + dst_stride, 1, hdist, vdist); + fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], + hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); + + fprintf(fout, "\n"); + fclose(fout); +} +#endif // CONFIG_COLLECT_RD_STATS >= 2 +#endif // CONFIG_COLLECT_RD_STATS + +static void model_rd_with_dnn(const AV1_COMP *const cpi, + const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, + int plane, int64_t sse, int num_samples, + int *rate, int64_t *dist) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int log_numpels = num_pels_log2_lookup[plane_bsize]; + + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int q_step = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + + const struct macroblock_plane *const p = &x->plane[plane]; + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, + &bh); + const int src_stride = p->src.stride; + const uint8_t *const src = p->src.buf; + const int dst_stride = pd->dst.stride; + const uint8_t *const dst = pd->dst.buf; + const int16_t *const src_diff = p->src_diff; + const int diff_stride = block_size_wide[plane_bsize]; + const int shift = (xd->bd - 8); + + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + if (plane) { + int model_rate; + int64_t model_dist; + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, num_samples, + &model_rate, &model_dist); + if (rate) *rate = model_rate; + if (dist) *dist = model_dist; + return; + } + + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + + double sse_norm_arr[4]; + get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, + dst_stride, src_diff, diff_stride, + sse_norm_arr, NULL); + double mean = get_mean(src_diff, bw, bw, bh); + if (shift) { + for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); + mean /= (1 << shift); + } + double sse_norm_sum = 0.0, sse_frac_arr[3]; + for (int k = 0; k < 4; ++k) sse_norm_sum += sse_norm_arr[k]; + for (int k = 0; k < 3; ++k) + sse_frac_arr[k] = + sse_norm_sum > 0.0 ? sse_norm_arr[k] / sse_norm_sum : 0.25; + const double q_sqr = (double)(q_step * q_step); + const double q_sqr_by_sse_norm = q_sqr / (sse_norm + 1.0); + const double mean_sqr_by_sse_norm = mean * mean / (sse_norm + 1.0); + double hor_corr, vert_corr; + get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr); + + float features[NUM_FEATURES_PUSTATS]; + features[0] = (float)hor_corr; + features[1] = (float)log_numpels; + features[2] = (float)mean_sqr_by_sse_norm; + features[3] = (float)q_sqr_by_sse_norm; + features[4] = (float)sse_frac_arr[0]; + features[5] = (float)sse_frac_arr[1]; + features[6] = (float)sse_frac_arr[2]; + features[7] = (float)vert_corr; + + float rate_f, dist_by_sse_norm_f; + av1_nn_predict(features, &av1_pustats_dist_nnconfig, &dist_by_sse_norm_f); + av1_nn_predict(features, &av1_pustats_rate_nnconfig, &rate_f); + const float dist_f = (float)((double)dist_by_sse_norm_f * (1.0 + sse_norm)); + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; + return; +} + +static void model_rd_for_sb_with_dnn( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + int bw, bh; + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + + model_rd_with_dnn(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +// Fits a surface for rate and distortion using as features: +// log2(sse_norm + 1) and log2(sse_norm/qstep^2) +static void model_rd_with_surffit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist) { + (void)cpi; + (void)plane_bsize; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + const double qstepsqr = (double)qstep * qstep; + const double xm = log(sse_norm + 1.0) / log(2.0); + const double yl = log(sse_norm / qstepsqr) / log(2.0); + double rate_f, dist_by_sse_norm_f; + + av1_model_rd_surffit(xm, yl, &rate_f, &dist_by_sse_norm_f); + + const double dist_f = dist_by_sse_norm_f * sse_norm; + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; +} + +static void model_rd_for_sb_with_surffit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + int bw, bh; + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + + model_rd_with_surffit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +// Fits a curve for rate and distortion using as feature: +// log2(sse_norm/qstep^2) +static void model_rd_with_curvfit(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + BLOCK_SIZE plane_bsize, int plane, + int64_t sse, int num_samples, int *rate, + int64_t *dist) { + (void)cpi; + (void)plane_bsize; + const MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int dequant_shift = + (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; + const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); + + if (sse == 0) { + if (rate) *rate = 0; + if (dist) *dist = 0; + return; + } + aom_clear_system_state(); + const double sse_norm = (double)sse / num_samples; + const double qstepsqr = (double)qstep * qstep; + const double xqr = log(sse_norm / qstepsqr) / log(2.0); + + double rate_f, dist_by_sse_norm_f; + av1_model_rd_curvfit(xqr, &rate_f, &dist_by_sse_norm_f); + + const double dist_f = dist_by_sse_norm_f * sse_norm; + int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); + int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); + aom_clear_system_state(); + + // Check if skip is better + if (rate_i == 0) { + dist_i = sse << 4; + } else if (RDCOST(x->rdmult, rate_i, dist_i) >= + RDCOST(x->rdmult, 0, sse << 4)) { + rate_i = 0; + dist_i = sse << 4; + } + + if (rate) *rate = rate_i; + if (dist) *dist = dist_i; +} + +static void model_rd_for_sb_with_curvfit( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + (void)mi_row; + (void)mi_col; + // Note our transform coeffs are 8 times an orthogonal transform. + // Hence quantizer step is also 8 times. To get effective quantizer + // we need to divide by 8 before sending to modeling function. + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + int64_t dist, sse; + int rate; + + if (x->skip_chroma_rd && plane) continue; + + int bw, bh; + const struct macroblock_plane *const p = &x->plane[plane]; + const int shift = (xd->bd - 8); + get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, + &bw, &bh); + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + + sse = ROUND_POWER_OF_TWO(sse, shift * 2); + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static void model_rd_for_sb_with_fullrdy( + const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, + int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, + int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, + int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { + const int ref = xd->mi[0]->ref_frame[0]; + + int64_t rate_sum = 0; + int64_t dist_sum = 0; + int64_t total_sse = 0; + + for (int plane = plane_from; plane <= plane_to; ++plane) { + struct macroblock_plane *const p = &x->plane[plane]; + struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + int64_t sse; + int rate; + int64_t dist; + + if (x->skip_chroma_rd && plane) continue; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, + pd->dst.stride, bw, bh); + } else { + sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, + bh); + } + sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); + + RD_STATS rd_stats; + if (plane == 0) { + select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX); + if (rd_stats.invalid_rate) { + rate = 0; + dist = sse << 4; + } else { + rate = rd_stats.rate; + dist = rd_stats.dist; + } + } else { + model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, + &dist); + } + + if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); + + total_sse += sse; + rate_sum += rate; + dist_sum += dist; + + if (plane_rate) plane_rate[plane] = rate; + if (plane_sse) plane_sse[plane] = sse; + if (plane_dist) plane_dist[plane] = dist; + } + + if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; + if (skip_sse_sb) *skip_sse_sb = total_sse << 4; + *out_rate_sum = (int)rate_sum; + *out_dist_sum = dist_sum; +} + +static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, + int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, + const TXB_CTX *const txb_ctx, + FAST_TX_SEARCH_MODE ftxs_mode, + int use_fast_coef_costing, int64_t ref_best_rd, + RD_STATS *best_rd_stats) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + struct macroblockd_plane *const pd = &xd->plane[plane]; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + int64_t best_rd = INT64_MAX; + uint16_t best_eob = 0; + TX_TYPE best_tx_type = DCT_DCT; + TX_TYPE last_tx_type = TX_TYPES; + const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY; + // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff + // of the best tx_type + DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]); + tran_low_t *orig_dqcoeff = pd->dqcoeff; + tran_low_t *best_dqcoeff = this_dqcoeff; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + av1_invalid_rd_stats(best_rd_stats); + + TXB_RD_INFO *intra_txb_rd_info = NULL; + uint16_t cur_joint_ctx = 0; + const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); + const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); + const int within_border = + mi_row >= xd->tile.mi_row_start && + (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) && + mi_col >= xd->tile.mi_col_start && + (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end); + if (within_border && cpi->sf.use_intra_txb_hash && frame_is_intra_only(cm) && + !is_inter && plane == 0 && + tx_size_wide[tx_size] == tx_size_high[tx_size]) { + const uint32_t intra_hash = + get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size); + const int intra_hash_idx = + find_tx_size_rd_info(&x->txb_rd_record_intra, intra_hash); + intra_txb_rd_info = &x->txb_rd_record_intra.tx_rd_info[intra_hash_idx]; + + cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; + if (intra_txb_rd_info->entropy_context == cur_joint_ctx && + x->txb_rd_record_intra.tx_rd_info[intra_hash_idx].valid) { + mbmi->txk_type[txk_type_idx] = intra_txb_rd_info->tx_type; + const TX_TYPE ref_tx_type = + av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, + tx_size, cpi->common.reduced_tx_set_used); + if (ref_tx_type == intra_txb_rd_info->tx_type) { + best_rd_stats->rate = intra_txb_rd_info->rate; + best_rd_stats->dist = intra_txb_rd_info->dist; + best_rd_stats->sse = intra_txb_rd_info->sse; + best_rd_stats->skip = intra_txb_rd_info->eob == 0; + x->plane[plane].eobs[block] = intra_txb_rd_info->eob; + x->plane[plane].txb_entropy_ctx[block] = + intra_txb_rd_info->txb_entropy_ctx; + best_rd = RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->dist); + best_eob = intra_txb_rd_info->eob; + best_tx_type = intra_txb_rd_info->tx_type; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + best_tx_type); + goto RECON_INTRA; + } + } + } + + int rate_cost = 0; + TX_TYPE txk_start = DCT_DCT; + TX_TYPE txk_end = TX_TYPES - 1; + if ((!is_inter && x->use_default_intra_tx_type) || + (is_inter && x->use_default_inter_tx_type)) { + txk_start = txk_end = get_default_tx_type(0, xd, tx_size); + } else if (x->rd_model == LOW_TXFM_RD || x->cb_partition_scan) { + if (plane == 0) txk_end = DCT_DCT; + } + + uint8_t best_txb_ctx = 0; + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); + + TX_TYPE uv_tx_type = DCT_DCT; + if (plane) { + // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y + uv_tx_type = txk_start = txk_end = + av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size, + cm->reduced_tx_set_used); + } + const uint16_t ext_tx_used_flag = av1_ext_tx_used_flag[tx_set_type]; + if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 || + ext_tx_used_flag == 0x0001) { + txk_start = txk_end = DCT_DCT; + } + uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip. + if (txk_start == txk_end) { + allowed_tx_mask = 1 << txk_start; + allowed_tx_mask &= ext_tx_used_flag; + } else if (fast_tx_search) { + allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT + allowed_tx_mask &= ext_tx_used_flag; + } else { + assert(plane == 0); + allowed_tx_mask = ext_tx_used_flag; + // !fast_tx_search && txk_end != txk_start && plane == 0 + const int do_prune = cpi->sf.tx_type_search.prune_mode > NO_PRUNE; + if (do_prune && is_inter) { + if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE) { + const uint16_t prune = + prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type, + cpi->sf.tx_type_search.prune_mode); + allowed_tx_mask &= (~prune); + } else { + allowed_tx_mask &= (~x->tx_search_prune[tx_set_type]); + } + } + } + // Need to have at least one transform type allowed. + if (allowed_tx_mask == 0) { + txk_start = txk_end = (plane ? uv_tx_type : DCT_DCT); + allowed_tx_mask = (1 << txk_start); + } + + int use_transform_domain_distortion = + (cpi->sf.use_transform_domain_distortion > 0) && + // Any 64-pt transforms only preserves half the coefficients. + // Therefore transform domain distortion is not valid for these + // transform sizes. + txsize_sqr_up_map[tx_size] != TX_64X64; +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) use_transform_domain_distortion = 0; +#endif + int calc_pixel_domain_distortion_final = + cpi->sf.use_transform_domain_distortion == 1 && + use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD && + !x->cb_partition_scan; + if (calc_pixel_domain_distortion_final && + (txk_start == txk_end || allowed_tx_mask == 0x0001)) + calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0; + + const uint16_t *eobs_ptr = x->plane[plane].eobs; + + const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; + int64_t block_sse = + pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, tx_bsize); + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2); + block_sse *= 16; + + for (TX_TYPE tx_type = txk_start; tx_type <= txk_end; ++tx_type) { + if (!(allowed_tx_mask & (1 << tx_type))) continue; + if (plane == 0) mbmi->txk_type[txk_type_idx] = tx_type; + RD_STATS this_rd_stats; + av1_invalid_rd_stats(&this_rd_stats); + + if (!cpi->optimize_seg_arr[mbmi->segment_id]) { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type, + txb_ctx, use_fast_coef_costing); + } else { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, tx_type, AV1_XFORM_QUANT_FP); + if (cpi->sf.optimize_b_precheck && best_rd < INT64_MAX && + eobs_ptr[block] >= 4) { + // Calculate distortion quickly in transform domain. + dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, + &this_rd_stats.sse); + + const int64_t best_rd_ = AOMMIN(best_rd, ref_best_rd); + const int64_t dist_cost_estimate = + RDCOST(x->rdmult, 0, AOMMIN(this_rd_stats.dist, this_rd_stats.sse)); + if (dist_cost_estimate - (dist_cost_estimate >> 3) > best_rd_) continue; + + rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type, + txb_ctx, use_fast_coef_costing); + const int64_t rd_estimate = + AOMMIN(RDCOST(x->rdmult, rate_cost, this_rd_stats.dist), + RDCOST(x->rdmult, 0, this_rd_stats.sse)); + if (rd_estimate - (rd_estimate >> 3) > best_rd_) continue; + } + av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, 1, + &rate_cost); + } + if (eobs_ptr[block] == 0) { + // When eob is 0, pixel domain distortion is more efficient and accurate. + this_rd_stats.dist = this_rd_stats.sse = block_sse; + } else if (use_transform_domain_distortion) { + dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, + &this_rd_stats.sse); + } else { + this_rd_stats.dist = dist_block_px_domain( + cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); + this_rd_stats.sse = block_sse; + } + + this_rd_stats.rate = rate_cost; + + const int64_t rd = + RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); + + if (rd < best_rd) { + best_rd = rd; + *best_rd_stats = this_rd_stats; + best_tx_type = tx_type; + best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; + best_eob = x->plane[plane].eobs[block]; + last_tx_type = best_tx_type; + + // Swap qcoeff and dqcoeff buffers + tran_low_t *const tmp_dqcoeff = best_dqcoeff; + best_dqcoeff = pd->dqcoeff; + pd->dqcoeff = tmp_dqcoeff; + } + +#if CONFIG_COLLECT_RD_STATS == 1 + if (plane == 0) { + PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col, + plane_bsize, tx_size, tx_type, rd); + } +#endif // CONFIG_COLLECT_RD_STATS == 1 + + if (cpi->sf.adaptive_txb_search_level) { + if ((best_rd - (best_rd >> cpi->sf.adaptive_txb_search_level)) > + ref_best_rd) { + break; + } + } + + // Skip transform type search when we found the block has been quantized to + // all zero and at the same time, it has better rdcost than doing transform. + if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break; + } + + assert(best_rd != INT64_MAX); + + best_rd_stats->skip = best_eob == 0; + if (plane == 0) { + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + best_tx_type); + } + x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; + x->plane[plane].eobs[block] = best_eob; + + pd->dqcoeff = best_dqcoeff; + + if (calc_pixel_domain_distortion_final && best_eob) { + best_rd_stats->dist = dist_block_px_domain( + cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); + best_rd_stats->sse = block_sse; + } + + if (intra_txb_rd_info != NULL) { + intra_txb_rd_info->valid = 1; + intra_txb_rd_info->entropy_context = cur_joint_ctx; + intra_txb_rd_info->rate = best_rd_stats->rate; + intra_txb_rd_info->dist = best_rd_stats->dist; + intra_txb_rd_info->sse = best_rd_stats->sse; + intra_txb_rd_info->eob = best_eob; + intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx; + if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type; + } + +RECON_INTRA: + if (!is_inter && best_eob && + (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] || + blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) { + // intra mode needs decoded result such that the next transform block + // can use it for prediction. + // if the last search tx_type is the best tx_type, we don't need to + // do this again + if (best_tx_type != last_tx_type) { + if (!cpi->optimize_seg_arr[mbmi->segment_id]) { + av1_xform_quant( + cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + best_tx_type, + USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); + } else { + av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, + tx_size, best_tx_type, AV1_XFORM_QUANT_FP); + av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, 1, + &rate_cost); + } + } + + inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, + x->plane[plane].eobs[block], + cm->reduced_tx_set_used); + + // This may happen because of hash collision. The eob stored in the hash + // table is non-zero, but the real eob is zero. We need to make sure tx_type + // is DCT_DCT in this case. + if (plane == 0 && x->plane[plane].eobs[block] == 0 && + best_tx_type != DCT_DCT) { + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } + } + pd->dqcoeff = orig_dqcoeff; + + return best_rd; +} + +static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, + BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { + struct rdcost_block_args *args = arg; + MACROBLOCK *const x = args->x; + MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const AV1_COMP *cpi = args->cpi; + ENTROPY_CONTEXT *a = args->t_above + blk_col; + ENTROPY_CONTEXT *l = args->t_left + blk_row; + const AV1_COMMON *cm = &cpi->common; + int64_t rd1, rd2, rd; + RD_STATS this_rd_stats; + + av1_init_rd_stats(&this_rd_stats); + + if (args->exit_early) { + args->incomplete_exit = 1; + return; + } + + if (!is_inter_block(mbmi)) { + av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); + av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); + } + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); + search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + &txb_ctx, args->ftxs_mode, args->use_fast_coef_costing, + args->best_rd - args->this_rd, &this_rd_stats); + + if (plane == AOM_PLANE_Y && xd->cfl.store_y) { + assert(!is_inter_block(mbmi) || plane_bsize < BLOCK_8X8); + cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); + } + +#if CONFIG_RD_DEBUG + av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col, + this_rd_stats.rate); +#endif // CONFIG_RD_DEBUG + av1_set_txb_context(x, plane, block, tx_size, a, l); + + const int blk_idx = + blk_row * (block_size_wide[plane_bsize] >> tx_size_wide_log2[0]) + + blk_col; + + if (plane == 0) + set_blk_skip(x, plane, blk_idx, x->plane[plane].eobs[block] == 0); + else + set_blk_skip(x, plane, blk_idx, 0); + + rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); + rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse); + + // TODO(jingning): temporarily enabled only for luma component + rd = AOMMIN(rd1, rd2); + + this_rd_stats.skip &= !x->plane[plane].eobs[block]; + + av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); + + args->this_rd += rd; + + if (args->this_rd > args->best_rd) { + args->exit_early = 1; + return; + } +} + +static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, + RD_STATS *rd_stats, int64_t ref_best_rd, int plane, + BLOCK_SIZE bsize, TX_SIZE tx_size, + int use_fast_coef_casting, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + struct rdcost_block_args args; + av1_zero(args); + args.x = x; + args.cpi = cpi; + args.best_rd = ref_best_rd; + args.use_fast_coef_costing = use_fast_coef_casting; + args.ftxs_mode = ftxs_mode; + av1_init_rd_stats(&args.rd_stats); + + if (plane == 0) xd->mi[0]->tx_size = tx_size; + + av1_get_entropy_contexts(bsize, pd, args.t_above, args.t_left); + + av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, + &args); + + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early; + + if (invalid_rd) { + av1_invalid_rd_stats(rd_stats); + } else { + *rd_stats = args.rd_stats; + } +} + +static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x, + BLOCK_SIZE bsize, TX_SIZE tx_size) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + + if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type)) { + const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); + const int depth = tx_size_to_depth(tx_size, bsize); + const int tx_size_ctx = get_tx_size_context(xd); + int r_tx_size = x->tx_size_cost[tx_size_cat][tx_size_ctx][depth]; + return r_tx_size; + } else { + return 0; + } +} + +static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs, + TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + const int skip_ctx = av1_get_skip_context(xd); + int s0, s1; + const int is_inter = is_inter_block(mbmi); + const int tx_select = + cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type); + int ctx = txfm_partition_context( + xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size); + const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0] + : tx_size_cost(cm, x, bs, tx_size); + + assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); + + s0 = x->skip_cost[skip_ctx][0]; + s1 = x->skip_cost[skip_ctx][1]; + + mbmi->tx_size = tx_size; + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, tx_size, + cpi->sf.use_fast_coef_costing, ftxs_mode); + if (rd_stats->rate == INT_MAX) return INT64_MAX; + + if (rd_stats->skip) { + if (is_inter) { + rd = RDCOST(x->rdmult, s1, rd_stats->sse); + } else { + rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse); + } + } else { + rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select, + rd_stats->dist); + } + + if (tx_select) rd_stats->rate += r_tx_size; + + if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip)) + rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); + + return rd; +} + +static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs, + MACROBLOCK *x, int *r, int64_t *d, int *s, + int64_t *sse, int64_t ref_best_rd) { + RD_STATS rd_stats; + av1_subtract_plane(x, bs, 0); + x->rd_model = LOW_TXFM_RD; + int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs, + max_txsize_rect_lookup[bs], FTXS_NONE); + x->rd_model = FULL_TXFM_RD; + *r = rd_stats.rate; + *d = rd_stats.dist; + *s = rd_stats.skip; + *sse = rd_stats.sse; + return rd; +} + +static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, + BLOCK_SIZE bs) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(mbmi->tx_size, is_inter, cm->reduced_tx_set_used); + prune_tx(cpi, bs, x, xd, tx_set_type); + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, + mbmi->tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; +} + +static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, int64_t ref_best_rd, + BLOCK_SIZE bs) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + mbmi->tx_size = TX_4X4; + txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, + cpi->sf.use_fast_coef_costing, FTXS_NONE); +} + +static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { + int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]); + return num_blk; +} + +static int get_search_init_depth(int mi_width, int mi_height, int is_inter, + const SPEED_FEATURES *sf) { + if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; + + if (sf->tx_size_search_lgr_block) { + if (mi_width > mi_size_wide[BLOCK_64X64] || + mi_height > mi_size_high[BLOCK_64X64]) + return MAX_VARTX_DEPTH; + } + + if (is_inter) { + return (mi_height != mi_width) ? sf->inter_tx_size_search_init_depth_rect + : sf->inter_tx_size_search_init_depth_sqr; + } else { + return (mi_height != mi_width) ? sf->intra_tx_size_search_init_depth_rect + : sf->intra_tx_size_search_init_depth_sqr; + } +} + +static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, + MACROBLOCK *x, RD_STATS *rd_stats, + int64_t ref_best_rd, BLOCK_SIZE bs) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + int n; + int start_tx; + int depth; + int64_t best_rd = INT64_MAX; + const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs]; + TX_SIZE best_tx_size = max_rect_tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int n4 = bsize_to_num_blk(bs); + const int tx_select = cm->tx_mode == TX_MODE_SELECT; + + av1_invalid_rd_stats(rd_stats); + + if (tx_select) { + start_tx = max_rect_tx_size; + depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], + is_inter_block(mbmi), &cpi->sf); + } else { + const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); + start_tx = chosen_tx_size; + depth = MAX_TX_DEPTH; + } + + prune_tx(cpi, bs, x, xd, EXT_TX_SET_ALL16); + + for (n = start_tx; depth <= MAX_TX_DEPTH; depth++, n = sub_tx_size_map[n]) { +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) { + if (tx_size_wide[n] < 8 || tx_size_high[n] < 8) continue; + } +#endif + RD_STATS this_rd_stats; + if (mbmi->ref_mv_idx > 0) x->rd_model = LOW_TXFM_RD; + rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, n, FTXS_NONE); + x->rd_model = FULL_TXFM_RD; + + if (rd < best_rd) { + memcpy(best_txk_type, mbmi->txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); + best_tx_size = n; + best_rd = rd; + *rd_stats = this_rd_stats; + } + if (n == TX_4X4) break; + } + + if (rd_stats->rate != INT_MAX) { + mbmi->tx_size = best_tx_size; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4); + } + + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; +} + +static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bs, + int64_t ref_best_rd) { + MACROBLOCKD *xd = &x->e_mbd; + av1_init_rd_stats(rd_stats); + + assert(bs == xd->mi[0]->sb_type); + + if (xd->lossless[xd->mi[0]->segment_id]) { + choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); + } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { + choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); + } else { + choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); + } +} + +// Return the rate cost for luma prediction mode info. of intra blocks. +static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, + const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, + int mode_cost) { + int total_rate = mode_cost; + const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0; + const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra; + const int use_intrabc = mbmi->use_intrabc; + // Can only activate one mode. + assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc + + use_filter_intra) <= 1); + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette && mbmi->mode == DC_PRED) { + const MACROBLOCKD *xd = &x->e_mbd; + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + const int mode_ctx = av1_get_palette_mode_ctx(xd); + total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette]; + if (use_palette) { + const uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + const int plt_size = mbmi->palette_mode_info.palette_size[0]; + int palette_mode_cost = + x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + + write_uniform_cost(plt_size, color_map[0]); + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + palette_mode_cost += + av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache, + n_cache, cpi->common.seq_params.bit_depth); + palette_mode_cost += + av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP); + total_rate += palette_mode_cost; + } + } + if (av1_filter_intra_allowed(&cpi->common, mbmi)) { + total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra]; + if (use_filter_intra) { + total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info + .filter_intra_mode]; + } + } + if (av1_is_directional_mode(mbmi->mode)) { + if (av1_use_angle_delta(bsize)) { + total_rate += x->angle_delta_cost[mbmi->mode - V_PRED] + [MAX_ANGLE_DELTA + + mbmi->angle_delta[PLANE_TYPE_Y]]; + } + } + if (av1_allow_intrabc(&cpi->common)) + total_rate += x->intrabc_cost[use_intrabc]; + return total_rate; +} + +// Return the rate cost for chroma prediction mode info. of intra blocks. +static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, + const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, + int mode_cost) { + int total_rate = mode_cost; + const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0; + const UV_PREDICTION_MODE mode = mbmi->uv_mode; + // Can only activate one mode. + assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1); + + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette && mode == UV_DC_PRED) { + const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info; + total_rate += + x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette]; + if (use_palette) { + const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); + const int plt_size = pmi->palette_size[1]; + const MACROBLOCKD *xd = &x->e_mbd; + const uint8_t *const color_map = xd->plane[1].color_index_map; + int palette_mode_cost = + x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + + write_uniform_cost(plt_size, color_map[0]); + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + palette_mode_cost += av1_palette_color_cost_uv( + pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth); + palette_mode_cost += + av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP); + total_rate += palette_mode_cost; + } + } + if (av1_is_directional_mode(get_uv_mode(mode))) { + if (av1_use_angle_delta(bsize)) { + total_rate += + x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] + + MAX_ANGLE_DELTA]; + } + } + return total_rate; +} + +static int conditional_skipintra(PREDICTION_MODE mode, + PREDICTION_MODE best_intra_mode) { + if (mode == D113_PRED && best_intra_mode != V_PRED && + best_intra_mode != D135_PRED) + return 1; + if (mode == D67_PRED && best_intra_mode != V_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D203_PRED && best_intra_mode != H_PRED && + best_intra_mode != D45_PRED) + return 1; + if (mode == D157_PRED && best_intra_mode != H_PRED && + best_intra_mode != D135_PRED) + return 1; + return 0; +} + +// Model based RD estimation for luma intra blocks. +static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mode_cost, int mi_row, + int mi_col) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + RD_STATS this_rd_stats; + int row, col; + int64_t temp_sse, this_rd; + TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + const int stepr = tx_size_high_unit[tx_size]; + const int stepc = tx_size_wide_unit[tx_size]; + const int max_blocks_wide = max_block_wide(xd, bsize, 0); + const int max_blocks_high = max_block_high(xd, bsize, 0); + mbmi->tx_size = tx_size; + // Prediction. + for (row = 0; row < max_blocks_high; row += stepr) { + for (col = 0; col < max_blocks_wide; col += stepc) { + av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size); + } + } + // RD estimation. + model_rd_sb_fn[MODELRD_TYPE_INTRA]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &this_rd_stats.rate, + &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse, NULL, NULL, NULL); + if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { + mode_cost += + x->angle_delta_cost[mbmi->mode - V_PRED] + [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]]; + } + if (mbmi->mode == DC_PRED && + av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) { + if (mbmi->filter_intra_mode_info.use_filter_intra) { + const int mode = mbmi->filter_intra_mode_info.filter_intra_mode; + mode_cost += x->filter_intra_cost[mbmi->sb_type][1] + + x->filter_intra_mode_cost[mode]; + } else { + mode_cost += x->filter_intra_cost[mbmi->sb_type][0]; + } + } + this_rd = + RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist); + return this_rd; +} + +// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x +// new_height'. Extra rows and columns are filled in by copying last valid +// row/column. +static void extend_palette_color_map(uint8_t *const color_map, int orig_width, + int orig_height, int new_width, + int new_height) { + int j; + assert(new_width >= orig_width); + assert(new_height >= orig_height); + if (new_width == orig_width && new_height == orig_height) return; + + for (j = orig_height - 1; j >= 0; --j) { + memmove(color_map + j * new_width, color_map + j * orig_width, orig_width); + // Copy last column to extra columns. + memset(color_map + j * new_width + orig_width, + color_map[j * new_width + orig_width - 1], new_width - orig_width); + } + // Copy last row to extra rows. + for (j = orig_height; j < new_height; ++j) { + memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width, + new_width); + } +} + +// Bias toward using colors in the cache. +// TODO(huisu): Try other schemes to improve compression. +static void optimize_palette_colors(uint16_t *color_cache, int n_cache, + int n_colors, int stride, int *centroids) { + if (n_cache <= 0) return; + for (int i = 0; i < n_colors * stride; i += stride) { + int min_diff = abs(centroids[i] - (int)color_cache[0]); + int idx = 0; + for (int j = 1; j < n_cache; ++j) { + const int this_diff = abs(centroids[i] - color_cache[j]); + if (this_diff < min_diff) { + min_diff = this_diff; + idx = j; + } + } + if (min_diff <= 1) centroids[i] = color_cache[idx]; + } +} + +// Given the base colors as specified in centroids[], calculate the RD cost +// of palette mode. +static void palette_rd_y(const AV1_COMP *const cpi, MACROBLOCK *x, + MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mi_row, + int mi_col, int dc_mode_cost, const int *data, + int *centroids, int n, uint16_t *color_cache, + int n_cache, MB_MODE_INFO *best_mbmi, + uint8_t *best_palette_color_map, int64_t *best_rd, + int64_t *best_model_rd, int *rate, int *rate_tokenonly, + int *rate_overhead, int64_t *distortion, + int *skippable, PICK_MODE_CONTEXT *ctx, + uint8_t *blk_skip) { + optimize_palette_colors(color_cache, n_cache, n, 1, centroids); + int k = av1_remove_duplicates(centroids, n); + if (k < PALETTE_MIN_SIZE) { + // Too few unique colors to create a palette. And DC_PRED will work + // well for that case anyway. So skip. + return; + } + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + if (cpi->common.seq_params.use_highbitdepth) + for (int i = 0; i < k; ++i) + pmi->palette_colors[i] = clip_pixel_highbd( + (int)centroids[i], cpi->common.seq_params.bit_depth); + else + for (int i = 0; i < k; ++i) + pmi->palette_colors[i] = clip_pixel(centroids[i]); + pmi->palette_size[0] = k; + MACROBLOCKD *const xd = &x->e_mbd; + uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); + extend_palette_color_map(color_map, cols, rows, block_width, block_height); + const int palette_mode_cost = + intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost); + int64_t this_model_rd = + intra_model_yrd(cpi, x, bsize, palette_mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + return; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + RD_STATS tokenonly_rd_stats; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) return; + int this_rate = tokenonly_rd_stats.rate + palette_mode_cost; + int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { + tokenonly_rd_stats.rate -= + tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + if (this_rd < *best_rd) { + *best_rd = this_rd; + memcpy(best_palette_color_map, color_map, + block_width * block_height * sizeof(color_map[0])); + *best_mbmi = *mbmi; + memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + *rate_overhead = this_rate - tokenonly_rd_stats.rate; + if (rate) *rate = this_rate; + if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate; + if (distortion) *distortion = tokenonly_rd_stats.dist; + if (skippable) *skippable = tokenonly_rd_stats.skip; + } +} + +static int rd_pick_palette_intra_sby( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, int dc_mode_cost, MB_MODE_INFO *best_mbmi, + uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd, + int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, + PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip) { + int rate_overhead = 0; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize)); + const SequenceHeader *const seq_params = &cpi->common.seq_params; + int colors, n; + const int src_stride = x->plane[0].src.stride; + const uint8_t *const src = x->plane[0].src.buf; + uint8_t *const color_map = xd->plane[0].color_index_map; + int block_width, block_height, rows, cols; + av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, + &cols); + + int count_buf[1 << 12]; // Maximum (1 << 12) color levels. + if (seq_params->use_highbitdepth) + colors = av1_count_colors_highbd(src, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + else + colors = av1_count_colors(src, src_stride, rows, cols, count_buf); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + + if (colors > 1 && colors <= 64) { + int r, c, i; + const int max_itr = 50; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[PALETTE_MAX_SIZE]; + int lb, ub, val; + uint16_t *src16 = CONVERT_TO_SHORTPTR(src); + if (seq_params->use_highbitdepth) + lb = ub = src16[0]; + else + lb = ub = src[0]; + + if (seq_params->use_highbitdepth) { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + val = src16[r * src_stride + c]; + data[r * cols + c] = val; + if (val < lb) + lb = val; + else if (val > ub) + ub = val; + } + } + } else { + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + val = src[r * src_stride + c]; + data[r * cols + c] = val; + if (val < lb) + lb = val; + else if (val > ub) + ub = val; + } + } + } + + mbmi->mode = DC_PRED; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 0, color_cache); + + // Find the dominant colors, stored in top_colors[]. + int top_colors[PALETTE_MAX_SIZE] = { 0 }; + for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) { + int max_count = 0; + for (int j = 0; j < (1 << seq_params->bit_depth); ++j) { + if (count_buf[j] > max_count) { + max_count = count_buf[j]; + top_colors[i] = j; + } + } + assert(max_count > 0); + count_buf[top_colors[i]] = 0; + } + + // Try the dominant colors directly. + // TODO(huisu@google.com): Try to avoid duplicate computation in cases + // where the dominant colors and the k-means results are similar. + for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { + for (i = 0; i < n; ++i) centroids[i] = top_colors[i]; + palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, + centroids, n, color_cache, n_cache, best_mbmi, + best_palette_color_map, best_rd, best_model_rd, rate, + rate_tokenonly, &rate_overhead, distortion, skippable, ctx, + best_blk_skip); + } + + // K-means clustering. + for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { + if (colors == PALETTE_MIN_SIZE) { + // Special case: These colors automatically become the centroids. + assert(colors == n); + assert(colors == 2); + centroids[0] = lb; + centroids[1] = ub; + } else { + for (i = 0; i < n; ++i) { + centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; + } + av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); + } + palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, + centroids, n, color_cache, n_cache, best_mbmi, + best_palette_color_map, best_rd, best_model_rd, rate, + rate_tokenonly, &rate_overhead, distortion, skippable, ctx, + best_blk_skip); + } + } + + if (best_mbmi->palette_mode_info.palette_size[0] > 0) { + memcpy(color_map, best_palette_color_map, + block_width * block_height * sizeof(best_palette_color_map[0])); + } + *mbmi = *best_mbmi; + return rate_overhead; +} + +// Return 1 if an filter intra mode is selected; return 0 otherwise. +static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + int mode_cost, int64_t *best_rd, + int64_t *best_model_rd, + PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + int filter_intra_selected_flag = 0; + FILTER_INTRA_MODE mode; + TX_SIZE best_tx_size = TX_8X8; + FILTER_INTRA_MODE_INFO filter_intra_mode_info; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + (void)ctx; + av1_zero(filter_intra_mode_info); + mbmi->filter_intra_mode_info.use_filter_intra = 1; + mbmi->mode = DC_PRED; + mbmi->palette_mode_info.palette_size[0] = 0; + + for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { + int64_t this_rd, this_model_rd; + RD_STATS tokenonly_rd_stats; + mbmi->filter_intra_mode_info.filter_intra_mode = mode; + this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + continue; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) continue; + const int this_rate = + tokenonly_rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < *best_rd) { + *best_rd = this_rd; + best_tx_size = mbmi->tx_size; + filter_intra_mode_info = mbmi->filter_intra_mode_info; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + *rate = this_rate; + *rate_tokenonly = tokenonly_rd_stats.rate; + *distortion = tokenonly_rd_stats.dist; + *skippable = tokenonly_rd_stats.skip; + filter_intra_selected_flag = 1; + } + } + + if (filter_intra_selected_flag) { + mbmi->mode = DC_PRED; + mbmi->tx_size = best_tx_size; + mbmi->filter_intra_mode_info = filter_intra_mode_info; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); + return 1; + } else { + return 0; + } +} + +// Run RD calculation with given luma intra prediction angle., and return +// the RD cost. Update the best mode info. if the RD cost is the best so far. +static int64_t calc_rd_given_intra_angle( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, int mode_cost, int64_t best_rd_in, int8_t angle_delta, + int max_angle_delta, int *rate, RD_STATS *rd_stats, int *best_angle_delta, + TX_SIZE *best_tx_size, int64_t *best_rd, int64_t *best_model_rd, + TX_TYPE *best_txk_type, uint8_t *best_blk_skip) { + RD_STATS tokenonly_rd_stats; + int64_t this_rd, this_model_rd; + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + const int n4 = bsize_to_num_blk(bsize); + assert(!is_inter_block(mbmi)); + mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta; + this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); + if (*best_model_rd != INT64_MAX && + this_model_rd > *best_model_rd + (*best_model_rd >> 1)) + return INT64_MAX; + if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; + super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in); + if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX; + + int this_rate = + mode_cost + tokenonly_rd_stats.rate + + x->angle_delta_cost[mbmi->mode - V_PRED][max_angle_delta + angle_delta]; + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < *best_rd) { + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); + *best_rd = this_rd; + *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y]; + *best_tx_size = mbmi->tx_size; + *rate = this_rate; + rd_stats->rate = tokenonly_rd_stats.rate; + rd_stats->dist = tokenonly_rd_stats.dist; + rd_stats->skip = tokenonly_rd_stats.skip; + } + return this_rd; +} + +// With given luma directional intra prediction mode, pick the best angle delta +// Return the RD cost corresponding to the best angle delta. +static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int mode_cost, int64_t best_rd, + int64_t *best_model_rd) { + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + assert(!is_inter_block(mbmi)); + + int best_angle_delta = 0; + int64_t rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; + TX_SIZE best_tx_size = mbmi->tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + + for (int i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; + + int first_try = 1; + for (int angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (int i = 0; i < 2; ++i) { + const int64_t best_rd_in = + (best_rd == INT64_MAX) ? INT64_MAX + : (best_rd + (best_rd >> (first_try ? 3 : 5))); + const int64_t this_rd = calc_rd_given_intra_angle( + cpi, x, bsize, mi_row, mi_col, mode_cost, best_rd_in, + (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, rd_stats, + &best_angle_delta, &best_tx_size, &best_rd, best_model_rd, + best_txk_type, best_blk_skip); + rd_cost[2 * angle_delta + i] = this_rd; + if (first_try && this_rd == INT64_MAX) return best_rd; + first_try = 0; + if (angle_delta == 0) { + rd_cost[1] = this_rd; + break; + } + } + } + + assert(best_rd != INT64_MAX); + for (int angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (int i = 0; i < 2; ++i) { + int skip_search = 0; + const int64_t rd_thresh = best_rd + (best_rd >> 5); + if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && + rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) + skip_search = 1; + if (!skip_search) { + calc_rd_given_intra_angle(cpi, x, bsize, mi_row, mi_col, mode_cost, + best_rd, (1 - 2 * i) * angle_delta, + MAX_ANGLE_DELTA, rate, rd_stats, + &best_angle_delta, &best_tx_size, &best_rd, + best_model_rd, best_txk_type, best_blk_skip); + } + } + } + + if (rd_stats->rate != INT_MAX) { + mbmi->tx_size = best_tx_size; + mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); + } + return best_rd; +} + +// Indices are sign, integer, and fractional part of the gradient value +static const uint8_t gradient_to_angle_bin[2][7][16] = { + { + { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + }, + { + { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, + { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, + { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, + }, +}; + +/* clang-format off */ +static const uint8_t mode_to_angle_bin[INTRA_MODES] = { + 0, 2, 6, 0, 4, 3, 5, 7, 1, 0, + 0, +}; +/* clang-format on */ + +static void angle_estimation(const uint8_t *src, int src_stride, int rows, + int cols, BLOCK_SIZE bsize, + uint8_t *directional_mode_skip_mask) { + memset(directional_mode_skip_mask, 0, + INTRA_MODES * sizeof(*directional_mode_skip_mask)); + // Check if angle_delta is used + if (!av1_use_angle_delta(bsize)) return; + uint64_t hist[DIRECTIONAL_MODES]; + memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); + src += src_stride; + int r, c, dx, dy; + for (r = 1; r < rows; ++r) { + for (c = 1; c < cols; ++c) { + dx = src[c] - src[c - 1]; + dy = src[c] - src[c - src_stride]; + int index; + const int temp = dx * dx + dy * dy; + if (dy == 0) { + index = 2; + } else { + const int sn = (dx > 0) ^ (dy > 0); + dx = abs(dx); + dy = abs(dy); + const int remd = (dx % dy) * 16 / dy; + const int quot = dx / dy; + index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; + } + hist[index] += temp; + } + src += src_stride; + } + + int i; + uint64_t hist_sum = 0; + for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; + for (i = 0; i < INTRA_MODES; ++i) { + if (av1_is_directional_mode(i)) { + const uint8_t angle_bin = mode_to_angle_bin[i]; + uint64_t score = 2 * hist[angle_bin]; + int weight = 2; + if (angle_bin > 0) { + score += hist[angle_bin - 1]; + ++weight; + } + if (angle_bin < DIRECTIONAL_MODES - 1) { + score += hist[angle_bin + 1]; + ++weight; + } + if (score * ANGLE_SKIP_THRESH < hist_sum * weight) + directional_mode_skip_mask[i] = 1; + } + } +} + +static void highbd_angle_estimation(const uint8_t *src8, int src_stride, + int rows, int cols, BLOCK_SIZE bsize, + uint8_t *directional_mode_skip_mask) { + memset(directional_mode_skip_mask, 0, + INTRA_MODES * sizeof(*directional_mode_skip_mask)); + // Check if angle_delta is used + if (!av1_use_angle_delta(bsize)) return; + uint16_t *src = CONVERT_TO_SHORTPTR(src8); + uint64_t hist[DIRECTIONAL_MODES]; + memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); + src += src_stride; + int r, c, dx, dy; + for (r = 1; r < rows; ++r) { + for (c = 1; c < cols; ++c) { + dx = src[c] - src[c - 1]; + dy = src[c] - src[c - src_stride]; + int index; + const int temp = dx * dx + dy * dy; + if (dy == 0) { + index = 2; + } else { + const int sn = (dx > 0) ^ (dy > 0); + dx = abs(dx); + dy = abs(dy); + const int remd = (dx % dy) * 16 / dy; + const int quot = dx / dy; + index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; + } + hist[index] += temp; + } + src += src_stride; + } + + int i; + uint64_t hist_sum = 0; + for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; + for (i = 0; i < INTRA_MODES; ++i) { + if (av1_is_directional_mode(i)) { + const uint8_t angle_bin = mode_to_angle_bin[i]; + uint64_t score = 2 * hist[angle_bin]; + int weight = 2; + if (angle_bin > 0) { + score += hist[angle_bin - 1]; + ++weight; + } + if (angle_bin < DIRECTIONAL_MODES - 1) { + score += hist[angle_bin + 1]; + ++weight; + } + if (score * ANGLE_SKIP_THRESH < hist_sum * weight) + directional_mode_skip_mask[i] = 1; + } + } +} + +// Given selected prediction mode, search for the best tx type and size. +static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, const int *bmode_costs, + int64_t *best_rd, int *rate, int *rate_tokenonly, + int64_t *distortion, int *skippable, + MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + RD_STATS rd_stats; + super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd); + if (rd_stats.rate == INT_MAX) return; + int this_rate_tokenonly = rd_stats.rate; + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + const int this_rate = + rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); + const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); + if (this_rd < *best_rd) { + *best_mbmi = *mbmi; + *best_rd = this_rd; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = rd_stats.dist; + *skippable = rd_stats.skip; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } +} + +// This function is used only for intra_only frames +static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + int mi_row, int mi_col, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable, BLOCK_SIZE bsize, + int64_t best_rd, PICK_MODE_CONTEXT *ctx) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + int64_t best_model_rd = INT64_MAX; + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + int is_directional_mode; + uint8_t directional_mode_skip_mask[INTRA_MODES]; + const int src_stride = x->plane[0].src.stride; + const uint8_t *src = x->plane[0].src.buf; + int beat_best_rd = 0; + const int *bmode_costs; + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + uint8_t *best_palette_color_map = + try_palette ? x->palette_buffer->best_palette_color_map : NULL; + const MB_MODE_INFO *above_mi = xd->above_mbmi; + const MB_MODE_INFO *left_mi = xd->left_mbmi; + const PREDICTION_MODE A = av1_above_block_mode(above_mi); + const PREDICTION_MODE L = av1_left_block_mode(left_mi); + const int above_ctx = intra_mode_context[A]; + const int left_ctx = intra_mode_context[L]; + bmode_costs = x->y_mode_costs[above_ctx][left_ctx]; + + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + highbd_angle_estimation(src, src_stride, rows, cols, bsize, + directional_mode_skip_mask); + else + angle_estimation(src, src_stride, rows, cols, bsize, + directional_mode_skip_mask); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + pmi->palette_size[0] = 0; + + if (cpi->sf.tx_type_search.fast_intra_tx_type_search) + x->use_default_intra_tx_type = 1; + else + x->use_default_intra_tx_type = 0; + + MB_MODE_INFO best_mbmi = *mbmi; + /* Y Search for intra prediction mode */ + for (int mode_idx = INTRA_MODE_START; mode_idx < INTRA_MODE_END; ++mode_idx) { + RD_STATS this_rd_stats; + int this_rate, this_rate_tokenonly, s; + int64_t this_distortion, this_rd, this_model_rd; + mbmi->mode = intra_rd_search_mode_order[mode_idx]; + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + this_model_rd = + intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode], mi_row, mi_col); + if (best_model_rd != INT64_MAX && + this_model_rd > best_model_rd + (best_model_rd >> 1)) + continue; + if (this_model_rd < best_model_rd) best_model_rd = this_model_rd; + is_directional_mode = av1_is_directional_mode(mbmi->mode); + if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; + if (is_directional_mode && av1_use_angle_delta(bsize)) { + this_rd_stats.rate = INT_MAX; + rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &this_rate, + &this_rd_stats, bsize, bmode_costs[mbmi->mode], + best_rd, &best_model_rd); + } else { + super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); + } + this_rate_tokenonly = this_rd_stats.rate; + this_distortion = this_rd_stats.dist; + s = this_rd_stats.skip; + + if (this_rate_tokenonly == INT_MAX) continue; + + if (!xd->lossless[mbmi->segment_id] && + block_signals_txsize(mbmi->sb_type)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + this_rate_tokenonly -= + tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); + } + this_rate = + this_rd_stats.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); + this_rd = RDCOST(x->rdmult, this_rate, this_distortion); + if (this_rd < best_rd) { + best_mbmi = *mbmi; + best_rd = this_rd; + beat_best_rd = 1; + *rate = this_rate; + *rate_tokenonly = this_rate_tokenonly; + *distortion = this_distortion; + *skippable = s; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + if (try_palette) { + rd_pick_palette_intra_sby( + cpi, x, bsize, mi_row, mi_col, bmode_costs[DC_PRED], &best_mbmi, + best_palette_color_map, &best_rd, &best_model_rd, rate, rate_tokenonly, + distortion, skippable, ctx, ctx->blk_skip); + } + + if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { + if (rd_pick_filter_intra_sby( + cpi, x, mi_row, mi_col, rate, rate_tokenonly, distortion, skippable, + bsize, bmode_costs[DC_PRED], &best_rd, &best_model_rd, ctx)) { + best_mbmi = *mbmi; + } + } + + // If previous searches use only the default tx type, do an extra search for + // the best tx type. + if (x->use_default_intra_tx_type) { + *mbmi = best_mbmi; + x->use_default_intra_tx_type = 0; + intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly, + distortion, skippable, &best_mbmi, ctx); + } + + *mbmi = best_mbmi; + return best_rd; +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; + const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + int plane; + int is_cost_valid = 1; + av1_init_rd_stats(rd_stats); + + if (ref_best_rd < 0) is_cost_valid = 0; + + if (x->skip_chroma_rd) return is_cost_valid; + + bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + + if (is_inter_block(mbmi) && is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) + av1_subtract_plane(x, bsize, plane); + } + + if (is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) { + RD_STATS pn_rd_stats; + txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize, + uv_tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (pn_rd_stats.rate == INT_MAX) { + is_cost_valid = 0; + break; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) > ref_best_rd && + RDCOST(x->rdmult, 0, rd_stats->sse) > ref_best_rd) { + is_cost_valid = 0; + break; + } + } + } + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + + return is_cost_valid; +} + +static void tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, + int blk_row, int blk_col, int plane, int block, + int plane_bsize, TXB_CTX *txb_ctx, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode, int64_t ref_rdcost, + TXB_RD_INFO *rd_info_array) { + const struct macroblock_plane *const p = &x->plane[plane]; + const uint16_t cur_joint_ctx = + (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + // Look up RD and terminate early in case when we've already processed exactly + // the same residual with exactly the same entropy context. + if (rd_info_array != NULL && rd_info_array->valid && + rd_info_array->entropy_context == cur_joint_ctx) { + if (plane == 0) + x->e_mbd.mi[0]->txk_type[txk_type_idx] = rd_info_array->tx_type; + const TX_TYPE ref_tx_type = + av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, + tx_size, cpi->common.reduced_tx_set_used); + if (ref_tx_type == rd_info_array->tx_type) { + rd_stats->rate += rd_info_array->rate; + rd_stats->dist += rd_info_array->dist; + rd_stats->sse += rd_info_array->sse; + rd_stats->skip &= rd_info_array->eob == 0; + p->eobs[block] = rd_info_array->eob; + p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx; + return; + } + } + + RD_STATS this_rd_stats; + search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, + txb_ctx, ftxs_mode, 0, ref_rdcost, &this_rd_stats); + + av1_merge_rd_stats(rd_stats, &this_rd_stats); + + // Save RD results for possible reuse in future. + if (rd_info_array != NULL) { + rd_info_array->valid = 1; + rd_info_array->entropy_context = cur_joint_ctx; + rd_info_array->rate = this_rd_stats.rate; + rd_info_array->dist = this_rd_stats.dist; + rd_info_array->sse = this_rd_stats.sse; + rd_info_array->eob = p->eobs[block]; + rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block]; + if (plane == 0) { + rd_info_array->tx_type = x->e_mbd.mi[0]->txk_type[txk_type_idx]; + } + } +} + +static void get_mean_and_dev(const int16_t *data, int stride, int bw, int bh, + float *mean, float *dev) { + int x_sum = 0; + uint64_t x2_sum = 0; + for (int i = 0; i < bh; ++i) { + for (int j = 0; j < bw; ++j) { + const int val = data[j]; + x_sum += val; + x2_sum += val * val; + } + data += stride; + } + + const int num = bw * bh; + const float e_x = (float)x_sum / num; + const float e_x2 = (float)((double)x2_sum / num); + const float diff = e_x2 - e_x * e_x; + *dev = (diff > 0) ? sqrtf(diff) : 0; + *mean = e_x; +} + +static void get_mean_and_dev_float(const float *data, int stride, int bw, + int bh, float *mean, float *dev) { + float x_sum = 0; + float x2_sum = 0; + for (int i = 0; i < bh; ++i) { + for (int j = 0; j < bw; ++j) { + const float val = data[j]; + x_sum += val; + x2_sum += val * val; + } + data += stride; + } + + const int num = bw * bh; + const float e_x = x_sum / num; + const float e_x2 = x2_sum / num; + const float diff = e_x2 - e_x * e_x; + *dev = (diff > 0) ? sqrtf(diff) : 0; + *mean = e_x; +} + +// Feature used by the model to predict tx split: the mean and standard +// deviation values of the block and sub-blocks. +static void get_mean_dev_features(const int16_t *data, int stride, int bw, + int bh, int levels, float *feature) { + int feature_idx = 0; + int width = bw; + int height = bh; + const int16_t *const data_ptr = &data[0]; + for (int lv = 0; lv < levels; ++lv) { + if (width < 2 || height < 2) break; + float mean_buf[16]; + float dev_buf[16]; + int blk_idx = 0; + for (int row = 0; row < bh; row += height) { + for (int col = 0; col < bw; col += width) { + float mean, dev; + get_mean_and_dev(data_ptr + row * stride + col, stride, width, height, + &mean, &dev); + feature[feature_idx++] = mean; + feature[feature_idx++] = dev; + mean_buf[blk_idx] = mean; + dev_buf[blk_idx++] = dev; + } + } + if (blk_idx > 1) { + float mean, dev; + // Deviation of means. + get_mean_and_dev_float(mean_buf, 1, 1, blk_idx, &mean, &dev); + feature[feature_idx++] = dev; + // Mean of deviations. + get_mean_and_dev_float(dev_buf, 1, 1, blk_idx, &mean, &dev); + feature[feature_idx++] = mean; + } + // Reduce the block size when proceeding to the next level. + if (height == width) { + height = height >> 1; + width = width >> 1; + } else if (height > width) { + height = height >> 1; + } else { + width = width >> 1; + } + } +} + +static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row, + int blk_col, TX_SIZE tx_size) { + const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size]; + if (!nn_config) return -1; + + const int diff_stride = block_size_wide[bsize]; + const int16_t *diff = + x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; + const int bw = tx_size_wide[tx_size]; + const int bh = tx_size_high[tx_size]; + aom_clear_system_state(); + + float features[64] = { 0.0f }; + get_mean_dev_features(diff, diff_stride, bw, bh, 2, features); + + float score = 0.0f; + av1_nn_predict(features, nn_config, &score); + if (score > 8.0f) return 100; + if (score < -8.0f) return 0; + score = 1.0f / (1.0f + (float)exp(-score)); + return (int)(score * 100); +} + +typedef struct { + int64_t rd; + int txb_entropy_ctx; + TX_TYPE tx_type; +} TxCandidateInfo; + +static void try_tx_block_no_split( + const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, + TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, + const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl, + int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, + TxCandidateInfo *no_split) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + struct macroblock_plane *const p = &x->plane[0]; + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + + no_split->rd = INT64_MAX; + no_split->txb_entropy_ctx = 0; + no_split->tx_type = TX_TYPES; + + const ENTROPY_CONTEXT *const pta = ta + blk_col; + const ENTROPY_CONTEXT *const ptl = tl + blk_row; + + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx); + const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + + rd_stats->ref_rdcost = ref_best_rd; + rd_stats->zero_rate = zero_blk_rate; + const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); + mbmi->inter_tx_size[index] = tx_size; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, + rd_info_node != NULL ? rd_info_node->rd_info_array : NULL); + assert(rd_stats->rate < INT_MAX); + + if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) && + !xd->lossless[mbmi->segment_id]) { +#if CONFIG_RD_DEBUG + av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col, + zero_blk_rate - rd_stats->rate); +#endif // CONFIG_RD_DEBUG + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + set_blk_skip(x, 0, blk_row * bw + blk_col, 1); + p->eobs[block] = 0; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } else { + set_blk_skip(x, 0, blk_row * bw + blk_col, 0); + rd_stats->skip = 0; + } + + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[txfm_partition_ctx][0]; + + no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + no_split->txb_entropy_ctx = p->txb_entropy_ctx[block]; + const int txk_type_idx = + av1_get_txk_type_index(plane_bsize, blk_row, blk_col); + no_split->tx_type = mbmi->txk_type[txk_type_idx]; +} + +static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, int depth, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, + TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, + int64_t ref_best_rd, int *is_cost_valid, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_node); + +static void try_tx_block_split( + const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, + TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, + int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, + RD_STATS *split_rd_stats, int64_t *split_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int sub_step = bsw * bsh; + RD_STATS this_rd_stats; + int this_cost_valid = 1; + int64_t tmp_rd = 0; + + split_rd_stats->rate = x->txfm_partition_cost[txfm_partition_ctx][1]; + + assert(tx_size < TX_SIZES_ALL); + + int blk_idx = 0; + for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { + for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) { + const int offsetr = blk_row + r; + const int offsetc = blk_col + c; + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + assert(blk_idx < 4); + select_tx_block( + cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta, + tl, tx_above, tx_left, &this_rd_stats, ref_best_rd - tmp_rd, + &this_cost_valid, ftxs_mode, + (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL); + + if (!this_cost_valid) goto LOOP_EXIT; + + av1_merge_rd_stats(split_rd_stats, &this_rd_stats); + + tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist); + + if (no_split_rd < tmp_rd) { + this_cost_valid = 0; + goto LOOP_EXIT; + } + block += sub_step; + } + } + +LOOP_EXIT : {} + + if (this_cost_valid) *split_rd = tmp_rd; +} + +// Search for the best tx partition/type for a given luma block. +static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, int depth, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, + ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, + TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, + int64_t ref_best_rd, int *is_cost_valid, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_node) { + assert(tx_size < TX_SIZES_ALL); + av1_init_rd_stats(rd_stats); + if (ref_best_rd < 0) { + *is_cost_valid = 0; + return; + } + + MACROBLOCKD *const xd = &x->e_mbd; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, + mbmi->sb_type, tx_size); + struct macroblock_plane *const p = &x->plane[0]; + + const int try_no_split = 1; + int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH; +#if CONFIG_DIST_8X8 + if (x->using_dist_8x8) + try_split &= tx_size_wide[tx_size] >= 16 && tx_size_high[tx_size] >= 16; +#endif + TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES }; + + // TX no split + if (try_no_split) { + try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth, + plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd, + ftxs_mode, rd_info_node, &no_split); + + if (cpi->sf.adaptive_txb_search_level && + (no_split.rd - + (no_split.rd >> (1 + cpi->sf.adaptive_txb_search_level))) > + ref_best_rd) { + *is_cost_valid = 0; + return; + } + + if (cpi->sf.txb_split_cap) { + if (p->eobs[block] == 0) try_split = 0; + } + } + + if (x->e_mbd.bd == 8 && !x->cb_partition_scan && try_split) { + const int threshold = cpi->sf.tx_type_search.ml_tx_split_thresh; + if (threshold >= 0) { + const int split_score = + ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size); + if (split_score >= 0 && split_score < threshold) try_split = 0; + } + } + + // TX split + int64_t split_rd = INT64_MAX; + RD_STATS split_rd_stats; + av1_init_rd_stats(&split_rd_stats); + if (try_split) { + try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth, + plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd, + AOMMIN(no_split.rd, ref_best_rd), ftxs_mode, + rd_info_node, &split_rd_stats, &split_rd); + } + + if (no_split.rd < split_rd) { + ENTROPY_CONTEXT *pta = ta + blk_col; + ENTROPY_CONTEXT *ptl = tl + blk_row; + const TX_SIZE tx_size_selected = tx_size; + p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx; + av1_set_txb_context(x, 0, block, tx_size_selected, pta, ptl); + txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, + tx_size); + for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { + for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { + const int index = + av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); + mbmi->inter_tx_size[index] = tx_size_selected; + } + } + mbmi->tx_size = tx_size_selected; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + no_split.tx_type); + set_blk_skip(x, 0, blk_row * bw + blk_col, rd_stats->skip); + } else { + *rd_stats = split_rd_stats; + if (split_rd == INT64_MAX) *is_cost_valid = 0; + } +} + +static void select_inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode, + TXB_RD_INFO_NODE *rd_info_tree) { + MACROBLOCKD *const xd = &x->e_mbd; + int is_cost_valid = 1; + int64_t this_rd = 0, skip_rd = 0; + + if (ref_best_rd < 0) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (is_cost_valid) { + const struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int mi_width = mi_size_wide[plane_bsize]; + const int mi_height = mi_size_high[plane_bsize]; + const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; + ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; + + RD_STATS pn_rd_stats; + const int init_depth = + get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); + av1_init_rd_stats(&pn_rd_stats); + + av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); + memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); + memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); + const int skip_ctx = av1_get_skip_context(xd); + const int s0 = x->skip_cost[skip_ctx][0]; + const int s1 = x->skip_cost[skip_ctx][1]; + + skip_rd = RDCOST(x->rdmult, s1, 0); + this_rd = RDCOST(x->rdmult, s0, 0); + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + int64_t best_rd_sofar = (ref_best_rd - (AOMMIN(skip_rd, this_rd))); + select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, + plane_bsize, ctxa, ctxl, tx_above, tx_left, + &pn_rd_stats, best_rd_sofar, &is_cost_valid, ftxs_mode, + rd_info_tree); + if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); + this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + block += step; + if (rd_info_tree != NULL) rd_info_tree += 1; + } + } + if (skip_rd <= this_rd) { + rd_stats->rate = 0; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + } else { + rd_stats->skip = 0; + } + } + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } +} + +static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, + TXB_RD_INFO_NODE *rd_info_tree) { + const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_inter = is_inter_block(mbmi); + const int skip_ctx = av1_get_skip_context(xd); + int s0 = x->skip_cost[skip_ctx][0]; + int s1 = x->skip_cost[skip_ctx][1]; + int64_t rd; + + // TODO(debargha): enable this as a speed feature where the + // select_inter_block_yrd() function above will use a simplified search + // such as not using full optimize, but the inter_block_yrd() function + // will use more complex search given that the transform partitions have + // already been decided. + + int64_t rd_thresh = ref_best_rd; + if (fast_tx_search && rd_thresh < INT64_MAX) { + if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); + } + assert(rd_thresh > 0); + + FAST_TX_SEARCH_MODE ftxs_mode = + fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE; + select_inter_block_yrd(cpi, x, rd_stats, bsize, rd_thresh, ftxs_mode, + rd_info_tree); + if (rd_stats->rate == INT_MAX) return INT64_MAX; + + // If fast_tx_search is true, only DCT and 1D DCT were tested in + // select_inter_block_yrd() above. Do a better search for tx type with + // tx sizes already decided. + if (fast_tx_search) { + if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE)) + return INT64_MAX; + } + + if (rd_stats->skip) + rd = RDCOST(x->rdmult, s1, rd_stats->sse); + else + rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + + if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip)) + rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); + + return rd; +} + +// Finds rd cost for a y block, given the transform size partitions +static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int block, TX_SIZE tx_size, + BLOCK_SIZE plane_bsize, int depth, + ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, + TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, + int64_t ref_best_rd, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int max_blocks_high = max_block_high(xd, plane_bsize, 0); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); + + assert(tx_size < TX_SIZES_ALL); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( + plane_bsize, blk_row, blk_col)]; + + int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, + mbmi->sb_type, tx_size); + + av1_init_rd_stats(rd_stats); + if (tx_size == plane_tx_size) { + ENTROPY_CONTEXT *ta = above_ctx + blk_col; + ENTROPY_CONTEXT *tl = left_ctx + blk_row; + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx); + + const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(0)] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + rd_stats->zero_rate = zero_blk_rate; + rd_stats->ref_rdcost = ref_best_rd; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, NULL); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) { + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + set_blk_skip(x, 0, blk_row * mi_width + blk_col, 1); + x->plane[0].eobs[block] = 0; + x->plane[0].txb_entropy_ctx[block] = 0; + update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, + DCT_DCT); + } else { + rd_stats->skip = 0; + set_blk_skip(x, 0, blk_row * mi_width + blk_col, 0); + } + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[ctx][0]; + av1_set_txb_context(x, 0, block, tx_size, ta, tl); + txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, + tx_size); + } else { + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsh * bsw; + RD_STATS pn_rd_stats; + int64_t this_rd = 0; + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + + av1_init_rd_stats(&pn_rd_stats); + tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize, + depth + 1, above_ctx, left_ctx, tx_above, tx_left, + ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); + block += step; + } + } + + if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) + rd_stats->rate += x->txfm_partition_cost[ctx][1]; + } +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + int is_cost_valid = 1; + int64_t this_rd = 0; + + if (ref_best_rd < 0) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (is_cost_valid) { + const struct macroblockd_plane *const pd = &xd->plane[0]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int mi_width = mi_size_wide[plane_bsize]; + const int mi_height = mi_size_high[plane_bsize]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + const int init_depth = + get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; + ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; + TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; + RD_STATS pn_rd_stats; + + av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); + memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); + memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); + + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + av1_init_rd_stats(&pn_rd_stats); + tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, plane_bsize, + init_depth, ctxa, ctxl, tx_above, tx_left, + ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd += + AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), + RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); + block += step; + } + } + } + + const int skip_ctx = av1_get_skip_context(xd); + const int s0 = x->skip_cost[skip_ctx][0]; + const int s1 = x->skip_cost[skip_ctx][1]; + int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); + this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); + if (skip_rd < this_rd) { + this_rd = skip_rd; + rd_stats->rate = 0; + rd_stats->dist = rd_stats->sse; + rd_stats->skip = 1; + } + if (this_rd > ref_best_rd) is_cost_valid = 0; + + if (!is_cost_valid) { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + return is_cost_valid; +} + +static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + const int16_t *diff = x->plane[0].src_diff; + const uint32_t hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, + (uint8_t *)diff, 2 * rows * cols); + return (hash << 5) + bsize; +} + +static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x, + const RD_STATS *const rd_stats, + MB_RD_RECORD *tx_rd_record) { + int index; + if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) { + index = + (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN; + ++tx_rd_record->num; + } else { + index = tx_rd_record->index_start; + tx_rd_record->index_start = + (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; + } + MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index]; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + tx_rd_info->hash_value = hash; + tx_rd_info->tx_size = mbmi->tx_size; + memcpy(tx_rd_info->blk_skip, x->blk_skip, + sizeof(tx_rd_info->blk_skip[0]) * n4); + av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size); + av1_copy(tx_rd_info->txk_type, mbmi->txk_type); + tx_rd_info->rd_stats = *rd_stats; +} + +static void fetch_tx_rd_info(int n4, const MB_RD_INFO *const tx_rd_info, + RD_STATS *const rd_stats, MACROBLOCK *const x) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + mbmi->tx_size = tx_rd_info->tx_size; + memcpy(x->blk_skip, tx_rd_info->blk_skip, + sizeof(tx_rd_info->blk_skip[0]) * n4); + av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size); + av1_copy(mbmi->txk_type, tx_rd_info->txk_type); + *rd_stats = tx_rd_info->rd_stats; +} + +static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, + const uint32_t hash) { + // Linear search through the circular buffer to find matching hash. + for (int i = cur_record->index_start - 1; i >= 0; i--) { + if (cur_record->hash_vals[i] == hash) return i; + } + for (int i = cur_record->num - 1; i >= cur_record->index_start; i--) { + if (cur_record->hash_vals[i] == hash) return i; + } + int index; + // If not found - add new RD info into the buffer and return its index + if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) { + index = (cur_record->index_start + cur_record->num) % + TX_SIZE_RD_RECORD_BUFFER_LEN; + cur_record->num++; + } else { + index = cur_record->index_start; + cur_record->index_start = + (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN; + } + + cur_record->hash_vals[index] = hash; + av1_zero(cur_record->tx_rd_info[index]); + return index; +} + +typedef struct { + int leaf; + int8_t children[4]; +} RD_RECORD_IDX_NODE; + +static const RD_RECORD_IDX_NODE rd_record_tree_8x8[] = { + { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_8x16[] = { + { 0, { 1, 2, -1, -1 } }, + { 1, { 0, 0, 0, 0 } }, + { 1, { 0, 0, 0, 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_16x8[] = { + { 0, { 1, 2, -1, -1 } }, + { 1, { 0 } }, + { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_16x16[] = { + { 0, { 1, 2, 3, 4 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_1_2[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, 5, 6 } }, + { 0, { 7, 8, 9, 10 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_2_1[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, 7, 8 } }, + { 0, { 5, 6, 9, 10 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_sqr[] = { + { 0, { 1, 2, 3, 4 } }, { 0, { 5, 6, 9, 10 } }, { 0, { 7, 8, 11, 12 } }, + { 0, { 13, 14, 17, 18 } }, { 0, { 15, 16, 19, 20 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_64x128[] = { + { 0, { 2, 3, 4, 5 } }, { 0, { 6, 7, 8, 9 } }, + { 0, { 10, 11, 14, 15 } }, { 0, { 12, 13, 16, 17 } }, + { 0, { 18, 19, 22, 23 } }, { 0, { 20, 21, 24, 25 } }, + { 0, { 26, 27, 30, 31 } }, { 0, { 28, 29, 32, 33 } }, + { 0, { 34, 35, 38, 39 } }, { 0, { 36, 37, 40, 41 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_128x64[] = { + { 0, { 2, 3, 6, 7 } }, { 0, { 4, 5, 8, 9 } }, + { 0, { 10, 11, 18, 19 } }, { 0, { 12, 13, 20, 21 } }, + { 0, { 14, 15, 22, 23 } }, { 0, { 16, 17, 24, 25 } }, + { 0, { 26, 27, 34, 35 } }, { 0, { 28, 29, 36, 37 } }, + { 0, { 30, 31, 38, 39 } }, { 0, { 32, 33, 40, 41 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_128x128[] = { + { 0, { 4, 5, 8, 9 } }, { 0, { 6, 7, 10, 11 } }, + { 0, { 12, 13, 16, 17 } }, { 0, { 14, 15, 18, 19 } }, + { 0, { 20, 21, 28, 29 } }, { 0, { 22, 23, 30, 31 } }, + { 0, { 24, 25, 32, 33 } }, { 0, { 26, 27, 34, 35 } }, + { 0, { 36, 37, 44, 45 } }, { 0, { 38, 39, 46, 47 } }, + { 0, { 40, 41, 48, 49 } }, { 0, { 42, 43, 50, 51 } }, + { 0, { 52, 53, 60, 61 } }, { 0, { 54, 55, 62, 63 } }, + { 0, { 56, 57, 64, 65 } }, { 0, { 58, 59, 66, 67 } }, + { 0, { 68, 69, 76, 77 } }, { 0, { 70, 71, 78, 79 } }, + { 0, { 72, 73, 80, 81 } }, { 0, { 74, 75, 82, 83 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_1_4[] = { + { 0, { 1, -1, 2, -1 } }, + { 0, { 3, 4, -1, -1 } }, + { 0, { 5, 6, -1, -1 } }, +}; + +static const RD_RECORD_IDX_NODE rd_record_tree_4_1[] = { + { 0, { 1, 2, -1, -1 } }, + { 0, { 3, 4, -1, -1 } }, + { 0, { 5, 6, -1, -1 } }, +}; + +static const RD_RECORD_IDX_NODE *rd_record_tree[BLOCK_SIZES_ALL] = { + NULL, // BLOCK_4X4 + NULL, // BLOCK_4X8 + NULL, // BLOCK_8X4 + rd_record_tree_8x8, // BLOCK_8X8 + rd_record_tree_8x16, // BLOCK_8X16 + rd_record_tree_16x8, // BLOCK_16X8 + rd_record_tree_16x16, // BLOCK_16X16 + rd_record_tree_1_2, // BLOCK_16X32 + rd_record_tree_2_1, // BLOCK_32X16 + rd_record_tree_sqr, // BLOCK_32X32 + rd_record_tree_1_2, // BLOCK_32X64 + rd_record_tree_2_1, // BLOCK_64X32 + rd_record_tree_sqr, // BLOCK_64X64 + rd_record_tree_64x128, // BLOCK_64X128 + rd_record_tree_128x64, // BLOCK_128X64 + rd_record_tree_128x128, // BLOCK_128X128 + NULL, // BLOCK_4X16 + NULL, // BLOCK_16X4 + rd_record_tree_1_4, // BLOCK_8X32 + rd_record_tree_4_1, // BLOCK_32X8 + rd_record_tree_1_4, // BLOCK_16X64 + rd_record_tree_4_1, // BLOCK_64X16 +}; + +static const int rd_record_tree_size[BLOCK_SIZES_ALL] = { + 0, // BLOCK_4X4 + 0, // BLOCK_4X8 + 0, // BLOCK_8X4 + sizeof(rd_record_tree_8x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X8 + sizeof(rd_record_tree_8x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X16 + sizeof(rd_record_tree_16x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X8 + sizeof(rd_record_tree_16x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X16 + sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X32 + sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X16 + sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X32 + sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X64 + sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X32 + sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X64 + sizeof(rd_record_tree_64x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X128 + sizeof(rd_record_tree_128x64) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X64 + sizeof(rd_record_tree_128x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X128 + 0, // BLOCK_4X16 + 0, // BLOCK_16X4 + sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X32 + sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X8 + sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X64 + sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X16 +}; + +static INLINE void init_rd_record_tree(TXB_RD_INFO_NODE *tree, + BLOCK_SIZE bsize) { + const RD_RECORD_IDX_NODE *rd_record = rd_record_tree[bsize]; + const int size = rd_record_tree_size[bsize]; + for (int i = 0; i < size; ++i) { + if (rd_record[i].leaf) { + av1_zero(tree[i].children); + } else { + for (int j = 0; j < 4; ++j) { + const int8_t idx = rd_record[i].children[j]; + tree[i].children[j] = idx > 0 ? &tree[idx] : NULL; + } + } + } +} + +// Go through all TX blocks that could be used in TX size search, compute +// residual hash values for them and find matching RD info that stores previous +// RD search results for these TX blocks. The idea is to prevent repeated +// rate/distortion computations that happen because of the combination of +// partition and TX size search. The resulting RD info records are returned in +// the form of a quadtree for easier access in actual TX size search. +static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, + int mi_col, TXB_RD_INFO_NODE *dst_rd_info) { + TXB_RD_RECORD *rd_records_table[4] = { x->txb_rd_record_8X8, + x->txb_rd_record_16X16, + x->txb_rd_record_32X32, + x->txb_rd_record_64X64 }; + const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + + // Hashing is performed only for square TX sizes larger than TX_4X4 + if (max_square_tx_size < TX_8X8) return 0; + const int diff_stride = bw; + const struct macroblock_plane *const p = &x->plane[0]; + const int16_t *diff = &p->src_diff[0]; + init_rd_record_tree(dst_rd_info, bsize); + // Coordinates of the top-left corner of current block within the superblock + // measured in pixels: + const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2; + const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2; + int cur_rd_info_idx = 0; + int cur_tx_depth = 0; + TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize]; + while (cur_tx_depth <= MAX_VARTX_DEPTH) { + const int cur_tx_bw = tx_size_wide[cur_tx_size]; + const int cur_tx_bh = tx_size_high[cur_tx_size]; + if (cur_tx_bw < 8 || cur_tx_bh < 8) break; + const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size]; + const int tx_size_idx = cur_tx_size - TX_8X8; + for (int row = 0; row < bh; row += cur_tx_bh) { + for (int col = 0; col < bw; col += cur_tx_bw) { + if (cur_tx_bw != cur_tx_bh) { + // Use dummy nodes for all rectangular transforms within the + // TX size search tree. + dst_rd_info[cur_rd_info_idx].rd_info_array = NULL; + } else { + // Get spatial location of this TX block within the superblock + // (measured in cur_tx_bsize units). + const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh; + const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw; + + int16_t hash_data[MAX_SB_SQUARE]; + int16_t *cur_hash_row = hash_data; + const int16_t *cur_diff_row = diff + row * diff_stride + col; + for (int i = 0; i < cur_tx_bh; i++) { + memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw); + cur_hash_row += cur_tx_bw; + cur_diff_row += diff_stride; + } + const int hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, + (uint8_t *)hash_data, + 2 * cur_tx_bw * cur_tx_bh); + // Find corresponding RD info based on the hash value. + const int record_idx = + row_in_sb * (MAX_MIB_SIZE >> (tx_size_idx + 1)) + col_in_sb; + TXB_RD_RECORD *records = &rd_records_table[tx_size_idx][record_idx]; + int idx = find_tx_size_rd_info(records, hash); + dst_rd_info[cur_rd_info_idx].rd_info_array = + &records->tx_rd_info[idx]; + } + ++cur_rd_info_idx; + } + } + cur_tx_size = next_tx_size; + ++cur_tx_depth; + } + return 1; +} + +// origin_threshold * 128 / 100 +static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { + { + 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68, + 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68, + }, + { + 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68, + 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68, + }, + { + 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74, + 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74, + }, +}; + +// lookup table for predict_skip_flag +// int max_tx_size = max_txsize_rect_lookup[bsize]; +// if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) +// max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); +static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = { + TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8, + TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, + TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4, + TX_8X8, TX_8X8, TX_16X16, TX_16X16, +}; + +// Uses simple features on top of DCT coefficients to quickly predict +// whether optimal RD decision is to skip encoding the residual. +// The sse value is stored in dist. +static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, + int reduced_tx_set) { + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const MACROBLOCKD *xd = &x->e_mbd; + const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd); + + *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize); + const int64_t mse = *dist / bw / bh; + // Normalized quantizer takes the transform upscaling factor (8 for tx size + // smaller than 32) into account. + const int16_t normalized_dc_q = dc_q >> 3; + const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; + // Predict not to skip when mse is larger than threshold. + if (mse > mse_thresh) return 0; + + const int max_tx_size = max_predict_sf_tx_size[bsize]; + const int tx_h = tx_size_high[max_tx_size]; + const int tx_w = tx_size_wide[max_tx_size]; + DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]); + TxfmParam param; + param.tx_type = DCT_DCT; + param.tx_size = max_tx_size; + param.bd = xd->bd; + param.is_hbd = get_bitdepth_data_path_index(xd); + param.lossless = 0; + param.tx_set_type = av1_get_ext_tx_set_type( + param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set); + const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); + const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; + const int16_t *src_diff = x->plane[0].src_diff; + const int n_coeff = tx_w * tx_h; + const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); + const uint32_t dc_thresh = max_qcoef_thresh * dc_q; + const uint32_t ac_thresh = max_qcoef_thresh * ac_q; + for (int row = 0; row < bh; row += tx_h) { + for (int col = 0; col < bw; col += tx_w) { + av1_fwd_txfm(src_diff + col, coefs, bw, ¶m); + // Operating on TX domain, not pixels; we want the QTX quantizers + const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7); + if (dc_coef >= dc_thresh) return 0; + for (int i = 1; i < n_coeff; ++i) { + const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7); + if (ac_coef >= ac_thresh) return 0; + } + } + src_diff += tx_h * bw; + } + return 1; +} + +// Used to set proper context for early termination with skip = 1. +static void set_skip_flag(MACROBLOCK *x, RD_STATS *rd_stats, int bsize, + int64_t dist) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int n4 = bsize_to_num_blk(bsize); + const TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; + memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); + memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); + mbmi->tx_size = tx_size; + for (int i = 0; i < n4; ++i) set_blk_skip(x, 0, i, 1); + rd_stats->skip = 1; + rd_stats->rate = 0; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); + rd_stats->dist = rd_stats->sse = (dist << 4); +} + +static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row, + int mi_col, int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int64_t rd = INT64_MAX; + int64_t best_rd = INT64_MAX; + const int is_inter = is_inter_block(mbmi); + const int n4 = bsize_to_num_blk(bsize); + // Get the tx_size 1 level down + const TX_SIZE min_tx_size = sub_tx_size_map[max_txsize_rect_lookup[bsize]]; + const TxSetType tx_set_type = + av1_get_ext_tx_set_type(min_tx_size, is_inter, cm->reduced_tx_set_used); + const int within_border = + mi_row >= xd->tile.mi_row_start && + (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && + mi_col >= xd->tile.mi_col_start && + (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); + + av1_invalid_rd_stats(rd_stats); + + if (cpi->sf.model_based_prune_tx_search_level && ref_best_rd != INT64_MAX) { + int model_rate; + int64_t model_dist; + int model_skip; + model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &model_rate, &model_dist, + &model_skip, NULL, NULL, NULL, NULL); + const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist); + // If the modeled rd is a lot worse than the best so far, breakout. + // TODO(debargha, urvang): Improve the model and make the check below + // tighter. + assert(cpi->sf.model_based_prune_tx_search_level >= 0 && + cpi->sf.model_based_prune_tx_search_level <= 2); + static const int prune_factor_by8[] = { 2 + MODELRD_TYPE_TX_SEARCH_PRUNE, + 4 + MODELRD_TYPE_TX_SEARCH_PRUNE }; + if (!model_skip && + ((model_rd * + prune_factor_by8[cpi->sf.model_based_prune_tx_search_level - 1]) >> + 3) > ref_best_rd) + return; + } + + const uint32_t hash = get_block_residue_hash(x, bsize); + MB_RD_RECORD *mb_rd_record = &x->mb_rd_record; + + if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_mb_rd_hash) { + for (int i = 0; i < mb_rd_record->num; ++i) { + const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; + // If there is a match in the tx_rd_record, fetch the RD decision and + // terminate early. + if (mb_rd_record->tx_rd_info[index].hash_value == hash) { + MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[index]; + fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); + return; + } + } + } + + // If we predict that skip is the optimal RD decision - set the respective + // context and terminate early. + int64_t dist; + if (is_inter && cpi->sf.tx_type_search.use_skip_flag_prediction && + predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) { + set_skip_flag(x, rd_stats, bsize, dist); + // Save the RD search results into tx_rd_record. + if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); + return; + } + + // Precompute residual hashes and find existing or add new RD records to + // store and reuse rate and distortion values to speed up TX size search. + TXB_RD_INFO_NODE matched_rd_info[4 + 16 + 64]; + int found_rd_info = 0; + if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_inter_txb_hash) { + found_rd_info = + find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info); + } + + prune_tx(cpi, bsize, x, xd, tx_set_type); + + int found = 0; + + RD_STATS this_rd_stats; + av1_init_rd_stats(&this_rd_stats); + + rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd, + found_rd_info ? matched_rd_info : NULL); + assert(IMPLIES(this_rd_stats.skip && !this_rd_stats.invalid_rate, + this_rd_stats.rate == 0)); + + ref_best_rd = AOMMIN(rd, ref_best_rd); + if (rd < best_rd) { + *rd_stats = this_rd_stats; + found = 1; + } + + // Reset the pruning flags. + av1_zero(x->tx_search_prune); + x->tx_split_prune_flag = 0; + + // We should always find at least one candidate unless ref_best_rd is less + // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type + // might have failed to find something better) + assert(IMPLIES(!found, ref_best_rd != INT64_MAX)); + if (!found) return; + + // Save the RD search results into tx_rd_record. + if (within_border && cpi->sf.use_mb_rd_hash) + save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); +} + +static void tx_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, + int blk_col, int plane, int block, TX_SIZE tx_size, + BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx, + ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats, + FAST_TX_SEARCH_MODE ftxs_mode) { + assert(plane > 0); + assert(tx_size < TX_SIZES_ALL); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + ENTROPY_CONTEXT *ta = above_ctx + blk_col; + ENTROPY_CONTEXT *tl = left_ctx + blk_row; + TXB_CTX txb_ctx; + get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx); + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_UV] + .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; + tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize, + &txb_ctx, rd_stats, ftxs_mode, INT64_MAX, NULL); + + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int blk_idx = blk_row * mi_width + blk_col; + + av1_set_txb_context(x, plane, block, tx_size, ta, tl); + if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= + RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || + rd_stats->skip == 1) && + !xd->lossless[mbmi->segment_id]) { + rd_stats->rate = zero_blk_rate; + rd_stats->dist = rd_stats->sse; + } + + // Set chroma blk_skip to 0 + set_blk_skip(x, plane, blk_idx, 0); +} + +// Return value 0: early termination triggered, no valid rd cost available; +// 1: rd cost values are valid. +static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_stats, BLOCK_SIZE bsize, + int64_t non_skip_ref_best_rd, + int64_t skip_ref_best_rd, + FAST_TX_SEARCH_MODE ftxs_mode) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int plane; + int is_cost_valid = 1; + int64_t this_rd = 0; + int64_t skip_rd = 0; + + if ((non_skip_ref_best_rd < 0) && (skip_ref_best_rd < 0)) is_cost_valid = 0; + + av1_init_rd_stats(rd_stats); + + if (x->skip_chroma_rd) { + if (!is_cost_valid) av1_invalid_rd_stats(rd_stats); + + return is_cost_valid; + } + + const BLOCK_SIZE bsizec = scale_chroma_bsize( + bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); + + if (is_inter_block(mbmi) && is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) + av1_subtract_plane(x, bsizec, plane); + } + + if (is_cost_valid) { + for (plane = 1; plane < MAX_MB_PLANE; ++plane) { + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = + block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + const int bh = tx_size_high_unit[max_tx_size]; + const int bw = tx_size_wide_unit[max_tx_size]; + int idx, idy; + int block = 0; + const int step = bh * bw; + ENTROPY_CONTEXT ta[MAX_MIB_SIZE]; + ENTROPY_CONTEXT tl[MAX_MIB_SIZE]; + av1_get_entropy_contexts(bsizec, pd, ta, tl); + + for (idy = 0; idy < mi_height; idy += bh) { + for (idx = 0; idx < mi_width; idx += bw) { + RD_STATS pn_rd_stats; + av1_init_rd_stats(&pn_rd_stats); + tx_block_uvrd(cpi, x, idy, idx, plane, block, max_tx_size, + plane_bsize, ta, tl, &pn_rd_stats, ftxs_mode); + if (pn_rd_stats.rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + av1_merge_rd_stats(rd_stats, &pn_rd_stats); + this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + skip_rd = RDCOST(x->rdmult, 0, rd_stats->sse); + if ((this_rd > non_skip_ref_best_rd) && + (skip_rd > skip_ref_best_rd)) { + av1_invalid_rd_stats(rd_stats); + return 0; + } + block += step; + } + } + } + } else { + // reset cost value + av1_invalid_rd_stats(rd_stats); + } + + return is_cost_valid; +} + +static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, + int dc_mode_cost, + uint8_t *best_palette_color_map, + MB_MODE_INFO *const best_mbmi, + int64_t *best_rd, int *rate, + int *rate_tokenonly, int64_t *distortion, + int *skippable) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + assert( + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type)); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const BLOCK_SIZE bsize = mbmi->sb_type; + const SequenceHeader *const seq_params = &cpi->common.seq_params; + int this_rate; + int64_t this_rd; + int colors_u, colors_v, colors; + const int src_stride = x->plane[1].src.stride; + const uint8_t *const src_u = x->plane[1].src.buf; + const uint8_t *const src_v = x->plane[2].src.buf; + uint8_t *const color_map = xd->plane[1].color_index_map; + RD_STATS tokenonly_rd_stats; + int plane_block_width, plane_block_height, rows, cols; + av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, + &plane_block_height, &rows, &cols); + + mbmi->uv_mode = UV_DC_PRED; + + int count_buf[1 << 12]; // Maximum (1 << 12) color levels. + if (seq_params->use_highbitdepth) { + colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, + seq_params->bit_depth, count_buf); + } else { + colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf); + colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf); + } + + uint16_t color_cache[2 * PALETTE_MAX_SIZE]; + const int n_cache = av1_get_palette_cache(xd, 1, color_cache); + + colors = colors_u > colors_v ? colors_u : colors_v; + if (colors > 1 && colors <= 64) { + int r, c, n, i, j; + const int max_itr = 50; + int lb_u, ub_u, val_u; + int lb_v, ub_v, val_v; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[2 * PALETTE_MAX_SIZE]; + + uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); + uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); + if (seq_params->use_highbitdepth) { + lb_u = src_u16[0]; + ub_u = src_u16[0]; + lb_v = src_v16[0]; + ub_v = src_v16[0]; + } else { + lb_u = src_u[0]; + ub_u = src_u[0]; + lb_v = src_v[0]; + ub_v = src_v[0]; + } + + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + if (seq_params->use_highbitdepth) { + val_u = src_u16[r * src_stride + c]; + val_v = src_v16[r * src_stride + c]; + data[(r * cols + c) * 2] = val_u; + data[(r * cols + c) * 2 + 1] = val_v; + } else { + val_u = src_u[r * src_stride + c]; + val_v = src_v[r * src_stride + c]; + data[(r * cols + c) * 2] = val_u; + data[(r * cols + c) * 2 + 1] = val_v; + } + if (val_u < lb_u) + lb_u = val_u; + else if (val_u > ub_u) + ub_u = val_u; + if (val_v < lb_v) + lb_v = val_v; + else if (val_v > ub_v) + ub_v = val_v; + } + } + + for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; + --n) { + for (i = 0; i < n; ++i) { + centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; + centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; + } + av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); + optimize_palette_colors(color_cache, n_cache, n, 2, centroids); + // Sort the U channel colors in ascending order. + for (i = 0; i < 2 * (n - 1); i += 2) { + int min_idx = i; + int min_val = centroids[i]; + for (j = i + 2; j < 2 * n; j += 2) + if (centroids[j] < min_val) min_val = centroids[j], min_idx = j; + if (min_idx != i) { + int temp_u = centroids[i], temp_v = centroids[i + 1]; + centroids[i] = centroids[min_idx]; + centroids[i + 1] = centroids[min_idx + 1]; + centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v; + } + } + av1_calc_indices(data, centroids, color_map, rows * cols, n, 2); + extend_palette_color_map(color_map, cols, rows, plane_block_width, + plane_block_height); + pmi->palette_size[1] = n; + for (i = 1; i < 3; ++i) { + for (j = 0; j < n; ++j) { + if (seq_params->use_highbitdepth) + pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( + (int)centroids[j * 2 + i - 1], seq_params->bit_depth); + else + pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = + clip_pixel((int)centroids[j * 2 + i - 1]); + } + } + + super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); + if (tokenonly_rd_stats.rate == INT_MAX) continue; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (this_rd < *best_rd) { + *best_rd = this_rd; + *best_mbmi = *mbmi; + memcpy(best_palette_color_map, color_map, + plane_block_width * plane_block_height * + sizeof(best_palette_color_map[0])); + *rate = this_rate; + *distortion = tokenonly_rd_stats.dist; + *rate_tokenonly = tokenonly_rd_stats.rate; + *skippable = tokenonly_rd_stats.skip; + } + } + } + if (best_mbmi->palette_mode_info.palette_size[1] > 0) { + memcpy(color_map, best_palette_color_map, + plane_block_width * plane_block_height * + sizeof(best_palette_color_map[0])); + } +} + +// Run RD calculation with given chroma intra prediction angle., and return +// the RD cost. Update the best mode info. if the RD cost is the best so far. +static int64_t pick_intra_angle_routine_sbuv( + const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, + int *best_angle_delta, int64_t *best_rd) { + MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; + assert(!is_inter_block(mbmi)); + int this_rate; + int64_t this_rd; + RD_STATS tokenonly_rd_stats; + + if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) + return INT64_MAX; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + if (this_rd < *best_rd) { + *best_rd = this_rd; + *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; + *rate = this_rate; + rd_stats->rate = tokenonly_rd_stats.rate; + rd_stats->dist = tokenonly_rd_stats.dist; + rd_stats->skip = tokenonly_rd_stats.skip; + } + return this_rd; +} + +// With given chroma directional intra prediction mode, pick the best angle +// delta. Return true if a RD cost that is smaller than the input one is found. +static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int rate_overhead, + int64_t best_rd, int *rate, + RD_STATS *rd_stats) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + int i, angle_delta, best_angle_delta = 0; + int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; + + rd_stats->rate = INT_MAX; + rd_stats->skip = 0; + rd_stats->dist = INT64_MAX; + for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; + + for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + for (i = 0; i < 2; ++i) { + best_rd_in = (best_rd == INT64_MAX) + ? INT64_MAX + : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); + mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; + this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, + best_rd_in, rate, rd_stats, + &best_angle_delta, &best_rd); + rd_cost[2 * angle_delta + i] = this_rd; + if (angle_delta == 0) { + if (this_rd == INT64_MAX) return 0; + rd_cost[1] = this_rd; + break; + } + } + } + + assert(best_rd != INT64_MAX); + for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { + int64_t rd_thresh; + for (i = 0; i < 2; ++i) { + int skip_search = 0; + rd_thresh = best_rd + (best_rd >> 5); + if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && + rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) + skip_search = 1; + if (!skip_search) { + mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; + pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, + rate, rd_stats, &best_angle_delta, + &best_rd); + } + } + } + + mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; + return rd_stats->rate != INT_MAX; +} + +#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ + (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) +static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, + TX_SIZE tx_size, int64_t best_rd) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + const BLOCK_SIZE bsize = mbmi->sb_type; +#if CONFIG_DEBUG + assert(is_cfl_allowed(xd)); + const int ssx = xd->plane[AOM_PLANE_U].subsampling_x; + const int ssy = xd->plane[AOM_PLANE_U].subsampling_y; + const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, ssx, ssy); + (void)plane_bsize; + assert(plane_bsize < BLOCK_SIZES_ALL); + if (!xd->lossless[mbmi->segment_id]) { + assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); + assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); + } +#endif // CONFIG_DEBUG + + xd->cfl.use_dc_pred_cache = 1; + const int64_t mode_rd = + RDCOST(x->rdmult, + x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0); + int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; + int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; +#if CONFIG_DEBUG + int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; +#endif // CONFIG_DEBUG + + for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { + RD_STATS rd_stats; + av1_init_rd_stats(&rd_stats); + for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { + best_rd_uv[joint_sign][plane] = INT64_MAX; + best_c[joint_sign][plane] = 0; + } + // Collect RD stats for an alpha value of zero in this plane. + // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid. + for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) { + const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i); + if (i == CFL_SIGN_NEG) { + mbmi->cfl_alpha_idx = 0; + mbmi->cfl_alpha_signs = joint_sign; + txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, tx_size, + cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (rd_stats.rate == INT_MAX) break; + } + const int alpha_rate = x->cfl_cost[joint_sign][plane][0]; + best_rd_uv[joint_sign][plane] = + RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); +#if CONFIG_DEBUG + best_rate_uv[joint_sign][plane] = rd_stats.rate; +#endif // CONFIG_DEBUG + } + } + + int best_joint_sign = -1; + + for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { + for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) { + int progress = 0; + for (int c = 0; c < CFL_ALPHABET_SIZE; c++) { + int flag = 0; + RD_STATS rd_stats; + if (c > 2 && progress < c) break; + av1_init_rd_stats(&rd_stats); + for (int i = 0; i < CFL_SIGNS; i++) { + const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i); + if (i == 0) { + mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c; + mbmi->cfl_alpha_signs = joint_sign; + txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, + tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE); + if (rd_stats.rate == INT_MAX) break; + } + const int alpha_rate = x->cfl_cost[joint_sign][plane][c]; + int64_t this_rd = + RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); + if (this_rd >= best_rd_uv[joint_sign][plane]) continue; + best_rd_uv[joint_sign][plane] = this_rd; + best_c[joint_sign][plane] = c; +#if CONFIG_DEBUG + best_rate_uv[joint_sign][plane] = rd_stats.rate; +#endif // CONFIG_DEBUG + flag = 2; + if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue; + this_rd += mode_rd + best_rd_uv[joint_sign][!plane]; + if (this_rd >= best_rd) continue; + best_rd = this_rd; + best_joint_sign = joint_sign; + } + progress += flag; + } + } + } + + int best_rate_overhead = INT_MAX; + int ind = 0; + if (best_joint_sign >= 0) { + const int u = best_c[best_joint_sign][CFL_PRED_U]; + const int v = best_c[best_joint_sign][CFL_PRED_V]; + ind = (u << CFL_ALPHABET_SIZE_LOG2) + v; + best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] + + x->cfl_cost[best_joint_sign][CFL_PRED_V][v]; +#if CONFIG_DEBUG + xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] + + best_rate_overhead + + best_rate_uv[best_joint_sign][CFL_PRED_U] + + best_rate_uv[best_joint_sign][CFL_PRED_V]; +#endif // CONFIG_DEBUG + } else { + best_joint_sign = 0; + } + + mbmi->cfl_alpha_idx = ind; + mbmi->cfl_alpha_signs = best_joint_sign; + xd->cfl.use_dc_pred_cache = 0; + xd->cfl.dc_pred_is_cached[0] = 0; + xd->cfl.dc_pred_is_cached[1] = 0; + return best_rate_overhead; +} + +static void init_sbuv_mode(MB_MODE_INFO *const mbmi) { + mbmi->uv_mode = UV_DC_PRED; + mbmi->palette_mode_info.palette_size[1] = 0; +} + +static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + int *rate, int *rate_tokenonly, + int64_t *distortion, int *skippable, + BLOCK_SIZE bsize, TX_SIZE max_tx_size) { + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + assert(!is_inter_block(mbmi)); + MB_MODE_INFO best_mbmi = *mbmi; + int64_t best_rd = INT64_MAX, this_rd; + + for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { + int this_rate; + RD_STATS tokenonly_rd_stats; + UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; + const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); + if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & + (1 << mode))) + continue; + + mbmi->uv_mode = mode; + int cfl_alpha_rate = 0; + if (mode == UV_CFL_PRED) { + if (!is_cfl_allowed(xd)) continue; + assert(!is_directional_mode); + const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd); + if (cfl_alpha_rate == INT_MAX) continue; + } + mbmi->angle_delta[PLANE_TYPE_UV] = 0; + if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type)) { + const int rate_overhead = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; + if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, + &this_rate, &tokenonly_rd_stats)) + continue; + } else { + if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { + continue; + } + } + const int mode_cost = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] + + cfl_alpha_rate; + this_rate = tokenonly_rd_stats.rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); + if (mode == UV_CFL_PRED) { + assert(is_cfl_allowed(xd)); +#if CONFIG_DEBUG + if (!xd->lossless[mbmi->segment_id]) + assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost); +#endif // CONFIG_DEBUG + } + this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); + + if (this_rd < best_rd) { + best_mbmi = *mbmi; + best_rd = this_rd; + *rate = this_rate; + *rate_tokenonly = tokenonly_rd_stats.rate; + *distortion = tokenonly_rd_stats.dist; + *skippable = tokenonly_rd_stats.skip; + } + } + + const int try_palette = + av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); + if (try_palette) { + uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; + rd_pick_palette_intra_sbuv( + cpi, x, + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED], + best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, + distortion, skippable); + } + + *mbmi = best_mbmi; + // Make sure we actually chose a mode + assert(best_rd < INT64_MAX); + return best_rd; +} + +static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, TX_SIZE max_tx_size, + int *rate_uv, int *rate_uv_tokenonly, + int64_t *dist_uv, int *skip_uv, + UV_PREDICTION_MODE *mode_uv) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); + const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); + // Use an estimated rd for uv_intra based on DC_PRED if the + // appropriate speed flag is set. + init_sbuv_mode(mbmi); + if (x->skip_chroma_rd) { + *rate_uv = 0; + *rate_uv_tokenonly = 0; + *dist_uv = 0; + *skip_uv = 1; + *mode_uv = UV_DC_PRED; + return; + } + xd->cfl.is_chroma_reference = + is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x, + xd->plane[AOM_PLANE_U].subsampling_y); + // Only store reconstructed luma when there's chroma RDO. When there's no + // chroma RDO, the reconstructed luma will be stored in encode_superblock(). + xd->cfl.store_y = store_cfl_required_rdo(cm, x); + if (xd->cfl.store_y) { + // Restore reconstructed luma values. + av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y, + cpi->optimize_seg_arr[mbmi->segment_id], + mi_row, mi_col); + xd->cfl.store_y = 0; + } + rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, + bsize, max_tx_size); + *mode_uv = mbmi->uv_mode; +} + +static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode, + int16_t mode_context) { + if (is_inter_compound_mode(mode)) { + return x + ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; + } + + int mode_cost = 0; + int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; + + assert(is_inter_mode(mode)); + + if (mode == NEWMV) { + mode_cost = x->newmv_mode_cost[mode_ctx][0]; + return mode_cost; + } else { + mode_cost = x->newmv_mode_cost[mode_ctx][1]; + mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; + + if (mode == GLOBALMV) { + mode_cost += x->zeromv_mode_cost[mode_ctx][0]; + return mode_cost; + } else { + mode_cost += x->zeromv_mode_cost[mode_ctx][1]; + mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; + mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; + return mode_cost; + } + } +} + +static int get_interinter_compound_mask_rate(const MACROBLOCK *const x, + const MB_MODE_INFO *const mbmi) { + switch (mbmi->interinter_comp.type) { + case COMPOUND_AVERAGE: return 0; + case COMPOUND_WEDGE: + return get_interinter_wedge_bits(mbmi->sb_type) > 0 + ? av1_cost_literal(1) + + x->wedge_idx_cost[mbmi->sb_type] + [mbmi->interinter_comp.wedge_index] + : 0; + case COMPOUND_DIFFWTD: return av1_cost_literal(1); + default: assert(0); return 0; + } +} + +typedef struct { + int eobs; + int brate; + int byrate; + int64_t bdist; + int64_t bsse; + int64_t brdcost; + int_mv mvs[2]; + int_mv pred_mv[2]; + int_mv ref_mv[2]; + + ENTROPY_CONTEXT ta[2]; + ENTROPY_CONTEXT tl[2]; +} SEG_RDSTAT; + +typedef struct { + int_mv *ref_mv[2]; + int_mv mvp; + + int64_t segment_rd; + int r; + int64_t d; + int64_t sse; + int segment_yrate; + PREDICTION_MODE modes[4]; + SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES]; + int mvthresh; +} BEST_SEG_INFO; + +static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { + return (mv->row >> 3) < mv_limits->row_min || + (mv->row >> 3) > mv_limits->row_max || + (mv->col >> 3) < mv_limits->col_min || + (mv->col >> 3) > mv_limits->col_max; +} + +static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode, + int ref_idx, int is_comp_pred) { + PREDICTION_MODE single_mode; + if (is_comp_pred) { + single_mode = + ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode); + } else { + single_mode = this_mode; + } + return single_mode; +} + +static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int_mv *cur_mv, int mi_row, + int mi_col, int_mv *ref_mv_sub8x8[2], + const uint8_t *mask, int mask_stride, + int *rate_mv, const int block) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + const int plane = 0; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + // This function should only ever be called for compound modes + assert(has_second_ref(mbmi)); + const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] }; + const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; + int_mv ref_mv[2]; + int ite, ref; + // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" + const int ic = block & 1; + const int ir = (block - ic) >> 1; + struct macroblockd_plane *const pd = &xd->plane[0]; + const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; + const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; + + ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); + conv_params.use_jnt_comp_avg = 0; + WarpTypesAllowed warp_types[2]; + for (ref = 0; ref < 2; ++ref) { + const WarpedMotionParams *const wm = + &xd->global_motion[xd->mi[0]->ref_frame[ref]]; + const int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); + warp_types[ref].global_warp_allowed = is_global; + warp_types[ref].local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; + } + + // Do joint motion search in compound mode to get more accurate mv. + struct buf_2d backup_yv12[2][MAX_MB_PLANE]; + int last_besterr[2] = { INT_MAX, INT_MAX }; + const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { + av1_get_scaled_ref_frame(cpi, refs[0]), + av1_get_scaled_ref_frame(cpi, refs[1]) + }; + + // Prediction buffer from second frame. + DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]); + uint8_t *second_pred = get_buf_by_bd(xd, second_pred16); + (void)ref_mv_sub8x8; + + const int have_newmv = have_nearmv_in_inter_mode(mbmi->mode); + const int ref_mv_idx = mbmi->ref_mv_idx + (have_newmv ? 1 : 0); + MV *const best_mv = &x->best_mv.as_mv; + const int search_range = SEARCH_RANGE_8P; + const int sadpb = x->sadperbit16; + // Allow joint search multiple times iteratively for each reference frame + // and break out of the search loop if it couldn't find a better mv. + for (ite = 0; ite < 4; ite++) { + struct buf_2d ref_yv12[2]; + int bestsme = INT_MAX; + MvLimits tmp_mv_limits = x->mv_limits; + int id = ite % 2; // Even iterations search in the first reference frame, + // odd iterations search in the second. The predictor + // found for the 'other' reference frame is factored in. + if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) { + if (cur_mv[id].as_int == init_mv[id].as_int) { + break; + } else { + int_mv cur_int_mv, init_int_mv; + cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3; + cur_int_mv.as_mv.row = cur_mv[id].as_mv.col >> 3; + init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3; + init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3; + if (cur_int_mv.as_int == init_int_mv.as_int) { + break; + } + } + } + for (ref = 0; ref < 2; ++ref) { + ref_mv[ref] = av1_get_ref_mv(x, ref); + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // motion search code to be used without additional modifications. + if (scaled_ref_frame[ref]) { + int i; + for (i = 0; i < num_planes; i++) + backup_yv12[ref][i] = xd->plane[i].pre[ref]; + av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, + NULL, num_planes); + } + } + + assert(IMPLIES(scaled_ref_frame[0] != NULL, + cm->width == scaled_ref_frame[0]->y_crop_width && + cm->height == scaled_ref_frame[0]->y_crop_height)); + assert(IMPLIES(scaled_ref_frame[1] != NULL, + cm->width == scaled_ref_frame[1]->y_crop_width && + cm->height == scaled_ref_frame[1]->y_crop_height)); + + // Initialize based on (possibly scaled) prediction buffers. + ref_yv12[0] = xd->plane[plane].pre[0]; + ref_yv12[1] = xd->plane[plane].pre[1]; + + // Get the prediction block from the 'other' reference frame. + const InterpFilters interp_filters = EIGHTTAP_REGULAR; + + // Since we have scaled the reference frames to match the size of the + // current frame we must use a unit scaling factor during mode selection. + av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, + second_pred, pw, &cur_mv[!id].as_mv, + &cm->sf_identity, pw, ph, &conv_params, + interp_filters, &warp_types[!id], p_col, p_row, + plane, !id, MV_PRECISION_Q3, mi_col * MI_SIZE, + mi_row * MI_SIZE, xd, cm->allow_warped_motion); + + const int order_idx = id != 0; + av1_jnt_comp_weight_assign(cm, mbmi, order_idx, &xd->jcp_param.fwd_offset, + &xd->jcp_param.bck_offset, + &xd->jcp_param.use_jnt_comp_avg, 1); + + // Do full-pixel compound motion search on the current reference frame. + if (id) xd->plane[plane].pre[0] = ref_yv12[id]; + av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); + + // Use the mv result from the single mode as mv predictor. + *best_mv = cur_mv[id].as_mv; + + best_mv->col >>= 3; + best_mv->row >>= 3; + + av1_set_mvcost(x, id, ref_mv_idx); + + // Small-range full-pixel motion search. + bestsme = av1_refining_search_8p_c(x, sadpb, search_range, + &cpi->fn_ptr[bsize], mask, mask_stride, + id, &ref_mv[id].as_mv, second_pred); + if (bestsme < INT_MAX) { + if (mask) + bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv, + second_pred, mask, mask_stride, id, + &cpi->fn_ptr[bsize], 1); + else + bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, + second_pred, &cpi->fn_ptr[bsize], 1); + } + + x->mv_limits = tmp_mv_limits; + + // Restore the pointer to the first (possibly scaled) prediction buffer. + if (id) xd->plane[plane].pre[0] = ref_yv12[0]; + + for (ref = 0; ref < 2; ++ref) { + if (scaled_ref_frame[ref]) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref] = backup_yv12[ref][i]; + } + // Re-initialize based on unscaled prediction buffers. + ref_yv12[ref] = xd->plane[plane].pre[ref]; + } + } + + // Do sub-pixel compound motion search on the current reference frame. + if (id) xd->plane[plane].pre[0] = ref_yv12[id]; + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) { + int dis; /* TODO: use dis in distortion calculation later. */ + unsigned int sse; + bestsme = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv[id].as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, + x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, + mask_stride, id, pw, ph, cpi->sf.use_accurate_subpel_search); + } + + // Restore the pointer to the first prediction buffer. + if (id) xd->plane[plane].pre[0] = ref_yv12[0]; + if (bestsme < last_besterr[id]) { + cur_mv[id].as_mv = *best_mv; + last_besterr[id] = bestsme; + } else { + break; + } + } + + *rate_mv = 0; + + for (ref = 0; ref < 2; ++ref) { + av1_set_mvcost(x, ref, ref_mv_idx); + const int_mv curr_ref_mv = av1_get_ref_mv(x, ref); + *rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } +} + +static void estimate_ref_frame_costs( + const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x, + int segment_id, unsigned int *ref_costs_single, + unsigned int (*ref_costs_comp)[REF_FRAMES]) { + int seg_ref_active = + segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + if (seg_ref_active) { + memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); + int ref_frame; + for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) + memset(ref_costs_comp[ref_frame], 0, + REF_FRAMES * sizeof((*ref_costs_comp)[0])); + } else { + int intra_inter_ctx = av1_get_intra_inter_context(xd); + ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0]; + unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; + + for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) + ref_costs_single[i] = base_cost; + + const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); + const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); + const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); + const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); + const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); + const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); + + // Determine cost of a single ref frame, where frame types are represented + // by a tree: + // Level 0: add cost whether this ref is a forward or backward ref + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0]; + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; + + // Level 1: if this ref is forward ref, + // add cost whether it is last/last2 or last3/golden + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0]; + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1]; + + // Level 1: if this ref is backward ref + // then add cost whether this ref is altref or backward ref + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0]; + ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1]; + + // Level 2: further add cost whether this ref is last or last2 + ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0]; + ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1]; + + // Level 2: last3 or golden + ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0]; + ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1]; + + // Level 2: bwdref or altref2 + ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0]; + ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1]; + + if (cm->reference_mode != SINGLE_REFERENCE) { + // Similar to single ref, determine cost of compound ref frames. + // cost_compound_refs = cost_first_ref + cost_second_ref + const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); + const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); + const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); + const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); + const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); + + const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); + unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; + + ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = + ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1]; + ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; + ref_bicomp_costs[ALTREF_FRAME] = 0; + + // cost of first ref frame + ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; + ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; + ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; + ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; + + ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; + ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; + + ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; + ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; + + // cost of second ref frame + ref_bicomp_costs[BWDREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; + ref_bicomp_costs[ALTREF2_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; + ref_bicomp_costs[ALTREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; + + ref_bicomp_costs[BWDREF_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; + ref_bicomp_costs[ALTREF2_FRAME] += + x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; + + // cost: if one ref frame is forward ref, the other ref is backward ref + int ref0, ref1; + for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { + for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { + ref_costs_comp[ref0][ref1] = + ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; + } + } + + // cost: if both ref frames are the same side. + const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); + const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); + const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); + ref_costs_comp[LAST_FRAME][LAST2_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; + ref_costs_comp[LAST_FRAME][LAST3_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; + ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; + ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = + base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + + x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; + } else { + int ref0, ref1; + for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { + for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) + ref_costs_comp[ref0][ref1] = 512; + } + ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; + ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; + ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; + ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; + } + } +} + +static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, + int mode_index, + int64_t comp_pred_diff[REFERENCE_MODES], + int skippable) { + MACROBLOCKD *const xd = &x->e_mbd; + + // Take a snapshot of the coding context so it can be + // restored if we decide to encode this way + ctx->skip = x->skip; + ctx->skippable = skippable; + ctx->best_mode_index = mode_index; + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; + ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; + ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; + ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; +} + +static void setup_buffer_ref_mvs_inter( + const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, + BLOCK_SIZE block_size, int mi_row, int mi_col, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + + assert(yv12 != NULL); + + // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this + // use the UV scaling factors. + av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf, + num_planes); + + // Gets an initial list of candidate vectors from neighbours and orders them + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + + // Further refinement that is encode side only to test the top few candidates + // in full and choose the best as the centre point for subsequent searches. + // The current implementation doesn't support scaling. + (void)block_size; + av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, + block_size); +} + +static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int ref_idx, int *rate_mv) { + MACROBLOCKD *xd = &x->e_mbd; + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MB_MODE_INFO *mbmi = xd->mi[0]; + struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; + int bestsme = INT_MAX; + int step_param; + int sadpb = x->sadperbit16; + MV mvp_full; + int ref = mbmi->ref_frame[ref_idx]; + MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; + + MvLimits tmp_mv_limits = x->mv_limits; + int cost_list[5]; + + const YV12_BUFFER_CONFIG *scaled_ref_frame = + av1_get_scaled_ref_frame(cpi, ref); + + if (scaled_ref_frame) { + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // full-pixel motion search code to be used without additional + // modifications. + for (int i = 0; i < num_planes; i++) { + backup_yv12[i] = xd->plane[i].pre[ref_idx]; + } + av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, + num_planes); + } + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + + // Work out the size of the first step in the mv step search. + // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. + if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { + // Take the weighted average of the step_params based on the last frame's + // max mv magnitude and that based on the best ref mvs of the current + // block for the given reference. + step_param = + (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / + 2; + } else { + step_param = cpi->mv_step_param; + } + + if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) { + int boffset = + 2 * (mi_size_wide_log2[cm->seq_params.sb_size] - + AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize])); + step_param = AOMMAX(step_param, boffset); + } + + if (cpi->sf.adaptive_motion_search) { + int bwl = mi_size_wide_log2[bsize]; + int bhl = mi_size_high_log2[bsize]; + int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); + + if (tlevel < 5) { + step_param += 2; + step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1); + } + + // prev_mv_sad is not setup for dynamically scaled frames. + if (cpi->oxcf.resize_mode != RESIZE_RANDOM) { + int i; + for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { + if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { + x->pred_mv[ref].row = 0; + x->pred_mv[ref].col = 0; + x->best_mv.as_int = INVALID_MV; + + if (scaled_ref_frame) { + // Swap back the original buffers before returning. + for (int j = 0; j < num_planes; ++j) + xd->plane[j].pre[ref_idx] = backup_yv12[j]; + } + return; + } + } + } + } + + // Note: MV limits are modified here. Always restore the original values + // after full-pixel motion search. + av1_set_mv_search_range(&x->mv_limits, &ref_mv); + + if (mbmi->motion_mode != SIMPLE_TRANSLATION) + mvp_full = mbmi->mv[0].as_mv; + else + mvp_full = ref_mv; + + mvp_full.col >>= 3; + mvp_full.row >>= 3; + + x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; + + switch (mbmi->motion_mode) { + case SIMPLE_TRANSLATION: + bestsme = av1_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, + sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1, + (MI_SIZE * mi_col), (MI_SIZE * mi_row), 0); + break; + case OBMC_CAUSAL: + bestsme = av1_obmc_full_pixel_search(cpi, x, &mvp_full, step_param, sadpb, + MAX_MVSEARCH_STEPS - 1 - step_param, + 1, &cpi->fn_ptr[bsize], &ref_mv, + &(x->best_mv.as_mv), 0); + break; + default: assert(0 && "Invalid motion mode!\n"); + } + + if (scaled_ref_frame) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref_idx] = backup_yv12[i]; + } + } + + x->mv_limits = tmp_mv_limits; + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + const int use_fractional_mv = + bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; + if (use_fractional_mv) { + int dis; /* TODO: use dis in distortion calculation later. */ + switch (mbmi->motion_mode) { + case SIMPLE_TRANSLATION: + if (cpi->sf.use_accurate_subpel_search) { + int best_mv_var; + const int try_second = x->second_best_mv.as_int != INVALID_MV && + x->second_best_mv.as_int != x->best_mv.as_int; + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + + best_mv_var = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, + 0, 0, pw, ph, 1); + + if (try_second) { + const int minc = + AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); + const int maxc = + AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); + const int minr = + AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); + const int maxr = + AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); + int this_var; + MV best_mv = x->best_mv.as_mv; + + x->best_mv = x->second_best_mv; + if (x->best_mv.as_mv.row * 8 <= maxr && + x->best_mv.as_mv.row * 8 >= minr && + x->best_mv.as_mv.col * 8 <= maxc && + x->best_mv.as_mv.col * 8 >= minc) { + this_var = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, + cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, + &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph, 1); + if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; + x->best_mv.as_mv = best_mv; + } + } + } else { + cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, + x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, + cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, + 0, 0, 0, 0, 0); + } + break; + case OBMC_CAUSAL: + av1_find_best_obmc_sub_pixel_tree_up( + x, cm, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv, + cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], + cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, + x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0, + cpi->sf.use_accurate_subpel_search); + break; + default: assert(0 && "Invalid motion mode!\n"); + } + } + *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + + if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION) + x->pred_mv[ref] = x->best_mv.as_mv; +} + +static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst, + const int num_planes) { + int i; + for (i = 0; i < num_planes; i++) { + xd->plane[i].dst.buf = dst.plane[i]; + xd->plane[i].dst.stride = dst.stride[i]; + } +} + +static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, const MV *other_mv, + int mi_row, int mi_col, const int block, + int ref_idx, uint8_t *second_pred) { + const AV1_COMMON *const cm = &cpi->common; + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int other_ref = mbmi->ref_frame[!ref_idx]; + struct macroblockd_plane *const pd = &xd->plane[0]; + // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" + const int ic = block & 1; + const int ir = (block - ic) >> 1; + const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; + const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; + const WarpedMotionParams *const wm = &xd->global_motion[other_ref]; + int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); + + // This function should only ever be called for compound modes + assert(has_second_ref(mbmi)); + + const int plane = 0; + struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx]; + + struct scale_factors sf; + av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height, + cm->width, cm->height); + + ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global; + warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; + + // Get the prediction block from the 'other' reference frame. + av1_build_inter_predictor(ref_yv12.buf, ref_yv12.stride, second_pred, pw, + other_mv, &sf, pw, ph, &conv_params, + mbmi->interp_filters, &warp_types, p_col, p_row, + plane, !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE, + mi_row * MI_SIZE, xd, cm->allow_warped_motion); + + av1_jnt_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset, + &xd->jcp_param.bck_offset, + &xd->jcp_param.use_jnt_comp_avg, 1); +} + +// Search for the best mv for one component of a compound, +// given that the other component is fixed. +static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, MV *this_mv, + int mi_row, int mi_col, + const uint8_t *second_pred, + const uint8_t *mask, int mask_stride, + int *rate_mv, int ref_idx) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const int pw = block_size_wide[bsize]; + const int ph = block_size_high[bsize]; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int ref = mbmi->ref_frame[ref_idx]; + const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); + struct macroblockd_plane *const pd = &xd->plane[0]; + + struct buf_2d backup_yv12[MAX_MB_PLANE]; + const YV12_BUFFER_CONFIG *const scaled_ref_frame = + av1_get_scaled_ref_frame(cpi, ref); + + // Check that this is either an interinter or an interintra block + assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi))); + + // Store the first prediction buffer. + struct buf_2d orig_yv12; + if (ref_idx) { + orig_yv12 = pd->pre[0]; + pd->pre[0] = pd->pre[ref_idx]; + } + + if (scaled_ref_frame) { + int i; + // Swap out the reference frame for a version that's been scaled to + // match the resolution of the current frame, allowing the existing + // full-pixel motion search code to be used without additional + // modifications. + for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; + av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, + num_planes); + } + + int bestsme = INT_MAX; + int sadpb = x->sadperbit16; + MV *const best_mv = &x->best_mv.as_mv; + int search_range = SEARCH_RANGE_8P; + + MvLimits tmp_mv_limits = x->mv_limits; + + // Do compound motion search on the current reference frame. + av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv); + + // Use the mv result from the single mode as mv predictor. + *best_mv = *this_mv; + + best_mv->col >>= 3; + best_mv->row >>= 3; + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + + // Small-range full-pixel motion search. + bestsme = av1_refining_search_8p_c(x, sadpb, search_range, + &cpi->fn_ptr[bsize], mask, mask_stride, + ref_idx, &ref_mv.as_mv, second_pred); + if (bestsme < INT_MAX) { + if (mask) + bestsme = + av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask, + mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1); + else + bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred, + &cpi->fn_ptr[bsize], 1); + } + + x->mv_limits = tmp_mv_limits; + + if (scaled_ref_frame) { + // Swap back the original buffers for subpel motion search. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[ref_idx] = backup_yv12[i]; + } + } + + if (cpi->common.cur_frame_force_integer_mv) { + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + } + const int use_fractional_mv = + bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; + if (use_fractional_mv) { + int dis; /* TODO: use dis in distortion calculation later. */ + unsigned int sse; + bestsme = cpi->find_fractional_mv_step( + x, cm, mi_row, mi_col, &ref_mv.as_mv, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, + x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, mask_stride, + ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search); + } + + // Restore the pointer to the first unscaled prediction buffer. + if (ref_idx) pd->pre[0] = orig_yv12; + + if (bestsme < INT_MAX) *this_mv = *best_mv; + + *rate_mv = 0; + + av1_set_mvcost( + x, ref_idx, + mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); + *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); +} + +// Wrapper for compound_single_motion_search, for the common case +// where the second prediction is also an inter mode. +static void compound_single_motion_search_interinter( + const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv, + int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv, + const int block, int ref_idx) { + MACROBLOCKD *xd = &x->e_mbd; + // This function should only ever be called for compound modes + assert(has_second_ref(xd->mi[0])); + + // Prediction buffer from second frame. + DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); + uint8_t *second_pred; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); + else + second_pred = (uint8_t *)second_pred_alloc_16; + + MV *this_mv = &cur_mv[ref_idx].as_mv; + const MV *other_mv = &cur_mv[!ref_idx].as_mv; + + build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block, + ref_idx, second_pred); + + compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col, + second_pred, mask, mask_stride, rate_mv, + ref_idx); +} + +static void do_masked_motion_search_indexed( + const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, + int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) { + // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + BLOCK_SIZE sb_type = mbmi->sb_type; + const uint8_t *mask; + const int mask_stride = block_size_wide[bsize]; + + mask = av1_get_compound_type_mask(comp_data, sb_type); + + tmp_mv[0].as_int = cur_mv[0].as_int; + tmp_mv[1].as_int = cur_mv[1].as_int; + if (which == 0 || which == 1) { + compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mi_row, + mi_col, mask, mask_stride, rate_mv, + 0, which); + } else if (which == 2) { + joint_motion_search(cpi, x, bsize, tmp_mv, mi_row, mi_col, NULL, mask, + mask_stride, rate_mv, 0); + } +} + +#define USE_DISCOUNT_NEWMV_TEST 0 +#if USE_DISCOUNT_NEWMV_TEST +// In some situations we want to discount the apparent cost of a new motion +// vector. Where there is a subtle motion field and especially where there is +// low spatial complexity then it can be hard to cover the cost of a new motion +// vector in a single block, even if that motion vector reduces distortion. +// However, once established that vector may be usable through the nearest and +// near mv modes to reduce distortion in subsequent blocks and also improve +// visual quality. +#define NEW_MV_DISCOUNT_FACTOR 8 +static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, + int ref_idx, int ref_mv_idx, + const MV_REFERENCE_FRAME *ref_frame, + const MB_MODE_INFO_EXT *mbmi_ext); +static int discount_newmv_test(const AV1_COMP *const cpi, const MACROBLOCK *x, + PREDICTION_MODE this_mode, int_mv this_mv) { + if (this_mode == NEWMV && this_mv.as_int != 0 && + !cpi->rc.is_src_frame_alt_ref) { + // Only discount new_mv when nearst_mv and all near_mv are zero, and the + // new_mv is not equal to global_mv + const AV1_COMMON *const cm = &cpi->common; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const MV_REFERENCE_FRAME tmp_ref_frames[2] = { mbmi->ref_frame[0], + NONE_FRAME }; + const uint8_t ref_frame_type = av1_ref_frame_type(tmp_ref_frames); + int_mv nearest_mv; + get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + int ret = nearest_mv.as_int == 0; + for (int ref_mv_idx = 0; + ref_mv_idx < x->mbmi_ext->ref_mv_count[ref_frame_type]; ++ref_mv_idx) { + int_mv near_mv; + get_this_mv(&near_mv, NEARMV, 0, ref_mv_idx, tmp_ref_frames, x->mbmi_ext); + ret &= near_mv.as_int == 0; + } + if (cm->global_motion[tmp_ref_frames[0]].wmtype <= TRANSLATION) { + int_mv global_mv; + get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + ret &= global_mv.as_int != this_mv.as_int; + } + return ret; + } + return 0; +} +#endif + +#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) +#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) + +// TODO(jingning): this mv clamping function should be block size dependent. +static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { + clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, + xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, + xd->mb_to_top_edge - LEFT_TOP_MARGIN, + xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); +} + +static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, + const BLOCK_SIZE bsize, const uint8_t *pred0, + int stride0, const uint8_t *pred1, int stride1) { + static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = { + // 4X4 + BLOCK_INVALID, + // 4X8, 8X4, 8X8 + BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4, + // 8X16, 16X8, 16X16 + BLOCK_4X8, BLOCK_8X4, BLOCK_8X8, + // 16X32, 32X16, 32X32 + BLOCK_8X16, BLOCK_16X8, BLOCK_16X16, + // 32X64, 64X32, 64X64 + BLOCK_16X32, BLOCK_32X16, BLOCK_32X32, + // 64x128, 128x64, 128x128 + BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, + // 4X16, 16X4, 8X32 + BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16, + // 32X8, 16X64, 64X16 + BLOCK_16X4, BLOCK_8X32, BLOCK_32X8 + }; + const struct macroblock_plane *const p = &x->plane[0]; + const uint8_t *src = p->src.buf; + int src_stride = p->src.stride; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + uint32_t esq[2][4]; + int64_t tl, br; + + const BLOCK_SIZE f_index = split_qtr[bsize]; + assert(f_index != BLOCK_INVALID); + + if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + pred0 = CONVERT_TO_BYTEPTR(pred0); + pred1 = CONVERT_TO_BYTEPTR(pred1); + } + + cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); + cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0, + &esq[0][1]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, + pred0 + bh / 2 * stride0, stride0, &esq[0][2]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, + pred0 + bh / 2 * stride0 + bw / 2, stride0, + &esq[0][3]); + cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); + cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1, + &esq[1][1]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, + pred1 + bh / 2 * stride1, stride0, &esq[1][2]); + cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, + pred1 + bh / 2 * stride1 + bw / 2, stride0, + &esq[1][3]); + + tl = ((int64_t)esq[0][0] + esq[0][1] + esq[0][2]) - + ((int64_t)esq[1][0] + esq[1][1] + esq[1][2]); + br = ((int64_t)esq[1][3] + esq[1][1] + esq[1][2]) - + ((int64_t)esq[0][3] + esq[0][1] + esq[0][2]); + return (tl + br > 0); +} + +// Choose the best wedge index and sign +static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, + const BLOCK_SIZE bsize, const uint8_t *const p0, + const int16_t *const residual1, + const int16_t *const diff10, + int *const best_wedge_sign, + int *const best_wedge_index) { + const MACROBLOCKD *const xd = &x->e_mbd; + const struct buf_2d *const src = &x->plane[0].src; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = bw * bh; + assert(N >= 64); + int rate; + int64_t dist; + int64_t rd, best_rd = INT64_MAX; + int wedge_index; + int wedge_sign; + int wedge_types = (1 << get_wedge_bits_lookup(bsize)); + const uint8_t *mask; + uint64_t sse; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + + DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]); // src - pred0 + if (hbd) { + aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(p0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw); + } + + int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) - + (int64_t)aom_sum_squares_i16(residual1, N)) * + (1 << WEDGE_WEIGHT_BITS) / 2; + int16_t *ds = residual0; + + av1_wedge_compute_delta_squares(ds, residual0, residual1, N); + + for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { + mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); + + wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); + + mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + // int rate2; + // int64_t dist2; + // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2); + // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n", + // sse, rate, dist, rate2, dist2); dist = dist2; + // rate = rate2; + + rate += x->wedge_idx_cost[bsize][wedge_index]; + rd = RDCOST(x->rdmult, rate, dist); + + if (rd < best_rd) { + *best_wedge_index = wedge_index; + *best_wedge_sign = wedge_sign; + best_rd = rd; + } + } + + return best_rd - + RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); +} + +// Choose the best wedge index the specified sign +static int64_t pick_wedge_fixed_sign(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + const BLOCK_SIZE bsize, + const int16_t *const residual1, + const int16_t *const diff10, + const int wedge_sign, + int *const best_wedge_index) { + const MACROBLOCKD *const xd = &x->e_mbd; + + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = bw * bh; + assert(N >= 64); + int rate; + int64_t dist; + int64_t rd, best_rd = INT64_MAX; + int wedge_index; + int wedge_types = (1 << get_wedge_bits_lookup(bsize)); + const uint8_t *mask; + uint64_t sse; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { + mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); + sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + rate += x->wedge_idx_cost[bsize][wedge_index]; + rd = RDCOST(x->rdmult, rate, dist); + + if (rd < best_rd) { + *best_wedge_index = wedge_index; + best_rd = rd; + } + } + return best_rd - + RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); +} + +static int64_t pick_interinter_wedge( + const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, + const uint8_t *const p0, const uint8_t *const p1, + const int16_t *const residual1, const int16_t *const diff10) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int bw = block_size_wide[bsize]; + + int64_t rd; + int wedge_index = -1; + int wedge_sign = 0; + + assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); + assert(cpi->common.seq_params.enable_masked_compound); + + if (cpi->sf.fast_wedge_sign_estimate) { + wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); + rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign, + &wedge_index); + } else { + rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign, + &wedge_index); + } + + mbmi->interinter_comp.wedge_sign = wedge_sign; + mbmi->interinter_comp.wedge_index = wedge_index; + return rd; +} + +static int64_t pick_interinter_seg(const AV1_COMP *const cpi, + MACROBLOCK *const x, const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1, + const int16_t *const residual1, + const int16_t *const diff10) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + const int N = 1 << num_pels_log2_lookup[bsize]; + int rate; + int64_t dist; + DIFFWTD_MASK_TYPE cur_mask_type; + int64_t best_rd = INT64_MAX; + DIFFWTD_MASK_TYPE best_mask_type = 0; + const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; + const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; + DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); + uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask }; + // try each mask type and its inverse + for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) { + // build mask and inverse + if (hbd) + av1_build_compound_diffwtd_mask_highbd( + tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw, + CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd); + else + av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type, + p0, bw, p1, bw, bh, bw); + + // compute rd for mask + uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10, + tmp_mask[cur_mask_type], N); + sse = ROUND_POWER_OF_TWO(sse, bd_round); + + model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, + &rate, &dist); + const int64_t rd0 = RDCOST(x->rdmult, rate, dist); + + if (rd0 < best_rd) { + best_mask_type = cur_mask_type; + best_rd = rd0; + } + } + mbmi->interinter_comp.mask_type = best_mask_type; + if (best_mask_type == DIFFWTD_38_INV) { + memcpy(xd->seg_mask, seg_mask, N * 2); + } + return best_rd; +} + +static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, + const MACROBLOCK *const x, + const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1) { + const MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(is_interintra_wedge_used(bsize)); + assert(cpi->common.seq_params.enable_interintra_compound); + + const struct buf_2d *const src = &x->plane[0].src; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]); // src - pred1 + DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]); // pred1 - pred0 + if (get_bitdepth_data_path_index(xd)) { + aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(p1), bw, xd->bd); + aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw, + CONVERT_TO_BYTEPTR(p0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw); + aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw); + } + int wedge_index = -1; + int64_t rd = + pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0, &wedge_index); + + mbmi->interintra_wedge_sign = 0; + mbmi->interintra_wedge_index = wedge_index; + return rd; +} + +static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x, + const BLOCK_SIZE bsize, + const uint8_t *const p0, + const uint8_t *const p1, + const int16_t *const residual1, + const int16_t *const diff10) { + const COMPOUND_TYPE compound_type = x->e_mbd.mi[0]->interinter_comp.type; + switch (compound_type) { + case COMPOUND_WEDGE: + return pick_interinter_wedge(cpi, x, bsize, p0, p1, residual1, diff10); + case COMPOUND_DIFFWTD: + return pick_interinter_seg(cpi, x, bsize, p0, p1, residual1, diff10); + default: assert(0); return 0; + } +} + +static int interinter_compound_motion_search(const AV1_COMP *const cpi, + MACROBLOCK *x, + const int_mv *const cur_mv, + const BLOCK_SIZE bsize, + const PREDICTION_MODE this_mode, + int mi_row, int mi_col) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int_mv tmp_mv[2]; + int tmp_rate_mv = 0; + mbmi->interinter_comp.seg_mask = xd->seg_mask; + const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp; + + if (this_mode == NEW_NEWMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2); + mbmi->mv[0].as_int = tmp_mv[0].as_int; + mbmi->mv[1].as_int = tmp_mv[1].as_int; + } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0); + mbmi->mv[0].as_int = tmp_mv[0].as_int; + } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { + do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, + mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1); + mbmi->mv[1].as_int = tmp_mv[1].as_int; + } + return tmp_rate_mv; +} + +static void get_inter_predictors_masked_compound( + const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize, + int mi_row, int mi_col, uint8_t **preds0, uint8_t **preds1, + int16_t *residual1, int16_t *diff10, int *strides) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + const int bw = block_size_wide[bsize]; + const int bh = block_size_high[bsize]; + int can_use_previous = cm->allow_warped_motion; + // get inter predictors to use for masked compound modes + av1_build_inter_predictors_for_planes_single_buf( + xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides, can_use_previous); + av1_build_inter_predictors_for_planes_single_buf( + xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides, can_use_previous); + const struct buf_2d *const src = &x->plane[0].src; + if (get_bitdepth_data_path_index(xd)) { + aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, + CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd); + aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1), + bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd); + } else { + aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1, + bw); + aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw); + } +} + +static int64_t build_and_cost_compound_type( + const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, + const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2, + int rate_mv, BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, + uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides, + int mi_row, int mi_col, int mode_rate, int64_t ref_best_rd, + int *calc_pred_masked_compound) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int rate_sum; + int64_t dist_sum; + int64_t best_rd_cur = INT64_MAX; + int64_t rd = INT64_MAX; + int tmp_skip_txfm_sb; + int64_t tmp_skip_sse_sb; + const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type; + + if (*calc_pred_masked_compound) { + get_inter_predictors_masked_compound(cpi, x, bsize, mi_row, mi_col, preds0, + preds1, residual1, diff10, strides); + *calc_pred_masked_compound = 0; + } + + best_rd_cur = + pick_interinter_mask(cpi, x, bsize, *preds0, *preds1, residual1, diff10); + *rs2 += get_interinter_compound_mask_rate(x, mbmi); + best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0); + + // Although the true rate_mv might be different after motion search, but it + // is unlikely to be the best mode considering the transform rd cost and other + // mode overhead cost + int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0); + if (mode_rd > ref_best_rd) return INT64_MAX; + + if (have_newmv_in_inter_mode(this_mode) && compound_type == COMPOUND_WEDGE) { + *out_rate_mv = interinter_compound_motion_search(cpi, x, cur_mv, bsize, + this_mode, mi_row, mi_col); + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); + model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); + if (rd >= best_rd_cur) { + mbmi->mv[0].as_int = cur_mv[0].as_int; + mbmi->mv[1].as_int = cur_mv[1].as_int; + *out_rate_mv = rate_mv; + av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, + preds1, strides); + } + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); + best_rd_cur = rd; + + } else { + av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, + preds1, strides); + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rs2 + rate_mv + rate_sum, dist_sum); + best_rd_cur = rd; + } + return best_rd_cur; +} + +typedef struct { + // OBMC secondary prediction buffers and respective strides + uint8_t *above_pred_buf[MAX_MB_PLANE]; + int above_pred_stride[MAX_MB_PLANE]; + uint8_t *left_pred_buf[MAX_MB_PLANE]; + int left_pred_stride[MAX_MB_PLANE]; + int_mv (*single_newmv)[REF_FRAMES]; + // Pointer to array of motion vectors to use for each ref and their rates + // Should point to first of 2 arrays in 2D array + int (*single_newmv_rate)[REF_FRAMES]; + int (*single_newmv_valid)[REF_FRAMES]; + // Pointer to array of predicted rate-distortion + // Should point to first of 2 arrays in 2D array + int64_t (*modelled_rd)[MAX_REF_MV_SERCH][REF_FRAMES]; + InterpFilter single_filter[MB_MODE_COUNT][REF_FRAMES]; + int ref_frame_cost; + int single_comp_cost; + int64_t (*simple_rd)[MAX_REF_MV_SERCH][REF_FRAMES]; + int skip_motion_mode; + INTERINTRA_MODE *inter_intra_mode; +} HandleInterModeArgs; + +/* If the current mode shares the same mv with other modes with higher cost, + * skip this mode. */ +static int skip_repeated_mv(const AV1_COMMON *const cm, + const MACROBLOCK *const x, + PREDICTION_MODE this_mode, + const MV_REFERENCE_FRAME ref_frames[2], + InterModeSearchState *search_state) { + const int is_comp_pred = ref_frames[1] > INTRA_FRAME; + const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames); + const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; + PREDICTION_MODE compare_mode = MB_MODE_COUNT; + if (!is_comp_pred) { + if (this_mode == NEARMV) { + if (ref_mv_count == 0) { + // NEARMV has the same motion vector as NEARESTMV + compare_mode = NEARESTMV; + } + if (ref_mv_count == 1 && + cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { + // NEARMV has the same motion vector as GLOBALMV + compare_mode = GLOBALMV; + } + } + if (this_mode == GLOBALMV) { + if (ref_mv_count == 0 && + cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { + // GLOBALMV has the same motion vector as NEARESTMV + compare_mode = NEARESTMV; + } + if (ref_mv_count == 1) { + // GLOBALMV has the same motion vector as NEARMV + compare_mode = NEARMV; + } + } + + if (compare_mode != MB_MODE_COUNT) { + // Use modelled_rd to check whether compare mode was searched + if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] != + INT64_MAX) { + const int16_t mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames); + const int compare_cost = cost_mv_ref(x, compare_mode, mode_ctx); + const int this_cost = cost_mv_ref(x, this_mode, mode_ctx); + + // Only skip if the mode cost is larger than compare mode cost + if (this_cost > compare_cost) { + search_state->modelled_rd[this_mode][0][ref_frames[0]] = + search_state->modelled_rd[compare_mode][0][ref_frames[0]]; + return 1; + } + } + } + } + return 0; +} + +static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv, + const AV1_COMMON *cm, + const MACROBLOCK *x) { + const MACROBLOCKD *const xd = &x->e_mbd; + *out_mv = in_mv; + lower_mv_precision(&out_mv->as_mv, cm->allow_high_precision_mv, + cm->cur_frame_force_integer_mv); + clamp_mv2(&out_mv->as_mv, xd); + return !mv_check_bounds(&x->mv_limits, &out_mv->as_mv); +} + +static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, + const BLOCK_SIZE bsize, int_mv *cur_mv, + const int mi_row, const int mi_col, + int *const rate_mv, + HandleInterModeArgs *const args) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + const int refs[2] = { mbmi->ref_frame[0], + mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; + const int ref_mv_idx = mbmi->ref_mv_idx; + int i; + + (void)args; + + if (is_comp_pred) { + if (this_mode == NEW_NEWMV) { + cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; + cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; + + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + joint_motion_search(cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, NULL, + 0, rate_mv, 0); + } else { + *rate_mv = 0; + for (i = 0; i < 2; ++i) { + const int_mv ref_mv = av1_get_ref_mv(x, i); + av1_set_mvcost(x, i, mbmi->ref_mv_idx); + *rate_mv += + av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + } + } + } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { + cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + compound_single_motion_search_interinter( + cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1); + } else { + av1_set_mvcost(x, 1, + mbmi->ref_mv_idx + (this_mode == NEAR_NEWMV ? 1 : 0)); + const int_mv ref_mv = av1_get_ref_mv(x, 1); + *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + } else { + assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); + cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; + if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { + compound_single_motion_search_interinter( + cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0); + } else { + const int_mv ref_mv = av1_get_ref_mv(x, 0); + av1_set_mvcost(x, 0, + mbmi->ref_mv_idx + (this_mode == NEW_NEARMV ? 1 : 0)); + *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + } + } + } else { + single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv); + if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; + + args->single_newmv[ref_mv_idx][refs[0]] = x->best_mv; + args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv; + args->single_newmv_valid[ref_mv_idx][refs[0]] = 1; + + cur_mv[0].as_int = x->best_mv.as_int; + +#if USE_DISCOUNT_NEWMV_TEST + // Estimate the rate implications of a new mv but discount this + // under certain circumstances where we want to help initiate a weak + // motion field, where the distortion gain for a single block may not + // be enough to overcome the cost of a new mv. + if (discount_newmv_test(cpi, x, this_mode, x->best_mv)) { + *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1); + } +#endif + } + + return 0; +} + +static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2], + int num_planes) { + const BUFFER_SET *buf0 = dst_bufs[0]; + dst_bufs[0] = dst_bufs[1]; + dst_bufs[1] = buf0; + restore_dst_buf(xd, *dst_bufs[0], num_planes); +} + +static INLINE int get_switchable_rate(MACROBLOCK *const x, + const InterpFilters filters, + const int ctx[2]) { + int inter_filter_cost; + const InterpFilter filter0 = av1_extract_interp_filter(filters, 0); + const InterpFilter filter1 = av1_extract_interp_filter(filters, 1); + inter_filter_cost = x->switchable_interp_costs[ctx[0]][filter0]; + inter_filter_cost += x->switchable_interp_costs[ctx[1]][filter1]; + return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; +} + +// calculate the rdcost of given interpolation_filter +static INLINE int64_t interpolation_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], int filter_idx, + const int switchable_ctx[2], const int skip_pred, int *rate, + int64_t *dist) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int tmp_rate[2], tmp_skip_sb[2] = { 1, 1 }; + int64_t tmp_dist[2], tmp_skip_sse[2] = { 0, 0 }; + + const InterpFilters last_best = mbmi->interp_filters; + mbmi->interp_filters = filter_sets[filter_idx]; + const int tmp_rs = + get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); + + assert(skip_pred != 2); + assert((skip_pred >= 0) && (skip_pred <= cpi->default_interp_skip_flags)); + assert(rate[0] >= 0); + assert(dist[0] >= 0); + assert((skip_txfm_sb[0] == 0) || (skip_txfm_sb[0] == 1)); + assert(skip_sse_sb[0] >= 0); + assert(rate[1] >= 0); + assert(dist[1] >= 0); + assert((skip_txfm_sb[1] == 0) || (skip_txfm_sb[1] == 1)); + assert(skip_sse_sb[1] >= 0); + + if (skip_pred != cpi->default_interp_skip_flags) { + if (skip_pred != DEFAULT_LUMA_INTERP_SKIP_FLAG) { + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); +#if CONFIG_COLLECT_RD_STATS == 3 + RD_STATS rd_stats_y; + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX); + PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 3 + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], + &tmp_skip_sb[0], &tmp_skip_sse[0], NULL, NULL, NULL); + tmp_rate[1] = tmp_rate[0]; + tmp_dist[1] = tmp_dist[0]; + } else { + // only luma MC is skipped + tmp_rate[1] = rate[0]; + tmp_dist[1] = dist[0]; + } + if (num_planes > 1) { + for (int plane = 1; plane < num_planes; ++plane) { + int tmp_rate_uv, tmp_skip_sb_uv; + int64_t tmp_dist_uv, tmp_skip_sse_uv; + int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); + if (tmp_rd >= *rd) { + mbmi->interp_filters = last_best; + return 0; + } + av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, orig_dst, bsize, + plane); + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, plane, plane, mi_row, mi_col, &tmp_rate_uv, + &tmp_dist_uv, &tmp_skip_sb_uv, &tmp_skip_sse_uv, NULL, NULL, NULL); + tmp_rate[1] = + (int)AOMMIN(((int64_t)tmp_rate[1] + (int64_t)tmp_rate_uv), INT_MAX); + tmp_dist[1] += tmp_dist_uv; + tmp_skip_sb[1] &= tmp_skip_sb_uv; + tmp_skip_sse[1] += tmp_skip_sse_uv; + } + } + } else { + // both luma and chroma MC is skipped + tmp_rate[1] = rate[1]; + tmp_dist[1] = dist[1]; + } + int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); + + if (tmp_rd < *rd) { + *rd = tmp_rd; + *switchable_rate = tmp_rs; + if (skip_pred != cpi->default_interp_skip_flags) { + if (skip_pred == 0) { + // Overwrite the data as current filter is the best one + tmp_skip_sb[1] = tmp_skip_sb[0] & tmp_skip_sb[1]; + tmp_skip_sse[1] = tmp_skip_sse[0] + tmp_skip_sse[1]; + memcpy(rate, tmp_rate, sizeof(*rate) * 2); + memcpy(dist, tmp_dist, sizeof(*dist) * 2); + memcpy(skip_txfm_sb, tmp_skip_sb, sizeof(*skip_txfm_sb) * 2); + memcpy(skip_sse_sb, tmp_skip_sse, sizeof(*skip_sse_sb) * 2); + // As luma MC data is computed, no need to recompute after the search + x->recalc_luma_mc_data = 0; + } else if (skip_pred == DEFAULT_LUMA_INTERP_SKIP_FLAG) { + // As luma MC data is not computed, update of luma data can be skipped + rate[1] = tmp_rate[1]; + dist[1] = tmp_dist[1]; + skip_txfm_sb[1] = skip_txfm_sb[0] & tmp_skip_sb[1]; + skip_sse_sb[1] = skip_sse_sb[0] + tmp_skip_sse[1]; + // As luma MC data is not recomputed and current filter is the best, + // indicate the possibility of recomputing MC data + // If current buffer contains valid MC data, toggle to indicate that + // luma MC data needs to be recomputed + x->recalc_luma_mc_data ^= 1; + } + swap_dst_buf(xd, dst_bufs, num_planes); + } + return 1; + } + mbmi->interp_filters = last_best; + return 0; +} + +// Find the best rd filter in horizontal direction +static INLINE int find_best_horiz_interp_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], + const int switchable_ctx[2], const int skip_hor, int *rate, int64_t *dist, + int best_dual_mode) { + int i; + const int bw = block_size_wide[bsize]; + assert(best_dual_mode == 0); + if ((bw <= 4) && (skip_hor != cpi->default_interp_skip_flags)) { + int skip_pred = cpi->default_interp_skip_flags; + // Process the filters in reverse order to enable reusing rate and + // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP + for (i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) { + if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_pred, rate, + dist)) { + best_dual_mode = i; + } + skip_pred = skip_hor; + } + } else { + for (i = 1; i < SWITCHABLE_FILTERS; ++i) { + if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_hor, rate, + dist)) { + best_dual_mode = i; + } + } + } + return best_dual_mode; +} + +// Find the best rd filter in vertical direction +static INLINE void find_best_vert_interp_filter_rd( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd, + int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], + const int switchable_ctx[2], const int skip_ver, int *rate, int64_t *dist, + int best_dual_mode, int filter_set_size) { + int i; + const int bh = block_size_high[bsize]; + if ((bh <= 4) && (skip_ver != cpi->default_interp_skip_flags)) { + int skip_pred = cpi->default_interp_skip_flags; + // Process the filters in reverse order to enable reusing rate and + // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP + assert(filter_set_size == DUAL_FILTER_SET_SIZE); + for (i = (filter_set_size - SWITCHABLE_FILTERS + best_dual_mode); + i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) { + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_pred, rate, + dist); + skip_pred = skip_ver; + } + } else { + for (i = best_dual_mode + SWITCHABLE_FILTERS; i < filter_set_size; + i += SWITCHABLE_FILTERS) { + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, skip_txfm_sb, skip_sse_sb, + dst_bufs, i, switchable_ctx, skip_ver, rate, + dist); + } + } +} + +// check if there is saved result match with this search +static INLINE int is_interp_filter_match(const INTERPOLATION_FILTER_STATS *st, + MB_MODE_INFO *const mi) { + for (int i = 0; i < 2; ++i) { + if ((st->ref_frames[i] != mi->ref_frame[i]) || + (st->mv[i].as_int != mi->mv[i].as_int)) { + return 0; + } + } + if (has_second_ref(mi) && st->comp_type != mi->interinter_comp.type) return 0; + return 1; +} + +static INLINE int find_interp_filter_in_stats(MACROBLOCK *x, + MB_MODE_INFO *const mbmi) { + const int comp_idx = mbmi->compound_idx; + const int offset = x->interp_filter_stats_idx[comp_idx]; + for (int j = 0; j < offset; ++j) { + const INTERPOLATION_FILTER_STATS *st = &x->interp_filter_stats[comp_idx][j]; + if (is_interp_filter_match(st, mbmi)) { + mbmi->interp_filters = st->filters; + return j; + } + } + return -1; // no match result found +} + +static INLINE void save_interp_filter_search_stat(MACROBLOCK *x, + MB_MODE_INFO *const mbmi) { + const int comp_idx = mbmi->compound_idx; + const int offset = x->interp_filter_stats_idx[comp_idx]; + if (offset < MAX_INTERP_FILTER_STATS) { + INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters, + { mbmi->mv[0], mbmi->mv[1] }, + { mbmi->ref_frame[0], + mbmi->ref_frame[1] }, + mbmi->interinter_comp.type }; + x->interp_filter_stats[comp_idx][offset] = stat; + x->interp_filter_stats_idx[comp_idx]++; + } +} + +static int64_t interpolation_filter_search( + MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, + int mi_row, int mi_col, const BUFFER_SET *const tmp_dst, + BUFFER_SET *const orig_dst, InterpFilter (*const single_filter)[REF_FRAMES], + int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb, + int64_t *const skip_sse_sb, const int skip_build_pred, + HandleInterModeArgs *args, int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int need_search = + av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); + int i; + // Index 0 corresponds to luma rd data and index 1 corresponds to cummulative + // data of all planes + int tmp_rate[2] = { 0, 0 }; + int64_t tmp_dist[2] = { 0, 0 }; + int best_skip_txfm_sb[2] = { 1, 1 }; + int64_t best_skip_sse_sb[2] = { 0, 0 }; + const int ref_frame = xd->mi[0]->ref_frame[0]; + + (void)single_filter; + int match_found = -1; + const InterpFilter assign_filter = cm->interp_filter; + if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { + match_found = find_interp_filter_in_stats(x, mbmi); + } + if (!need_search || match_found == -1) { + set_default_interp_filters(mbmi, assign_filter); + } + int switchable_ctx[2]; + switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0); + switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1); + *switchable_rate = + get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); + if (!skip_build_pred) + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + +#if CONFIG_COLLECT_RD_STATS == 3 + RD_STATS rd_stats_y; + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX); + PrintPredictionUnitStats(cpi, x, &rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 3 + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], + &best_skip_txfm_sb[0], &best_skip_sse_sb[0], NULL, NULL, NULL); + if (num_planes > 1) + model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( + cpi, bsize, x, xd, 1, num_planes - 1, mi_row, mi_col, &tmp_rate[1], + &tmp_dist[1], &best_skip_txfm_sb[1], &best_skip_sse_sb[1], NULL, NULL, + NULL); + tmp_rate[1] = + (int)AOMMIN((int64_t)tmp_rate[0] + (int64_t)tmp_rate[1], INT_MAX); + assert(tmp_rate[1] >= 0); + tmp_dist[1] = tmp_dist[0] + tmp_dist[1]; + best_skip_txfm_sb[1] = best_skip_txfm_sb[0] & best_skip_txfm_sb[1]; + best_skip_sse_sb[1] = best_skip_sse_sb[0] + best_skip_sse_sb[1]; + *rd = RDCOST(x->rdmult, (*switchable_rate + tmp_rate[1]), tmp_dist[1]); + *skip_txfm_sb = best_skip_txfm_sb[1]; + *skip_sse_sb = best_skip_sse_sb[1]; + x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); + + if (assign_filter != SWITCHABLE || match_found != -1) { + return 0; + } + if (!need_search) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter(EIGHTTAP_REGULAR)); + return 0; + } + if (args->modelled_rd != NULL) { + if (has_second_ref(mbmi)) { + const int ref_mv_idx = mbmi->ref_mv_idx; + int refs[2] = { mbmi->ref_frame[0], + (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; + const int mode0 = compound_ref0_mode(mbmi->mode); + const int mode1 = compound_ref1_mode(mbmi->mode); + const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], + args->modelled_rd[mode1][ref_mv_idx][refs[1]]); + if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) { + return INT64_MAX; + } + } + } + + x->recalc_luma_mc_data = 0; + // skip_flag=xx (in binary form) + // Setting 0th flag corresonds to skipping luma MC and setting 1st bt + // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip + // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only" + // Skip_flag=2 is not a valid case + // skip_flag=3 corresponds to "Skip both luma and chroma MC" + int skip_hor = cpi->default_interp_skip_flags; + int skip_ver = cpi->default_interp_skip_flags; + const int is_compound = has_second_ref(mbmi); + assert(is_intrabc_block(mbmi) == 0); + for (int j = 0; j < 1 + is_compound; ++j) { + const RefBuffer *ref_buf = &cm->frame_refs[mbmi->ref_frame[j] - LAST_FRAME]; + const struct scale_factors *const sf = &ref_buf->sf; + // TODO(any): Refine skip flag calculation considering scaling + if (av1_is_scaled(sf)) { + skip_hor = 0; + skip_ver = 0; + break; + } + const MV mv = mbmi->mv[j].as_mv; + int skip_hor_plane = 0; + int skip_ver_plane = 0; + for (int k = 0; k < AOMMAX(1, (num_planes - 1)); ++k) { + struct macroblockd_plane *const pd = &xd->plane[k]; + const int bw = pd->width; + const int bh = pd->height; + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; + const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; + skip_hor_plane |= ((sub_x == 0) << k); + skip_ver_plane |= ((sub_y == 0) << k); + } + skip_hor = skip_hor & skip_hor_plane; + skip_ver = skip_ver & skip_ver_plane; + // It is not valid that "luma MV is sub-pel, whereas chroma MV is not" + assert(skip_hor != 2); + assert(skip_ver != 2); + } + // When compond prediction type is compound segment wedge, luma MC and chroma + // MC need to go hand in hand as mask generated during luma MC is reuired for + // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during + // vertical filter decision may be incorrect as temporary MC evaluation + // overwrites the mask. Make skip_ver as 0 for this case so that mask is + // populated during luma MC + if (is_compound && mbmi->compound_idx == 1 && + mbmi->interinter_comp.type == COMPOUND_DIFFWTD) { + assert(mbmi->comp_group_idx == 1); + if (skip_hor == 0 && skip_ver == 1) skip_ver = 0; + } + // do interp_filter search + const int filter_set_size = DUAL_FILTER_SET_SIZE; + restore_dst_buf(xd, *tmp_dst, num_planes); + const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst }; + if (cpi->sf.use_fast_interpolation_filter_search && + cm->seq_params.enable_dual_filter) { + // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR + int best_dual_mode = 0; + // Find best of {R}x{R,Sm,Sh} + // EIGHTTAP_REGULAR mode is calculated beforehand + best_dual_mode = find_best_horiz_interp_filter_rd( + x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate, + best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_hor, + tmp_rate, tmp_dist, best_dual_mode); + + // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes + find_best_vert_interp_filter_rd( + x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate, + best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_ver, + tmp_rate, tmp_dist, best_dual_mode, filter_set_size); + } else { + // EIGHTTAP_REGULAR mode is calculated beforehand + for (i = 1; i < filter_set_size; ++i) { + if (cm->seq_params.enable_dual_filter == 0) { + const int16_t filter_y = filter_sets[i] & 0xffff; + const int16_t filter_x = filter_sets[i] >> 16; + if (filter_x != filter_y) continue; + } + interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd, + switchable_rate, best_skip_txfm_sb, + best_skip_sse_sb, dst_bufs, i, switchable_ctx, 0, + tmp_rate, tmp_dist); + assert(x->recalc_luma_mc_data == 0); + } + } + swap_dst_buf(xd, dst_bufs, num_planes); + // Recompute final MC data if required + if (x->recalc_luma_mc_data == 1) { + // Recomputing final luma MC data is required only if the same was skipped + // in either of the directions Condition below is necessary, but not + // sufficient + assert((skip_hor == 1) || (skip_ver == 1)); + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + *skip_txfm_sb = best_skip_txfm_sb[1]; + *skip_sse_sb = best_skip_sse_sb[1]; + x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); + + // save search results + if (cpi->sf.skip_repeat_interpolation_filter_search) { + assert(match_found == -1); + save_interp_filter_search_stat(x, mbmi); + } + return 0; +} + +static int txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, + int mi_row, int mi_col, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int mode_rate, int64_t ref_best_rd) { + /* + * This function combines y and uv planes' transform search processes + * together, when the prediction is generated. It first does subtration to + * obtain the prediction error. Then it calls + * select_tx_type_yrd/super_block_yrd and inter_block_uvrd sequentially and + * handles the early terminations happen in those functions. At the end, it + * computes the rd_stats/_y/_uv accordingly. + */ + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + int skip_txfm_sb = 0; + const int num_planes = av1_num_planes(cm); + const int ref_frame_1 = mbmi->ref_frame[1]; + const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0); + const int64_t rd_thresh = + ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd; + const int skip_ctx = av1_get_skip_context(xd); + const int64_t min_header_rate = + mode_rate + AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]); + // Account for minimum skip and non_skip rd. + // Eventually either one of them will be added to mode_rate + const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0); + + if (min_header_rd_possible > ref_best_rd) { + av1_invalid_rd_stats(rd_stats_y); + av1_invalid_rd_stats(rd_stats); + return 0; + } + + av1_init_rd_stats(rd_stats); + av1_init_rd_stats(rd_stats_y); + av1_init_rd_stats(rd_stats_uv); + rd_stats->rate = mode_rate; + + if (!cpi->common.all_lossless) + check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb); + if (!skip_txfm_sb) { + int64_t non_skip_rdcosty = INT64_MAX; + int64_t skip_rdcosty = INT64_MAX; + int64_t min_rdcosty = INT64_MAX; + int is_cost_valid_uv = 0; + + // cost and distortion + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // Motion mode + select_tx_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col, rd_thresh); +#if CONFIG_COLLECT_RD_STATS == 2 + PrintPredictionUnitStats(cpi, x, rd_stats_y, bsize); +#endif // CONFIG_COLLECT_RD_STATS == 2 + } else { + super_block_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats_y->skip); + } + + if (rd_stats_y->rate == INT_MAX) { + av1_invalid_rd_stats(rd_stats); + // TODO(angiebird): check if we need this + // restore_dst_buf(xd, *orig_dst, num_planes); + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + + av1_merge_rd_stats(rd_stats, rd_stats_y); + + non_skip_rdcosty = RDCOST( + x->rdmult, rd_stats->rate + x->skip_cost[skip_ctx][0], rd_stats->dist); + skip_rdcosty = + RDCOST(x->rdmult, mode_rate + x->skip_cost[skip_ctx][1], rd_stats->sse); + min_rdcosty = AOMMIN(non_skip_rdcosty, skip_rdcosty); + + if (min_rdcosty > ref_best_rd) { + int64_t tokenonly_rdy = + AOMMIN(RDCOST(x->rdmult, rd_stats_y->rate, rd_stats_y->dist), + RDCOST(x->rdmult, 0, rd_stats_y->sse)); + // Invalidate rd_stats_y to skip the rest of the motion modes search + if (tokenonly_rdy - (tokenonly_rdy >> cpi->sf.adaptive_txb_search_level) > + rd_thresh) + av1_invalid_rd_stats(rd_stats_y); + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + + if (num_planes > 1) { + /* clang-format off */ + is_cost_valid_uv = + inter_block_uvrd(cpi, x, rd_stats_uv, bsize, + ref_best_rd - non_skip_rdcosty, + ref_best_rd - skip_rdcosty, FTXS_NONE); + if (!is_cost_valid_uv) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + /* clang-format on */ + av1_merge_rd_stats(rd_stats, rd_stats_uv); + } else { + av1_init_rd_stats(rd_stats_uv); + } + if (rd_stats->skip) { + rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + mbmi->skip = 0; + // here mbmi->skip temporarily plays a role as what this_skip2 does + + int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (tmprd > ref_best_rd) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + } else if (!xd->lossless[mbmi->segment_id] && + (RDCOST(x->rdmult, + rd_stats_y->rate + rd_stats_uv->rate + + x->skip_cost[skip_ctx][0], + rd_stats->dist) >= + RDCOST(x->rdmult, x->skip_cost[skip_ctx][1], rd_stats->sse))) { + rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + rd_stats->dist = rd_stats->sse; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + mbmi->skip = 1; + } else { + rd_stats->rate += x->skip_cost[skip_ctx][0]; + mbmi->skip = 0; + } + } else { + x->skip = 1; + mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); + // The cost of skip bit needs to be added. + mbmi->skip = 0; + rd_stats->rate += x->skip_cost[skip_ctx][1]; + + rd_stats->dist = 0; + rd_stats->sse = 0; + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + rd_stats->skip = 1; + int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (tmprd > ref_best_rd) { + mbmi->ref_frame[1] = ref_frame_1; + return 0; + } + } + return 1; +} + +static int handle_inter_intra_mode(const AV1_COMP *const cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, + int mi_row, int mi_col, MB_MODE_INFO *mbmi, + HandleInterModeArgs *args, + int64_t ref_best_rd, int *rate_mv, + int *tmp_rate2, BUFFER_SET *orig_dst) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + + INTERINTRA_MODE best_interintra_mode = II_DC_PRED; + int64_t rd, best_interintra_rd = INT64_MAX; + int rmode, rate_sum; + int64_t dist_sum; + int tmp_rate_mv = 0; + int tmp_skip_txfm_sb; + int bw = block_size_wide[bsize]; + int64_t tmp_skip_sse_sb; + DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]); + DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]); + uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_); + uint8_t *intrapred = get_buf_by_bd(xd, intrapred_); + const int *const interintra_mode_cost = + x->interintra_mode_cost[size_group_lookup[bsize]]; + const int_mv mv0 = mbmi->mv[0]; + const int is_wedge_used = is_interintra_wedge_used(bsize); + int rwedge = is_wedge_used ? x->wedge_interintra_cost[bsize][0] : 0; + mbmi->ref_frame[1] = NONE_FRAME; + xd->plane[0].dst.buf = tmp_buf; + xd->plane[0].dst.stride = bw; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize); + + restore_dst_buf(xd, *orig_dst, num_planes); + mbmi->ref_frame[1] = INTRA_FRAME; + mbmi->use_wedge_interintra = 0; + best_interintra_mode = args->inter_intra_mode[mbmi->ref_frame[0]]; + int j = 0; + if (cpi->sf.reuse_inter_intra_mode == 0 || + best_interintra_mode == INTERINTRA_MODES) { + for (j = 0; j < INTERINTRA_MODES; ++j) { + mbmi->interintra_mode = (INTERINTRA_MODE)j; + rmode = interintra_mode_cost[mbmi->interintra_mode]; + av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, + intrapred, bw); + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + model_rd_sb_fn[MODELRD_TYPE_INTERINTRA]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum); + if (rd < best_interintra_rd) { + best_interintra_rd = rd; + best_interintra_mode = mbmi->interintra_mode; + } + } + args->inter_intra_mode[mbmi->ref_frame[0]] = best_interintra_mode; + } + if (j == 0 || best_interintra_mode != II_SMOOTH_PRED) { + mbmi->interintra_mode = best_interintra_mode; + rmode = interintra_mode_cost[mbmi->interintra_mode]; + av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, + intrapred, bw); + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + } + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, *rate_mv + rmode + rate_sum + rwedge, dist_sum); + best_interintra_rd = rd; + if (ref_best_rd < INT64_MAX && (best_interintra_rd >> 1) > ref_best_rd) { + return -1; + } + if (is_wedge_used) { + int64_t best_interintra_rd_nowedge = rd; + int64_t best_interintra_rd_wedge = INT64_MAX; + int_mv tmp_mv; + // Disable wedge search if source variance is small + if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) { + mbmi->use_wedge_interintra = 1; + + rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + + x->wedge_interintra_cost[bsize][1]; + + best_interintra_rd_wedge = + pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); + + best_interintra_rd_wedge += + RDCOST(x->rdmult, rmode + *rate_mv + rwedge, 0); + rd = INT64_MAX; + // Refine motion vector. + if (have_newmv_in_inter_mode(mbmi->mode)) { + // get negative of mask + const uint8_t *mask = av1_get_contiguous_soft_mask( + mbmi->interintra_wedge_index, 1, bsize); + tmp_mv = mbmi->mv[0]; + compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row, + mi_col, intrapred, mask, bw, &tmp_rate_mv, + 0); + if (mbmi->mv[0].as_int != tmp_mv.as_int) { + mbmi->mv[0].as_int = tmp_mv.as_int; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, + bsize); + model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( + cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); + rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge, + dist_sum); + } + } + if (rd >= best_interintra_rd_wedge) { + tmp_mv.as_int = mv0.as_int; + tmp_rate_mv = *rate_mv; + av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); + } + // Evaluate closer to true rd + rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (rd != INT64_MAX) + rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rate_sum, + dist_sum); + best_interintra_rd_wedge = rd; + if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { + mbmi->use_wedge_interintra = 1; + mbmi->mv[0].as_int = tmp_mv.as_int; + *tmp_rate2 += tmp_rate_mv - *rate_mv; + *rate_mv = tmp_rate_mv; + } else { + mbmi->use_wedge_interintra = 0; + mbmi->mv[0].as_int = mv0.as_int; + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + } else { + mbmi->use_wedge_interintra = 0; + } + } // if (is_interintra_wedge_used(bsize)) + if (num_planes > 1) { + av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + return 0; +} + +// TODO(afergs): Refactor the MBMI references in here - there's four +// TODO(afergs): Refactor optional args - add them to a struct or remove +static int64_t motion_mode_rd(const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int *disable_skip, int mi_row, int mi_col, + HandleInterModeArgs *const args, + int64_t ref_best_rd, const int *refs, + int *rate_mv, BUFFER_SET *orig_dst +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + , + TileDataEnc *tile_data, int64_t *best_est_rd, + int do_tx_search, InterModesInfo *inter_modes_info +#endif +) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + const int rate2_nocoeff = rd_stats->rate; + int best_xskip, best_disable_skip = 0; + RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; + MB_MODE_INFO base_mbmi, best_mbmi; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int rate_mv0 = *rate_mv; + + int interintra_allowed = cm->seq_params.enable_interintra_compound && + is_interintra_allowed(mbmi) && mbmi->compound_idx; + int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE]; + + assert(mbmi->ref_frame[1] != INTRA_FRAME); + const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1]; + av1_invalid_rd_stats(&best_rd_stats); + aom_clear_system_state(); + mbmi->num_proj_ref = 1; // assume num_proj_ref >=1 + MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; + if (cm->switchable_motion_mode) { + last_motion_mode_allowed = motion_mode_allowed(xd->global_motion, xd, mbmi, + cm->allow_warped_motion); + } + if (last_motion_mode_allowed == WARPED_CAUSAL) { + mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0); + } + int total_samples = mbmi->num_proj_ref; + if (total_samples == 0) { + last_motion_mode_allowed = OBMC_CAUSAL; + } + base_mbmi = *mbmi; + + const int switchable_rate = + av1_is_interp_needed(xd) ? av1_get_switchable_rate(cm, x, xd) : 0; + int64_t best_rd = INT64_MAX; + int best_rate_mv = rate_mv0; + for (int mode_index = (int)SIMPLE_TRANSLATION; + mode_index <= (int)last_motion_mode_allowed + interintra_allowed; + mode_index++) { + if (args->skip_motion_mode && mode_index) continue; + int64_t tmp_rd = INT64_MAX; + int tmp_rate2 = rate2_nocoeff; + int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; + int skip_txfm_sb = 0; + int tmp_rate_mv = rate_mv0; + + *mbmi = base_mbmi; + if (is_interintra_mode) { + mbmi->motion_mode = SIMPLE_TRANSLATION; + } else { + mbmi->motion_mode = (MOTION_MODE)mode_index; + assert(mbmi->ref_frame[1] != INTRA_FRAME); + } + + if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) { + // SIMPLE_TRANSLATION mode: no need to recalculate. + // The prediction is calculated before motion_mode_rd() is called in + // handle_inter_mode() + } else if (mbmi->motion_mode == OBMC_CAUSAL) { + uint32_t cur_mv = mbmi->mv[0].as_int; + assert(!is_comp_pred); + if (have_newmv_in_inter_mode(this_mode)) { + single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv); + mbmi->mv[0].as_int = x->best_mv.as_int; +#if USE_DISCOUNT_NEWMV_TEST + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); + } +#endif + tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; + } + if (mbmi->mv[0].as_int != cur_mv) { + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + } + av1_build_obmc_inter_prediction( + cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride, + args->left_pred_buf, args->left_pred_stride); + } else if (mbmi->motion_mode == WARPED_CAUSAL) { + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + mbmi->motion_mode = WARPED_CAUSAL; + mbmi->wm_params.wmtype = DEFAULT_WMTYPE; + mbmi->interp_filters = av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter)); + + memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); + memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); + // Select the samples according to motion vector difference + if (mbmi->num_proj_ref > 1) { + mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, + mbmi->num_proj_ref, bsize); + } + + if (!find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, + mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, + &mbmi->wm_params, mi_row, mi_col)) { + // Refine MV for NEWMV mode + assert(!is_comp_pred); + if (have_newmv_in_inter_mode(this_mode)) { + const int_mv mv0 = mbmi->mv[0]; + const WarpedMotionParams wm_params0 = mbmi->wm_params; + int num_proj_ref0 = mbmi->num_proj_ref; + + // Refine MV in a small range. + av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0, + total_samples); + + // Keep the refined MV and WM parameters. + if (mv0.as_int != mbmi->mv[0].as_int) { + const int ref = refs[0]; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + tmp_rate_mv = + av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv.as_mv, + x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); + + if (cpi->sf.adaptive_motion_search) + x->pred_mv[ref] = mbmi->mv[0].as_mv; + +#if USE_DISCOUNT_NEWMV_TEST + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); + } +#endif + tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; + } else { + // Restore the old MV and WM parameters. + mbmi->mv[0] = mv0; + mbmi->wm_params = wm_params0; + mbmi->num_proj_ref = num_proj_ref0; + } + } + + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + } else { + continue; + } + } else if (is_interintra_mode) { + const int ret = handle_inter_intra_mode( + cpi, x, bsize, mi_row, mi_col, mbmi, args, ref_best_rd, &tmp_rate_mv, + &tmp_rate2, orig_dst); + if (ret < 0) continue; + } + + if (!cpi->common.all_lossless) + check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb); + + x->skip = 0; + + rd_stats->dist = 0; + rd_stats->sse = 0; + rd_stats->skip = 1; + rd_stats->rate = tmp_rate2; + if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate; + if (interintra_allowed) { + rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]] + [mbmi->ref_frame[1] == INTRA_FRAME]; + if (mbmi->ref_frame[1] == INTRA_FRAME) { + rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]] + [mbmi->interintra_mode]; + if (is_interintra_wedge_used(bsize)) { + rd_stats->rate += + x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra]; + if (mbmi->use_wedge_interintra) { + rd_stats->rate += + av1_cost_literal(get_interintra_wedge_bits(bsize)); + } + } + } + } + if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && + (mbmi->ref_frame[1] != INTRA_FRAME)) { + if (last_motion_mode_allowed == WARPED_CAUSAL) { + rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode]; + } else { + rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode]; + } + } + + if (!skip_txfm_sb) { +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + int64_t est_rd = 0; + int est_skip = 0; + if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 && + cm->tile_rows == 1) { + InterModeRdModel *md = &tile_data->inter_mode_rd_models[mbmi->sb_type]; + if (md->ready) { + const int64_t curr_sse = get_sse(cpi, x); + est_rd = get_est_rd(tile_data, mbmi->sb_type, x->rdmult, curr_sse, + rd_stats->rate); + est_skip = est_rd * 0.8 > *best_est_rd; + if (est_skip) { + mbmi->ref_frame[1] = ref_frame_1; + continue; + } else { + if (est_rd < *best_est_rd) { + *best_est_rd = est_rd; + } + } + } + } +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + } + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (!do_tx_search) { + const int64_t curr_sse = get_sse(cpi, x); + int est_residue_cost = 0; + int64_t est_dist = 0; + const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse, + &est_residue_cost, &est_dist); + (void)has_est_rd; + assert(has_est_rd); + const int mode_rate = rd_stats->rate; + rd_stats->rate += est_residue_cost; + rd_stats->dist = est_dist; + rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (cm->reference_mode == SINGLE_REFERENCE) { + if (!is_comp_pred) { + inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, + rd_stats->rdcost, mbmi); + } + } else { + inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, + rd_stats->rdcost, mbmi); + } + } else { +#endif + int mode_rate = rd_stats->rate; + if (!txfm_search(cpi, x, bsize, mi_row, mi_col, rd_stats, rd_stats_y, + rd_stats_uv, mode_rate, ref_best_rd)) { + if (rd_stats_y->rate == INT_MAX && mode_index == 0) { + return INT64_MAX; + } + continue; + } + if (!skip_txfm_sb) { + const int64_t curr_rd = + RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (curr_rd < ref_best_rd) { + ref_best_rd = curr_rd; + } + *disable_skip = 0; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (cpi->sf.inter_mode_rd_model_estimation) { + const int skip_ctx = av1_get_skip_context(xd); + inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats->sse, + rd_stats->dist, + rd_stats_y->rate + rd_stats_uv->rate + + x->skip_cost[skip_ctx][mbmi->skip]); + } +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + } else { + *disable_skip = 1; + } +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + } +#endif + + if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { + if (is_nontrans_global_motion(xd, xd->mi[0])) { + mbmi->interp_filters = av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter)); + } + } + + tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + if (mode_index == 0) + args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd; + if ((mode_index == 0) || (tmp_rd < best_rd)) { + best_mbmi = *mbmi; + best_rd = tmp_rd; + best_rd_stats = *rd_stats; + best_rd_stats_y = *rd_stats_y; + best_rate_mv = tmp_rate_mv; + if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + best_xskip = x->skip; + best_disable_skip = *disable_skip; + if (best_xskip) break; + } + } + mbmi->ref_frame[1] = ref_frame_1; + *rate_mv = best_rate_mv; + if (best_rd == INT64_MAX) { + av1_invalid_rd_stats(rd_stats); + restore_dst_buf(xd, *orig_dst, num_planes); + return INT64_MAX; + } + *mbmi = best_mbmi; + *rd_stats = best_rd_stats; + *rd_stats_y = best_rd_stats_y; + if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + x->skip = best_xskip; + *disable_skip = best_disable_skip; + + restore_dst_buf(xd, *orig_dst, num_planes); + return 0; +} + +static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi, + MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, + int mi_col, BUFFER_SET *const orig_dst) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); + + int64_t total_sse = 0; + for (int plane = 0; plane < num_planes; ++plane) { + const struct macroblock_plane *const p = &x->plane[plane]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + + av1_subtract_plane(x, bsize, plane); + int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh); + sse = sse << 4; + total_sse += sse; + } + const int skip_mode_ctx = av1_get_skip_mode_context(xd); + rd_stats->dist = rd_stats->sse = total_sse; + rd_stats->rate = x->skip_mode_cost[skip_mode_ctx][1]; + rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + + restore_dst_buf(xd, *orig_dst, num_planes); + return 0; +} + +static INLINE int get_ref_mv_offset(PREDICTION_MODE single_mode, + uint8_t ref_mv_idx) { + assert(is_inter_singleref_mode(single_mode)); + int ref_mv_offset; + if (single_mode == NEARESTMV) { + ref_mv_offset = 0; + } else if (single_mode == NEARMV) { + ref_mv_offset = ref_mv_idx + 1; + } else { + ref_mv_offset = -1; + } + return ref_mv_offset; +} + +static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, + int ref_idx, int ref_mv_idx, + const MV_REFERENCE_FRAME *ref_frame, + const MB_MODE_INFO_EXT *mbmi_ext) { + const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); + const int is_comp_pred = ref_frame[1] > INTRA_FRAME; + const PREDICTION_MODE single_mode = + get_single_mode(this_mode, ref_idx, is_comp_pred); + assert(is_inter_singleref_mode(single_mode)); + if (single_mode == NEWMV) { + this_mv->as_int = INVALID_MV; + } else if (single_mode == GLOBALMV) { + *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; + } else { + assert(single_mode == NEARMV || single_mode == NEARESTMV); + const int ref_mv_offset = get_ref_mv_offset(single_mode, ref_mv_idx); + if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) { + assert(ref_mv_offset >= 0); + if (ref_idx == 0) { + *this_mv = + mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv; + } else { + *this_mv = + mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv; + } + } else { + *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; + } + } +} + +// This function update the non-new mv for the current prediction mode +static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode, + const AV1_COMMON *cm, const MACROBLOCK *x) { + const MACROBLOCKD *xd = &x->e_mbd; + const MB_MODE_INFO *mbmi = xd->mi[0]; + const int is_comp_pred = has_second_ref(mbmi); + int ret = 1; + for (int i = 0; i < is_comp_pred + 1; ++i) { + int_mv this_mv; + get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, mbmi->ref_frame, + x->mbmi_ext); + const PREDICTION_MODE single_mode = + get_single_mode(this_mode, i, is_comp_pred); + if (single_mode == NEWMV) { + cur_mv[i] = this_mv; + } else { + ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x); + } + } + return ret; +} + +static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi, + const MB_MODE_INFO_EXT *mbmi_ext, + int (*drl_mode_cost0)[2], + int8_t ref_frame_type) { + int cost = 0; + if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { + for (int idx = 0; idx < 2; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx]; + if (mbmi->ref_mv_idx == idx) return cost; + } + } + return cost; + } + + if (have_nearmv_in_inter_mode(mbmi->mode)) { + for (int idx = 1; idx < 3; ++idx) { + if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { + uint8_t drl_ctx = + av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); + cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)]; + if (mbmi->ref_mv_idx == (idx - 1)) return cost; + } + } + return cost; + } + return cost; +} + +// Struct for buffers used by compound_type_rd() function. +// For sizes and alignment of these arrays, refer to +// alloc_compound_type_rd_buffers() function. +typedef struct { + uint8_t *pred0; + uint8_t *pred1; + int16_t *residual1; // src - pred1 + int16_t *diff10; // pred1 - pred0 + uint8_t *tmp_best_mask_buf; // backup of the best segmentation mask +} CompoundTypeRdBuffers; + +static int compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_col, int mi_row, + int_mv *cur_mv, int masked_compound_used, + BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, + CompoundTypeRdBuffers *buffers, int *rate_mv, + int64_t *rd, RD_STATS *rd_stats, + int64_t ref_best_rd) { + const AV1_COMMON *cm = &cpi->common; + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + const PREDICTION_MODE this_mode = mbmi->mode; + const int bw = block_size_wide[bsize]; + int rate_sum, rs2; + int64_t dist_sum; + + int_mv best_mv[2]; + int best_tmp_rate_mv = *rate_mv; + int tmp_skip_txfm_sb; + int64_t tmp_skip_sse_sb; + INTERINTER_COMPOUND_DATA best_compound_data; + best_compound_data.type = COMPOUND_AVERAGE; + uint8_t *preds0[1] = { buffers->pred0 }; + uint8_t *preds1[1] = { buffers->pred1 }; + int strides[1] = { bw }; + int tmp_rate_mv; + const int num_pix = 1 << num_pels_log2_lookup[bsize]; + const int mask_len = 2 * num_pix * sizeof(uint8_t); + COMPOUND_TYPE cur_type; + int best_compmode_interinter_cost = 0; + int calc_pred_masked_compound = 1; + + best_mv[0].as_int = cur_mv[0].as_int; + best_mv[1].as_int = cur_mv[1].as_int; + *rd = INT64_MAX; + for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) { + if (cur_type != COMPOUND_AVERAGE && !masked_compound_used) break; + if (!is_interinter_compound_used(cur_type, bsize)) continue; + tmp_rate_mv = *rate_mv; + int64_t best_rd_cur = INT64_MAX; + mbmi->interinter_comp.type = cur_type; + int masked_type_cost = 0; + + const int comp_group_idx_ctx = get_comp_group_idx_context(xd); + const int comp_index_ctx = get_comp_index_context(cm, xd); + mbmi->compound_idx = 1; + if (cur_type == COMPOUND_AVERAGE) { + mbmi->comp_group_idx = 0; + if (masked_compound_used) { + masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][0]; + } + masked_type_cost += x->comp_idx_cost[comp_index_ctx][1]; + rs2 = masked_type_cost; + const int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0); + if (mode_rd < ref_best_rd) { + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize); + int64_t est_rd = + estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, + &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); + if (est_rd != INT64_MAX) + best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum); + } + // use spare buffer for following compound type try + restore_dst_buf(xd, *tmp_dst, 1); + } else { + mbmi->comp_group_idx = 1; + masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][1]; + masked_type_cost += x->compound_type_cost[bsize][cur_type - 1]; + rs2 = masked_type_cost; + if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && + *rd / 3 < ref_best_rd) { + best_rd_cur = build_and_cost_compound_type( + cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst, + &tmp_rate_mv, preds0, preds1, buffers->residual1, buffers->diff10, + strides, mi_row, mi_col, rd_stats->rate, ref_best_rd, + &calc_pred_masked_compound); + } + } + if (best_rd_cur < *rd) { + *rd = best_rd_cur; + best_compound_data = mbmi->interinter_comp; + if (masked_compound_used && cur_type != COMPOUND_TYPES - 1) { + memcpy(buffers->tmp_best_mask_buf, xd->seg_mask, mask_len); + } + best_compmode_interinter_cost = rs2; + if (have_newmv_in_inter_mode(this_mode)) { + if (cur_type == COMPOUND_WEDGE) { + best_tmp_rate_mv = tmp_rate_mv; + best_mv[0].as_int = mbmi->mv[0].as_int; + best_mv[1].as_int = mbmi->mv[1].as_int; + } else { + best_mv[0].as_int = cur_mv[0].as_int; + best_mv[1].as_int = cur_mv[1].as_int; + } + } + } + // reset to original mvs for next iteration + mbmi->mv[0].as_int = cur_mv[0].as_int; + mbmi->mv[1].as_int = cur_mv[1].as_int; + } + if (mbmi->interinter_comp.type != best_compound_data.type) { + mbmi->comp_group_idx = + (best_compound_data.type == COMPOUND_AVERAGE) ? 0 : 1; + mbmi->interinter_comp = best_compound_data; + memcpy(xd->seg_mask, buffers->tmp_best_mask_buf, mask_len); + } + if (have_newmv_in_inter_mode(this_mode)) { + mbmi->mv[0].as_int = best_mv[0].as_int; + mbmi->mv[1].as_int = best_mv[1].as_int; + if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { + rd_stats->rate += best_tmp_rate_mv - *rate_mv; + *rate_mv = best_tmp_rate_mv; + } + } + restore_dst_buf(xd, *orig_dst, 1); + return best_compmode_interinter_cost; +} + +static INLINE int is_single_newmv_valid(HandleInterModeArgs *args, + MB_MODE_INFO *mbmi, + PREDICTION_MODE this_mode) { + for (int ref_idx = 0; ref_idx < 2; ++ref_idx) { + const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx, 1); + const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx]; + if (single_mode == NEWMV && + args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) { + return 0; + } + } + return 1; +} + +static int get_drl_refmv_count(const MACROBLOCK *const x, + const MV_REFERENCE_FRAME *ref_frame, + PREDICTION_MODE mode) { + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); + const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0; + const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; + const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV); + const int has_drl = + (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1); + const int ref_set = + has_drl ? AOMMIN(MAX_REF_MV_SERCH, ref_mv_count - has_nearmv) : 1; + + return ref_set; +} + +typedef struct { + int64_t rd; + int drl_cost; + int rate_mv; + int_mv mv; +} inter_mode_info; + +static int64_t handle_inter_mode(const AV1_COMP *const cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, RD_STATS *rd_stats, + RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, + int *disable_skip, int mi_row, int mi_col, + HandleInterModeArgs *args, int64_t ref_best_rd, + uint8_t *const tmp_buf, + CompoundTypeRdBuffers *rd_buffers +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + , + TileDataEnc *tile_data, int64_t *best_est_rd, + const int do_tx_search, + InterModesInfo *inter_modes_info +#endif +) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *xd = &x->e_mbd; + MB_MODE_INFO *mbmi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const int is_comp_pred = has_second_ref(mbmi); + const PREDICTION_MODE this_mode = mbmi->mode; + int i; + int refs[2] = { mbmi->ref_frame[0], + (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; + int rate_mv = 0; + int64_t rd = INT64_MAX; + + // do first prediction into the destination buffer. Do the next + // prediction into a temporary buffer. Then keep track of which one + // of these currently holds the best predictor, and use the other + // one for future predictions. In the end, copy from tmp_buf to + // dst if necessary. + struct macroblockd_plane *p = xd->plane; + BUFFER_SET orig_dst = { + { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, + { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, + }; + const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, + tmp_buf + 2 * MAX_SB_SQUARE }, + { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; + + int skip_txfm_sb = 0; + int64_t skip_sse_sb = INT64_MAX; + int16_t mode_ctx; + const int masked_compound_used = is_any_masked_compound_used(bsize) && + cm->seq_params.enable_masked_compound; + int64_t ret_val = INT64_MAX; + const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; + int64_t best_rd = INT64_MAX; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + MB_MODE_INFO best_mbmi = *mbmi; + int best_disable_skip; + int best_xskip; + int64_t newmv_ret_val = INT64_MAX; + int_mv backup_mv[2] = { { 0 } }; + int backup_rate_mv = 0; + inter_mode_info mode_info[MAX_REF_MV_SERCH]; + + int comp_idx; + const int search_jnt_comp = is_comp_pred & cm->seq_params.enable_jnt_comp & + (mbmi->mode != GLOBAL_GLOBALMV); + + // TODO(jingning): This should be deprecated shortly. + const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; + const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); + + for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { + mode_info[ref_mv_idx].mv.as_int = INVALID_MV; + mode_info[ref_mv_idx].rd = INT64_MAX; + + if (cpi->sf.reduce_inter_modes && ref_mv_idx > 0) { + if (mbmi->ref_frame[0] == LAST2_FRAME || + mbmi->ref_frame[0] == LAST3_FRAME || + mbmi->ref_frame[1] == LAST2_FRAME || + mbmi->ref_frame[1] == LAST3_FRAME) { + if (mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx + has_nearmv] + .weight < REF_CAT_LEVEL) { + continue; + } + } + } + + av1_init_rd_stats(rd_stats); + + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + mbmi->comp_group_idx = 0; + mbmi->compound_idx = 1; + if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; + + mode_ctx = + av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); + + mbmi->num_proj_ref = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->ref_mv_idx = ref_mv_idx; + + if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, this_mode))) { + continue; + } + + rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; + const int drl_cost = + get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type); + rd_stats->rate += drl_cost; + mode_info[ref_mv_idx].drl_cost = drl_cost; + + if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && + mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { + continue; + } + + int64_t best_rd2 = INT64_MAX; + + const RD_STATS backup_rd_stats = *rd_stats; + // If !search_jnt_comp, we need to force mbmi->compound_idx = 1. + for (comp_idx = 1; comp_idx >= !search_jnt_comp; --comp_idx) { + int rs = 0; + int compmode_interinter_cost = 0; + mbmi->compound_idx = comp_idx; + if (is_comp_pred && comp_idx == 0) { + *rd_stats = backup_rd_stats; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; + mbmi->num_proj_ref = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->comp_group_idx = 0; + + const int comp_group_idx_ctx = get_comp_group_idx_context(xd); + const int comp_index_ctx = get_comp_index_context(cm, xd); + if (masked_compound_used) { + compmode_interinter_cost += + x->comp_group_idx_cost[comp_group_idx_ctx][0]; + } + compmode_interinter_cost += x->comp_idx_cost[comp_index_ctx][0]; + } + + int_mv cur_mv[2]; + if (!build_cur_mv(cur_mv, this_mode, cm, x)) { + continue; + } + if (have_newmv_in_inter_mode(this_mode)) { + if (comp_idx == 0) { + cur_mv[0] = backup_mv[0]; + cur_mv[1] = backup_mv[1]; + rate_mv = backup_rate_mv; + } + + // when jnt_comp_skip_mv_search flag is on, new mv will be searched once + if (!(search_jnt_comp && cpi->sf.jnt_comp_skip_mv_search && + comp_idx == 0)) { + newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, mi_row, mi_col, + &rate_mv, args); + + // Store cur_mv and rate_mv so that they can be restored in the next + // iteration of the loop + backup_mv[0] = cur_mv[0]; + backup_mv[1] = cur_mv[1]; + backup_rate_mv = rate_mv; + } + + if (newmv_ret_val != 0) { + continue; + } else { + rd_stats->rate += rate_mv; + } + + if (cpi->sf.skip_repeated_newmv) { + if (!is_comp_pred && this_mode == NEWMV && ref_mv_idx > 0) { + int skip = 0; + int this_rate_mv = 0; + for (i = 0; i < ref_mv_idx; ++i) { + // Check if the motion search result same as previous results + if (cur_mv[0].as_int == args->single_newmv[i][refs[0]].as_int) { + // If the compared mode has no valid rd, it is unlikely this + // mode will be the best mode + if (mode_info[i].rd == INT64_MAX) { + skip = 1; + break; + } + // Compare the cost difference including drl cost and mv cost + if (mode_info[i].mv.as_int != INVALID_MV) { + const int compare_cost = + mode_info[i].rate_mv + mode_info[i].drl_cost; + const int_mv ref_mv = av1_get_ref_mv(x, 0); + this_rate_mv = av1_mv_bit_cost(&mode_info[i].mv.as_mv, + &ref_mv.as_mv, x->nmvjointcost, + x->mvcost, MV_COST_WEIGHT); + const int this_cost = this_rate_mv + drl_cost; + + if (compare_cost < this_cost) { + skip = 1; + break; + } else { + // If the cost is less than current best result, make this + // the best and update corresponding variables + if (best_mbmi.ref_mv_idx == i) { + assert(best_rd != INT64_MAX); + best_mbmi.ref_mv_idx = ref_mv_idx; + best_rd_stats.rate += this_cost - compare_cost; + best_rd = RDCOST(x->rdmult, best_rd_stats.rate, + best_rd_stats.dist); + if (best_rd < ref_best_rd) ref_best_rd = best_rd; + + skip = 1; + break; + } + } + } + } + } + if (skip) { + args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = + args->modelled_rd[this_mode][i][refs[0]]; + args->simple_rd[this_mode][ref_mv_idx][refs[0]] = + args->simple_rd[this_mode][i][refs[0]]; + mode_info[ref_mv_idx].rd = mode_info[i].rd; + mode_info[ref_mv_idx].rate_mv = this_rate_mv; + mode_info[ref_mv_idx].mv.as_int = mode_info[i].mv.as_int; + + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + } + } + for (i = 0; i < is_comp_pred + 1; ++i) { + mbmi->mv[i].as_int = cur_mv[i].as_int; + } + const int ref_mv_cost = cost_mv_ref(x, this_mode, mode_ctx); +#if USE_DISCOUNT_NEWMV_TEST + // We don't include the cost of the second reference here, because there + // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in + // other words if you present them in that order, the second one is always + // known if the first is known. + // + // Under some circumstances we discount the cost of new mv mode to + // encourage initiation of a motion field. + if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { + // discount_newmv_test only applies discount on NEWMV mode. + assert(this_mode == NEWMV); + rd_stats->rate += AOMMIN(cost_mv_ref(x, this_mode, mode_ctx), + cost_mv_ref(x, NEARESTMV, mode_ctx)); + } else { + rd_stats->rate += ref_mv_cost; + } +#else + rd_stats->rate += ref_mv_cost; +#endif + + if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && + mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { + continue; + } + + int skip_build_pred = 0; + if (is_comp_pred && comp_idx) { + // Find matching interp filter or set to default interp filter + const int need_search = + av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); + int match_found = -1; + const InterpFilter assign_filter = cm->interp_filter; + if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { + match_found = find_interp_filter_in_stats(x, mbmi); + } + if (!need_search || match_found == -1) { + set_default_interp_filters(mbmi, assign_filter); + } + + int64_t best_rd_compound; + compmode_interinter_cost = compound_type_rd( + cpi, x, bsize, mi_col, mi_row, cur_mv, masked_compound_used, + &orig_dst, &tmp_dst, rd_buffers, &rate_mv, &best_rd_compound, + rd_stats, ref_best_rd); + if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + // No need to call av1_build_inter_predictors_sby if + // COMPOUND_AVERAGE is selected because it is the first + // candidate in compound_type_rd, and the following + // compound types searching uses tmp_dst buffer + if (mbmi->interinter_comp.type == COMPOUND_AVERAGE) { + if (num_planes > 1) + av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, &orig_dst, + bsize); + skip_build_pred = 1; + } + } + + ret_val = interpolation_filter_search( + x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst, + args->single_filter, &rd, &rs, &skip_txfm_sb, &skip_sse_sb, + skip_build_pred, args, ref_best_rd); + if (args->modelled_rd != NULL && !is_comp_pred) { + args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd; + } + if (ret_val != 0) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } else if (cpi->sf.model_based_post_interp_filter_breakout && + ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + if ((rd >> 3) * 2 > ref_best_rd) break; + continue; + } + + if (search_jnt_comp) { + // if 1/2 model rd is larger than best_rd in jnt_comp mode, + // use jnt_comp mode, save additional search + if ((rd >> 3) * 4 > best_rd) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + + if (!is_comp_pred) + args->single_filter[this_mode][refs[0]] = + av1_extract_interp_filter(mbmi->interp_filters, 0); + + if (args->modelled_rd != NULL) { + if (is_comp_pred) { + const int mode0 = compound_ref0_mode(this_mode); + const int mode1 = compound_ref1_mode(this_mode); + const int64_t mrd = + AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], + args->modelled_rd[mode1][ref_mv_idx][refs[1]]); + if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) { + restore_dst_buf(xd, orig_dst, num_planes); + continue; + } + } + } + rd_stats->rate += compmode_interinter_cost; + + if (search_jnt_comp && cpi->sf.jnt_comp_fast_tx_search && comp_idx == 0) { + // TODO(chengchen): this speed feature introduces big loss. + // Need better estimation of rate distortion. + int dummy_rate; + int64_t dummy_dist; + int plane_rate[MAX_MB_PLANE] = { 0 }; + int64_t plane_sse[MAX_MB_PLANE] = { 0 }; + int64_t plane_dist[MAX_MB_PLANE] = { 0 }; + + model_rd_sb_fn[MODELRD_TYPE_JNT_COMPOUND]( + cpi, bsize, x, xd, 0, num_planes - 1, mi_row, mi_col, &dummy_rate, + &dummy_dist, &skip_txfm_sb, &skip_sse_sb, plane_rate, plane_sse, + plane_dist); + + rd_stats->rate += rs; + rd_stats->rate += plane_rate[0] + plane_rate[1] + plane_rate[2]; + rd_stats_y->rate = plane_rate[0]; + rd_stats_uv->rate = plane_rate[1] + plane_rate[2]; + rd_stats->sse = plane_sse[0] + plane_sse[1] + plane_sse[2]; + rd_stats_y->sse = plane_sse[0]; + rd_stats_uv->sse = plane_sse[1] + plane_sse[2]; + rd_stats->dist = plane_dist[0] + plane_dist[1] + plane_dist[2]; + rd_stats_y->dist = plane_dist[0]; + rd_stats_uv->dist = plane_dist[1] + plane_dist[2]; + } else { +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + ret_val = motion_mode_rd( + cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, disable_skip, + mi_row, mi_col, args, ref_best_rd, refs, &rate_mv, &orig_dst, + tile_data, best_est_rd, do_tx_search, inter_modes_info); +#else + ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y, + rd_stats_uv, disable_skip, mi_row, mi_col, + args, ref_best_rd, refs, &rate_mv, &orig_dst); +#endif + } + mode_info[ref_mv_idx].mv.as_int = mbmi->mv[0].as_int; + mode_info[ref_mv_idx].rate_mv = rate_mv; + if (ret_val != INT64_MAX) { + int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + mode_info[ref_mv_idx].rd = tmp_rd; + if (tmp_rd < best_rd) { + best_rd_stats = *rd_stats; + best_rd_stats_y = *rd_stats_y; + best_rd_stats_uv = *rd_stats_uv; + best_rd = tmp_rd; + best_mbmi = *mbmi; + best_disable_skip = *disable_skip; + best_xskip = x->skip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); + } + + if (tmp_rd < best_rd2) { + best_rd2 = tmp_rd; + } + + if (tmp_rd < ref_best_rd) { + ref_best_rd = tmp_rd; + } + } + restore_dst_buf(xd, orig_dst, num_planes); + } + } + + if (best_rd == INT64_MAX) return INT64_MAX; + + // re-instate status of the best choice + *rd_stats = best_rd_stats; + *rd_stats_y = best_rd_stats_y; + *rd_stats_uv = best_rd_stats_uv; + *mbmi = best_mbmi; + *disable_skip = best_disable_skip; + x->skip = best_xskip; + assert(IMPLIES(mbmi->comp_group_idx == 1, + mbmi->interinter_comp.type != COMPOUND_AVERAGE)); + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); + + return RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); +} + +static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + int64_t best_rd) { + const AV1_COMMON *const cm = &cpi->common; + if (!av1_allow_intrabc(cm)) return INT64_MAX; + const int num_planes = av1_num_planes(cm); + + MACROBLOCKD *const xd = &x->e_mbd; + const TileInfo *tile = &xd->tile; + MB_MODE_INFO *mbmi = xd->mi[0]; + const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE); + const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE); + const int w = block_size_wide[bsize]; + const int h = block_size_high[bsize]; + const int sb_row = mi_row >> cm->seq_params.mib_size_log2; + const int sb_col = mi_col >> cm->seq_params.mib_size_log2; + + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + MV_REFERENCE_FRAME ref_frame = INTRA_FRAME; + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + + int_mv nearestmv, nearmv; + av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv, + 0); + + if (nearestmv.as_int == INVALID_MV) { + nearestmv.as_int = 0; + } + if (nearmv.as_int == INVALID_MV) { + nearmv.as_int = 0; + } + + int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; + if (dv_ref.as_int == 0) + av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col); + // Ref DV should not have sub-pel. + assert((dv_ref.as_mv.col & 7) == 0); + assert((dv_ref.as_mv.row & 7) == 0); + mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref; + + struct buf_2d yv12_mb[MAX_MB_PLANE]; + av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL, + num_planes); + for (int i = 0; i < num_planes; ++i) { + xd->plane[i].pre[0] = yv12_mb[i]; + } + + enum IntrabcMotionDirection { + IBC_MOTION_ABOVE, + IBC_MOTION_LEFT, + IBC_MOTION_DIRECTIONS + }; + + MB_MODE_INFO best_mbmi = *mbmi; + RD_STATS best_rdcost = *rd_cost; + int best_skip = x->skip; + + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; + for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; + dir < IBC_MOTION_DIRECTIONS; ++dir) { + const MvLimits tmp_mv_limits = x->mv_limits; + switch (dir) { + case IBC_MOTION_ABOVE: + x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; + x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; + x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; + x->mv_limits.row_max = + (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h; + break; + case IBC_MOTION_LEFT: + x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; + x->mv_limits.col_max = + (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w; + // TODO(aconverse@google.com): Minimize the overlap between above and + // left areas. + x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; + int bottom_coded_mi_edge = + AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end); + x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h; + break; + default: assert(0); + } + assert(x->mv_limits.col_min >= tmp_mv_limits.col_min); + assert(x->mv_limits.col_max <= tmp_mv_limits.col_max); + assert(x->mv_limits.row_min >= tmp_mv_limits.row_min); + assert(x->mv_limits.row_max <= tmp_mv_limits.row_max); + av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv); + + if (x->mv_limits.col_max < x->mv_limits.col_min || + x->mv_limits.row_max < x->mv_limits.row_min) { + x->mv_limits = tmp_mv_limits; + continue; + } + + int step_param = cpi->mv_step_param; + MV mvp_full = dv_ref.as_mv; + mvp_full.col >>= 3; + mvp_full.row >>= 3; + int sadpb = x->sadperbit16; + int cost_list[5]; + int bestsme = av1_full_pixel_search( + cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, + sadpb, cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1, + (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1); + + x->mv_limits = tmp_mv_limits; + if (bestsme == INT_MAX) continue; + mvp_full = x->best_mv.as_mv; + MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 }; + if (mv_check_bounds(&x->mv_limits, &dv)) continue; + if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize, + cm->seq_params.mib_size_log2)) + continue; + + // DV should not have sub-pel. + assert((dv.col & 7) == 0); + assert((dv.row & 7) == 0); + memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->use_intrabc = 1; + mbmi->mode = DC_PRED; + mbmi->uv_mode = UV_DC_PRED; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->mv[0].as_mv = dv; + mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); + mbmi->skip = 0; + x->skip = 0; + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + + int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX], + (int *)&cpi->dv_cost[1][MV_MAX] }; + // TODO(aconverse@google.com): The full motion field defining discount + // in MV_COST_WEIGHT is too large. Explore other values. + int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost, + dvcost, MV_COST_WEIGHT_SUB); + const int rate_mode = x->intrabc_cost[1]; + RD_STATS rd_stats, rd_stats_uv; + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // Intrabc + select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX); + } else { + super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats.skip); + } + if (num_planes > 1) { + super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); + av1_merge_rd_stats(&rd_stats, &rd_stats_uv); + } +#if CONFIG_RD_DEBUG + mbmi->rd_stats = rd_stats; +#endif + + const int skip_ctx = av1_get_skip_context(xd); + + RD_STATS rdc_noskip; + av1_init_rd_stats(&rdc_noskip); + rdc_noskip.rate = + rate_mode + rate_mv + rd_stats.rate + x->skip_cost[skip_ctx][0]; + rdc_noskip.dist = rd_stats.dist; + rdc_noskip.rdcost = RDCOST(x->rdmult, rdc_noskip.rate, rdc_noskip.dist); + if (rdc_noskip.rdcost < best_rd) { + best_rd = rdc_noskip.rdcost; + best_mbmi = *mbmi; + best_skip = x->skip; + best_rdcost = rdc_noskip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + } + + if (!xd->lossless[mbmi->segment_id]) { + x->skip = 1; + mbmi->skip = 1; + RD_STATS rdc_skip; + av1_init_rd_stats(&rdc_skip); + rdc_skip.rate = rate_mode + rate_mv + x->skip_cost[skip_ctx][1]; + rdc_skip.dist = rd_stats.sse; + rdc_skip.rdcost = RDCOST(x->rdmult, rdc_skip.rate, rdc_skip.dist); + if (rdc_skip.rdcost < best_rd) { + best_rd = rdc_skip.rdcost; + best_mbmi = *mbmi; + best_skip = x->skip; + best_rdcost = rdc_skip; + memcpy(best_blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + } + } + } + *mbmi = best_mbmi; + *rd_cost = best_rdcost; + x->skip = best_skip; + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); + return best_rd; +} + +void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; + int y_skip = 0, uv_skip = 0; + int64_t dist_y = 0, dist_uv = 0; + TX_SIZE max_uv_tx_size; + + ctx->skip = 0; + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->use_intrabc = 0; + mbmi->mv[0].as_int = 0; + + const int64_t intra_yrd = + rd_pick_intra_sby_mode(cpi, x, mi_row, mi_col, &rate_y, &rate_y_tokenonly, + &dist_y, &y_skip, bsize, best_rd, ctx); + + if (intra_yrd < best_rd) { + // Only store reconstructed luma when there's chroma RDO. When there's no + // chroma RDO, the reconstructed luma will be stored in encode_superblock(). + xd->cfl.is_chroma_reference = + is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, + cm->seq_params.subsampling_y); + xd->cfl.store_y = store_cfl_required_rdo(cm, x); + if (xd->cfl.store_y) { + // Restore reconstructed luma values. + memcpy(x->blk_skip, ctx->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y, + cpi->optimize_seg_arr[mbmi->segment_id], + mi_row, mi_col); + xd->cfl.store_y = 0; + } + if (num_planes > 1) { + max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); + init_sbuv_mode(mbmi); + if (!x->skip_chroma_rd) + rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, + &uv_skip, bsize, max_uv_tx_size); + } + + if (y_skip && (uv_skip || x->skip_chroma_rd)) { + rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + + x->skip_cost[av1_get_skip_context(xd)][1]; + rd_cost->dist = dist_y + dist_uv; + } else { + rd_cost->rate = + rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0]; + rd_cost->dist = dist_y + dist_uv; + } + rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); + } else { + rd_cost->rate = INT_MAX; + } + + if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd) + best_rd = rd_cost->rdcost; + if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) { + ctx->skip = x->skip; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + assert(rd_cost->rate != INT_MAX); + } + if (rd_cost->rate == INT_MAX) return; + + ctx->mic = *xd->mi[0]; + ctx->mbmi_ext = *x->mbmi_ext; +} + +static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) { + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const BLOCK_SIZE bsize = mbmi->sb_type; + int src_stride = x->plane[1].src.stride; + const uint8_t *const src_u = x->plane[1].src.buf; + const uint8_t *const src_v = x->plane[2].src.buf; + int *const data = x->palette_buffer->kmeans_data_buf; + int centroids[2 * PALETTE_MAX_SIZE]; + uint8_t *const color_map = xd->plane[1].color_index_map; + int r, c; + const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); + const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); + int plane_block_width, plane_block_height, rows, cols; + av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, + &plane_block_height, &rows, &cols); + + for (r = 0; r < rows; ++r) { + for (c = 0; c < cols; ++c) { + if (cpi->common.seq_params.use_highbitdepth) { + data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; + data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; + } else { + data[(r * cols + c) * 2] = src_u[r * src_stride + c]; + data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; + } + } + } + + for (r = 1; r < 3; ++r) { + for (c = 0; c < pmi->palette_size[1]; ++c) { + centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; + } + } + + av1_calc_indices(data, centroids, color_map, rows * cols, + pmi->palette_size[1], 2); + extend_palette_color_map(color_map, cols, rows, plane_block_width, + plane_block_height); +} + +static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, int mi_row, + int mi_col, const uint8_t *above, + int above_stride, const uint8_t *left, + int left_stride); + +static const int ref_frame_flag_list[REF_FRAMES] = { 0, + AOM_LAST_FLAG, + AOM_LAST2_FLAG, + AOM_LAST3_FLAG, + AOM_GOLD_FLAG, + AOM_BWD_FLAG, + AOM_ALT2_FLAG, + AOM_ALT_FLAG }; + +static void rd_pick_skip_mode(RD_STATS *rd_cost, + InterModeSearchState *search_state, + const AV1_COMP *const cpi, MACROBLOCK *const x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + + x->compound_idx = 1; // COMPOUND_AVERAGE + RD_STATS skip_mode_rd_stats; + av1_invalid_rd_stats(&skip_mode_rd_stats); + + if (cm->ref_frame_idx_0 == INVALID_IDX || + cm->ref_frame_idx_1 == INVALID_IDX) { + return; + } + + const MV_REFERENCE_FRAME ref_frame = LAST_FRAME + cm->ref_frame_idx_0; + const MV_REFERENCE_FRAME second_ref_frame = LAST_FRAME + cm->ref_frame_idx_1; + const PREDICTION_MODE this_mode = NEAREST_NEARESTMV; + const int mode_index = + get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame); + + if (mode_index == -1) { + return; + } + + mbmi->mode = this_mode; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = ref_frame; + mbmi->ref_frame[1] = second_ref_frame; + const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); + if (x->mbmi_ext->ref_mv_count[ref_frame_type] == UINT8_MAX) { + if (x->mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX || + x->mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) { + return; + } + MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; + av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + } + + assert(this_mode == NEAREST_NEARESTMV); + if (!build_cur_mv(mbmi->mv, this_mode, cm, x)) { + return; + } + + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); + mbmi->comp_group_idx = 0; + mbmi->compound_idx = x->compound_idx; + mbmi->interinter_comp.type = COMPOUND_AVERAGE; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->ref_mv_idx = 0; + mbmi->skip_mode = mbmi->skip = 1; + + set_default_interp_filters(mbmi, cm->interp_filter); + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + BUFFER_SET orig_dst; + for (int i = 0; i < num_planes; i++) { + orig_dst.plane[i] = xd->plane[i].dst.buf; + orig_dst.stride[i] = xd->plane[i].dst.stride; + } + + // Obtain the rdcost for skip_mode. + skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, mi_row, mi_col, &orig_dst); + + // Compare the use of skip_mode with the best intra/inter mode obtained. + const int skip_mode_ctx = av1_get_skip_mode_context(xd); + const int64_t best_intra_inter_mode_cost = + (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) + ? RDCOST(x->rdmult, + rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0], + rd_cost->dist) + : INT64_MAX; + + if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost) { + assert(mode_index != -1); + search_state->best_mbmode.skip_mode = 1; + search_state->best_mbmode = *mbmi; + + search_state->best_mbmode.skip_mode = search_state->best_mbmode.skip = 1; + search_state->best_mbmode.mode = NEAREST_NEARESTMV; + search_state->best_mbmode.ref_frame[0] = mbmi->ref_frame[0]; + search_state->best_mbmode.ref_frame[1] = mbmi->ref_frame[1]; + search_state->best_mbmode.mv[0].as_int = mbmi->mv[0].as_int; + search_state->best_mbmode.mv[1].as_int = mbmi->mv[1].as_int; + search_state->best_mbmode.ref_mv_idx = 0; + + // Set up tx_size related variables for skip-specific loop filtering. + search_state->best_mbmode.tx_size = + block_signals_txsize(bsize) ? tx_size_from_tx_mode(bsize, cm->tx_mode) + : max_txsize_rect_lookup[bsize]; + memset(search_state->best_mbmode.inter_tx_size, + search_state->best_mbmode.tx_size, + sizeof(search_state->best_mbmode.inter_tx_size)); + set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->n4_w, xd->n4_h, + search_state->best_mbmode.skip && is_inter_block(mbmi), xd); + + // Set up color-related variables for skip mode. + search_state->best_mbmode.uv_mode = UV_DC_PRED; + search_state->best_mbmode.palette_mode_info.palette_size[0] = 0; + search_state->best_mbmode.palette_mode_info.palette_size[1] = 0; + + search_state->best_mbmode.comp_group_idx = 0; + search_state->best_mbmode.compound_idx = x->compound_idx; + search_state->best_mbmode.interinter_comp.type = COMPOUND_AVERAGE; + search_state->best_mbmode.motion_mode = SIMPLE_TRANSLATION; + + search_state->best_mbmode.interintra_mode = + (INTERINTRA_MODE)(II_DC_PRED - 1); + search_state->best_mbmode.filter_intra_mode_info.use_filter_intra = 0; + + set_default_interp_filters(&search_state->best_mbmode, cm->interp_filter); + + search_state->best_mode_index = mode_index; + + // Update rd_cost + rd_cost->rate = skip_mode_rd_stats.rate; + rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist; + rd_cost->rdcost = skip_mode_rd_stats.rdcost; + + search_state->best_rd = rd_cost->rdcost; + search_state->best_skip2 = 1; + search_state->best_mode_skippable = (skip_mode_rd_stats.sse == 0); + + x->skip = 1; + } +} + +// speed feature: fast intra/inter transform type search +// Used for speed >= 2 +// When this speed feature is on, in rd mode search, only DCT is used. +// After the mode is determined, this function is called, to select +// transform types and get accurate rdcost. +static void sf_refine_fast_tx_type_search( + const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int best_mode_index, MB_MODE_INFO *best_mbmode, + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y, + int best_rate_uv, int *best_skip2) { + const AV1_COMMON *const cm = &cpi->common; + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int num_planes = av1_num_planes(cm); + + if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && + ((sf->tx_type_search.fast_inter_tx_type_search == 1 && + is_inter_mode(best_mbmode->mode)) || + (sf->tx_type_search.fast_intra_tx_type_search == 1 && + !is_inter_mode(best_mbmode->mode)))) { + int skip_blk = 0; + RD_STATS rd_stats_y, rd_stats_uv; + + x->use_default_inter_tx_type = 0; + x->use_default_intra_tx_type = 0; + + *mbmi = *best_mbmode; + + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + + // Select prediction reference frames. + for (int i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + if (has_second_ref(mbmi)) + xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + if (is_inter_mode(mbmi->mode)) { + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) + av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + + av1_subtract_plane(x, bsize, 0); + if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { + // av1_rd_pick_inter_mode_sb + select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, + INT64_MAX); + assert(rd_stats_y.rate != INT_MAX); + } else { + super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); + memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); + for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) + set_blk_skip(x, 0, i, rd_stats_y.skip); + } + if (num_planes > 1) { + inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX, INT64_MAX, + FTXS_NONE); + } else { + av1_init_rd_stats(&rd_stats_uv); + } + } else { + super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); + if (num_planes > 1) { + super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); + } else { + av1_init_rd_stats(&rd_stats_uv); + } + } + + if (RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, + (rd_stats_y.dist + rd_stats_uv.dist)) > + RDCOST(x->rdmult, 0, (rd_stats_y.sse + rd_stats_uv.sse))) { + skip_blk = 1; + rd_stats_y.rate = x->skip_cost[av1_get_skip_context(xd)][1]; + rd_stats_uv.rate = 0; + rd_stats_y.dist = rd_stats_y.sse; + rd_stats_uv.dist = rd_stats_uv.sse; + } else { + skip_blk = 0; + rd_stats_y.rate += x->skip_cost[av1_get_skip_context(xd)][0]; + } + + if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) > + RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, + (rd_stats_y.dist + rd_stats_uv.dist))) { + best_mbmode->tx_size = mbmi->tx_size; + av1_copy(best_mbmode->inter_tx_size, mbmi->inter_tx_size); + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + av1_copy(best_mbmode->txk_type, mbmi->txk_type); + rd_cost->rate += + (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv); + rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; + rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); + *best_skip2 = skip_blk; + } + } +} + +// Please add/modify parameter setting in this function, making it consistent +// and easy to read and maintain. +static void set_params_rd_pick_inter_mode( + const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args, + BLOCK_SIZE bsize, int mi_row, int mi_col, uint16_t ref_frame_skip_mask[2], + uint32_t mode_skip_mask[REF_FRAMES], int skip_ref_frame_mask, + unsigned int ref_costs_single[REF_FRAMES], + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES], + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; + const struct segmentation *const seg = &cm->seg; + const SPEED_FEATURES *const sf = &cpi->sf; + unsigned char segment_id = mbmi->segment_id; + int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, + MAX_SB_SIZE >> 1 }; + int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, + MAX_SB_SIZE >> 1 }; + int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + + for (int i = 0; i < MB_MODE_COUNT; ++i) + for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int len = sizeof(uint16_t); + args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf); + args->above_pred_buf[1] = + CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len); + args->above_pred_buf[2] = + CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len); + args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf); + args->left_pred_buf[1] = + CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len); + args->left_pred_buf[2] = + CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len); + } else { + args->above_pred_buf[0] = x->above_pred_buf; + args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1); + args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE; + args->left_pred_buf[0] = x->left_pred_buf; + args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1); + args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE; + } + + av1_collect_neighbors_ref_counts(xd); + + estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, + ref_costs_comp); + + MV_REFERENCE_FRAME ref_frame; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + x->pred_mv_sad[ref_frame] = INT_MAX; + x->mbmi_ext->mode_context[ref_frame] = 0; + x->mbmi_ext->compound_mode_context[ref_frame] = 0; + mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; + if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) { + if (mbmi->partition != PARTITION_NONE && + mbmi->partition != PARTITION_SPLIT) { + if (skip_ref_frame_mask & (1 << ref_frame)) { + int skip = 1; + for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { + if (!(skip_ref_frame_mask & (1 << r))) { + const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; + if (rf[0] == ref_frame || rf[1] == ref_frame) { + skip = 0; + break; + } + } + } + if (skip) continue; + } + } + assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); + setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, + yv12_mb); + } + } + // ref_frame = ALTREF_FRAME + for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { + x->mbmi_ext->mode_context[ref_frame] = 0; + mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; + const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES]; + if (!((cpi->ref_frame_flags & ref_frame_flag_list[rf[0]]) && + (cpi->ref_frame_flags & ref_frame_flag_list[rf[1]]))) { + continue; + } + + if (mbmi->partition != PARTITION_NONE && + mbmi->partition != PARTITION_SPLIT) { + if (skip_ref_frame_mask & (1 << ref_frame)) { + continue; + } + } + av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, + mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row, + mi_col, mbmi_ext->mode_context); + } + + av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); + + if (check_num_overlappable_neighbors(mbmi) && + is_motion_variation_allowed_bsize(bsize)) { + av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, + args->above_pred_buf, dst_width1, + dst_height1, args->above_pred_stride); + av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, + args->left_pred_buf, dst_width2, + dst_height2, args->left_pred_stride); + av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, + mi_col, 0, num_planes); + calc_target_weighted_pred( + cm, x, xd, mi_row, mi_col, args->above_pred_buf[0], + args->above_pred_stride[0], args->left_pred_buf[0], + args->left_pred_stride[0]); + } + + int min_pred_mv_sad = INT_MAX; + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) + min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]); + + for (int i = 0; i < 2; ++i) { + ref_frame_skip_mask[i] = 0; + } + memset(mode_skip_mask, 0, REF_FRAMES * sizeof(*mode_skip_mask)); + for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { + if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame])) { + // Skip checking missing references in both single and compound reference + // modes. Note that a mode will be skipped iff both reference frames + // are masked out. + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } else { + // Skip fixed mv modes for poor references + if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) { + mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; + } + } + // If the segment reference frame feature is enabled.... + // then do nothing if the current ref frame is not allowed.. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { + ref_frame_skip_mask[0] |= (1 << ref_frame); + ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; + } + } + + // Disable this drop out case if the ref frame + // segment level feature is enabled for this segment. This is to + // prevent the possibility that we end up unable to pick any mode. + if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { + // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame, + // unless ARNR filtering is enabled in which case we want + // an unfiltered alternative. We allow near/nearest as well + // because they may result in zero-zero MVs but be cheaper. + if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { + ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << LAST2_FRAME) | + (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | + (1 << ALTREF2_FRAME) | (1 << GOLDEN_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + // TODO(zoeliu): To further explore whether following needs to be done for + // BWDREF_FRAME as well. + mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; + const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME }; + int_mv near_mv, nearest_mv, global_mv; + get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + get_this_mv(&near_mv, NEARMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); + + if (near_mv.as_int != global_mv.as_int) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); + if (nearest_mv.as_int != global_mv.as_int) + mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); + } + } + + if (cpi->rc.is_src_frame_alt_ref) { + if (sf->alt_ref_search_fp) { + assert(cpi->ref_frame_flags & ref_frame_flag_list[ALTREF_FRAME]); + mode_skip_mask[ALTREF_FRAME] = 0; + ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); + ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; + } + } + + if (sf->alt_ref_search_fp) + if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) + if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) + mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; + + if (sf->adaptive_mode_search) { + if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && + cpi->rc.frames_since_golden >= 3) + if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME]) + mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; + } + + if (bsize > sf->max_intra_bsize) { + ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); + ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); + } + + mode_skip_mask[INTRA_FRAME] |= + ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); + + if (cpi->sf.tx_type_search.fast_intra_tx_type_search) + x->use_default_intra_tx_type = 1; + else + x->use_default_intra_tx_type = 0; + + if (cpi->sf.tx_type_search.fast_inter_tx_type_search) + x->use_default_inter_tx_type = 1; + else + x->use_default_inter_tx_type = 0; + if (cpi->sf.skip_repeat_interpolation_filter_search) { + x->interp_filter_stats_idx[0] = 0; + x->interp_filter_stats_idx[1] = 0; + } +} + +static void search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, + int mi_col, RD_STATS *rd_cost, + PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, + MB_MODE_INFO *const mbmi, + PALETTE_MODE_INFO *const pmi, + unsigned int *ref_costs_single, + InterModeSearchState *search_state) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCKD *const xd = &x->e_mbd; + int rate2 = 0; + int64_t distortion2 = 0, best_rd_palette = search_state->best_rd, this_rd, + best_model_rd_palette = INT64_MAX; + int skippable = 0, rate_overhead_palette = 0; + RD_STATS rd_stats_y; + TX_SIZE uv_tx = TX_4X4; + uint8_t *const best_palette_color_map = + x->palette_buffer->best_palette_color_map; + uint8_t *const color_map = xd->plane[0].color_index_map; + MB_MODE_INFO best_mbmi_palette = *mbmi; + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + + mbmi->mode = DC_PRED; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = INTRA_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + rate_overhead_palette = rd_pick_palette_intra_sby( + cpi, x, bsize, mi_row, mi_col, intra_mode_cost[DC_PRED], + &best_mbmi_palette, best_palette_color_map, &best_rd_palette, + &best_model_rd_palette, NULL, NULL, NULL, NULL, ctx, best_blk_skip); + if (pmi->palette_size[0] == 0) return; + + memcpy(x->blk_skip, best_blk_skip, + sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); + + memcpy(color_map, best_palette_color_map, + rows * cols * sizeof(best_palette_color_map[0])); + super_block_yrd(cpi, x, &rd_stats_y, bsize, search_state->best_rd); + if (rd_stats_y.rate == INT_MAX) return; + + skippable = rd_stats_y.skip; + distortion2 = rd_stats_y.dist; + rate2 = rd_stats_y.rate + rate_overhead_palette; + rate2 += ref_costs_single[INTRA_FRAME]; + if (num_planes > 1) { + uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); + if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { + choose_intra_uv_mode( + cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], + &search_state->rate_uv_tokenonly[uv_tx], + &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], + &search_state->mode_uv[uv_tx]); + search_state->pmi_uv[uv_tx] = *pmi; + search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; + } + mbmi->uv_mode = search_state->mode_uv[uv_tx]; + pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; + if (pmi->palette_size[1] > 0) { + memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, + search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, + 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); + } + mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; + skippable = skippable && search_state->skip_uvs[uv_tx]; + distortion2 += search_state->dist_uvs[uv_tx]; + rate2 += search_state->rate_uv_intra[uv_tx]; + } + + if (skippable) { + rate2 -= rd_stats_y.rate; + if (num_planes > 1) rate2 -= search_state->rate_uv_tokenonly[uv_tx]; + rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; + } else { + rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; + } + this_rd = RDCOST(x->rdmult, rate2, distortion2); + if (this_rd < search_state->best_rd) { + search_state->best_mode_index = 3; + mbmi->mv[0].as_int = 0; + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + search_state->best_rd = this_rd; + search_state->best_mbmode = *mbmi; + search_state->best_skip2 = 0; + search_state->best_mode_skippable = skippable; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } +} + +static void init_inter_mode_search_state(InterModeSearchState *search_state, + const AV1_COMP *cpi, + const TileDataEnc *tile_data, + const MACROBLOCK *x, BLOCK_SIZE bsize, + int64_t best_rd_so_far) { + search_state->best_rd = best_rd_so_far; + + av1_zero(search_state->best_mbmode); + + search_state->best_rate_y = INT_MAX; + + search_state->best_rate_uv = INT_MAX; + + search_state->best_mode_skippable = 0; + + search_state->best_skip2 = 0; + + search_state->best_mode_index = -1; + + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const unsigned char segment_id = mbmi->segment_id; + + search_state->skip_intra_modes = 0; + + search_state->num_available_refs = 0; + memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs)); + memset(search_state->dist_order_refs, -1, + sizeof(search_state->dist_order_refs)); + + for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i) + search_state->mode_threshold[i] = 0; + const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; + for (int i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) + search_state->mode_threshold[i] = + ((int64_t)rd_threshes[i] * tile_data->thresh_freq_fact[bsize][i]) >> 5; + + search_state->best_intra_mode = DC_PRED; + search_state->best_intra_rd = INT64_MAX; + + search_state->angle_stats_ready = 0; + + search_state->best_pred_sse = UINT_MAX; + + for (int i = 0; i < TX_SIZES_ALL; i++) + search_state->rate_uv_intra[i] = INT_MAX; + + av1_zero(search_state->pmi_uv); + + for (int i = 0; i < REFERENCE_MODES; ++i) + search_state->best_pred_rd[i] = INT64_MAX; + + av1_zero(search_state->single_newmv); + av1_zero(search_state->single_newmv_rate); + av1_zero(search_state->single_newmv_valid); + for (int i = 0; i < MB_MODE_COUNT; ++i) { + for (int j = 0; j < MAX_REF_MV_SERCH; ++j) { + for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { + search_state->modelled_rd[i][j][ref_frame] = INT64_MAX; + search_state->simple_rd[i][j][ref_frame] = INT64_MAX; + } + } + } + + for (int dir = 0; dir < 2; ++dir) { + for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { + SingleInterModeState *state; + + state = &search_state->single_state[dir][mode][ref_frame]; + state->ref_frame = NONE_FRAME; + state->rd = INT64_MAX; + + state = &search_state->single_state_modelled[dir][mode][ref_frame]; + state->ref_frame = NONE_FRAME; + state->rd = INT64_MAX; + } + } + } + for (int dir = 0; dir < 2; ++dir) { + for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { + search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME; + } + } + } + av1_zero(search_state->single_state_cnt); + av1_zero(search_state->single_state_modelled_cnt); +} + +// Case 1: return 0, means don't skip this mode +// Case 2: return 1, means skip this mode completely +// Case 3: return 2, means skip compound only, but still try single motion modes +static int inter_mode_search_order_independent_skip( + const AV1_COMP *cpi, const PICK_MODE_CONTEXT *ctx, const MACROBLOCK *x, + BLOCK_SIZE bsize, int mode_index, int mi_row, int mi_col, + uint32_t *mode_skip_mask, uint16_t *ref_frame_skip_mask, + InterModeSearchState *search_state) { + const SPEED_FEATURES *const sf = &cpi->sf; + const AV1_COMMON *const cm = &cpi->common; + const struct segmentation *const seg = &cm->seg; + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const unsigned char segment_id = mbmi->segment_id; + const MV_REFERENCE_FRAME *ref_frame = av1_mode_order[mode_index].ref_frame; + const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; + int skip_motion_mode = 0; + if (mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) { + const int ref_type = av1_ref_frame_type(ref_frame); + int skip_ref = ctx->skip_ref_frame_mask & (1 << ref_type); + if (ref_type <= ALTREF_FRAME && skip_ref) { + // Since the compound ref modes depends on the motion estimation result of + // two single ref modes( best mv of single ref modes as the start point ) + // If current single ref mode is marked skip, we need to check if it will + // be used in compound ref modes. + for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { + if (!(ctx->skip_ref_frame_mask & (1 << r))) { + const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; + if (rf[0] == ref_type || rf[1] == ref_type) { + // Found a not skipped compound ref mode which contains current + // single ref. So this single ref can't be skipped completly + // Just skip it's motion mode search, still try it's simple + // transition mode. + skip_motion_mode = 1; + skip_ref = 0; + break; + } + } + } + } + if (skip_ref) return 1; + } + + if (cpi->sf.mode_pruning_based_on_two_pass_partition_search && + !x->cb_partition_scan) { + const int mi_width = mi_size_wide[bsize]; + const int mi_height = mi_size_high[bsize]; + int found = 0; + // Search in the stats table to see if the ref frames have been used in the + // first pass of partition search. + for (int row = mi_row; row < mi_row + mi_width && !found; + row += FIRST_PARTITION_PASS_SAMPLE_REGION) { + for (int col = mi_col; col < mi_col + mi_height && !found; + col += FIRST_PARTITION_PASS_SAMPLE_REGION) { + const int index = av1_first_partition_pass_stats_index(row, col); + const FIRST_PARTITION_PASS_STATS *const stats = + &x->first_partition_pass_stats[index]; + if (stats->ref0_counts[ref_frame[0]] && + (ref_frame[1] < 0 || stats->ref1_counts[ref_frame[1]])) { + found = 1; + break; + } + } + } + if (!found) return 1; + } + + if (ref_frame[0] > INTRA_FRAME && ref_frame[1] == INTRA_FRAME) { + // Mode must by compatible + if (!is_interintra_allowed_mode(this_mode)) return 1; + if (!is_interintra_allowed_bsize(bsize)) return 1; + } + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME) + return 1; + + if (ref_frame[0] == INTRA_FRAME) { + if (this_mode != DC_PRED) { + // Disable intra modes other than DC_PRED for blocks with low variance + // Threshold for intra skipping based on source variance + // TODO(debargha): Specialize the threshold for super block sizes + const unsigned int skip_intra_var_thresh = 64; + if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && + x->source_variance < skip_intra_var_thresh) + return 1; + } + } else { + if (!is_comp_ref_allowed(bsize) && ref_frame[1] > INTRA_FRAME) return 1; + } + + const int comp_pred = ref_frame[1] > INTRA_FRAME; + if (comp_pred) { + if (!cpi->allow_comp_inter_inter) return 1; + + if (cm->reference_mode == SINGLE_REFERENCE) return 1; + + // Skip compound inter modes if ARF is not available. + if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame[1]])) return 1; + + // Do not allow compound prediction if the segment level reference frame + // feature is in use as in this case there can only be one reference. + if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1; + } + + if (sf->selective_ref_frame) { + if (sf->selective_ref_frame >= 2 || x->cb_partition_scan) { + if (ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[ALTREF2_FRAME - LAST_FRAME], + cm->frame_offset) < 0) + return 1; + if (ref_frame[0] == BWDREF_FRAME || ref_frame[1] == BWDREF_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[BWDREF_FRAME - LAST_FRAME], + cm->frame_offset) < 0) + return 1; + } + if (ref_frame[0] == LAST3_FRAME || ref_frame[1] == LAST3_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[LAST3_FRAME - LAST_FRAME], + cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0) + return 1; + if (ref_frame[0] == LAST2_FRAME || ref_frame[1] == LAST2_FRAME) + if (get_relative_dist( + cm, cm->cur_frame->ref_frame_offset[LAST2_FRAME - LAST_FRAME], + cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0) + return 1; + } + + // One-sided compound is used only when all reference frames are one-sided. + if (sf->selective_ref_frame && comp_pred && !cpi->all_one_sided_refs) { + unsigned int ref_offsets[2]; + for (int i = 0; i < 2; ++i) { + const int buf_idx = cm->frame_refs[ref_frame[i] - LAST_FRAME].idx; + assert(buf_idx >= 0); + ref_offsets[i] = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; + } + if ((get_relative_dist(cm, ref_offsets[0], cm->frame_offset) <= 0 && + get_relative_dist(cm, ref_offsets[1], cm->frame_offset) <= 0) || + (get_relative_dist(cm, ref_offsets[0], cm->frame_offset) > 0 && + get_relative_dist(cm, ref_offsets[1], cm->frame_offset) > 0)) + return 1; + } + + if (mode_skip_mask[ref_frame[0]] & (1 << this_mode)) { + return 1; + } + + if ((ref_frame_skip_mask[0] & (1 << ref_frame[0])) && + (ref_frame_skip_mask[1] & (1 << AOMMAX(0, ref_frame[1])))) { + return 1; + } + + if (skip_repeated_mv(cm, x, this_mode, ref_frame, search_state)) { + return 1; + } + if (skip_motion_mode) { + return 2; + } + return 0; +} + +static INLINE void init_mbmi(MB_MODE_INFO *mbmi, int mode_index, + const AV1_COMMON *cm) { + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; + mbmi->ref_mv_idx = 0; + mbmi->mode = this_mode; + mbmi->uv_mode = UV_DC_PRED; + mbmi->ref_frame[0] = av1_mode_order[mode_index].ref_frame[0]; + mbmi->ref_frame[1] = av1_mode_order[mode_index].ref_frame[1]; + pmi->palette_size[0] = 0; + pmi->palette_size[1] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); + set_default_interp_filters(mbmi, cm->interp_filter); +} + +static int64_t handle_intra_mode(InterModeSearchState *search_state, + const AV1_COMP *cpi, MACROBLOCK *x, + BLOCK_SIZE bsize, int mi_row, int mi_col, + int ref_frame_cost, + const PICK_MODE_CONTEXT *ctx, int disable_skip, + RD_STATS *rd_stats, RD_STATS *rd_stats_y, + RD_STATS *rd_stats_uv) { + const AV1_COMMON *cm = &cpi->common; + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + assert(mbmi->ref_frame[0] == INTRA_FRAME); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const int try_palette = + av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); + const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; + const int intra_cost_penalty = av1_get_intra_cost_penalty( + cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth); + const int rows = block_size_high[bsize]; + const int cols = block_size_wide[bsize]; + const int num_planes = av1_num_planes(cm); + const int skip_ctx = av1_get_skip_context(xd); + + int known_rate = intra_mode_cost[mbmi->mode]; + known_rate += ref_frame_cost; + if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) + known_rate += intra_cost_penalty; + known_rate += AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]); + const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); + if (known_rd > search_state->best_rd) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + + TX_SIZE uv_tx; + int is_directional_mode = av1_is_directional_mode(mbmi->mode); + if (is_directional_mode && av1_use_angle_delta(bsize)) { + int rate_dummy; + int64_t model_rd = INT64_MAX; + if (!search_state->angle_stats_ready) { + const int src_stride = x->plane[0].src.stride; + const uint8_t *src = x->plane[0].src.buf; + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + highbd_angle_estimation(src, src_stride, rows, cols, bsize, + search_state->directional_mode_skip_mask); + else + angle_estimation(src, src_stride, rows, cols, bsize, + search_state->directional_mode_skip_mask); + search_state->angle_stats_ready = 1; + } + if (search_state->directional_mode_skip_mask[mbmi->mode]) return INT64_MAX; + av1_init_rd_stats(rd_stats_y); + rd_stats_y->rate = INT_MAX; + rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &rate_dummy, rd_stats_y, + bsize, intra_mode_cost[mbmi->mode], + search_state->best_rd, &model_rd); + } else { + av1_init_rd_stats(rd_stats_y); + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + super_block_yrd(cpi, x, rd_stats_y, bsize, search_state->best_rd); + } + uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); + int try_filter_intra = 0; + int64_t best_rd_tmp = INT64_MAX; + if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { + if (rd_stats_y->rate != INT_MAX) { + const int tmp_rate = rd_stats_y->rate + x->filter_intra_cost[bsize][0] + + intra_mode_cost[mbmi->mode]; + best_rd_tmp = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); + try_filter_intra = !((best_rd_tmp / 2) > search_state->best_rd); + } else { + try_filter_intra = !(search_state->best_mbmode.skip); + } + } + if (try_filter_intra) { + RD_STATS rd_stats_y_fi; + int filter_intra_selected_flag = 0; + TX_SIZE best_tx_size = mbmi->tx_size; + TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; + + mbmi->filter_intra_mode_info.use_filter_intra = 1; + for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; + fi_mode < FILTER_INTRA_MODES; ++fi_mode) { + int64_t this_rd_tmp; + mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; + super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, search_state->best_rd); + if (rd_stats_y_fi.rate == INT_MAX) { + continue; + } + const int this_rate_tmp = + rd_stats_y_fi.rate + + intra_mode_info_cost_y(cpi, x, mbmi, bsize, + intra_mode_cost[mbmi->mode]); + this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); + + if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > search_state->best_rd) { + break; + } + if (this_rd_tmp < best_rd_tmp) { + best_tx_size = mbmi->tx_size; + memcpy(best_txk_type, mbmi->txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(best_blk_skip, x->blk_skip, + sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); + best_fi_mode = fi_mode; + *rd_stats_y = rd_stats_y_fi; + filter_intra_selected_flag = 1; + best_rd_tmp = this_rd_tmp; + } + } + + mbmi->tx_size = best_tx_size; + memcpy(mbmi->txk_type, best_txk_type, + sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); + memcpy(x->blk_skip, best_blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + + if (filter_intra_selected_flag) { + mbmi->filter_intra_mode_info.use_filter_intra = 1; + mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; + } else { + mbmi->filter_intra_mode_info.use_filter_intra = 0; + } + } + if (rd_stats_y->rate == INT_MAX) return INT64_MAX; + const int mode_cost_y = + intra_mode_info_cost_y(cpi, x, mbmi, bsize, intra_mode_cost[mbmi->mode]); + av1_init_rd_stats(rd_stats); + av1_init_rd_stats(rd_stats_uv); + if (num_planes > 1) { + uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); + if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { + int rate_y = + rd_stats_y->skip ? x->skip_cost[skip_ctx][1] : rd_stats_y->rate; + const int64_t rdy = + RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist); + if (search_state->best_rd < (INT64_MAX / 2) && + rdy > (search_state->best_rd + (search_state->best_rd >> 2))) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + choose_intra_uv_mode( + cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], + &search_state->rate_uv_tokenonly[uv_tx], + &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], + &search_state->mode_uv[uv_tx]); + if (try_palette) search_state->pmi_uv[uv_tx] = *pmi; + search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; + + const int uv_rate = search_state->rate_uv_tokenonly[uv_tx]; + const int64_t uv_dist = search_state->dist_uvs[uv_tx]; + const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); + if (uv_rd > search_state->best_rd) { + search_state->skip_intra_modes = 1; + return INT64_MAX; + } + } + + rd_stats_uv->rate = search_state->rate_uv_tokenonly[uv_tx]; + rd_stats_uv->dist = search_state->dist_uvs[uv_tx]; + rd_stats_uv->skip = search_state->skip_uvs[uv_tx]; + rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip; + mbmi->uv_mode = search_state->mode_uv[uv_tx]; + if (try_palette) { + pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; + memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, + search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, + 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); + } + mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; + } + rd_stats->rate = rd_stats_y->rate + mode_cost_y; + if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) { + // super_block_yrd above includes the cost of the tx_size in the + // tokenonly rate, but for intra blocks, tx_size is always coded + // (prediction granularity), so we account for it in the full rate, + // not the tokenonly rate. + rd_stats_y->rate -= tx_size_cost(cm, x, bsize, mbmi->tx_size); + } + if (num_planes > 1 && !x->skip_chroma_rd) { + const int uv_mode_cost = + x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mbmi->uv_mode]; + rd_stats->rate += + rd_stats_uv->rate + + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost); + } + if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) + rd_stats->rate += intra_cost_penalty; + rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist; + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + rd_stats->rate += ref_frame_cost; + if (rd_stats->skip) { + // Back out the coefficient coding costs + rd_stats->rate -= (rd_stats_y->rate + rd_stats_uv->rate); + rd_stats_y->rate = 0; + rd_stats_uv->rate = 0; + // Cost the skip mb case + rd_stats->rate += x->skip_cost[skip_ctx][1]; + } else { + // Add in the cost of the no skip flag. + rd_stats->rate += x->skip_cost[skip_ctx][0]; + } + // Calculate the final RD estimate for this mode. + const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); + // Keep record of best intra rd + if (this_rd < search_state->best_intra_rd) { + search_state->best_intra_rd = this_rd; + search_state->best_intra_mode = mbmi->mode; + } + + if (sf->skip_intra_in_interframe) { + if (search_state->best_rd < (INT64_MAX / 2) && + this_rd > (search_state->best_rd + (search_state->best_rd >> 1))) + search_state->skip_intra_modes = 1; + } + + if (!disable_skip) { + for (int i = 0; i < REFERENCE_MODES; ++i) + search_state->best_pred_rd[i] = + AOMMIN(search_state->best_pred_rd[i], this_rd); + } + return this_rd; +} + +static void collect_single_states(MACROBLOCK *x, + InterModeSearchState *search_state, + const MB_MODE_INFO *const mbmi) { + int i, j; + const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; + const PREDICTION_MODE this_mode = mbmi->mode; + const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1; + const int mode_offset = INTER_OFFSET(this_mode); + const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); + + // Simple rd + int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame]; + for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { + int64_t rd = search_state->simple_rd[this_mode][ref_mv_idx][ref_frame]; + if (rd < simple_rd) simple_rd = rd; + } + + // Insertion sort of single_state + SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 }; + SingleInterModeState *state_s = search_state->single_state[dir][mode_offset]; + i = search_state->single_state_cnt[dir][mode_offset]; + for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j) + state_s[j] = state_s[j - 1]; + state_s[j] = this_state_s; + search_state->single_state_cnt[dir][mode_offset]++; + + // Modelled rd + int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame]; + for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { + int64_t rd = search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame]; + if (rd < modelled_rd) modelled_rd = rd; + } + + // Insertion sort of single_state_modelled + SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 }; + SingleInterModeState *state_m = + search_state->single_state_modelled[dir][mode_offset]; + i = search_state->single_state_modelled_cnt[dir][mode_offset]; + for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j) + state_m[j] = state_m[j - 1]; + state_m[j] = this_state_m; + search_state->single_state_modelled_cnt[dir][mode_offset]++; +} + +static void analyze_single_states(const AV1_COMP *cpi, + InterModeSearchState *search_state) { + int i, j, dir, mode; + if (cpi->sf.prune_comp_search_by_single_result >= 1) { + for (dir = 0; dir < 2; ++dir) { + int64_t best_rd; + SingleInterModeState(*state)[FWD_REFS]; + + // Use the best rd of GLOBALMV or NEWMV to prune the unlikely + // reference frames for all the modes (NEARESTMV and NEARMV may not + // have same motion vectors). Always keep the best of each mode + // because it might form the best possible combination with other mode. + state = search_state->single_state[dir]; + best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, + state[INTER_OFFSET(GLOBALMV)][0].rd); + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) { + if (state[mode][i].rd != INT64_MAX && + (state[mode][i].rd >> 1) > best_rd) { + state[mode][i].valid = 0; + } + } + } + + state = search_state->single_state_modelled[dir]; + best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, + state[INTER_OFFSET(GLOBALMV)][0].rd); + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; + ++i) { + if (state[mode][i].rd != INT64_MAX && + (state[mode][i].rd >> 1) > best_rd) { + state[mode][i].valid = 0; + } + } + } + } + } + + // Ordering by simple rd first, then by modelled rd + for (dir = 0; dir < 2; ++dir) { + for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { + const int state_cnt_s = search_state->single_state_cnt[dir][mode]; + const int state_cnt_m = + search_state->single_state_modelled_cnt[dir][mode]; + SingleInterModeState *state_s = search_state->single_state[dir][mode]; + SingleInterModeState *state_m = + search_state->single_state_modelled[dir][mode]; + int count = 0; + const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m); + for (i = 0; i < state_cnt_s; ++i) { + if (state_s[i].rd == INT64_MAX) break; + if (state_s[i].valid) + search_state->single_rd_order[dir][mode][count++] = + state_s[i].ref_frame; + } + if (count < max_candidates) { + for (i = 0; i < state_cnt_m; ++i) { + if (state_m[i].rd == INT64_MAX) break; + if (state_m[i].valid) { + int ref_frame = state_m[i].ref_frame; + int match = 0; + // Check if existing already + for (j = 0; j < count; ++j) { + if (search_state->single_rd_order[dir][mode][j] == ref_frame) { + match = 1; + break; + } + } + if (!match) { + // Check if this ref_frame is removed in simple rd + int valid = 1; + for (j = 0; j < state_cnt_s; j++) { + if (ref_frame == state_s[j].ref_frame && !state_s[j].valid) { + valid = 0; + break; + } + } + if (valid) + search_state->single_rd_order[dir][mode][count++] = ref_frame; + } + if (count >= max_candidates) break; + } + } + } + } + } +} + +static int compound_skip_get_candidates( + const AV1_COMP *cpi, const InterModeSearchState *search_state, + const int dir, const PREDICTION_MODE mode) { + const int mode_offset = INTER_OFFSET(mode); + const SingleInterModeState *state = + search_state->single_state[dir][mode_offset]; + const SingleInterModeState *state_modelled = + search_state->single_state_modelled[dir][mode_offset]; + int max_candidates = 0; + int candidates; + + for (int i = 0; i < FWD_REFS; ++i) { + if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break; + max_candidates++; + } + + candidates = max_candidates; + if (cpi->sf.prune_comp_search_by_single_result >= 2) { + candidates = AOMMIN(2, max_candidates); + } + if (cpi->sf.prune_comp_search_by_single_result >= 3) { + if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX && + state[0].ref_frame == state_modelled[0].ref_frame) + candidates = 1; + if (mode == NEARMV || mode == GLOBALMV) candidates = 1; + } + return candidates; +} + +static int compound_skip_by_single_states( + const AV1_COMP *cpi, const InterModeSearchState *search_state, + const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame, + const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) { + const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame }; + const int mode[2] = { compound_ref0_mode(this_mode), + compound_ref1_mode(this_mode) }; + const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) }; + const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1, + refs[1] <= GOLDEN_FRAME ? 0 : 1 }; + int ref_searched[2] = { 0, 0 }; + int ref_mv_match[2] = { 1, 1 }; + int i, j; + + for (i = 0; i < 2; ++i) { + const SingleInterModeState *state = + search_state->single_state[mode_dir[i]][mode_offset[i]]; + const int state_cnt = + search_state->single_state_cnt[mode_dir[i]][mode_offset[i]]; + for (j = 0; j < state_cnt; ++j) { + if (state[j].ref_frame == refs[i]) { + ref_searched[i] = 1; + break; + } + } + } + + const int ref_set = get_drl_refmv_count(x, refs, this_mode); + for (i = 0; i < 2; ++i) { + if (mode[i] == NEARESTMV || mode[i] == NEARMV) { + const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME }; + int idential = 1; + for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) { + int_mv single_mv; + int_mv comp_mv; + get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, single_refs, + x->mbmi_ext); + get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, refs, x->mbmi_ext); + + idential &= (single_mv.as_int == comp_mv.as_int); + if (!idential) { + ref_mv_match[i] = 0; + break; + } + } + } + } + + for (i = 0; i < 2; ++i) { + if (ref_searched[i] && ref_mv_match[i]) { + const int candidates = + compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]); + const MV_REFERENCE_FRAME *ref_order = + search_state->single_rd_order[mode_dir[i]][mode_offset[i]]; + int match = 0; + for (j = 0; j < candidates; ++j) { + if (refs[i] == ref_order[j]) { + match = 1; + break; + } + } + if (!match) return 1; + } + } + + return 0; +} + +static INLINE int sf_check_is_drop_ref(const MODE_DEFINITION *mode, + InterModeSearchState *search_state) { + const MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; + const MV_REFERENCE_FRAME second_ref_frame = mode->ref_frame[1]; + if (search_state->num_available_refs > 2) { + if ((ref_frame == search_state->dist_order_refs[0] && + second_ref_frame == search_state->dist_order_refs[1]) || + (ref_frame == search_state->dist_order_refs[1] && + second_ref_frame == search_state->dist_order_refs[0])) + return 1; // drop this pair of refs + } + return 0; +} + +static INLINE void sf_drop_ref_analyze(InterModeSearchState *search_state, + const MODE_DEFINITION *mode, + int64_t distortion2) { + const PREDICTION_MODE this_mode = mode->mode; + MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; + const int idx = ref_frame - LAST_FRAME; + if (idx && distortion2 > search_state->dist_refs[idx]) { + search_state->dist_refs[idx] = distortion2; + search_state->dist_order_refs[idx] = ref_frame; + } + + // Reach the last single ref prediction mode + if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) { + // bubble sort dist_refs and the order index + for (int i = 0; i < REF_FRAMES; ++i) { + for (int k = i + 1; k < REF_FRAMES; ++k) { + if (search_state->dist_refs[i] < search_state->dist_refs[k]) { + int64_t tmp_dist = search_state->dist_refs[i]; + search_state->dist_refs[i] = search_state->dist_refs[k]; + search_state->dist_refs[k] = tmp_dist; + + int tmp_idx = search_state->dist_order_refs[i]; + search_state->dist_order_refs[i] = search_state->dist_order_refs[k]; + search_state->dist_order_refs[k] = tmp_idx; + } + } + } + for (int i = 0; i < REF_FRAMES; ++i) { + if (search_state->dist_refs[i] == -1) break; + search_state->num_available_refs = i; + } + search_state->num_available_refs++; + } +} + +static void alloc_compound_type_rd_buffers(AV1_COMMON *const cm, + CompoundTypeRdBuffers *const bufs) { + CHECK_MEM_ERROR( + cm, bufs->pred0, + (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0))); + CHECK_MEM_ERROR( + cm, bufs->pred1, + (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1))); + CHECK_MEM_ERROR( + cm, bufs->residual1, + (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1))); + CHECK_MEM_ERROR( + cm, bufs->diff10, + (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10))); + CHECK_MEM_ERROR(cm, bufs->tmp_best_mask_buf, + (uint8_t *)aom_malloc(2 * MAX_SB_SQUARE * + sizeof(*bufs->tmp_best_mask_buf))); +} + +static void release_compound_type_rd_buffers( + CompoundTypeRdBuffers *const bufs) { + aom_free(bufs->pred0); + aom_free(bufs->pred1); + aom_free(bufs->residual1); + aom_free(bufs->diff10); + aom_free(bufs->tmp_best_mask_buf); + av1_zero(*bufs); // Set all pointers to NULL for safety. +} + +void av1_rd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, + MACROBLOCK *x, int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { + AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + const SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int try_palette = + av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); + PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + const struct segmentation *const seg = &cm->seg; + PREDICTION_MODE this_mode; + unsigned char segment_id = mbmi->segment_id; + int i; + struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; + unsigned int ref_costs_single[REF_FRAMES]; + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; + int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; + int *mode_map = tile_data->mode_map[bsize]; + uint32_t mode_skip_mask[REF_FRAMES]; + uint16_t ref_frame_skip_mask[2]; + + InterModeSearchState search_state; + init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize, + best_rd_so_far); + INTERINTRA_MODE interintra_modes[REF_FRAMES] = { + INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, + INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES + }; + HandleInterModeArgs args = { + { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, + { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, + NULL, NULL, + NULL, search_state.modelled_rd, + { { 0 } }, INT_MAX, + INT_MAX, search_state.simple_rd, + 0, interintra_modes + }; + for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + + av1_invalid_rd_stats(rd_cost); + + // init params, set frame modes, speed features + set_params_rd_pick_inter_mode( + cpi, x, &args, bsize, mi_row, mi_col, ref_frame_skip_mask, mode_skip_mask, + ctx->skip_ref_frame_mask, ref_costs_single, ref_costs_comp, yv12_mb); + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + int64_t best_est_rd = INT64_MAX; + // TODO(angiebird): Turn this on when this speed feature is well tested +#if 1 + const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; + const int do_tx_search = !md->ready; +#else + const int do_tx_search = 1; +#endif + InterModesInfo *inter_modes_info = &tile_data->inter_modes_info; + inter_modes_info->num = 0; +#endif + + int intra_mode_num = 0; + int intra_mode_idx_ls[MAX_MODES]; + int reach_first_comp_mode = 0; + + // Temporary buffers used by handle_inter_mode(). + // We allocate them once and reuse it in every call to that function. + // Note: Must be allocated on the heap due to large size of the arrays. + uint8_t *tmp_buf_orig; + CHECK_MEM_ERROR( + cm, tmp_buf_orig, + (uint8_t *)aom_memalign(32, 2 * MAX_MB_PLANE * MAX_SB_SQUARE)); + uint8_t *const tmp_buf = get_buf_by_bd(xd, tmp_buf_orig); + + CompoundTypeRdBuffers rd_buffers; + alloc_compound_type_rd_buffers(cm, &rd_buffers); + + for (int midx = 0; midx < MAX_MODES; ++midx) { + int mode_index = mode_map[midx]; + int64_t this_rd = INT64_MAX; + int disable_skip = 0; + int rate2 = 0, rate_y = 0, rate_uv = 0; + int64_t distortion2 = 0; + int skippable = 0; + int this_skip2 = 0; + const MODE_DEFINITION *mode_order = &av1_mode_order[mode_index]; + const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0]; + const MV_REFERENCE_FRAME second_ref_frame = mode_order->ref_frame[1]; + const int comp_pred = second_ref_frame > INTRA_FRAME; + this_mode = mode_order->mode; + + init_mbmi(mbmi, mode_index, cm); + + x->skip = 0; + set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); + + // Reach the first compound prediction mode + if (sf->prune_comp_search_by_single_result > 0 && comp_pred && + reach_first_comp_mode == 0) { + analyze_single_states(cpi, &search_state); + reach_first_comp_mode = 1; + } + const int ret = inter_mode_search_order_independent_skip( + cpi, ctx, x, bsize, mode_index, mi_row, mi_col, mode_skip_mask, + ref_frame_skip_mask, &search_state); + if (ret == 1) continue; + args.skip_motion_mode = (ret == 2); + + if (sf->drop_ref && comp_pred) { + if (sf_check_is_drop_ref(mode_order, &search_state)) { + continue; + } + } + + if (search_state.best_rd < search_state.mode_threshold[mode_index]) + continue; + + if (sf->prune_comp_search_by_single_result > 0 && comp_pred) { + if (compound_skip_by_single_states(cpi, &search_state, this_mode, + ref_frame, second_ref_frame, x)) + continue; + } + + const int ref_frame_cost = comp_pred + ? ref_costs_comp[ref_frame][second_ref_frame] + : ref_costs_single[ref_frame]; + const int compmode_cost = + is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0; + const int real_compmode_cost = + cm->reference_mode == REFERENCE_MODE_SELECT ? compmode_cost : 0; + + if (comp_pred) { + if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && + search_state.best_mode_index >= 0 && + search_state.best_mbmode.ref_frame[0] == INTRA_FRAME) + continue; + } + + if (ref_frame == INTRA_FRAME) { + if (sf->adaptive_mode_search) + if ((x->source_variance << num_pels_log2_lookup[bsize]) > + search_state.best_pred_sse) + continue; + + if (this_mode != DC_PRED) { + // Only search the oblique modes if the best so far is + // one of the neighboring directional modes + if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && + (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { + if (search_state.best_mode_index >= 0 && + search_state.best_mbmode.ref_frame[0] > INTRA_FRAME) + continue; + } + if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { + if (conditional_skipintra(this_mode, search_state.best_intra_mode)) + continue; + } + } + } + + // Select prediction reference frames. + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; + } + + if (ref_frame == INTRA_FRAME) { + intra_mode_idx_ls[intra_mode_num++] = mode_index; + continue; + } else { + mbmi->angle_delta[PLANE_TYPE_Y] = 0; + mbmi->angle_delta[PLANE_TYPE_UV] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->ref_mv_idx = 0; + int64_t ref_best_rd = search_state.best_rd; + { + RD_STATS rd_stats, rd_stats_y, rd_stats_uv; + av1_init_rd_stats(&rd_stats); + rd_stats.rate = rate2; + + // Point to variables that are maintained between loop iterations + args.single_newmv = search_state.single_newmv; + args.single_newmv_rate = search_state.single_newmv_rate; + args.single_newmv_valid = search_state.single_newmv_valid; + args.single_comp_cost = real_compmode_cost; + args.ref_frame_cost = ref_frame_cost; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + this_rd = handle_inter_mode( + cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &disable_skip, + mi_row, mi_col, &args, ref_best_rd, tmp_buf, &rd_buffers, tile_data, + &best_est_rd, do_tx_search, inter_modes_info); +#else + this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y, + &rd_stats_uv, &disable_skip, mi_row, mi_col, + &args, ref_best_rd, tmp_buf, &rd_buffers); +#endif + rate2 = rd_stats.rate; + skippable = rd_stats.skip; + distortion2 = rd_stats.dist; + rate_y = rd_stats_y.rate; + rate_uv = rd_stats_uv.rate; + } + + if (sf->prune_comp_search_by_single_result > 0 && + is_inter_singleref_mode(this_mode)) { + collect_single_states(x, &search_state, mbmi); + } + + if (this_rd == INT64_MAX) continue; + + this_skip2 = mbmi->skip; + this_rd = RDCOST(x->rdmult, rate2, distortion2); + if (this_skip2) { + rate_y = 0; + rate_uv = 0; + } + } + + // Did this mode help.. i.e. is it the new best mode + if (this_rd < search_state.best_rd || x->skip) { + int mode_excluded = 0; + if (comp_pred) { + mode_excluded = cm->reference_mode == SINGLE_REFERENCE; + } + if (!mode_excluded) { + // Note index of best mode so far + search_state.best_mode_index = mode_index; + + if (ref_frame == INTRA_FRAME) { + /* required for left and above block mv */ + mbmi->mv[0].as_int = 0; + } else { + search_state.best_pred_sse = x->pred_sse[ref_frame]; + } + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + search_state.best_rd = this_rd; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = this_skip2; + search_state.best_mode_skippable = skippable; +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (do_tx_search) { + // When do_tx_search == 0, handle_inter_mode won't provide correct + // rate_y and rate_uv because txfm_search process is replaced by + // rd estimation. + // Therfore, we should avoid updating best_rate_y and best_rate_uv + // here. These two values will be updated when txfm_search is called + search_state.best_rate_y = + rate_y + + x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; + search_state.best_rate_uv = rate_uv; + } +#else // CONFIG_COLLECT_INTER_MODE_RD_STATS + search_state.best_rate_y = + rate_y + + x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; + search_state.best_rate_uv = rate_uv; +#endif // CONFIG_COLLECT_INTER_MODE_RD_STATS + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + /* keep record of best compound/single-only prediction */ + if (!disable_skip && ref_frame != INTRA_FRAME) { + int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; + + if (cm->reference_mode == REFERENCE_MODE_SELECT) { + single_rate = rate2 - compmode_cost; + hybrid_rate = rate2; + } else { + single_rate = rate2; + hybrid_rate = rate2 + compmode_cost; + } + + single_rd = RDCOST(x->rdmult, single_rate, distortion2); + hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2); + + if (!comp_pred) { + if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE]) + search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd; + } else { + if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE]) + search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd; + } + if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT]) + search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; + } + if (sf->drop_ref && second_ref_frame == NONE_FRAME) { + // Collect data from single ref mode, and analyze data. + sf_drop_ref_analyze(&search_state, mode_order, distortion2); + } + + if (x->skip && !comp_pred) break; + } + + aom_free(tmp_buf_orig); + tmp_buf_orig = NULL; + release_compound_type_rd_buffers(&rd_buffers); + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS + if (!do_tx_search) { + inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr); + search_state.best_rd = INT64_MAX; + + int64_t top_est_rd = + inter_modes_info->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]; + for (int j = 0; j < inter_modes_info->num; ++j) { + const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx; + *mbmi = inter_modes_info->mbmi_arr[data_idx]; + int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx]; + if (curr_est_rd * 0.9 > top_est_rd) { + continue; + } + const int mode_rate = inter_modes_info->mode_rate_arr[data_idx]; + + x->skip = 0; + set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); + + // Select prediction reference frames. + const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; + if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; + } + + RD_STATS rd_stats; + RD_STATS rd_stats_y; + RD_STATS rd_stats_uv; + + av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); + if (mbmi->motion_mode == OBMC_CAUSAL) + av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); + + if (!txfm_search(cpi, x, bsize, mi_row, mi_col, &rd_stats, &rd_stats_y, + &rd_stats_uv, mode_rate, search_state.best_rd)) { + continue; + } else { + const int skip_ctx = av1_get_skip_context(xd); + inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats.sse, + rd_stats.dist, + rd_stats_y.rate + rd_stats_uv.rate + + x->skip_cost[skip_ctx][mbmi->skip]); + } + rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); + + if (rd_stats.rdcost < search_state.best_rd) { + search_state.best_rd = rd_stats.rdcost; + // Note index of best mode so far + const int mode_index = get_prediction_mode_idx( + mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); + search_state.best_mode_index = mode_index; + *rd_cost = rd_stats; + search_state.best_rd = rd_stats.rdcost; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = mbmi->skip; + search_state.best_mode_skippable = rd_stats.skip; + search_state.best_rate_y = + rd_stats_y.rate + + x->skip_cost[av1_get_skip_context(xd)][rd_stats.skip || mbmi->skip]; + search_state.best_rate_uv = rd_stats_uv.rate; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + } +#endif + + for (int j = 0; j < intra_mode_num; ++j) { + const int mode_index = intra_mode_idx_ls[j]; + const MV_REFERENCE_FRAME ref_frame = + av1_mode_order[mode_index].ref_frame[0]; + assert(av1_mode_order[mode_index].ref_frame[1] == NONE_FRAME); + assert(ref_frame == INTRA_FRAME); + if (sf->skip_intra_in_interframe && search_state.skip_intra_modes) break; + init_mbmi(mbmi, mode_index, cm); + x->skip = 0; + set_ref_ptrs(cm, xd, INTRA_FRAME, NONE_FRAME); + + // Select prediction reference frames. + for (i = 0; i < num_planes; i++) { + xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; + } + + RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv; + + const int ref_frame_cost = ref_costs_single[ref_frame]; + intra_rd_stats.rdcost = handle_intra_mode( + &search_state, cpi, x, bsize, mi_row, mi_col, ref_frame_cost, ctx, 0, + &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv); + if (intra_rd_stats.rdcost < search_state.best_rd) { + search_state.best_rd = intra_rd_stats.rdcost; + // Note index of best mode so far + search_state.best_mode_index = mode_index; + *rd_cost = intra_rd_stats; + search_state.best_rd = intra_rd_stats.rdcost; + search_state.best_mbmode = *mbmi; + search_state.best_skip2 = 0; + search_state.best_mode_skippable = intra_rd_stats.skip; + search_state.best_rate_y = + intra_rd_stats_y.rate + + x->skip_cost[av1_get_skip_context(xd)][intra_rd_stats.skip]; + search_state.best_rate_uv = intra_rd_stats_uv.rate; + memcpy(ctx->blk_skip, x->blk_skip, + sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); + } + } + + // In effect only when speed >= 2. + sf_refine_fast_tx_type_search( + cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, search_state.best_mode_index, + &search_state.best_mbmode, yv12_mb, search_state.best_rate_y, + search_state.best_rate_uv, &search_state.best_skip2); + + // Only try palette mode when the best mode so far is an intra mode. + if (try_palette && !is_inter_mode(search_state.best_mbmode.mode)) { + search_palette_mode(cpi, x, mi_row, mi_col, rd_cost, ctx, bsize, mbmi, pmi, + ref_costs_single, &search_state); + } + + search_state.best_mbmode.skip_mode = 0; + if (cm->skip_mode_flag && + !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && + is_comp_ref_allowed(bsize)) { + rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col, + yv12_mb); + } + + // Make sure that the ref_mv_idx is only nonzero when we're + // using a mode which can support ref_mv_idx + if (search_state.best_mbmode.ref_mv_idx != 0 && + !(search_state.best_mbmode.mode == NEWMV || + search_state.best_mbmode.mode == NEW_NEWMV || + have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) { + search_state.best_mbmode.ref_mv_idx = 0; + } + + if (search_state.best_mode_index < 0 || + search_state.best_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert( + (cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) || + !is_inter_block(&search_state.best_mbmode)); + assert( + (cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) || + !is_inter_block(&search_state.best_mbmode)); + + if (!cpi->rc.is_src_frame_alt_ref) + av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, + sf->adaptive_rd_thresh, bsize, + search_state.best_mode_index); + + // macroblock modes + *mbmi = search_state.best_mbmode; + x->skip |= search_state.best_skip2; + + // Note: this section is needed since the mode may have been forced to + // GLOBALMV by the all-zero mode handling of ref-mv. + if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { + // Correct the interp filters for GLOBALMV + if (is_nontrans_global_motion(xd, xd->mi[0])) { + assert(mbmi->interp_filters == + av1_broadcast_interp_filter( + av1_unswitchable_filter(cm->interp_filter))); + } + } + + for (i = 0; i < REFERENCE_MODES; ++i) { + if (search_state.best_pred_rd[i] == INT64_MAX) + search_state.best_pred_diff[i] = INT_MIN; + else + search_state.best_pred_diff[i] = + search_state.best_rd - search_state.best_pred_rd[i]; + } + + x->skip |= search_state.best_mode_skippable; + + assert(search_state.best_mode_index >= 0); + + store_coding_context(x, ctx, search_state.best_mode_index, + search_state.best_pred_diff, + search_state.best_mode_skippable); + + if (pmi->palette_size[1] > 0) { + assert(try_palette); + restore_uv_color_map(cpi, x); + } +} + +void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, + TileDataEnc *tile_data, MACROBLOCK *x, + int mi_row, int mi_col, + RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, + int64_t best_rd_so_far) { + const AV1_COMMON *const cm = &cpi->common; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + unsigned char segment_id = mbmi->segment_id; + const int comp_pred = 0; + int i; + int64_t best_pred_diff[REFERENCE_MODES]; + unsigned int ref_costs_single[REF_FRAMES]; + unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; + int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; + InterpFilter best_filter = SWITCHABLE; + int64_t this_rd = INT64_MAX; + int rate2 = 0; + const int64_t distortion2 = 0; + (void)mi_row; + (void)mi_col; + + av1_collect_neighbors_ref_counts(xd); + + estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, + ref_costs_comp); + + for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; + for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; + + rd_cost->rate = INT_MAX; + + assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); + + mbmi->palette_mode_info.palette_size[0] = 0; + mbmi->palette_mode_info.palette_size[1] = 0; + mbmi->filter_intra_mode_info.use_filter_intra = 0; + mbmi->mode = GLOBALMV; + mbmi->motion_mode = SIMPLE_TRANSLATION; + mbmi->uv_mode = UV_DC_PRED; + if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) + mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); + else + mbmi->ref_frame[0] = LAST_FRAME; + mbmi->ref_frame[1] = NONE_FRAME; + mbmi->mv[0].as_int = + gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], + cm->allow_high_precision_mv, bsize, mi_col, mi_row, + cm->cur_frame_force_integer_mv) + .as_int; + mbmi->tx_size = max_txsize_lookup[bsize]; + x->skip = 1; + + mbmi->ref_mv_idx = 0; + + mbmi->motion_mode = SIMPLE_TRANSLATION; + av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); + if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { + int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; + mbmi->num_proj_ref = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); + // Select the samples according to motion vector difference + if (mbmi->num_proj_ref > 1) + mbmi->num_proj_ref = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, + mbmi->num_proj_ref, bsize); + } + + set_default_interp_filters(mbmi, cm->interp_filter); + + if (cm->interp_filter != SWITCHABLE) { + best_filter = cm->interp_filter; + } else { + best_filter = EIGHTTAP_REGULAR; + if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) && + x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { + int rs; + int best_rs = INT_MAX; + for (i = 0; i < SWITCHABLE_FILTERS; ++i) { + mbmi->interp_filters = av1_broadcast_interp_filter(i); + rs = av1_get_switchable_rate(cm, x, xd); + if (rs < best_rs) { + best_rs = rs; + best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0); + } + } + } + } + // Set the appropriate filter + mbmi->interp_filters = av1_broadcast_interp_filter(best_filter); + rate2 += av1_get_switchable_rate(cm, x, xd); + + if (cm->reference_mode == REFERENCE_MODE_SELECT) + rate2 += comp_inter_cost[comp_pred]; + + // Estimate the reference frame signaling cost and add it + // to the rolling cost variable. + rate2 += ref_costs_single[LAST_FRAME]; + this_rd = RDCOST(x->rdmult, rate2, distortion2); + + rd_cost->rate = rate2; + rd_cost->dist = distortion2; + rd_cost->rdcost = this_rd; + + if (this_rd >= best_rd_so_far) { + rd_cost->rate = INT_MAX; + rd_cost->rdcost = INT64_MAX; + return; + } + + assert((cm->interp_filter == SWITCHABLE) || + (cm->interp_filter == + av1_extract_interp_filter(mbmi->interp_filters, 0))); + + av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, + cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV); + + av1_zero(best_pred_diff); + + store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0); +} + +struct calc_target_weighted_pred_ctxt { + const MACROBLOCK *x; + const uint8_t *tmp; + int tmp_stride; + int overlap; +}; + +static INLINE void calc_target_weighted_pred_above( + MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MB_MODE_INFO *nb_mi, + void *fun_ctxt, const int num_planes) { + (void)nb_mi; + (void)num_planes; + + struct calc_target_weighted_pred_ctxt *ctxt = + (struct calc_target_weighted_pred_ctxt *)fun_ctxt; + + const int bw = xd->n4_w << MI_SIZE_LOG2; + const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); + + int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE); + int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE); + const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + + if (!is_hbd) { + for (int row = 0; row < ctxt->overlap; ++row) { + const uint8_t m0 = mask1d[row]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { + wsrc[col] = m1 * tmp[col]; + mask[col] = m0; + } + wsrc += bw; + mask += bw; + tmp += ctxt->tmp_stride; + } + } else { + const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); + + for (int row = 0; row < ctxt->overlap; ++row) { + const uint8_t m0 = mask1d[row]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { + wsrc[col] = m1 * tmp16[col]; + mask[col] = m0; + } + wsrc += bw; + mask += bw; + tmp16 += ctxt->tmp_stride; + } + } +} + +static INLINE void calc_target_weighted_pred_left( + MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MB_MODE_INFO *nb_mi, + void *fun_ctxt, const int num_planes) { + (void)nb_mi; + (void)num_planes; + + struct calc_target_weighted_pred_ctxt *ctxt = + (struct calc_target_weighted_pred_ctxt *)fun_ctxt; + + const int bw = xd->n4_w << MI_SIZE_LOG2; + const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); + + int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw); + int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw); + const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + + if (!is_hbd) { + for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { + for (int col = 0; col < ctxt->overlap; ++col) { + const uint8_t m0 = mask1d[col]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + + (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; + mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; + } + wsrc += bw; + mask += bw; + tmp += ctxt->tmp_stride; + } + } else { + const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); + + for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { + for (int col = 0; col < ctxt->overlap; ++col) { + const uint8_t m0 = mask1d[col]; + const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; + wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + + (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1; + mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; + } + wsrc += bw; + mask += bw; + tmp16 += ctxt->tmp_stride; + } + } +} + +// This function has a structure similar to av1_build_obmc_inter_prediction +// +// The OBMC predictor is computed as: +// +// PObmc(x,y) = +// AOM_BLEND_A64(Mh(x), +// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), +// PLeft(x, y)) +// +// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate +// rounding, this can be written as: +// +// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = +// Mh(x) * Mv(y) * P(x,y) + +// Mh(x) * Cv(y) * Pabove(x,y) + +// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) +// +// Where : +// +// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) +// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) +// +// This function computes 'wsrc' and 'mask' as: +// +// wsrc(x, y) = +// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - +// Mh(x) * Cv(y) * Pabove(x,y) + +// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) +// +// mask(x, y) = Mh(x) * Mv(y) +// +// These can then be used to efficiently approximate the error for any +// predictor P in the context of the provided neighbouring predictors by +// computing: +// +// error(x, y) = +// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) +// +static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, + const MACROBLOCKD *xd, int mi_row, + int mi_col, const uint8_t *above, + int above_stride, const uint8_t *left, + int left_stride) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + const int bw = xd->n4_w << MI_SIZE_LOG2; + const int bh = xd->n4_h << MI_SIZE_LOG2; + int32_t *mask_buf = x->mask_buf; + int32_t *wsrc_buf = x->wsrc_buf; + + const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; + const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; + + // plane 0 should not be subsampled + assert(xd->plane[0].subsampling_x == 0); + assert(xd->plane[0].subsampling_y == 0); + + av1_zero_array(wsrc_buf, bw * bh); + for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; + + // handle above row + if (xd->up_available) { + const int overlap = + AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; + struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride, + overlap }; + foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + calc_target_weighted_pred_above, &ctxt); + } + + for (int i = 0; i < bw * bh; ++i) { + wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; + mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; + } + + // handle left column + if (xd->left_available) { + const int overlap = + AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; + struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride, + overlap }; + foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row, + max_neighbor_obmc[mi_size_high_log2[bsize]], + calc_target_weighted_pred_left, &ctxt); + } + + if (!is_hbd) { + const uint8_t *src = x->plane[0].src.buf; + + for (int row = 0; row < bh; ++row) { + for (int col = 0; col < bw; ++col) { + wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; + } + wsrc_buf += bw; + src += x->plane[0].src.stride; + } + } else { + const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); + + for (int row = 0; row < bh; ++row) { + for (int col = 0; col < bw; ++col) { + wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; + } + wsrc_buf += bw; + src += x->plane[0].src.stride; + } + } +} diff --git a/third_party/aom/av1/encoder/rdopt.h b/third_party/aom/av1/encoder/rdopt.h new file mode 100644 index 0000000000..4c11f90b8f --- /dev/null +++ b/third_party/aom/av1/encoder/rdopt.h @@ -0,0 +1,138 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RDOPT_H_ +#define AOM_AV1_ENCODER_RDOPT_H_ + +#include "av1/common/blockd.h" +#include "av1/common/txb_common.h" + +#include "av1/encoder/block.h" +#include "av1/encoder/context_tree.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" + +#ifdef __cplusplus +extern "C" { +#endif + +#define MAX_REF_MV_SERCH 3 +#define DEFAULT_LUMA_INTERP_SKIP_FLAG 1 +#define DEFAULT_CHROMA_INTERP_SKIP_FLAG 2 +#define DEFAULT_INTERP_SKIP_FLAG \ + (DEFAULT_LUMA_INTERP_SKIP_FLAG | DEFAULT_CHROMA_INTERP_SKIP_FLAG) + +struct TileInfo; +struct macroblock; +struct RD_STATS; + +#if CONFIG_RD_DEBUG +static INLINE void av1_update_txb_coeff_cost(RD_STATS *rd_stats, int plane, + TX_SIZE tx_size, int blk_row, + int blk_col, int txb_coeff_cost) { + (void)blk_row; + (void)blk_col; + (void)tx_size; + rd_stats->txb_coeff_cost[plane] += txb_coeff_cost; + + { + const int txb_h = tx_size_high_unit[tx_size]; + const int txb_w = tx_size_wide_unit[tx_size]; + int idx, idy; + for (idy = 0; idy < txb_h; ++idy) + for (idx = 0; idx < txb_w; ++idx) + rd_stats->txb_coeff_cost_map[plane][blk_row + idy][blk_col + idx] = 0; + + rd_stats->txb_coeff_cost_map[plane][blk_row][blk_col] = txb_coeff_cost; + } + assert(blk_row < TXB_COEFF_COST_MAP_SIZE); + assert(blk_col < TXB_COEFF_COST_MAP_SIZE); +} +#endif + +// Returns the number of colors in 'src'. +int av1_count_colors(const uint8_t *src, int stride, int rows, int cols, + int *val_count); +// Same as av1_count_colors(), but for high-bitdepth mode. +int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, + int bit_depth, int *val_count); + +#if CONFIG_DIST_8X8 +int64_t av1_dist_8x8(const struct AV1_COMP *const cpi, const MACROBLOCK *x, + const uint8_t *src, int src_stride, const uint8_t *dst, + int dst_stride, const BLOCK_SIZE tx_bsize, int bsw, + int bsh, int visible_w, int visible_h, int qindex); +#endif + +static INLINE int av1_cost_skip_txb(MACROBLOCK *x, const TXB_CTX *const txb_ctx, + int plane, TX_SIZE tx_size) { + const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); + const PLANE_TYPE plane_type = get_plane_type(plane); + const LV_MAP_COEFF_COST *const coeff_costs = + &x->coeff_costs[txs_ctx][plane_type]; + return coeff_costs->txb_skip_cost[txb_ctx->txb_skip_ctx][1]; +} + +static INLINE int av1_cost_coeffs(const AV1_COMMON *const cm, MACROBLOCK *x, + int plane, int block, TX_SIZE tx_size, + const TX_TYPE tx_type, + const TXB_CTX *const txb_ctx, + int use_fast_coef_costing) { +#if TXCOEFF_COST_TIMER + struct aom_usec_timer timer; + aom_usec_timer_start(&timer); +#endif + (void)use_fast_coef_costing; + const int cost = + av1_cost_coeffs_txb(cm, x, plane, block, tx_size, tx_type, txb_ctx); +#if TXCOEFF_COST_TIMER + AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common; + aom_usec_timer_mark(&timer); + const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); + tmp_cm->txcoeff_cost_timer += elapsed_time; + ++tmp_cm->txcoeff_cost_count; +#endif + return cost; +} + +void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x, + int mi_row, int mi_col, struct RD_STATS *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, + int64_t best_rd); + +unsigned int av1_get_sby_perpixel_variance(const struct AV1_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs); +unsigned int av1_high_get_sby_perpixel_variance(const struct AV1_COMP *cpi, + const struct buf_2d *ref, + BLOCK_SIZE bs, int bd); + +void av1_rd_pick_inter_mode_sb(struct AV1_COMP *cpi, + struct TileDataEnc *tile_data, + struct macroblock *x, int mi_row, int mi_col, + struct RD_STATS *rd_cost, BLOCK_SIZE bsize, + PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far); + +void av1_rd_pick_inter_mode_sb_seg_skip( + const struct AV1_COMP *cpi, struct TileDataEnc *tile_data, + struct macroblock *x, int mi_row, int mi_col, struct RD_STATS *rd_cost, + BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far); + +#if CONFIG_COLLECT_INTER_MODE_RD_STATS +void av1_inter_mode_data_init(struct TileDataEnc *tile_data); +void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult); +#endif + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RDOPT_H_ diff --git a/third_party/aom/av1/encoder/reconinter_enc.c b/third_party/aom/av1/encoder/reconinter_enc.c new file mode 100644 index 0000000000..23d920fc32 --- /dev/null +++ b/third_party/aom/av1/encoder/reconinter_enc.c @@ -0,0 +1,627 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <stdio.h> +#include <limits.h> + +#include "config/aom_config.h" +#include "config/aom_dsp_rtcd.h" +#include "config/aom_scale_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/blend.h" + +#include "av1/common/blockd.h" +#include "av1/common/mvref_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/reconintra.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/obmc.h" +#include "av1/encoder/reconinter_enc.h" + +static INLINE void calc_subpel_params( + MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv, + int plane, const int pre_x, const int pre_y, int x, int y, + struct buf_2d *const pre_buf, uint8_t **pre, SubpelParams *subpel_params, + int bw, int bh) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const int is_scaled = av1_is_scaled(sf); + if (is_scaled) { + int ssx = pd->subsampling_x; + int ssy = pd->subsampling_y; + int orig_pos_y = (pre_y + y) << SUBPEL_BITS; + orig_pos_y += mv.row * (1 << (1 - ssy)); + int orig_pos_x = (pre_x + x) << SUBPEL_BITS; + orig_pos_x += mv.col * (1 << (1 - ssx)); + int pos_y = sf->scale_value_y(orig_pos_y, sf); + int pos_x = sf->scale_value_x(orig_pos_x, sf); + pos_x += SCALE_EXTRA_OFF; + pos_y += SCALE_EXTRA_OFF; + + const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); + const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); + const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) + << SCALE_SUBPEL_BITS; + const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; + pos_y = clamp(pos_y, top, bottom); + pos_x = clamp(pos_x, left, right); + + *pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + + (pos_x >> SCALE_SUBPEL_BITS); + subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; + subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; + subpel_params->xs = sf->x_step_q4; + subpel_params->ys = sf->y_step_q4; + } else { + const MV mv_q4 = clamp_mv_to_umv_border_sb( + xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); + subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; + subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; + subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; + *pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + + (x + (mv_q4.col >> SUBPEL_BITS)); + } +} + +static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, + int plane, const MB_MODE_INFO *mi, + int build_for_obmc, int bw, int bh, + int mi_x, int mi_y) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + int is_compound = has_second_ref(mi); + int ref; + const int is_intrabc = is_intrabc_block(mi); + assert(IMPLIES(is_intrabc, !is_compound)); + int is_global[2] = { 0, 0 }; + for (ref = 0; ref < 1 + is_compound; ++ref) { + const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; + is_global[ref] = is_global_mv_block(mi, wm->wmtype); + } + + const BLOCK_SIZE bsize = mi->sb_type; + const int ss_x = pd->subsampling_x; + const int ss_y = pd->subsampling_y; + int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) || + (block_size_high[bsize] < 8 && ss_y); + + if (is_intrabc) sub8x8_inter = 0; + + // For sub8x8 chroma blocks, we may be covering more than one luma block's + // worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for + // the top-left corner of the prediction source - the correct top-left corner + // is at (pre_x, pre_y). + const int row_start = + (block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0; + const int col_start = + (block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0; + const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x; + const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y; + + sub8x8_inter = sub8x8_inter && !build_for_obmc; + if (sub8x8_inter) { + for (int row = row_start; row <= 0 && sub8x8_inter; ++row) { + for (int col = col_start; col <= 0; ++col) { + const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + if (!is_inter_block(this_mbmi)) sub8x8_inter = 0; + if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0; + } + } + } + + if (sub8x8_inter) { + // block size + const int b4_w = block_size_wide[bsize] >> ss_x; + const int b4_h = block_size_high[bsize] >> ss_y; + const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); + const int b8_w = block_size_wide[plane_bsize] >> ss_x; + const int b8_h = block_size_high[plane_bsize] >> ss_y; + assert(!is_compound); + + const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; + + int row = row_start; + for (int y = 0; y < b8_h; y += b4_h) { + int col = col_start; + for (int x = 0; x < b8_w; x += b4_w) { + MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col]; + is_compound = has_second_ref(this_mbmi); + int tmp_dst_stride = 8; + assert(bw < 8 || bh < 8); + ConvolveParams conv_params = get_conv_params_no_round( + 0, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd); + conv_params.use_jnt_comp_avg = 0; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; + + ref = 0; + const RefBuffer *ref_buf = + &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; + + pd->pre[ref].buf0 = + (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; + pd->pre[ref].buf = + pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y, + ref_buf->buf->uv_stride, + &ref_buf->sf); + pd->pre[ref].width = ref_buf->buf->uv_crop_width; + pd->pre[ref].height = ref_buf->buf->uv_crop_height; + pd->pre[ref].stride = ref_buf->buf->uv_stride; + + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : &ref_buf->sf; + struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; + + const MV mv = this_mbmi->mv[ref].as_mv; + + uint8_t *pre; + SubpelParams subpel_params; + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global[ref]; + warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; + + calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, + &subpel_params, bw, bh); + conv_params.do_average = ref; + if (is_masked_compound_type(mi->interinter_comp.type)) { + // masked compound type has its own average mechanism + conv_params.do_average = 0; + } + + av1_make_inter_predictor( + pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, + b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types, + (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, + plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion); + + ++col; + } + ++row; + } + + for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; + return; + } + + { + ConvolveParams conv_params = get_conv_params_no_round( + 0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); + av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset, + &conv_params.bck_offset, + &conv_params.use_jnt_comp_avg, is_compound); + + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *const dst = dst_buf->buf; + for (ref = 0; ref < 1 + is_compound; ++ref) { + const struct scale_factors *const sf = + is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf; + struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; + const MV mv = mi->mv[ref].as_mv; + + uint8_t *pre; + SubpelParams subpel_params; + calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, &pre, + &subpel_params, bw, bh); + + WarpTypesAllowed warp_types; + warp_types.global_warp_allowed = is_global[ref]; + warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; + + if (ref && is_masked_compound_type(mi->interinter_comp.type)) { + // masked compound type has its own average mechanism + conv_params.do_average = 0; + av1_make_masked_inter_predictor( + pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, + bh, &conv_params, mi->interp_filters, plane, &warp_types, + mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd, + cm->allow_warped_motion); + } else { + conv_params.do_average = ref; + av1_make_inter_predictor( + pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw, + bh, &conv_params, mi->interp_filters, &warp_types, + mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref, + mi, build_for_obmc, xd, cm->allow_warped_motion); + } + } + } +} + +static void build_inter_predictors_for_planes(const AV1_COMMON *cm, + MACROBLOCKD *xd, BLOCK_SIZE bsize, + int mi_row, int mi_col, + int plane_from, int plane_to) { + int plane; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + for (plane = plane_from; plane <= plane_to; ++plane) { + const struct macroblockd_plane *pd = &xd->plane[plane]; + const int bw = pd->width; + const int bh = pd->height; + + if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, + pd->subsampling_y)) + continue; + + build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y); + } +} + +void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize) { + av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, 0); +} + +void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize) { + for (int plane_idx = 1; plane_idx < MAX_MB_PLANE; plane_idx++) { + av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, + plane_idx); + } +} + +void av1_build_inter_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize, int plane_idx) { + build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, plane_idx, + plane_idx); + + if (is_interintra_pred(xd->mi[0])) { + BUFFER_SET default_ctx = { { NULL, NULL, NULL }, { 0, 0, 0 } }; + if (!ctx) { + default_ctx.plane[plane_idx] = xd->plane[plane_idx].dst.buf; + default_ctx.stride[plane_idx] = xd->plane[plane_idx].dst.stride; + ctx = &default_ctx; + } + av1_build_interintra_predictors_sbp(cm, xd, xd->plane[plane_idx].dst.buf, + xd->plane[plane_idx].dst.stride, ctx, + plane_idx, bsize); + } +} + +void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize) { + const int num_planes = av1_num_planes(cm); + av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); + if (num_planes > 1) + av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); +} + +// TODO(sarahparker): +// av1_build_inter_predictor should be combined with +// av1_make_inter_predictor +void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, const MV *src_mv, + const struct scale_factors *sf, int w, int h, + ConvolveParams *conv_params, + InterpFilters interp_filters, + const WarpTypesAllowed *warp_types, int p_col, + int p_row, int plane, int ref, + enum mv_precision precision, int x, int y, + const MACROBLOCKD *xd, int can_use_previous) { + const int is_q4 = precision == MV_PRECISION_Q4; + const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, + is_q4 ? src_mv->col : src_mv->col * 2 }; + MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); + mv.col += SCALE_EXTRA_OFF; + mv.row += SCALE_EXTRA_OFF; + + const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4, + mv.col & SCALE_SUBPEL_MASK, + mv.row & SCALE_SUBPEL_MASK }; + src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + + (mv.col >> SCALE_SUBPEL_BITS); + + av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf, + w, h, conv_params, interp_filters, warp_types, p_col, + p_row, plane, ref, xd->mi[0], 0, xd, + can_use_previous); +} + +static INLINE void build_prediction_by_above_pred( + MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, + MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int above_mi_col = ctxt->mi_col + rel_mi_col; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *above_mbmi; + + av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width, + above_mbmi, ctxt, num_planes); + mi_x = above_mi_col << MI_SIZE_LOG2; + mi_y = ctxt->mi_row << MI_SIZE_LOG2; + + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; + int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, + block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; + build_inter_predictors(ctxt->cm, xd, j, above_mbmi, 1, bw, bh, mi_x, mi_y); + } + *above_mbmi = backup_mbmi; +} + +void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], + int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], + int tmp_stride[MAX_MB_PLANE]) { + if (!xd->up_available) return; + + // Adjust mb_to_bottom_edge to have the correct value for the OBMC + // prediction block. This is half the height of the original block, + // except for 128-wide blocks, where we only use a height of 32. + int this_height = xd->n4_h * MI_SIZE; + int pred_height = AOMMIN(this_height / 2, 32); + xd->mb_to_bottom_edge += (this_height - pred_height) * 8; + + struct build_prediction_ctxt ctxt = { cm, mi_row, + mi_col, tmp_buf, + tmp_width, tmp_height, + tmp_stride, xd->mb_to_right_edge }; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + foreach_overlappable_nb_above(cm, xd, mi_col, + max_neighbor_obmc[mi_size_wide_log2[bsize]], + build_prediction_by_above_pred, &ctxt); + + xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); + xd->mb_to_right_edge = ctxt.mb_to_far_edge; + xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; +} + +static INLINE void build_prediction_by_left_pred( + MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, + MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { + struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; + const int left_mi_row = ctxt->mi_row + rel_mi_row; + int mi_x, mi_y; + MB_MODE_INFO backup_mbmi = *left_mbmi; + + av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height, + left_mbmi, ctxt, num_planes); + mi_x = ctxt->mi_col << MI_SIZE_LOG2; + mi_y = left_mi_row << MI_SIZE_LOG2; + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + + for (int j = 0; j < num_planes; ++j) { + const struct macroblockd_plane *pd = &xd->plane[j]; + int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, + block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); + int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; + + if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; + build_inter_predictors(ctxt->cm, xd, j, left_mbmi, 1, bw, bh, mi_x, mi_y); + } + *left_mbmi = backup_mbmi; +} + +void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], + int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], + int tmp_stride[MAX_MB_PLANE]) { + if (!xd->left_available) return; + + // Adjust mb_to_right_edge to have the correct value for the OBMC + // prediction block. This is half the width of the original block, + // except for 128-wide blocks, where we only use a width of 32. + int this_width = xd->n4_w * MI_SIZE; + int pred_width = AOMMIN(this_width / 2, 32); + xd->mb_to_right_edge += (this_width - pred_width) * 8; + + struct build_prediction_ctxt ctxt = { cm, mi_row, + mi_col, tmp_buf, + tmp_width, tmp_height, + tmp_stride, xd->mb_to_bottom_edge }; + BLOCK_SIZE bsize = xd->mi[0]->sb_type; + foreach_overlappable_nb_left(cm, xd, mi_row, + max_neighbor_obmc[mi_size_high_log2[bsize]], + build_prediction_by_left_pred, &ctxt); + + xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); + xd->mb_to_right_edge -= (this_width - pred_width) * 8; + xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; +} + +void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col) { + const int num_planes = av1_num_planes(cm); + uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; + int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int len = sizeof(uint16_t); + dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]); + dst_buf1[1] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len); + dst_buf1[2] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len); + dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]); + dst_buf2[1] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len); + dst_buf2[2] = + CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len); + } else { + dst_buf1[0] = xd->tmp_obmc_bufs[0]; + dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE; + dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2; + dst_buf2[0] = xd->tmp_obmc_bufs[1]; + dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE; + dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2; + } + av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, + dst_width1, dst_height1, dst_stride1); + av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, + dst_width2, dst_height2, dst_stride2); + av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm), + mi_row, mi_col, 0, num_planes); + av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, + dst_buf2, dst_stride2); +} + +// Builds the inter-predictor for the single ref case +// for use in the encoder to search the wedges efficiently. +static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, + int bw, int bh, int x, int y, + int w, int h, int mi_x, int mi_y, + int ref, uint8_t *const ext_dst, + int ext_dst_stride, + int can_use_previous) { + struct macroblockd_plane *const pd = &xd->plane[plane]; + const MB_MODE_INFO *mi = xd->mi[0]; + + const struct scale_factors *const sf = &xd->block_refs[ref]->sf; + struct buf_2d *const pre_buf = &pd->pre[ref]; + uint8_t *const dst = get_buf_by_bd(xd, ext_dst) + ext_dst_stride * y + x; + const MV mv = mi->mv[ref].as_mv; + + ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); + WarpTypesAllowed warp_types; + const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; + warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype); + warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; + const int pre_x = (mi_x) >> pd->subsampling_x; + const int pre_y = (mi_y) >> pd->subsampling_y; + uint8_t *pre; + SubpelParams subpel_params; + calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre, + &subpel_params, bw, bh); + + av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, + &subpel_params, sf, w, h, &conv_params, + mi->interp_filters, &warp_types, pre_x + x, + pre_y + y, plane, ref, mi, 0, xd, can_use_previous); +} + +void av1_build_inter_predictors_for_planes_single_buf( + MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, + int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3], + int can_use_previous) { + int plane; + const int mi_x = mi_col * MI_SIZE; + const int mi_y = mi_row * MI_SIZE; + for (plane = plane_from; plane <= plane_to; ++plane) { + const BLOCK_SIZE plane_bsize = get_plane_block_size( + bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x, + mi_y, ref, ext_dst[plane], + ext_dst_stride[plane], can_use_previous); + } +} + +static void build_masked_compound( + uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, + const uint8_t *src1, int src1_stride, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, + int w) { + // Derive subsampling from h and w passed in. May be refactored to + // pass in subsampling factors directly. + const int subh = (2 << mi_size_high_log2[sb_type]) == h; + const int subw = (2 << mi_size_wide_log2[sb_type]) == w; + const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); + aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, + mask, block_size_wide[sb_type], w, h, subw, subh); +} + +static void build_masked_compound_highbd( + uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, + const uint8_t *src1_8, int src1_stride, + const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, + int w, int bd) { + // Derive subsampling from h and w passed in. May be refactored to + // pass in subsampling factors directly. + const int subh = (2 << mi_size_high_log2[sb_type]) == h; + const int subw = (2 << mi_size_wide_log2[sb_type]) == w; + const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); + // const uint8_t *mask = + // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); + aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, + src1_stride, mask, block_size_wide[sb_type], w, h, + subw, subh, bd); +} + +static void build_wedge_inter_predictor_from_buf( + MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, + int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { + MB_MODE_INFO *const mbmi = xd->mi[0]; + const int is_compound = has_second_ref(mbmi); + MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; + struct buf_2d *const dst_buf = &pd->dst; + uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; + mbmi->interinter_comp.seg_mask = xd->seg_mask; + const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp; + + if (is_compound && is_masked_compound_type(comp_data->type)) { + if (!plane && comp_data->type == COMPOUND_DIFFWTD) { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + av1_build_compound_diffwtd_mask_highbd( + comp_data->seg_mask, comp_data->mask_type, + CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, + CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd); + else + av1_build_compound_diffwtd_mask( + comp_data->seg_mask, comp_data->mask_type, ext_dst0, + ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w); + } + + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + build_masked_compound_highbd( + dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, + CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, + mbmi->sb_type, h, w, xd->bd); + else + build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, + ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type, + h, w); + } else { + if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) + aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, + dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, + xd->bd); + else + aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, + 0, NULL, 0, w, h); + } +} + +void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, + int plane_from, int plane_to, + uint8_t *ext_dst0[3], + int ext_dst_stride0[3], + uint8_t *ext_dst1[3], + int ext_dst_stride1[3]) { + int plane; + for (plane = plane_from; plane <= plane_to; ++plane) { + const BLOCK_SIZE plane_bsize = get_plane_block_size( + bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); + const int bw = block_size_wide[plane_bsize]; + const int bh = block_size_high[plane_bsize]; + build_wedge_inter_predictor_from_buf( + xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], + ext_dst1[plane], ext_dst_stride1[plane]); + } +} diff --git a/third_party/aom/av1/encoder/reconinter_enc.h b/third_party/aom/av1/encoder/reconinter_enc.h new file mode 100644 index 0000000000..10d5e8c284 --- /dev/null +++ b/third_party/aom/av1/encoder/reconinter_enc.h @@ -0,0 +1,127 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_RECONINTER_ENC_H_ +#define AOM_AV1_ENCODER_RECONINTER_ENC_H_ + +#include "aom/aom_integer.h" +#include "av1/common/filter.h" +#include "av1/common/blockd.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/convolve.h" +#include "av1/common/warped_motion.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize); + +void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize); + +void av1_build_inter_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize, int plane_idx); + +void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, BUFFER_SET *ctx, + BLOCK_SIZE bsize); + +void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, + int dst_stride, const MV *src_mv, + const struct scale_factors *sf, int w, int h, + ConvolveParams *conv_params, + InterpFilters interp_filters, + const WarpTypesAllowed *warp_types, int p_col, + int p_row, int plane, int ref, + enum mv_precision precision, int x, int y, + const MACROBLOCKD *xd, int can_use_previous); + +// Detect if the block have sub-pixel level motion vectors +// per component. +#define CHECK_SUBPEL 0 +static INLINE int has_subpel_mv_component(const MB_MODE_INFO *const mbmi, + const MACROBLOCKD *const xd, + int dir) { +#if CHECK_SUBPEL + const BLOCK_SIZE bsize = mbmi->sb_type; + int plane; + int ref = (dir >> 1); + + if (dir & 0x01) { + if (mbmi->mv[ref].as_mv.col & SUBPEL_MASK) return 1; + } else { + if (mbmi->mv[ref].as_mv.row & SUBPEL_MASK) return 1; + } + + return 0; +#else + (void)mbmi; + (void)xd; + (void)dir; + return 1; +#endif +} + +static INLINE int av1_is_interp_search_needed(const MACROBLOCKD *const xd) { + MB_MODE_INFO *const mi = xd->mi[0]; + const int is_compound = has_second_ref(mi); + int ref; + for (ref = 0; ref < 1 + is_compound; ++ref) { + int row_col; + for (row_col = 0; row_col < 2; ++row_col) { + const int dir = (ref << 1) + row_col; + if (has_subpel_mv_component(mi, xd, dir)) { + return 1; + } + } + } + return 0; +} + +void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], + int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], + int tmp_stride[MAX_MB_PLANE]); + +void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col, + uint8_t *tmp_buf[MAX_MB_PLANE], + int tmp_width[MAX_MB_PLANE], + int tmp_height[MAX_MB_PLANE], + int tmp_stride[MAX_MB_PLANE]); + +void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + int mi_row, int mi_col); + +void av1_build_inter_predictors_for_planes_single_buf( + MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, + int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3], + int can_use_previous); + +void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, + int plane_from, int plane_to, + uint8_t *ext_dst0[3], + int ext_dst_stride0[3], + uint8_t *ext_dst1[3], + int ext_dst_stride1[3]); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_RECONINTER_ENC_H_ diff --git a/third_party/aom/av1/encoder/segmentation.c b/third_party/aom/av1/encoder/segmentation.c new file mode 100644 index 0000000000..2e9102745c --- /dev/null +++ b/third_party/aom/av1/encoder/segmentation.c @@ -0,0 +1,244 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> + +#include "aom_mem/aom_mem.h" + +#include "av1/common/pred_common.h" +#include "av1/common/tile_common.h" + +#include "av1/encoder/cost.h" +#include "av1/encoder/segmentation.h" + +void av1_enable_segmentation(struct segmentation *seg) { + seg->enabled = 1; + seg->update_map = 1; + seg->update_data = 1; + seg->temporal_update = 0; +} + +void av1_disable_segmentation(struct segmentation *seg) { + seg->enabled = 0; + seg->update_map = 0; + seg->update_data = 0; + seg->temporal_update = 0; +} + +void av1_disable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + seg->feature_mask[segment_id] &= ~(1 << feature_id); +} + +void av1_clear_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id) { + seg->feature_data[segment_id][feature_id] = 0; +} + +static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd, + const TileInfo *tile, MB_MODE_INFO **mi, + unsigned *no_pred_segcounts, + unsigned (*temporal_predictor_count)[2], + unsigned *t_unpred_seg_counts, int bw, int bh, + int mi_row, int mi_col) { + int segment_id; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + xd->mi = mi; + segment_id = xd->mi[0]->segment_id; + + set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); + + // Count the number of hits on each segment with no prediction + no_pred_segcounts[segment_id]++; + + // Temporal prediction not allowed on key frames + if (cm->frame_type != KEY_FRAME) { + const BLOCK_SIZE bsize = xd->mi[0]->sb_type; + // Test to see if the segment id matches the predicted value. + const int pred_segment_id = + cm->last_frame_seg_map + ? get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col) + : 0; + const int pred_flag = pred_segment_id == segment_id; + const int pred_context = av1_get_pred_context_seg_id(xd); + + // Store the prediction status for this mb and update counts + // as appropriate + xd->mi[0]->seg_id_predicted = pred_flag; + temporal_predictor_count[pred_context][pred_flag]++; + + // Update the "unpredicted" segment count + if (!pred_flag) t_unpred_seg_counts[segment_id]++; + } +} + +static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, + const TileInfo *tile, MB_MODE_INFO **mi, + unsigned *no_pred_segcounts, + unsigned (*temporal_predictor_count)[2], + unsigned *t_unpred_seg_counts, int mi_row, int mi_col, + BLOCK_SIZE bsize) { + const int mis = cm->mi_stride; + const int bs = mi_size_wide[bsize], hbs = bs / 2; + PARTITION_TYPE partition; + const int qbs = bs / 4; + + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + +#define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff) \ + count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff), \ + no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \ + (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff)); + + if (bsize == BLOCK_8X8) + partition = PARTITION_NONE; + else + partition = get_partition(cm, mi_row, mi_col, bsize); + switch (partition) { + case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break; + case PARTITION_HORZ: + CSEGS(bs, hbs, 0, 0); + CSEGS(bs, hbs, hbs, 0); + break; + case PARTITION_VERT: + CSEGS(hbs, bs, 0, 0); + CSEGS(hbs, bs, 0, hbs); + break; + case PARTITION_HORZ_A: + CSEGS(hbs, hbs, 0, 0); + CSEGS(hbs, hbs, 0, hbs); + CSEGS(bs, hbs, hbs, 0); + break; + case PARTITION_HORZ_B: + CSEGS(bs, hbs, 0, 0); + CSEGS(hbs, hbs, hbs, 0); + CSEGS(hbs, hbs, hbs, hbs); + break; + case PARTITION_VERT_A: + CSEGS(hbs, hbs, 0, 0); + CSEGS(hbs, hbs, hbs, 0); + CSEGS(hbs, bs, 0, hbs); + break; + case PARTITION_VERT_B: + CSEGS(hbs, bs, 0, 0); + CSEGS(hbs, hbs, 0, hbs); + CSEGS(hbs, hbs, hbs, hbs); + break; + case PARTITION_HORZ_4: + CSEGS(bs, qbs, 0, 0); + CSEGS(bs, qbs, qbs, 0); + CSEGS(bs, qbs, 2 * qbs, 0); + if (mi_row + 3 * qbs < cm->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0); + break; + + case PARTITION_VERT_4: + CSEGS(qbs, bs, 0, 0); + CSEGS(qbs, bs, 0, qbs); + CSEGS(qbs, bs, 0, 2 * qbs); + if (mi_col + 3 * qbs < cm->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs); + break; + + case PARTITION_SPLIT: { + const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); + int n; + + for (n = 0; n < 4; n++) { + const int mi_dc = hbs * (n & 1); + const int mi_dr = hbs * (n >> 1); + + count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, + mi_row + mi_dr, mi_col + mi_dc, subsize); + } + } break; + default: assert(0); + } + +#undef CSEGS +} + +void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) { + struct segmentation *seg = &cm->seg; + struct segmentation_probs *segp = &cm->fc->seg; + int no_pred_cost; + int t_pred_cost = INT_MAX; + int tile_col, tile_row, mi_row, mi_col; + unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } }; + unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 }; + unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 }; + (void)xd; + + // First of all generate stats regarding how well the last segment map + // predicts this one + for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { + TileInfo tile_info; + av1_tile_set_row(&tile_info, cm, tile_row); + for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { + MB_MODE_INFO **mi_ptr; + av1_tile_set_col(&tile_info, cm, tile_col); + mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride + + tile_info.mi_col_start; + for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; + mi_row += cm->seq_params.mib_size, + mi_ptr += cm->seq_params.mib_size * cm->mi_stride) { + MB_MODE_INFO **mi = mi_ptr; + for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; + mi_col += cm->seq_params.mib_size, mi += cm->seq_params.mib_size) { + count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts, + temporal_predictor_count, t_unpred_seg_counts, mi_row, + mi_col, cm->seq_params.sb_size); + } + } + } + } + + int seg_id_cost[MAX_SEGMENTS]; + av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL); + no_pred_cost = 0; + for (int i = 0; i < MAX_SEGMENTS; ++i) + no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i]; + + // Frames without past dependency cannot use temporal prediction + if (cm->primary_ref_frame != PRIMARY_REF_NONE) { + int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2]; + for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) + av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL); + t_pred_cost = 0; + // Cost for signaling the prediction flag. + for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) { + for (int j = 0; j < 2; ++j) + t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j]; + } + // Cost for signaling the unpredicted segment id. + for (int i = 0; i < MAX_SEGMENTS; ++i) + t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i]; + } + + // Now choose which coding method to use. + if (t_pred_cost < no_pred_cost) { + assert(!cm->error_resilient_mode); + seg->temporal_update = 1; + } else { + seg->temporal_update = 0; + } +} + +void av1_reset_segment_features(AV1_COMMON *cm) { + struct segmentation *seg = &cm->seg; + + // Set up default state for MB feature flags + seg->enabled = 0; + seg->update_map = 0; + seg->update_data = 0; + av1_clearall_segfeatures(seg); +} diff --git a/third_party/aom/av1/encoder/segmentation.h b/third_party/aom/av1/encoder/segmentation.h new file mode 100644 index 0000000000..1ad13d66a9 --- /dev/null +++ b/third_party/aom/av1/encoder/segmentation.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_SEGMENTATION_H_ +#define AOM_AV1_ENCODER_SEGMENTATION_H_ + +#include "av1/common/blockd.h" +#include "av1/encoder/encoder.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_enable_segmentation(struct segmentation *seg); +void av1_disable_segmentation(struct segmentation *seg); + +void av1_disable_segfeature(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id); +void av1_clear_segdata(struct segmentation *seg, int segment_id, + SEG_LVL_FEATURES feature_id); + +void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd); + +void av1_reset_segment_features(AV1_COMMON *cm); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_SEGMENTATION_H_ diff --git a/third_party/aom/av1/encoder/speed_features.c b/third_party/aom/av1/encoder/speed_features.c new file mode 100644 index 0000000000..4c35baae01 --- /dev/null +++ b/third_party/aom/av1/encoder/speed_features.c @@ -0,0 +1,564 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <limits.h> + +#include "av1/encoder/encoder.h" +#include "av1/encoder/speed_features.h" +#include "av1/encoder/rdopt.h" + +#include "aom_dsp/aom_dsp_common.h" + +// Setting this to 1 will disable trellis optimization completely. +// Setting this to 2 will disable trellis optimization within the +// transform search. Trellis optimization will still be applied +// in the final encode. +#define DISABLE_TRELLISQ_SEARCH 0 + +#define MAX_MESH_SPEED 5 // Max speed setting for mesh motion method +static MESH_PATTERN + good_quality_mesh_patterns[MAX_MESH_SPEED + 1][MAX_MESH_STEP] = { + { { 64, 8 }, { 28, 4 }, { 15, 1 }, { 7, 1 } }, + { { 64, 8 }, { 28, 4 }, { 15, 1 }, { 7, 1 } }, + { { 64, 8 }, { 14, 2 }, { 7, 1 }, { 7, 1 } }, + { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } }, + { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } }, + { { 64, 16 }, { 24, 8 }, { 12, 4 }, { 7, 1 } }, + }; +static unsigned char good_quality_max_mesh_pct[MAX_MESH_SPEED + 1] = { + 50, 50, 25, 15, 5, 1 +}; + +// TODO(huisu@google.com): These settings are pretty relaxed, tune them for +// each speed setting +static MESH_PATTERN intrabc_mesh_patterns[MAX_MESH_SPEED + 1][MAX_MESH_STEP] = { + { { 256, 1 }, { 256, 1 }, { 0, 0 }, { 0, 0 } }, + { { 256, 1 }, { 256, 1 }, { 0, 0 }, { 0, 0 } }, + { { 64, 1 }, { 64, 1 }, { 0, 0 }, { 0, 0 } }, + { { 64, 1 }, { 64, 1 }, { 0, 0 }, { 0, 0 } }, + { { 64, 4 }, { 16, 1 }, { 0, 0 }, { 0, 0 } }, + { { 64, 4 }, { 16, 1 }, { 0, 0 }, { 0, 0 } }, +}; +static uint8_t intrabc_max_mesh_pct[MAX_MESH_SPEED + 1] = { 100, 100, 100, + 25, 25, 10 }; + +// Intra only frames, golden frames (except alt ref overlays) and +// alt ref frames tend to be coded at a higher than ambient quality +static int frame_is_boosted(const AV1_COMP *cpi) { + return frame_is_kf_gf_arf(cpi); +} + +// Sets a partition size down to which the auto partition code will always +// search (can go lower), based on the image dimensions. The logic here +// is that the extent to which ringing artefacts are offensive, depends +// partly on the screen area that over which they propogate. Propogation is +// limited by transform block size but the screen area take up by a given block +// size will be larger for a small image format stretched to full screen. +static BLOCK_SIZE set_partition_min_limit(AV1_COMMON *const cm) { + unsigned int screen_area = (cm->width * cm->height); + + // Select block size based on image format size. + if (screen_area < 1280 * 720) { + // Formats smaller in area than 720P + return BLOCK_4X4; + } else if (screen_area < 1920 * 1080) { + // Format >= 720P and < 1080P + return BLOCK_8X8; + } else { + // Formats 1080P and up + return BLOCK_16X16; + } +} + +// Do we have an internal image edge (e.g. formatting bars). +static int has_internal_image_edge(const AV1_COMP *cpi) { + return (cpi->oxcf.pass == 2) && + ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || + (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); +} + +static void set_good_speed_feature_framesize_dependent(AV1_COMP *cpi, + SPEED_FEATURES *sf, + int speed) { + AV1_COMMON *const cm = &cpi->common; + const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720; + const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480; + + if (is_480p_or_larger) { + sf->use_square_partition_only_threshold = BLOCK_128X128; + } else { + sf->use_square_partition_only_threshold = BLOCK_64X64; + } + + // TODO(huisu@google.com): train models for 720P and above. + if (!is_720p_or_larger) { + sf->ml_partition_search_breakout_thresh[0] = 200; // BLOCK_8X8 + sf->ml_partition_search_breakout_thresh[1] = 250; // BLOCK_16X16 + sf->ml_partition_search_breakout_thresh[2] = 300; // BLOCK_32X32 + sf->ml_partition_search_breakout_thresh[3] = 500; // BLOCK_64X64 + sf->ml_partition_search_breakout_thresh[4] = -1; // BLOCK_128X128 + } + + if (speed >= 1) { + if (is_720p_or_larger) { + sf->use_square_partition_only_threshold = BLOCK_128X128; + } else if (is_480p_or_larger) { + sf->use_square_partition_only_threshold = BLOCK_64X64; + } else { + sf->use_square_partition_only_threshold = BLOCK_32X32; + } + + if (!is_720p_or_larger) { + sf->ml_partition_search_breakout_thresh[0] = 200; // BLOCK_8X8 + sf->ml_partition_search_breakout_thresh[1] = 250; // BLOCK_16X16 + sf->ml_partition_search_breakout_thresh[2] = 300; // BLOCK_32X32 + sf->ml_partition_search_breakout_thresh[3] = 300; // BLOCK_64X64 + sf->ml_partition_search_breakout_thresh[4] = -1; // BLOCK_128X128 + } + } + + if (speed >= 2) { + if (is_720p_or_larger) { + sf->disable_split_mask = + cm->show_frame ? DISABLE_ALL_SPLIT : DISABLE_ALL_INTER_SPLIT; + sf->adaptive_pred_interp_filter = 0; + sf->partition_search_breakout_dist_thr = (1 << 24); + sf->partition_search_breakout_rate_thr = 120; + } else { + sf->disable_split_mask = LAST_AND_INTRA_SPLIT_ONLY; + sf->partition_search_breakout_dist_thr = (1 << 22); + sf->partition_search_breakout_rate_thr = 100; + } + sf->rd_auto_partition_min_limit = set_partition_min_limit(cm); + } + + if (speed >= 3) { + if (is_720p_or_larger) { + sf->disable_split_mask = DISABLE_ALL_SPLIT; + sf->partition_search_breakout_dist_thr = (1 << 25); + sf->partition_search_breakout_rate_thr = 200; + } else { + sf->max_intra_bsize = BLOCK_32X32; + sf->disable_split_mask = DISABLE_ALL_INTER_SPLIT; + sf->partition_search_breakout_dist_thr = (1 << 23); + sf->partition_search_breakout_rate_thr = 120; + } + } + + // If this is a two pass clip that fits the criteria for animated or + // graphics content then reset disable_split_mask for speeds 2+. + // Also if the image edge is internal to the coded area. + if ((speed >= 2) && (cpi->oxcf.pass == 2) && + ((cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) || + (has_internal_image_edge(cpi)))) { + sf->disable_split_mask = DISABLE_COMPOUND_SPLIT; + } + + if (speed >= 4) { + if (is_720p_or_larger) { + sf->partition_search_breakout_dist_thr = (1 << 26); + } else { + sf->partition_search_breakout_dist_thr = (1 << 24); + } + sf->disable_split_mask = DISABLE_ALL_SPLIT; + } +} + +static void set_good_speed_features_framesize_independent(AV1_COMP *cpi, + SPEED_FEATURES *sf, + int speed) { + AV1_COMMON *const cm = &cpi->common; + const int boosted = frame_is_boosted(cpi); + + // Speed 0 for all speed features that give neutral coding performance change. + sf->reduce_inter_modes = 1; + sf->prune_ext_partition_types_search_level = 1; + sf->ml_prune_rect_partition = 1; + sf->ml_prune_ab_partition = 1; + sf->ml_prune_4_partition = 1; + sf->adaptive_txb_search_level = 1; + sf->jnt_comp_skip_mv_search = 1; + sf->model_based_prune_tx_search_level = 1; + sf->model_based_post_interp_filter_breakout = 1; + sf->inter_mode_rd_model_estimation = 1; + sf->prune_ref_frame_for_rect_partitions = + !(boosted || cpi->refresh_bwd_ref_frame || cpi->refresh_alt2_ref_frame); + sf->less_rectangular_check_level = 1; + sf->gm_search_type = GM_REDUCED_REF_SEARCH; + sf->gm_disable_recode = 1; + + if (speed >= 1) { + sf->gm_erroradv_type = GM_ERRORADV_TR_1; + sf->selective_ref_frame = 1; + sf->inter_tx_size_search_init_depth_rect = 1; + sf->inter_tx_size_search_init_depth_sqr = 1; + sf->intra_tx_size_search_init_depth_rect = 1; + sf->intra_tx_size_search_init_depth_sqr = 1; + sf->tx_size_search_lgr_block = 1; + if (speed >= CONFIG_2PASS_PARTITION_SEARCH_LVL) { + sf->two_pass_partition_search = 1; + sf->mode_pruning_based_on_two_pass_partition_search = 1; + } + sf->prune_ext_partition_types_search_level = 2; + sf->use_fast_interpolation_filter_search = 1; + sf->skip_repeat_interpolation_filter_search = 1; + sf->tx_type_search.skip_tx_search = 1; + sf->tx_type_search.ml_tx_split_thresh = 40; + sf->model_based_prune_tx_search_level = 0; + sf->model_based_post_interp_filter_breakout = 0; + // TODO(angiebird): Re-evaluate the impact of inter_mode_rd_model_estimation + // on speed 1 + sf->inter_mode_rd_model_estimation = 0; + sf->adaptive_txb_search_level = 2; + sf->use_intra_txb_hash = 1; + sf->optimize_b_precheck = 1; + sf->dual_sgr_penalty_level = 1; + sf->use_accurate_subpel_search = 1; + sf->reuse_inter_intra_mode = 1; + sf->prune_comp_search_by_single_result = 1; + sf->skip_repeated_newmv = 1; + sf->obmc_full_pixel_search_level = 1; + } + + if (speed >= 2) { + sf->gm_erroradv_type = GM_ERRORADV_TR_2; + + sf->selective_ref_frame = 2; + sf->fast_cdef_search = 1; + + sf->adaptive_rd_thresh = 1; + sf->mv.auto_mv_step_size = 1; + sf->mv.subpel_iters_per_step = 1; + sf->disable_filter_search_var_thresh = 100; + sf->comp_inter_joint_search_thresh = BLOCK_SIZES_ALL; + + sf->partition_search_breakout_rate_thr = 80; + // Note: This speed feature is disable as it seems to be worse in + // compression/quality and is also slower. + // sf->auto_min_max_partition_size = RELAXED_NEIGHBORING_MIN_MAX; + sf->allow_partition_search_skip = 1; + sf->disable_wedge_search_var_thresh = 100; + sf->fast_wedge_sign_estimate = 1; + } + + if (speed >= 3) { + sf->tx_size_search_method = boosted ? USE_FULL_RD : USE_LARGESTALL; + sf->less_rectangular_check_level = 2; + sf->adaptive_pred_interp_filter = 1; + // adaptive_motion_search breaks encoder multi-thread tests. + // The values in x->pred_mv[] differ for single and multi-thread cases. + // See aomedia:1778. + // sf->adaptive_motion_search = 1; + sf->recode_loop = ALLOW_RECODE_KFARFGF; + sf->use_transform_domain_distortion = 1; + sf->use_accurate_subpel_search = 0; + sf->adaptive_rd_thresh = 2; + sf->tx_type_search.prune_mode = PRUNE_2D_FAST; + sf->gm_search_type = GM_DISABLE_SEARCH; + sf->prune_comp_search_by_single_result = 2; + } + + if (speed >= 4) { + sf->tx_type_search.fast_intra_tx_type_search = 1; + sf->tx_type_search.fast_inter_tx_type_search = 1; + sf->use_square_partition_only_threshold = + boosted ? BLOCK_128X128 : BLOCK_4X4; + sf->tx_size_search_method = + frame_is_intra_only(cm) ? USE_FULL_RD : USE_LARGESTALL; + sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED; + sf->adaptive_pred_interp_filter = 0; + sf->adaptive_mode_search = 1; + sf->cb_partition_search = !boosted; + sf->alt_ref_search_fp = 1; + } + + if (speed >= 5) { + sf->recode_loop = ALLOW_RECODE_KFMAXBW; + sf->intra_y_mode_mask[TX_64X64] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_64X64] = UV_INTRA_DC_H_V_CFL; + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_32X32] = UV_INTRA_DC_H_V_CFL; + sf->intra_y_mode_mask[TX_16X16] = INTRA_DC_H_V; + sf->intra_uv_mode_mask[TX_16X16] = UV_INTRA_DC_H_V_CFL; + sf->use_square_partition_only_threshold = BLOCK_4X4; + sf->tx_size_search_method = USE_LARGESTALL; + sf->mv.search_method = BIGDIA; + sf->mv.subpel_search_method = SUBPEL_TREE_PRUNED_MORE; + sf->adaptive_rd_thresh = 4; + sf->mode_search_skip_flags = + (cm->frame_type == KEY_FRAME) + ? 0 + : FLAG_SKIP_INTRA_DIRMISMATCH | FLAG_SKIP_INTRA_BESTINTER | + FLAG_SKIP_COMP_BESTINTRA | FLAG_SKIP_INTRA_LOWVAR | + FLAG_EARLY_TERMINATE; + sf->disable_filter_search_var_thresh = 200; + sf->use_fast_coef_costing = 1; + sf->partition_search_breakout_rate_thr = 300; + sf->use_transform_domain_distortion = 2; + } + + if (speed >= 6) { + int i; + sf->optimize_coefficients = NO_TRELLIS_OPT; + sf->mv.search_method = HEX; + sf->disable_filter_search_var_thresh = 500; + for (i = 0; i < TX_SIZES; ++i) { + sf->intra_y_mode_mask[i] = INTRA_DC; + sf->intra_uv_mode_mask[i] = UV_INTRA_DC_CFL; + } + sf->partition_search_breakout_rate_thr = 500; + sf->mv.reduce_first_step_size = 1; + sf->simple_model_rd_from_var = 1; + } + if (speed >= 7) { + sf->default_max_partition_size = BLOCK_32X32; + sf->default_min_partition_size = BLOCK_8X8; + sf->intra_y_mode_mask[TX_64X64] = INTRA_DC; + sf->intra_y_mode_mask[TX_32X32] = INTRA_DC; + sf->frame_parameter_update = 0; + sf->mv.search_method = FAST_HEX; + sf->partition_search_type = REFERENCE_PARTITION; + sf->mode_search_skip_flags |= FLAG_SKIP_INTRA_DIRMISMATCH; + } + if (speed >= 8) { + sf->mv.search_method = FAST_DIAMOND; + sf->mv.subpel_force_stop = 2; + sf->lpf_pick = LPF_PICK_MINIMAL_LPF; + } +} + +void av1_set_speed_features_framesize_dependent(AV1_COMP *cpi) { + SPEED_FEATURES *const sf = &cpi->sf; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + RD_OPT *const rd = &cpi->rd; + int i; + + if (oxcf->mode == GOOD) { + set_good_speed_feature_framesize_dependent(cpi, sf, oxcf->speed); + } + + if (sf->disable_split_mask == DISABLE_ALL_SPLIT) { + sf->adaptive_pred_interp_filter = 0; + } + + // Check for masked out split cases. + for (i = 0; i < MAX_REFS; ++i) { + if (sf->disable_split_mask & (1 << i)) { + rd->thresh_mult_sub8x8[i] = INT_MAX; + } + } + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test == 1) + cpi->find_fractional_mv_step = av1_return_max_sub_pixel_mv; + else if (cpi->oxcf.motion_vector_unit_test == 2) + cpi->find_fractional_mv_step = av1_return_min_sub_pixel_mv; +} + +void av1_set_speed_features_framesize_independent(AV1_COMP *cpi) { + AV1_COMMON *const cm = &cpi->common; + SPEED_FEATURES *const sf = &cpi->sf; + MACROBLOCK *const x = &cpi->td.mb; + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + int i; + + // best quality defaults + sf->frame_parameter_update = 1; + sf->mv.search_method = NSTEP; + sf->recode_loop = ALLOW_RECODE; + sf->mv.subpel_search_method = SUBPEL_TREE; + sf->mv.subpel_iters_per_step = 2; + sf->mv.subpel_force_stop = 0; +#if DISABLE_TRELLISQ_SEARCH == 2 + sf->optimize_coefficients = !is_lossless_requested(&cpi->oxcf) + ? FINAL_PASS_TRELLIS_OPT + : NO_TRELLIS_OPT; +#elif DISABLE_TRELLISQ_SEARCH == 1 + sf->optimize_coefficients = NO_TRELLIS_OPT; +#else + if (is_lossless_requested(&cpi->oxcf)) + sf->optimize_coefficients = NO_TRELLIS_OPT; + else + sf->optimize_coefficients = FULL_TRELLIS_OPT; +#endif // DISABLE_TRELLISQ_SEARCH + sf->gm_erroradv_type = GM_ERRORADV_TR_0; + sf->mv.reduce_first_step_size = 0; + sf->mv.auto_mv_step_size = 0; + sf->comp_inter_joint_search_thresh = BLOCK_4X4; + sf->adaptive_rd_thresh = 0; + sf->tx_size_search_method = USE_FULL_RD; + sf->inter_tx_size_search_init_depth_sqr = 0; + sf->inter_tx_size_search_init_depth_rect = 0; + sf->intra_tx_size_search_init_depth_rect = 0; + sf->intra_tx_size_search_init_depth_sqr = 0; + sf->tx_size_search_lgr_block = 0; + sf->model_based_prune_tx_search_level = 0; + sf->model_based_post_interp_filter_breakout = 0; + sf->reduce_inter_modes = 0; + sf->selective_ref_gm = 1; + sf->adaptive_motion_search = 0; + sf->adaptive_pred_interp_filter = 0; + sf->adaptive_mode_search = 0; + sf->cb_partition_search = 0; + sf->alt_ref_search_fp = 0; + sf->partition_search_type = SEARCH_PARTITION; + sf->tx_type_search.prune_mode = PRUNE_2D_ACCURATE; + sf->tx_type_search.ml_tx_split_thresh = 30; + sf->tx_type_search.use_skip_flag_prediction = 1; + sf->tx_type_search.fast_intra_tx_type_search = 0; + sf->tx_type_search.fast_inter_tx_type_search = 0; + sf->tx_type_search.skip_tx_search = 0; + sf->selective_ref_frame = 0; + sf->less_rectangular_check_level = 0; + sf->use_square_partition_only_threshold = BLOCK_128X128; + sf->prune_ref_frame_for_rect_partitions = 0; + sf->auto_min_max_partition_size = NOT_IN_USE; + sf->rd_auto_partition_min_limit = BLOCK_4X4; + sf->default_max_partition_size = BLOCK_LARGEST; + sf->default_min_partition_size = BLOCK_4X4; + sf->adjust_partitioning_from_last_frame = 0; + sf->disable_split_mask = 0; + sf->mode_search_skip_flags = 0; + sf->disable_filter_search_var_thresh = 0; + sf->allow_partition_search_skip = 0; + sf->use_accurate_subpel_search = 2; + sf->disable_wedge_search_var_thresh = 0; + sf->fast_wedge_sign_estimate = 0; + sf->drop_ref = 0; + sf->skip_intra_in_interframe = 1; + sf->txb_split_cap = 1; + sf->adaptive_txb_search_level = 0; + sf->two_pass_partition_search = 0; + sf->mode_pruning_based_on_two_pass_partition_search = 0; + sf->use_intra_txb_hash = 0; + sf->use_inter_txb_hash = 1; + sf->use_mb_rd_hash = 1; + sf->optimize_b_precheck = 0; + sf->jnt_comp_fast_tx_search = 0; + sf->jnt_comp_skip_mv_search = 0; + sf->reuse_inter_intra_mode = 0; + + for (i = 0; i < TX_SIZES; i++) { + sf->intra_y_mode_mask[i] = INTRA_ALL; + sf->intra_uv_mode_mask[i] = UV_INTRA_ALL; + } + sf->lpf_pick = LPF_PICK_FROM_FULL_IMAGE; + sf->use_fast_coef_costing = 0; + sf->max_intra_bsize = BLOCK_LARGEST; + // This setting only takes effect when partition_search_type is set + // to FIXED_PARTITION. + sf->always_this_block_size = BLOCK_16X16; + // Recode loop tolerance %. + sf->recode_tolerance = 25; + sf->partition_search_breakout_dist_thr = 0; + sf->partition_search_breakout_rate_thr = 0; + sf->simple_model_rd_from_var = 0; + sf->prune_ext_partition_types_search_level = 0; + sf->ml_prune_rect_partition = 0; + sf->ml_prune_ab_partition = 0; + sf->ml_prune_4_partition = 0; + sf->fast_cdef_search = 0; + for (i = 0; i < PARTITION_BLOCK_SIZES; ++i) + sf->ml_partition_search_breakout_thresh[i] = -1; // -1 means not enabled. + + // Set this at the appropriate speed levels + sf->use_transform_domain_distortion = 0; + sf->gm_search_type = GM_FULL_SEARCH; + sf->gm_disable_recode = 0; + sf->use_fast_interpolation_filter_search = 0; + sf->skip_repeat_interpolation_filter_search = 0; + sf->use_hash_based_trellis = 0; + sf->prune_comp_search_by_single_result = 0; + sf->skip_repeated_newmv = 0; + + // Set decoder side speed feature to use less dual sgr modes + sf->dual_sgr_penalty_level = 0; + + sf->inter_mode_rd_model_estimation = 0; + sf->obmc_full_pixel_search_level = 0; + + if (oxcf->mode == GOOD) + set_good_speed_features_framesize_independent(cpi, sf, oxcf->speed); + + // sf->partition_search_breakout_dist_thr is set assuming max 64x64 + // blocks. Normalise this if the blocks are bigger. + if (MAX_SB_SIZE_LOG2 > 6) { + sf->partition_search_breakout_dist_thr <<= 2 * (MAX_SB_SIZE_LOG2 - 6); + } + + cpi->diamond_search_sad = av1_diamond_search_sad; + + sf->allow_exhaustive_searches = 1; + int speed = (oxcf->speed > MAX_MESH_SPEED) ? MAX_MESH_SPEED : oxcf->speed; + if (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION) + sf->exhaustive_searches_thresh = (1 << 24); + else + sf->exhaustive_searches_thresh = (1 << 25); + sf->max_exaustive_pct = good_quality_max_mesh_pct[speed]; + if (speed > 0) + sf->exhaustive_searches_thresh = sf->exhaustive_searches_thresh << 1; + + for (i = 0; i < MAX_MESH_STEP; ++i) { + sf->mesh_patterns[i].range = good_quality_mesh_patterns[speed][i].range; + sf->mesh_patterns[i].interval = + good_quality_mesh_patterns[speed][i].interval; + } + if ((frame_is_intra_only(cm) && cm->allow_screen_content_tools) && + (cpi->twopass.fr_content_type == FC_GRAPHICS_ANIMATION || + cpi->oxcf.content == AOM_CONTENT_SCREEN)) { + for (i = 0; i < MAX_MESH_STEP; ++i) { + sf->mesh_patterns[i].range = intrabc_mesh_patterns[speed][i].range; + sf->mesh_patterns[i].interval = intrabc_mesh_patterns[speed][i].interval; + } + sf->max_exaustive_pct = intrabc_max_mesh_pct[speed]; + } + + // Slow quant, dct and trellis not worthwhile for first pass + // so make sure they are always turned off. + if (oxcf->pass == 1) sf->optimize_coefficients = NO_TRELLIS_OPT; + + // No recode for 1 pass. + if (oxcf->pass == 0) { + sf->recode_loop = DISALLOW_RECODE; + sf->optimize_coefficients = NO_TRELLIS_OPT; + } + + if (sf->mv.subpel_search_method == SUBPEL_TREE) { + cpi->find_fractional_mv_step = av1_find_best_sub_pixel_tree; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED) { + cpi->find_fractional_mv_step = av1_find_best_sub_pixel_tree_pruned; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_MORE) { + cpi->find_fractional_mv_step = av1_find_best_sub_pixel_tree_pruned_more; + } else if (sf->mv.subpel_search_method == SUBPEL_TREE_PRUNED_EVENMORE) { + cpi->find_fractional_mv_step = av1_find_best_sub_pixel_tree_pruned_evenmore; + } + + cpi->optimize_speed_feature = + oxcf->pass != 1 ? sf->optimize_coefficients : NO_TRELLIS_OPT; + // FIXME: trellis not very efficient for quantisation matrices + if (cm->using_qmatrix) cpi->optimize_speed_feature = NO_TRELLIS_OPT; + if (oxcf->disable_trellis_quant) cpi->optimize_speed_feature = NO_TRELLIS_OPT; + + x->min_partition_size = sf->default_min_partition_size; + x->max_partition_size = sf->default_max_partition_size; + + // This is only used in motion vector unit test. + if (cpi->oxcf.motion_vector_unit_test == 1) + cpi->find_fractional_mv_step = av1_return_max_sub_pixel_mv; + else if (cpi->oxcf.motion_vector_unit_test == 2) + cpi->find_fractional_mv_step = av1_return_min_sub_pixel_mv; + +#if CONFIG_DIST_8X8 + if (sf->use_transform_domain_distortion > 0) cpi->oxcf.using_dist_8x8 = 0; + + if (cpi->oxcf.using_dist_8x8) x->min_partition_size = BLOCK_8X8; +#endif // CONFIG_DIST_8X8 +} diff --git a/third_party/aom/av1/encoder/speed_features.h b/third_party/aom/av1/encoder/speed_features.h new file mode 100644 index 0000000000..41013b2e79 --- /dev/null +++ b/third_party/aom/av1/encoder/speed_features.h @@ -0,0 +1,568 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_SPEED_FEATURES_H_ +#define AOM_AV1_ENCODER_SPEED_FEATURES_H_ + +#include "av1/common/enums.h" + +#ifdef __cplusplus +extern "C" { +#endif + +enum { + INTRA_ALL = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED) | (1 << D45_PRED) | + (1 << D135_PRED) | (1 << D113_PRED) | (1 << D157_PRED) | + (1 << D203_PRED) | (1 << D67_PRED) | (1 << SMOOTH_PRED) | + (1 << SMOOTH_V_PRED) | (1 << SMOOTH_H_PRED) | (1 << PAETH_PRED), + UV_INTRA_ALL = + (1 << UV_DC_PRED) | (1 << UV_V_PRED) | (1 << UV_H_PRED) | + (1 << UV_D45_PRED) | (1 << UV_D135_PRED) | (1 << UV_D113_PRED) | + (1 << UV_D157_PRED) | (1 << UV_D203_PRED) | (1 << UV_D67_PRED) | + (1 << UV_SMOOTH_PRED) | (1 << UV_SMOOTH_V_PRED) | + (1 << UV_SMOOTH_H_PRED) | (1 << UV_PAETH_PRED) | (1 << UV_CFL_PRED), + UV_INTRA_DC = (1 << UV_DC_PRED), + UV_INTRA_DC_CFL = (1 << UV_DC_PRED) | (1 << UV_CFL_PRED), + UV_INTRA_DC_TM = (1 << UV_DC_PRED) | (1 << UV_PAETH_PRED), + UV_INTRA_DC_PAETH_CFL = + (1 << UV_DC_PRED) | (1 << UV_PAETH_PRED) | (1 << UV_CFL_PRED), + UV_INTRA_DC_H_V = (1 << UV_DC_PRED) | (1 << UV_V_PRED) | (1 << UV_H_PRED), + UV_INTRA_DC_H_V_CFL = (1 << UV_DC_PRED) | (1 << UV_V_PRED) | + (1 << UV_H_PRED) | (1 << UV_CFL_PRED), + UV_INTRA_DC_PAETH_H_V = (1 << UV_DC_PRED) | (1 << UV_PAETH_PRED) | + (1 << UV_V_PRED) | (1 << UV_H_PRED), + UV_INTRA_DC_PAETH_H_V_CFL = (1 << UV_DC_PRED) | (1 << UV_PAETH_PRED) | + (1 << UV_V_PRED) | (1 << UV_H_PRED) | + (1 << UV_CFL_PRED), + INTRA_DC = (1 << DC_PRED), + INTRA_DC_TM = (1 << DC_PRED) | (1 << PAETH_PRED), + INTRA_DC_H_V = (1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED), + INTRA_DC_PAETH_H_V = + (1 << DC_PRED) | (1 << PAETH_PRED) | (1 << V_PRED) | (1 << H_PRED) +}; + +enum { + INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << GLOBALMV) | + (1 << NEWMV) | (1 << NEAREST_NEARESTMV) | (1 << NEAR_NEARMV) | + (1 << NEW_NEWMV) | (1 << NEAREST_NEWMV) | (1 << NEAR_NEWMV) | + (1 << NEW_NEARMV) | (1 << NEW_NEARESTMV) | (1 << GLOBAL_GLOBALMV), + INTER_NEAREST_NEAR_ZERO = (1 << NEARESTMV) | (1 << NEARMV) | (1 << GLOBALMV) | + (1 << NEAREST_NEARESTMV) | (1 << GLOBAL_GLOBALMV) | + (1 << NEAREST_NEWMV) | (1 << NEW_NEARESTMV) | + (1 << NEW_NEARMV) | (1 << NEAR_NEWMV) | + (1 << NEAR_NEARMV), +}; + +enum { + DISABLE_ALL_INTER_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) | + (1 << THR_ALTR) | (1 << THR_GOLD) | (1 << THR_LAST), + + DISABLE_ALL_SPLIT = (1 << THR_INTRA) | DISABLE_ALL_INTER_SPLIT, + + DISABLE_COMPOUND_SPLIT = (1 << THR_COMP_GA) | (1 << THR_COMP_LA), + + LAST_AND_INTRA_SPLIT_ONLY = (1 << THR_COMP_GA) | (1 << THR_COMP_LA) | + (1 << THR_ALTR) | (1 << THR_GOLD) +}; + +typedef enum { + TXFM_CODING_SF = 1, + INTER_PRED_SF = 2, + INTRA_PRED_SF = 4, + PARTITION_SF = 8, + LOOP_FILTER_SF = 16, + RD_SKIP_SF = 32, + RESERVE_2_SF = 64, + RESERVE_3_SF = 128, +} DEV_SPEED_FEATURES; + +typedef enum { + DIAMOND = 0, + NSTEP = 1, + HEX = 2, + BIGDIA = 3, + SQUARE = 4, + FAST_HEX = 5, + FAST_DIAMOND = 6 +} SEARCH_METHODS; + +typedef enum { + // No recode. + DISALLOW_RECODE = 0, + // Allow recode for KF and exceeding maximum frame bandwidth. + ALLOW_RECODE_KFMAXBW = 1, + // Allow recode only for KF/ARF/GF frames. + ALLOW_RECODE_KFARFGF = 2, + // Allow recode for all frames based on bitrate constraints. + ALLOW_RECODE = 3, +} RECODE_LOOP_TYPE; + +typedef enum { + SUBPEL_TREE = 0, + SUBPEL_TREE_PRUNED = 1, // Prunes 1/2-pel searches + SUBPEL_TREE_PRUNED_MORE = 2, // Prunes 1/2-pel searches more aggressively + SUBPEL_TREE_PRUNED_EVENMORE = 3, // Prunes 1/2- and 1/4-pel searches + // Other methods to come +} SUBPEL_SEARCH_METHODS; + +typedef enum { + USE_FULL_RD = 0, + USE_FAST_RD, + USE_LARGESTALL, +} TX_SIZE_SEARCH_METHOD; + +typedef enum { + NOT_IN_USE = 0, + RELAXED_NEIGHBORING_MIN_MAX = 1 +} AUTO_MIN_MAX_MODE; + +typedef enum { + // Try the full image with different values. + LPF_PICK_FROM_FULL_IMAGE, + // Try a small portion of the image with different values. + LPF_PICK_FROM_SUBIMAGE, + // Estimate the level based on quantizer and frame type + LPF_PICK_FROM_Q, + // Pick 0 to disable LPF if LPF was enabled last frame + LPF_PICK_MINIMAL_LPF +} LPF_PICK_METHOD; + +typedef enum { + // Terminate search early based on distortion so far compared to + // qp step, distortion in the neighborhood of the frame, etc. + FLAG_EARLY_TERMINATE = 1 << 0, + + // Skips comp inter modes if the best so far is an intra mode. + FLAG_SKIP_COMP_BESTINTRA = 1 << 1, + + // Skips oblique intra modes if the best so far is an inter mode. + FLAG_SKIP_INTRA_BESTINTER = 1 << 3, + + // Skips oblique intra modes at angles 27, 63, 117, 153 if the best + // intra so far is not one of the neighboring directions. + FLAG_SKIP_INTRA_DIRMISMATCH = 1 << 4, + + // Skips intra modes other than DC_PRED if the source variance is small + FLAG_SKIP_INTRA_LOWVAR = 1 << 5, +} MODE_SEARCH_SKIP_LOGIC; + +typedef enum { + NO_PRUNE = 0, + // eliminates one tx type in vertical and horizontal direction + PRUNE_ONE = 1, + // eliminates two tx types in each direction + PRUNE_TWO = 2, + // adaptively prunes the least perspective tx types out of all 16 + // (tuned to provide negligible quality loss) + PRUNE_2D_ACCURATE = 3, + // similar, but applies much more aggressive pruning to get better speed-up + PRUNE_2D_FAST = 4, +} TX_TYPE_PRUNE_MODE; + +typedef struct { + TX_TYPE_PRUNE_MODE prune_mode; + int fast_intra_tx_type_search; + int fast_inter_tx_type_search; + + // Use a skip flag prediction model to detect blocks with skip = 1 early + // and avoid doing full TX type search for such blocks. + int use_skip_flag_prediction; + + // Threshold used by the ML based method to predict TX block split decisions. + int ml_tx_split_thresh; + + // skip remaining transform type search when we found the rdcost of skip is + // better than applying transform + int skip_tx_search; +} TX_TYPE_SEARCH; + +typedef enum { + // Search partitions using RD criterion + SEARCH_PARTITION, + + // Always use a fixed size partition + FIXED_PARTITION, + + REFERENCE_PARTITION +} PARTITION_SEARCH_TYPE; + +typedef struct MV_SPEED_FEATURES { + // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc). + SEARCH_METHODS search_method; + + // This parameter controls which step in the n-step process we start at. + // It's changed adaptively based on circumstances. + int reduce_first_step_size; + + // If this is set to 1, we limit the motion search range to 2 times the + // largest motion vector found in the last frame. + int auto_mv_step_size; + + // Subpel_search_method can only be subpel_tree which does a subpixel + // logarithmic search that keeps stepping at 1/2 pixel units until + // you stop getting a gain, and then goes on to 1/4 and repeats + // the same process. Along the way it skips many diagonals. + SUBPEL_SEARCH_METHODS subpel_search_method; + + // Maximum number of steps in logarithmic subpel search before giving up. + int subpel_iters_per_step; + + // Control when to stop subpel search + int subpel_force_stop; +} MV_SPEED_FEATURES; + +#define MAX_MESH_STEP 4 + +typedef struct MESH_PATTERN { + int range; + int interval; +} MESH_PATTERN; + +typedef enum { + GM_FULL_SEARCH, + GM_REDUCED_REF_SEARCH, + GM_DISABLE_SEARCH +} GM_SEARCH_TYPE; + +typedef enum { + GM_ERRORADV_TR_0, + GM_ERRORADV_TR_1, + GM_ERRORADV_TR_2, + GM_ERRORADV_TR_TYPES, +} GM_ERRORADV_TYPE; + +typedef enum { + NO_TRELLIS_OPT, // No trellis optimization + FULL_TRELLIS_OPT, // Trellis optimization in all stages + FINAL_PASS_TRELLIS_OPT // Trellis optimization in only the final encode pass +} TRELLIS_OPT_TYPE; + +typedef enum { + FULL_TXFM_RD, + LOW_TXFM_RD, +} TXFM_RD_MODEL; + +typedef struct SPEED_FEATURES { + MV_SPEED_FEATURES mv; + + // Frame level coding parameter update + int frame_parameter_update; + + RECODE_LOOP_TYPE recode_loop; + + // Trellis (dynamic programming) optimization of quantized values + TRELLIS_OPT_TYPE optimize_coefficients; + + // Global motion warp error threshold + GM_ERRORADV_TYPE gm_erroradv_type; + + // Always set to 0. If on it enables 0 cost background transmission + // (except for the initial transmission of the segmentation). The feature is + // disabled because the addition of very large block sizes make the + // backgrounds very to cheap to encode, and the segmentation we have + // adds overhead. + int static_segmentation; + + // Limit the inter mode tested in the RD loop + int reduce_inter_modes; + + // Do not compute the global motion parameters for a LAST2_FRAME or + // LAST3_FRAME if the GOLDEN_FRAME is closer and it has a non identity + // global model. + int selective_ref_gm; + + // If 1 we iterate finding a best reference for 2 ref frames together - via + // a log search that iterates 4 times (check around mv for last for best + // error of combined predictor then check around mv for alt). If 0 we + // we just use the best motion vector found for each frame by itself. + BLOCK_SIZE comp_inter_joint_search_thresh; + + // This variable is used to cap the maximum number of times we skip testing a + // mode to be evaluated. A high value means we will be faster. + int adaptive_rd_thresh; + + // Determine which method we use to determine transform size. We can choose + // between options like full rd, largest for prediction size, largest + // for intra and model coefs for the rest. + TX_SIZE_SEARCH_METHOD tx_size_search_method; + + // Init search depth for square and rectangular transform partitions. + // Values: + // 0 - search full tree, 1: search 1 level, 2: search the highest level only + int inter_tx_size_search_init_depth_sqr; + int inter_tx_size_search_init_depth_rect; + int intra_tx_size_search_init_depth_sqr; + int intra_tx_size_search_init_depth_rect; + // If any dimension of a coding block size above 64, always search the + // largest transform only, since the largest transform block size is 64x64. + int tx_size_search_lgr_block; + + PARTITION_SEARCH_TYPE partition_search_type; + + TX_TYPE_SEARCH tx_type_search; + + // Skip split transform block partition when the collocated bigger block + // is selected as all zero coefficients. + int txb_split_cap; + + // Shortcut the transform block partition and type search when the target + // rdcost is relatively lower. + // Values are 0 (not used) , or 1 - 2 with progressively increasing + // aggressiveness + int adaptive_txb_search_level; + + // Prune level for tx_size_type search for inter based on rd model + // 0: no pruning + // 1-2: progressively increasing aggressiveness of pruning + int model_based_prune_tx_search_level; + + // Model based breakout after interpolation filter search + // 0: no breakout + // 1: use model based rd breakout + int model_based_post_interp_filter_breakout; + + // Used if partition_search_type = FIXED_SIZE_PARTITION + BLOCK_SIZE always_this_block_size; + + // Drop less likely to be picked reference frames in the RD search. + // Has three levels for now: 0, 1 and 2, where higher levels prune more + // aggressively than lower ones. (0 means no pruning). + int selective_ref_frame; + + // Prune extended partition types search + // Can take values 0 - 2, 0 referring to no pruning, and 1 - 2 increasing + // aggressiveness of pruning in order. + int prune_ext_partition_types_search_level; + + // Use a ML model to prune horz and vert partitions + int ml_prune_rect_partition; + + // Use a ML model to prune horz_a, horz_b, vert_a and vert_b partitions. + int ml_prune_ab_partition; + + // Use a ML model to prune horz4 and vert4 partitions. + int ml_prune_4_partition; + + int fast_cdef_search; + + // 2-pass coding block partition search + int two_pass_partition_search; + + // Use the mode decisions made in the initial partition search to prune mode + // candidates, e.g. ref frames. + int mode_pruning_based_on_two_pass_partition_search; + + // Skip rectangular partition test when partition type none gives better + // rd than partition type split. Can take values 0 - 2, 0 referring to no + // skipping, and 1 - 2 increasing aggressiveness of skipping in order. + int less_rectangular_check_level; + + // Use square partition only beyond this block size. + BLOCK_SIZE use_square_partition_only_threshold; + + // Prune reference frames for rectangular partitions. + int prune_ref_frame_for_rect_partitions; + + // Sets min and max partition sizes for this superblock based on the + // same superblock in last encoded frame, and the left and above neighbor. + AUTO_MIN_MAX_MODE auto_min_max_partition_size; + // Ensures the rd based auto partition search will always + // go down at least to the specified level. + BLOCK_SIZE rd_auto_partition_min_limit; + + // Min and max partition size we enable (block_size) as per auto + // min max, but also used by adjust partitioning, and pick_partitioning. + BLOCK_SIZE default_min_partition_size; + BLOCK_SIZE default_max_partition_size; + + // Whether or not we allow partitions one smaller or one greater than the last + // frame's partitioning. Only used if use_lastframe_partitioning is set. + int adjust_partitioning_from_last_frame; + + // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable + // it always, to allow it for only Last frame and Intra, disable it for all + // inter modes or to enable it always. + int disable_split_mask; + + // TODO(jingning): combine the related motion search speed features + // This allows us to use motion search at other sizes as a starting + // point for this motion search and limits the search range around it. + int adaptive_motion_search; + + // Flag for allowing some use of exhaustive searches; + int allow_exhaustive_searches; + + // Threshold for allowing exhaistive motion search. + int exhaustive_searches_thresh; + + // Maximum number of exhaustive searches for a frame. + int max_exaustive_pct; + + // Pattern to be used for any exhaustive mesh searches. + MESH_PATTERN mesh_patterns[MAX_MESH_STEP]; + + // Allows sub 8x8 modes to use the prediction filter that was determined + // best for 8x8 mode. If set to 0 we always re check all the filters for + // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter + // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected. + int adaptive_pred_interp_filter; + + // Adaptive prediction mode search + int adaptive_mode_search; + + int cb_partition_search; + + int alt_ref_search_fp; + + // Implements various heuristics to skip searching modes + // The heuristics selected are based on flags + // defined in the MODE_SEARCH_SKIP_HEURISTICS enum + unsigned int mode_search_skip_flags; + + // A source variance threshold below which filter search is disabled + // Choose a very large value (UINT_MAX) to use 8-tap always + unsigned int disable_filter_search_var_thresh; + + // A source variance threshold below which wedge search is disabled + unsigned int disable_wedge_search_var_thresh; + + // Whether fast wedge sign estimate is used + int fast_wedge_sign_estimate; + + // These bit masks allow you to enable or disable intra modes for each + // transform size separately. + int intra_y_mode_mask[TX_SIZES]; + int intra_uv_mode_mask[TX_SIZES]; + + // This feature controls how the loop filter level is determined. + LPF_PICK_METHOD lpf_pick; + + // This feature controls whether we do the expensive context update and + // calculation in the rd coefficient costing loop. + int use_fast_coef_costing; + + // This feature controls the tolerence vs target used in deciding whether to + // recode a frame. It has no meaning if recode is disabled. + int recode_tolerance; + + // This variable controls the maximum block size where intra blocks can be + // used in inter frames. + // TODO(aconverse): Fold this into one of the other many mode skips + BLOCK_SIZE max_intra_bsize; + + // Partition search early breakout thresholds. + int64_t partition_search_breakout_dist_thr; + int partition_search_breakout_rate_thr; + + // Thresholds for ML based partition search breakout. + int ml_partition_search_breakout_thresh[PARTITION_BLOCK_SIZES]; + + // Allow skipping partition search for still image frame + int allow_partition_search_skip; + + // Fast approximation of av1_model_rd_from_var_lapndz + int simple_model_rd_from_var; + + // If true, sub-pixel search uses the exact convolve function used for final + // encoding and decoding; otherwise, it uses bilinear interpolation. + int use_accurate_subpel_search; + + // Whether to compute distortion in the image domain (slower but + // more accurate), or in the transform domain (faster but less acurate). + // 0: use image domain + // 1: use transform domain in tx_type search, and use image domain for + // RD_STATS + // 2: use transform domain + int use_transform_domain_distortion; + + GM_SEARCH_TYPE gm_search_type; + + // whether to disable the global motion recode loop + int gm_disable_recode; + + // Do limited interpolation filter search for dual filters, since best choice + // usually includes EIGHTTAP_REGULAR. + int use_fast_interpolation_filter_search; + + // Save results of interpolation_filter_search for a block + // Check mv and ref_frames before search, if they are same with previous + // saved results, it can be skipped. + int skip_repeat_interpolation_filter_search; + + // Use a hash table to store previously computed optimized qcoeffs from + // expensive calls to optimize_txb. + int use_hash_based_trellis; + + // flag to drop some ref frames in compound motion search + int drop_ref; + + // flag to allow skipping intra mode for inter frame prediction + int skip_intra_in_interframe; + + // Use hash table to store intra(keyframe only) txb transform search results + // to avoid repeated search on the same residue signal. + int use_intra_txb_hash; + + // Use hash table to store inter txb transform search results + // to avoid repeated search on the same residue signal. + int use_inter_txb_hash; + + // Use hash table to store macroblock RD search results + // to avoid repeated search on the same residue signal. + int use_mb_rd_hash; + + // Calculate RD cost before doing optimize_b, and skip if the cost is large. + int optimize_b_precheck; + + // Use model rd instead of transform search in jnt_comp + int jnt_comp_fast_tx_search; + + // Skip mv search in jnt_comp + int jnt_comp_skip_mv_search; + + // Decoder side speed feature to add penalty for use of dual-sgr filters. + // Takes values 0 - 10, 0 indicating no penalty and each additional level + // adding a penalty of 1% + int dual_sgr_penalty_level; + + // Dynamically estimate final rd from prediction error and mode cost + int inter_mode_rd_model_estimation; + + // Skip some ref frames in compound motion search by single motion search + // result. Has three levels for now: 0 referring to no skipping, and 1 - 3 + // increasing aggressiveness of skipping in order. + // Note: The search order might affect the result. It is better to search same + // single inter mode as a group. + int prune_comp_search_by_single_result; + + // Reuse the inter_intra_mode search result from NEARESTMV mode to other + // single ref modes + int reuse_inter_intra_mode; + + // Set the full pixel search level of obmc + // 0: obmc_full_pixel_diamond + // 1: obmc_refining_search_sad (faster) + int obmc_full_pixel_search_level; + + // flag to skip NEWMV mode in drl if the motion search result is the same + int skip_repeated_newmv; +} SPEED_FEATURES; + +struct AV1_COMP; + +void av1_set_speed_features_framesize_independent(struct AV1_COMP *cpi); +void av1_set_speed_features_framesize_dependent(struct AV1_COMP *cpi); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_SPEED_FEATURES_H_ diff --git a/third_party/aom/av1/encoder/temporal_filter.c b/third_party/aom/av1/encoder/temporal_filter.c new file mode 100644 index 0000000000..75fdf02a52 --- /dev/null +++ b/third_party/aom/av1/encoder/temporal_filter.c @@ -0,0 +1,602 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <math.h> +#include <limits.h> + +#include "config/aom_config.h" + +#include "av1/common/alloccommon.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/quant_common.h" +#include "av1/common/reconinter.h" +#include "av1/common/odintrin.h" +#include "av1/encoder/av1_quantize.h" +#include "av1/encoder/extend.h" +#include "av1/encoder/firstpass.h" +#include "av1/encoder/mcomp.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/ratectrl.h" +#include "av1/encoder/reconinter_enc.h" +#include "av1/encoder/segmentation.h" +#include "av1/encoder/temporal_filter.h" +#include "aom_dsp/aom_dsp_common.h" +#include "aom_mem/aom_mem.h" +#include "aom_ports/mem.h" +#include "aom_ports/aom_timer.h" +#include "aom_scale/aom_scale.h" + +static void temporal_filter_predictors_mb_c( + MACROBLOCKD *xd, uint8_t *y_mb_ptr, uint8_t *u_mb_ptr, uint8_t *v_mb_ptr, + int stride, int uv_block_width, int uv_block_height, int mv_row, int mv_col, + uint8_t *pred, struct scale_factors *scale, int x, int y, + int can_use_previous, int num_planes) { + const MV mv = { mv_row, mv_col }; + enum mv_precision mv_precision_uv; + int uv_stride; + // TODO(angiebird): change plane setting accordingly + ConvolveParams conv_params = get_conv_params(0, 0, xd->bd); + const InterpFilters interp_filters = xd->mi[0]->interp_filters; + WarpTypesAllowed warp_types; + memset(&warp_types, 0, sizeof(WarpTypesAllowed)); + + if (uv_block_width == 8) { + uv_stride = (stride + 1) >> 1; + mv_precision_uv = MV_PRECISION_Q4; + } else { + uv_stride = stride; + mv_precision_uv = MV_PRECISION_Q3; + } + av1_build_inter_predictor(y_mb_ptr, stride, &pred[0], 16, &mv, scale, 16, 16, + &conv_params, interp_filters, &warp_types, x, y, 0, + 0, MV_PRECISION_Q3, x, y, xd, can_use_previous); + + if (num_planes > 1) { + av1_build_inter_predictor( + u_mb_ptr, uv_stride, &pred[256], uv_block_width, &mv, scale, + uv_block_width, uv_block_height, &conv_params, interp_filters, + &warp_types, x, y, 1, 0, mv_precision_uv, x, y, xd, can_use_previous); + + av1_build_inter_predictor( + v_mb_ptr, uv_stride, &pred[512], uv_block_width, &mv, scale, + uv_block_width, uv_block_height, &conv_params, interp_filters, + &warp_types, x, y, 2, 0, mv_precision_uv, x, y, xd, can_use_previous); + } +} + +void av1_temporal_filter_apply_c(uint8_t *frame1, unsigned int stride, + uint8_t *frame2, unsigned int block_width, + unsigned int block_height, int strength, + int filter_weight, unsigned int *accumulator, + uint16_t *count) { + unsigned int i, j, k; + int modifier; + int byte = 0; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + for (i = 0, k = 0; i < block_height; i++) { + for (j = 0; j < block_width; j++, k++) { + int pixel_value = *frame2; + + // non-local mean approach + int diff_sse[9] = { 0 }; + int idx, idy, index = 0; + + for (idy = -1; idy <= 1; ++idy) { + for (idx = -1; idx <= 1; ++idx) { + int row = (int)i + idy; + int col = (int)j + idx; + + if (row >= 0 && row < (int)block_height && col >= 0 && + col < (int)block_width) { + int diff = frame1[byte + idy * (int)stride + idx] - + frame2[idy * (int)block_width + idx]; + diff_sse[index] = diff * diff; + ++index; + } + } + } + + assert(index > 0); + + modifier = 0; + for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; + + modifier *= 3; + modifier /= index; + + ++frame2; + + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_width; + } +} + +void av1_highbd_temporal_filter_apply_c( + uint8_t *frame1_8, unsigned int stride, uint8_t *frame2_8, + unsigned int block_width, unsigned int block_height, int strength, + int filter_weight, unsigned int *accumulator, uint16_t *count) { + uint16_t *frame1 = CONVERT_TO_SHORTPTR(frame1_8); + uint16_t *frame2 = CONVERT_TO_SHORTPTR(frame2_8); + unsigned int i, j, k; + int modifier; + int byte = 0; + const int rounding = strength > 0 ? 1 << (strength - 1) : 0; + + for (i = 0, k = 0; i < block_height; i++) { + for (j = 0; j < block_width; j++, k++) { + int pixel_value = *frame2; + + // non-local mean approach + int diff_sse[9] = { 0 }; + int idx, idy, index = 0; + + for (idy = -1; idy <= 1; ++idy) { + for (idx = -1; idx <= 1; ++idx) { + int row = (int)i + idy; + int col = (int)j + idx; + + if (row >= 0 && row < (int)block_height && col >= 0 && + col < (int)block_width) { + int diff = frame1[byte + idy * (int)stride + idx] - + frame2[idy * (int)block_width + idx]; + diff_sse[index] = diff * diff; + ++index; + } + } + } + + assert(index > 0); + + modifier = 0; + for (idx = 0; idx < 9; ++idx) modifier += diff_sse[idx]; + + modifier *= 3; + modifier /= index; + + ++frame2; + + modifier += rounding; + modifier >>= strength; + + if (modifier > 16) modifier = 16; + + modifier = 16 - modifier; + modifier *= filter_weight; + + count[k] += modifier; + accumulator[k] += modifier * pixel_value; + + byte++; + } + + byte += stride - block_width; + } +} + +static int temporal_filter_find_matching_mb_c(AV1_COMP *cpi, + uint8_t *arf_frame_buf, + uint8_t *frame_ptr_buf, + int stride, int x_pos, + int y_pos) { + MACROBLOCK *const x = &cpi->td.mb; + MACROBLOCKD *const xd = &x->e_mbd; + const MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv; + int step_param; + int sadpb = x->sadperbit16; + int bestsme = INT_MAX; + int distortion; + unsigned int sse; + int cost_list[5]; + MvLimits tmp_mv_limits = x->mv_limits; + + MV best_ref_mv1 = kZeroMv; + MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */ + + // Save input state + struct buf_2d src = x->plane[0].src; + struct buf_2d pre = xd->plane[0].pre[0]; + + best_ref_mv1_full.col = best_ref_mv1.col >> 3; + best_ref_mv1_full.row = best_ref_mv1.row >> 3; + + // Setup frame pointers + x->plane[0].src.buf = arf_frame_buf; + x->plane[0].src.stride = stride; + xd->plane[0].pre[0].buf = frame_ptr_buf; + xd->plane[0].pre[0].stride = stride; + + step_param = mv_sf->reduce_first_step_size; + step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); + + av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1); + + x->mvcost = x->mv_cost_stack; + x->nmvjointcost = x->nmv_vec_cost; + + av1_full_pixel_search(cpi, x, BLOCK_16X16, &best_ref_mv1_full, step_param, + NSTEP, 1, sadpb, cond_cost_list(cpi, cost_list), + &best_ref_mv1, 0, 0, x_pos, y_pos, 0); + x->mv_limits = tmp_mv_limits; + + // Ignore mv costing by sending NULL pointer instead of cost array + if (cpi->common.cur_frame_force_integer_mv == 1) { + const uint8_t *const src_address = x->plane[0].src.buf; + const int src_stride = x->plane[0].src.stride; + const uint8_t *const y = xd->plane[0].pre[0].buf; + const int y_stride = xd->plane[0].pre[0].stride; + const int offset = x->best_mv.as_mv.row * y_stride + x->best_mv.as_mv.col; + + x->best_mv.as_mv.row *= 8; + x->best_mv.as_mv.col *= 8; + + bestsme = cpi->fn_ptr[BLOCK_16X16].vf(y + offset, y_stride, src_address, + src_stride, &sse); + } else { + bestsme = cpi->find_fractional_mv_step( + x, &cpi->common, 0, 0, &best_ref_mv1, + cpi->common.allow_high_precision_mv, x->errorperbit, + &cpi->fn_ptr[BLOCK_16X16], 0, mv_sf->subpel_iters_per_step, + cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, + NULL, 0, 0, 0, 0, 0); + } + + x->e_mbd.mi[0]->mv[0] = x->best_mv; + + // Restore input state + x->plane[0].src = src; + xd->plane[0].pre[0] = pre; + + return bestsme; +} + +static void temporal_filter_iterate_c(AV1_COMP *cpi, + YV12_BUFFER_CONFIG **frames, + int frame_count, int alt_ref_index, + int strength, + struct scale_factors *scale) { + const AV1_COMMON *cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + int byte; + int frame; + int mb_col, mb_row; + unsigned int filter_weight; + int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4; + int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4; + int mb_y_offset = 0; + int mb_uv_offset = 0; + DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]); + DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]); + MACROBLOCKD *mbd = &cpi->td.mb.e_mbd; + YV12_BUFFER_CONFIG *f = frames[alt_ref_index]; + uint8_t *dst1, *dst2; + DECLARE_ALIGNED(32, uint16_t, predictor16[16 * 16 * 3]); + DECLARE_ALIGNED(32, uint8_t, predictor8[16 * 16 * 3]); + uint8_t *predictor; + const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y; + const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x; + + // Save input state + uint8_t *input_buffer[MAX_MB_PLANE]; + int i; + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + predictor = CONVERT_TO_BYTEPTR(predictor16); + } else { + predictor = predictor8; + } + + for (i = 0; i < num_planes; i++) input_buffer[i] = mbd->plane[i].pre[0].buf; + + for (mb_row = 0; mb_row < mb_rows; mb_row++) { + // Source frames are extended to 16 pixels. This is different than + // L/A/G reference frames that have a border of 32 (AV1ENCBORDERINPIXELS) + // A 6/8 tap filter is used for motion search. This requires 2 pixels + // before and 3 pixels after. So the largest Y mv on a border would + // then be 16 - AOM_INTERP_EXTEND. The UV blocks are half the size of the + // Y and therefore only extended by 8. The largest mv that a UV block + // can support is 8 - AOM_INTERP_EXTEND. A UV mv is half of a Y mv. + // (16 - AOM_INTERP_EXTEND) >> 1 which is greater than + // 8 - AOM_INTERP_EXTEND. + // To keep the mv in play for both Y and UV planes the max that it + // can be on a border is therefore 16 - (2*AOM_INTERP_EXTEND+1). + cpi->td.mb.mv_limits.row_min = + -((mb_row * 16) + (17 - 2 * AOM_INTERP_EXTEND)); + cpi->td.mb.mv_limits.row_max = + ((mb_rows - 1 - mb_row) * 16) + (17 - 2 * AOM_INTERP_EXTEND); + + for (mb_col = 0; mb_col < mb_cols; mb_col++) { + int j, k; + int stride; + + memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0])); + memset(count, 0, 16 * 16 * 3 * sizeof(count[0])); + + cpi->td.mb.mv_limits.col_min = + -((mb_col * 16) + (17 - 2 * AOM_INTERP_EXTEND)); + cpi->td.mb.mv_limits.col_max = + ((mb_cols - 1 - mb_col) * 16) + (17 - 2 * AOM_INTERP_EXTEND); + + for (frame = 0; frame < frame_count; frame++) { + const int thresh_low = 10000; + const int thresh_high = 20000; + + if (frames[frame] == NULL) continue; + + mbd->mi[0]->mv[0].as_mv.row = 0; + mbd->mi[0]->mv[0].as_mv.col = 0; + mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION; + + if (frame == alt_ref_index) { + filter_weight = 2; + } else { + // Find best match in this frame by MC + int err = temporal_filter_find_matching_mb_c( + cpi, frames[alt_ref_index]->y_buffer + mb_y_offset, + frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride, + mb_col * 16, mb_row * 16); + + // Assign higher weight to matching MB if it's error + // score is lower. If not applying MC default behavior + // is to weight all MBs equal. + filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0; + } + + if (filter_weight != 0) { + // Construct the predictors + temporal_filter_predictors_mb_c( + mbd, frames[frame]->y_buffer + mb_y_offset, + frames[frame]->u_buffer + mb_uv_offset, + frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride, + mb_uv_width, mb_uv_height, mbd->mi[0]->mv[0].as_mv.row, + mbd->mi[0]->mv[0].as_mv.col, predictor, scale, mb_col * 16, + mb_row * 16, cm->allow_warped_motion, num_planes); + + // Apply the filter (YUV) + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + int adj_strength = strength + 2 * (mbd->bd - 8); + av1_highbd_temporal_filter_apply( + f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16, + adj_strength, filter_weight, accumulator, count); + if (num_planes > 1) { + av1_highbd_temporal_filter_apply( + f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, + mb_uv_width, mb_uv_height, adj_strength, filter_weight, + accumulator + 256, count + 256); + av1_highbd_temporal_filter_apply( + f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, + mb_uv_width, mb_uv_height, adj_strength, filter_weight, + accumulator + 512, count + 512); + } + } else { + av1_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride, + predictor, 16, 16, strength, + filter_weight, accumulator, count); + if (num_planes > 1) { + av1_temporal_filter_apply_c( + f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256, + mb_uv_width, mb_uv_height, strength, filter_weight, + accumulator + 256, count + 256); + av1_temporal_filter_apply_c( + f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512, + mb_uv_width, mb_uv_height, strength, filter_weight, + accumulator + 512, count + 512); + } + } + } + } + + // Normalize filter output to produce AltRef frame + if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { + uint16_t *dst1_16; + uint16_t *dst2_16; + dst1 = cpi->alt_ref_buffer.y_buffer; + dst1_16 = CONVERT_TO_SHORTPTR(dst1); + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; i++) { + for (j = 0; j < 16; j++, k++) { + dst1_16[byte] = + (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); + + // move to next pixel + byte++; + } + + byte += stride - 16; + } + if (num_planes > 1) { + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + dst1_16 = CONVERT_TO_SHORTPTR(dst1); + dst2_16 = CONVERT_TO_SHORTPTR(dst2); + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < mb_uv_height; i++) { + for (j = 0; j < mb_uv_width; j++, k++) { + int m = k + 256; + // U + dst1_16[byte] = + (uint16_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); + // V + dst2_16[byte] = + (uint16_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); + // move to next pixel + byte++; + } + byte += stride - mb_uv_width; + } + } + } else { + dst1 = cpi->alt_ref_buffer.y_buffer; + stride = cpi->alt_ref_buffer.y_stride; + byte = mb_y_offset; + for (i = 0, k = 0; i < 16; i++) { + for (j = 0; j < 16; j++, k++) { + dst1[byte] = + (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); + + // move to next pixel + byte++; + } + byte += stride - 16; + } + if (num_planes > 1) { + dst1 = cpi->alt_ref_buffer.u_buffer; + dst2 = cpi->alt_ref_buffer.v_buffer; + stride = cpi->alt_ref_buffer.uv_stride; + byte = mb_uv_offset; + for (i = 0, k = 256; i < mb_uv_height; i++) { + for (j = 0; j < mb_uv_width; j++, k++) { + int m = k + 256; + // U + dst1[byte] = + (uint8_t)OD_DIVU(accumulator[k] + (count[k] >> 1), count[k]); + // V + dst2[byte] = + (uint8_t)OD_DIVU(accumulator[m] + (count[m] >> 1), count[m]); + // move to next pixel + byte++; + } + byte += stride - mb_uv_width; + } + } + } + mb_y_offset += 16; + mb_uv_offset += mb_uv_width; + } + mb_y_offset += 16 * (f->y_stride - mb_cols); + mb_uv_offset += mb_uv_height * f->uv_stride - mb_uv_width * mb_cols; + } + + // Restore input state + for (i = 0; i < num_planes; i++) mbd->plane[i].pre[0].buf = input_buffer[i]; +} + +// Apply buffer limits and context specific adjustments to arnr filter. +static void adjust_arnr_filter(AV1_COMP *cpi, int distance, int group_boost, + int *arnr_frames, int *arnr_strength) { + const AV1EncoderConfig *const oxcf = &cpi->oxcf; + const int frames_after_arf = + av1_lookahead_depth(cpi->lookahead) - distance - 1; + int frames_fwd = (cpi->oxcf.arnr_max_frames - 1) >> 1; + int frames_bwd; + int q, frames, strength; + + // Define the forward and backwards filter limits for this arnr group. + if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; + if (frames_fwd > distance) frames_fwd = distance; + + frames_bwd = frames_fwd; + + // For even length filter there is one more frame backward + // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. + if (frames_bwd < distance) frames_bwd += (oxcf->arnr_max_frames + 1) & 0x1; + + // Set the baseline active filter size. + frames = frames_bwd + 1 + frames_fwd; + + // Adjust the strength based on active max q. + if (cpi->common.current_video_frame > 1) + q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME], + cpi->common.seq_params.bit_depth)); + else + q = ((int)av1_convert_qindex_to_q(cpi->rc.avg_frame_qindex[KEY_FRAME], + cpi->common.seq_params.bit_depth)); + if (q > 16) { + strength = oxcf->arnr_strength; + } else { + strength = oxcf->arnr_strength - ((16 - q) / 2); + if (strength < 0) strength = 0; + } + + // Adjust number of frames in filter and strength based on gf boost level. + if (frames > group_boost / 150) { + frames = group_boost / 150; + frames += !(frames & 1); + } + + if (strength > group_boost / 300) { + strength = group_boost / 300; + } + + *arnr_frames = frames; + *arnr_strength = strength; +} + +void av1_temporal_filter(AV1_COMP *cpi, int distance) { + RATE_CONTROL *const rc = &cpi->rc; + int frame; + int frames_to_blur; + int start_frame; + int strength; + int frames_to_blur_backward; + int frames_to_blur_forward; + struct scale_factors sf; + YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = { NULL }; + const GF_GROUP *const gf_group = &cpi->twopass.gf_group; + + // Apply context specific adjustments to the arnr filter parameters. + adjust_arnr_filter(cpi, distance, rc->gfu_boost, &frames_to_blur, &strength); + // TODO(weitinglin): Currently, we enforce the filtering strength on + // extra ARFs' to be zeros. We should investigate in which + // case it is more beneficial to use non-zero strength + // filtering. + if (gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) { + strength = 0; + frames_to_blur = 1; + } + + int which_arf = gf_group->arf_update_idx[gf_group->index]; + + // Set the temporal filtering status for the corresponding OVERLAY frame + if (strength == 0 && frames_to_blur == 1) + cpi->is_arf_filter_off[which_arf] = 1; + else + cpi->is_arf_filter_off[which_arf] = 0; + cpi->common.showable_frame = cpi->is_arf_filter_off[which_arf]; + + frames_to_blur_backward = (frames_to_blur / 2); + frames_to_blur_forward = ((frames_to_blur - 1) / 2); + start_frame = distance + frames_to_blur_forward; + + // Setup frame pointers, NULL indicates frame not included in filter. + for (frame = 0; frame < frames_to_blur; ++frame) { + const int which_buffer = start_frame - frame; + struct lookahead_entry *buf = + av1_lookahead_peek(cpi->lookahead, which_buffer); + frames[frames_to_blur - 1 - frame] = &buf->img; + } + + if (frames_to_blur > 0) { + // Setup scaling factors. Scaling on each of the arnr frames is not + // supported. + // ARF is produced at the native frame size and resized when coded. + av1_setup_scale_factors_for_frame( + &sf, frames[0]->y_crop_width, frames[0]->y_crop_height, + frames[0]->y_crop_width, frames[0]->y_crop_height); + } + + temporal_filter_iterate_c(cpi, frames, frames_to_blur, + frames_to_blur_backward, strength, &sf); +} diff --git a/third_party/aom/av1/encoder/temporal_filter.h b/third_party/aom/av1/encoder/temporal_filter.h new file mode 100644 index 0000000000..2ddc68b2c9 --- /dev/null +++ b/third_party/aom/av1/encoder/temporal_filter.h @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_TEMPORAL_FILTER_H_ +#define AOM_AV1_ENCODER_TEMPORAL_FILTER_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_temporal_filter(AV1_COMP *cpi, int distance); + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_TEMPORAL_FILTER_H_ diff --git a/third_party/aom/av1/encoder/tokenize.c b/third_party/aom/av1/encoder/tokenize.c new file mode 100644 index 0000000000..16a6a9a35a --- /dev/null +++ b/third_party/aom/av1/encoder/tokenize.c @@ -0,0 +1,248 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <math.h> +#include <stdio.h> +#include <string.h> + +#include "aom_mem/aom_mem.h" + +#include "av1/common/entropy.h" +#include "av1/common/pred_common.h" +#include "av1/common/scan.h" +#include "av1/common/seg_common.h" + +#include "av1/encoder/cost.h" +#include "av1/encoder/encoder.h" +#include "av1/encoder/encodetxb.h" +#include "av1/encoder/rdopt.h" +#include "av1/encoder/tokenize.h" + +static int cost_and_tokenize_map(Av1ColorMapParam *param, TOKENEXTRA **t, + int plane, int calc_rate, int allow_update_cdf, + FRAME_COUNTS *counts) { + const uint8_t *const color_map = param->color_map; + MapCdf map_cdf = param->map_cdf; + ColorCost color_cost = param->color_cost; + const int plane_block_width = param->plane_width; + const int rows = param->rows; + const int cols = param->cols; + const int n = param->n_colors; + const int palette_size_idx = n - PALETTE_MIN_SIZE; + int this_rate = 0; + uint8_t color_order[PALETTE_MAX_SIZE]; + + (void)plane; + (void)counts; + + for (int k = 1; k < rows + cols - 1; ++k) { + for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) { + int i = k - j; + int color_new_idx; + const int color_ctx = av1_get_palette_color_index_context( + color_map, plane_block_width, i, j, n, color_order, &color_new_idx); + assert(color_new_idx >= 0 && color_new_idx < n); + if (calc_rate) { + this_rate += (*color_cost)[palette_size_idx][color_ctx][color_new_idx]; + } else { + (*t)->token = color_new_idx; + (*t)->color_map_cdf = map_cdf[palette_size_idx][color_ctx]; + ++(*t); + if (allow_update_cdf) + update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n); +#if CONFIG_ENTROPY_STATS + if (plane) { + ++counts->palette_uv_color_index[palette_size_idx][color_ctx] + [color_new_idx]; + } else { + ++counts->palette_y_color_index[palette_size_idx][color_ctx] + [color_new_idx]; + } +#endif + } + } + } + if (calc_rate) return this_rate; + return 0; +} + +static void get_palette_params(const MACROBLOCK *const x, int plane, + BLOCK_SIZE bsize, Av1ColorMapParam *params) { + const MACROBLOCKD *const xd = &x->e_mbd; + const MB_MODE_INFO *const mbmi = xd->mi[0]; + const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; + params->color_map = xd->plane[plane].color_index_map; + params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf + : xd->tile_ctx->palette_y_color_index_cdf; + params->color_cost = + plane ? &x->palette_uv_color_cost : &x->palette_y_color_cost; + params->n_colors = pmi->palette_size[plane]; + av1_get_block_dimensions(bsize, plane, xd, ¶ms->plane_width, NULL, + ¶ms->rows, ¶ms->cols); +} + +static void get_color_map_params(const MACROBLOCK *const x, int plane, + BLOCK_SIZE bsize, TX_SIZE tx_size, + COLOR_MAP_TYPE type, + Av1ColorMapParam *params) { + (void)tx_size; + memset(params, 0, sizeof(*params)); + switch (type) { + case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break; + default: assert(0 && "Invalid color map type"); return; + } +} + +int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize, + TX_SIZE tx_size, COLOR_MAP_TYPE type) { + assert(plane == 0 || plane == 1); + Av1ColorMapParam color_map_params; + get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params); + return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL); +} + +void av1_tokenize_color_map(const MACROBLOCK *const x, int plane, + TOKENEXTRA **t, BLOCK_SIZE bsize, TX_SIZE tx_size, + COLOR_MAP_TYPE type, int allow_update_cdf, + FRAME_COUNTS *counts) { + assert(plane == 0 || plane == 1); + Av1ColorMapParam color_map_params; + get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params); + // The first color index does not use context or entropy. + (*t)->token = color_map_params.color_map[0]; + (*t)->color_map_cdf = NULL; + ++(*t); + cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf, + counts); +} + +void tokenize_vartx(ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, + TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int blk_row, + int blk_col, int block, int plane, void *arg) { + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const int max_blocks_high = max_block_high(xd, plane_bsize, plane); + const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); + + if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; + + const TX_SIZE plane_tx_size = + plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y) + : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, + blk_col)]; + + if (tx_size == plane_tx_size || plane) { + plane_bsize = get_plane_block_size(mbmi->sb_type, pd->subsampling_x, + pd->subsampling_y); + if (!dry_run) { + av1_update_and_record_txb_context(plane, block, blk_row, blk_col, + plane_bsize, tx_size, arg); + } else if (dry_run == DRY_RUN_NORMAL) { + av1_update_txb_context_b(plane, block, blk_row, blk_col, plane_bsize, + tx_size, arg); + } else { + printf("DRY_RUN_COSTCOEFFS is not supported yet\n"); + assert(0); + } + } else { + // Half the block size in transform block unit. + const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; + const int bsw = tx_size_wide_unit[sub_txs]; + const int bsh = tx_size_high_unit[sub_txs]; + const int step = bsw * bsh; + + assert(bsw > 0 && bsh > 0); + + for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { + for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { + const int offsetr = blk_row + row; + const int offsetc = blk_col + col; + + if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; + + tokenize_vartx(td, t, dry_run, sub_txs, plane_bsize, offsetr, offsetc, + block, plane, arg); + block += step; + } + } + } +} + +void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td, TOKENEXTRA **t, + RUN_TYPE dry_run, int mi_row, int mi_col, + BLOCK_SIZE bsize, int *rate, + uint8_t allow_update_cdf) { + const AV1_COMMON *const cm = &cpi->common; + const int num_planes = av1_num_planes(cm); + MACROBLOCK *const x = &td->mb; + MACROBLOCKD *const xd = &x->e_mbd; + MB_MODE_INFO *const mbmi = xd->mi[0]; + (void)t; + struct tokenize_b_args arg = { cpi, td, t, 0, allow_update_cdf }; + if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; + + if (mbmi->skip) { + av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes); + return; + } + + for (int plane = 0; plane < num_planes; ++plane) { + if (!is_chroma_reference(mi_row, mi_col, bsize, + xd->plane[plane].subsampling_x, + xd->plane[plane].subsampling_y)) { + continue; + } + const struct macroblockd_plane *const pd = &xd->plane[plane]; + const BLOCK_SIZE bsizec = + scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); + const BLOCK_SIZE plane_bsize = + get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); + const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; + const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; + const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); + const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; + int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; + int bh = block_size_high[txb_size] >> tx_size_high_log2[0]; + int idx, idy; + int block = 0; + int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; + + const BLOCK_SIZE max_unit_bsize = + get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); + int mu_blocks_wide = + block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; + int mu_blocks_high = + block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; + + mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); + mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); + + for (idy = 0; idy < mi_height; idy += mu_blocks_high) { + for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { + int blk_row, blk_col; + const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); + const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); + for (blk_row = idy; blk_row < unit_height; blk_row += bh) { + for (blk_col = idx; blk_col < unit_width; blk_col += bw) { + tokenize_vartx(td, t, dry_run, max_tx_size, plane_bsize, blk_row, + blk_col, block, plane, &arg); + block += step; + } + } + } + } + } + if (rate) *rate += arg.this_rate; +} diff --git a/third_party/aom/av1/encoder/tokenize.h b/third_party/aom/av1/encoder/tokenize.h new file mode 100644 index 0000000000..63b505f36f --- /dev/null +++ b/third_party/aom/av1/encoder/tokenize.h @@ -0,0 +1,73 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_TOKENIZE_H_ +#define AOM_AV1_ENCODER_TOKENIZE_H_ + +#include "av1/common/entropy.h" +#include "av1/encoder/block.h" +#include "aom_dsp/bitwriter.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct { + aom_cdf_prob *color_map_cdf; + // TODO(yaowu: use packed enum type if appropriate) + uint8_t token; +} TOKENEXTRA; + +struct AV1_COMP; +struct ThreadData; +struct FRAME_COUNTS; + +struct tokenize_b_args { + const struct AV1_COMP *cpi; + struct ThreadData *td; + TOKENEXTRA **tp; + int this_rate; + uint8_t allow_update_cdf; +}; + +typedef enum { + OUTPUT_ENABLED = 0, + DRY_RUN_NORMAL, + DRY_RUN_COSTCOEFFS, +} RUN_TYPE; + +// Note in all the tokenize functions rate if non NULL is incremented +// with the coefficient token cost only if dry_run = DRY_RUN_COSTCOEFS, +// otherwise rate is not incremented. +void av1_tokenize_sb_vartx(const struct AV1_COMP *cpi, struct ThreadData *td, + TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row, + int mi_col, BLOCK_SIZE bsize, int *rate, + uint8_t allow_update_cdf); + +int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize, + TX_SIZE tx_size, COLOR_MAP_TYPE type); + +void av1_tokenize_color_map(const MACROBLOCK *const x, int plane, + TOKENEXTRA **t, BLOCK_SIZE bsize, TX_SIZE tx_size, + COLOR_MAP_TYPE type, int allow_update_cdf, + struct FRAME_COUNTS *counts); + +static INLINE int av1_get_tx_eob(const struct segmentation *seg, int segment_id, + TX_SIZE tx_size) { + const int eob_max = av1_get_max_eob(tx_size); + return segfeature_active(seg, segment_id, SEG_LVL_SKIP) ? 0 : eob_max; +} + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_TOKENIZE_H_ diff --git a/third_party/aom/av1/encoder/tx_prune_model_weights.h b/third_party/aom/av1/encoder/tx_prune_model_weights.h new file mode 100644 index 0000000000..405bc9e6eb --- /dev/null +++ b/third_party/aom/av1/encoder/tx_prune_model_weights.h @@ -0,0 +1,1944 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_TX_PRUNE_MODEL_WEIGHTS_H_ +#define AOM_AV1_ENCODER_TX_PRUNE_MODEL_WEIGHTS_H_ + +#ifdef __cplusplus +extern "C" { +#endif + +#include "av1/encoder/ml.h" + +// Tx type model for 4x4 block. +static const float av1_tx_type_nn_weights_4x4_hor_layer0[32] = { + -1.64947f, -1.54497f, -1.62832f, -0.17774f, -2.89498f, -0.72498f, 0.72036f, + 0.17996f, 1.20000f, -0.27654f, 0.77396f, 1.21684f, -1.75909f, -0.51272f, + -1.25923f, 0.35005f, -0.04257f, -0.23389f, -0.41841f, -0.08229f, 0.09503f, + 2.73144f, -0.16875f, -0.23482f, 0.02194f, -0.26427f, 0.28049f, 0.21260f, + 1.35792f, 0.27733f, 0.88660f, -0.68304f, +}; + +static const float av1_tx_type_nn_bias_4x4_hor_layer0[8] = { + 1.38742f, 0.59540f, -1.37622f, 1.92114f, + 0.00000f, -0.38998f, -0.32726f, -0.15650f, +}; + +static const float av1_tx_type_nn_weights_4x4_hor_layer1[32] = { + 1.65254f, 1.00915f, -0.89318f, -2.05142f, -0.23235f, 0.96781f, -0.37145f, + -0.21056f, 1.13891f, 0.38675f, 0.87739f, -1.42697f, 0.48015f, 0.61883f, + -0.03979f, 0.11487f, 0.48042f, 0.45200f, -0.23242f, 0.75166f, 0.55458f, + 0.39452f, -0.35285f, 1.59120f, -1.49221f, -0.48349f, -0.64692f, 1.49297f, + -0.26782f, -0.65416f, -0.10648f, 0.05568f, +}; + +static const float av1_tx_type_nn_bias_4x4_hor_layer1[4] = { + 4.07177f, + 3.26961f, + 0.58083f, + 1.21199f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x4_hor = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x4_hor_layer0, + av1_tx_type_nn_weights_4x4_hor_layer1 }, + { av1_tx_type_nn_bias_4x4_hor_layer0, av1_tx_type_nn_bias_4x4_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_4x4_ver_layer0[32] = { + -0.02032f, 2.61610f, 0.02098f, -0.30217f, 0.12637f, 0.11017f, -3.01996f, + 0.35144f, 1.93776f, -0.20463f, 1.64102f, -1.41986f, -3.66717f, -0.51655f, + 0.43910f, 0.37778f, -1.02634f, 0.85337f, -0.69753f, 1.00206f, 2.11784f, + 1.89427f, 1.92919f, 0.43201f, -1.67358f, -1.67035f, -1.54623f, 0.16714f, + -0.06589f, -0.28142f, -0.33118f, 1.72227f, +}; + +static const float av1_tx_type_nn_bias_4x4_ver_layer0[8] = { + -0.33685f, 0.22025f, 0.28140f, 0.56138f, + 0.93489f, -1.77048f, 1.34989f, -0.93747f, +}; + +static const float av1_tx_type_nn_weights_4x4_ver_layer1[32] = { + -1.39506f, -1.06271f, -1.10886f, -1.69719f, 0.19699f, -2.39850f, -1.26457f, + 0.75328f, -1.26005f, -0.82738f, -0.12015f, -1.02702f, 1.40828f, -2.37739f, + -0.65639f, -0.71992f, -0.90453f, -1.12510f, -2.41362f, -1.16061f, -1.85577f, + -0.99165f, -1.91366f, 0.16785f, 0.34776f, 0.58154f, -0.18217f, -0.29257f, + -0.86315f, -0.53336f, 0.30320f, -1.32331f, +}; + +static const float av1_tx_type_nn_bias_4x4_ver_layer1[4] = { + -1.31519f, + -3.26321f, + 1.71794f, + -1.90778f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x4_ver = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x4_ver_layer0, + av1_tx_type_nn_weights_4x4_ver_layer1 }, + { av1_tx_type_nn_bias_4x4_ver_layer0, av1_tx_type_nn_bias_4x4_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 4x8 block. +static const float av1_tx_type_nn_weights_4x8_hor_layer0[32] = { + 0.00218f, -0.41880f, -0.61215f, -0.92588f, 0.54291f, -0.10898f, 0.70691f, + 0.46819f, -1.61598f, -0.08834f, -0.96839f, 1.18489f, -0.45171f, -0.65445f, + -0.32179f, -0.10399f, 1.04379f, 0.91895f, 0.85589f, 0.08267f, 1.35388f, + -2.03096f, 0.08168f, -0.06372f, -0.26732f, -0.48262f, -0.08682f, 2.44071f, + -1.35896f, -1.17121f, 1.68866f, 0.10357f, +}; + +static const float av1_tx_type_nn_bias_4x8_hor_layer0[8] = { + 2.93391f, 0.66831f, -0.21419f, 0.00000f, + -0.72878f, 0.15127f, -1.46755f, 0.16658f, +}; + +static const float av1_tx_type_nn_weights_4x8_hor_layer1[32] = { + -1.52077f, -1.06243f, 0.35319f, -0.49207f, 0.54524f, 0.44271f, 1.37117f, + -0.38957f, -1.28889f, -0.57133f, 0.04658f, 0.62278f, 0.37984f, 0.33247f, + 1.65547f, -0.56806f, -1.38645f, -0.76258f, 0.67926f, 0.08783f, -0.01443f, + 0.34950f, 1.45812f, -0.51332f, -1.41331f, -0.16453f, 0.05755f, 0.31405f, + -0.50191f, 0.18219f, 1.83664f, -0.75276f, +}; + +static const float av1_tx_type_nn_bias_4x8_hor_layer1[4] = { + -1.17455f, + -2.26089f, + -1.79863f, + -2.26333f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x8_hor = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x8_hor_layer0, + av1_tx_type_nn_weights_4x8_hor_layer1 }, + { av1_tx_type_nn_bias_4x8_hor_layer0, av1_tx_type_nn_bias_4x8_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_4x8_ver_layer0[128] = { + -0.00952f, -0.98858f, -0.93181f, 1.39594f, 0.96559f, 0.18162f, -0.76064f, + -0.06066f, 0.07907f, -0.09365f, -0.21313f, -0.02187f, -2.61707f, -2.68702f, + -0.10982f, 0.18559f, 1.17049f, 1.11387f, 1.12697f, 1.05804f, 1.12764f, + 1.06318f, 1.12052f, 0.17406f, 1.83157f, 0.19362f, 0.46910f, 0.39608f, + 0.33342f, 0.40083f, 0.27645f, 1.06864f, -4.06645f, -0.38775f, -0.11070f, + 0.03781f, -0.09141f, 0.06185f, -0.04852f, 0.20163f, 0.16784f, 0.16641f, + -0.50941f, -0.61087f, 2.07008f, -0.82381f, -0.85558f, 0.05528f, -0.10535f, + -2.81150f, 0.67038f, 0.43643f, 0.49062f, -0.04465f, 0.90438f, 0.00977f, + 0.46272f, 1.59751f, 0.95234f, 0.35086f, 0.85624f, 0.73149f, 1.67779f, + -2.21511f, -1.24746f, -1.09014f, -0.92441f, -1.22591f, -1.06961f, -0.95897f, + -1.24956f, 0.73797f, 1.23275f, -0.60064f, -0.07851f, 0.14397f, 0.22110f, + -0.04422f, 0.14350f, 0.75926f, 0.35032f, 0.48104f, 2.81408f, 0.34662f, + 0.42090f, 0.35521f, -1.36804f, -0.14974f, -0.47696f, -0.07892f, 0.36910f, + 0.32299f, 0.23916f, 0.06032f, -0.17844f, -0.17558f, -1.42746f, -0.55828f, + -1.00418f, -0.64823f, -0.73654f, -0.85197f, -1.50989f, 1.69385f, -0.04973f, + -0.09273f, 1.04249f, 0.79235f, 1.13229f, 0.99617f, 0.03851f, 0.56334f, + 0.90795f, 1.08296f, 0.58519f, 1.74765f, 0.63971f, 1.35951f, 0.07803f, + -0.05127f, 0.26514f, -0.84629f, -0.66343f, -2.10630f, 0.11017f, 2.18528f, + -0.21958f, 0.05970f, +}; + +static const float av1_tx_type_nn_bias_4x8_ver_layer0[16] = { + 0.04205f, 0.22260f, -1.03870f, -1.19568f, 0.44283f, 0.01143f, + 0.00235f, 4.26772f, 0.44364f, -0.33199f, -0.39076f, -0.35129f, + 0.08288f, 0.18195f, -0.79890f, 0.10047f, +}; + +static const float av1_tx_type_nn_weights_4x8_ver_layer1[64] = { + -0.38193f, -0.12095f, 1.57802f, 0.34932f, -0.47333f, -0.12304f, -0.01736f, + -2.52445f, 0.18983f, -0.64707f, -0.60889f, -0.53750f, 0.91666f, -0.62823f, + -0.13377f, -0.43594f, -0.38618f, -0.01328f, 0.97457f, 1.48589f, -1.03238f, + -0.33459f, -0.35108f, -2.42417f, 0.60229f, 0.06824f, -0.75495f, 0.26902f, + 0.65311f, -0.23887f, -0.44604f, -0.55800f, -0.33842f, 0.04259f, -0.59589f, + 0.49738f, -0.62301f, -0.30896f, -0.29602f, -2.57052f, 2.00943f, -0.66490f, + -0.76312f, 0.28256f, 1.06311f, -0.38364f, -0.63508f, -0.57609f, -0.88765f, + -1.04403f, -0.46531f, 0.34084f, -1.20498f, -0.68352f, -0.72251f, -2.63242f, + -0.68736f, -0.37904f, -1.32371f, 0.47288f, 1.51904f, 0.78372f, -1.01830f, + -1.01848f, +}; + +static const float av1_tx_type_nn_bias_4x8_ver_layer1[4] = { + -1.45955f, + -2.08949f, + -1.24813f, + -1.55368f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x8_ver = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x8_ver_layer0, + av1_tx_type_nn_weights_4x8_ver_layer1 }, + { av1_tx_type_nn_bias_4x8_ver_layer0, av1_tx_type_nn_bias_4x8_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 8x4 block. +static const float av1_tx_type_nn_weights_8x4_hor_layer0[128] = { + -0.22492f, 0.13341f, -4.03243f, -0.64015f, 0.02783f, 0.60466f, -0.13335f, + 0.16828f, 0.12336f, 0.52904f, 1.18455f, -0.32425f, 0.13052f, 0.93810f, + -3.71165f, 0.02990f, -4.63558f, 0.05666f, 0.03524f, -0.07449f, -0.44006f, + -0.33215f, -0.33713f, 0.08097f, 0.60873f, 0.29582f, 0.21696f, -0.78729f, + -0.16757f, -0.26567f, -0.00720f, -1.11226f, 1.58189f, 1.58463f, 1.48536f, + 1.54374f, 1.60069f, 1.46125f, 1.53932f, 0.05974f, -1.82192f, 0.47043f, + 0.38090f, 0.20833f, -0.05637f, 0.05183f, 0.01323f, -0.25662f, 0.78634f, + -0.55069f, -0.02975f, -1.29294f, -0.77192f, -2.34299f, -1.28074f, 0.77894f, + -1.69740f, -1.66032f, -1.44323f, -1.55063f, -1.50845f, -1.23690f, -1.80663f, + 0.75079f, 2.32551f, 0.05878f, 0.80438f, 0.88584f, 0.69153f, 0.89060f, + 0.73660f, 0.87259f, -0.00745f, -1.30044f, -0.59430f, 2.07270f, 1.03307f, + -0.84697f, -1.19393f, 0.17549f, -0.24978f, -3.67234f, 0.20781f, -0.53946f, + -0.05068f, 0.88274f, 1.30371f, 0.10288f, 0.07585f, 0.12259f, -0.30815f, + 0.25437f, -2.82096f, -2.69482f, 0.02370f, 0.12500f, -0.21019f, -0.49220f, + 0.03638f, -0.29795f, 0.28645f, -0.48432f, -0.38584f, -0.32148f, -0.47197f, + 0.32437f, 0.32528f, -0.19437f, 0.30383f, -0.31879f, 0.26359f, -0.12164f, + -0.43647f, -0.08288f, -0.33438f, -0.63608f, -0.46647f, -0.46574f, 0.47806f, + -0.49012f, -1.51234f, -1.13502f, -1.20470f, -1.02913f, -1.09182f, -0.93921f, + -1.85523f, 0.92532f, +}; + +static const float av1_tx_type_nn_bias_8x4_hor_layer0[16] = { + 0.36631f, 0.02901f, 0.64305f, 1.53074f, -1.40229f, 0.03852f, + -0.05043f, 0.89632f, -1.23312f, 0.07036f, 0.17070f, 0.56250f, + -0.28958f, -0.32869f, -0.01704f, 0.68171f, +}; + +static const float av1_tx_type_nn_weights_8x4_hor_layer1[64] = { + -0.49441f, -0.31960f, -0.84946f, -0.85800f, -2.37767f, 0.81373f, -0.73172f, + -0.69337f, 0.88807f, -0.49242f, -0.44717f, -0.11436f, 0.09978f, 0.15393f, + 0.17083f, 1.44850f, -0.20582f, -0.04906f, 0.42990f, -0.61939f, -1.09692f, + -1.14885f, -1.36879f, -1.30828f, -0.59558f, -0.30903f, -0.08906f, 0.06953f, + 0.15383f, -0.04193f, -0.54858f, 1.82676f, -0.22411f, 0.05264f, -0.45848f, + -0.72985f, 0.87553f, 0.04116f, -1.29774f, -2.63018f, 1.09089f, -0.36048f, + -0.16725f, 0.11627f, 0.49918f, 0.07539f, 0.00763f, 0.73706f, 0.87800f, + 0.57049f, 0.60969f, 1.02779f, 1.53339f, -0.35915f, 0.06410f, 1.44582f, + 0.09698f, 0.71888f, 0.60594f, 0.84103f, -0.50440f, -0.38825f, 0.15626f, + -1.10654f, +}; + +static const float av1_tx_type_nn_bias_8x4_hor_layer1[4] = { + -0.92861f, + -1.45151f, + -1.33588f, + -4.33853f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x4_hor = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x4_hor_layer0, + av1_tx_type_nn_weights_8x4_hor_layer1 }, + { av1_tx_type_nn_bias_8x4_hor_layer0, av1_tx_type_nn_bias_8x4_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_8x4_ver_layer0[32] = { + -1.10946f, 1.86574f, -1.59343f, 0.27018f, -1.70676f, -0.73982f, -0.19021f, + -1.94208f, -2.29759f, -1.44402f, 0.28700f, -1.18340f, -1.50158f, -0.44175f, + -1.36831f, 1.00374f, 2.59312f, 0.50291f, -0.71042f, -0.12238f, -0.15901f, + -0.22807f, -0.67376f, -0.30215f, 0.54407f, -0.45538f, 1.18262f, 2.28687f, + 1.66212f, 1.70826f, 1.55182f, 0.12230f, +}; + +static const float av1_tx_type_nn_bias_8x4_ver_layer0[8] = { + 0.10943f, 2.09789f, 2.16578f, 0.15766f, + -0.42461f, 0.00000f, 1.22090f, -1.28717f, +}; + +static const float av1_tx_type_nn_weights_8x4_ver_layer1[32] = { + 1.20426f, -1.23237f, 2.41053f, -0.72488f, 1.25249f, 0.18018f, -0.09586f, + 2.17901f, 0.15364f, 1.21535f, -0.38263f, -0.74309f, 0.50551f, -0.54208f, + 0.59139f, 1.16095f, 0.55919f, -0.60183f, 1.18949f, 1.60787f, 0.54002f, + -0.10712f, -0.16153f, 0.16207f, -0.32338f, 2.68712f, -2.83483f, -0.27086f, + -1.15005f, -0.39311f, 1.51236f, -1.68973f, +}; + +static const float av1_tx_type_nn_bias_8x4_ver_layer1[4] = { + 1.81013f, + 1.10517f, + 2.90059f, + 0.95391f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x4_ver = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x4_ver_layer0, + av1_tx_type_nn_weights_8x4_ver_layer1 }, + { av1_tx_type_nn_bias_8x4_ver_layer0, av1_tx_type_nn_bias_8x4_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 8x8 block. +static const float av1_tx_type_nn_weights_8x8_hor_layer0[128] = { + -0.85529f, 0.37619f, 0.12754f, 0.08622f, 0.45278f, 0.54929f, 1.60651f, + -0.62654f, -0.54929f, -0.10131f, -0.17569f, 0.13948f, 0.31695f, -0.05616f, + 0.20483f, -0.36448f, 2.27203f, -0.33087f, 0.47679f, 0.86888f, 0.39370f, + 0.46239f, 0.01113f, 1.50327f, -1.48226f, -1.69621f, -1.49777f, -1.38885f, + -1.37753f, -1.22681f, -1.70576f, 0.51329f, -1.65662f, 1.74197f, -0.13579f, + -0.13133f, -0.58396f, -0.55510f, -1.10709f, -2.34975f, 0.22445f, -0.56491f, + -0.83432f, 0.13492f, 1.32147f, 2.85285f, 0.13819f, 0.03792f, -1.30792f, + 0.04155f, -0.70644f, -0.43430f, -0.16212f, -0.86945f, -1.16976f, 1.68339f, + 0.29540f, 0.01137f, -0.25335f, -0.16856f, 0.12028f, 0.05207f, 0.39357f, + -0.01545f, -0.21980f, -1.94091f, -1.01315f, -0.68270f, -0.40590f, -0.67111f, + 2.08283f, 0.19291f, -4.81426f, -0.65044f, -0.24598f, 0.06371f, -0.10272f, + -0.14502f, -0.06821f, 0.45202f, 0.21091f, -0.80864f, 0.39255f, 1.79189f, + 1.80453f, 1.10484f, 1.17608f, 0.96901f, -0.35871f, -0.94311f, 0.63147f, + 2.95157f, 0.45917f, -0.42849f, -0.55643f, -0.06097f, 3.49299f, -0.50972f, + 0.11075f, -0.08405f, -0.09274f, -0.22694f, -0.42426f, 0.48632f, -1.61074f, + 1.82998f, 0.37623f, -1.20330f, -0.01142f, -1.33307f, -0.27492f, -2.23621f, + 1.38846f, 1.42085f, 1.42568f, 1.36152f, 1.46910f, 1.27473f, 1.34752f, + 0.12753f, -1.08197f, -1.08280f, -0.79489f, -1.12338f, -1.06795f, -0.87857f, + -0.99892f, 1.09823f, +}; + +static const float av1_tx_type_nn_bias_8x8_hor_layer0[16] = { + -0.49232f, -0.29685f, -1.44020f, 1.10940f, 1.16452f, -0.34862f, + -0.38761f, -0.36243f, 0.21776f, 0.28234f, 2.34269f, -0.04104f, + -0.26319f, 2.65579f, -1.30137f, -0.01487f, +}; + +static const float av1_tx_type_nn_weights_8x8_hor_layer1[64] = { + -0.38058f, -0.41295f, -1.26884f, -0.75560f, -1.57450f, 0.56072f, -1.42322f, + -0.29106f, 0.07228f, 0.04391f, 1.61388f, -0.03055f, 0.81637f, 2.06045f, + 0.27119f, -0.48328f, -0.45528f, -0.60534f, -1.61209f, -0.78157f, -1.65034f, + 0.60958f, -1.30523f, 0.25143f, 0.11398f, 0.37860f, 1.54829f, 0.02309f, + 0.67288f, 2.11447f, 0.44845f, -0.70406f, -0.67897f, -0.38759f, -1.30383f, + -1.22646f, -1.54571f, 0.60552f, -1.52565f, 0.11469f, 0.17344f, 0.08622f, + 1.57906f, -0.00909f, 0.81634f, 2.04909f, 1.26466f, -1.45741f, -0.75229f, + 0.06200f, -1.05835f, -0.66257f, -1.73766f, 0.99923f, -1.87082f, 0.14580f, + 0.49525f, 0.46839f, 1.32203f, 0.33923f, 0.97001f, 2.38584f, 1.58811f, + 0.06161f, +}; + +static const float av1_tx_type_nn_bias_8x8_hor_layer1[4] = { + 1.70385f, + 1.82373f, + 1.78496f, + 1.80826f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x8_hor = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x8_hor_layer0, + av1_tx_type_nn_weights_8x8_hor_layer1 }, + { av1_tx_type_nn_bias_8x8_hor_layer0, av1_tx_type_nn_bias_8x8_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_8x8_ver_layer0[128] = { + -0.67016f, -1.72366f, -1.86576f, -1.50962f, -1.70419f, -1.73964f, -1.84615f, + 2.09681f, -0.05081f, -0.61030f, 2.02541f, 0.60222f, 0.99936f, 2.02114f, + -0.53893f, -0.23757f, 0.73566f, 0.25443f, 0.00132f, -0.74036f, -0.75351f, + -0.76964f, -1.71007f, -0.15770f, 1.60982f, 2.17638f, 0.90681f, 0.64973f, + 0.85914f, 0.58786f, -1.46228f, 0.05187f, 1.18804f, 0.30850f, 0.29512f, + 0.40526f, 0.37635f, 0.32311f, 0.37471f, 1.12346f, 3.41856f, -0.36653f, + 0.42537f, -0.19240f, 0.00155f, 0.30826f, -0.02116f, -0.53435f, -0.34829f, + -0.52466f, -0.11521f, -0.29163f, -2.05689f, -2.87372f, -0.62626f, 0.09585f, + -0.75257f, 0.10057f, 1.43474f, 0.89450f, 0.75900f, 1.11147f, 1.00558f, + 0.25886f, 2.22095f, -0.17926f, 0.57161f, 0.39546f, 0.47846f, 0.40452f, + 0.54298f, 0.45814f, -3.62788f, -3.02374f, 0.03716f, -0.13937f, -0.09415f, + -0.12463f, 0.05682f, 0.03672f, 1.20746f, 1.25003f, 1.27071f, 1.31883f, + 1.27473f, 1.34943f, 1.23158f, 0.09039f, 0.19388f, 0.63420f, 2.79612f, + 0.93803f, -0.11323f, -0.02027f, 0.41286f, -0.05979f, -3.80705f, -0.52451f, + -0.77098f, -0.68132f, -0.65559f, -0.60975f, -1.26165f, 0.25582f, 0.05346f, + 0.61403f, 0.32140f, -2.39831f, -1.42355f, 1.30541f, 1.02361f, 0.12930f, + -1.61469f, -0.77036f, -0.59144f, 1.27769f, 1.52068f, 0.82137f, 1.83159f, + -0.66626f, -0.69806f, -1.00564f, -0.85995f, -0.90889f, -0.84412f, -0.85712f, + -1.29848f, 0.39308f, +}; + +static const float av1_tx_type_nn_bias_8x8_ver_layer0[16] = { + -0.14868f, -0.48343f, 3.94416f, -0.78037f, -1.33789f, -0.60611f, + 0.51793f, 0.44030f, -0.71563f, 0.22561f, -1.19083f, -0.46149f, + 0.83015f, 0.06024f, 1.17180f, 0.65122f, +}; + +static const float av1_tx_type_nn_weights_8x8_ver_layer1[64] = { + -1.42711f, -0.21683f, 2.12061f, 0.20489f, -0.50228f, -0.24770f, 0.23391f, + 1.03470f, -0.44847f, -0.63225f, -0.21583f, -0.06467f, -0.21892f, -0.07786f, + 1.43322f, 0.00280f, -1.53057f, -0.18912f, 1.95333f, 0.31151f, -2.07601f, + 0.06776f, 0.25529f, 0.94800f, -1.11453f, -0.20594f, -0.13281f, 0.01485f, + 0.17650f, -0.07955f, 1.43734f, -0.23193f, -2.06463f, -0.21238f, 2.13707f, + 0.30351f, 0.27594f, -0.36245f, 0.19539f, 0.91045f, -0.24068f, -0.37616f, + 0.88792f, 0.02947f, -0.16903f, -0.04932f, 1.51293f, -0.95967f, -1.62903f, + 0.05326f, 2.30703f, 0.64445f, -1.09464f, -0.16623f, 1.00240f, 0.07548f, + -0.50406f, 0.63854f, 1.02340f, 0.49833f, 0.13671f, 0.26722f, 2.09516f, + -0.41305f, +}; + +static const float av1_tx_type_nn_bias_8x8_ver_layer1[4] = { + 2.14067f, + 2.76699f, + 2.04233f, + 1.34803f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x8_ver = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x8_ver_layer0, + av1_tx_type_nn_weights_8x8_ver_layer1 }, + { av1_tx_type_nn_bias_8x8_ver_layer0, av1_tx_type_nn_bias_8x8_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 8x16 block. +static const float av1_tx_type_nn_weights_8x16_hor_layer0[128] = { + -1.61872f, -1.58520f, -1.41236f, -1.53255f, -1.59794f, -1.25769f, -1.90043f, + 0.73431f, 1.10135f, 0.47054f, 0.43230f, -0.43009f, -0.09135f, -0.07289f, + -0.38785f, 1.23775f, -0.35312f, 0.73789f, 0.88864f, 0.75957f, 0.62579f, + 0.46974f, 0.21851f, 1.63821f, -2.27289f, -0.68522f, -0.69814f, -0.84368f, + -0.91320f, -0.63055f, -1.03296f, 0.55778f, -0.00071f, 1.27539f, 1.60068f, + 1.40975f, 0.97372f, 0.92843f, 1.90853f, 0.12626f, 1.71953f, 1.41978f, + -0.12234f, -1.27058f, 0.76207f, 0.02495f, -0.67038f, -0.05255f, 1.72923f, + 1.47630f, 1.47058f, 1.47614f, 1.49354f, 1.66131f, 1.50801f, 0.17145f, + -2.30947f, -2.10850f, -1.25636f, -0.24900f, 0.72602f, 1.26572f, 0.97865f, + -0.65466f, 1.31129f, 0.26916f, 0.12139f, -0.12761f, -0.39143f, -0.28134f, + 0.06584f, 2.24418f, 0.22516f, 0.05011f, -0.01671f, -0.29476f, -0.40326f, + 0.21138f, -0.11573f, -0.31154f, -0.36828f, 0.03694f, -0.07172f, -0.63419f, + -3.14351f, -1.23125f, 0.65311f, -0.11406f, 1.97287f, -0.10422f, 0.83896f, + 0.85033f, 0.49724f, 0.80482f, 0.51454f, 1.06447f, 0.76693f, 0.72599f, + -0.78573f, -0.53950f, 0.40894f, 0.00086f, 0.10784f, -0.70498f, 1.16395f, + 1.14597f, 1.13496f, 1.12177f, 1.02100f, -1.37574f, -2.97144f, 0.33899f, + 0.42013f, 0.86327f, 2.31983f, 2.04008f, 0.95503f, 0.15081f, 0.11530f, + -0.02574f, -4.77119f, 0.13257f, -0.01704f, -0.23087f, -0.00825f, 0.07029f, + -0.28136f, 0.42556f, +}; + +static const float av1_tx_type_nn_bias_8x16_hor_layer0[16] = { + 0.93617f, -0.24000f, -1.26821f, 0.78780f, 0.13690f, -0.21948f, + -1.45162f, 0.44584f, -1.92582f, -0.23169f, 0.56004f, -1.19937f, + 1.81560f, -1.02643f, -0.81690f, 0.08302f, +}; + +static const float av1_tx_type_nn_weights_8x16_hor_layer1[64] = { + 0.06696f, -0.11538f, -1.42029f, 0.32965f, 0.81046f, 0.01146f, 1.20945f, + -0.16899f, 0.53224f, -0.40232f, 0.01786f, -0.73242f, 1.29750f, 1.95185f, + 0.70143f, 1.43287f, 0.76220f, 0.79937f, -1.79011f, -1.15178f, 0.42526f, + -0.67519f, 0.77267f, -0.30697f, 2.46004f, -0.49828f, 0.02875f, 1.09972f, + 1.47662f, 0.61719f, 0.61417f, -0.12363f, 2.53048f, 0.00418f, -1.38964f, + 0.88117f, 0.39239f, -0.19347f, -2.58600f, -0.33715f, 1.09323f, -0.32127f, + 0.02456f, -0.19125f, 1.12728f, 0.66502f, 0.34296f, 1.14897f, 0.29967f, + 1.19209f, 0.22108f, -0.11975f, 1.49776f, -1.34624f, -2.58478f, -1.34632f, + 1.53207f, 0.45634f, -1.48476f, 0.17489f, 0.71790f, -2.12086f, -1.21778f, + -1.31243f, +}; + +static const float av1_tx_type_nn_bias_8x16_hor_layer1[4] = { + 0.83359f, + 1.06875f, + 1.77645f, + 1.49570f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x16_hor = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x16_hor_layer0, + av1_tx_type_nn_weights_8x16_hor_layer1 }, + { av1_tx_type_nn_bias_8x16_hor_layer0, av1_tx_type_nn_bias_8x16_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_8x16_ver_layer0[128] = { + 0.32858f, -1.28887f, 0.25632f, -0.05262f, 2.69203f, -0.07004f, 1.37337f, + -0.05725f, -0.05659f, 0.05592f, 0.01039f, -0.29343f, 1.58628f, -0.30003f, + -3.43118f, 0.00272f, 1.70928f, -0.76348f, 0.05889f, -0.03263f, -0.07724f, + 0.03523f, -0.19890f, 1.18005f, -0.03605f, -0.20530f, -4.00733f, 0.10210f, + -0.05368f, -0.17650f, -0.15317f, 0.06499f, 0.56705f, 1.04341f, 0.62890f, + 0.73451f, -0.22199f, 0.86659f, 0.78443f, -0.61664f, -0.50606f, 0.30247f, + 0.14455f, 0.39276f, 0.49203f, 0.65019f, 0.12269f, 1.64080f, 1.68289f, + 1.42694f, 1.60825f, 1.58501f, 1.47252f, 1.62589f, 1.48218f, 0.17726f, + -0.04884f, 0.35376f, -0.04796f, 0.32589f, 0.35087f, 0.35258f, -0.46103f, + -0.31176f, -0.05203f, 0.07247f, -0.26756f, 0.22019f, 0.03412f, 0.33773f, + 0.29811f, -0.11140f, 0.12831f, -0.44673f, -0.09858f, 0.07889f, 0.15137f, + 0.00347f, -0.23394f, 0.08886f, -0.31201f, -0.79912f, -0.51092f, 0.14123f, + -1.09599f, -4.26020f, -0.68675f, -0.02842f, -1.54538f, -1.28977f, -1.30558f, + -1.21074f, -1.37142f, -1.14743f, -1.85397f, 0.82985f, -0.30681f, 0.04494f, + -0.24023f, -4.18053f, -0.16096f, -0.55492f, -0.27882f, 0.05829f, -0.41224f, + -2.52088f, -0.56162f, -1.04547f, -1.70685f, -0.28842f, -1.43673f, -0.01468f, + -3.20585f, -0.69120f, -0.43931f, -0.46270f, -0.65885f, -0.55884f, -0.75138f, + 0.36381f, -5.70858f, -0.14548f, -0.15745f, -0.11812f, -0.07605f, -0.07693f, + -0.12236f, 0.16075f, +}; + +static const float av1_tx_type_nn_bias_8x16_ver_layer0[16] = { + -0.35385f, 0.30491f, -0.90011f, 0.42941f, 1.20928f, -0.88331f, + -1.48818f, -0.34785f, -0.32668f, -0.22695f, 0.89188f, 0.65521f, + 0.57598f, 0.99819f, 0.75175f, 0.17044f, +}; + +static const float av1_tx_type_nn_weights_8x16_ver_layer1[64] = { + -0.62913f, -0.34304f, 0.42963f, -0.17440f, -1.44092f, 0.69142f, -1.36067f, + 0.52211f, 0.44658f, -0.26501f, -0.41657f, 0.34428f, -0.34390f, -0.58567f, + -0.84097f, -1.96311f, -0.37215f, -0.22250f, -1.23811f, -0.07247f, -0.81731f, + 0.58755f, -1.30559f, 0.39551f, 0.41743f, -0.09940f, -0.33230f, 0.14458f, + -0.25139f, -0.54517f, 0.13469f, -0.38157f, -0.39109f, -0.18205f, 0.06834f, + -0.08395f, -0.92187f, 0.56724f, 1.44381f, 0.53226f, -0.22356f, 0.12285f, + -0.29418f, -1.86749f, -0.22372f, -0.60204f, -0.87746f, -1.16936f, 0.56884f, + 0.62641f, -0.11823f, 1.00395f, 1.64794f, -0.64535f, 2.29322f, -0.23397f, + 0.17251f, -0.35927f, 0.65631f, -0.26812f, 0.80128f, 0.85748f, 0.47404f, + 2.20547f, +}; + +static const float av1_tx_type_nn_bias_8x16_ver_layer1[4] = { + -0.44080f, + -1.67455f, + -1.46332f, + -6.13206f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_8x16_ver = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_8x16_ver_layer0, + av1_tx_type_nn_weights_8x16_ver_layer1 }, + { av1_tx_type_nn_bias_8x16_ver_layer0, av1_tx_type_nn_bias_8x16_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 16x8 block. +static const float av1_tx_type_nn_weights_16x8_hor_layer0[128] = { + 0.02600f, 0.09786f, -1.05107f, -0.35594f, -0.15658f, 2.99828f, -0.07106f, + -0.10101f, -0.14412f, -0.83790f, -0.19434f, 2.28368f, 1.91727f, -0.00956f, + -0.90640f, 0.09174f, 1.58895f, 1.38945f, 1.49431f, 1.51381f, 1.44803f, + 1.53544f, 1.44694f, 0.17753f, 1.69735f, -0.78652f, 0.31092f, -0.23736f, + 0.02231f, -0.09884f, -0.00493f, 1.21189f, -1.94382f, -0.34629f, -0.58309f, + 0.72291f, -0.30056f, 0.90660f, -0.57495f, 3.07809f, 0.73644f, 1.43050f, + 1.34356f, -0.66554f, 0.50102f, -0.64305f, 0.42044f, -1.66165f, -0.05733f, + -2.51402f, -1.01067f, -0.33390f, -0.32986f, -0.92431f, 1.86281f, -0.07290f, + -0.26290f, -0.68941f, 1.81156f, 0.66125f, -2.09974f, 0.17032f, -0.67461f, + -0.00876f, -1.50154f, 1.17153f, 1.00377f, 0.33022f, 0.74689f, 0.42878f, + 0.61725f, -0.83967f, 0.09467f, -0.39892f, 0.33863f, 0.10656f, -0.09249f, + -0.39757f, 0.48481f, -0.35162f, 1.47014f, 1.67827f, -1.84051f, 0.16291f, + -0.50135f, -2.29911f, -0.42217f, -0.13358f, 1.45899f, -0.14743f, -0.02763f, + -0.28003f, -0.01364f, 0.21014f, -0.29026f, -0.20198f, 1.38782f, 0.56731f, + 0.27489f, 0.43227f, 0.41326f, 0.42721f, 0.87720f, -1.90067f, -5.04951f, + -0.17638f, -0.58119f, -0.08954f, -0.13692f, -0.12325f, -0.38548f, 0.66462f, + -1.42377f, -1.21917f, -1.38193f, -1.36539f, -1.39378f, -1.19629f, -1.59812f, + 0.28689f, 0.32394f, 0.52128f, 0.01013f, -0.28948f, -0.26293f, -0.44331f, + -0.36570f, -0.50757f, +}; + +static const float av1_tx_type_nn_bias_16x8_hor_layer0[16] = { + -0.08696f, -0.22110f, -1.43604f, -1.00451f, -1.51029f, 0.63736f, + 0.45260f, 0.16229f, 4.01393f, -0.21748f, 0.36411f, -0.08764f, + -0.12329f, 0.08986f, 1.08117f, -0.00220f, +}; + +static const float av1_tx_type_nn_weights_16x8_hor_layer1[64] = { + 0.55824f, -0.14648f, 0.81947f, -0.45867f, -1.86078f, -0.17291f, 0.34849f, + 0.15153f, 1.75625f, -0.25760f, 0.72015f, -0.30059f, -0.57975f, 0.07609f, + -0.02036f, 0.07912f, 0.57080f, -0.13792f, 0.74184f, -0.87669f, -1.87572f, + -0.27270f, 0.39751f, 0.19652f, 2.03514f, -0.32944f, 0.76251f, 0.04399f, + -0.63175f, 0.37420f, 0.08309f, 0.04466f, 0.60255f, -0.12820f, 1.66065f, + -0.59496f, -1.94794f, -0.14847f, 0.39424f, 0.16273f, 1.80587f, 0.41197f, + 0.74691f, -0.21217f, -0.63173f, 0.09510f, -0.35538f, -0.04407f, 0.92847f, + 0.20141f, 1.68680f, -0.56528f, -2.26960f, 0.12978f, 0.73748f, 0.42438f, + 2.00673f, -0.40189f, 0.95423f, 0.23234f, -0.80953f, 0.65814f, 0.49444f, + -0.23347f, +}; + +static const float av1_tx_type_nn_bias_16x8_hor_layer1[4] = { + 3.57175f, + 2.42612f, + 3.31259f, + 2.08287f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_16x8_hor = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_16x8_hor_layer0, + av1_tx_type_nn_weights_16x8_hor_layer1 }, + { av1_tx_type_nn_bias_16x8_hor_layer0, av1_tx_type_nn_bias_16x8_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_16x8_ver_layer0[128] = { + 0.46633f, 1.55328f, -0.11230f, -0.29571f, 0.18814f, -1.52430f, -2.34660f, + 0.08644f, -1.97718f, -1.29140f, -1.12262f, -1.12985f, -1.25911f, -0.96506f, + -1.57129f, 0.96021f, 1.34192f, 1.28623f, 1.21655f, 1.28758f, 1.25482f, + 1.30195f, 1.19190f, 0.09310f, 0.52072f, 0.91487f, 1.24100f, 1.61236f, + 1.72166f, 2.20750f, 1.62379f, -1.43936f, 0.50665f, 0.40213f, 0.66502f, + -1.66699f, -3.07618f, 0.05877f, 0.60987f, -0.09995f, -0.10916f, 0.48049f, + 0.23812f, 0.39847f, -0.21682f, -0.63455f, 0.33453f, -0.67939f, -4.14355f, + -0.62756f, -0.22502f, -0.17215f, 0.01062f, 0.27049f, -0.10748f, 0.30945f, + 2.72445f, -0.89181f, -0.06800f, 0.20595f, -0.73385f, 0.04071f, -1.30294f, + 1.83507f, 0.92570f, 0.69609f, 0.76285f, 0.69892f, 0.76409f, 0.63104f, + 0.73397f, 1.09575f, -0.20129f, -0.24022f, -0.24599f, -0.59107f, -0.88755f, + -0.68987f, -0.75495f, -1.31002f, -1.30237f, -0.94093f, -2.15678f, -1.49303f, + -1.17498f, -1.39952f, -0.91270f, -0.05587f, 1.02381f, -0.75580f, -0.65263f, + -0.78996f, -0.71075f, -0.71018f, -0.70350f, -1.26196f, 2.34208f, -0.53611f, + 0.19752f, -0.16842f, -0.24828f, 0.21857f, 0.08222f, -2.55894f, -1.75702f, + 0.11394f, 1.03083f, 0.79972f, -1.54112f, -1.82341f, -0.57597f, -0.02077f, + -0.39616f, -0.00995f, -0.12809f, 0.01188f, -0.25117f, 0.09202f, 0.09336f, + -0.05614f, -0.30039f, 0.25834f, 1.19944f, 1.22533f, 0.92330f, 0.75967f, + -0.81945f, -0.41647f, +}; + +static const float av1_tx_type_nn_bias_16x8_ver_layer0[16] = { + 0.17841f, 0.67315f, -1.24450f, 3.13859f, 0.16203f, -0.14992f, + 0.29553f, -1.15567f, -0.71421f, 1.15977f, 1.14585f, 3.02460f, + -0.04510f, 0.48000f, -0.09354f, -0.42422f, +}; + +static const float av1_tx_type_nn_weights_16x8_ver_layer1[64] = { + 0.29912f, -0.10009f, -1.11478f, 1.76812f, -0.27719f, 0.52148f, 0.17622f, + -1.17116f, 0.73397f, -0.69279f, -0.11080f, 1.53751f, -1.42003f, 0.14731f, + 0.13592f, -0.04883f, 0.39186f, -0.13655f, -0.43994f, 1.82759f, -0.25601f, + -0.15018f, 0.51920f, -1.56070f, 0.31683f, -0.79367f, -0.02904f, 1.28637f, + -1.15203f, 0.26627f, 0.42828f, -0.24258f, 0.38647f, -0.83352f, 0.32553f, + 2.09522f, -0.26822f, -0.42191f, 0.32825f, -1.30748f, 1.50551f, -0.52669f, + 0.20045f, 1.69318f, -1.47839f, 0.30802f, -0.07290f, -0.28106f, 0.68192f, + -0.15522f, 1.12579f, 2.21921f, 0.09720f, -0.50265f, 0.83165f, -1.31721f, + 0.72422f, -1.24952f, 0.61653f, 2.04117f, -1.42406f, 0.52568f, -0.46180f, + -0.00873f, +}; + +static const float av1_tx_type_nn_bias_16x8_ver_layer1[4] = { + 3.34981f, + 3.74710f, + 1.38339f, + 0.45176f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_16x8_ver = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_16x8_ver_layer0, + av1_tx_type_nn_weights_16x8_ver_layer1 }, + { av1_tx_type_nn_bias_16x8_ver_layer0, av1_tx_type_nn_bias_16x8_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 16x16 block. +static const float av1_tx_type_nn_weights_16x16_layer0[128] = { + 1.26592f, 1.36313f, 1.30956f, 1.29926f, 1.48816f, 1.68851f, 1.32000f, + 0.13321f, -0.22477f, -0.88906f, -0.19622f, 1.69605f, 1.22180f, -1.57771f, + -1.15765f, 0.05710f, -1.13355f, -0.85486f, -0.99971f, -0.91571f, -1.06031f, + -0.77952f, -1.15723f, 1.17809f, 1.35602f, -0.05243f, -0.37596f, 0.26108f, + 0.17611f, -0.10323f, 0.77279f, -0.48911f, -0.79308f, 0.55112f, 0.43918f, + 0.27872f, 0.28714f, 0.45830f, 1.05689f, 0.03705f, -2.49975f, -0.01940f, + 0.05709f, 0.07942f, -0.13290f, -0.10359f, 0.00143f, 0.37303f, 0.96470f, + 0.53293f, 1.14459f, 0.89185f, 0.43378f, 0.47764f, 0.90924f, 0.15279f, + -0.15361f, 0.02949f, 0.42240f, 0.68143f, 0.89588f, 0.73754f, 0.10974f, + 1.57755f, -0.39870f, -0.32914f, 0.35638f, 0.34991f, -0.00003f, -0.23373f, + 0.29630f, -0.76699f, -0.01356f, 0.04234f, 0.84253f, 1.92078f, 0.93160f, + 0.71993f, 0.71604f, 0.76455f, -1.59782f, 0.32332f, 1.11628f, 0.33062f, + -0.03728f, -0.05710f, 0.80447f, -0.14719f, 1.34658f, -0.05718f, 0.64015f, + 0.21926f, 0.41653f, 0.12720f, 0.54092f, 1.39411f, 1.81819f, -0.24513f, + 0.00955f, 0.38011f, -0.57787f, -0.41759f, 0.68834f, -0.31783f, -0.40607f, + -0.10107f, -0.79374f, 0.75599f, -0.16282f, -0.14490f, -0.20783f, -0.55019f, + -0.13793f, -0.22293f, 0.18305f, 0.12445f, 0.56830f, 0.24567f, 0.09278f, + 0.70803f, 0.35803f, -1.52676f, -0.89624f, 0.77665f, 0.19877f, 0.77175f, + 0.50355f, 0.08592f, +}; + +static const float av1_tx_type_nn_bias_16x16_layer0[16] = { + -1.31834f, 0.14346f, -0.10062f, 0.84489f, 0.95617f, -0.06720f, + -0.68502f, -0.91442f, -0.31932f, 0.25276f, -0.15138f, -1.57661f, + -0.14062f, -0.42120f, 0.94573f, -0.09287f, +}; + +static const float av1_tx_type_nn_weights_16x16_layer1[64] = { + -1.80333f, -1.06353f, 0.55139f, 0.74644f, 0.13747f, -0.93018f, -0.10286f, + 0.67133f, 0.24460f, 1.44583f, 0.02173f, 0.26037f, -0.73687f, 0.19566f, + 0.61846f, -0.58601f, -1.03196f, -0.74415f, 0.30041f, -0.41967f, 1.08740f, + 0.96224f, -0.59139f, 0.03813f, 0.05403f, 1.33427f, -0.54375f, -1.92181f, + 0.54704f, 0.13608f, 0.22151f, -0.38076f, 1.18390f, -0.77508f, -1.84283f, + 1.00894f, 0.62318f, -0.15296f, 1.27600f, 0.22822f, 0.12751f, 0.93910f, + -0.28502f, 0.53912f, -0.96889f, 0.10182f, 0.81508f, -0.43028f, 2.67386f, + 0.52204f, 0.49820f, -0.41711f, 1.05038f, 1.12192f, 0.74349f, -0.75417f, + -0.03718f, -0.35769f, 0.89651f, 0.63236f, 0.54215f, -0.07894f, 0.48274f, + 1.08829f, +}; + +static const float av1_tx_type_nn_bias_16x16_layer1[4] = { + 0.81986f, + 1.26865f, + 0.11118f, + 2.48404f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_16x16 = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { + av1_tx_type_nn_weights_16x16_layer0, + av1_tx_type_nn_weights_16x16_layer1, + }, + { + av1_tx_type_nn_bias_16x16_layer0, + av1_tx_type_nn_bias_16x16_layer1, + }, +}; +/******************************************************************************/ + +// Tx type model for 4x16 block. +static const float av1_tx_type_nn_weights_4x16_hor_layer0[32] = { + 0.36539f, 0.25667f, 0.01491f, -0.21959f, 2.55105f, 0.17615f, 1.79884f, + 1.65936f, -0.44363f, 0.00706f, -0.68004f, -0.64360f, 1.75760f, 1.91906f, + 1.47682f, 0.09650f, -3.59244f, -0.35004f, 0.93295f, 0.25806f, -0.08154f, + 0.79332f, 0.79535f, 1.09467f, 1.57855f, -0.51359f, 0.90553f, -1.67744f, + -1.74563f, -0.88830f, -1.77603f, 2.15935f, +}; + +static const float av1_tx_type_nn_bias_4x16_hor_layer0[8] = { + -0.36435f, -2.22731f, -0.00837f, -1.34546f, + 0.62806f, -0.20675f, 4.91940f, -0.56079f, +}; + +static const float av1_tx_type_nn_weights_4x16_hor_layer1[32] = { + -0.57191f, -1.46418f, 0.67331f, -1.15027f, 0.46288f, 0.81251f, 2.51768f, + -0.27147f, 0.00761f, -2.15214f, -0.69650f, -0.50808f, 0.92832f, 0.45668f, + 2.34201f, -0.52941f, 0.51008f, -1.55496f, -0.01371f, -0.12356f, 0.66624f, + 0.88043f, 2.64862f, -1.28024f, -0.17578f, -1.80034f, -0.32217f, 0.89519f, + 1.28413f, -0.30326f, 2.45329f, -0.83335f, +}; + +static const float av1_tx_type_nn_bias_4x16_hor_layer1[4] = { + 2.33198f, + 3.36245f, + 1.62603f, + 2.91056f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x16_hor = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x16_hor_layer0, + av1_tx_type_nn_weights_4x16_hor_layer1 }, + { av1_tx_type_nn_bias_4x16_hor_layer0, av1_tx_type_nn_bias_4x16_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_4x16_ver_layer0[128] = { + 1.61392f, 1.41239f, 1.47646f, 1.47325f, 1.46110f, 1.49208f, 1.49414f, + 0.12835f, -0.76986f, 0.07087f, -0.24572f, -0.93168f, 3.07935f, -0.18183f, + -0.09831f, -0.07703f, -0.03222f, -0.25473f, -0.06090f, 2.93713f, -0.38711f, + -0.12884f, -0.18329f, -0.06262f, -0.00327f, -0.02930f, -0.01641f, -0.00622f, + -0.03305f, -4.07069f, -2.76643f, 0.04413f, -1.03176f, -0.19217f, -0.44980f, + -2.48615f, -2.58112f, -0.87695f, 0.16187f, -0.04891f, -0.06854f, 1.08104f, + 0.75245f, 1.49302f, 0.63363f, 1.45715f, 0.92574f, 1.72029f, 0.33326f, + 3.86646f, 0.04422f, 0.41019f, 0.36212f, 0.56600f, -1.01552f, 0.05128f, + 0.40454f, -1.05100f, -0.47461f, -1.33168f, -0.46145f, -1.36870f, -0.88838f, + -1.05358f, -0.18537f, -0.34357f, -0.03698f, 0.68905f, 0.41010f, 0.31223f, + -0.43382f, -0.74715f, 2.03366f, -0.30419f, 0.45747f, 0.09526f, 0.31678f, + 0.22915f, 0.21832f, 1.26385f, -0.06814f, -0.71417f, -1.18947f, 0.03762f, + 0.10936f, 2.97396f, -0.42638f, -0.03123f, -5.49756f, -0.17029f, -0.11323f, + 0.05173f, -0.44274f, -0.15738f, 0.11311f, 0.43872f, 0.16837f, -0.52849f, + 2.90050f, -0.54735f, -0.29591f, 1.24030f, 0.21696f, -0.04443f, -1.60877f, + -1.36365f, -1.27432f, -1.52060f, -1.34397f, -1.13371f, -1.87554f, 0.80123f, + 0.42820f, -0.14157f, -2.73963f, -0.68040f, -0.35236f, 0.14490f, 2.23477f, + 0.01370f, -0.20426f, -1.51411f, -0.72293f, 0.64516f, 0.97638f, 0.32616f, + -0.27975f, -0.01149f, +}; + +static const float av1_tx_type_nn_bias_4x16_ver_layer0[16] = { + -1.37863f, -0.05763f, -0.07041f, 0.15306f, 0.96026f, -1.42105f, + -0.55822f, 1.04845f, -0.17662f, -1.25345f, -0.11927f, 0.49845f, + -0.32530f, 0.73483f, 0.08322f, -0.23890f, +}; + +static const float av1_tx_type_nn_weights_4x16_ver_layer1[64] = { + 0.27194f, 0.50607f, 0.49229f, -0.48192f, 0.15667f, -1.38891f, 0.38102f, + -0.58825f, -0.07337f, -0.52909f, 0.36975f, 0.28710f, 0.34992f, -0.73630f, + 0.30386f, -0.58822f, 0.36127f, 0.57950f, 0.55878f, -0.42796f, 0.19967f, + -1.45517f, 0.42529f, -0.54630f, -0.38169f, -0.84899f, 0.41622f, 0.46935f, + 0.39077f, -0.75448f, 0.31698f, -0.76187f, 0.97765f, 0.57052f, 0.55825f, + -0.54273f, 0.20466f, -1.46347f, 0.41813f, -0.55019f, -0.19948f, -0.57982f, + 0.41206f, 0.32373f, 0.38537f, -1.11657f, 0.32887f, -0.76911f, 1.12259f, + 0.72163f, 0.82603f, 0.37786f, 0.34976f, -1.86642f, 0.59961f, -0.16329f, + -0.36631f, -0.56814f, 0.60410f, 0.53158f, 0.56389f, -0.70508f, 0.51009f, + -0.56513f, +}; + +static const float av1_tx_type_nn_bias_4x16_ver_layer1[4] = { + 4.60896f, + 4.53551f, + 4.53124f, + 4.27435f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_4x16_ver = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_4x16_ver_layer0, + av1_tx_type_nn_weights_4x16_ver_layer1 }, + { av1_tx_type_nn_bias_4x16_ver_layer0, av1_tx_type_nn_bias_4x16_ver_layer1 } +}; +/******************************************************************************/ + +// Tx type model for 16x4 block. +static const float av1_tx_type_nn_weights_16x4_hor_layer0[128] = { + 1.45347f, -0.15743f, 0.44236f, 0.25808f, 0.33944f, 0.38678f, 0.24428f, + 1.67287f, 0.09539f, -0.42940f, -0.31507f, -0.00154f, -2.98755f, -2.27744f, + -0.49183f, 0.09333f, -0.99026f, -0.22157f, 0.53701f, 0.60447f, 0.15686f, + -0.04646f, 0.26341f, 2.12361f, 0.27090f, -1.14716f, -0.64146f, -0.91604f, + -0.75335f, -0.60056f, -1.25084f, 1.68473f, -3.24075f, -4.03867f, -2.07877f, + -0.02347f, 0.00333f, -0.01259f, -0.00465f, 0.02526f, 0.36286f, -0.10324f, + 2.12780f, -0.74584f, -1.05052f, 1.78467f, -0.55065f, -0.03326f, 2.46781f, + 1.18349f, 0.96015f, 1.01696f, 1.10584f, 1.07263f, 1.11531f, -1.06413f, + 0.32389f, -1.87360f, -0.14435f, 1.77926f, 1.09966f, -0.12680f, -0.61386f, + -0.09724f, -0.33095f, 1.12122f, 1.00791f, 1.52416f, 1.35004f, 1.32657f, + 0.60950f, -1.13538f, -0.38654f, 0.06473f, 2.10669f, 0.27734f, -0.38359f, + -1.91455f, -1.22676f, 0.05786f, 0.97432f, 2.19967f, 0.50457f, 0.78976f, + 0.95183f, -0.32414f, 0.49437f, -0.04506f, 0.18993f, -0.07971f, 0.23889f, + -0.09872f, -0.66036f, 0.05377f, 2.69638f, -0.08259f, -0.69210f, -1.08296f, + -1.96504f, -2.31947f, -0.80161f, -0.80456f, -1.35556f, -0.05323f, -4.42658f, + -0.30732f, -0.12043f, 0.11126f, 0.10771f, -0.14956f, -0.02218f, 0.41016f, + 1.16599f, 1.14629f, 1.12881f, 1.18676f, 1.24677f, 1.28695f, 1.11270f, + 0.08233f, 1.75440f, 0.49228f, -0.34858f, -0.17032f, 0.29288f, 0.47175f, + 0.19055f, -1.56413f, +}; + +static const float av1_tx_type_nn_bias_16x4_hor_layer0[16] = { + -1.71227f, 0.47291f, -0.97536f, -0.66216f, 0.11729f, -0.21451f, + 2.75281f, 0.04318f, 2.03965f, 0.14618f, -0.70483f, -0.24517f, + 1.14048f, 0.33308f, -1.10886f, 0.41184f, +}; + +static const float av1_tx_type_nn_weights_16x4_hor_layer1[64] = { + -1.17079f, 0.19096f, -1.05753f, -0.30803f, -1.21680f, -0.67255f, 1.60115f, + 0.05972f, 1.44759f, -0.04068f, -0.26331f, 0.31400f, 0.96923f, 0.33443f, + -0.77215f, -0.91316f, -1.78928f, 0.21483f, -1.24008f, -0.46190f, -0.12127f, + -0.62144f, 1.37593f, 0.08373f, 1.56215f, 0.00279f, -0.14556f, 0.38710f, + 0.96228f, 0.66433f, -0.51798f, -0.80738f, -0.18539f, 0.19377f, -1.03090f, + -1.51044f, -0.59485f, -0.62589f, 1.90742f, 0.09078f, 1.49113f, 0.00205f, + -0.15918f, 0.40827f, 1.08553f, 0.43431f, 0.33519f, -1.12669f, -1.10274f, + 0.80004f, -1.83599f, -0.53134f, 2.00515f, -0.32670f, 1.37124f, 0.51136f, + 1.62563f, 0.24787f, 0.31757f, 0.81751f, 1.57262f, 0.83214f, 1.04661f, + -0.43819f, +}; + +static const float av1_tx_type_nn_bias_16x4_hor_layer1[4] = { + 2.32575f, + 2.75703f, + 1.12304f, + 2.15567f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_16x4_hor = { + 8, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_16x4_hor_layer0, + av1_tx_type_nn_weights_16x4_hor_layer1 }, + { av1_tx_type_nn_bias_16x4_hor_layer0, av1_tx_type_nn_bias_16x4_hor_layer1 } +}; + +static const float av1_tx_type_nn_weights_16x4_ver_layer0[32] = { + 0.26047f, 0.99930f, 1.16484f, -0.28196f, -2.67483f, -0.21456f, -0.16854f, + 0.46375f, 1.47951f, 1.13735f, 1.12356f, 0.27385f, 0.50978f, 2.09967f, + -1.47386f, 0.01950f, -0.06362f, 0.26014f, 1.04544f, -0.03099f, 0.07478f, + -0.39701f, 0.05545f, 2.73633f, -0.56305f, -0.02208f, -0.44517f, -0.00897f, + -0.17967f, -0.96622f, 0.42635f, -1.04784f, +}; + +static const float av1_tx_type_nn_bias_16x4_ver_layer0[8] = { + -0.52088f, 0.52844f, -1.03655f, -0.30974f, + 2.59952f, -1.93604f, 0.00000f, 2.51787f, +}; + +static const float av1_tx_type_nn_weights_16x4_ver_layer1[32] = { + 0.10916f, -0.21219f, -0.51340f, 0.69161f, 1.45988f, -1.36942f, -0.40899f, + 1.05136f, -0.08486f, 0.10008f, -0.55304f, 0.88012f, 1.61177f, -1.64507f, + 0.63428f, 1.15130f, -0.17287f, -0.18592f, -0.01143f, 0.88293f, 1.73326f, + -1.63624f, 0.09359f, 1.18393f, 0.26531f, 0.22378f, 0.15170f, 1.06965f, + 1.26814f, -1.93873f, -0.00768f, 1.58309f, +}; + +static const float av1_tx_type_nn_bias_16x4_ver_layer1[4] = { + 2.34713f, + 1.68667f, + 1.25488f, + 1.69812f, +}; + +static const NN_CONFIG av1_tx_type_nnconfig_16x4_ver = { + 4, // num_inputs + 4, // num_outputs + 1, // num_hidden_layers + { + 8, + }, // num_hidden_nodes + { av1_tx_type_nn_weights_16x4_ver_layer0, + av1_tx_type_nn_weights_16x4_ver_layer1 }, + { av1_tx_type_nn_bias_16x4_ver_layer0, av1_tx_type_nn_bias_16x4_ver_layer1 } +}; +/******************************************************************************/ + +// Map tx_size to its corresponding neural net model for tx type prediction. +static const NN_CONFIG *av1_tx_type_nnconfig_map_hor[] = { + &av1_tx_type_nnconfig_4x4_hor, // 4x4 transform + &av1_tx_type_nnconfig_8x8_hor, // 8x8 transform + &av1_tx_type_nnconfig_16x16, // 16x16 transform + NULL, // 32x32 transform + NULL, // 64x64 transform + &av1_tx_type_nnconfig_4x8_hor, // 4x8 transform + &av1_tx_type_nnconfig_8x4_hor, // 8x4 transform + &av1_tx_type_nnconfig_8x16_hor, // 8x16 transform + &av1_tx_type_nnconfig_16x8_hor, // 16x8 transform + NULL, // 16x32 transform + NULL, // 32x16 transform + NULL, // 32x64 transform + NULL, // 64x32 transform + &av1_tx_type_nnconfig_4x16_hor, // 4x16 transform + &av1_tx_type_nnconfig_16x4_hor, // 16x4 transform + NULL, // 8x32 transform + NULL, // 32x8 transform + NULL, // 16x64 transform + NULL, // 64x16 transform +}; + +static const NN_CONFIG *av1_tx_type_nnconfig_map_ver[] = { + &av1_tx_type_nnconfig_4x4_ver, // 4x4 transform + &av1_tx_type_nnconfig_8x8_ver, // 8x8 transform + &av1_tx_type_nnconfig_16x16, // 16x16 transform + NULL, // 32x32 transform + NULL, // 64x64 transform + &av1_tx_type_nnconfig_4x8_ver, // 4x8 transform + &av1_tx_type_nnconfig_8x4_ver, // 8x4 transform + &av1_tx_type_nnconfig_8x16_ver, // 8x16 transform + &av1_tx_type_nnconfig_16x8_ver, // 16x8 transform + NULL, // 16x32 transform + NULL, // 32x16 transform + NULL, // 32x64 transform + NULL, // 64x32 transform + &av1_tx_type_nnconfig_4x16_ver, // 4x16 transform + &av1_tx_type_nnconfig_16x4_ver, // 16x4 transform + NULL, // 8x32 transform + NULL, // 32x8 transform + NULL, // 16x64 transform + NULL, // 64x16 transform +}; + +// Tx split model for 4x8 block. +static const float av1_tx_split_nn_weights_4x8_layer0[8 * 16] = { + 0.068650f, -0.732073f, -0.040361f, 0.322550f, -0.021123f, 0.212518f, + -0.350546f, 0.435987f, -0.111756f, -0.401568f, 0.069548f, -0.313000f, + 0.073918f, -0.373805f, -0.775810f, -0.124753f, 0.181094f, -0.602641f, + -0.026219f, -0.350112f, 0.020599f, -0.311752f, -0.476482f, -0.669465f, + -0.310921f, 0.348869f, -0.115984f, 0.154250f, 0.200485f, -0.016689f, + 0.020392f, 0.413810f, 0.634064f, -0.627530f, 0.399178f, -0.012284f, + 0.472030f, 0.091087f, -0.706100f, -0.447944f, -0.274226f, 0.445656f, + 0.309339f, 0.505522f, 0.038496f, -0.152809f, 0.408684f, -0.068151f, + 0.271612f, 0.353233f, -0.150365f, 0.075212f, -0.035096f, 0.346615f, + 0.124382f, 0.477072f, 0.216288f, 0.070548f, -0.106362f, 0.681613f, + -0.145502f, -0.218631f, -0.099248f, -0.001983f, -0.196819f, -0.969045f, + 0.063009f, -0.123053f, 0.104875f, -0.137581f, -0.282933f, -0.003624f, + -0.315659f, -0.333523f, -0.503000f, -0.100063f, -0.536711f, -0.059978f, + -0.670248f, -0.353762f, 0.181109f, 0.289715f, -0.071206f, 0.261141f, + 0.052796f, -0.114554f, -0.139214f, -0.261380f, 0.075984f, -0.647925f, + -0.099528f, -0.677814f, 0.015712f, -0.389385f, -0.095622f, -0.165117f, + -0.109454f, -0.175240f, -0.393914f, 0.212330f, 0.037822f, 0.248280f, + 0.180197f, 0.110493f, -0.525727f, -0.092329f, -0.524029f, -0.407364f, + -0.542373f, -0.435626f, -0.912194f, 0.062794f, 0.160433f, 0.741485f, + -0.103659f, -0.119327f, -0.055275f, 0.334358f, 0.014713f, 0.046327f, + 0.831114f, -0.576682f, 0.354369f, -0.082088f, 0.452331f, 0.039730f, + -0.792429f, -0.385862f, +}; + +static const float av1_tx_split_nn_bias_4x8_layer0[16] = { + 0.238621f, 2.186830f, 1.383035f, -0.867139f, 1.257119f, -0.351571f, + -0.240650f, -0.971692f, 2.744843f, 1.116991f, 0.139062f, -0.165332f, + 0.262171f, -1.598153f, -1.427340f, -1.602306f, +}; + +static const float av1_tx_split_nn_weights_4x8_layer1[16] = { + -0.367134f, 1.373058f, -0.897039f, -0.326819f, -0.734030f, -0.290413f, + -0.501249f, 0.505321f, -0.537692f, -0.767893f, 0.268697f, 0.278987f, + 0.085082f, 0.614986f, 0.847904f, 0.637578f, +}; + +static const float av1_tx_split_nn_bias_4x8_layer1[1] = { + 0.20586078f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_4x8 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_4x8_layer0, + av1_tx_split_nn_weights_4x8_layer1, + }, + { + av1_tx_split_nn_bias_4x8_layer0, + av1_tx_split_nn_bias_4x8_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 8x8 block. +static const float av1_tx_split_nn_weights_8x8_layer0[144] = { + 0.177983f, -0.938386f, -0.074460f, -0.221843f, -0.073182f, -0.295155f, + -0.098202f, -0.279510f, 0.001054f, -0.119319f, -1.835282f, -0.581507f, + -1.222222f, -1.049006f, -0.807508f, -0.454252f, -0.774879f, -0.180607f, + -0.886976f, -0.231971f, -0.824677f, -0.351872f, -1.323819f, 0.235378f, + 0.015331f, -0.341818f, 0.145549f, -0.348362f, 0.147647f, -0.323400f, + 0.047558f, -0.553025f, -0.295485f, -0.330368f, -0.530605f, -0.407516f, + 0.447740f, 0.782381f, -0.179164f, -0.584675f, -0.052645f, 0.038656f, + -0.096783f, 0.038342f, -0.170762f, -0.405844f, -0.552665f, -0.509866f, + 0.757204f, -1.296465f, 0.631015f, 0.009265f, 0.646192f, 0.044523f, + 0.653161f, 0.033820f, 0.849639f, -0.068555f, -1.036085f, -0.511652f, + 0.104693f, -1.458690f, 0.286051f, -0.089800f, 0.381564f, -0.302640f, + 0.304465f, -0.268706f, 0.432603f, -0.117914f, -2.070031f, -0.565696f, + -0.073027f, -1.783570f, -0.318144f, -0.320990f, -0.343966f, -0.140996f, + -0.322977f, -0.232147f, -0.373210f, -0.158266f, -1.922305f, -0.634373f, + 0.101894f, -0.221847f, 0.018412f, -0.423887f, -0.266684f, -0.444930f, + -0.196237f, 0.106638f, -0.065834f, -0.538401f, -0.280772f, -0.620348f, + 1.089957f, -0.799928f, 0.504112f, -0.165763f, 0.578741f, -0.172653f, + 0.547316f, -0.143484f, 0.717220f, -0.297190f, -1.237854f, -0.074819f, + -0.977304f, -0.484092f, -0.646427f, -0.451443f, -0.612126f, -0.224475f, + -0.731608f, -0.257077f, -0.665857f, -0.346742f, -1.216372f, 0.227267f, + 0.231249f, -1.693073f, -0.035899f, 0.380845f, -0.058476f, 0.409405f, + -0.066679f, 0.406731f, -0.068501f, 0.396748f, 0.639462f, 0.150834f, + -0.418659f, -1.421931f, 0.101889f, 0.083573f, 0.129746f, 0.134460f, + 0.081185f, 0.127420f, 0.083664f, 0.051096f, 1.361688f, 0.386093f, +}; + +static const float av1_tx_split_nn_bias_8x8_layer0[12] = { + 4.280443f, 2.218902f, -0.256953f, 3.161431f, 2.082548f, 2.506052f, + 2.563224f, 1.421976f, -1.627813f, -1.436085f, 2.297265f, 1.500469f, +}; + +static const float av1_tx_split_nn_weights_8x8_layer1[12] = { + 1.178833f, -0.428527f, -0.078737f, 0.381434f, -0.466895f, -0.901745f, + -0.766968f, -0.356663f, 0.450146f, 0.509370f, -0.356604f, -0.443506f, +}; + +static const float av1_tx_split_nn_bias_8x8_layer1[1] = { + -0.156294f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_8x8 = { + 12, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 12, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_8x8_layer0, + av1_tx_split_nn_weights_8x8_layer1, + }, + { + av1_tx_split_nn_bias_8x8_layer0, + av1_tx_split_nn_bias_8x8_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 8x16 block. +static const float av1_tx_split_nn_weights_8x16_layer0[8 * 64] = { + 0.374660f, 0.218905f, -0.139779f, 0.212141f, 0.056517f, 0.051114f, + 0.042860f, -0.273258f, -0.340809f, 0.138983f, -0.216996f, -0.241519f, + -0.123244f, 0.078577f, -0.472273f, -0.194201f, 0.125056f, 0.239761f, + -0.332782f, 0.174782f, -0.211400f, -0.129795f, 0.062195f, 0.113176f, + -0.008869f, 0.140764f, 0.059833f, 0.163826f, 0.359293f, -0.109797f, + -0.022091f, -0.059536f, -0.188226f, 0.179709f, 0.031386f, 0.164790f, + 0.214364f, 0.198555f, 0.152262f, -0.242980f, 0.319367f, -0.136902f, + 0.046524f, -0.043591f, 0.342178f, -0.011757f, -0.014286f, 0.072871f, + -0.278314f, -0.345303f, -0.252103f, -0.107154f, -0.235101f, -0.106739f, + -0.120865f, -0.160042f, 0.240028f, 0.112902f, -0.141587f, -0.703012f, + -0.136591f, 0.318993f, -0.154417f, -0.054668f, 0.192870f, 0.176166f, + -0.029965f, 0.266942f, -0.178384f, 0.038680f, 0.134403f, -0.002426f, + 0.534825f, -0.070923f, 0.413281f, 0.418148f, 0.093729f, 0.016454f, + 0.305358f, -0.040512f, 0.069904f, -0.227588f, -0.362220f, -0.031604f, + -0.394901f, 0.071506f, -0.342833f, -0.142550f, -0.164005f, 0.182600f, + 0.213062f, 0.076805f, 0.278758f, 0.125613f, -0.035552f, 0.040971f, + 0.182785f, -0.227961f, -0.105413f, -0.074949f, -0.084629f, -0.254767f, + 0.114657f, 0.047121f, 0.195902f, 0.264759f, 0.017799f, 0.210230f, + 0.150749f, -0.142142f, 0.182494f, -0.142415f, -0.259782f, -0.114830f, + -0.198826f, 0.000061f, -0.375668f, -0.276656f, -0.373202f, 0.210298f, + 0.422680f, 0.066960f, 0.351106f, -0.209034f, 0.367195f, -0.110274f, + 0.115573f, -0.066642f, -0.389673f, -0.260447f, 0.056949f, -0.180425f, + 0.069922f, -0.153506f, -0.097053f, -0.111757f, 0.094069f, 0.144837f, + -0.052984f, -0.506681f, -0.034474f, 0.279057f, -0.105025f, 0.006656f, + -0.125017f, -0.114096f, 0.103153f, -0.117402f, -0.359472f, 0.072534f, + 0.110291f, 0.003088f, -0.456897f, 0.038331f, -0.322298f, 0.113942f, + -0.119916f, -0.194392f, 0.093167f, 0.193459f, 0.074671f, 0.033602f, + 0.004440f, -0.179578f, -0.036637f, -0.216172f, -0.296530f, -0.318992f, + 0.319160f, -0.066218f, 0.291246f, 0.181292f, 0.089914f, 0.025273f, + 0.303128f, 0.019063f, 0.078545f, -0.396919f, 0.014065f, -0.122121f, + 0.037107f, -0.151886f, -0.299392f, -0.172207f, -0.124571f, -0.232553f, + 0.102970f, -0.225040f, 0.061059f, -0.258188f, -0.469871f, -0.099607f, + -0.061524f, -0.213700f, 0.070237f, -0.289134f, -0.238225f, 0.256403f, + -0.119344f, 0.067782f, -0.398983f, -0.123975f, -0.200205f, -0.047038f, + 0.026569f, 0.031037f, 0.094302f, -0.101239f, 0.433307f, -0.303612f, + 0.088537f, -0.164436f, 0.202471f, -0.048592f, -0.251904f, 0.122577f, + -0.309874f, -0.263405f, -0.292503f, 0.216589f, 0.035378f, 0.136599f, + -0.145844f, -0.018211f, 0.174084f, -0.449941f, -0.001428f, 0.064134f, + 0.039652f, 0.111083f, -0.246076f, -0.204733f, 0.056559f, -0.000123f, + 0.104049f, 0.138512f, -0.128309f, 0.087855f, 0.232784f, 0.247138f, + 0.162766f, 0.154829f, 0.313605f, -0.164115f, -0.050844f, 0.156549f, + 0.185279f, -0.238962f, -0.308281f, -0.179592f, -0.193262f, 0.201670f, + -0.203399f, -0.096831f, -0.127867f, 0.310674f, -0.008181f, 0.004078f, + -0.211038f, -0.193480f, -0.185639f, -0.150202f, -0.204858f, -0.240758f, + 0.114268f, -0.032535f, -0.052403f, -0.234333f, -0.064072f, -0.208444f, + -0.352853f, -0.224001f, -0.156330f, 0.215436f, 0.171846f, 0.291849f, + 0.108832f, 0.046991f, -0.127801f, 0.032485f, 0.141493f, 0.123319f, + -0.057250f, 0.315346f, -0.061317f, -0.465086f, -0.130179f, -0.217841f, + -0.239089f, -0.073251f, -0.327718f, 0.054905f, -0.283169f, -0.028900f, + 0.071450f, 0.270072f, 0.248891f, 0.088052f, 0.253319f, 0.122808f, + 0.175490f, -0.147805f, 0.089169f, -0.045457f, -0.330788f, 0.099791f, + -0.137376f, -0.195977f, -0.350942f, -0.284930f, -0.559037f, 0.030504f, + 0.162554f, -0.199100f, -0.050453f, -0.131320f, -0.077863f, -0.066253f, + -0.379723f, -0.424047f, -0.081182f, -0.252261f, -0.102815f, 0.058240f, + -0.182036f, 0.176772f, -0.070823f, 0.216054f, -0.211533f, -0.232992f, + 0.279346f, 0.117984f, 0.236674f, 0.126625f, -0.046220f, 0.044919f, + 0.278492f, 0.083944f, 0.180512f, 0.217994f, 0.401170f, -0.064417f, + 0.011636f, -0.139597f, -0.050020f, -0.268438f, -0.032803f, 0.024908f, + -0.085713f, -0.012984f, -0.055192f, -0.338657f, 0.045826f, -0.312849f, + -0.023393f, -0.168800f, -0.030886f, -0.131816f, -0.253542f, -0.104812f, + -0.354389f, 0.169464f, 0.094151f, -0.217122f, -0.456397f, 0.211478f, + 0.219232f, -0.155519f, -0.353700f, -0.264759f, -0.034709f, 0.034409f, + -0.148639f, -0.132850f, -0.216791f, -0.118492f, 0.173721f, -0.144181f, + 0.335028f, 0.176439f, 0.105980f, 0.169390f, 0.155615f, -0.040618f, + -0.176029f, 0.155569f, -0.184833f, -0.171099f, -0.178663f, -0.032051f, + -0.434334f, 0.092238f, -0.263103f, 0.061804f, -0.172957f, 0.005962f, + -0.100176f, 0.125898f, 0.048092f, -0.088141f, 0.247196f, -0.221601f, + -0.114474f, -0.124410f, -0.156393f, -0.181782f, -0.083562f, 0.034937f, + 0.403401f, -0.046200f, 0.322259f, 0.219678f, 0.109850f, 0.051837f, + 0.196861f, -0.019118f, 0.248818f, -0.137567f, 0.127862f, 0.052293f, + 0.298726f, 0.275788f, 0.015344f, 0.058714f, 0.283691f, -0.053794f, + -0.123270f, -0.227761f, -0.141744f, -0.268515f, -0.007189f, -0.242117f, + -0.252396f, -0.069017f, 0.034803f, -0.003388f, -0.262577f, 0.062115f, + -0.298393f, 0.215415f, -0.153615f, 0.289902f, 0.085886f, -0.504290f, + 0.077178f, 0.150861f, -0.228848f, -0.261020f, 0.198204f, 0.162113f, + 0.346418f, -0.286950f, 0.354756f, -0.226419f, 0.024720f, 0.208037f, + 0.107286f, -0.110849f, 0.104415f, -0.207725f, 0.063932f, -0.037748f, + -0.167037f, -0.068282f, 0.320815f, -0.051884f, 0.099989f, -0.078388f, + 0.127071f, 0.046675f, -0.336571f, -0.273080f, 0.264694f, -0.007352f, + -0.093828f, 0.094773f, -0.144434f, 0.091795f, -0.031615f, 0.056914f, + 0.064673f, -0.136669f, 0.344734f, 0.225926f, 0.283451f, -0.068354f, + 0.030572f, 0.180784f, -0.378047f, -0.092962f, -0.083291f, 0.038970f, + 0.052094f, -0.017932f, 0.216302f, -0.184396f, 0.079888f, 0.210406f, + -0.020627f, 0.244744f, 0.336972f, -0.182914f, -0.220976f, -0.304225f, + -0.330974f, -0.370868f, -0.084935f, -0.136489f, -0.210082f, -0.188088f, + -0.408768f, 0.184693f, +}; + +static const float av1_tx_split_nn_bias_8x16_layer0[64] = { + -0.274107f, 0.445751f, 0.234359f, 0.291593f, 0.163298f, 0.183707f, + -0.548839f, -0.190779f, -0.163346f, -0.669028f, 0.399209f, -0.354974f, + 0.000000f, -0.254630f, 0.220149f, 0.371104f, 0.789759f, 0.270300f, + 0.195126f, -0.206958f, 0.917708f, -0.256232f, 1.131933f, 1.178944f, + 0.461270f, 0.246169f, -0.818614f, -0.111986f, 0.759355f, 0.154889f, + 0.470299f, -1.025250f, 0.678678f, 0.959346f, -0.164105f, 0.544079f, + -0.448733f, 0.649221f, -0.536672f, 0.962758f, -0.256427f, 0.808664f, + -0.118694f, 0.684873f, -0.015635f, -0.046469f, 0.075481f, 0.412647f, + 0.454456f, -0.107169f, 0.775235f, -0.261629f, -1.194849f, 0.010093f, + -0.231289f, 0.658286f, -0.769320f, 0.564545f, 0.482962f, -0.131378f, + -0.255844f, -0.078400f, 0.476752f, 0.643001f, +}; + +static const float av1_tx_split_nn_weights_8x16_layer1[64] = { + -0.145065f, -0.145101f, 0.174786f, 0.196692f, 0.102025f, -0.087735f, + 0.386353f, -0.660539f, -0.183940f, 0.490045f, -0.276404f, -0.145669f, + 0.209846f, -0.085574f, -0.156821f, -0.377450f, -0.950010f, 0.450709f, + -0.108545f, -0.261181f, 1.435606f, -0.176621f, -1.158548f, 2.035680f, + 0.218069f, -0.138629f, 0.305958f, -0.277194f, -0.602468f, 0.203873f, + 0.120720f, 0.216095f, -0.434502f, -0.579746f, -0.239450f, 0.755529f, + 0.545643f, 0.232091f, 0.330169f, 0.988136f, -0.070465f, -0.345584f, + -0.162455f, -0.617064f, 0.123881f, -0.201098f, 0.222756f, 0.112932f, + 0.048647f, -0.147890f, 0.394584f, -0.262148f, 0.280564f, -0.195432f, + -0.047515f, 1.133410f, 0.255415f, -0.299032f, -0.397807f, -0.153246f, + -0.256734f, 0.177370f, 0.213522f, -0.530158f, +}; + +static const float av1_tx_split_nn_bias_8x16_layer1[1] = { + 0.14910713f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_8x16 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 64, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_8x16_layer0, + av1_tx_split_nn_weights_8x16_layer1, + }, + { + av1_tx_split_nn_bias_8x16_layer0, + av1_tx_split_nn_bias_8x16_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 16x16 block. +static const float av1_tx_split_nn_weights_16x16_layer0[12 * 24] = { + -0.177215f, -0.297166f, 0.299924f, 0.207878f, 0.216871f, 0.173264f, + 0.295464f, 0.048395f, 0.154731f, 0.305880f, 0.056787f, -0.166617f, + 0.115653f, -0.529477f, -0.073995f, -0.211746f, -0.018169f, 0.000788f, + -0.024940f, -0.007055f, 0.001392f, 0.021678f, -1.594600f, -0.099593f, + 0.332930f, 0.103574f, 0.158249f, 0.182601f, 0.332665f, 0.226207f, + -0.139566f, 0.185531f, 0.099074f, -0.185654f, -0.203121f, -0.285678f, + -0.313453f, -0.294452f, -0.143707f, -0.031265f, -0.453030f, -0.061874f, + -0.066150f, -0.099058f, -0.458879f, 0.127544f, 0.338314f, -0.161350f, + 0.030091f, -0.075528f, 0.004320f, 0.353690f, -0.013480f, -0.420402f, + -0.004659f, -0.329401f, -0.001745f, 0.227384f, -0.055183f, 0.121405f, + 0.160340f, 0.143603f, -0.221813f, 0.079107f, -0.657639f, -0.084348f, + -0.303414f, 0.046774f, -0.367679f, 0.060005f, 0.168645f, 0.084421f, + -0.133625f, 0.301375f, 0.079412f, -0.419303f, 0.017235f, 0.068637f, + 0.018384f, -0.428325f, -0.019753f, 0.149444f, -0.474836f, -0.287162f, + 0.198083f, 0.028292f, -0.299092f, -0.005849f, -0.256245f, 0.233277f, + -0.217561f, -0.264003f, 0.269411f, 0.207032f, -0.339411f, -0.198431f, + -0.028521f, 0.158076f, 0.177116f, 0.345702f, -0.145132f, 0.064623f, + -0.090867f, 0.288816f, -0.263198f, -0.071028f, -0.044546f, 0.380017f, + -0.014100f, -0.271192f, -0.318559f, 0.129015f, -0.050314f, -0.093355f, + -0.578498f, 0.099090f, -0.133080f, -0.029975f, -0.059828f, -0.157765f, + -0.321153f, -0.343671f, -0.242959f, 0.128304f, 0.017170f, 0.072787f, + -0.475838f, -0.003806f, -0.068615f, 0.150556f, -0.159903f, -0.416513f, + 0.218794f, -0.290456f, -0.084569f, -0.170014f, -0.044414f, -0.153069f, + -0.077329f, -0.089747f, -0.096526f, 0.537952f, 0.134725f, -0.006469f, + -0.323335f, -0.168183f, -0.107163f, -0.139954f, 0.011286f, -0.021712f, + -0.513992f, 0.259135f, -0.319808f, 0.077811f, 0.104613f, 0.370571f, + 0.185244f, 0.065530f, -0.091098f, -0.573741f, 0.111934f, 0.437417f, + -0.123691f, 0.220641f, -0.024783f, -0.149460f, -0.354185f, -0.134127f, + 0.038015f, -0.380596f, 0.250980f, 0.142208f, 0.135170f, -0.131129f, + -0.357556f, -0.530945f, 0.159672f, -0.147025f, -0.377829f, -0.504508f, + -0.492870f, 0.020753f, 0.142818f, 0.025172f, 0.086140f, 0.091283f, + 0.087491f, -0.186415f, 0.177785f, -0.195121f, -1.191148f, -0.477102f, + 0.023371f, 0.227004f, -0.023502f, -0.242913f, -0.074398f, -0.153480f, + 0.162900f, 0.415509f, -0.162565f, -0.131709f, -0.258852f, -0.252027f, + -0.080845f, -0.330274f, 0.021874f, 0.232398f, 0.069277f, 0.220567f, + -0.024237f, -0.366771f, 0.081673f, -0.429906f, -0.302170f, 0.061045f, + 0.352777f, -0.230376f, 0.408153f, 0.064758f, 0.142051f, 0.007219f, + 0.622878f, 0.212577f, 0.036489f, 0.081150f, -0.284767f, 0.107763f, + -0.529786f, -0.072190f, -0.300421f, -0.287959f, -0.568900f, 0.011547f, + -0.131696f, -0.356854f, -0.587962f, -0.026598f, 0.405829f, 0.057565f, + 0.414265f, -0.159155f, 0.221456f, 0.146314f, 0.265776f, -0.006516f, + 0.473978f, -0.186431f, 0.288672f, -0.060437f, 0.083380f, -0.205641f, + 0.360016f, 0.222041f, 0.420011f, 0.024579f, 0.377546f, 0.250380f, + -0.069900f, 0.296743f, 0.073532f, -0.243225f, -0.374987f, -0.387288f, + -0.237255f, -0.287013f, 0.417831f, -0.252988f, -0.257652f, -0.066775f, + -0.253926f, 0.057841f, 0.346133f, -0.157797f, -0.406028f, -0.286893f, + 0.274507f, -0.452561f, 0.143381f, -0.097755f, 0.021242f, 0.034561f, + 0.044115f, 0.004065f, 0.066729f, 0.043558f, 0.102991f, -0.477574f, +}; + +static const float av1_tx_split_nn_bias_16x16_layer0[24] = { + -0.479033f, 1.467402f, -0.366291f, 0.372511f, 0.715322f, -0.605500f, + 0.176848f, 0.032318f, 0.237429f, -0.046047f, 0.452082f, 0.451805f, + -0.822845f, 0.636762f, -0.057350f, 1.163978f, 0.728287f, 0.603654f, + -0.245519f, -0.893569f, -1.428185f, 0.808870f, -0.076159f, 1.231976f, +}; + +static const float av1_tx_split_nn_weights_16x16_layer1[24] = { + -0.176161f, 1.670188f, -0.180755f, -0.321326f, 0.249728f, -0.170504f, + -0.538432f, 0.033893f, 0.149842f, 0.404140f, -0.377812f, 0.338838f, + -0.176091f, 0.249844f, -0.362533f, 1.412460f, 0.196862f, 0.278194f, + -0.140444f, 0.297746f, 0.172533f, 0.116470f, -0.151656f, -0.603250f, +}; + +static const float av1_tx_split_nn_bias_16x16_layer1[1] = { + 0.184803f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_16x16 = { + 12, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 24, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_16x16_layer0, + av1_tx_split_nn_weights_16x16_layer1, + }, + { + av1_tx_split_nn_bias_16x16_layer0, + av1_tx_split_nn_bias_16x16_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 32x32 block. +static const float av1_tx_split_nn_weights_32x32_layer0[12 * 32] = { + -0.439303f, 0.004813f, -0.365052f, -0.116868f, -0.356716f, -0.196537f, + -0.196770f, -0.076096f, 0.357004f, -0.044909f, -0.112910f, -0.129081f, + 0.156725f, -0.386346f, 0.038971f, 0.160696f, 0.204923f, -0.384333f, + -0.319546f, 0.028179f, -0.250524f, -0.289669f, -0.284138f, -0.258963f, + -0.180854f, -0.000807f, -0.029620f, -0.353134f, 0.212408f, 0.141414f, + 0.303016f, 0.098066f, 0.482455f, 0.036069f, -0.166279f, 0.210119f, + -0.086337f, -0.023550f, -0.250796f, -0.183945f, -0.393856f, 0.170608f, + -0.306403f, 0.026318f, -0.277296f, 0.092684f, -0.033584f, -0.018371f, + -0.025043f, -0.257659f, -0.139163f, -0.206949f, -0.190105f, 0.028053f, + 0.361851f, -0.364726f, -0.096771f, -0.184166f, -0.433228f, -0.182191f, + -0.097051f, 0.259172f, 0.016432f, 0.259358f, 0.145059f, 0.037196f, + 0.091581f, -0.219644f, 0.140384f, -0.446837f, -0.234531f, 0.149508f, + -0.083429f, 0.186189f, -0.099890f, -0.111277f, 0.495214f, 0.085053f, + -0.266613f, -0.051366f, 0.148593f, 0.111875f, 0.077787f, -0.371653f, + -0.146157f, -0.229235f, 0.076203f, 0.488975f, 0.096771f, -0.009483f, + 0.192985f, 0.246273f, -0.192671f, -0.557890f, -0.292650f, -0.088907f, + -0.106892f, -0.329659f, 0.012105f, -0.359326f, 0.170723f, -0.004357f, + 0.171593f, -0.478768f, -0.236016f, -0.035077f, 0.133731f, 0.137962f, + -0.397926f, -0.155164f, -0.276709f, -0.186602f, -0.258301f, 0.036965f, + -0.649359f, 0.127605f, 0.097930f, 0.182775f, -0.313324f, 0.053349f, + 0.204203f, -0.222948f, -0.059008f, -0.049759f, -0.056848f, 0.087497f, + -0.039987f, -0.055042f, -0.041623f, -0.078424f, -0.317291f, -0.191398f, + 0.632147f, 0.221825f, 0.268394f, -0.096357f, 0.442545f, -0.007117f, + -0.036125f, 0.000525f, 0.088092f, -0.203653f, 0.086925f, 0.439141f, + 0.329889f, -0.370050f, -0.194306f, -0.207430f, 0.132779f, -0.217614f, + -0.039444f, -0.053019f, -0.260725f, -0.116563f, -0.271048f, 0.283737f, + -0.007300f, 0.062257f, -0.347865f, -0.296767f, -0.359123f, 0.230459f, + -0.189117f, -0.087622f, -0.561091f, 0.184182f, -0.044980f, 0.012643f, + 0.241672f, 0.050272f, -0.204851f, -0.159285f, -0.064081f, -0.118666f, + -0.269471f, 0.231668f, 0.135749f, -0.131162f, 0.062760f, 0.100949f, + 0.074967f, -0.056918f, 0.251707f, 0.034098f, 0.341290f, -0.105027f, + 0.313246f, -0.092679f, -0.014632f, -0.390967f, 0.136881f, -0.241554f, + 0.097674f, 0.110832f, -0.390245f, 0.017654f, -0.506222f, 0.065252f, + 0.244834f, -0.171352f, -0.331702f, 0.111043f, 0.125217f, -0.058116f, + -0.382595f, -0.052545f, 0.114261f, -0.493617f, 0.243984f, -0.171053f, + 0.165009f, -0.063020f, 0.096502f, 0.341339f, -0.013443f, 0.056372f, + 0.339284f, 0.398376f, 0.389409f, 0.257252f, 0.517368f, 0.078856f, + 0.087716f, -0.171092f, 0.227461f, 0.125307f, -0.054423f, -0.143161f, + 0.224041f, -0.086477f, -0.092548f, 0.072392f, -0.061608f, 0.258347f, + 0.147033f, -0.478244f, -0.204869f, 0.038552f, -0.144563f, 0.224087f, + -0.296705f, 0.153889f, -0.064624f, 0.085265f, -0.103826f, 0.127971f, + 0.019965f, 0.111937f, -0.074187f, -0.029518f, -0.127305f, -0.012210f, + 0.042714f, 0.070052f, -0.202360f, 0.348144f, -0.132097f, -0.209585f, + -0.248286f, -0.065774f, -0.089482f, -0.133226f, 0.325430f, -0.013468f, + -0.406090f, -0.144936f, 0.208620f, 0.343445f, -0.059639f, 0.114857f, + -0.069431f, -0.218725f, 0.190575f, -0.368101f, 0.030030f, 0.062815f, + -0.239369f, -0.537852f, 0.022487f, 0.023038f, 0.190788f, 0.040123f, + -0.004304f, 0.060749f, -0.108929f, 0.136796f, -0.542875f, -0.227074f, + -0.182244f, 0.082559f, 0.019149f, 0.178854f, 0.120284f, 0.009070f, + 0.068268f, -0.544822f, 0.120536f, 0.354028f, -0.119890f, -0.122055f, + -0.405335f, 0.122341f, -0.304412f, 0.062405f, -0.302568f, -0.276505f, + -0.120915f, -0.221841f, 0.282007f, -0.253971f, 0.059517f, -0.144976f, + 0.149391f, -0.047355f, -0.167742f, -0.392333f, -0.041132f, 0.342135f, + 0.017485f, 0.021038f, -0.023728f, -0.192181f, -0.103996f, 0.092873f, + -0.114365f, -0.397732f, -0.065421f, 0.053084f, 0.035201f, 0.053019f, + -0.105377f, -0.039500f, 0.131904f, -0.123911f, -0.390328f, -0.125198f, + -0.000126f, 0.014864f, -0.220187f, 0.084056f, -0.492155f, -0.164979f, + 0.133592f, 0.121519f, -0.240813f, 0.186680f, 0.118673f, 0.235006f, + -0.239894f, -0.185759f, -0.336992f, 0.209620f, -0.298845f, 0.127803f, + -0.083992f, 0.194340f, -0.245378f, 0.212308f, 0.142512f, -0.163324f, + 0.383495f, 0.291065f, 0.286620f, -0.239957f, 0.225127f, -0.174424f, + 0.297231f, -0.045434f, 0.156444f, -0.184273f, -0.204567f, 0.202551f, + 0.370019f, -0.073910f, 0.344897f, 0.063100f, 0.338547f, -0.099145f, + 0.391863f, -0.214244f, -0.241734f, -0.281851f, -0.035133f, -0.153157f, +}; + +static const float av1_tx_split_nn_bias_32x32_layer0[32] = { + 0.143343f, -0.021982f, -0.314939f, 0.170867f, -0.081248f, 0.125758f, + -0.355762f, 0.279798f, 1.027712f, -0.434660f, 1.072005f, 0.668893f, + -0.031216f, -0.528650f, 0.328349f, 0.543645f, -0.188810f, 0.221110f, + -1.638637f, 0.058045f, -1.731105f, -0.444284f, 0.513693f, 0.890025f, + 0.160288f, 0.393312f, 0.332856f, -0.080767f, 0.299822f, 0.235876f, + 0.254942f, -0.017796f, +}; + +static const float av1_tx_split_nn_weights_32x32_layer1[32] = { + -0.090326f, -0.267553f, -0.026071f, 0.100912f, 0.279137f, 0.079064f, + -0.074885f, 0.053804f, 0.736810f, -0.031693f, -0.970514f, 0.174069f, + 0.095940f, -0.065047f, 0.052911f, 0.176728f, -0.058274f, 0.148364f, + -0.162210f, 0.093875f, -0.367663f, 0.020876f, 0.137280f, -1.099116f, + 0.146854f, 0.075590f, 0.228534f, 0.141993f, 0.072143f, 0.101421f, + -0.068547f, -0.154148f, +}; + +static const float av1_tx_split_nn_bias_32x32_layer1[1] = { + 0.316622f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_32x32 = { + 12, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 32, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_32x32_layer0, + av1_tx_split_nn_weights_32x32_layer1, + }, + { + av1_tx_split_nn_bias_32x32_layer0, + av1_tx_split_nn_bias_32x32_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 64x64 block. +static const float av1_tx_split_nn_weights_64x64_layer0[12 * 32] = { + -0.006828f, 0.149944f, -0.017614f, -0.044599f, -0.024517f, 0.507698f, + 0.001039f, 0.037164f, 0.015091f, -0.306620f, -0.162047f, -0.369440f, + 0.396310f, 0.087121f, 0.208609f, -0.083068f, 0.493774f, 0.217682f, + 0.377393f, 0.172879f, 0.397422f, 0.078919f, 0.741350f, 0.064169f, + -0.099989f, -0.192983f, -0.278230f, -0.310048f, -0.439965f, -0.226698f, + -0.436596f, -0.007551f, -0.396721f, 0.153570f, -0.190838f, -0.071869f, + 0.048799f, -0.301301f, -0.005015f, 0.500480f, -0.030622f, -0.559095f, + -0.032634f, -0.054160f, -0.056979f, -0.456545f, 0.306536f, -0.411323f, + -0.005366f, -0.069496f, 0.019990f, 0.327931f, -0.002516f, 0.393190f, + 0.001759f, 0.035093f, -0.030302f, -0.528984f, 0.174781f, 0.241462f, + -0.415427f, -0.164502f, 0.143065f, -0.122595f, 0.082049f, -0.143346f, + 0.055642f, -0.124701f, 0.004050f, -0.216235f, -2.681730f, 0.101658f, + 0.381239f, 0.465936f, 0.331154f, 0.301708f, -0.360171f, 0.054886f, + -0.118658f, 0.287921f, 0.277859f, 0.203784f, 0.247809f, 0.656924f, + -0.354628f, 0.315081f, 0.105108f, -0.510179f, 0.059267f, 0.061386f, + 0.076423f, 0.347119f, 0.100134f, 0.028402f, -0.118621f, -0.238689f, + 0.080141f, -0.138863f, 0.009009f, -0.100526f, -0.138875f, 0.066992f, + 0.005949f, 0.564336f, 0.046994f, 0.004655f, 0.366047f, 0.014695f, + -0.146928f, -0.024665f, -0.440357f, -0.109395f, 0.527231f, -0.020925f, + -0.227236f, -0.068141f, 0.282009f, 0.040192f, -0.267100f, 0.229228f, + 0.133861f, 0.338706f, -0.030178f, -0.040919f, -0.026343f, -0.330338f, + -0.066931f, -0.110580f, -0.072056f, 0.599457f, -0.020738f, 0.169200f, + 0.836240f, -0.157548f, 0.386273f, 0.002404f, 0.329410f, -0.007020f, + 0.351705f, -0.041259f, 0.388861f, 0.003899f, 0.582627f, 0.023572f, + 0.409912f, -0.158472f, 0.536383f, 0.525093f, 0.604247f, 0.439159f, + 0.692832f, 0.046272f, 0.590367f, -0.082166f, 0.262357f, 0.478671f, + 0.031935f, 0.042675f, 0.120002f, 0.398616f, -0.078967f, 0.227986f, + -0.044679f, 0.151061f, -0.085564f, 0.220205f, -0.265606f, -0.203623f, + 0.204719f, -0.125922f, 0.038544f, -0.269379f, 0.025866f, 0.109967f, + 0.019064f, -0.237297f, -0.309746f, -0.329118f, -0.278368f, -0.063859f, + 0.278496f, 0.018620f, 0.209971f, 0.296250f, 0.142850f, 0.288689f, + 0.137084f, 0.130517f, 0.128171f, -0.155396f, -0.008449f, -0.099845f, + 0.173455f, -0.059909f, -0.147318f, 0.102851f, -0.251389f, -0.001448f, + 0.103907f, 0.297273f, -0.027846f, 0.028260f, -0.382601f, 0.346695f, + -0.601641f, 0.162366f, -0.477495f, -0.042731f, -0.387871f, -0.051791f, + -0.401498f, -0.048446f, -0.456270f, -0.062287f, 0.493919f, 0.003008f, + 0.099917f, -0.358525f, -0.094903f, -0.022811f, -0.062259f, 0.019455f, + -0.050644f, 0.020041f, -0.132912f, -0.061578f, -3.083691f, -0.014961f, + -0.129115f, -0.710559f, 0.157213f, -0.844037f, -0.121991f, -0.943386f, + -0.231269f, -0.003462f, 0.331478f, -0.132703f, -1.285993f, -0.120957f, + -0.373755f, -0.322609f, 0.309059f, -0.131523f, -0.118334f, -0.063805f, + -0.104251f, 0.012166f, -0.094699f, -0.283753f, 0.128168f, -0.526929f, + -0.050331f, 0.186153f, 0.005913f, -0.221236f, 0.036363f, 0.160909f, + -0.001342f, -0.382749f, 0.037820f, 0.281689f, -0.024275f, 0.028854f, + 0.318291f, 0.318526f, 0.035778f, 0.034031f, 0.189663f, -0.293367f, + 0.082022f, 0.127923f, 0.078866f, -0.081361f, -0.268117f, 0.246675f, + 0.248605f, -0.215479f, -0.073084f, 0.496140f, -0.067327f, 0.396237f, + -0.120739f, 0.033752f, -0.044120f, -0.218941f, -0.028078f, 0.195132f, + -0.040400f, 0.281604f, -0.100471f, 0.415207f, -0.258503f, -0.429749f, + 0.150569f, -0.010859f, 0.136448f, 0.026589f, 0.148466f, 0.110764f, + 0.380967f, 0.009177f, 0.103075f, 0.116417f, 0.226273f, -0.327746f, + 0.169346f, 0.284553f, -0.094986f, 0.312745f, -0.147840f, 0.025062f, + -0.494482f, 0.112388f, -0.213962f, 0.107050f, -0.433371f, -0.096276f, + -0.244835f, -0.003518f, -0.459148f, -0.145080f, 0.017150f, 0.042846f, + -0.237479f, 0.104746f, 0.158677f, 0.358937f, 0.099921f, 0.277109f, + 0.012410f, -0.062897f, 0.116130f, 0.255309f, 0.341628f, 0.145002f, + -0.429344f, -0.016433f, -0.068985f, 0.285194f, -0.286719f, -0.018298f, + -0.179369f, -0.194655f, -0.165380f, 0.026071f, -0.428268f, -0.379929f, + -0.727543f, 0.179610f, -0.963979f, -0.042026f, -0.616202f, 0.133401f, + -0.784966f, 0.061205f, -0.713357f, 0.129795f, 0.120512f, -0.339545f, + 0.353557f, 0.114906f, -0.329813f, -0.209987f, 0.085410f, 0.214313f, + -0.122082f, 0.335770f, -0.020937f, 0.202456f, 0.289023f, -0.421186f, + 0.337905f, 0.407663f, 0.132771f, 0.071734f, 0.213914f, 0.128595f, + 0.302659f, -0.209501f, 0.217756f, 0.253079f, -0.089505f, -0.205614f, +}; + +static const float av1_tx_split_nn_bias_64x64_layer0[32] = { + 0.296914f, -1.826816f, 0.346130f, 0.969520f, -0.528154f, 1.175862f, + -0.075985f, -0.097323f, -0.233059f, 0.004846f, 0.401279f, -2.272435f, + 0.086257f, 0.414162f, -0.194786f, -0.233887f, -0.113215f, -2.453546f, + 0.861214f, 0.298361f, 0.267397f, -0.158557f, -0.119911f, -0.098134f, + -0.339263f, 0.385871f, -0.678123f, 0.263218f, 0.251611f, -1.155773f, + -0.365437f, 0.229255f, +}; + +static const float av1_tx_split_nn_weights_64x64_layer1[32] = { + 0.502104f, -0.708023f, 0.419648f, 1.583418f, 0.419355f, -1.462981f, + -0.439623f, 0.405691f, 0.823257f, 0.061654f, 0.750875f, 0.775031f, + -0.387909f, 0.447385f, 0.284690f, 0.353262f, -0.224347f, 0.832864f, + -1.708491f, -1.042447f, -0.272829f, 0.540640f, 0.310509f, 0.723745f, + 0.245592f, -0.218417f, -0.597987f, -0.362301f, 0.702217f, -0.692614f, + 0.207812f, 0.513560f, +}; + +static const float av1_tx_split_nn_bias_64x64_layer1[1] = { -0.2307045f }; + +static const NN_CONFIG av1_tx_split_nnconfig_64x64 = { + 12, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 32, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_64x64_layer0, + av1_tx_split_nn_weights_64x64_layer1, + }, + { + av1_tx_split_nn_bias_64x64_layer0, + av1_tx_split_nn_bias_64x64_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 4x16 block. +static const float av1_tx_split_nn_weights_4x16_layer0[8 * 16] = { + -1.344184f, -1.454625f, -0.703110f, -0.140570f, -0.841536f, -0.068131f, + -2.128968f, -0.655518f, 0.432180f, 0.879752f, -0.222211f, 0.061615f, + -0.230969f, 0.569496f, 1.424188f, 0.598063f, -0.436005f, -0.737606f, + -0.137875f, -0.085730f, -0.076512f, -0.583101f, -0.937377f, -0.203556f, + -0.215797f, -0.015361f, -0.124098f, -0.411917f, 0.340441f, -0.331752f, + -0.472607f, -0.097714f, -0.930572f, -1.354713f, -0.550724f, 0.176212f, + -0.636060f, 0.183271f, -0.610212f, 0.345895f, -1.100906f, -1.605713f, + 0.111888f, -0.140937f, 0.063013f, -0.013315f, -0.273472f, -0.255870f, + 1.200328f, 0.274002f, 1.005776f, 0.322392f, 1.222373f, 0.158227f, + 0.408810f, 0.145022f, 0.139842f, -1.249412f, 0.286672f, -0.635699f, + 0.312562f, -0.495606f, -1.117034f, -0.085107f, -0.097484f, -0.341521f, + -0.132199f, -0.863055f, 0.217579f, -1.161425f, -0.302087f, -1.357271f, + -0.520724f, -1.211069f, -1.048729f, -0.333087f, -1.171527f, -0.280824f, + -2.057684f, -0.228755f, 0.606278f, 0.101198f, -0.314847f, -1.303255f, + -0.294964f, 1.301923f, 0.041712f, 0.077593f, -1.152746f, 0.495315f, + -0.751566f, 0.230249f, -0.840661f, 0.100731f, 1.346269f, 0.649898f, + -1.432258f, -0.456710f, -1.018123f, -0.348559f, -1.225226f, -0.170717f, + -0.354072f, 0.068292f, -0.234168f, 0.277503f, 0.179134f, 0.907420f, + 0.354626f, -0.627210f, 0.905779f, 0.512612f, 0.161190f, -0.843177f, + 0.014953f, -0.354983f, 0.011116f, -0.429598f, -1.017138f, -0.211432f, + 0.941840f, -0.281747f, 0.957776f, -0.541914f, 1.041880f, -0.433580f, + -1.416451f, -0.166467f, +}; + +static const float av1_tx_split_nn_bias_4x16_layer0[16] = { + 3.086118f, -3.235095f, 4.830956f, -0.165706f, 0.955031f, 4.055783f, + -0.311489f, 4.660205f, -0.576277f, -0.248111f, -0.790519f, -1.686412f, + -1.191704f, -3.800073f, 4.121552f, -1.399397f, +}; + +static const float av1_tx_split_nn_weights_4x16_layer1[16] = { + -0.758677f, 0.388776f, 0.439906f, 0.011390f, -0.084319f, -0.667969f, + -0.467316f, -0.875491f, -0.160668f, 0.805292f, 0.114393f, -0.549682f, + 0.462109f, 0.343315f, 1.092593f, 0.483152f, +}; + +static const float av1_tx_split_nn_bias_4x16_layer1[1] = { + 0.8205083f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_4x16 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_4x16_layer0, + av1_tx_split_nn_weights_4x16_layer1, + }, + { + av1_tx_split_nn_bias_4x16_layer0, + av1_tx_split_nn_bias_4x16_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 16x32 block. +static const float av1_tx_split_nn_weights_16x32_layer0[8 * 32] = { + 0.180713f, 0.033211f, 0.607561f, 0.138642f, 0.637204f, -0.000940f, + 0.012630f, 0.358109f, 0.022238f, 0.190418f, 0.079088f, 0.065925f, + 0.038242f, 0.162380f, -0.122728f, 0.379382f, -0.303283f, -0.327550f, + 0.029120f, -0.284553f, 0.269588f, -0.309805f, -0.241036f, -0.161103f, + -0.304887f, 0.239843f, -0.149146f, 0.311234f, -0.073640f, -0.132718f, + 0.178901f, 0.474712f, 0.020280f, 0.063685f, -0.609170f, -0.013658f, + -0.338074f, 0.250429f, 0.082978f, -0.186315f, -0.788959f, 0.039859f, + -0.426461f, -0.001524f, -0.447211f, 0.378102f, 0.315617f, 0.017428f, + 0.745494f, -0.219024f, 0.512836f, 0.200522f, 0.680449f, 0.313686f, + -0.412569f, -0.132927f, 0.631120f, 0.042735f, 0.336153f, 0.044772f, + 0.432606f, 0.175681f, -0.634411f, -0.073509f, -0.040643f, -0.559260f, + -0.104034f, -0.570495f, -0.247365f, 0.063256f, -0.582021f, -0.492585f, + -0.194955f, -0.207934f, -0.506627f, 0.021743f, -0.416518f, 0.320876f, + 0.115889f, 0.149399f, -0.229376f, 0.095505f, 0.115191f, -0.471921f, + 0.113068f, 0.343684f, -0.036831f, 0.021240f, 0.295112f, 0.031166f, + 0.448201f, -0.132241f, 0.164032f, 0.355572f, 0.072154f, 0.017335f, + -0.046113f, 0.178719f, -0.026881f, -0.242590f, 0.055073f, -0.012958f, + 0.077904f, 0.351356f, 0.107655f, 0.260568f, -0.080052f, -0.197553f, + 0.085763f, 0.263416f, -0.327741f, 0.158855f, 0.056899f, -0.162121f, + 0.339518f, -0.571204f, 0.264966f, -0.252214f, -0.202560f, -0.134213f, + -0.330188f, 0.009470f, -0.468376f, -0.065240f, -0.307957f, 0.116479f, + -0.222238f, -0.458716f, 0.186493f, -0.391415f, 0.118649f, -0.104653f, + -0.259958f, -0.332081f, -0.403785f, -0.050147f, -0.573511f, 0.177117f, + -0.598358f, 0.164947f, -0.119694f, -0.058520f, 0.203829f, -0.267404f, + -0.048202f, -0.600006f, 0.181594f, -0.731805f, 0.146417f, -0.687148f, + -1.210525f, -0.450101f, -0.620635f, 0.208825f, -0.611357f, 0.112202f, + -0.309468f, -0.323545f, 0.357770f, 0.308061f, 0.553199f, 0.049012f, + 0.530093f, -0.208597f, 0.607882f, -0.058120f, -0.527634f, 0.018136f, + 0.060753f, 0.118894f, 0.175649f, 0.014731f, 0.428318f, -0.106465f, + -0.119077f, 0.080179f, 0.524997f, 0.368286f, 0.528286f, 0.213659f, + 0.639286f, 0.195079f, -0.049815f, -0.092008f, -0.302958f, 0.298149f, + -0.173870f, -0.145205f, -0.233589f, -0.303368f, 0.141275f, 0.325622f, + -0.115293f, 0.155188f, 0.047225f, 0.231050f, -0.167447f, 0.349754f, + 0.295544f, -0.319466f, 0.095144f, 0.174612f, -0.194652f, 0.305915f, + -0.239008f, -0.037453f, 0.280696f, 0.125850f, 0.749196f, -0.101919f, + 0.791808f, -0.236811f, 0.064157f, 0.032865f, -0.225911f, 0.350384f, + 0.723183f, -0.103992f, 0.483085f, -0.123992f, 0.602138f, 0.023895f, + -0.692601f, -0.118387f, 0.162527f, 0.145178f, -0.184702f, -0.017753f, + -0.159436f, 0.124105f, -0.131067f, 0.310275f, 0.151499f, 0.138924f, + 0.537459f, 0.263212f, 0.615896f, 0.281255f, 0.021293f, -0.473459f, + 0.210145f, -0.056682f, 0.063658f, 0.377254f, -0.314410f, -0.183487f, + 0.300384f, 0.328471f, 0.164694f, -0.159272f, -0.160942f, -0.502861f, + -0.129147f, 0.045916f, -0.606865f, -0.101378f, +}; + +static const float av1_tx_split_nn_bias_16x32_layer0[32] = { + 0.051664f, -0.212487f, -0.077596f, -0.818467f, 0.638475f, -0.759937f, + 0.157198f, 0.989640f, 1.586035f, 0.431144f, 0.041605f, 0.543085f, + 0.498379f, 0.320504f, 0.134233f, 0.670979f, -0.105562f, -1.574879f, + 1.261812f, -0.287530f, -1.610592f, 0.730899f, -0.894240f, -0.657790f, + 0.270806f, -0.181708f, 0.298578f, 0.817240f, -0.221508f, -0.201771f, + -0.294389f, 1.456413f, +}; + +static const float av1_tx_split_nn_weights_16x32_layer1[32] = { + 1.208914f, 0.324728f, 0.383352f, -0.874321f, 0.172565f, -0.580927f, + -0.432927f, 0.433698f, -0.801935f, 0.672028f, 0.563493f, 0.260077f, + -0.200557f, -0.121638f, 0.530735f, -0.525196f, 0.281799f, 0.624204f, + -0.662775f, -0.230887f, 0.980989f, 0.223437f, -0.790591f, 0.600724f, + -0.273445f, 0.427635f, -0.501641f, -0.878390f, 0.234731f, -0.172550f, + 0.418904f, 1.792187f, +}; + +static const float av1_tx_split_nn_bias_16x32_layer1[1] = { + -0.29233751f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_16x32 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 32, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_16x32_layer0, + av1_tx_split_nn_weights_16x32_layer1, + }, + { + av1_tx_split_nn_bias_16x32_layer0, + av1_tx_split_nn_bias_16x32_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 32x64 block. +static const float av1_tx_split_nn_weights_32x64_layer0[8 * 32] = { + 0.031614f, -0.110926f, 0.052418f, -0.702506f, 0.045708f, 0.238329f, + -0.021806f, -0.208128f, 0.509745f, -0.293891f, 0.277788f, 0.113937f, + 0.741576f, 0.062848f, 0.351878f, 0.212532f, 0.385842f, 0.081517f, + 0.398502f, -0.015156f, 0.242616f, 0.214619f, -0.182678f, -0.170546f, + 0.110605f, -0.236749f, -0.023831f, -0.285243f, 0.147156f, -0.257639f, + 0.341355f, -0.571641f, -0.721797f, 0.139588f, -0.518494f, -0.206526f, + -0.570560f, -0.184295f, 0.110271f, 0.210292f, -0.109132f, -0.001080f, + 0.129251f, -0.204230f, -0.396312f, -0.183024f, 0.421243f, -0.013154f, + 0.222627f, 0.169826f, 0.226037f, 0.218153f, -0.343528f, 0.274906f, + -0.156632f, 0.250261f, -0.484020f, 0.019909f, -0.349575f, -0.286643f, + -0.507396f, 0.202446f, -0.154110f, -0.292644f, 0.122666f, 0.306963f, + 0.424895f, 0.005579f, 0.494094f, -0.079551f, 0.473740f, 0.352414f, + -0.356917f, 0.264331f, -0.554487f, 0.119978f, 0.012291f, -0.141641f, + -0.254714f, -0.213723f, -0.116701f, -0.011267f, 0.190025f, -0.118501f, + 0.305151f, -0.316782f, -0.220801f, -0.308420f, -0.324285f, 0.421329f, + -0.177066f, -0.055114f, 0.229698f, -0.199523f, 0.054278f, 0.365020f, + -0.060586f, -0.300618f, 0.157563f, -0.064338f, -0.005711f, -0.176991f, + -0.424502f, -0.111914f, 0.092608f, 0.126621f, 0.078547f, 0.148008f, + 0.024221f, 0.124599f, 0.001343f, 0.059402f, 0.453753f, 0.047102f, + 0.242544f, 0.055735f, -0.067451f, -0.170061f, -0.170469f, -0.232173f, + 0.214908f, 0.248889f, 0.544348f, -0.084566f, 0.402478f, 0.298031f, + 0.099038f, -0.238019f, -0.475085f, -0.070042f, -0.754955f, -0.049095f, + -0.783801f, -0.099857f, -0.582008f, -0.055194f, -0.103655f, 0.143689f, + 0.100219f, 0.293934f, 0.099271f, -0.036320f, 0.356626f, -0.261445f, + 0.879544f, 0.000878f, 0.532920f, -0.093918f, 0.508867f, -0.040215f, + -0.789042f, -0.145380f, -0.090040f, -0.066636f, 0.015212f, 0.352989f, + -0.058831f, -0.164588f, 0.039890f, 0.122861f, 0.222508f, 0.061217f, + 0.466487f, 0.022666f, 0.423777f, -0.002200f, -0.656835f, -0.099760f, + -0.520606f, 0.303204f, -0.563620f, -0.160922f, -0.243203f, 0.313354f, + -0.336516f, -0.206764f, -0.236040f, 0.325899f, -0.418748f, 0.163205f, + -0.476242f, -0.121928f, 0.139178f, -0.157193f, -0.531766f, -0.180202f, + -0.485254f, 0.187703f, -0.440072f, 0.137854f, 0.029139f, 0.109530f, + -0.078475f, -0.360618f, -0.334672f, -0.350890f, -0.403976f, 0.180336f, + -0.304542f, 0.005123f, 0.413995f, 0.314639f, 0.342648f, -0.293264f, + 0.358135f, -0.180425f, -0.369530f, -0.048413f, 0.498366f, 0.121875f, + 0.270948f, -0.187966f, 0.342503f, 0.174420f, -0.352105f, 0.088080f, + 0.008277f, 0.020275f, -0.002381f, 0.504389f, -0.018832f, -0.366047f, + -0.090947f, -0.168150f, 0.016184f, -0.328914f, 0.089579f, -0.017349f, + 0.005844f, -0.005010f, -1.857514f, -0.282426f, 0.010177f, -0.214727f, + -0.182529f, 0.156943f, -0.162032f, -0.472654f, 0.069432f, 0.016901f, + -0.767905f, 0.137129f, -0.411463f, 0.049056f, -0.431657f, -0.037641f, + 0.785500f, 0.046225f, 0.195831f, 0.245204f, 0.368614f, 0.212261f, + 0.440626f, -0.158048f, -0.461031f, -0.146280f, +}; + +static const float av1_tx_split_nn_bias_32x64_layer0[32] = { + 0.490777f, -1.894238f, 0.621333f, -0.076756f, 0.286298f, 0.286375f, + -0.126431f, -0.350034f, -1.017572f, 0.620125f, 0.408128f, 0.238756f, + -0.060728f, 0.210912f, 0.043124f, 0.445649f, 0.907025f, 0.360272f, + 1.083101f, -0.068952f, 1.062348f, 0.396354f, 0.280075f, 0.501732f, + 0.328422f, 0.066241f, 0.474697f, 0.126313f, 0.741206f, 0.314796f, + 0.552712f, 0.299410f, +}; + +static const float av1_tx_split_nn_weights_32x64_layer1[32] = { + 1.033823f, 0.603439f, 0.304591f, -0.279940f, -0.780909f, -0.132801f, + 0.154059f, 0.662014f, -0.718368f, 0.198733f, 0.039766f, -0.208516f, + -0.104909f, -0.394209f, 0.081617f, 0.365041f, -0.874960f, -0.063315f, + -1.189897f, 0.337225f, 0.410893f, 0.307519f, 0.221323f, 0.233895f, + 0.469536f, 0.438557f, 0.280144f, 0.422423f, -1.394513f, 0.781900f, + 0.352981f, 0.111265f, +}; + +static const float av1_tx_split_nn_bias_32x64_layer1[1] = { + -0.18160765f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_32x64 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 32, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_32x64_layer0, + av1_tx_split_nn_weights_32x64_layer1, + }, + { + av1_tx_split_nn_bias_32x64_layer0, + av1_tx_split_nn_bias_32x64_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 8x32 block. +static const float av1_tx_split_nn_weights_8x32_layer0[8 * 24] = { + -0.687846f, 0.121404f, -0.372905f, 0.126770f, -0.103298f, -0.101650f, + -0.148490f, -0.271740f, 0.682915f, -0.079765f, 0.634347f, -0.151503f, + 0.287692f, -0.079072f, -0.236948f, 0.065064f, 0.713383f, 0.397123f, + 0.553621f, 0.368529f, 0.767663f, -0.046601f, -0.392402f, -0.294822f, + -0.292325f, -0.010573f, -0.837945f, 0.050113f, -0.811360f, 0.199162f, + 0.150832f, 0.011602f, 0.369694f, -0.225876f, 0.234113f, -0.269808f, + 0.303805f, -0.190281f, -0.451136f, 0.209755f, -0.308894f, 0.326956f, + 0.313591f, 0.089923f, -0.095754f, 0.390981f, 0.467366f, 0.169670f, + 0.853322f, 0.054055f, 0.830319f, -0.121918f, 0.262019f, -0.093526f, + 0.385558f, 0.419174f, 0.040198f, -0.347030f, -0.450492f, -0.106764f, + 0.487502f, -0.204188f, 0.430374f, -0.116388f, 0.236407f, -0.157376f, + 0.732294f, -0.651387f, 0.347446f, 0.342575f, 0.048406f, 0.187657f, + 0.434899f, -0.447782f, 0.032728f, -0.071168f, -0.255327f, 0.104174f, + 0.095689f, -0.431743f, 0.725694f, 0.031797f, 0.523171f, 0.061801f, + 0.469804f, -0.071068f, -0.059024f, -0.211937f, 0.392134f, -0.321490f, + 0.366060f, -0.427798f, 0.166771f, 0.299652f, 0.044660f, 0.205142f, + 0.039133f, -0.051835f, -0.465475f, 0.216976f, -0.341156f, 0.095358f, + 0.230807f, 0.201674f, 0.279266f, -0.713534f, -0.091690f, -0.569708f, + -0.119001f, 0.252160f, -1.544578f, -0.284477f, 0.555348f, 0.226471f, + 0.347690f, 0.034365f, 0.770835f, -0.241859f, -0.130241f, 0.292936f, + 0.396622f, -0.417916f, 0.492224f, 0.125517f, 0.344824f, 0.232172f, + -0.432106f, -0.278745f, 0.035069f, -0.307247f, -0.120760f, 0.170950f, + 0.433601f, 0.044286f, 0.141463f, -0.041382f, 0.529346f, 0.010868f, + -0.323674f, 0.185205f, 0.623459f, 0.232842f, -0.406693f, -0.142944f, + 0.222988f, 0.343634f, 0.065401f, 0.002621f, 0.805335f, -0.426926f, + 0.279181f, 0.131364f, 0.192339f, -0.402391f, 0.544120f, -0.060618f, + 0.467780f, 0.165224f, -0.373131f, 0.002427f, 0.688064f, 0.322317f, + 0.259713f, 0.130583f, 0.185032f, -0.189111f, -0.067821f, 0.010875f, + 0.644724f, -0.179291f, 0.463222f, 0.155230f, 0.721384f, -0.046019f, + 0.438501f, 0.440027f, -0.462090f, -0.002039f, -0.468026f, -0.008890f, + -0.328530f, 0.370102f, 0.482531f, 0.043471f, -0.469732f, -0.532663f, + 0.122081f, -0.379659f, 0.037219f, -0.519913f, -0.128975f, -0.404365f, +}; + +static const float av1_tx_split_nn_bias_8x32_layer0[24] = { + -1.198965f, 0.395204f, -0.408627f, -0.021654f, -0.658355f, 0.154525f, + -0.288354f, 1.207574f, 0.411608f, 0.964678f, -1.176893f, 1.059006f, + -0.472969f, 2.087975f, 1.065536f, 0.595569f, 0.197907f, -0.349938f, + 1.013651f, -0.931093f, -0.973595f, -0.459094f, -1.253062f, 1.624782f, +}; + +static const float av1_tx_split_nn_weights_8x32_layer1[24] = { + 0.815787f, -0.393465f, -0.483427f, -0.565592f, 0.493494f, 0.430229f, + -0.507073f, -0.251379f, -0.353418f, -0.495445f, 0.820029f, 0.649146f, + -0.487383f, 1.844503f, 0.480324f, -0.982705f, -0.501446f, -0.220584f, + 0.334299f, 0.802238f, 0.805838f, -0.487848f, 0.300772f, -1.232857f, +}; + +static const float av1_tx_split_nn_bias_8x32_layer1[1] = { + 0.13435879f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_8x32 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 24, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_8x32_layer0, + av1_tx_split_nn_weights_8x32_layer1, + }, + { + av1_tx_split_nn_bias_8x32_layer0, + av1_tx_split_nn_bias_8x32_layer1, + }, +}; +/******************************************************************************/ + +// Tx split model for 16x32 block. +static const float av1_tx_split_nn_weights_16x64_layer0[8 * 16] = { + -0.378223f, -0.124216f, -0.514089f, -0.110117f, -0.585801f, -0.094838f, + -0.455385f, -0.220254f, -0.504568f, -0.082351f, -0.476420f, -0.253993f, + -0.454709f, -0.059461f, 0.210313f, -0.155683f, 0.192968f, -0.127804f, + 0.471996f, 0.253377f, 0.472625f, 0.485322f, 0.150560f, 0.164868f, + -0.475587f, 0.447559f, -0.455759f, -0.306665f, -0.194866f, -0.283716f, + -0.243897f, 0.293020f, -0.308298f, -0.191904f, -0.468568f, 0.014053f, + -0.618848f, 0.096273f, -0.444586f, 0.347750f, -0.280643f, -0.062872f, + 0.118661f, 0.540099f, 0.104141f, -0.279300f, -0.098721f, -0.173427f, + -0.984558f, -0.424559f, -0.411928f, -0.120875f, -0.488999f, -0.050716f, + -0.523103f, 0.093620f, -0.930396f, -0.431997f, -1.163297f, 0.190384f, + -0.422581f, -0.005354f, 0.450552f, 0.369210f, 0.562484f, 0.679922f, + 0.282099f, -0.039075f, 0.404196f, 0.006371f, 0.069679f, -0.196160f, + -0.213675f, 0.275187f, -0.104235f, -0.193090f, 0.003116f, -0.252454f, + -0.094591f, 0.210439f, -0.137070f, 0.145043f, 0.024558f, 0.121718f, + 0.010138f, 0.301651f, -0.377990f, 0.444414f, 0.001845f, -0.095334f, + 0.550259f, 0.087603f, 0.792492f, -0.044584f, 0.641706f, -0.328458f, + -0.447791f, 0.135376f, 0.356385f, 0.135748f, 0.310370f, 0.293757f, + -0.062000f, -0.056368f, 0.343930f, 0.312039f, 0.370763f, 0.452381f, + -0.023630f, -0.185909f, 0.422277f, -0.006306f, 0.045166f, 0.423359f, + -0.157735f, -0.084901f, 0.219527f, -0.209510f, 0.575057f, 0.249276f, + 0.069267f, 0.233898f, -0.229392f, 0.117197f, -0.038551f, 0.293976f, + 0.101996f, 0.120878f, +}; + +static const float av1_tx_split_nn_bias_16x64_layer0[16] = { + 1.036995f, 0.160249f, 0.100264f, 0.694881f, 0.694677f, 0.128379f, + -0.843405f, -0.405515f, 0.104139f, 0.182980f, -0.025472f, 0.901067f, + -0.299866f, -0.103079f, -0.190352f, -0.048121f, +}; + +static const float av1_tx_split_nn_weights_16x64_layer1[16] = { + -1.778868f, 0.174690f, 0.211991f, 0.712138f, 0.589352f, 0.466652f, + 1.029146f, -0.490044f, 0.483015f, 0.600215f, -0.577776f, -0.755546f, + 0.348337f, -0.205082f, 0.347129f, -0.322277f, +}; + +static const float av1_tx_split_nn_bias_16x64_layer1[1] = { + 0.04230947f, +}; + +static const NN_CONFIG av1_tx_split_nnconfig_16x64 = { + 8, // num_inputs + 1, // num_outputs + 1, // num_hidden_layers + { + 16, + }, // num_hidden_nodes + { + av1_tx_split_nn_weights_16x64_layer0, + av1_tx_split_nn_weights_16x64_layer1, + }, + { + av1_tx_split_nn_bias_16x64_layer0, + av1_tx_split_nn_bias_16x64_layer1, + }, +}; +/******************************************************************************/ + +// Map block size to its corresponding neural net model for tx split prediction. +static const NN_CONFIG *av1_tx_split_nnconfig_map[TX_SIZES_ALL] = { + NULL, // TX_4X4, + &av1_tx_split_nnconfig_8x8, // TX_8X8, + &av1_tx_split_nnconfig_16x16, // TX_16X16, + &av1_tx_split_nnconfig_32x32, // TX_32X32, + &av1_tx_split_nnconfig_64x64, // TX_64X64, + &av1_tx_split_nnconfig_4x8, // TX_4X8, + &av1_tx_split_nnconfig_4x8, // TX_8X4, + &av1_tx_split_nnconfig_8x16, // TX_8X16, + &av1_tx_split_nnconfig_8x16, // TX_16X8, + &av1_tx_split_nnconfig_16x32, // TX_16X32, + &av1_tx_split_nnconfig_16x32, // TX_32X16, + &av1_tx_split_nnconfig_32x64, // TX_32X64, + &av1_tx_split_nnconfig_32x64, // TX_64X32, + &av1_tx_split_nnconfig_4x16, // TX_4X16, + &av1_tx_split_nnconfig_4x16, // TX_16X4, + &av1_tx_split_nnconfig_8x32, // TX_8X32, + &av1_tx_split_nnconfig_8x32, // TX_32X8, + &av1_tx_split_nnconfig_16x64, // TX_16X64, + &av1_tx_split_nnconfig_16x64, // TX_64X16, +}; + +#ifdef __cplusplus +} // extern "C" +#endif + +#endif // AOM_AV1_ENCODER_TX_PRUNE_MODEL_WEIGHTS_H_ diff --git a/third_party/aom/av1/encoder/wedge_utils.c b/third_party/aom/av1/encoder/wedge_utils.c new file mode 100644 index 0000000000..e6edbb6af0 --- /dev/null +++ b/third_party/aom/av1/encoder/wedge_utils.c @@ -0,0 +1,125 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> + +#include "aom/aom_integer.h" + +#include "aom_ports/mem.h" + +#include "aom_dsp/aom_dsp_common.h" + +#include "av1/common/reconinter.h" + +#define MAX_MASK_VALUE (1 << WEDGE_WEIGHT_BITS) + +/** + * Computes SSE of a compound predictor constructed from 2 fundamental + * predictors p0 and p1 using blending with mask. + * + * r1: Residuals of p1. + * (source - p1) + * d: Difference of p1 and p0. + * (p1 - p0) + * m: The blending mask + * N: Number of pixels + * + * 'r1', 'd', and 'm' are contiguous. + * + * Computes: + * Sum((MAX_MASK_VALUE*r1 + mask*d)**2), which is equivalent to: + * Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2), + * where r0 is (source - p0), and r1 is (source - p1), which is in turn + * is equivalent to: + * Sum((source*MAX_MASK_VALUE - (mask*p0 + (MAX_MASK_VALUE-mask)*p1))**2), + * which is the SSE of the residuals of the compound predictor scaled up by + * MAX_MASK_VALUE**2. + * + * Note that we clamp the partial term in the loop to 16 bits signed. This is + * to facilitate equivalent SIMD implementation. It should have no effect if + * residuals are within 16 - WEDGE_WEIGHT_BITS (=10) signed, which always + * holds for 8 bit input, and on real input, it should hold practically always, + * as residuals are expected to be small. + */ +uint64_t av1_wedge_sse_from_residuals_c(const int16_t *r1, const int16_t *d, + const uint8_t *m, int N) { + uint64_t csse = 0; + int i; + + for (i = 0; i < N; i++) { + int32_t t = MAX_MASK_VALUE * r1[i] + m[i] * d[i]; + t = clamp(t, INT16_MIN, INT16_MAX); + csse += t * t; + } + return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS); +} + +/** + * Choose the mask sign for a compound predictor. + * + * ds: Difference of the squares of the residuals. + * r0**2 - r1**2 + * m: The blending mask + * N: Number of pixels + * limit: Pre-computed threshold value. + * MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2)) + * + * 'ds' and 'm' are contiguous. + * + * Returns true if the negated mask has lower SSE compared to the positive + * mask. Computation is based on: + * Sum((mask*r0 + (MAX_MASK_VALUE-mask)*r1)**2) + * > + * Sum(((MAX_MASK_VALUE-mask)*r0 + mask*r1)**2) + * + * which can be simplified to: + * + * Sum(mask*(r0**2 - r1**2)) > MAX_MASK_VALUE/2 * (sum(r0**2) - sum(r1**2)) + * + * The right hand side does not depend on the mask, and needs to be passed as + * the 'limit' parameter. + * + * After pre-computing (r0**2 - r1**2), which is passed in as 'ds', the left + * hand side is simply a scalar product between an int16_t and uint8_t vector. + * + * Note that for efficiency, ds is stored on 16 bits. Real input residuals + * being small, this should not cause a noticeable issue. + */ +int av1_wedge_sign_from_residuals_c(const int16_t *ds, const uint8_t *m, int N, + int64_t limit) { + int64_t acc = 0; + + do { + acc += *ds++ * *m++; + } while (--N); + + return acc > limit; +} + +/** + * Compute the element-wise difference of the squares of 2 arrays. + * + * d: Difference of the squares of the inputs: a**2 - b**2 + * a: First input array + * b: Second input array + * N: Number of elements + * + * 'd', 'a', and 'b' are contiguous. + * + * The result is saturated to signed 16 bits. + */ +void av1_wedge_compute_delta_squares_c(int16_t *d, const int16_t *a, + const int16_t *b, int N) { + int i; + + for (i = 0; i < N; i++) + d[i] = clamp(a[i] * a[i] - b[i] * b[i], INT16_MIN, INT16_MAX); +} diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm1d_sse4.c b/third_party/aom/av1/encoder/x86/av1_fwd_txfm1d_sse4.c new file mode 100644 index 0000000000..07615543c6 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm1d_sse4.c @@ -0,0 +1,1217 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/encoder/x86/av1_txfm1d_sse4.h" + +void av1_fdct32_new_sse4_1(const __m128i *input, __m128i *output, + int8_t cos_bit) { + __m128i buf0[32]; + __m128i buf1[32]; + const int32_t *cospi; + // stage 0 + // stage 1 + buf1[0] = _mm_add_epi32(input[0], input[31]); + buf1[31] = _mm_sub_epi32(input[0], input[31]); + buf1[1] = _mm_add_epi32(input[1], input[30]); + buf1[30] = _mm_sub_epi32(input[1], input[30]); + buf1[2] = _mm_add_epi32(input[2], input[29]); + buf1[29] = _mm_sub_epi32(input[2], input[29]); + buf1[3] = _mm_add_epi32(input[3], input[28]); + buf1[28] = _mm_sub_epi32(input[3], input[28]); + buf1[4] = _mm_add_epi32(input[4], input[27]); + buf1[27] = _mm_sub_epi32(input[4], input[27]); + buf1[5] = _mm_add_epi32(input[5], input[26]); + buf1[26] = _mm_sub_epi32(input[5], input[26]); + buf1[6] = _mm_add_epi32(input[6], input[25]); + buf1[25] = _mm_sub_epi32(input[6], input[25]); + buf1[7] = _mm_add_epi32(input[7], input[24]); + buf1[24] = _mm_sub_epi32(input[7], input[24]); + buf1[8] = _mm_add_epi32(input[8], input[23]); + buf1[23] = _mm_sub_epi32(input[8], input[23]); + buf1[9] = _mm_add_epi32(input[9], input[22]); + buf1[22] = _mm_sub_epi32(input[9], input[22]); + buf1[10] = _mm_add_epi32(input[10], input[21]); + buf1[21] = _mm_sub_epi32(input[10], input[21]); + buf1[11] = _mm_add_epi32(input[11], input[20]); + buf1[20] = _mm_sub_epi32(input[11], input[20]); + buf1[12] = _mm_add_epi32(input[12], input[19]); + buf1[19] = _mm_sub_epi32(input[12], input[19]); + buf1[13] = _mm_add_epi32(input[13], input[18]); + buf1[18] = _mm_sub_epi32(input[13], input[18]); + buf1[14] = _mm_add_epi32(input[14], input[17]); + buf1[17] = _mm_sub_epi32(input[14], input[17]); + buf1[15] = _mm_add_epi32(input[15], input[16]); + buf1[16] = _mm_sub_epi32(input[15], input[16]); + + // stage 2 + cospi = cospi_arr(cos_bit); + buf0[0] = _mm_add_epi32(buf1[0], buf1[15]); + buf0[15] = _mm_sub_epi32(buf1[0], buf1[15]); + buf0[1] = _mm_add_epi32(buf1[1], buf1[14]); + buf0[14] = _mm_sub_epi32(buf1[1], buf1[14]); + buf0[2] = _mm_add_epi32(buf1[2], buf1[13]); + buf0[13] = _mm_sub_epi32(buf1[2], buf1[13]); + buf0[3] = _mm_add_epi32(buf1[3], buf1[12]); + buf0[12] = _mm_sub_epi32(buf1[3], buf1[12]); + buf0[4] = _mm_add_epi32(buf1[4], buf1[11]); + buf0[11] = _mm_sub_epi32(buf1[4], buf1[11]); + buf0[5] = _mm_add_epi32(buf1[5], buf1[10]); + buf0[10] = _mm_sub_epi32(buf1[5], buf1[10]); + buf0[6] = _mm_add_epi32(buf1[6], buf1[9]); + buf0[9] = _mm_sub_epi32(buf1[6], buf1[9]); + buf0[7] = _mm_add_epi32(buf1[7], buf1[8]); + buf0[8] = _mm_sub_epi32(buf1[7], buf1[8]); + buf0[16] = buf1[16]; + buf0[17] = buf1[17]; + buf0[18] = buf1[18]; + buf0[19] = buf1[19]; + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf1[20], buf1[27], buf0[20], + buf0[27], cos_bit); + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf1[21], buf1[26], buf0[21], + buf0[26], cos_bit); + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf1[22], buf1[25], buf0[22], + buf0[25], cos_bit); + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf1[23], buf1[24], buf0[23], + buf0[24], cos_bit); + buf0[28] = buf1[28]; + buf0[29] = buf1[29]; + buf0[30] = buf1[30]; + buf0[31] = buf1[31]; + + // stage 3 + cospi = cospi_arr(cos_bit); + buf1[0] = _mm_add_epi32(buf0[0], buf0[7]); + buf1[7] = _mm_sub_epi32(buf0[0], buf0[7]); + buf1[1] = _mm_add_epi32(buf0[1], buf0[6]); + buf1[6] = _mm_sub_epi32(buf0[1], buf0[6]); + buf1[2] = _mm_add_epi32(buf0[2], buf0[5]); + buf1[5] = _mm_sub_epi32(buf0[2], buf0[5]); + buf1[3] = _mm_add_epi32(buf0[3], buf0[4]); + buf1[4] = _mm_sub_epi32(buf0[3], buf0[4]); + buf1[8] = buf0[8]; + buf1[9] = buf0[9]; + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf0[10], buf0[13], buf1[10], + buf1[13], cos_bit); + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf0[11], buf0[12], buf1[11], + buf1[12], cos_bit); + buf1[14] = buf0[14]; + buf1[15] = buf0[15]; + buf1[16] = _mm_add_epi32(buf0[16], buf0[23]); + buf1[23] = _mm_sub_epi32(buf0[16], buf0[23]); + buf1[17] = _mm_add_epi32(buf0[17], buf0[22]); + buf1[22] = _mm_sub_epi32(buf0[17], buf0[22]); + buf1[18] = _mm_add_epi32(buf0[18], buf0[21]); + buf1[21] = _mm_sub_epi32(buf0[18], buf0[21]); + buf1[19] = _mm_add_epi32(buf0[19], buf0[20]); + buf1[20] = _mm_sub_epi32(buf0[19], buf0[20]); + buf1[24] = _mm_sub_epi32(buf0[31], buf0[24]); + buf1[31] = _mm_add_epi32(buf0[31], buf0[24]); + buf1[25] = _mm_sub_epi32(buf0[30], buf0[25]); + buf1[30] = _mm_add_epi32(buf0[30], buf0[25]); + buf1[26] = _mm_sub_epi32(buf0[29], buf0[26]); + buf1[29] = _mm_add_epi32(buf0[29], buf0[26]); + buf1[27] = _mm_sub_epi32(buf0[28], buf0[27]); + buf1[28] = _mm_add_epi32(buf0[28], buf0[27]); + + // stage 4 + cospi = cospi_arr(cos_bit); + buf0[0] = _mm_add_epi32(buf1[0], buf1[3]); + buf0[3] = _mm_sub_epi32(buf1[0], buf1[3]); + buf0[1] = _mm_add_epi32(buf1[1], buf1[2]); + buf0[2] = _mm_sub_epi32(buf1[1], buf1[2]); + buf0[4] = buf1[4]; + btf_32_sse4_1_type0(-cospi[32], cospi[32], buf1[5], buf1[6], buf0[5], buf0[6], + cos_bit); + buf0[7] = buf1[7]; + buf0[8] = _mm_add_epi32(buf1[8], buf1[11]); + buf0[11] = _mm_sub_epi32(buf1[8], buf1[11]); + buf0[9] = _mm_add_epi32(buf1[9], buf1[10]); + buf0[10] = _mm_sub_epi32(buf1[9], buf1[10]); + buf0[12] = _mm_sub_epi32(buf1[15], buf1[12]); + buf0[15] = _mm_add_epi32(buf1[15], buf1[12]); + buf0[13] = _mm_sub_epi32(buf1[14], buf1[13]); + buf0[14] = _mm_add_epi32(buf1[14], buf1[13]); + buf0[16] = buf1[16]; + buf0[17] = buf1[17]; + btf_32_sse4_1_type0(-cospi[16], cospi[48], buf1[18], buf1[29], buf0[18], + buf0[29], cos_bit); + btf_32_sse4_1_type0(-cospi[16], cospi[48], buf1[19], buf1[28], buf0[19], + buf0[28], cos_bit); + btf_32_sse4_1_type0(-cospi[48], -cospi[16], buf1[20], buf1[27], buf0[20], + buf0[27], cos_bit); + btf_32_sse4_1_type0(-cospi[48], -cospi[16], buf1[21], buf1[26], buf0[21], + buf0[26], cos_bit); + buf0[22] = buf1[22]; + buf0[23] = buf1[23]; + buf0[24] = buf1[24]; + buf0[25] = buf1[25]; + buf0[30] = buf1[30]; + buf0[31] = buf1[31]; + + // stage 5 + cospi = cospi_arr(cos_bit); + btf_32_sse4_1_type0(cospi[32], cospi[32], buf0[0], buf0[1], buf1[0], buf1[1], + cos_bit); + btf_32_sse4_1_type1(cospi[48], cospi[16], buf0[2], buf0[3], buf1[2], buf1[3], + cos_bit); + buf1[4] = _mm_add_epi32(buf0[4], buf0[5]); + buf1[5] = _mm_sub_epi32(buf0[4], buf0[5]); + buf1[6] = _mm_sub_epi32(buf0[7], buf0[6]); + buf1[7] = _mm_add_epi32(buf0[7], buf0[6]); + buf1[8] = buf0[8]; + btf_32_sse4_1_type0(-cospi[16], cospi[48], buf0[9], buf0[14], buf1[9], + buf1[14], cos_bit); + btf_32_sse4_1_type0(-cospi[48], -cospi[16], buf0[10], buf0[13], buf1[10], + buf1[13], cos_bit); + buf1[11] = buf0[11]; + buf1[12] = buf0[12]; + buf1[15] = buf0[15]; + buf1[16] = _mm_add_epi32(buf0[16], buf0[19]); + buf1[19] = _mm_sub_epi32(buf0[16], buf0[19]); + buf1[17] = _mm_add_epi32(buf0[17], buf0[18]); + buf1[18] = _mm_sub_epi32(buf0[17], buf0[18]); + buf1[20] = _mm_sub_epi32(buf0[23], buf0[20]); + buf1[23] = _mm_add_epi32(buf0[23], buf0[20]); + buf1[21] = _mm_sub_epi32(buf0[22], buf0[21]); + buf1[22] = _mm_add_epi32(buf0[22], buf0[21]); + buf1[24] = _mm_add_epi32(buf0[24], buf0[27]); + buf1[27] = _mm_sub_epi32(buf0[24], buf0[27]); + buf1[25] = _mm_add_epi32(buf0[25], buf0[26]); + buf1[26] = _mm_sub_epi32(buf0[25], buf0[26]); + buf1[28] = _mm_sub_epi32(buf0[31], buf0[28]); + buf1[31] = _mm_add_epi32(buf0[31], buf0[28]); + buf1[29] = _mm_sub_epi32(buf0[30], buf0[29]); + buf1[30] = _mm_add_epi32(buf0[30], buf0[29]); + + // stage 6 + cospi = cospi_arr(cos_bit); + buf0[0] = buf1[0]; + buf0[1] = buf1[1]; + buf0[2] = buf1[2]; + buf0[3] = buf1[3]; + btf_32_sse4_1_type1(cospi[56], cospi[8], buf1[4], buf1[7], buf0[4], buf0[7], + cos_bit); + btf_32_sse4_1_type1(cospi[24], cospi[40], buf1[5], buf1[6], buf0[5], buf0[6], + cos_bit); + buf0[8] = _mm_add_epi32(buf1[8], buf1[9]); + buf0[9] = _mm_sub_epi32(buf1[8], buf1[9]); + buf0[10] = _mm_sub_epi32(buf1[11], buf1[10]); + buf0[11] = _mm_add_epi32(buf1[11], buf1[10]); + buf0[12] = _mm_add_epi32(buf1[12], buf1[13]); + buf0[13] = _mm_sub_epi32(buf1[12], buf1[13]); + buf0[14] = _mm_sub_epi32(buf1[15], buf1[14]); + buf0[15] = _mm_add_epi32(buf1[15], buf1[14]); + buf0[16] = buf1[16]; + btf_32_sse4_1_type0(-cospi[8], cospi[56], buf1[17], buf1[30], buf0[17], + buf0[30], cos_bit); + btf_32_sse4_1_type0(-cospi[56], -cospi[8], buf1[18], buf1[29], buf0[18], + buf0[29], cos_bit); + buf0[19] = buf1[19]; + buf0[20] = buf1[20]; + btf_32_sse4_1_type0(-cospi[40], cospi[24], buf1[21], buf1[26], buf0[21], + buf0[26], cos_bit); + btf_32_sse4_1_type0(-cospi[24], -cospi[40], buf1[22], buf1[25], buf0[22], + buf0[25], cos_bit); + buf0[23] = buf1[23]; + buf0[24] = buf1[24]; + buf0[27] = buf1[27]; + buf0[28] = buf1[28]; + buf0[31] = buf1[31]; + + // stage 7 + cospi = cospi_arr(cos_bit); + buf1[0] = buf0[0]; + buf1[1] = buf0[1]; + buf1[2] = buf0[2]; + buf1[3] = buf0[3]; + buf1[4] = buf0[4]; + buf1[5] = buf0[5]; + buf1[6] = buf0[6]; + buf1[7] = buf0[7]; + btf_32_sse4_1_type1(cospi[60], cospi[4], buf0[8], buf0[15], buf1[8], buf1[15], + cos_bit); + btf_32_sse4_1_type1(cospi[28], cospi[36], buf0[9], buf0[14], buf1[9], + buf1[14], cos_bit); + btf_32_sse4_1_type1(cospi[44], cospi[20], buf0[10], buf0[13], buf1[10], + buf1[13], cos_bit); + btf_32_sse4_1_type1(cospi[12], cospi[52], buf0[11], buf0[12], buf1[11], + buf1[12], cos_bit); + buf1[16] = _mm_add_epi32(buf0[16], buf0[17]); + buf1[17] = _mm_sub_epi32(buf0[16], buf0[17]); + buf1[18] = _mm_sub_epi32(buf0[19], buf0[18]); + buf1[19] = _mm_add_epi32(buf0[19], buf0[18]); + buf1[20] = _mm_add_epi32(buf0[20], buf0[21]); + buf1[21] = _mm_sub_epi32(buf0[20], buf0[21]); + buf1[22] = _mm_sub_epi32(buf0[23], buf0[22]); + buf1[23] = _mm_add_epi32(buf0[23], buf0[22]); + buf1[24] = _mm_add_epi32(buf0[24], buf0[25]); + buf1[25] = _mm_sub_epi32(buf0[24], buf0[25]); + buf1[26] = _mm_sub_epi32(buf0[27], buf0[26]); + buf1[27] = _mm_add_epi32(buf0[27], buf0[26]); + buf1[28] = _mm_add_epi32(buf0[28], buf0[29]); + buf1[29] = _mm_sub_epi32(buf0[28], buf0[29]); + buf1[30] = _mm_sub_epi32(buf0[31], buf0[30]); + buf1[31] = _mm_add_epi32(buf0[31], buf0[30]); + + // stage 8 + cospi = cospi_arr(cos_bit); + buf0[0] = buf1[0]; + buf0[1] = buf1[1]; + buf0[2] = buf1[2]; + buf0[3] = buf1[3]; + buf0[4] = buf1[4]; + buf0[5] = buf1[5]; + buf0[6] = buf1[6]; + buf0[7] = buf1[7]; + buf0[8] = buf1[8]; + buf0[9] = buf1[9]; + buf0[10] = buf1[10]; + buf0[11] = buf1[11]; + buf0[12] = buf1[12]; + buf0[13] = buf1[13]; + buf0[14] = buf1[14]; + buf0[15] = buf1[15]; + btf_32_sse4_1_type1(cospi[62], cospi[2], buf1[16], buf1[31], buf0[16], + buf0[31], cos_bit); + btf_32_sse4_1_type1(cospi[30], cospi[34], buf1[17], buf1[30], buf0[17], + buf0[30], cos_bit); + btf_32_sse4_1_type1(cospi[46], cospi[18], buf1[18], buf1[29], buf0[18], + buf0[29], cos_bit); + btf_32_sse4_1_type1(cospi[14], cospi[50], buf1[19], buf1[28], buf0[19], + buf0[28], cos_bit); + btf_32_sse4_1_type1(cospi[54], cospi[10], buf1[20], buf1[27], buf0[20], + buf0[27], cos_bit); + btf_32_sse4_1_type1(cospi[22], cospi[42], buf1[21], buf1[26], buf0[21], + buf0[26], cos_bit); + btf_32_sse4_1_type1(cospi[38], cospi[26], buf1[22], buf1[25], buf0[22], + buf0[25], cos_bit); + btf_32_sse4_1_type1(cospi[6], cospi[58], buf1[23], buf1[24], buf0[23], + buf0[24], cos_bit); + + // stage 9 + output[0] = buf0[0]; + output[1] = buf0[16]; + output[2] = buf0[8]; + output[3] = buf0[24]; + output[4] = buf0[4]; + output[5] = buf0[20]; + output[6] = buf0[12]; + output[7] = buf0[28]; + output[8] = buf0[2]; + output[9] = buf0[18]; + output[10] = buf0[10]; + output[11] = buf0[26]; + output[12] = buf0[6]; + output[13] = buf0[22]; + output[14] = buf0[14]; + output[15] = buf0[30]; + output[16] = buf0[1]; + output[17] = buf0[17]; + output[18] = buf0[9]; + output[19] = buf0[25]; + output[20] = buf0[5]; + output[21] = buf0[21]; + output[22] = buf0[13]; + output[23] = buf0[29]; + output[24] = buf0[3]; + output[25] = buf0[19]; + output[26] = buf0[11]; + output[27] = buf0[27]; + output[28] = buf0[7]; + output[29] = buf0[23]; + output[30] = buf0[15]; + output[31] = buf0[31]; +} + +void av1_fadst4_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range) { + const int txfm_size = 4; + const int num_per_128 = 4; + const int32_t *cospi; + __m128i buf0[4]; + __m128i buf1[4]; + int col_num = txfm_size / num_per_128; + int col; + (void)stage_range; + for (col = 0; col < col_num; col++) { + // stage 0; + int32_t stage_idx = 0; + int j; + for (j = 0; j < 4; ++j) { + buf0[j] = input[j * col_num + col]; + } + + // stage 1 + stage_idx++; + buf1[0] = buf0[3]; + buf1[1] = buf0[0]; + buf1[2] = buf0[1]; + buf1[3] = buf0[2]; + + // stage 2 + stage_idx++; + + cospi = cospi_arr(cos_bit); + btf_32_sse4_1_type0(cospi[8], cospi[56], buf1[0], buf1[1], buf0[0], buf0[1], + cos_bit); + btf_32_sse4_1_type0(cospi[40], cospi[24], buf1[2], buf1[3], buf0[2], + buf0[3], cos_bit); + + // stage 3 + stage_idx++; + buf1[0] = _mm_add_epi32(buf0[0], buf0[2]); + buf1[2] = _mm_sub_epi32(buf0[0], buf0[2]); + buf1[1] = _mm_add_epi32(buf0[1], buf0[3]); + buf1[3] = _mm_sub_epi32(buf0[1], buf0[3]); + + // stage 4 + stage_idx++; + + cospi = cospi_arr(cos_bit); + buf0[0] = buf1[0]; + buf0[1] = buf1[1]; + btf_32_sse4_1_type0(cospi[32], cospi[32], buf1[2], buf1[3], buf0[2], + buf0[3], cos_bit); + + // stage 5 + stage_idx++; + buf1[0] = buf0[0]; + buf1[1] = _mm_sub_epi32(_mm_setzero_si128(), buf0[2]); + buf1[2] = buf0[3]; + buf1[3] = _mm_sub_epi32(_mm_setzero_si128(), buf0[1]); + + for (j = 0; j < 4; ++j) { + output[j * col_num + col] = buf1[j]; + } + } +} + +void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output, + int8_t cos_bit, const int instride, + const int outstride) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32 = _mm_set1_epi32(-cospi[32]); + __m128i cospi_p32 = _mm_set1_epi32(cospi[32]); + __m128i cospi_m16 = _mm_set1_epi32(-cospi[16]); + __m128i cospi_p48 = _mm_set1_epi32(cospi[48]); + __m128i cospi_m48 = _mm_set1_epi32(-cospi[48]); + __m128i cospi_p16 = _mm_set1_epi32(cospi[16]); + __m128i cospi_m08 = _mm_set1_epi32(-cospi[8]); + __m128i cospi_p56 = _mm_set1_epi32(cospi[56]); + __m128i cospi_m56 = _mm_set1_epi32(-cospi[56]); + __m128i cospi_m40 = _mm_set1_epi32(-cospi[40]); + __m128i cospi_p24 = _mm_set1_epi32(cospi[24]); + __m128i cospi_m24 = _mm_set1_epi32(-cospi[24]); + __m128i cospi_p08 = _mm_set1_epi32(cospi[8]); + __m128i cospi_p40 = _mm_set1_epi32(cospi[40]); + __m128i cospi_p60 = _mm_set1_epi32(cospi[60]); + __m128i cospi_p04 = _mm_set1_epi32(cospi[4]); + __m128i cospi_p28 = _mm_set1_epi32(cospi[28]); + __m128i cospi_p36 = _mm_set1_epi32(cospi[36]); + __m128i cospi_p44 = _mm_set1_epi32(cospi[44]); + __m128i cospi_p20 = _mm_set1_epi32(cospi[20]); + __m128i cospi_p12 = _mm_set1_epi32(cospi[12]); + __m128i cospi_p52 = _mm_set1_epi32(cospi[52]); + __m128i cospi_m04 = _mm_set1_epi32(-cospi[4]); + __m128i cospi_m60 = _mm_set1_epi32(-cospi[60]); + __m128i cospi_m36 = _mm_set1_epi32(-cospi[36]); + __m128i cospi_m28 = _mm_set1_epi32(-cospi[28]); + __m128i cospi_m20 = _mm_set1_epi32(-cospi[20]); + __m128i cospi_m44 = _mm_set1_epi32(-cospi[44]); + __m128i cospi_m52 = _mm_set1_epi32(-cospi[52]); + __m128i cospi_m12 = _mm_set1_epi32(-cospi[12]); + __m128i cospi_p62 = _mm_set1_epi32(cospi[62]); + __m128i cospi_p02 = _mm_set1_epi32(cospi[2]); + __m128i cospi_p30 = _mm_set1_epi32(cospi[30]); + __m128i cospi_p34 = _mm_set1_epi32(cospi[34]); + __m128i cospi_p46 = _mm_set1_epi32(cospi[46]); + __m128i cospi_p18 = _mm_set1_epi32(cospi[18]); + __m128i cospi_p14 = _mm_set1_epi32(cospi[14]); + __m128i cospi_p50 = _mm_set1_epi32(cospi[50]); + __m128i cospi_p54 = _mm_set1_epi32(cospi[54]); + __m128i cospi_p10 = _mm_set1_epi32(cospi[10]); + __m128i cospi_p22 = _mm_set1_epi32(cospi[22]); + __m128i cospi_p42 = _mm_set1_epi32(cospi[42]); + __m128i cospi_p38 = _mm_set1_epi32(cospi[38]); + __m128i cospi_p26 = _mm_set1_epi32(cospi[26]); + __m128i cospi_p06 = _mm_set1_epi32(cospi[6]); + __m128i cospi_p58 = _mm_set1_epi32(cospi[58]); + __m128i cospi_p63 = _mm_set1_epi32(cospi[63]); + __m128i cospi_p01 = _mm_set1_epi32(cospi[1]); + __m128i cospi_p31 = _mm_set1_epi32(cospi[31]); + __m128i cospi_p33 = _mm_set1_epi32(cospi[33]); + __m128i cospi_p47 = _mm_set1_epi32(cospi[47]); + __m128i cospi_p17 = _mm_set1_epi32(cospi[17]); + __m128i cospi_p15 = _mm_set1_epi32(cospi[15]); + __m128i cospi_p49 = _mm_set1_epi32(cospi[49]); + __m128i cospi_p55 = _mm_set1_epi32(cospi[55]); + __m128i cospi_p09 = _mm_set1_epi32(cospi[9]); + __m128i cospi_p23 = _mm_set1_epi32(cospi[23]); + __m128i cospi_p41 = _mm_set1_epi32(cospi[41]); + __m128i cospi_p39 = _mm_set1_epi32(cospi[39]); + __m128i cospi_p25 = _mm_set1_epi32(cospi[25]); + __m128i cospi_p07 = _mm_set1_epi32(cospi[7]); + __m128i cospi_p57 = _mm_set1_epi32(cospi[57]); + __m128i cospi_p59 = _mm_set1_epi32(cospi[59]); + __m128i cospi_p05 = _mm_set1_epi32(cospi[5]); + __m128i cospi_p27 = _mm_set1_epi32(cospi[27]); + __m128i cospi_p37 = _mm_set1_epi32(cospi[37]); + __m128i cospi_p43 = _mm_set1_epi32(cospi[43]); + __m128i cospi_p21 = _mm_set1_epi32(cospi[21]); + __m128i cospi_p11 = _mm_set1_epi32(cospi[11]); + __m128i cospi_p53 = _mm_set1_epi32(cospi[53]); + __m128i cospi_p51 = _mm_set1_epi32(cospi[51]); + __m128i cospi_p13 = _mm_set1_epi32(cospi[13]); + __m128i cospi_p19 = _mm_set1_epi32(cospi[19]); + __m128i cospi_p45 = _mm_set1_epi32(cospi[45]); + __m128i cospi_p35 = _mm_set1_epi32(cospi[35]); + __m128i cospi_p29 = _mm_set1_epi32(cospi[29]); + __m128i cospi_p03 = _mm_set1_epi32(cospi[3]); + __m128i cospi_p61 = _mm_set1_epi32(cospi[61]); + + // stage 1 + __m128i x1[64]; + x1[0] = _mm_add_epi32(input[0 * instride], input[63 * instride]); + x1[63] = _mm_sub_epi32(input[0 * instride], input[63 * instride]); + x1[1] = _mm_add_epi32(input[1 * instride], input[62 * instride]); + x1[62] = _mm_sub_epi32(input[1 * instride], input[62 * instride]); + x1[2] = _mm_add_epi32(input[2 * instride], input[61 * instride]); + x1[61] = _mm_sub_epi32(input[2 * instride], input[61 * instride]); + x1[3] = _mm_add_epi32(input[3 * instride], input[60 * instride]); + x1[60] = _mm_sub_epi32(input[3 * instride], input[60 * instride]); + x1[4] = _mm_add_epi32(input[4 * instride], input[59 * instride]); + x1[59] = _mm_sub_epi32(input[4 * instride], input[59 * instride]); + x1[5] = _mm_add_epi32(input[5 * instride], input[58 * instride]); + x1[58] = _mm_sub_epi32(input[5 * instride], input[58 * instride]); + x1[6] = _mm_add_epi32(input[6 * instride], input[57 * instride]); + x1[57] = _mm_sub_epi32(input[6 * instride], input[57 * instride]); + x1[7] = _mm_add_epi32(input[7 * instride], input[56 * instride]); + x1[56] = _mm_sub_epi32(input[7 * instride], input[56 * instride]); + x1[8] = _mm_add_epi32(input[8 * instride], input[55 * instride]); + x1[55] = _mm_sub_epi32(input[8 * instride], input[55 * instride]); + x1[9] = _mm_add_epi32(input[9 * instride], input[54 * instride]); + x1[54] = _mm_sub_epi32(input[9 * instride], input[54 * instride]); + x1[10] = _mm_add_epi32(input[10 * instride], input[53 * instride]); + x1[53] = _mm_sub_epi32(input[10 * instride], input[53 * instride]); + x1[11] = _mm_add_epi32(input[11 * instride], input[52 * instride]); + x1[52] = _mm_sub_epi32(input[11 * instride], input[52 * instride]); + x1[12] = _mm_add_epi32(input[12 * instride], input[51 * instride]); + x1[51] = _mm_sub_epi32(input[12 * instride], input[51 * instride]); + x1[13] = _mm_add_epi32(input[13 * instride], input[50 * instride]); + x1[50] = _mm_sub_epi32(input[13 * instride], input[50 * instride]); + x1[14] = _mm_add_epi32(input[14 * instride], input[49 * instride]); + x1[49] = _mm_sub_epi32(input[14 * instride], input[49 * instride]); + x1[15] = _mm_add_epi32(input[15 * instride], input[48 * instride]); + x1[48] = _mm_sub_epi32(input[15 * instride], input[48 * instride]); + x1[16] = _mm_add_epi32(input[16 * instride], input[47 * instride]); + x1[47] = _mm_sub_epi32(input[16 * instride], input[47 * instride]); + x1[17] = _mm_add_epi32(input[17 * instride], input[46 * instride]); + x1[46] = _mm_sub_epi32(input[17 * instride], input[46 * instride]); + x1[18] = _mm_add_epi32(input[18 * instride], input[45 * instride]); + x1[45] = _mm_sub_epi32(input[18 * instride], input[45 * instride]); + x1[19] = _mm_add_epi32(input[19 * instride], input[44 * instride]); + x1[44] = _mm_sub_epi32(input[19 * instride], input[44 * instride]); + x1[20] = _mm_add_epi32(input[20 * instride], input[43 * instride]); + x1[43] = _mm_sub_epi32(input[20 * instride], input[43 * instride]); + x1[21] = _mm_add_epi32(input[21 * instride], input[42 * instride]); + x1[42] = _mm_sub_epi32(input[21 * instride], input[42 * instride]); + x1[22] = _mm_add_epi32(input[22 * instride], input[41 * instride]); + x1[41] = _mm_sub_epi32(input[22 * instride], input[41 * instride]); + x1[23] = _mm_add_epi32(input[23 * instride], input[40 * instride]); + x1[40] = _mm_sub_epi32(input[23 * instride], input[40 * instride]); + x1[24] = _mm_add_epi32(input[24 * instride], input[39 * instride]); + x1[39] = _mm_sub_epi32(input[24 * instride], input[39 * instride]); + x1[25] = _mm_add_epi32(input[25 * instride], input[38 * instride]); + x1[38] = _mm_sub_epi32(input[25 * instride], input[38 * instride]); + x1[26] = _mm_add_epi32(input[26 * instride], input[37 * instride]); + x1[37] = _mm_sub_epi32(input[26 * instride], input[37 * instride]); + x1[27] = _mm_add_epi32(input[27 * instride], input[36 * instride]); + x1[36] = _mm_sub_epi32(input[27 * instride], input[36 * instride]); + x1[28] = _mm_add_epi32(input[28 * instride], input[35 * instride]); + x1[35] = _mm_sub_epi32(input[28 * instride], input[35 * instride]); + x1[29] = _mm_add_epi32(input[29 * instride], input[34 * instride]); + x1[34] = _mm_sub_epi32(input[29 * instride], input[34 * instride]); + x1[30] = _mm_add_epi32(input[30 * instride], input[33 * instride]); + x1[33] = _mm_sub_epi32(input[30 * instride], input[33 * instride]); + x1[31] = _mm_add_epi32(input[31 * instride], input[32 * instride]); + x1[32] = _mm_sub_epi32(input[31 * instride], input[32 * instride]); + + // stage 2 + __m128i x2[64]; + x2[0] = _mm_add_epi32(x1[0], x1[31]); + x2[31] = _mm_sub_epi32(x1[0], x1[31]); + x2[1] = _mm_add_epi32(x1[1], x1[30]); + x2[30] = _mm_sub_epi32(x1[1], x1[30]); + x2[2] = _mm_add_epi32(x1[2], x1[29]); + x2[29] = _mm_sub_epi32(x1[2], x1[29]); + x2[3] = _mm_add_epi32(x1[3], x1[28]); + x2[28] = _mm_sub_epi32(x1[3], x1[28]); + x2[4] = _mm_add_epi32(x1[4], x1[27]); + x2[27] = _mm_sub_epi32(x1[4], x1[27]); + x2[5] = _mm_add_epi32(x1[5], x1[26]); + x2[26] = _mm_sub_epi32(x1[5], x1[26]); + x2[6] = _mm_add_epi32(x1[6], x1[25]); + x2[25] = _mm_sub_epi32(x1[6], x1[25]); + x2[7] = _mm_add_epi32(x1[7], x1[24]); + x2[24] = _mm_sub_epi32(x1[7], x1[24]); + x2[8] = _mm_add_epi32(x1[8], x1[23]); + x2[23] = _mm_sub_epi32(x1[8], x1[23]); + x2[9] = _mm_add_epi32(x1[9], x1[22]); + x2[22] = _mm_sub_epi32(x1[9], x1[22]); + x2[10] = _mm_add_epi32(x1[10], x1[21]); + x2[21] = _mm_sub_epi32(x1[10], x1[21]); + x2[11] = _mm_add_epi32(x1[11], x1[20]); + x2[20] = _mm_sub_epi32(x1[11], x1[20]); + x2[12] = _mm_add_epi32(x1[12], x1[19]); + x2[19] = _mm_sub_epi32(x1[12], x1[19]); + x2[13] = _mm_add_epi32(x1[13], x1[18]); + x2[18] = _mm_sub_epi32(x1[13], x1[18]); + x2[14] = _mm_add_epi32(x1[14], x1[17]); + x2[17] = _mm_sub_epi32(x1[14], x1[17]); + x2[15] = _mm_add_epi32(x1[15], x1[16]); + x2[16] = _mm_sub_epi32(x1[15], x1[16]); + x2[32] = x1[32]; + x2[33] = x1[33]; + x2[34] = x1[34]; + x2[35] = x1[35]; + x2[36] = x1[36]; + x2[37] = x1[37]; + x2[38] = x1[38]; + x2[39] = x1[39]; + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[40], x1[55], x2[40], x2[55], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[41], x1[54], x2[41], x2[54], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[42], x1[53], x2[42], x2[53], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[43], x1[52], x2[43], x2[52], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[44], x1[51], x2[44], x2[51], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[45], x1[50], x2[45], x2[50], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[46], x1[49], x2[46], x2[49], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x1[47], x1[48], x2[47], x2[48], + __rounding, cos_bit); + x2[56] = x1[56]; + x2[57] = x1[57]; + x2[58] = x1[58]; + x2[59] = x1[59]; + x2[60] = x1[60]; + x2[61] = x1[61]; + x2[62] = x1[62]; + x2[63] = x1[63]; + + // stage 3 + __m128i x3[64]; + x3[0] = _mm_add_epi32(x2[0], x2[15]); + x3[15] = _mm_sub_epi32(x2[0], x2[15]); + x3[1] = _mm_add_epi32(x2[1], x2[14]); + x3[14] = _mm_sub_epi32(x2[1], x2[14]); + x3[2] = _mm_add_epi32(x2[2], x2[13]); + x3[13] = _mm_sub_epi32(x2[2], x2[13]); + x3[3] = _mm_add_epi32(x2[3], x2[12]); + x3[12] = _mm_sub_epi32(x2[3], x2[12]); + x3[4] = _mm_add_epi32(x2[4], x2[11]); + x3[11] = _mm_sub_epi32(x2[4], x2[11]); + x3[5] = _mm_add_epi32(x2[5], x2[10]); + x3[10] = _mm_sub_epi32(x2[5], x2[10]); + x3[6] = _mm_add_epi32(x2[6], x2[9]); + x3[9] = _mm_sub_epi32(x2[6], x2[9]); + x3[7] = _mm_add_epi32(x2[7], x2[8]); + x3[8] = _mm_sub_epi32(x2[7], x2[8]); + x3[16] = x2[16]; + x3[17] = x2[17]; + x3[18] = x2[18]; + x3[19] = x2[19]; + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x2[20], x2[27], x3[20], x3[27], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x2[21], x2[26], x3[21], x3[26], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x2[22], x2[25], x3[22], x3[25], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x2[23], x2[24], x3[23], x3[24], + __rounding, cos_bit); + x3[28] = x2[28]; + x3[29] = x2[29]; + x3[30] = x2[30]; + x3[31] = x2[31]; + x3[32] = _mm_add_epi32(x2[32], x2[47]); + x3[47] = _mm_sub_epi32(x2[32], x2[47]); + x3[33] = _mm_add_epi32(x2[33], x2[46]); + x3[46] = _mm_sub_epi32(x2[33], x2[46]); + x3[34] = _mm_add_epi32(x2[34], x2[45]); + x3[45] = _mm_sub_epi32(x2[34], x2[45]); + x3[35] = _mm_add_epi32(x2[35], x2[44]); + x3[44] = _mm_sub_epi32(x2[35], x2[44]); + x3[36] = _mm_add_epi32(x2[36], x2[43]); + x3[43] = _mm_sub_epi32(x2[36], x2[43]); + x3[37] = _mm_add_epi32(x2[37], x2[42]); + x3[42] = _mm_sub_epi32(x2[37], x2[42]); + x3[38] = _mm_add_epi32(x2[38], x2[41]); + x3[41] = _mm_sub_epi32(x2[38], x2[41]); + x3[39] = _mm_add_epi32(x2[39], x2[40]); + x3[40] = _mm_sub_epi32(x2[39], x2[40]); + x3[48] = _mm_sub_epi32(x2[63], x2[48]); + x3[63] = _mm_add_epi32(x2[63], x2[48]); + x3[49] = _mm_sub_epi32(x2[62], x2[49]); + x3[62] = _mm_add_epi32(x2[62], x2[49]); + x3[50] = _mm_sub_epi32(x2[61], x2[50]); + x3[61] = _mm_add_epi32(x2[61], x2[50]); + x3[51] = _mm_sub_epi32(x2[60], x2[51]); + x3[60] = _mm_add_epi32(x2[60], x2[51]); + x3[52] = _mm_sub_epi32(x2[59], x2[52]); + x3[59] = _mm_add_epi32(x2[59], x2[52]); + x3[53] = _mm_sub_epi32(x2[58], x2[53]); + x3[58] = _mm_add_epi32(x2[58], x2[53]); + x3[54] = _mm_sub_epi32(x2[57], x2[54]); + x3[57] = _mm_add_epi32(x2[57], x2[54]); + x3[55] = _mm_sub_epi32(x2[56], x2[55]); + x3[56] = _mm_add_epi32(x2[56], x2[55]); + + // stage 4 + __m128i x4[64]; + x4[0] = _mm_add_epi32(x3[0], x3[7]); + x4[7] = _mm_sub_epi32(x3[0], x3[7]); + x4[1] = _mm_add_epi32(x3[1], x3[6]); + x4[6] = _mm_sub_epi32(x3[1], x3[6]); + x4[2] = _mm_add_epi32(x3[2], x3[5]); + x4[5] = _mm_sub_epi32(x3[2], x3[5]); + x4[3] = _mm_add_epi32(x3[3], x3[4]); + x4[4] = _mm_sub_epi32(x3[3], x3[4]); + x4[8] = x3[8]; + x4[9] = x3[9]; + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x3[10], x3[13], x4[10], x4[13], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x3[11], x3[12], x4[11], x4[12], + __rounding, cos_bit); + x4[14] = x3[14]; + x4[15] = x3[15]; + x4[16] = _mm_add_epi32(x3[16], x3[23]); + x4[23] = _mm_sub_epi32(x3[16], x3[23]); + x4[17] = _mm_add_epi32(x3[17], x3[22]); + x4[22] = _mm_sub_epi32(x3[17], x3[22]); + x4[18] = _mm_add_epi32(x3[18], x3[21]); + x4[21] = _mm_sub_epi32(x3[18], x3[21]); + x4[19] = _mm_add_epi32(x3[19], x3[20]); + x4[20] = _mm_sub_epi32(x3[19], x3[20]); + x4[24] = _mm_sub_epi32(x3[31], x3[24]); + x4[31] = _mm_add_epi32(x3[31], x3[24]); + x4[25] = _mm_sub_epi32(x3[30], x3[25]); + x4[30] = _mm_add_epi32(x3[30], x3[25]); + x4[26] = _mm_sub_epi32(x3[29], x3[26]); + x4[29] = _mm_add_epi32(x3[29], x3[26]); + x4[27] = _mm_sub_epi32(x3[28], x3[27]); + x4[28] = _mm_add_epi32(x3[28], x3[27]); + x4[32] = x3[32]; + x4[33] = x3[33]; + x4[34] = x3[34]; + x4[35] = x3[35]; + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x3[36], x3[59], x4[36], x4[59], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x3[37], x3[58], x4[37], x4[58], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x3[38], x3[57], x4[38], x4[57], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x3[39], x3[56], x4[39], x4[56], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x3[40], x3[55], x4[40], x4[55], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x3[41], x3[54], x4[41], x4[54], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x3[42], x3[53], x4[42], x4[53], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x3[43], x3[52], x4[43], x4[52], + __rounding, cos_bit); + x4[44] = x3[44]; + x4[45] = x3[45]; + x4[46] = x3[46]; + x4[47] = x3[47]; + x4[48] = x3[48]; + x4[49] = x3[49]; + x4[50] = x3[50]; + x4[51] = x3[51]; + x4[60] = x3[60]; + x4[61] = x3[61]; + x4[62] = x3[62]; + x4[63] = x3[63]; + + // stage 5 + __m128i x5[64]; + x5[0] = _mm_add_epi32(x4[0], x4[3]); + x5[3] = _mm_sub_epi32(x4[0], x4[3]); + x5[1] = _mm_add_epi32(x4[1], x4[2]); + x5[2] = _mm_sub_epi32(x4[1], x4[2]); + x5[4] = x4[4]; + btf_32_type0_sse4_1_new(cospi_m32, cospi_p32, x4[5], x4[6], x5[5], x5[6], + __rounding, cos_bit); + x5[7] = x4[7]; + x5[8] = _mm_add_epi32(x4[8], x4[11]); + x5[11] = _mm_sub_epi32(x4[8], x4[11]); + x5[9] = _mm_add_epi32(x4[9], x4[10]); + x5[10] = _mm_sub_epi32(x4[9], x4[10]); + x5[12] = _mm_sub_epi32(x4[15], x4[12]); + x5[15] = _mm_add_epi32(x4[15], x4[12]); + x5[13] = _mm_sub_epi32(x4[14], x4[13]); + x5[14] = _mm_add_epi32(x4[14], x4[13]); + x5[16] = x4[16]; + x5[17] = x4[17]; + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x4[18], x4[29], x5[18], x5[29], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x4[19], x4[28], x5[19], x5[28], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x4[20], x4[27], x5[20], x5[27], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x4[21], x4[26], x5[21], x5[26], + __rounding, cos_bit); + x5[22] = x4[22]; + x5[23] = x4[23]; + x5[24] = x4[24]; + x5[25] = x4[25]; + x5[30] = x4[30]; + x5[31] = x4[31]; + x5[32] = _mm_add_epi32(x4[32], x4[39]); + x5[39] = _mm_sub_epi32(x4[32], x4[39]); + x5[33] = _mm_add_epi32(x4[33], x4[38]); + x5[38] = _mm_sub_epi32(x4[33], x4[38]); + x5[34] = _mm_add_epi32(x4[34], x4[37]); + x5[37] = _mm_sub_epi32(x4[34], x4[37]); + x5[35] = _mm_add_epi32(x4[35], x4[36]); + x5[36] = _mm_sub_epi32(x4[35], x4[36]); + x5[40] = _mm_sub_epi32(x4[47], x4[40]); + x5[47] = _mm_add_epi32(x4[47], x4[40]); + x5[41] = _mm_sub_epi32(x4[46], x4[41]); + x5[46] = _mm_add_epi32(x4[46], x4[41]); + x5[42] = _mm_sub_epi32(x4[45], x4[42]); + x5[45] = _mm_add_epi32(x4[45], x4[42]); + x5[43] = _mm_sub_epi32(x4[44], x4[43]); + x5[44] = _mm_add_epi32(x4[44], x4[43]); + x5[48] = _mm_add_epi32(x4[48], x4[55]); + x5[55] = _mm_sub_epi32(x4[48], x4[55]); + x5[49] = _mm_add_epi32(x4[49], x4[54]); + x5[54] = _mm_sub_epi32(x4[49], x4[54]); + x5[50] = _mm_add_epi32(x4[50], x4[53]); + x5[53] = _mm_sub_epi32(x4[50], x4[53]); + x5[51] = _mm_add_epi32(x4[51], x4[52]); + x5[52] = _mm_sub_epi32(x4[51], x4[52]); + x5[56] = _mm_sub_epi32(x4[63], x4[56]); + x5[63] = _mm_add_epi32(x4[63], x4[56]); + x5[57] = _mm_sub_epi32(x4[62], x4[57]); + x5[62] = _mm_add_epi32(x4[62], x4[57]); + x5[58] = _mm_sub_epi32(x4[61], x4[58]); + x5[61] = _mm_add_epi32(x4[61], x4[58]); + x5[59] = _mm_sub_epi32(x4[60], x4[59]); + x5[60] = _mm_add_epi32(x4[60], x4[59]); + + // stage 6 + __m128i x6[64]; + btf_32_type0_sse4_1_new(cospi_p32, cospi_p32, x5[0], x5[1], x6[0], x6[1], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p48, cospi_p16, x5[2], x5[3], x6[2], x6[3], + __rounding, cos_bit); + x6[4] = _mm_add_epi32(x5[4], x5[5]); + x6[5] = _mm_sub_epi32(x5[4], x5[5]); + x6[6] = _mm_sub_epi32(x5[7], x5[6]); + x6[7] = _mm_add_epi32(x5[7], x5[6]); + x6[8] = x5[8]; + btf_32_type0_sse4_1_new(cospi_m16, cospi_p48, x5[9], x5[14], x6[9], x6[14], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m48, cospi_m16, x5[10], x5[13], x6[10], x6[13], + __rounding, cos_bit); + x6[11] = x5[11]; + x6[12] = x5[12]; + x6[15] = x5[15]; + x6[16] = _mm_add_epi32(x5[16], x5[19]); + x6[19] = _mm_sub_epi32(x5[16], x5[19]); + x6[17] = _mm_add_epi32(x5[17], x5[18]); + x6[18] = _mm_sub_epi32(x5[17], x5[18]); + x6[20] = _mm_sub_epi32(x5[23], x5[20]); + x6[23] = _mm_add_epi32(x5[23], x5[20]); + x6[21] = _mm_sub_epi32(x5[22], x5[21]); + x6[22] = _mm_add_epi32(x5[22], x5[21]); + x6[24] = _mm_add_epi32(x5[24], x5[27]); + x6[27] = _mm_sub_epi32(x5[24], x5[27]); + x6[25] = _mm_add_epi32(x5[25], x5[26]); + x6[26] = _mm_sub_epi32(x5[25], x5[26]); + x6[28] = _mm_sub_epi32(x5[31], x5[28]); + x6[31] = _mm_add_epi32(x5[31], x5[28]); + x6[29] = _mm_sub_epi32(x5[30], x5[29]); + x6[30] = _mm_add_epi32(x5[30], x5[29]); + x6[32] = x5[32]; + x6[33] = x5[33]; + btf_32_type0_sse4_1_new(cospi_m08, cospi_p56, x5[34], x5[61], x6[34], x6[61], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m08, cospi_p56, x5[35], x5[60], x6[35], x6[60], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m56, cospi_m08, x5[36], x5[59], x6[36], x6[59], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m56, cospi_m08, x5[37], x5[58], x6[37], x6[58], + __rounding, cos_bit); + x6[38] = x5[38]; + x6[39] = x5[39]; + x6[40] = x5[40]; + x6[41] = x5[41]; + btf_32_type0_sse4_1_new(cospi_m40, cospi_p24, x5[42], x5[53], x6[42], x6[53], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m40, cospi_p24, x5[43], x5[52], x6[43], x6[52], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m24, cospi_m40, x5[44], x5[51], x6[44], x6[51], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m24, cospi_m40, x5[45], x5[50], x6[45], x6[50], + __rounding, cos_bit); + x6[46] = x5[46]; + x6[47] = x5[47]; + x6[48] = x5[48]; + x6[49] = x5[49]; + x6[54] = x5[54]; + x6[55] = x5[55]; + x6[56] = x5[56]; + x6[57] = x5[57]; + x6[62] = x5[62]; + x6[63] = x5[63]; + + // stage 7 + __m128i x7[64]; + x7[0] = x6[0]; + x7[1] = x6[1]; + x7[2] = x6[2]; + x7[3] = x6[3]; + btf_32_type1_sse4_1_new(cospi_p56, cospi_p08, x6[4], x6[7], x7[4], x7[7], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p24, cospi_p40, x6[5], x6[6], x7[5], x7[6], + __rounding, cos_bit); + x7[8] = _mm_add_epi32(x6[8], x6[9]); + x7[9] = _mm_sub_epi32(x6[8], x6[9]); + x7[10] = _mm_sub_epi32(x6[11], x6[10]); + x7[11] = _mm_add_epi32(x6[11], x6[10]); + x7[12] = _mm_add_epi32(x6[12], x6[13]); + x7[13] = _mm_sub_epi32(x6[12], x6[13]); + x7[14] = _mm_sub_epi32(x6[15], x6[14]); + x7[15] = _mm_add_epi32(x6[15], x6[14]); + x7[16] = x6[16]; + btf_32_type0_sse4_1_new(cospi_m08, cospi_p56, x6[17], x6[30], x7[17], x7[30], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m56, cospi_m08, x6[18], x6[29], x7[18], x7[29], + __rounding, cos_bit); + x7[19] = x6[19]; + x7[20] = x6[20]; + btf_32_type0_sse4_1_new(cospi_m40, cospi_p24, x6[21], x6[26], x7[21], x7[26], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m24, cospi_m40, x6[22], x6[25], x7[22], x7[25], + __rounding, cos_bit); + x7[23] = x6[23]; + x7[24] = x6[24]; + x7[27] = x6[27]; + x7[28] = x6[28]; + x7[31] = x6[31]; + x7[32] = _mm_add_epi32(x6[32], x6[35]); + x7[35] = _mm_sub_epi32(x6[32], x6[35]); + x7[33] = _mm_add_epi32(x6[33], x6[34]); + x7[34] = _mm_sub_epi32(x6[33], x6[34]); + x7[36] = _mm_sub_epi32(x6[39], x6[36]); + x7[39] = _mm_add_epi32(x6[39], x6[36]); + x7[37] = _mm_sub_epi32(x6[38], x6[37]); + x7[38] = _mm_add_epi32(x6[38], x6[37]); + x7[40] = _mm_add_epi32(x6[40], x6[43]); + x7[43] = _mm_sub_epi32(x6[40], x6[43]); + x7[41] = _mm_add_epi32(x6[41], x6[42]); + x7[42] = _mm_sub_epi32(x6[41], x6[42]); + x7[44] = _mm_sub_epi32(x6[47], x6[44]); + x7[47] = _mm_add_epi32(x6[47], x6[44]); + x7[45] = _mm_sub_epi32(x6[46], x6[45]); + x7[46] = _mm_add_epi32(x6[46], x6[45]); + x7[48] = _mm_add_epi32(x6[48], x6[51]); + x7[51] = _mm_sub_epi32(x6[48], x6[51]); + x7[49] = _mm_add_epi32(x6[49], x6[50]); + x7[50] = _mm_sub_epi32(x6[49], x6[50]); + x7[52] = _mm_sub_epi32(x6[55], x6[52]); + x7[55] = _mm_add_epi32(x6[55], x6[52]); + x7[53] = _mm_sub_epi32(x6[54], x6[53]); + x7[54] = _mm_add_epi32(x6[54], x6[53]); + x7[56] = _mm_add_epi32(x6[56], x6[59]); + x7[59] = _mm_sub_epi32(x6[56], x6[59]); + x7[57] = _mm_add_epi32(x6[57], x6[58]); + x7[58] = _mm_sub_epi32(x6[57], x6[58]); + x7[60] = _mm_sub_epi32(x6[63], x6[60]); + x7[63] = _mm_add_epi32(x6[63], x6[60]); + x7[61] = _mm_sub_epi32(x6[62], x6[61]); + x7[62] = _mm_add_epi32(x6[62], x6[61]); + + // stage 8 + __m128i x8[64]; + x8[0] = x7[0]; + x8[1] = x7[1]; + x8[2] = x7[2]; + x8[3] = x7[3]; + x8[4] = x7[4]; + x8[5] = x7[5]; + x8[6] = x7[6]; + x8[7] = x7[7]; + btf_32_type1_sse4_1_new(cospi_p60, cospi_p04, x7[8], x7[15], x8[8], x8[15], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p28, cospi_p36, x7[9], x7[14], x8[9], x8[14], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p44, cospi_p20, x7[10], x7[13], x8[10], x8[13], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p12, cospi_p52, x7[11], x7[12], x8[11], x8[12], + __rounding, cos_bit); + x8[16] = _mm_add_epi32(x7[16], x7[17]); + x8[17] = _mm_sub_epi32(x7[16], x7[17]); + x8[18] = _mm_sub_epi32(x7[19], x7[18]); + x8[19] = _mm_add_epi32(x7[19], x7[18]); + x8[20] = _mm_add_epi32(x7[20], x7[21]); + x8[21] = _mm_sub_epi32(x7[20], x7[21]); + x8[22] = _mm_sub_epi32(x7[23], x7[22]); + x8[23] = _mm_add_epi32(x7[23], x7[22]); + x8[24] = _mm_add_epi32(x7[24], x7[25]); + x8[25] = _mm_sub_epi32(x7[24], x7[25]); + x8[26] = _mm_sub_epi32(x7[27], x7[26]); + x8[27] = _mm_add_epi32(x7[27], x7[26]); + x8[28] = _mm_add_epi32(x7[28], x7[29]); + x8[29] = _mm_sub_epi32(x7[28], x7[29]); + x8[30] = _mm_sub_epi32(x7[31], x7[30]); + x8[31] = _mm_add_epi32(x7[31], x7[30]); + x8[32] = x7[32]; + btf_32_type0_sse4_1_new(cospi_m04, cospi_p60, x7[33], x7[62], x8[33], x8[62], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m60, cospi_m04, x7[34], x7[61], x8[34], x8[61], + __rounding, cos_bit); + x8[35] = x7[35]; + x8[36] = x7[36]; + btf_32_type0_sse4_1_new(cospi_m36, cospi_p28, x7[37], x7[58], x8[37], x8[58], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m28, cospi_m36, x7[38], x7[57], x8[38], x8[57], + __rounding, cos_bit); + x8[39] = x7[39]; + x8[40] = x7[40]; + btf_32_type0_sse4_1_new(cospi_m20, cospi_p44, x7[41], x7[54], x8[41], x8[54], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m44, cospi_m20, x7[42], x7[53], x8[42], x8[53], + __rounding, cos_bit); + x8[43] = x7[43]; + x8[44] = x7[44]; + btf_32_type0_sse4_1_new(cospi_m52, cospi_p12, x7[45], x7[50], x8[45], x8[50], + __rounding, cos_bit); + btf_32_type0_sse4_1_new(cospi_m12, cospi_m52, x7[46], x7[49], x8[46], x8[49], + __rounding, cos_bit); + x8[47] = x7[47]; + x8[48] = x7[48]; + x8[51] = x7[51]; + x8[52] = x7[52]; + x8[55] = x7[55]; + x8[56] = x7[56]; + x8[59] = x7[59]; + x8[60] = x7[60]; + x8[63] = x7[63]; + + // stage 9 + __m128i x9[64]; + x9[0] = x8[0]; + x9[1] = x8[1]; + x9[2] = x8[2]; + x9[3] = x8[3]; + x9[4] = x8[4]; + x9[5] = x8[5]; + x9[6] = x8[6]; + x9[7] = x8[7]; + x9[8] = x8[8]; + x9[9] = x8[9]; + x9[10] = x8[10]; + x9[11] = x8[11]; + x9[12] = x8[12]; + x9[13] = x8[13]; + x9[14] = x8[14]; + x9[15] = x8[15]; + btf_32_type1_sse4_1_new(cospi_p62, cospi_p02, x8[16], x8[31], x9[16], x9[31], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p30, cospi_p34, x8[17], x8[30], x9[17], x9[30], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p46, cospi_p18, x8[18], x8[29], x9[18], x9[29], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p14, cospi_p50, x8[19], x8[28], x9[19], x9[28], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p54, cospi_p10, x8[20], x8[27], x9[20], x9[27], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p22, cospi_p42, x8[21], x8[26], x9[21], x9[26], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p38, cospi_p26, x8[22], x8[25], x9[22], x9[25], + __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p06, cospi_p58, x8[23], x8[24], x9[23], x9[24], + __rounding, cos_bit); + x9[32] = _mm_add_epi32(x8[32], x8[33]); + x9[33] = _mm_sub_epi32(x8[32], x8[33]); + x9[34] = _mm_sub_epi32(x8[35], x8[34]); + x9[35] = _mm_add_epi32(x8[35], x8[34]); + x9[36] = _mm_add_epi32(x8[36], x8[37]); + x9[37] = _mm_sub_epi32(x8[36], x8[37]); + x9[38] = _mm_sub_epi32(x8[39], x8[38]); + x9[39] = _mm_add_epi32(x8[39], x8[38]); + x9[40] = _mm_add_epi32(x8[40], x8[41]); + x9[41] = _mm_sub_epi32(x8[40], x8[41]); + x9[42] = _mm_sub_epi32(x8[43], x8[42]); + x9[43] = _mm_add_epi32(x8[43], x8[42]); + x9[44] = _mm_add_epi32(x8[44], x8[45]); + x9[45] = _mm_sub_epi32(x8[44], x8[45]); + x9[46] = _mm_sub_epi32(x8[47], x8[46]); + x9[47] = _mm_add_epi32(x8[47], x8[46]); + x9[48] = _mm_add_epi32(x8[48], x8[49]); + x9[49] = _mm_sub_epi32(x8[48], x8[49]); + x9[50] = _mm_sub_epi32(x8[51], x8[50]); + x9[51] = _mm_add_epi32(x8[51], x8[50]); + x9[52] = _mm_add_epi32(x8[52], x8[53]); + x9[53] = _mm_sub_epi32(x8[52], x8[53]); + x9[54] = _mm_sub_epi32(x8[55], x8[54]); + x9[55] = _mm_add_epi32(x8[55], x8[54]); + x9[56] = _mm_add_epi32(x8[56], x8[57]); + x9[57] = _mm_sub_epi32(x8[56], x8[57]); + x9[58] = _mm_sub_epi32(x8[59], x8[58]); + x9[59] = _mm_add_epi32(x8[59], x8[58]); + x9[60] = _mm_add_epi32(x8[60], x8[61]); + x9[61] = _mm_sub_epi32(x8[60], x8[61]); + x9[62] = _mm_sub_epi32(x8[63], x8[62]); + x9[63] = _mm_add_epi32(x8[63], x8[62]); + + // stage 10 + __m128i x10[64]; + x10[0] = x9[0]; + x10[1] = x9[1]; + x10[2] = x9[2]; + x10[3] = x9[3]; + x10[4] = x9[4]; + x10[5] = x9[5]; + x10[6] = x9[6]; + x10[7] = x9[7]; + x10[8] = x9[8]; + x10[9] = x9[9]; + x10[10] = x9[10]; + x10[11] = x9[11]; + x10[12] = x9[12]; + x10[13] = x9[13]; + x10[14] = x9[14]; + x10[15] = x9[15]; + x10[16] = x9[16]; + x10[17] = x9[17]; + x10[18] = x9[18]; + x10[19] = x9[19]; + x10[20] = x9[20]; + x10[21] = x9[21]; + x10[22] = x9[22]; + x10[23] = x9[23]; + x10[24] = x9[24]; + x10[25] = x9[25]; + x10[26] = x9[26]; + x10[27] = x9[27]; + x10[28] = x9[28]; + x10[29] = x9[29]; + x10[30] = x9[30]; + x10[31] = x9[31]; + btf_32_type1_sse4_1_new(cospi_p63, cospi_p01, x9[32], x9[63], x10[32], + x10[63], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p31, cospi_p33, x9[33], x9[62], x10[33], + x10[62], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p47, cospi_p17, x9[34], x9[61], x10[34], + x10[61], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p15, cospi_p49, x9[35], x9[60], x10[35], + x10[60], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p55, cospi_p09, x9[36], x9[59], x10[36], + x10[59], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p23, cospi_p41, x9[37], x9[58], x10[37], + x10[58], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p39, cospi_p25, x9[38], x9[57], x10[38], + x10[57], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p07, cospi_p57, x9[39], x9[56], x10[39], + x10[56], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p59, cospi_p05, x9[40], x9[55], x10[40], + x10[55], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p27, cospi_p37, x9[41], x9[54], x10[41], + x10[54], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p43, cospi_p21, x9[42], x9[53], x10[42], + x10[53], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p11, cospi_p53, x9[43], x9[52], x10[43], + x10[52], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p51, cospi_p13, x9[44], x9[51], x10[44], + x10[51], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p19, cospi_p45, x9[45], x9[50], x10[45], + x10[50], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p35, cospi_p29, x9[46], x9[49], x10[46], + x10[49], __rounding, cos_bit); + btf_32_type1_sse4_1_new(cospi_p03, cospi_p61, x9[47], x9[48], x10[47], + x10[48], __rounding, cos_bit); + + // stage 11 + output[0 * outstride] = x10[0]; + output[1 * outstride] = x10[32]; + output[2 * outstride] = x10[16]; + output[3 * outstride] = x10[48]; + output[4 * outstride] = x10[8]; + output[5 * outstride] = x10[40]; + output[6 * outstride] = x10[24]; + output[7 * outstride] = x10[56]; + output[8 * outstride] = x10[4]; + output[9 * outstride] = x10[36]; + output[10 * outstride] = x10[20]; + output[11 * outstride] = x10[52]; + output[12 * outstride] = x10[12]; + output[13 * outstride] = x10[44]; + output[14 * outstride] = x10[28]; + output[15 * outstride] = x10[60]; + output[16 * outstride] = x10[2]; + output[17 * outstride] = x10[34]; + output[18 * outstride] = x10[18]; + output[19 * outstride] = x10[50]; + output[20 * outstride] = x10[10]; + output[21 * outstride] = x10[42]; + output[22 * outstride] = x10[26]; + output[23 * outstride] = x10[58]; + output[24 * outstride] = x10[6]; + output[25 * outstride] = x10[38]; + output[26 * outstride] = x10[22]; + output[27 * outstride] = x10[54]; + output[28 * outstride] = x10[14]; + output[29 * outstride] = x10[46]; + output[30 * outstride] = x10[30]; + output[31 * outstride] = x10[62]; + output[32 * outstride] = x10[1]; + output[33 * outstride] = x10[33]; + output[34 * outstride] = x10[17]; + output[35 * outstride] = x10[49]; + output[36 * outstride] = x10[9]; + output[37 * outstride] = x10[41]; + output[38 * outstride] = x10[25]; + output[39 * outstride] = x10[57]; + output[40 * outstride] = x10[5]; + output[41 * outstride] = x10[37]; + output[42 * outstride] = x10[21]; + output[43 * outstride] = x10[53]; + output[44 * outstride] = x10[13]; + output[45 * outstride] = x10[45]; + output[46 * outstride] = x10[29]; + output[47 * outstride] = x10[61]; + output[48 * outstride] = x10[3]; + output[49 * outstride] = x10[35]; + output[50 * outstride] = x10[19]; + output[51 * outstride] = x10[51]; + output[52 * outstride] = x10[11]; + output[53 * outstride] = x10[43]; + output[54 * outstride] = x10[27]; + output[55 * outstride] = x10[59]; + output[56 * outstride] = x10[7]; + output[57 * outstride] = x10[39]; + output[58 * outstride] = x10[23]; + output[59 * outstride] = x10[55]; + output[60 * outstride] = x10[15]; + output[61 * outstride] = x10[47]; + output[62 * outstride] = x10[31]; + output[63 * outstride] = x10[63]; +} diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_avx2.c b/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_avx2.c new file mode 100644 index 0000000000..592462e20d --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_avx2.c @@ -0,0 +1,2068 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/av1_rtcd.h" + +#include "av1/common/enums.h" +#include "av1/common/av1_txfm.h" +#include "av1/encoder/x86/av1_fwd_txfm_avx2.h" +#include "av1/common/x86/av1_txfm_sse2.h" +#include "av1/encoder/av1_fwd_txfm1d_cfg.h" +#include "av1/encoder/x86/av1_txfm1d_sse4.h" +#include "av1/encoder/x86/av1_fwd_txfm_sse2.h" +#include "aom_dsp/x86/txfm_common_avx2.h" + +static INLINE void fdct16x16_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + + __m256i cospi_m32_p32 = pair_set_w16_epi16(-cospi[32], cospi[32]); + __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]); + __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]); + __m256i cospi_p48_p16 = pair_set_w16_epi16(cospi[48], cospi[16]); + __m256i cospi_m16_p48 = pair_set_w16_epi16(-cospi[16], cospi[48]); + __m256i cospi_m48_m16 = pair_set_w16_epi16(-cospi[48], -cospi[16]); + __m256i cospi_p56_p08 = pair_set_w16_epi16(cospi[56], cospi[8]); + __m256i cospi_m08_p56 = pair_set_w16_epi16(-cospi[8], cospi[56]); + __m256i cospi_p24_p40 = pair_set_w16_epi16(cospi[24], cospi[40]); + __m256i cospi_m40_p24 = pair_set_w16_epi16(-cospi[40], cospi[24]); + __m256i cospi_p60_p04 = pair_set_w16_epi16(cospi[60], cospi[4]); + __m256i cospi_m04_p60 = pair_set_w16_epi16(-cospi[4], cospi[60]); + __m256i cospi_p28_p36 = pair_set_w16_epi16(cospi[28], cospi[36]); + __m256i cospi_m36_p28 = pair_set_w16_epi16(-cospi[36], cospi[28]); + __m256i cospi_p44_p20 = pair_set_w16_epi16(cospi[44], cospi[20]); + __m256i cospi_m20_p44 = pair_set_w16_epi16(-cospi[20], cospi[44]); + __m256i cospi_p12_p52 = pair_set_w16_epi16(cospi[12], cospi[52]); + __m256i cospi_m52_p12 = pair_set_w16_epi16(-cospi[52], cospi[12]); + + // stage 1 + __m256i x1[16]; + btf_16_adds_subs_out_avx2(&x1[0], &x1[15], input[0], input[15]); + btf_16_adds_subs_out_avx2(&x1[1], &x1[14], input[1], input[14]); + btf_16_adds_subs_out_avx2(&x1[2], &x1[13], input[2], input[13]); + btf_16_adds_subs_out_avx2(&x1[3], &x1[12], input[3], input[12]); + btf_16_adds_subs_out_avx2(&x1[4], &x1[11], input[4], input[11]); + btf_16_adds_subs_out_avx2(&x1[5], &x1[10], input[5], input[10]); + btf_16_adds_subs_out_avx2(&x1[6], &x1[9], input[6], input[9]); + btf_16_adds_subs_out_avx2(&x1[7], &x1[8], input[7], input[8]); + + // stage 2 + btf_16_adds_subs_avx2(&x1[0], &x1[7]); + btf_16_adds_subs_avx2(&x1[1], &x1[6]); + btf_16_adds_subs_avx2(&x1[2], &x1[5]); + btf_16_adds_subs_avx2(&x1[3], &x1[4]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[11], &x1[12], _r, cos_bit); + + // stage 3 + btf_16_adds_subs_avx2(&x1[0], &x1[3]); + btf_16_adds_subs_avx2(&x1[1], &x1[2]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[11]); + btf_16_adds_subs_avx2(&x1[9], &x1[10]); + btf_16_adds_subs_avx2(&x1[15], &x1[12]); + btf_16_adds_subs_avx2(&x1[14], &x1[13]); + + // stage 4 + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[0], &x1[1], _r, cos_bit); + btf_16_w16_avx2(cospi_p48_p16, cospi_m16_p48, &x1[2], &x1[3], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[4], &x1[5]); + btf_16_adds_subs_avx2(&x1[7], &x1[6]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[10], &x1[13], _r, cos_bit); + + // stage 5 + btf_16_w16_avx2(cospi_p56_p08, cospi_m08_p56, &x1[4], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p24_p40, cospi_m40_p24, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[9]); + btf_16_adds_subs_avx2(&x1[11], &x1[10]); + btf_16_adds_subs_avx2(&x1[12], &x1[13]); + btf_16_adds_subs_avx2(&x1[15], &x1[14]); + + // stage 6 + btf_16_w16_avx2(cospi_p60_p04, cospi_m04_p60, &x1[8], &x1[15], _r, cos_bit); + btf_16_w16_avx2(cospi_p28_p36, cospi_m36_p28, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_p44_p20, cospi_m20_p44, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_p12_p52, cospi_m52_p12, &x1[11], &x1[12], _r, cos_bit); + + // stage 7 + output[0] = x1[0]; + output[1] = x1[8]; + output[2] = x1[4]; + output[3] = x1[12]; + output[4] = x1[2]; + output[5] = x1[10]; + output[6] = x1[6]; + output[7] = x1[14]; + output[8] = x1[1]; + output[9] = x1[9]; + output[10] = x1[5]; + output[11] = x1[13]; + output[12] = x1[3]; + output[13] = x1[11]; + output[14] = x1[7]; + output[15] = x1[15]; +} + +static INLINE void fdct16x32_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + + __m256i cospi_m32_p32 = pair_set_w16_epi16(-cospi[32], cospi[32]); + __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]); + __m256i cospi_m16_p48 = pair_set_w16_epi16(-cospi[16], cospi[48]); + __m256i cospi_p48_p16 = pair_set_w16_epi16(cospi[48], cospi[16]); + __m256i cospi_m48_m16 = pair_set_w16_epi16(-cospi[48], -cospi[16]); + __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]); + __m256i cospi_p56_p08 = pair_set_w16_epi16(cospi[56], cospi[8]); + __m256i cospi_m08_p56 = pair_set_w16_epi16(-cospi[8], cospi[56]); + __m256i cospi_p24_p40 = pair_set_w16_epi16(cospi[24], cospi[40]); + __m256i cospi_m40_p24 = pair_set_w16_epi16(-cospi[40], cospi[24]); + __m256i cospi_m56_m08 = pair_set_w16_epi16(-cospi[56], -cospi[8]); + __m256i cospi_m24_m40 = pair_set_w16_epi16(-cospi[24], -cospi[40]); + __m256i cospi_p60_p04 = pair_set_w16_epi16(cospi[60], cospi[4]); + __m256i cospi_m04_p60 = pair_set_w16_epi16(-cospi[4], cospi[60]); + __m256i cospi_p28_p36 = pair_set_w16_epi16(cospi[28], cospi[36]); + __m256i cospi_m36_p28 = pair_set_w16_epi16(-cospi[36], cospi[28]); + __m256i cospi_p44_p20 = pair_set_w16_epi16(cospi[44], cospi[20]); + __m256i cospi_m20_p44 = pair_set_w16_epi16(-cospi[20], cospi[44]); + __m256i cospi_p12_p52 = pair_set_w16_epi16(cospi[12], cospi[52]); + __m256i cospi_m52_p12 = pair_set_w16_epi16(-cospi[52], cospi[12]); + __m256i cospi_p62_p02 = pair_set_w16_epi16(cospi[62], cospi[2]); + __m256i cospi_m02_p62 = pair_set_w16_epi16(-cospi[2], cospi[62]); + __m256i cospi_p30_p34 = pair_set_w16_epi16(cospi[30], cospi[34]); + __m256i cospi_m34_p30 = pair_set_w16_epi16(-cospi[34], cospi[30]); + __m256i cospi_p46_p18 = pair_set_w16_epi16(cospi[46], cospi[18]); + __m256i cospi_m18_p46 = pair_set_w16_epi16(-cospi[18], cospi[46]); + __m256i cospi_p14_p50 = pair_set_w16_epi16(cospi[14], cospi[50]); + __m256i cospi_m50_p14 = pair_set_w16_epi16(-cospi[50], cospi[14]); + __m256i cospi_p54_p10 = pair_set_w16_epi16(cospi[54], cospi[10]); + __m256i cospi_m10_p54 = pair_set_w16_epi16(-cospi[10], cospi[54]); + __m256i cospi_p22_p42 = pair_set_w16_epi16(cospi[22], cospi[42]); + __m256i cospi_m42_p22 = pair_set_w16_epi16(-cospi[42], cospi[22]); + __m256i cospi_p38_p26 = pair_set_w16_epi16(cospi[38], cospi[26]); + __m256i cospi_m26_p38 = pair_set_w16_epi16(-cospi[26], cospi[38]); + __m256i cospi_p06_p58 = pair_set_w16_epi16(cospi[6], cospi[58]); + __m256i cospi_m58_p06 = pair_set_w16_epi16(-cospi[58], cospi[6]); + + // stage 1 + __m256i x1[32]; + btf_16_adds_subs_out_avx2(&x1[0], &x1[31], input[0], input[31]); + btf_16_adds_subs_out_avx2(&x1[1], &x1[30], input[1], input[30]); + btf_16_adds_subs_out_avx2(&x1[2], &x1[29], input[2], input[29]); + btf_16_adds_subs_out_avx2(&x1[3], &x1[28], input[3], input[28]); + btf_16_adds_subs_out_avx2(&x1[4], &x1[27], input[4], input[27]); + btf_16_adds_subs_out_avx2(&x1[5], &x1[26], input[5], input[26]); + btf_16_adds_subs_out_avx2(&x1[6], &x1[25], input[6], input[25]); + btf_16_adds_subs_out_avx2(&x1[7], &x1[24], input[7], input[24]); + btf_16_adds_subs_out_avx2(&x1[8], &x1[23], input[8], input[23]); + btf_16_adds_subs_out_avx2(&x1[9], &x1[22], input[9], input[22]); + btf_16_adds_subs_out_avx2(&x1[10], &x1[21], input[10], input[21]); + btf_16_adds_subs_out_avx2(&x1[11], &x1[20], input[11], input[20]); + btf_16_adds_subs_out_avx2(&x1[12], &x1[19], input[12], input[19]); + btf_16_adds_subs_out_avx2(&x1[13], &x1[18], input[13], input[18]); + btf_16_adds_subs_out_avx2(&x1[14], &x1[17], input[14], input[17]); + btf_16_adds_subs_out_avx2(&x1[15], &x1[16], input[15], input[16]); + + // stage 2 + btf_16_adds_subs_avx2(&x1[0], &x1[15]); + btf_16_adds_subs_avx2(&x1[1], &x1[14]); + btf_16_adds_subs_avx2(&x1[2], &x1[13]); + btf_16_adds_subs_avx2(&x1[3], &x1[12]); + btf_16_adds_subs_avx2(&x1[4], &x1[11]); + btf_16_adds_subs_avx2(&x1[5], &x1[10]); + btf_16_adds_subs_avx2(&x1[6], &x1[9]); + btf_16_adds_subs_avx2(&x1[7], &x1[8]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[22], &x1[25], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[23], &x1[24], _r, cos_bit); + + // stage 3 + btf_16_adds_subs_avx2(&x1[0], &x1[7]); + btf_16_adds_subs_avx2(&x1[1], &x1[6]); + btf_16_adds_subs_avx2(&x1[2], &x1[5]); + btf_16_adds_subs_avx2(&x1[3], &x1[4]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[11], &x1[12], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[23]); + btf_16_adds_subs_avx2(&x1[17], &x1[22]); + btf_16_adds_subs_avx2(&x1[18], &x1[21]); + btf_16_adds_subs_avx2(&x1[19], &x1[20]); + btf_16_adds_subs_avx2(&x1[31], &x1[24]); + btf_16_adds_subs_avx2(&x1[30], &x1[25]); + btf_16_adds_subs_avx2(&x1[29], &x1[26]); + btf_16_adds_subs_avx2(&x1[28], &x1[27]); + + // stage 4 + btf_16_adds_subs_avx2(&x1[0], &x1[3]); + btf_16_adds_subs_avx2(&x1[1], &x1[2]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[11]); + btf_16_adds_subs_avx2(&x1[9], &x1[10]); + btf_16_adds_subs_avx2(&x1[15], &x1[12]); + btf_16_adds_subs_avx2(&x1[14], &x1[13]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[19], &x1[28], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[21], &x1[26], _r, cos_bit); + + // stage 5 + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[0], &x1[1], _r, cos_bit); + btf_16_w16_avx2(cospi_p48_p16, cospi_m16_p48, &x1[2], &x1[3], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[4], &x1[5]); + btf_16_adds_subs_avx2(&x1[7], &x1[6]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[10], &x1[13], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[19]); + btf_16_adds_subs_avx2(&x1[17], &x1[18]); + btf_16_adds_subs_avx2(&x1[23], &x1[20]); + btf_16_adds_subs_avx2(&x1[22], &x1[21]); + btf_16_adds_subs_avx2(&x1[24], &x1[27]); + btf_16_adds_subs_avx2(&x1[25], &x1[26]); + btf_16_adds_subs_avx2(&x1[31], &x1[28]); + btf_16_adds_subs_avx2(&x1[30], &x1[29]); + + // stage 6 + btf_16_w16_avx2(cospi_p56_p08, cospi_m08_p56, &x1[4], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p24_p40, cospi_m40_p24, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[9]); + btf_16_adds_subs_avx2(&x1[11], &x1[10]); + btf_16_adds_subs_avx2(&x1[12], &x1[13]); + btf_16_adds_subs_avx2(&x1[15], &x1[14]); + btf_16_w16_avx2(cospi_m08_p56, cospi_p56_p08, &x1[17], &x1[30], _r, cos_bit); + btf_16_w16_avx2(cospi_m56_m08, cospi_m08_p56, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_m40_p24, cospi_p24_p40, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_m24_m40, cospi_m40_p24, &x1[22], &x1[25], _r, cos_bit); + + // stage 7 + btf_16_w16_avx2(cospi_p60_p04, cospi_m04_p60, &x1[8], &x1[15], _r, cos_bit); + btf_16_w16_avx2(cospi_p28_p36, cospi_m36_p28, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_p44_p20, cospi_m20_p44, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_p12_p52, cospi_m52_p12, &x1[11], &x1[12], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[17]); + btf_16_adds_subs_avx2(&x1[19], &x1[18]); + btf_16_adds_subs_avx2(&x1[20], &x1[21]); + btf_16_adds_subs_avx2(&x1[23], &x1[22]); + btf_16_adds_subs_avx2(&x1[24], &x1[25]); + btf_16_adds_subs_avx2(&x1[27], &x1[26]); + btf_16_adds_subs_avx2(&x1[28], &x1[29]); + btf_16_adds_subs_avx2(&x1[31], &x1[30]); + + // stage 8 + btf_16_w16_avx2(cospi_p62_p02, cospi_m02_p62, &x1[16], &x1[31], _r, cos_bit); + btf_16_w16_avx2(cospi_p30_p34, cospi_m34_p30, &x1[17], &x1[30], _r, cos_bit); + btf_16_w16_avx2(cospi_p46_p18, cospi_m18_p46, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_p14_p50, cospi_m50_p14, &x1[19], &x1[28], _r, cos_bit); + btf_16_w16_avx2(cospi_p54_p10, cospi_m10_p54, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_p22_p42, cospi_m42_p22, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_p38_p26, cospi_m26_p38, &x1[22], &x1[25], _r, cos_bit); + btf_16_w16_avx2(cospi_p06_p58, cospi_m58_p06, &x1[23], &x1[24], _r, cos_bit); + + // stage 9 + output[0] = x1[0]; + output[1] = x1[16]; + output[2] = x1[8]; + output[3] = x1[24]; + output[4] = x1[4]; + output[5] = x1[20]; + output[6] = x1[12]; + output[7] = x1[28]; + output[8] = x1[2]; + output[9] = x1[18]; + output[10] = x1[10]; + output[11] = x1[26]; + output[12] = x1[6]; + output[13] = x1[22]; + output[14] = x1[14]; + output[15] = x1[30]; + output[16] = x1[1]; + output[17] = x1[17]; + output[18] = x1[9]; + output[19] = x1[25]; + output[20] = x1[5]; + output[21] = x1[21]; + output[22] = x1[13]; + output[23] = x1[29]; + output[24] = x1[3]; + output[25] = x1[19]; + output[26] = x1[11]; + output[27] = x1[27]; + output[28] = x1[7]; + output[29] = x1[23]; + output[30] = x1[15]; + output[31] = x1[31]; +} + +static INLINE void fdct16x64_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + + __m256i cospi_m32_p32 = pair_set_w16_epi16(-cospi[32], cospi[32]); + __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]); + __m256i cospi_m16_p48 = pair_set_w16_epi16(-cospi[16], cospi[48]); + __m256i cospi_p48_p16 = pair_set_w16_epi16(cospi[48], cospi[16]); + __m256i cospi_m48_m16 = pair_set_w16_epi16(-cospi[48], -cospi[16]); + __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]); + __m256i cospi_m08_p56 = pair_set_w16_epi16(-cospi[8], cospi[56]); + __m256i cospi_p56_p08 = pair_set_w16_epi16(cospi[56], cospi[8]); + __m256i cospi_m56_m08 = pair_set_w16_epi16(-cospi[56], -cospi[8]); + __m256i cospi_m40_p24 = pair_set_w16_epi16(-cospi[40], cospi[24]); + __m256i cospi_p24_p40 = pair_set_w16_epi16(cospi[24], cospi[40]); + __m256i cospi_m24_m40 = pair_set_w16_epi16(-cospi[24], -cospi[40]); + __m256i cospi_p60_p04 = pair_set_w16_epi16(cospi[60], cospi[4]); + __m256i cospi_m04_p60 = pair_set_w16_epi16(-cospi[4], cospi[60]); + __m256i cospi_p28_p36 = pair_set_w16_epi16(cospi[28], cospi[36]); + __m256i cospi_m36_p28 = pair_set_w16_epi16(-cospi[36], cospi[28]); + __m256i cospi_p44_p20 = pair_set_w16_epi16(cospi[44], cospi[20]); + __m256i cospi_m20_p44 = pair_set_w16_epi16(-cospi[20], cospi[44]); + __m256i cospi_p12_p52 = pair_set_w16_epi16(cospi[12], cospi[52]); + __m256i cospi_m52_p12 = pair_set_w16_epi16(-cospi[52], cospi[12]); + __m256i cospi_m60_m04 = pair_set_w16_epi16(-cospi[60], -cospi[4]); + __m256i cospi_m28_m36 = pair_set_w16_epi16(-cospi[28], -cospi[36]); + __m256i cospi_m44_m20 = pair_set_w16_epi16(-cospi[44], -cospi[20]); + __m256i cospi_m12_m52 = pair_set_w16_epi16(-cospi[12], -cospi[52]); + __m256i cospi_p62_p02 = pair_set_w16_epi16(cospi[62], cospi[2]); + __m256i cospi_m02_p62 = pair_set_w16_epi16(-cospi[2], cospi[62]); + __m256i cospi_p30_p34 = pair_set_w16_epi16(cospi[30], cospi[34]); + __m256i cospi_m34_p30 = pair_set_w16_epi16(-cospi[34], cospi[30]); + __m256i cospi_p46_p18 = pair_set_w16_epi16(cospi[46], cospi[18]); + __m256i cospi_m18_p46 = pair_set_w16_epi16(-cospi[18], cospi[46]); + __m256i cospi_p14_p50 = pair_set_w16_epi16(cospi[14], cospi[50]); + __m256i cospi_m50_p14 = pair_set_w16_epi16(-cospi[50], cospi[14]); + __m256i cospi_p54_p10 = pair_set_w16_epi16(cospi[54], cospi[10]); + __m256i cospi_m10_p54 = pair_set_w16_epi16(-cospi[10], cospi[54]); + __m256i cospi_p22_p42 = pair_set_w16_epi16(cospi[22], cospi[42]); + __m256i cospi_m42_p22 = pair_set_w16_epi16(-cospi[42], cospi[22]); + __m256i cospi_p38_p26 = pair_set_w16_epi16(cospi[38], cospi[26]); + __m256i cospi_m26_p38 = pair_set_w16_epi16(-cospi[26], cospi[38]); + __m256i cospi_p06_p58 = pair_set_w16_epi16(cospi[6], cospi[58]); + __m256i cospi_m58_p06 = pair_set_w16_epi16(-cospi[58], cospi[6]); + __m256i cospi_p63_p01 = pair_set_w16_epi16(cospi[63], cospi[1]); + __m256i cospi_m01_p63 = pair_set_w16_epi16(-cospi[1], cospi[63]); + __m256i cospi_p31_p33 = pair_set_w16_epi16(cospi[31], cospi[33]); + __m256i cospi_m33_p31 = pair_set_w16_epi16(-cospi[33], cospi[31]); + __m256i cospi_p47_p17 = pair_set_w16_epi16(cospi[47], cospi[17]); + __m256i cospi_m17_p47 = pair_set_w16_epi16(-cospi[17], cospi[47]); + __m256i cospi_p15_p49 = pair_set_w16_epi16(cospi[15], cospi[49]); + __m256i cospi_m49_p15 = pair_set_w16_epi16(-cospi[49], cospi[15]); + __m256i cospi_p55_p09 = pair_set_w16_epi16(cospi[55], cospi[9]); + __m256i cospi_m09_p55 = pair_set_w16_epi16(-cospi[9], cospi[55]); + __m256i cospi_p23_p41 = pair_set_w16_epi16(cospi[23], cospi[41]); + __m256i cospi_m41_p23 = pair_set_w16_epi16(-cospi[41], cospi[23]); + __m256i cospi_p39_p25 = pair_set_w16_epi16(cospi[39], cospi[25]); + __m256i cospi_m25_p39 = pair_set_w16_epi16(-cospi[25], cospi[39]); + __m256i cospi_p07_p57 = pair_set_w16_epi16(cospi[7], cospi[57]); + __m256i cospi_m57_p07 = pair_set_w16_epi16(-cospi[57], cospi[7]); + __m256i cospi_p59_p05 = pair_set_w16_epi16(cospi[59], cospi[5]); + __m256i cospi_m05_p59 = pair_set_w16_epi16(-cospi[5], cospi[59]); + __m256i cospi_p27_p37 = pair_set_w16_epi16(cospi[27], cospi[37]); + __m256i cospi_m37_p27 = pair_set_w16_epi16(-cospi[37], cospi[27]); + __m256i cospi_p43_p21 = pair_set_w16_epi16(cospi[43], cospi[21]); + __m256i cospi_m21_p43 = pair_set_w16_epi16(-cospi[21], cospi[43]); + __m256i cospi_p11_p53 = pair_set_w16_epi16(cospi[11], cospi[53]); + __m256i cospi_m53_p11 = pair_set_w16_epi16(-cospi[53], cospi[11]); + __m256i cospi_p51_p13 = pair_set_w16_epi16(cospi[51], cospi[13]); + __m256i cospi_m13_p51 = pair_set_w16_epi16(-cospi[13], cospi[51]); + __m256i cospi_p19_p45 = pair_set_w16_epi16(cospi[19], cospi[45]); + __m256i cospi_m45_p19 = pair_set_w16_epi16(-cospi[45], cospi[19]); + __m256i cospi_p35_p29 = pair_set_w16_epi16(cospi[35], cospi[29]); + __m256i cospi_m29_p35 = pair_set_w16_epi16(-cospi[29], cospi[35]); + __m256i cospi_p03_p61 = pair_set_w16_epi16(cospi[3], cospi[61]); + __m256i cospi_m61_p03 = pair_set_w16_epi16(-cospi[61], cospi[3]); + + // stage 1 + __m256i x1[64]; + btf_16_adds_subs_out_avx2(&x1[0], &x1[63], input[0], input[63]); + btf_16_adds_subs_out_avx2(&x1[1], &x1[62], input[1], input[62]); + btf_16_adds_subs_out_avx2(&x1[2], &x1[61], input[2], input[61]); + btf_16_adds_subs_out_avx2(&x1[3], &x1[60], input[3], input[60]); + btf_16_adds_subs_out_avx2(&x1[4], &x1[59], input[4], input[59]); + btf_16_adds_subs_out_avx2(&x1[5], &x1[58], input[5], input[58]); + btf_16_adds_subs_out_avx2(&x1[6], &x1[57], input[6], input[57]); + btf_16_adds_subs_out_avx2(&x1[7], &x1[56], input[7], input[56]); + btf_16_adds_subs_out_avx2(&x1[8], &x1[55], input[8], input[55]); + btf_16_adds_subs_out_avx2(&x1[9], &x1[54], input[9], input[54]); + btf_16_adds_subs_out_avx2(&x1[10], &x1[53], input[10], input[53]); + btf_16_adds_subs_out_avx2(&x1[11], &x1[52], input[11], input[52]); + btf_16_adds_subs_out_avx2(&x1[12], &x1[51], input[12], input[51]); + btf_16_adds_subs_out_avx2(&x1[13], &x1[50], input[13], input[50]); + btf_16_adds_subs_out_avx2(&x1[14], &x1[49], input[14], input[49]); + btf_16_adds_subs_out_avx2(&x1[15], &x1[48], input[15], input[48]); + btf_16_adds_subs_out_avx2(&x1[16], &x1[47], input[16], input[47]); + btf_16_adds_subs_out_avx2(&x1[17], &x1[46], input[17], input[46]); + btf_16_adds_subs_out_avx2(&x1[18], &x1[45], input[18], input[45]); + btf_16_adds_subs_out_avx2(&x1[19], &x1[44], input[19], input[44]); + btf_16_adds_subs_out_avx2(&x1[20], &x1[43], input[20], input[43]); + btf_16_adds_subs_out_avx2(&x1[21], &x1[42], input[21], input[42]); + btf_16_adds_subs_out_avx2(&x1[22], &x1[41], input[22], input[41]); + btf_16_adds_subs_out_avx2(&x1[23], &x1[40], input[23], input[40]); + btf_16_adds_subs_out_avx2(&x1[24], &x1[39], input[24], input[39]); + btf_16_adds_subs_out_avx2(&x1[25], &x1[38], input[25], input[38]); + btf_16_adds_subs_out_avx2(&x1[26], &x1[37], input[26], input[37]); + btf_16_adds_subs_out_avx2(&x1[27], &x1[36], input[27], input[36]); + btf_16_adds_subs_out_avx2(&x1[28], &x1[35], input[28], input[35]); + btf_16_adds_subs_out_avx2(&x1[29], &x1[34], input[29], input[34]); + btf_16_adds_subs_out_avx2(&x1[30], &x1[33], input[30], input[33]); + btf_16_adds_subs_out_avx2(&x1[31], &x1[32], input[31], input[32]); + + // stage 2 + btf_16_adds_subs_avx2(&x1[0], &x1[31]); + btf_16_adds_subs_avx2(&x1[1], &x1[30]); + btf_16_adds_subs_avx2(&x1[2], &x1[29]); + btf_16_adds_subs_avx2(&x1[3], &x1[28]); + btf_16_adds_subs_avx2(&x1[4], &x1[27]); + btf_16_adds_subs_avx2(&x1[5], &x1[26]); + btf_16_adds_subs_avx2(&x1[6], &x1[25]); + btf_16_adds_subs_avx2(&x1[7], &x1[24]); + btf_16_adds_subs_avx2(&x1[8], &x1[23]); + btf_16_adds_subs_avx2(&x1[9], &x1[22]); + btf_16_adds_subs_avx2(&x1[10], &x1[21]); + btf_16_adds_subs_avx2(&x1[11], &x1[20]); + btf_16_adds_subs_avx2(&x1[12], &x1[19]); + btf_16_adds_subs_avx2(&x1[13], &x1[18]); + btf_16_adds_subs_avx2(&x1[14], &x1[17]); + btf_16_adds_subs_avx2(&x1[15], &x1[16]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[40], &x1[55], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[41], &x1[54], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[42], &x1[53], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[43], &x1[52], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[44], &x1[51], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[45], &x1[50], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[46], &x1[49], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[47], &x1[48], _r, cos_bit); + + // stage 3 + btf_16_adds_subs_avx2(&x1[0], &x1[15]); + btf_16_adds_subs_avx2(&x1[1], &x1[14]); + btf_16_adds_subs_avx2(&x1[2], &x1[13]); + btf_16_adds_subs_avx2(&x1[3], &x1[12]); + btf_16_adds_subs_avx2(&x1[4], &x1[11]); + btf_16_adds_subs_avx2(&x1[5], &x1[10]); + btf_16_adds_subs_avx2(&x1[6], &x1[9]); + btf_16_adds_subs_avx2(&x1[7], &x1[8]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[22], &x1[25], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[23], &x1[24], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[32], &x1[47]); + btf_16_adds_subs_avx2(&x1[33], &x1[46]); + btf_16_adds_subs_avx2(&x1[34], &x1[45]); + btf_16_adds_subs_avx2(&x1[35], &x1[44]); + btf_16_adds_subs_avx2(&x1[36], &x1[43]); + btf_16_adds_subs_avx2(&x1[37], &x1[42]); + btf_16_adds_subs_avx2(&x1[38], &x1[41]); + btf_16_adds_subs_avx2(&x1[39], &x1[40]); + btf_16_adds_subs_avx2(&x1[63], &x1[48]); + btf_16_adds_subs_avx2(&x1[62], &x1[49]); + btf_16_adds_subs_avx2(&x1[61], &x1[50]); + btf_16_adds_subs_avx2(&x1[60], &x1[51]); + btf_16_adds_subs_avx2(&x1[59], &x1[52]); + btf_16_adds_subs_avx2(&x1[58], &x1[53]); + btf_16_adds_subs_avx2(&x1[57], &x1[54]); + btf_16_adds_subs_avx2(&x1[56], &x1[55]); + + // stage 4 + btf_16_adds_subs_avx2(&x1[0], &x1[7]); + btf_16_adds_subs_avx2(&x1[1], &x1[6]); + btf_16_adds_subs_avx2(&x1[2], &x1[5]); + btf_16_adds_subs_avx2(&x1[3], &x1[4]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[11], &x1[12], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[23]); + btf_16_adds_subs_avx2(&x1[17], &x1[22]); + btf_16_adds_subs_avx2(&x1[18], &x1[21]); + btf_16_adds_subs_avx2(&x1[19], &x1[20]); + btf_16_adds_subs_avx2(&x1[31], &x1[24]); + btf_16_adds_subs_avx2(&x1[30], &x1[25]); + btf_16_adds_subs_avx2(&x1[29], &x1[26]); + btf_16_adds_subs_avx2(&x1[28], &x1[27]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[36], &x1[59], _r, cos_bit); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[37], &x1[58], _r, cos_bit); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[38], &x1[57], _r, cos_bit); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[39], &x1[56], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[40], &x1[55], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[41], &x1[54], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[42], &x1[53], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[43], &x1[52], _r, cos_bit); + + // stage 5 + btf_16_adds_subs_avx2(&x1[0], &x1[3]); + btf_16_adds_subs_avx2(&x1[1], &x1[2]); + btf_16_w16_avx2(cospi_m32_p32, cospi_p32_p32, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[11]); + btf_16_adds_subs_avx2(&x1[9], &x1[10]); + btf_16_adds_subs_avx2(&x1[15], &x1[12]); + btf_16_adds_subs_avx2(&x1[14], &x1[13]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[19], &x1[28], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[21], &x1[26], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[32], &x1[39]); + btf_16_adds_subs_avx2(&x1[33], &x1[38]); + btf_16_adds_subs_avx2(&x1[34], &x1[37]); + btf_16_adds_subs_avx2(&x1[35], &x1[36]); + btf_16_adds_subs_avx2(&x1[47], &x1[40]); + btf_16_adds_subs_avx2(&x1[46], &x1[41]); + btf_16_adds_subs_avx2(&x1[45], &x1[42]); + btf_16_adds_subs_avx2(&x1[44], &x1[43]); + btf_16_adds_subs_avx2(&x1[48], &x1[55]); + btf_16_adds_subs_avx2(&x1[49], &x1[54]); + btf_16_adds_subs_avx2(&x1[50], &x1[53]); + btf_16_adds_subs_avx2(&x1[51], &x1[52]); + btf_16_adds_subs_avx2(&x1[63], &x1[56]); + btf_16_adds_subs_avx2(&x1[62], &x1[57]); + btf_16_adds_subs_avx2(&x1[61], &x1[58]); + btf_16_adds_subs_avx2(&x1[60], &x1[59]); + + // stage 6 + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[0], &x1[1], _r, cos_bit); + btf_16_w16_avx2(cospi_p48_p16, cospi_m16_p48, &x1[2], &x1[3], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[4], &x1[5]); + btf_16_adds_subs_avx2(&x1[7], &x1[6]); + btf_16_w16_avx2(cospi_m16_p48, cospi_p48_p16, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_m16, cospi_m16_p48, &x1[10], &x1[13], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[19]); + btf_16_adds_subs_avx2(&x1[17], &x1[18]); + btf_16_adds_subs_avx2(&x1[23], &x1[20]); + btf_16_adds_subs_avx2(&x1[22], &x1[21]); + btf_16_adds_subs_avx2(&x1[24], &x1[27]); + btf_16_adds_subs_avx2(&x1[25], &x1[26]); + btf_16_adds_subs_avx2(&x1[31], &x1[28]); + btf_16_adds_subs_avx2(&x1[30], &x1[29]); + btf_16_w16_avx2(cospi_m08_p56, cospi_p56_p08, &x1[34], &x1[61], _r, cos_bit); + btf_16_w16_avx2(cospi_m08_p56, cospi_p56_p08, &x1[35], &x1[60], _r, cos_bit); + btf_16_w16_avx2(cospi_m56_m08, cospi_m08_p56, &x1[36], &x1[59], _r, cos_bit); + btf_16_w16_avx2(cospi_m56_m08, cospi_m08_p56, &x1[37], &x1[58], _r, cos_bit); + btf_16_w16_avx2(cospi_m40_p24, cospi_p24_p40, &x1[42], &x1[53], _r, cos_bit); + btf_16_w16_avx2(cospi_m40_p24, cospi_p24_p40, &x1[43], &x1[52], _r, cos_bit); + btf_16_w16_avx2(cospi_m24_m40, cospi_m40_p24, &x1[44], &x1[51], _r, cos_bit); + btf_16_w16_avx2(cospi_m24_m40, cospi_m40_p24, &x1[45], &x1[50], _r, cos_bit); + + // stage 7 + btf_16_w16_avx2(cospi_p56_p08, cospi_m08_p56, &x1[4], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p24_p40, cospi_m40_p24, &x1[5], &x1[6], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[8], &x1[9]); + btf_16_adds_subs_avx2(&x1[11], &x1[10]); + btf_16_adds_subs_avx2(&x1[12], &x1[13]); + btf_16_adds_subs_avx2(&x1[15], &x1[14]); + btf_16_w16_avx2(cospi_m08_p56, cospi_p56_p08, &x1[17], &x1[30], _r, cos_bit); + btf_16_w16_avx2(cospi_m56_m08, cospi_m08_p56, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_m40_p24, cospi_p24_p40, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_m24_m40, cospi_m40_p24, &x1[22], &x1[25], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[32], &x1[35]); + btf_16_adds_subs_avx2(&x1[33], &x1[34]); + btf_16_adds_subs_avx2(&x1[39], &x1[36]); + btf_16_adds_subs_avx2(&x1[38], &x1[37]); + btf_16_adds_subs_avx2(&x1[40], &x1[43]); + btf_16_adds_subs_avx2(&x1[41], &x1[42]); + btf_16_adds_subs_avx2(&x1[47], &x1[44]); + btf_16_adds_subs_avx2(&x1[46], &x1[45]); + btf_16_adds_subs_avx2(&x1[48], &x1[51]); + btf_16_adds_subs_avx2(&x1[49], &x1[50]); + btf_16_adds_subs_avx2(&x1[55], &x1[52]); + btf_16_adds_subs_avx2(&x1[54], &x1[53]); + btf_16_adds_subs_avx2(&x1[56], &x1[59]); + btf_16_adds_subs_avx2(&x1[57], &x1[58]); + btf_16_adds_subs_avx2(&x1[63], &x1[60]); + btf_16_adds_subs_avx2(&x1[62], &x1[61]); + + // stage 8 + btf_16_w16_avx2(cospi_p60_p04, cospi_m04_p60, &x1[8], &x1[15], _r, cos_bit); + btf_16_w16_avx2(cospi_p28_p36, cospi_m36_p28, &x1[9], &x1[14], _r, cos_bit); + btf_16_w16_avx2(cospi_p44_p20, cospi_m20_p44, &x1[10], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_p12_p52, cospi_m52_p12, &x1[11], &x1[12], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[16], &x1[17]); + btf_16_adds_subs_avx2(&x1[19], &x1[18]); + btf_16_adds_subs_avx2(&x1[20], &x1[21]); + btf_16_adds_subs_avx2(&x1[23], &x1[22]); + btf_16_adds_subs_avx2(&x1[24], &x1[25]); + btf_16_adds_subs_avx2(&x1[27], &x1[26]); + btf_16_adds_subs_avx2(&x1[28], &x1[29]); + btf_16_adds_subs_avx2(&x1[31], &x1[30]); + btf_16_w16_avx2(cospi_m04_p60, cospi_p60_p04, &x1[33], &x1[62], _r, cos_bit); + btf_16_w16_avx2(cospi_m60_m04, cospi_m04_p60, &x1[34], &x1[61], _r, cos_bit); + btf_16_w16_avx2(cospi_m36_p28, cospi_p28_p36, &x1[37], &x1[58], _r, cos_bit); + btf_16_w16_avx2(cospi_m28_m36, cospi_m36_p28, &x1[38], &x1[57], _r, cos_bit); + btf_16_w16_avx2(cospi_m20_p44, cospi_p44_p20, &x1[41], &x1[54], _r, cos_bit); + btf_16_w16_avx2(cospi_m44_m20, cospi_m20_p44, &x1[42], &x1[53], _r, cos_bit); + btf_16_w16_avx2(cospi_m52_p12, cospi_p12_p52, &x1[45], &x1[50], _r, cos_bit); + btf_16_w16_avx2(cospi_m12_m52, cospi_m52_p12, &x1[46], &x1[49], _r, cos_bit); + + // stage 9 + btf_16_w16_avx2(cospi_p62_p02, cospi_m02_p62, &x1[16], &x1[31], _r, cos_bit); + btf_16_w16_avx2(cospi_p30_p34, cospi_m34_p30, &x1[17], &x1[30], _r, cos_bit); + btf_16_w16_avx2(cospi_p46_p18, cospi_m18_p46, &x1[18], &x1[29], _r, cos_bit); + btf_16_w16_avx2(cospi_p14_p50, cospi_m50_p14, &x1[19], &x1[28], _r, cos_bit); + btf_16_w16_avx2(cospi_p54_p10, cospi_m10_p54, &x1[20], &x1[27], _r, cos_bit); + btf_16_w16_avx2(cospi_p22_p42, cospi_m42_p22, &x1[21], &x1[26], _r, cos_bit); + btf_16_w16_avx2(cospi_p38_p26, cospi_m26_p38, &x1[22], &x1[25], _r, cos_bit); + btf_16_w16_avx2(cospi_p06_p58, cospi_m58_p06, &x1[23], &x1[24], _r, cos_bit); + btf_16_adds_subs_avx2(&x1[32], &x1[33]); + btf_16_adds_subs_avx2(&x1[35], &x1[34]); + btf_16_adds_subs_avx2(&x1[36], &x1[37]); + btf_16_adds_subs_avx2(&x1[39], &x1[38]); + btf_16_adds_subs_avx2(&x1[40], &x1[41]); + btf_16_adds_subs_avx2(&x1[43], &x1[42]); + btf_16_adds_subs_avx2(&x1[44], &x1[45]); + btf_16_adds_subs_avx2(&x1[47], &x1[46]); + btf_16_adds_subs_avx2(&x1[48], &x1[49]); + btf_16_adds_subs_avx2(&x1[51], &x1[50]); + btf_16_adds_subs_avx2(&x1[52], &x1[53]); + btf_16_adds_subs_avx2(&x1[55], &x1[54]); + btf_16_adds_subs_avx2(&x1[56], &x1[57]); + btf_16_adds_subs_avx2(&x1[59], &x1[58]); + btf_16_adds_subs_avx2(&x1[60], &x1[61]); + btf_16_adds_subs_avx2(&x1[63], &x1[62]); + + // stage 10 + btf_16_w16_avx2(cospi_p63_p01, cospi_m01_p63, &x1[32], &x1[63], _r, cos_bit); + btf_16_w16_avx2(cospi_p31_p33, cospi_m33_p31, &x1[33], &x1[62], _r, cos_bit); + btf_16_w16_avx2(cospi_p47_p17, cospi_m17_p47, &x1[34], &x1[61], _r, cos_bit); + btf_16_w16_avx2(cospi_p15_p49, cospi_m49_p15, &x1[35], &x1[60], _r, cos_bit); + btf_16_w16_avx2(cospi_p55_p09, cospi_m09_p55, &x1[36], &x1[59], _r, cos_bit); + btf_16_w16_avx2(cospi_p23_p41, cospi_m41_p23, &x1[37], &x1[58], _r, cos_bit); + btf_16_w16_avx2(cospi_p39_p25, cospi_m25_p39, &x1[38], &x1[57], _r, cos_bit); + btf_16_w16_avx2(cospi_p07_p57, cospi_m57_p07, &x1[39], &x1[56], _r, cos_bit); + btf_16_w16_avx2(cospi_p59_p05, cospi_m05_p59, &x1[40], &x1[55], _r, cos_bit); + btf_16_w16_avx2(cospi_p27_p37, cospi_m37_p27, &x1[41], &x1[54], _r, cos_bit); + btf_16_w16_avx2(cospi_p43_p21, cospi_m21_p43, &x1[42], &x1[53], _r, cos_bit); + btf_16_w16_avx2(cospi_p11_p53, cospi_m53_p11, &x1[43], &x1[52], _r, cos_bit); + btf_16_w16_avx2(cospi_p51_p13, cospi_m13_p51, &x1[44], &x1[51], _r, cos_bit); + btf_16_w16_avx2(cospi_p19_p45, cospi_m45_p19, &x1[45], &x1[50], _r, cos_bit); + btf_16_w16_avx2(cospi_p35_p29, cospi_m29_p35, &x1[46], &x1[49], _r, cos_bit); + btf_16_w16_avx2(cospi_p03_p61, cospi_m61_p03, &x1[47], &x1[48], _r, cos_bit); + + // stage 11 + output[0] = x1[0]; + output[1] = x1[32]; + output[2] = x1[16]; + output[3] = x1[48]; + output[4] = x1[8]; + output[5] = x1[40]; + output[6] = x1[24]; + output[7] = x1[56]; + output[8] = x1[4]; + output[9] = x1[36]; + output[10] = x1[20]; + output[11] = x1[52]; + output[12] = x1[12]; + output[13] = x1[44]; + output[14] = x1[28]; + output[15] = x1[60]; + output[16] = x1[2]; + output[17] = x1[34]; + output[18] = x1[18]; + output[19] = x1[50]; + output[20] = x1[10]; + output[21] = x1[42]; + output[22] = x1[26]; + output[23] = x1[58]; + output[24] = x1[6]; + output[25] = x1[38]; + output[26] = x1[22]; + output[27] = x1[54]; + output[28] = x1[14]; + output[29] = x1[46]; + output[30] = x1[30]; + output[31] = x1[62]; + output[32] = x1[1]; + output[33] = x1[33]; + output[34] = x1[17]; + output[35] = x1[49]; + output[36] = x1[9]; + output[37] = x1[41]; + output[38] = x1[25]; + output[39] = x1[57]; + output[40] = x1[5]; + output[41] = x1[37]; + output[42] = x1[21]; + output[43] = x1[53]; + output[44] = x1[13]; + output[45] = x1[45]; + output[46] = x1[29]; + output[47] = x1[61]; + output[48] = x1[3]; + output[49] = x1[35]; + output[50] = x1[19]; + output[51] = x1[51]; + output[52] = x1[11]; + output[53] = x1[43]; + output[54] = x1[27]; + output[55] = x1[59]; + output[56] = x1[7]; + output[57] = x1[39]; + output[58] = x1[23]; + output[59] = x1[55]; + output[60] = x1[15]; + output[61] = x1[47]; + output[62] = x1[31]; + output[63] = x1[63]; +} + +static INLINE void av1_fdct32_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + __m256i x1[32]; + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + // stage 0 + // stage 1 + btf_32_add_sub_out_avx2(&x1[0], &x1[31], input[0], input[31]); + btf_32_add_sub_out_avx2(&x1[1], &x1[30], input[1], input[30]); + btf_32_add_sub_out_avx2(&x1[2], &x1[29], input[2], input[29]); + btf_32_add_sub_out_avx2(&x1[3], &x1[28], input[3], input[28]); + btf_32_add_sub_out_avx2(&x1[4], &x1[27], input[4], input[27]); + btf_32_add_sub_out_avx2(&x1[5], &x1[26], input[5], input[26]); + btf_32_add_sub_out_avx2(&x1[6], &x1[25], input[6], input[25]); + btf_32_add_sub_out_avx2(&x1[7], &x1[24], input[7], input[24]); + btf_32_add_sub_out_avx2(&x1[8], &x1[23], input[8], input[23]); + btf_32_add_sub_out_avx2(&x1[9], &x1[22], input[9], input[22]); + btf_32_add_sub_out_avx2(&x1[10], &x1[21], input[10], input[21]); + btf_32_add_sub_out_avx2(&x1[11], &x1[20], input[11], input[20]); + btf_32_add_sub_out_avx2(&x1[12], &x1[19], input[12], input[19]); + btf_32_add_sub_out_avx2(&x1[13], &x1[18], input[13], input[18]); + btf_32_add_sub_out_avx2(&x1[14], &x1[17], input[14], input[17]); + btf_32_add_sub_out_avx2(&x1[15], &x1[16], input[15], input[16]); + + // stage 2 + btf_32_add_sub_avx2(&x1[0], &x1[15]); + btf_32_add_sub_avx2(&x1[1], &x1[14]); + btf_32_add_sub_avx2(&x1[2], &x1[13]); + btf_32_add_sub_avx2(&x1[3], &x1[12]); + btf_32_add_sub_avx2(&x1[4], &x1[11]); + btf_32_add_sub_avx2(&x1[5], &x1[10]); + btf_32_add_sub_avx2(&x1[6], &x1[9]); + btf_32_add_sub_avx2(&x1[7], &x1[8]); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[22], &x1[25], _r, cos_bit); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[23], &x1[24], _r, cos_bit); + + // stage 3 + btf_32_add_sub_avx2(&x1[0], &x1[7]); + btf_32_add_sub_avx2(&x1[1], &x1[6]); + btf_32_add_sub_avx2(&x1[2], &x1[5]); + btf_32_add_sub_avx2(&x1[3], &x1[4]); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[10], &x1[13], _r, cos_bit); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[11], &x1[12], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[23]); + btf_32_add_sub_avx2(&x1[17], &x1[22]); + btf_32_add_sub_avx2(&x1[18], &x1[21]); + btf_32_add_sub_avx2(&x1[19], &x1[20]); + btf_32_add_sub_avx2(&x1[31], &x1[24]); + btf_32_add_sub_avx2(&x1[30], &x1[25]); + btf_32_add_sub_avx2(&x1[29], &x1[26]); + btf_32_add_sub_avx2(&x1[28], &x1[27]); + + // stage 4 + btf_32_add_sub_avx2(&x1[0], &x1[3]); + btf_32_add_sub_avx2(&x1[1], &x1[2]); + btf_32_avx2_type0(-cospi[32], cospi[32], &x1[5], &x1[6], _r, cos_bit); + btf_32_add_sub_avx2(&x1[8], &x1[11]); + btf_32_add_sub_avx2(&x1[9], &x1[10]); + btf_32_add_sub_avx2(&x1[15], &x1[12]); + btf_32_add_sub_avx2(&x1[14], &x1[13]); + btf_32_avx2_type0(-cospi[16], cospi[48], &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type0(-cospi[16], cospi[48], &x1[19], &x1[28], _r, cos_bit); + btf_32_avx2_type0(-cospi[48], -cospi[16], &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type0(-cospi[48], -cospi[16], &x1[21], &x1[26], _r, cos_bit); + + // stage 5 + btf_32_avx2_type0(cospi[32], cospi[32], &x1[0], &x1[1], _r, cos_bit); + btf_32_avx2_type1(cospi[48], cospi[16], &x1[2], &x1[3], _r, cos_bit); + btf_32_add_sub_avx2(&x1[4], &x1[5]); + btf_32_add_sub_avx2(&x1[7], &x1[6]); + btf_32_avx2_type0(-cospi[16], cospi[48], &x1[9], &x1[14], _r, cos_bit); + btf_32_avx2_type0(-cospi[48], -cospi[16], &x1[10], &x1[13], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[19]); + btf_32_add_sub_avx2(&x1[17], &x1[18]); + btf_32_add_sub_avx2(&x1[23], &x1[20]); + btf_32_add_sub_avx2(&x1[22], &x1[21]); + btf_32_add_sub_avx2(&x1[24], &x1[27]); + btf_32_add_sub_avx2(&x1[25], &x1[26]); + btf_32_add_sub_avx2(&x1[31], &x1[28]); + btf_32_add_sub_avx2(&x1[30], &x1[29]); + + // stage 6 + btf_32_avx2_type1(cospi[56], cospi[8], &x1[4], &x1[7], _r, cos_bit); + btf_32_avx2_type1(cospi[24], cospi[40], &x1[5], &x1[6], _r, cos_bit); + btf_32_add_sub_avx2(&x1[8], &x1[9]); + btf_32_add_sub_avx2(&x1[11], &x1[10]); + btf_32_add_sub_avx2(&x1[12], &x1[13]); + btf_32_add_sub_avx2(&x1[15], &x1[14]); + btf_32_avx2_type0(-cospi[8], cospi[56], &x1[17], &x1[30], _r, cos_bit); + btf_32_avx2_type0(-cospi[56], -cospi[8], &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type0(-cospi[40], cospi[24], &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type0(-cospi[24], -cospi[40], &x1[22], &x1[25], _r, cos_bit); + + // stage 7 + btf_32_avx2_type1(cospi[60], cospi[4], &x1[8], &x1[15], _r, cos_bit); + btf_32_avx2_type1(cospi[28], cospi[36], &x1[9], &x1[14], _r, cos_bit); + btf_32_avx2_type1(cospi[44], cospi[20], &x1[10], &x1[13], _r, cos_bit); + btf_32_avx2_type1(cospi[12], cospi[52], &x1[11], &x1[12], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[17]); + btf_32_add_sub_avx2(&x1[19], &x1[18]); + btf_32_add_sub_avx2(&x1[20], &x1[21]); + btf_32_add_sub_avx2(&x1[23], &x1[22]); + btf_32_add_sub_avx2(&x1[24], &x1[25]); + btf_32_add_sub_avx2(&x1[27], &x1[26]); + btf_32_add_sub_avx2(&x1[28], &x1[29]); + btf_32_add_sub_avx2(&x1[31], &x1[30]); + + // stage 8 + btf_32_avx2_type1(cospi[62], cospi[2], &x1[16], &x1[31], _r, cos_bit); + btf_32_avx2_type1(cospi[30], cospi[34], &x1[17], &x1[30], _r, cos_bit); + btf_32_avx2_type1(cospi[46], cospi[18], &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type1(cospi[14], cospi[50], &x1[19], &x1[28], _r, cos_bit); + btf_32_avx2_type1(cospi[54], cospi[10], &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type1(cospi[22], cospi[42], &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type1(cospi[38], cospi[26], &x1[22], &x1[25], _r, cos_bit); + btf_32_avx2_type1(cospi[6], cospi[58], &x1[23], &x1[24], _r, cos_bit); + + // stage 9 + output[0] = x1[0]; + output[1] = x1[16]; + output[2] = x1[8]; + output[3] = x1[24]; + output[4] = x1[4]; + output[5] = x1[20]; + output[6] = x1[12]; + output[7] = x1[28]; + output[8] = x1[2]; + output[9] = x1[18]; + output[10] = x1[10]; + output[11] = x1[26]; + output[12] = x1[6]; + output[13] = x1[22]; + output[14] = x1[14]; + output[15] = x1[30]; + output[16] = x1[1]; + output[17] = x1[17]; + output[18] = x1[9]; + output[19] = x1[25]; + output[20] = x1[5]; + output[21] = x1[21]; + output[22] = x1[13]; + output[23] = x1[29]; + output[24] = x1[3]; + output[25] = x1[19]; + output[26] = x1[11]; + output[27] = x1[27]; + output[28] = x1[7]; + output[29] = x1[23]; + output[30] = x1[15]; + output[31] = x1[31]; +} + +static INLINE void av1_fdct64_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + + __m256i cospi_m32 = _mm256_set1_epi32(-cospi[32]); + __m256i cospi_p32 = _mm256_set1_epi32(cospi[32]); + __m256i cospi_m16 = _mm256_set1_epi32(-cospi[16]); + __m256i cospi_p48 = _mm256_set1_epi32(cospi[48]); + __m256i cospi_m48 = _mm256_set1_epi32(-cospi[48]); + __m256i cospi_p16 = _mm256_set1_epi32(cospi[16]); + __m256i cospi_m08 = _mm256_set1_epi32(-cospi[8]); + __m256i cospi_p56 = _mm256_set1_epi32(cospi[56]); + __m256i cospi_m56 = _mm256_set1_epi32(-cospi[56]); + __m256i cospi_m40 = _mm256_set1_epi32(-cospi[40]); + __m256i cospi_p24 = _mm256_set1_epi32(cospi[24]); + __m256i cospi_m24 = _mm256_set1_epi32(-cospi[24]); + __m256i cospi_p08 = _mm256_set1_epi32(cospi[8]); + __m256i cospi_p40 = _mm256_set1_epi32(cospi[40]); + __m256i cospi_p60 = _mm256_set1_epi32(cospi[60]); + __m256i cospi_p04 = _mm256_set1_epi32(cospi[4]); + __m256i cospi_p28 = _mm256_set1_epi32(cospi[28]); + __m256i cospi_p36 = _mm256_set1_epi32(cospi[36]); + __m256i cospi_p44 = _mm256_set1_epi32(cospi[44]); + __m256i cospi_p20 = _mm256_set1_epi32(cospi[20]); + __m256i cospi_p12 = _mm256_set1_epi32(cospi[12]); + __m256i cospi_p52 = _mm256_set1_epi32(cospi[52]); + __m256i cospi_m04 = _mm256_set1_epi32(-cospi[4]); + __m256i cospi_m60 = _mm256_set1_epi32(-cospi[60]); + __m256i cospi_m36 = _mm256_set1_epi32(-cospi[36]); + __m256i cospi_m28 = _mm256_set1_epi32(-cospi[28]); + __m256i cospi_m20 = _mm256_set1_epi32(-cospi[20]); + __m256i cospi_m44 = _mm256_set1_epi32(-cospi[44]); + __m256i cospi_m52 = _mm256_set1_epi32(-cospi[52]); + __m256i cospi_m12 = _mm256_set1_epi32(-cospi[12]); + __m256i cospi_p62 = _mm256_set1_epi32(cospi[62]); + __m256i cospi_p02 = _mm256_set1_epi32(cospi[2]); + __m256i cospi_p30 = _mm256_set1_epi32(cospi[30]); + __m256i cospi_p34 = _mm256_set1_epi32(cospi[34]); + __m256i cospi_p46 = _mm256_set1_epi32(cospi[46]); + __m256i cospi_p18 = _mm256_set1_epi32(cospi[18]); + __m256i cospi_p14 = _mm256_set1_epi32(cospi[14]); + __m256i cospi_p50 = _mm256_set1_epi32(cospi[50]); + __m256i cospi_p54 = _mm256_set1_epi32(cospi[54]); + __m256i cospi_p10 = _mm256_set1_epi32(cospi[10]); + __m256i cospi_p22 = _mm256_set1_epi32(cospi[22]); + __m256i cospi_p42 = _mm256_set1_epi32(cospi[42]); + __m256i cospi_p38 = _mm256_set1_epi32(cospi[38]); + __m256i cospi_p26 = _mm256_set1_epi32(cospi[26]); + __m256i cospi_p06 = _mm256_set1_epi32(cospi[6]); + __m256i cospi_p58 = _mm256_set1_epi32(cospi[58]); + __m256i cospi_p63 = _mm256_set1_epi32(cospi[63]); + __m256i cospi_p01 = _mm256_set1_epi32(cospi[1]); + __m256i cospi_p31 = _mm256_set1_epi32(cospi[31]); + __m256i cospi_p33 = _mm256_set1_epi32(cospi[33]); + __m256i cospi_p47 = _mm256_set1_epi32(cospi[47]); + __m256i cospi_p17 = _mm256_set1_epi32(cospi[17]); + __m256i cospi_p15 = _mm256_set1_epi32(cospi[15]); + __m256i cospi_p49 = _mm256_set1_epi32(cospi[49]); + __m256i cospi_p55 = _mm256_set1_epi32(cospi[55]); + __m256i cospi_p09 = _mm256_set1_epi32(cospi[9]); + __m256i cospi_p23 = _mm256_set1_epi32(cospi[23]); + __m256i cospi_p41 = _mm256_set1_epi32(cospi[41]); + __m256i cospi_p39 = _mm256_set1_epi32(cospi[39]); + __m256i cospi_p25 = _mm256_set1_epi32(cospi[25]); + __m256i cospi_p07 = _mm256_set1_epi32(cospi[7]); + __m256i cospi_p57 = _mm256_set1_epi32(cospi[57]); + __m256i cospi_p59 = _mm256_set1_epi32(cospi[59]); + __m256i cospi_p05 = _mm256_set1_epi32(cospi[5]); + __m256i cospi_p27 = _mm256_set1_epi32(cospi[27]); + __m256i cospi_p37 = _mm256_set1_epi32(cospi[37]); + __m256i cospi_p43 = _mm256_set1_epi32(cospi[43]); + __m256i cospi_p21 = _mm256_set1_epi32(cospi[21]); + __m256i cospi_p11 = _mm256_set1_epi32(cospi[11]); + __m256i cospi_p53 = _mm256_set1_epi32(cospi[53]); + __m256i cospi_p51 = _mm256_set1_epi32(cospi[51]); + __m256i cospi_p13 = _mm256_set1_epi32(cospi[13]); + __m256i cospi_p19 = _mm256_set1_epi32(cospi[19]); + __m256i cospi_p45 = _mm256_set1_epi32(cospi[45]); + __m256i cospi_p35 = _mm256_set1_epi32(cospi[35]); + __m256i cospi_p29 = _mm256_set1_epi32(cospi[29]); + __m256i cospi_p03 = _mm256_set1_epi32(cospi[3]); + __m256i cospi_p61 = _mm256_set1_epi32(cospi[61]); + + // stage 1 + __m256i x1[64]; + btf_32_add_sub_out_avx2(&x1[0], &x1[63], input[0], input[63]); + btf_32_add_sub_out_avx2(&x1[1], &x1[62], input[1], input[62]); + btf_32_add_sub_out_avx2(&x1[2], &x1[61], input[2], input[61]); + btf_32_add_sub_out_avx2(&x1[3], &x1[60], input[3], input[60]); + btf_32_add_sub_out_avx2(&x1[4], &x1[59], input[4], input[59]); + btf_32_add_sub_out_avx2(&x1[5], &x1[58], input[5], input[58]); + btf_32_add_sub_out_avx2(&x1[6], &x1[57], input[6], input[57]); + btf_32_add_sub_out_avx2(&x1[7], &x1[56], input[7], input[56]); + btf_32_add_sub_out_avx2(&x1[8], &x1[55], input[8], input[55]); + btf_32_add_sub_out_avx2(&x1[9], &x1[54], input[9], input[54]); + btf_32_add_sub_out_avx2(&x1[10], &x1[53], input[10], input[53]); + btf_32_add_sub_out_avx2(&x1[11], &x1[52], input[11], input[52]); + btf_32_add_sub_out_avx2(&x1[12], &x1[51], input[12], input[51]); + btf_32_add_sub_out_avx2(&x1[13], &x1[50], input[13], input[50]); + btf_32_add_sub_out_avx2(&x1[14], &x1[49], input[14], input[49]); + btf_32_add_sub_out_avx2(&x1[15], &x1[48], input[15], input[48]); + btf_32_add_sub_out_avx2(&x1[16], &x1[47], input[16], input[47]); + btf_32_add_sub_out_avx2(&x1[17], &x1[46], input[17], input[46]); + btf_32_add_sub_out_avx2(&x1[18], &x1[45], input[18], input[45]); + btf_32_add_sub_out_avx2(&x1[19], &x1[44], input[19], input[44]); + btf_32_add_sub_out_avx2(&x1[20], &x1[43], input[20], input[43]); + btf_32_add_sub_out_avx2(&x1[21], &x1[42], input[21], input[42]); + btf_32_add_sub_out_avx2(&x1[22], &x1[41], input[22], input[41]); + btf_32_add_sub_out_avx2(&x1[23], &x1[40], input[23], input[40]); + btf_32_add_sub_out_avx2(&x1[24], &x1[39], input[24], input[39]); + btf_32_add_sub_out_avx2(&x1[25], &x1[38], input[25], input[38]); + btf_32_add_sub_out_avx2(&x1[26], &x1[37], input[26], input[37]); + btf_32_add_sub_out_avx2(&x1[27], &x1[36], input[27], input[36]); + btf_32_add_sub_out_avx2(&x1[28], &x1[35], input[28], input[35]); + btf_32_add_sub_out_avx2(&x1[29], &x1[34], input[29], input[34]); + btf_32_add_sub_out_avx2(&x1[30], &x1[33], input[30], input[33]); + btf_32_add_sub_out_avx2(&x1[31], &x1[32], input[31], input[32]); + + // stage 2 + btf_32_add_sub_avx2(&x1[0], &x1[31]); + btf_32_add_sub_avx2(&x1[1], &x1[30]); + btf_32_add_sub_avx2(&x1[2], &x1[29]); + btf_32_add_sub_avx2(&x1[3], &x1[28]); + btf_32_add_sub_avx2(&x1[4], &x1[27]); + btf_32_add_sub_avx2(&x1[5], &x1[26]); + btf_32_add_sub_avx2(&x1[6], &x1[25]); + btf_32_add_sub_avx2(&x1[7], &x1[24]); + btf_32_add_sub_avx2(&x1[8], &x1[23]); + btf_32_add_sub_avx2(&x1[9], &x1[22]); + btf_32_add_sub_avx2(&x1[10], &x1[21]); + btf_32_add_sub_avx2(&x1[11], &x1[20]); + btf_32_add_sub_avx2(&x1[12], &x1[19]); + btf_32_add_sub_avx2(&x1[13], &x1[18]); + btf_32_add_sub_avx2(&x1[14], &x1[17]); + btf_32_add_sub_avx2(&x1[15], &x1[16]); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[40], &x1[55], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[41], &x1[54], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[42], &x1[53], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[43], &x1[52], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[44], &x1[51], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[45], &x1[50], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[46], &x1[49], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[47], &x1[48], _r, cos_bit); + + // stage 3 + btf_32_add_sub_avx2(&x1[0], &x1[15]); + btf_32_add_sub_avx2(&x1[1], &x1[14]); + btf_32_add_sub_avx2(&x1[2], &x1[13]); + btf_32_add_sub_avx2(&x1[3], &x1[12]); + btf_32_add_sub_avx2(&x1[4], &x1[11]); + btf_32_add_sub_avx2(&x1[5], &x1[10]); + btf_32_add_sub_avx2(&x1[6], &x1[9]); + btf_32_add_sub_avx2(&x1[7], &x1[8]); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[22], &x1[25], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[23], &x1[24], _r, cos_bit); + btf_32_add_sub_avx2(&x1[32], &x1[47]); + btf_32_add_sub_avx2(&x1[33], &x1[46]); + btf_32_add_sub_avx2(&x1[34], &x1[45]); + btf_32_add_sub_avx2(&x1[35], &x1[44]); + btf_32_add_sub_avx2(&x1[36], &x1[43]); + btf_32_add_sub_avx2(&x1[37], &x1[42]); + btf_32_add_sub_avx2(&x1[38], &x1[41]); + btf_32_add_sub_avx2(&x1[39], &x1[40]); + btf_32_add_sub_avx2(&x1[63], &x1[48]); + btf_32_add_sub_avx2(&x1[62], &x1[49]); + btf_32_add_sub_avx2(&x1[61], &x1[50]); + btf_32_add_sub_avx2(&x1[60], &x1[51]); + btf_32_add_sub_avx2(&x1[59], &x1[52]); + btf_32_add_sub_avx2(&x1[58], &x1[53]); + btf_32_add_sub_avx2(&x1[57], &x1[54]); + btf_32_add_sub_avx2(&x1[56], &x1[55]); + + // stage 4 + btf_32_add_sub_avx2(&x1[0], &x1[7]); + btf_32_add_sub_avx2(&x1[1], &x1[6]); + btf_32_add_sub_avx2(&x1[2], &x1[5]); + btf_32_add_sub_avx2(&x1[3], &x1[4]); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[10], &x1[13], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[11], &x1[12], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[23]); + btf_32_add_sub_avx2(&x1[17], &x1[22]); + btf_32_add_sub_avx2(&x1[18], &x1[21]); + btf_32_add_sub_avx2(&x1[19], &x1[20]); + btf_32_add_sub_avx2(&x1[31], &x1[24]); + btf_32_add_sub_avx2(&x1[30], &x1[25]); + btf_32_add_sub_avx2(&x1[29], &x1[26]); + btf_32_add_sub_avx2(&x1[28], &x1[27]); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[36], &x1[59], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[37], &x1[58], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[38], &x1[57], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[39], &x1[56], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[40], &x1[55], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[41], &x1[54], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[42], &x1[53], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[43], &x1[52], _r, cos_bit); + + // stage 5 + btf_32_add_sub_avx2(&x1[0], &x1[3]); + btf_32_add_sub_avx2(&x1[1], &x1[2]); + btf_32_avx2_type0_new(cospi_m32, cospi_p32, &x1[5], &x1[6], _r, cos_bit); + btf_32_add_sub_avx2(&x1[8], &x1[11]); + btf_32_add_sub_avx2(&x1[9], &x1[10]); + btf_32_add_sub_avx2(&x1[15], &x1[12]); + btf_32_add_sub_avx2(&x1[14], &x1[13]); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[19], &x1[28], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[21], &x1[26], _r, cos_bit); + btf_32_add_sub_avx2(&x1[32], &x1[39]); + btf_32_add_sub_avx2(&x1[33], &x1[38]); + btf_32_add_sub_avx2(&x1[34], &x1[37]); + btf_32_add_sub_avx2(&x1[35], &x1[36]); + btf_32_add_sub_avx2(&x1[47], &x1[40]); + btf_32_add_sub_avx2(&x1[46], &x1[41]); + btf_32_add_sub_avx2(&x1[45], &x1[42]); + btf_32_add_sub_avx2(&x1[44], &x1[43]); + btf_32_add_sub_avx2(&x1[48], &x1[55]); + btf_32_add_sub_avx2(&x1[49], &x1[54]); + btf_32_add_sub_avx2(&x1[50], &x1[53]); + btf_32_add_sub_avx2(&x1[51], &x1[52]); + btf_32_add_sub_avx2(&x1[63], &x1[56]); + btf_32_add_sub_avx2(&x1[62], &x1[57]); + btf_32_add_sub_avx2(&x1[61], &x1[58]); + btf_32_add_sub_avx2(&x1[60], &x1[59]); + + // stage 6 + btf_32_avx2_type0_new(cospi_p32, cospi_p32, &x1[0], &x1[1], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p48, cospi_p16, &x1[2], &x1[3], _r, cos_bit); + btf_32_add_sub_avx2(&x1[4], &x1[5]); + btf_32_add_sub_avx2(&x1[7], &x1[6]); + btf_32_avx2_type0_new(cospi_m16, cospi_p48, &x1[9], &x1[14], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m48, cospi_m16, &x1[10], &x1[13], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[19]); + btf_32_add_sub_avx2(&x1[17], &x1[18]); + btf_32_add_sub_avx2(&x1[23], &x1[20]); + btf_32_add_sub_avx2(&x1[22], &x1[21]); + btf_32_add_sub_avx2(&x1[24], &x1[27]); + btf_32_add_sub_avx2(&x1[25], &x1[26]); + btf_32_add_sub_avx2(&x1[31], &x1[28]); + btf_32_add_sub_avx2(&x1[30], &x1[29]); + btf_32_avx2_type0_new(cospi_m08, cospi_p56, &x1[34], &x1[61], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m08, cospi_p56, &x1[35], &x1[60], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m56, cospi_m08, &x1[36], &x1[59], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m56, cospi_m08, &x1[37], &x1[58], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m40, cospi_p24, &x1[42], &x1[53], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m40, cospi_p24, &x1[43], &x1[52], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m24, cospi_m40, &x1[44], &x1[51], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m24, cospi_m40, &x1[45], &x1[50], _r, cos_bit); + + // stage 7 + btf_32_avx2_type1_new(cospi_p56, cospi_p08, &x1[4], &x1[7], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p24, cospi_p40, &x1[5], &x1[6], _r, cos_bit); + btf_32_add_sub_avx2(&x1[8], &x1[9]); + btf_32_add_sub_avx2(&x1[11], &x1[10]); + btf_32_add_sub_avx2(&x1[12], &x1[13]); + btf_32_add_sub_avx2(&x1[15], &x1[14]); + btf_32_avx2_type0_new(cospi_m08, cospi_p56, &x1[17], &x1[30], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m56, cospi_m08, &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m40, cospi_p24, &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m24, cospi_m40, &x1[22], &x1[25], _r, cos_bit); + btf_32_add_sub_avx2(&x1[32], &x1[35]); + btf_32_add_sub_avx2(&x1[33], &x1[34]); + btf_32_add_sub_avx2(&x1[39], &x1[36]); + btf_32_add_sub_avx2(&x1[38], &x1[37]); + btf_32_add_sub_avx2(&x1[40], &x1[43]); + btf_32_add_sub_avx2(&x1[41], &x1[42]); + btf_32_add_sub_avx2(&x1[47], &x1[44]); + btf_32_add_sub_avx2(&x1[46], &x1[45]); + btf_32_add_sub_avx2(&x1[48], &x1[51]); + btf_32_add_sub_avx2(&x1[49], &x1[50]); + btf_32_add_sub_avx2(&x1[55], &x1[52]); + btf_32_add_sub_avx2(&x1[54], &x1[53]); + btf_32_add_sub_avx2(&x1[56], &x1[59]); + btf_32_add_sub_avx2(&x1[57], &x1[58]); + btf_32_add_sub_avx2(&x1[63], &x1[60]); + btf_32_add_sub_avx2(&x1[62], &x1[61]); + + // stage 8 + btf_32_avx2_type1_new(cospi_p60, cospi_p04, &x1[8], &x1[15], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p28, cospi_p36, &x1[9], &x1[14], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p44, cospi_p20, &x1[10], &x1[13], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p12, cospi_p52, &x1[11], &x1[12], _r, cos_bit); + btf_32_add_sub_avx2(&x1[16], &x1[17]); + btf_32_add_sub_avx2(&x1[19], &x1[18]); + btf_32_add_sub_avx2(&x1[20], &x1[21]); + btf_32_add_sub_avx2(&x1[23], &x1[22]); + btf_32_add_sub_avx2(&x1[24], &x1[25]); + btf_32_add_sub_avx2(&x1[27], &x1[26]); + btf_32_add_sub_avx2(&x1[28], &x1[29]); + btf_32_add_sub_avx2(&x1[31], &x1[30]); + btf_32_avx2_type0_new(cospi_m04, cospi_p60, &x1[33], &x1[62], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m60, cospi_m04, &x1[34], &x1[61], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m36, cospi_p28, &x1[37], &x1[58], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m28, cospi_m36, &x1[38], &x1[57], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m20, cospi_p44, &x1[41], &x1[54], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m44, cospi_m20, &x1[42], &x1[53], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m52, cospi_p12, &x1[45], &x1[50], _r, cos_bit); + btf_32_avx2_type0_new(cospi_m12, cospi_m52, &x1[46], &x1[49], _r, cos_bit); + + // stage 9 + btf_32_avx2_type1_new(cospi_p62, cospi_p02, &x1[16], &x1[31], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p30, cospi_p34, &x1[17], &x1[30], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p46, cospi_p18, &x1[18], &x1[29], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p14, cospi_p50, &x1[19], &x1[28], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p54, cospi_p10, &x1[20], &x1[27], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p22, cospi_p42, &x1[21], &x1[26], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p38, cospi_p26, &x1[22], &x1[25], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p06, cospi_p58, &x1[23], &x1[24], _r, cos_bit); + btf_32_add_sub_avx2(&x1[32], &x1[33]); + btf_32_add_sub_avx2(&x1[35], &x1[34]); + btf_32_add_sub_avx2(&x1[36], &x1[37]); + btf_32_add_sub_avx2(&x1[39], &x1[38]); + btf_32_add_sub_avx2(&x1[40], &x1[41]); + btf_32_add_sub_avx2(&x1[43], &x1[42]); + btf_32_add_sub_avx2(&x1[44], &x1[45]); + btf_32_add_sub_avx2(&x1[47], &x1[46]); + btf_32_add_sub_avx2(&x1[48], &x1[49]); + btf_32_add_sub_avx2(&x1[51], &x1[50]); + btf_32_add_sub_avx2(&x1[52], &x1[53]); + btf_32_add_sub_avx2(&x1[55], &x1[54]); + btf_32_add_sub_avx2(&x1[56], &x1[57]); + btf_32_add_sub_avx2(&x1[59], &x1[58]); + btf_32_add_sub_avx2(&x1[60], &x1[61]); + btf_32_add_sub_avx2(&x1[63], &x1[62]); + + // stage 10 + btf_32_avx2_type1_new(cospi_p63, cospi_p01, &x1[32], &x1[63], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p31, cospi_p33, &x1[33], &x1[62], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p47, cospi_p17, &x1[34], &x1[61], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p15, cospi_p49, &x1[35], &x1[60], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p55, cospi_p09, &x1[36], &x1[59], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p23, cospi_p41, &x1[37], &x1[58], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p39, cospi_p25, &x1[38], &x1[57], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p07, cospi_p57, &x1[39], &x1[56], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p59, cospi_p05, &x1[40], &x1[55], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p27, cospi_p37, &x1[41], &x1[54], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p43, cospi_p21, &x1[42], &x1[53], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p11, cospi_p53, &x1[43], &x1[52], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p51, cospi_p13, &x1[44], &x1[51], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p19, cospi_p45, &x1[45], &x1[50], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p35, cospi_p29, &x1[46], &x1[49], _r, cos_bit); + btf_32_avx2_type1_new(cospi_p03, cospi_p61, &x1[47], &x1[48], _r, cos_bit); + + // stage 11 + output[0] = x1[0]; + output[1] = x1[32]; + output[2] = x1[16]; + output[3] = x1[48]; + output[4] = x1[8]; + output[5] = x1[40]; + output[6] = x1[24]; + output[7] = x1[56]; + output[8] = x1[4]; + output[9] = x1[36]; + output[10] = x1[20]; + output[11] = x1[52]; + output[12] = x1[12]; + output[13] = x1[44]; + output[14] = x1[28]; + output[15] = x1[60]; + output[16] = x1[2]; + output[17] = x1[34]; + output[18] = x1[18]; + output[19] = x1[50]; + output[20] = x1[10]; + output[21] = x1[42]; + output[22] = x1[26]; + output[23] = x1[58]; + output[24] = x1[6]; + output[25] = x1[38]; + output[26] = x1[22]; + output[27] = x1[54]; + output[28] = x1[14]; + output[29] = x1[46]; + output[30] = x1[30]; + output[31] = x1[62]; + output[32] = x1[1]; + output[33] = x1[33]; + output[34] = x1[17]; + output[35] = x1[49]; + output[36] = x1[9]; + output[37] = x1[41]; + output[38] = x1[25]; + output[39] = x1[57]; + output[40] = x1[5]; + output[41] = x1[37]; + output[42] = x1[21]; + output[43] = x1[53]; + output[44] = x1[13]; + output[45] = x1[45]; + output[46] = x1[29]; + output[47] = x1[61]; + output[48] = x1[3]; + output[49] = x1[35]; + output[50] = x1[19]; + output[51] = x1[51]; + output[52] = x1[11]; + output[53] = x1[43]; + output[54] = x1[27]; + output[55] = x1[59]; + output[56] = x1[7]; + output[57] = x1[39]; + output[58] = x1[23]; + output[59] = x1[55]; + output[60] = x1[15]; + output[61] = x1[47]; + output[62] = x1[31]; + output[63] = x1[63]; +} + +static INLINE void fadst16x16_new_avx2(const __m256i *input, __m256i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m256i __zero = _mm256_setzero_si256(); + const __m256i _r = _mm256_set1_epi32(1 << (cos_bit - 1)); + + __m256i cospi_p32_p32 = pair_set_w16_epi16(cospi[32], cospi[32]); + __m256i cospi_p32_m32 = pair_set_w16_epi16(cospi[32], -cospi[32]); + __m256i cospi_p16_p48 = pair_set_w16_epi16(cospi[16], cospi[48]); + __m256i cospi_p48_m16 = pair_set_w16_epi16(cospi[48], -cospi[16]); + __m256i cospi_m48_p16 = pair_set_w16_epi16(-cospi[48], cospi[16]); + __m256i cospi_p08_p56 = pair_set_w16_epi16(cospi[8], cospi[56]); + __m256i cospi_p56_m08 = pair_set_w16_epi16(cospi[56], -cospi[8]); + __m256i cospi_p40_p24 = pair_set_w16_epi16(cospi[40], cospi[24]); + __m256i cospi_p24_m40 = pair_set_w16_epi16(cospi[24], -cospi[40]); + __m256i cospi_m56_p08 = pair_set_w16_epi16(-cospi[56], cospi[8]); + __m256i cospi_m24_p40 = pair_set_w16_epi16(-cospi[24], cospi[40]); + __m256i cospi_p02_p62 = pair_set_w16_epi16(cospi[2], cospi[62]); + __m256i cospi_p62_m02 = pair_set_w16_epi16(cospi[62], -cospi[2]); + __m256i cospi_p10_p54 = pair_set_w16_epi16(cospi[10], cospi[54]); + __m256i cospi_p54_m10 = pair_set_w16_epi16(cospi[54], -cospi[10]); + __m256i cospi_p18_p46 = pair_set_w16_epi16(cospi[18], cospi[46]); + __m256i cospi_p46_m18 = pair_set_w16_epi16(cospi[46], -cospi[18]); + __m256i cospi_p26_p38 = pair_set_w16_epi16(cospi[26], cospi[38]); + __m256i cospi_p38_m26 = pair_set_w16_epi16(cospi[38], -cospi[26]); + __m256i cospi_p34_p30 = pair_set_w16_epi16(cospi[34], cospi[30]); + __m256i cospi_p30_m34 = pair_set_w16_epi16(cospi[30], -cospi[34]); + __m256i cospi_p42_p22 = pair_set_w16_epi16(cospi[42], cospi[22]); + __m256i cospi_p22_m42 = pair_set_w16_epi16(cospi[22], -cospi[42]); + __m256i cospi_p50_p14 = pair_set_w16_epi16(cospi[50], cospi[14]); + __m256i cospi_p14_m50 = pair_set_w16_epi16(cospi[14], -cospi[50]); + __m256i cospi_p58_p06 = pair_set_w16_epi16(cospi[58], cospi[6]); + __m256i cospi_p06_m58 = pair_set_w16_epi16(cospi[6], -cospi[58]); + + // stage 1 + __m256i x1[16]; + x1[0] = input[0]; + x1[1] = _mm256_subs_epi16(__zero, input[15]); + x1[2] = _mm256_subs_epi16(__zero, input[7]); + x1[3] = input[8]; + x1[4] = _mm256_subs_epi16(__zero, input[3]); + x1[5] = input[12]; + x1[6] = input[4]; + x1[7] = _mm256_subs_epi16(__zero, input[11]); + x1[8] = _mm256_subs_epi16(__zero, input[1]); + x1[9] = input[14]; + x1[10] = input[6]; + x1[11] = _mm256_subs_epi16(__zero, input[9]); + x1[12] = input[2]; + x1[13] = _mm256_subs_epi16(__zero, input[13]); + x1[14] = _mm256_subs_epi16(__zero, input[5]); + x1[15] = input[10]; + + // stage 2 + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[2], &x1[3], _r, cos_bit); + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[6], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[10], &x1[11], _r, cos_bit); + btf_16_w16_avx2(cospi_p32_p32, cospi_p32_m32, &x1[14], &x1[15], _r, cos_bit); + + // stage 3 + btf_16_adds_subs_avx2(&x1[0], &x1[2]); + btf_16_adds_subs_avx2(&x1[1], &x1[3]); + btf_16_adds_subs_avx2(&x1[4], &x1[6]); + btf_16_adds_subs_avx2(&x1[5], &x1[7]); + btf_16_adds_subs_avx2(&x1[8], &x1[10]); + btf_16_adds_subs_avx2(&x1[9], &x1[11]); + btf_16_adds_subs_avx2(&x1[12], &x1[14]); + btf_16_adds_subs_avx2(&x1[13], &x1[15]); + + // stage 4 + btf_16_w16_avx2(cospi_p16_p48, cospi_p48_m16, &x1[4], &x1[5], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_p16, cospi_p16_p48, &x1[6], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p16_p48, cospi_p48_m16, &x1[12], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_m48_p16, cospi_p16_p48, &x1[14], &x1[15], _r, cos_bit); + + // stage 5 + btf_16_adds_subs_avx2(&x1[0], &x1[4]); + btf_16_adds_subs_avx2(&x1[1], &x1[5]); + btf_16_adds_subs_avx2(&x1[2], &x1[6]); + btf_16_adds_subs_avx2(&x1[3], &x1[7]); + btf_16_adds_subs_avx2(&x1[8], &x1[12]); + btf_16_adds_subs_avx2(&x1[9], &x1[13]); + btf_16_adds_subs_avx2(&x1[10], &x1[14]); + btf_16_adds_subs_avx2(&x1[11], &x1[15]); + + // stage 6 + btf_16_w16_avx2(cospi_p08_p56, cospi_p56_m08, &x1[8], &x1[9], _r, cos_bit); + btf_16_w16_avx2(cospi_p40_p24, cospi_p24_m40, &x1[10], &x1[11], _r, cos_bit); + btf_16_w16_avx2(cospi_m56_p08, cospi_p08_p56, &x1[12], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_m24_p40, cospi_p40_p24, &x1[14], &x1[15], _r, cos_bit); + + // stage 7 + btf_16_adds_subs_avx2(&x1[0], &x1[8]); + btf_16_adds_subs_avx2(&x1[1], &x1[9]); + btf_16_adds_subs_avx2(&x1[2], &x1[10]); + btf_16_adds_subs_avx2(&x1[3], &x1[11]); + btf_16_adds_subs_avx2(&x1[4], &x1[12]); + btf_16_adds_subs_avx2(&x1[5], &x1[13]); + btf_16_adds_subs_avx2(&x1[6], &x1[14]); + btf_16_adds_subs_avx2(&x1[7], &x1[15]); + + // stage 8 + btf_16_w16_avx2(cospi_p02_p62, cospi_p62_m02, &x1[0], &x1[1], _r, cos_bit); + btf_16_w16_avx2(cospi_p10_p54, cospi_p54_m10, &x1[2], &x1[3], _r, cos_bit); + btf_16_w16_avx2(cospi_p18_p46, cospi_p46_m18, &x1[4], &x1[5], _r, cos_bit); + btf_16_w16_avx2(cospi_p26_p38, cospi_p38_m26, &x1[6], &x1[7], _r, cos_bit); + btf_16_w16_avx2(cospi_p34_p30, cospi_p30_m34, &x1[8], &x1[9], _r, cos_bit); + btf_16_w16_avx2(cospi_p42_p22, cospi_p22_m42, &x1[10], &x1[11], _r, cos_bit); + btf_16_w16_avx2(cospi_p50_p14, cospi_p14_m50, &x1[12], &x1[13], _r, cos_bit); + btf_16_w16_avx2(cospi_p58_p06, cospi_p06_m58, &x1[14], &x1[15], _r, cos_bit); + + // stage 9 + output[0] = x1[1]; + output[1] = x1[14]; + output[2] = x1[3]; + output[3] = x1[12]; + output[4] = x1[5]; + output[5] = x1[10]; + output[6] = x1[7]; + output[7] = x1[8]; + output[8] = x1[9]; + output[9] = x1[6]; + output[10] = x1[11]; + output[11] = x1[4]; + output[12] = x1[13]; + output[13] = x1[2]; + output[14] = x1[15]; + output[15] = x1[0]; +} + +static INLINE __m256i scale_round_avx2(const __m256i a, const int scale) { + const __m256i scale__r = pair_set_w16_epi16(scale, 1 << (NewSqrt2Bits - 1)); + const __m256i b = _mm256_madd_epi16(a, scale__r); + return _mm256_srai_epi32(b, NewSqrt2Bits); +} + +static INLINE void fidentity16x16_new_avx2(const __m256i *input, + __m256i *output, int8_t cos_bit) { + (void)cos_bit; + const __m256i one = _mm256_set1_epi16(1); + + for (int i = 0; i < 16; ++i) { + const __m256i a_lo = _mm256_unpacklo_epi16(input[i], one); + const __m256i a_hi = _mm256_unpackhi_epi16(input[i], one); + const __m256i b_lo = scale_round_avx2(a_lo, 2 * NewSqrt2); + const __m256i b_hi = scale_round_avx2(a_hi, 2 * NewSqrt2); + output[i] = _mm256_packs_epi32(b_lo, b_hi); + } +} + +static INLINE void fidentity16x32_new_avx2(const __m256i *input, + __m256i *output, int8_t cos_bit) { + (void)cos_bit; + for (int i = 0; i < 32; ++i) { + output[i] = _mm256_slli_epi16(input[i], 2); + } +} + +static INLINE void av1_round_shift_array_32_avx2(__m256i *input, + __m256i *output, + const int size, + const int bit) { + if (bit > 0) { + int i; + for (i = 0; i < size; i++) { + output[i] = av1_round_shift_32_avx2(input[i], bit); + } + } else { + int i; + for (i = 0; i < size; i++) { + output[i] = _mm256_slli_epi32(input[i], -bit); + } + } +} + +static INLINE void av1_round_shift_rect_array_32_avx2(__m256i *input, + __m256i *output, + const int size, + const int bit) { + const __m256i sqrt2 = _mm256_set1_epi32(NewSqrt2); + if (bit > 0) { + int i; + for (i = 0; i < size; i++) { + const __m256i r0 = av1_round_shift_32_avx2(input[i], bit); + const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0); + output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits); + } + } else { + int i; + for (i = 0; i < size; i++) { + const __m256i r0 = _mm256_slli_epi32(input[i], -bit); + const __m256i r1 = _mm256_mullo_epi32(sqrt2, r0); + output[i] = av1_round_shift_32_avx2(r1, NewSqrt2Bits); + } + } +} + +static INLINE void transpose_32_8x8_avx2(int stride, const __m256i *inputA, + __m256i *output) { + __m256i temp0 = _mm256_unpacklo_epi32(inputA[0], inputA[2]); + __m256i temp1 = _mm256_unpackhi_epi32(inputA[0], inputA[2]); + __m256i temp2 = _mm256_unpacklo_epi32(inputA[1], inputA[3]); + __m256i temp3 = _mm256_unpackhi_epi32(inputA[1], inputA[3]); + __m256i temp4 = _mm256_unpacklo_epi32(inputA[4], inputA[6]); + __m256i temp5 = _mm256_unpackhi_epi32(inputA[4], inputA[6]); + __m256i temp6 = _mm256_unpacklo_epi32(inputA[5], inputA[7]); + __m256i temp7 = _mm256_unpackhi_epi32(inputA[5], inputA[7]); + + __m256i t0 = _mm256_unpacklo_epi32(temp0, temp2); + __m256i t1 = _mm256_unpackhi_epi32(temp0, temp2); + __m256i t2 = _mm256_unpacklo_epi32(temp1, temp3); + __m256i t3 = _mm256_unpackhi_epi32(temp1, temp3); + __m256i t4 = _mm256_unpacklo_epi32(temp4, temp6); + __m256i t5 = _mm256_unpackhi_epi32(temp4, temp6); + __m256i t6 = _mm256_unpacklo_epi32(temp5, temp7); + __m256i t7 = _mm256_unpackhi_epi32(temp5, temp7); + + output[0 * stride] = _mm256_permute2x128_si256(t0, t4, 0x20); + output[1 * stride] = _mm256_permute2x128_si256(t1, t5, 0x20); + output[2 * stride] = _mm256_permute2x128_si256(t2, t6, 0x20); + output[3 * stride] = _mm256_permute2x128_si256(t3, t7, 0x20); + output[4 * stride] = _mm256_permute2x128_si256(t0, t4, 0x31); + output[5 * stride] = _mm256_permute2x128_si256(t1, t5, 0x31); + output[6 * stride] = _mm256_permute2x128_si256(t2, t6, 0x31); + output[7 * stride] = _mm256_permute2x128_si256(t3, t7, 0x31); +} + +// Store 8 16 bit values. Sign extend the values. +static INLINE void store_buffer_16bit_to_32bit_w16_avx2(const __m256i *const in, + int32_t *out, + const int stride, + const int out_size) { + for (int i = 0; i < out_size; ++i) { + _mm256_store_si256((__m256i *)(out), + _mm256_cvtepi16_epi32(_mm256_castsi256_si128(in[i]))); + _mm256_store_si256( + (__m256i *)(out + 8), + _mm256_cvtepi16_epi32(_mm256_extracti128_si256(in[i], 1))); + out += stride; + } +} + +static INLINE void store_rect_16bit_to_32bit_avx2(const __m256i a, + int32_t *const b) { + const __m256i one = _mm256_set1_epi16(1); + const __m256i a_reoder = _mm256_permute4x64_epi64(a, 0xd8); + const __m256i a_lo = _mm256_unpacklo_epi16(a_reoder, one); + const __m256i a_hi = _mm256_unpackhi_epi16(a_reoder, one); + const __m256i b_lo = scale_round_avx2(a_lo, NewSqrt2); + const __m256i b_hi = scale_round_avx2(a_hi, NewSqrt2); + _mm256_store_si256((__m256i *)b, b_lo); + _mm256_store_si256((__m256i *)(b + 8), b_hi); +} + +static INLINE void store_rect_buffer_16bit_to_32bit_w16_avx2( + const __m256i *const in, int32_t *const out, const int stride, + const int out_size) { + for (int i = 0; i < out_size; ++i) { + store_rect_16bit_to_32bit_avx2(in[i], out + i * stride); + } +} + +static const transform_1d_avx2 col_txfm16x32_arr[TX_TYPES] = { + fdct16x32_new_avx2, // DCT_DCT + NULL, // ADST_DCT + NULL, // DCT_ADST + NULL, // ADST_ADST + NULL, // FLIPADST_DCT + NULL, // DCT_FLIPADST + NULL, // FLIPADST_FLIPADST + NULL, // ADST_FLIPADST + NULL, // FLIPADST_ADST + fidentity16x32_new_avx2, // IDTX + fdct16x32_new_avx2, // V_DCT + fidentity16x32_new_avx2, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +static const transform_1d_avx2 row_txfm16x32_arr[TX_TYPES] = { + fdct16x32_new_avx2, // DCT_DCT + NULL, // ADST_DCT + NULL, // DCT_ADST + NULL, // ADST_ADST + NULL, // FLIPADST_DCT + NULL, // DCT_FLIPADST + NULL, // FLIPADST_FLIPADST + NULL, // ADST_FLIPADST + NULL, // FLIPADST_ADST + fidentity16x32_new_avx2, // IDTX + fidentity16x32_new_avx2, // V_DCT + fdct16x32_new_avx2, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +static const transform_1d_avx2 col_txfm16x16_arr[TX_TYPES] = { + fdct16x16_new_avx2, // DCT_DCT + fadst16x16_new_avx2, // ADST_DCT + fdct16x16_new_avx2, // DCT_ADST + fadst16x16_new_avx2, // ADST_ADST + fadst16x16_new_avx2, // FLIPADST_DCT + fdct16x16_new_avx2, // DCT_FLIPADST + fadst16x16_new_avx2, // FLIPADST_FLIPADST + fadst16x16_new_avx2, // ADST_FLIPADST + fadst16x16_new_avx2, // FLIPADST_ADST + fidentity16x16_new_avx2, // IDTX + fdct16x16_new_avx2, // V_DCT + fidentity16x16_new_avx2, // H_DCT + fadst16x16_new_avx2, // V_ADST + fidentity16x16_new_avx2, // H_ADST + fadst16x16_new_avx2, // V_FLIPADST + fidentity16x16_new_avx2 // H_FLIPADST +}; + +static const transform_1d_avx2 row_txfm16x16_arr[TX_TYPES] = { + fdct16x16_new_avx2, // DCT_DCT + fdct16x16_new_avx2, // ADST_DCT + fadst16x16_new_avx2, // DCT_ADST + fadst16x16_new_avx2, // ADST_ADST + fdct16x16_new_avx2, // FLIPADST_DCT + fadst16x16_new_avx2, // DCT_FLIPADST + fadst16x16_new_avx2, // FLIPADST_FLIPADST + fadst16x16_new_avx2, // ADST_FLIPADST + fadst16x16_new_avx2, // FLIPADST_ADST + fidentity16x16_new_avx2, // IDTX + fidentity16x16_new_avx2, // V_DCT + fdct16x16_new_avx2, // H_DCT + fidentity16x16_new_avx2, // V_ADST + fadst16x16_new_avx2, // H_ADST + fidentity16x16_new_avx2, // V_FLIPADST + fadst16x16_new_avx2 // H_FLIPADST +}; + +static void lowbd_fwd_txfm2d_16x16_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + const TX_SIZE tx_size = TX_16X16; + __m256i buf0[16], buf1[16]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = col_txfm16x16_arr[tx_type]; + const transform_1d_avx2 row_txfm = row_txfm16x16_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + const int32_t i = 0; + if (ud_flip) { + load_buffer_16bit_to_16bit_flip_avx2(input + 16 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + } + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + transpose_16bit_16x16_avx2(buf0, buf1 + 0 * width + 16 * i); + + __m256i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_avx2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + transpose_16bit_16x16_avx2(buf, buf); + store_buffer_16bit_to_32bit_w16_avx2(buf, output + 16 * width * i, width, 16); +} + +static void lowbd_fwd_txfm2d_32x32_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + const TX_SIZE tx_size = TX_32X32; + __m256i buf0[32], buf1[128]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type]; + const transform_1d_avx2 row_txfm = row_txfm16x32_arr[tx_type]; + + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip_avx2(input + 16 * i, stride, buf0, + height); + } else { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + } + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + transpose_16bit_16x16_avx2(buf0 + 0 * 16, buf1 + 0 * width + 16 * i); + transpose_16bit_16x16_avx2(buf0 + 1 * 16, buf1 + 1 * width + 16 * i); + } + + for (int i = 0; i < 2; i++) { + __m256i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_avx2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + transpose_16bit_16x16_avx2(buf, buf); + store_buffer_16bit_to_32bit_w16_avx2(buf, output + 16 * width * i, width, + 16); + transpose_16bit_16x16_avx2(buf + 16, buf + 16); + store_buffer_16bit_to_32bit_w16_avx2(buf + 16, output + 16 * width * i + 16, + width, 16); + } +} + +static void lowbd_fwd_txfm2d_64x64_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_64X64; + __m256i buf0[64], buf1[256]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = fdct16x64_new_avx2; + const int width_div16 = (width >> 4); + const int height_div16 = (height >> 4); + + for (int i = 0; i < width_div16; i++) { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(2, height_div16); ++j) { + transpose_16bit_16x16_avx2(buf0 + j * 16, buf1 + j * width + 16 * i); + } + } + + for (int i = 0; i < AOMMIN(2, height_div16); i++) { + __m256i bufA[64]; + __m256i bufB[64]; + __m128i *buf = (__m128i *)(buf1 + width * i); + for (int j = 0; j < width; ++j) { + bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]); + bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]); + } + av1_fdct64_new_avx2(bufA, bufA, cos_bit_row); + av1_fdct64_new_avx2(bufB, bufB, cos_bit_row); + av1_round_shift_array_32_avx2(bufA, bufA, 32, -shift[2]); + av1_round_shift_array_32_avx2(bufB, bufB, 32, -shift[2]); + + int32_t *output8 = output + 16 * 32 * i; + for (int j = 0; j < 4; ++j) { + __m256i *out = (__m256i *)(output8 + 8 * j); + transpose_32_8x8_avx2(4, bufA + 8 * j, out); + transpose_32_8x8_avx2(4, bufB + 8 * j, out + 8 * 4); + } + } +} + +static void lowbd_fwd_txfm2d_16x32_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + const TX_SIZE tx_size = TX_16X32; + __m256i buf0[32], buf1[32]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type]; + const transform_1d_avx2 row_txfm = row_txfm16x16_arr[tx_type]; + + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + if (ud_flip) { + load_buffer_16bit_to_16bit_flip_avx2(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit_avx2(input, stride, buf0, height); + } + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + transpose_16bit_16x16_avx2(buf0, buf1); + transpose_16bit_16x16_avx2(buf0 + 16, buf1 + 16); + + for (int i = 0; i < 2; i++) { + __m256i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_avx2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + transpose_16bit_16x16_avx2(buf, buf); + store_rect_buffer_16bit_to_32bit_w16_avx2(buf, output + 16 * width * i, + width, 16); + } +} + +static void lowbd_fwd_txfm2d_32x16_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m256i buf0[32], buf1[64]; + const int8_t *shift = fwd_txfm_shift_ls[TX_32X16]; + const int txw_idx = get_txw_idx(TX_32X16); + const int txh_idx = get_txh_idx(TX_32X16); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 32; + const int height = 16; + const transform_1d_avx2 col_txfm = col_txfm16x16_arr[tx_type]; + const transform_1d_avx2 row_txfm = row_txfm16x32_arr[tx_type]; + + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip_avx2(input + 16 * i, stride, buf0, + height); + } else { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + } + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + transpose_16bit_16x16_avx2(buf0, buf1 + 0 * width + 16 * i); + } + + __m256i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_avx2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + transpose_16bit_16x16_avx2(buf, buf); + store_rect_buffer_16bit_to_32bit_w16_avx2(buf, output, width, 16); + + transpose_16bit_16x16_avx2(buf + 16, buf + 16); + store_rect_buffer_16bit_to_32bit_w16_avx2(buf + 16, output + 16, width, 16); +} + +static void lowbd_fwd_txfm2d_64x32_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + const TX_SIZE tx_size = TX_64X32; + __m256i buf0[64], buf1[256]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = col_txfm16x32_arr[tx_type]; + const int width_div16 = (width >> 4); + const int height_div16 = (height >> 4); + + for (int i = 0; i < width_div16; i++) { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(4, height_div16); ++j) { + transpose_16bit_16x16_avx2(buf0 + j * 16, buf1 + j * width + 16 * i); + } + } + assert(tx_type == DCT_DCT); + for (int i = 0; i < AOMMIN(2, height_div16); i++) { + __m256i bufA[64]; + __m256i bufB[64]; + __m128i *buf = (__m128i *)(buf1 + width * i); + for (int j = 0; j < width; ++j) { + bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]); + bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]); + } + av1_fdct64_new_avx2(bufA, bufA, cos_bit_row); + av1_fdct64_new_avx2(bufB, bufB, cos_bit_row); + av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2]); + av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2]); + + int32_t *output8 = output + 16 * 32 * i; + for (int j = 0; j < 4; ++j) { + __m256i *out = (__m256i *)(output8 + 8 * j); + transpose_32_8x8_avx2(4, bufA + 8 * j, out); + transpose_32_8x8_avx2(4, bufB + 8 * j, out + 8 * 4); + } + } +} + +static void lowbd_fwd_txfm2d_32x64_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_32X64; + __m256i buf0[64], buf1[256]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = fdct16x64_new_avx2; + const int width_div16 = (width >> 4); + const int height_div16 = (height >> 4); + + for (int i = 0; i < width_div16; i++) { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(2, height_div16); ++j) { + transpose_16bit_16x16_avx2(buf0 + j * 16, buf1 + j * width + 16 * i); + } + } + + for (int i = 0; i < AOMMIN(2, height_div16); i++) { + __m256i bufA[32]; + __m256i bufB[32]; + __m128i *buf = (__m128i *)(buf1 + width * i); + for (int j = 0; j < width; ++j) { + bufA[j] = _mm256_cvtepi16_epi32(buf[j * 2]); + bufB[j] = _mm256_cvtepi16_epi32(buf[j * 2 + 1]); + } + av1_fdct32_new_avx2(bufA, bufA, cos_bit_row); + av1_fdct32_new_avx2(bufB, bufB, cos_bit_row); + av1_round_shift_rect_array_32_avx2(bufA, bufA, 32, -shift[2]); + av1_round_shift_rect_array_32_avx2(bufB, bufB, 32, -shift[2]); + + int32_t *output8 = output + 16 * 32 * i; + for (int j = 0; j < 4; ++j) { + __m256i *out = (__m256i *)(output8 + 8 * j); + transpose_32_8x8_avx2(4, bufA + 8 * j, out); + transpose_32_8x8_avx2(4, bufB + 8 * j, out + 8 * 4); + } + } +} + +static void lowbd_fwd_txfm2d_16x64_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_16X64; + __m256i buf0[64], buf1[64]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = fdct16x64_new_avx2; + const transform_1d_avx2 row_txfm = fdct16x16_new_avx2; + const int width_div16 = (width >> 4); + const int height_div16 = (height >> 4); + + for (int i = 0; i < width_div16; i++) { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + for (int j = 0; j < height_div16; ++j) { + transpose_16bit_16x16_avx2(buf0 + j * 16, buf1 + j * width + 16 * i); + } + } + + for (int i = 0; i < AOMMIN(4, height_div16); i++) { + __m256i *buf = buf1 + width * i; + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + int32_t *output16 = output + 16 * width * i; + for (int j = 0; j < width_div16; ++j) { + __m256i *buf16 = buf + 16 * j; + transpose_16bit_16x16_avx2(buf16, buf16); + store_buffer_16bit_to_32bit_w16_avx2(buf16, output16 + 16 * j, width, 16); + } + } + // Zero out the bottom 16x32 area. + memset(output + 16 * 32, 0, 16 * 32 * sizeof(*output)); +} + +static void lowbd_fwd_txfm2d_64x16_avx2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_64X16; + __m256i buf0[64], buf1[64]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_avx2 col_txfm = fdct16x16_new_avx2; + const transform_1d_avx2 row_txfm = fdct16x64_new_avx2; + const int width_div16 = (width >> 4); + const int height_div16 = (height >> 4); + + for (int i = 0; i < width_div16; i++) { + load_buffer_16bit_to_16bit_avx2(input + 16 * i, stride, buf0, height); + round_shift_16bit_w16_avx2(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit_w16_avx2(buf0, height, shift[1]); + for (int j = 0; j < height_div16; ++j) { + transpose_16bit_16x16_avx2(buf0 + j * 16, buf1 + j * width + 16 * i); + } + } + + for (int i = 0; i < height_div16; i++) { + __m256i *buf = buf1 + width * i; + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit_w16_avx2(buf, width, shift[2]); + int32_t *output16 = output + 16 * 32 * i; + for (int j = 0; j < 2; ++j) { + __m256i *buf16 = buf + 16 * j; + transpose_16bit_16x16_avx2(buf16, buf16); + store_buffer_16bit_to_32bit_w16_avx2(buf16, output16 + 16 * j, 32, 16); + } + } +} + +static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { + av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform + av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform + lowbd_fwd_txfm2d_16x16_avx2, // 16x16 transform + lowbd_fwd_txfm2d_32x32_avx2, // 32x32 transform + lowbd_fwd_txfm2d_64x64_avx2, // 64x64 transform + av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform + av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform + av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform + av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform + lowbd_fwd_txfm2d_16x32_avx2, // 16x32 transform + lowbd_fwd_txfm2d_32x16_avx2, // 32x16 transform + lowbd_fwd_txfm2d_32x64_avx2, // 32x64 transform + lowbd_fwd_txfm2d_64x32_avx2, // 64x32 transform + av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform + av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform + av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform + av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform + lowbd_fwd_txfm2d_16x64_avx2, // 16x64 transform + lowbd_fwd_txfm2d_64x16_avx2, // 64x16 transform +}; + +void av1_lowbd_fwd_txfm_avx2(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; + if ((fwd_txfm2d_func == NULL) || + (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) { + av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); + } else { + fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); + } +} diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_sse4.c b/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_sse4.c new file mode 100644 index 0000000000..8ec0256eb8 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm2d_sse4.c @@ -0,0 +1,365 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "config/av1_rtcd.h" + +#include "av1/common/enums.h" +#include "av1/common/av1_txfm.h" +#include "av1/common/x86/av1_txfm_sse2.h" +#include "av1/common/x86/highbd_txfm_utility_sse4.h" +#include "av1/encoder/av1_fwd_txfm1d_cfg.h" +#include "av1/encoder/x86/av1_txfm1d_sse4.h" +#include "av1/encoder/x86/av1_fwd_txfm_sse2.h" + +static INLINE void int16_array_with_stride_to_int32_array_without_stride( + const int16_t *input, int stride, int32_t *output, int txfm1d_size) { + int r, c; + for (r = 0; r < txfm1d_size; r++) { + for (c = 0; c < txfm1d_size; c++) { + output[r * txfm1d_size + c] = (int32_t)input[r * stride + c]; + } + } +} + +typedef void (*TxfmFuncSSE2)(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); + +static void fdct32_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range) { + const int txfm_size = 32; + const int num_per_128 = 4; + __m128i buf0[32]; + __m128i buf1[32]; + int col_num = txfm_size / num_per_128; + int col; + (void)stage_range; + for (col = 0; col < col_num; col++) { + int j; + for (j = 0; j < 32; ++j) { + buf0[j] = input[j * col_num + col]; + } + av1_fdct32_new_sse4_1(buf0, buf1, cos_bit); + for (j = 0; j < 32; ++j) { + output[j * col_num + col] = buf1[j]; + } + } +} + +static void fdct64_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range) { + const int txfm_size = 64; + const int num_per_128 = 4; + int col_num = txfm_size / num_per_128; + (void)stage_range; + for (int col = 0; col < col_num; col++) { + av1_fdct64_new_sse4_1((input + col), (output + col), cos_bit, col_num, + col_num); + } +} + +static INLINE TxfmFuncSSE2 fwd_txfm_type_to_func(TXFM_TYPE txfm_type) { + switch (txfm_type) { + case TXFM_TYPE_DCT32: return fdct32_new_sse4_1; break; + case TXFM_TYPE_DCT64: return fdct64_new_sse4_1; break; + default: assert(0); + } + return NULL; +} + +static INLINE void fwd_txfm2d_sse4_1(const int16_t *input, int32_t *output, + const int stride, + const TXFM_2D_FLIP_CFG *cfg, + int32_t *txfm_buf) { + // TODO(sarahparker) This does not currently support rectangular transforms + // and will break without splitting txfm_size out into row and col size. + // Rectangular transforms use c code only, so it should be ok for now. + // It will be corrected when there are sse implementations for rectangular + // transforms. + assert(cfg->tx_size < TX_SIZES); + const int txfm_size = tx_size_wide[cfg->tx_size]; + const int8_t *shift = cfg->shift; + const int8_t *stage_range_col = cfg->stage_range_col; + const int8_t *stage_range_row = cfg->stage_range_row; + const int8_t cos_bit_col = cfg->cos_bit_col; + const int8_t cos_bit_row = cfg->cos_bit_row; + const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); + const TxfmFuncSSE2 txfm_func_row = fwd_txfm_type_to_func(cfg->txfm_type_row); + + __m128i *buf_128 = (__m128i *)txfm_buf; + __m128i *out_128 = (__m128i *)output; + int num_per_128 = 4; + int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; + + int16_array_with_stride_to_int32_array_without_stride(input, stride, txfm_buf, + txfm_size); + av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[0]); + txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); + av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); + transpose_32(txfm_size, out_128, buf_128); + txfm_func_row(buf_128, out_128, cos_bit_row, stage_range_row); + av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); + transpose_32(txfm_size, buf_128, out_128); +} + +static INLINE void fwd_txfm2d_64x64_sse4_1(const int16_t *input, + int32_t *output, const int stride, + const TXFM_2D_FLIP_CFG *cfg, + int32_t *txfm_buf) { + assert(cfg->tx_size < TX_SIZES); + const int txfm_size = tx_size_wide[cfg->tx_size]; + const int8_t *shift = cfg->shift; + const int8_t *stage_range_col = cfg->stage_range_col; + const int8_t cos_bit_col = cfg->cos_bit_col; + const int8_t cos_bit_row = cfg->cos_bit_row; + const TxfmFuncSSE2 txfm_func_col = fwd_txfm_type_to_func(cfg->txfm_type_col); + __m128i *buf_128 = (__m128i *)txfm_buf; + __m128i *out_128 = (__m128i *)output; + + const int num_per_128 = 4; + int txfm2d_size_128 = txfm_size * txfm_size / num_per_128; + int col_num = txfm_size / num_per_128; + + int16_array_with_stride_to_int32_array_without_stride(input, stride, output, + txfm_size); + /*col wise transform*/ + txfm_func_col(out_128, buf_128, cos_bit_col, stage_range_col); + av1_round_shift_array_32_sse4_1(buf_128, out_128, txfm2d_size_128, -shift[1]); + transpose_32(txfm_size, out_128, buf_128); + + /*row wise transform*/ + for (int col = 0; col < (col_num >> 1); col++) { + av1_fdct64_new_sse4_1((buf_128 + col), (out_128 + col), cos_bit_row, + col_num, (col_num >> 1)); + } + + txfm2d_size_128 = (col_num >> 1) * (txfm_size >> 1); + av1_round_shift_array_32_sse4_1(out_128, buf_128, txfm2d_size_128, -shift[2]); + transpose_32x32(buf_128, out_128); +} + +void av1_fwd_txfm2d_32x32_sse4_1(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(16, int32_t, txfm_buf[1024]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_32X32, &cfg); + (void)bd; + fwd_txfm2d_sse4_1(input, output, stride, &cfg, txfm_buf); +} + +void av1_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + DECLARE_ALIGNED(16, int32_t, txfm_buf[4096]); + TXFM_2D_FLIP_CFG cfg; + av1_get_fwd_txfm_cfg(tx_type, TX_64X64, &cfg); + (void)bd; + fwd_txfm2d_64x64_sse4_1(input, output, stride, &cfg, txfm_buf); +} + +static INLINE void transpose_32_4x4x2(int stride, const __m128i *inputA, + const __m128i *inputB, __m128i *output) { + __m128i temp0 = _mm_unpacklo_epi32(inputA[0], inputA[2]); + __m128i temp1 = _mm_unpackhi_epi32(inputA[0], inputA[2]); + __m128i temp2 = _mm_unpacklo_epi32(inputA[1], inputA[3]); + __m128i temp3 = _mm_unpackhi_epi32(inputA[1], inputA[3]); + + output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2); + output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2); + output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3); + output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3); + + temp0 = _mm_unpacklo_epi32(inputB[0], inputB[2]); + temp1 = _mm_unpackhi_epi32(inputB[0], inputB[2]); + temp2 = _mm_unpacklo_epi32(inputB[1], inputB[3]); + temp3 = _mm_unpackhi_epi32(inputB[1], inputB[3]); + + output[4 * stride] = _mm_unpacklo_epi32(temp0, temp2); + output[5 * stride] = _mm_unpackhi_epi32(temp0, temp2); + output[6 * stride] = _mm_unpacklo_epi32(temp1, temp3); + output[7 * stride] = _mm_unpackhi_epi32(temp1, temp3); +} + +static void lowbd_fwd_txfm2d_64x64_sse4_1(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_64X64; + __m128i buf0[64], buf1[512]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; + const int width_div8 = (width >> 3); + const int height_div8 = (height >> 3); + + for (int i = 0; i < width_div8; i++) { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(4, height_div8); ++j) { + transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); + } + } + for (int i = 0; i < AOMMIN(4, height_div8); i++) { + __m128i bufA[64]; + __m128i bufB[64]; + __m128i *buf = buf1 + width * i; + for (int j = 0; j < width; ++j) { + bufA[j] = _mm_cvtepi16_epi32(buf[j]); + bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); + } + av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); + av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); + av1_round_shift_array_32_sse4_1(bufA, bufA, 32, -shift[2]); + av1_round_shift_array_32_sse4_1(bufB, bufB, 32, -shift[2]); + + int32_t *output8 = output + 8 * 32 * i; + for (int j = 0; j < width_div8; ++j) { + __m128i *out = (__m128i *)(output8 + 4 * j); + transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); + } + } +} + +static void lowbd_fwd_txfm2d_64x32_sse4_1(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + const TX_SIZE tx_size = TX_64X32; + __m128i buf0[64], buf1[256]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; + const int width_div8 = (width >> 3); + const int height_div8 = (height >> 3); + + for (int i = 0; i < width_div8; i++) { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(4, height_div8); ++j) { + transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); + } + } + assert(tx_type == DCT_DCT); + for (int i = 0; i < AOMMIN(4, height_div8); i++) { + __m128i bufA[64]; + __m128i bufB[64]; + __m128i *buf = buf1 + width * i; + for (int j = 0; j < width; ++j) { + bufA[j] = _mm_cvtepi16_epi32(buf[j]); + bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); + } + av1_fdct64_new_sse4_1(bufA, bufA, cos_bit_row, 1, 1); + av1_fdct64_new_sse4_1(bufB, bufB, cos_bit_row, 1, 1); + av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); + av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); + + int32_t *output8 = output + 8 * 32 * i; + for (int j = 0; j < width_div8; ++j) { + __m128i *out = (__m128i *)(output8 + 4 * j); + transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); + } + } +} + +static void lowbd_fwd_txfm2d_32x64_sse4_1(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_32X64; + __m128i buf0[64], buf1[256]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; + const int width_div8 = (width >> 3); + const int height_div8 = (height >> 3); + + for (int i = 0; i < width_div8; i++) { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + for (int j = 0; j < AOMMIN(4, height_div8); ++j) { + transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); + } + } + + for (int i = 0; i < AOMMIN(4, height_div8); i++) { + __m128i bufA[32]; + __m128i bufB[32]; + __m128i *buf = buf1 + width * i; + for (int j = 0; j < width; ++j) { + bufA[j] = _mm_cvtepi16_epi32(buf[j]); + bufB[j] = _mm_cvtepi16_epi32(_mm_unpackhi_epi64(buf[j], buf[j])); + } + av1_fdct32_new_sse4_1(bufA, bufA, cos_bit_row); + av1_fdct32_new_sse4_1(bufB, bufB, cos_bit_row); + av1_round_shift_rect_array_32_sse4_1(bufA, bufA, 32, -shift[2], NewSqrt2); + av1_round_shift_rect_array_32_sse4_1(bufB, bufB, 32, -shift[2], NewSqrt2); + + int32_t *output8 = output + 8 * 32 * i; + for (int j = 0; j < (32 / 4); ++j) { + __m128i *out = (__m128i *)(output8 + 4 * j); + transpose_32_4x4x2(8, bufA + 4 * j, bufB + 4 * j, out); + } + } +} + +static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { + av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform + av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform + av1_lowbd_fwd_txfm2d_16x16_sse2, // 16x16 transform + av1_lowbd_fwd_txfm2d_32x32_sse2, // 32x32 transform + lowbd_fwd_txfm2d_64x64_sse4_1, // 64x64 transform + av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform + av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform + av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform + av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform + av1_lowbd_fwd_txfm2d_16x32_sse2, // 16x32 transform + av1_lowbd_fwd_txfm2d_32x16_sse2, // 32x16 transform + lowbd_fwd_txfm2d_32x64_sse4_1, // 32x64 transform + lowbd_fwd_txfm2d_64x32_sse4_1, // 64x32 transform + av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform + av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform + av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform + av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform + av1_lowbd_fwd_txfm2d_16x64_sse2, // 16x64 transform + av1_lowbd_fwd_txfm2d_64x16_sse2, // 64x16 transform +}; + +void av1_lowbd_fwd_txfm_sse4_1(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; + if ((fwd_txfm2d_func == NULL) || + (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) { + av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); + } else { + fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); + } +} diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm_avx2.h b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_avx2.h new file mode 100644 index 0000000000..38707137c4 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_avx2.h @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_AVX2_H_ +#define AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_AVX2_H_ +#include <immintrin.h> + +static INLINE __m256i av1_round_shift_32_avx2(__m256i vec, int bit) { + __m256i tmp, round; + round = _mm256_set1_epi32(1 << (bit - 1)); + tmp = _mm256_add_epi32(vec, round); + return _mm256_srai_epi32(tmp, bit); +} + +// out0 = in0*w0 + in1*w1 +// out1 = -in1*w0 + in0*w1 +static INLINE void btf_32_avx2_type0(const int32_t w0, const int32_t w1, + __m256i *in0, __m256i *in1, + const __m256i _r, const int32_t cos_bit) { + __m256i _in0 = *in0; + __m256i _in1 = *in1; + const __m256i ww0 = _mm256_set1_epi32(w0); + const __m256i ww1 = _mm256_set1_epi32(w1); + const __m256i in0_w0 = _mm256_mullo_epi32(_in0, ww0); + const __m256i in1_w1 = _mm256_mullo_epi32(_in1, ww1); + __m256i temp0 = _mm256_add_epi32(in0_w0, in1_w1); + temp0 = _mm256_add_epi32(temp0, _r); + *in0 = _mm256_srai_epi32(temp0, cos_bit); + const __m256i in0_w1 = _mm256_mullo_epi32(_in0, ww1); + const __m256i in1_w0 = _mm256_mullo_epi32(_in1, ww0); + __m256i temp1 = _mm256_sub_epi32(in0_w1, in1_w0); + temp1 = _mm256_add_epi32(temp1, _r); + *in1 = _mm256_srai_epi32(temp1, cos_bit); +} + +static INLINE void btf_32_avx2_type1(const int32_t w0, const int32_t w1, + __m256i *in0, __m256i *in1, + const __m256i _r, const int32_t cos_bit) { + __m256i _in0 = *in0; + __m256i _in1 = *in1; + const __m256i ww0 = _mm256_set1_epi32(w0); + const __m256i ww1 = _mm256_set1_epi32(w1); + const __m256i in0_w0 = _mm256_mullo_epi32(_in0, ww0); + const __m256i in1_w1 = _mm256_mullo_epi32(_in1, ww1); + __m256i temp0 = _mm256_add_epi32(in0_w0, in1_w1); + temp0 = _mm256_add_epi32(temp0, _r); + *in0 = _mm256_srai_epi32(temp0, cos_bit); + const __m256i in0_w1 = _mm256_mullo_epi32(_in0, ww1); + const __m256i in1_w0 = _mm256_mullo_epi32(_in1, ww0); + __m256i temp1 = _mm256_sub_epi32(in1_w0, in0_w1); + temp1 = _mm256_add_epi32(temp1, _r); + *in1 = _mm256_srai_epi32(temp1, cos_bit); +} + +// out0 = in0*w0 + in1*w1 +// out1 = -in1*w0 + in0*w1 +static INLINE void btf_32_avx2_type0_new(const __m256i ww0, const __m256i ww1, + __m256i *in0, __m256i *in1, + const __m256i _r, + const int32_t cos_bit) { + __m256i _in0 = *in0; + __m256i _in1 = *in1; + const __m256i in0_w0 = _mm256_mullo_epi32(_in0, ww0); + const __m256i in1_w1 = _mm256_mullo_epi32(_in1, ww1); + __m256i temp0 = _mm256_add_epi32(in0_w0, in1_w1); + temp0 = _mm256_add_epi32(temp0, _r); + *in0 = _mm256_srai_epi32(temp0, cos_bit); + const __m256i in0_w1 = _mm256_mullo_epi32(_in0, ww1); + const __m256i in1_w0 = _mm256_mullo_epi32(_in1, ww0); + __m256i temp1 = _mm256_sub_epi32(in0_w1, in1_w0); + temp1 = _mm256_add_epi32(temp1, _r); + *in1 = _mm256_srai_epi32(temp1, cos_bit); +} + +// out0 = in0*w0 + in1*w1 +// out1 = in1*w0 - in0*w1 +static INLINE void btf_32_avx2_type1_new(const __m256i ww0, const __m256i ww1, + __m256i *in0, __m256i *in1, + const __m256i _r, + const int32_t cos_bit) { + __m256i _in0 = *in0; + __m256i _in1 = *in1; + const __m256i in0_w0 = _mm256_mullo_epi32(_in0, ww0); + const __m256i in1_w1 = _mm256_mullo_epi32(_in1, ww1); + __m256i temp0 = _mm256_add_epi32(in0_w0, in1_w1); + temp0 = _mm256_add_epi32(temp0, _r); + *in0 = _mm256_srai_epi32(temp0, cos_bit); + const __m256i in0_w1 = _mm256_mullo_epi32(_in0, ww1); + const __m256i in1_w0 = _mm256_mullo_epi32(_in1, ww0); + __m256i temp1 = _mm256_sub_epi32(in1_w0, in0_w1); + temp1 = _mm256_add_epi32(temp1, _r); + *in1 = _mm256_srai_epi32(temp1, cos_bit); +} + +#endif // AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_AVX2_H_ diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c new file mode 100644 index 0000000000..6aae7ce1e4 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.c @@ -0,0 +1,2889 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include "av1/common/x86/av1_txfm_sse2.h" +#include "av1/encoder/av1_fwd_txfm1d_cfg.h" +#include "av1/encoder/x86/av1_fwd_txfm_sse2.h" + +// TODO(linfengz): refine fdct4x8 and fadst4x8 optimization (if possible). + +static void fdct4x4_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + const __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + const __m128i cospi_p16_p48 = pair_set_epi16(cospi[16], cospi[48]); + const __m128i cospi_p48_m16 = pair_set_epi16(cospi[48], -cospi[16]); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + __m128i u[4], v[4]; + + u[0] = _mm_unpacklo_epi16(input[0], input[1]); + u[1] = _mm_unpacklo_epi16(input[3], input[2]); + + v[0] = _mm_add_epi16(u[0], u[1]); + v[1] = _mm_sub_epi16(u[0], u[1]); + + u[0] = _mm_madd_epi16(v[0], cospi_p32_p32); // 0 + u[1] = _mm_madd_epi16(v[0], cospi_p32_m32); // 2 + u[2] = _mm_madd_epi16(v[1], cospi_p16_p48); // 1 + u[3] = _mm_madd_epi16(v[1], cospi_p48_m16); // 3 + + v[0] = _mm_add_epi32(u[0], __rounding); + v[1] = _mm_add_epi32(u[1], __rounding); + v[2] = _mm_add_epi32(u[2], __rounding); + v[3] = _mm_add_epi32(u[3], __rounding); + u[0] = _mm_srai_epi32(v[0], cos_bit); + u[1] = _mm_srai_epi32(v[1], cos_bit); + u[2] = _mm_srai_epi32(v[2], cos_bit); + u[3] = _mm_srai_epi32(v[3], cos_bit); + + output[0] = _mm_packs_epi32(u[0], u[1]); + output[1] = _mm_packs_epi32(u[2], u[3]); + output[2] = _mm_srli_si128(output[0], 8); + output[3] = _mm_srli_si128(output[1], 8); +} + +static void fdct8x4_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + + // stage 1 + __m128i x1[4]; + x1[0] = _mm_adds_epi16(input[0], input[3]); + x1[3] = _mm_subs_epi16(input[0], input[3]); + x1[1] = _mm_adds_epi16(input[1], input[2]); + x1[2] = _mm_subs_epi16(input[1], input[2]); + + // stage 2 + __m128i x2[4]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[0], x1[1], x2[0], x2[1]); + btf_16_sse2(cospi_p48_p16, cospi_m16_p48, x1[2], x1[3], x2[2], x2[3]); + + // stage 3 + output[0] = x2[0]; + output[1] = x2[2]; + output[2] = x2[1]; + output[3] = x2[3]; +} + +static void fdct4x8_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]); + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]); + __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]); + __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]); + __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]); + + // stage 1 + __m128i x1[8]; + x1[0] = _mm_adds_epi16(input[0], input[7]); + x1[7] = _mm_subs_epi16(input[0], input[7]); + x1[1] = _mm_adds_epi16(input[1], input[6]); + x1[6] = _mm_subs_epi16(input[1], input[6]); + x1[2] = _mm_adds_epi16(input[2], input[5]); + x1[5] = _mm_subs_epi16(input[2], input[5]); + x1[3] = _mm_adds_epi16(input[3], input[4]); + x1[4] = _mm_subs_epi16(input[3], input[4]); + + // stage 2 + __m128i x2[8]; + x2[0] = _mm_adds_epi16(x1[0], x1[3]); + x2[3] = _mm_subs_epi16(x1[0], x1[3]); + x2[1] = _mm_adds_epi16(x1[1], x1[2]); + x2[2] = _mm_subs_epi16(x1[1], x1[2]); + x2[4] = x1[4]; + btf_16_w4_sse2(&cospi_m32_p32, &cospi_p32_p32, __rounding, cos_bit, &x1[5], + &x1[6], &x2[5], &x2[6]); + x2[7] = x1[7]; + + // stage 3 + __m128i x3[8]; + btf_16_w4_sse2(&cospi_p32_p32, &cospi_p32_m32, __rounding, cos_bit, &x2[0], + &x2[1], &x3[0], &x3[1]); + btf_16_w4_sse2(&cospi_p48_p16, &cospi_m16_p48, __rounding, cos_bit, &x2[2], + &x2[3], &x3[2], &x3[3]); + x3[4] = _mm_adds_epi16(x2[4], x2[5]); + x3[5] = _mm_subs_epi16(x2[4], x2[5]); + x3[6] = _mm_subs_epi16(x2[7], x2[6]); + x3[7] = _mm_adds_epi16(x2[7], x2[6]); + + // stage 4 + __m128i x4[8]; + x4[0] = x3[0]; + x4[1] = x3[1]; + x4[2] = x3[2]; + x4[3] = x3[3]; + btf_16_w4_sse2(&cospi_p56_p08, &cospi_m08_p56, __rounding, cos_bit, &x3[4], + &x3[7], &x4[4], &x4[7]); + btf_16_w4_sse2(&cospi_p24_p40, &cospi_m40_p24, __rounding, cos_bit, &x3[5], + &x3[6], &x4[5], &x4[6]); + + // stage 5 + output[0] = x4[0]; + output[1] = x4[4]; + output[2] = x4[2]; + output[3] = x4[6]; + output[4] = x4[1]; + output[5] = x4[5]; + output[6] = x4[3]; + output[7] = x4[7]; +} + +static void fdct8x8_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]); + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]); + __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]); + __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]); + __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]); + + // stage 1 + __m128i x1[8]; + x1[0] = _mm_adds_epi16(input[0], input[7]); + x1[7] = _mm_subs_epi16(input[0], input[7]); + x1[1] = _mm_adds_epi16(input[1], input[6]); + x1[6] = _mm_subs_epi16(input[1], input[6]); + x1[2] = _mm_adds_epi16(input[2], input[5]); + x1[5] = _mm_subs_epi16(input[2], input[5]); + x1[3] = _mm_adds_epi16(input[3], input[4]); + x1[4] = _mm_subs_epi16(input[3], input[4]); + + // stage 2 + __m128i x2[8]; + x2[0] = _mm_adds_epi16(x1[0], x1[3]); + x2[3] = _mm_subs_epi16(x1[0], x1[3]); + x2[1] = _mm_adds_epi16(x1[1], x1[2]); + x2[2] = _mm_subs_epi16(x1[1], x1[2]); + x2[4] = x1[4]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[5], x1[6], x2[5], x2[6]); + x2[7] = x1[7]; + + // stage 3 + __m128i x3[8]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x2[0], x2[1], x3[0], x3[1]); + btf_16_sse2(cospi_p48_p16, cospi_m16_p48, x2[2], x2[3], x3[2], x3[3]); + x3[4] = _mm_adds_epi16(x2[4], x2[5]); + x3[5] = _mm_subs_epi16(x2[4], x2[5]); + x3[6] = _mm_subs_epi16(x2[7], x2[6]); + x3[7] = _mm_adds_epi16(x2[7], x2[6]); + + // stage 4 + __m128i x4[8]; + x4[0] = x3[0]; + x4[1] = x3[1]; + x4[2] = x3[2]; + x4[3] = x3[3]; + btf_16_sse2(cospi_p56_p08, cospi_m08_p56, x3[4], x3[7], x4[4], x4[7]); + btf_16_sse2(cospi_p24_p40, cospi_m40_p24, x3[5], x3[6], x4[5], x4[6]); + + // stage 5 + output[0] = x4[0]; + output[1] = x4[4]; + output[2] = x4[2]; + output[3] = x4[6]; + output[4] = x4[1]; + output[5] = x4[5]; + output[6] = x4[3]; + output[7] = x4[7]; +} + +static void fdct8x16_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]); + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + __m128i cospi_m48_m16 = pair_set_epi16(-cospi[48], -cospi[16]); + __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]); + __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]); + __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]); + __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]); + __m128i cospi_p60_p04 = pair_set_epi16(cospi[60], cospi[4]); + __m128i cospi_m04_p60 = pair_set_epi16(-cospi[4], cospi[60]); + __m128i cospi_p28_p36 = pair_set_epi16(cospi[28], cospi[36]); + __m128i cospi_m36_p28 = pair_set_epi16(-cospi[36], cospi[28]); + __m128i cospi_p44_p20 = pair_set_epi16(cospi[44], cospi[20]); + __m128i cospi_m20_p44 = pair_set_epi16(-cospi[20], cospi[44]); + __m128i cospi_p12_p52 = pair_set_epi16(cospi[12], cospi[52]); + __m128i cospi_m52_p12 = pair_set_epi16(-cospi[52], cospi[12]); + + // stage 1 + __m128i x1[16]; + x1[0] = _mm_adds_epi16(input[0], input[15]); + x1[15] = _mm_subs_epi16(input[0], input[15]); + x1[1] = _mm_adds_epi16(input[1], input[14]); + x1[14] = _mm_subs_epi16(input[1], input[14]); + x1[2] = _mm_adds_epi16(input[2], input[13]); + x1[13] = _mm_subs_epi16(input[2], input[13]); + x1[3] = _mm_adds_epi16(input[3], input[12]); + x1[12] = _mm_subs_epi16(input[3], input[12]); + x1[4] = _mm_adds_epi16(input[4], input[11]); + x1[11] = _mm_subs_epi16(input[4], input[11]); + x1[5] = _mm_adds_epi16(input[5], input[10]); + x1[10] = _mm_subs_epi16(input[5], input[10]); + x1[6] = _mm_adds_epi16(input[6], input[9]); + x1[9] = _mm_subs_epi16(input[6], input[9]); + x1[7] = _mm_adds_epi16(input[7], input[8]); + x1[8] = _mm_subs_epi16(input[7], input[8]); + + // stage 2 + __m128i x2[16]; + x2[0] = _mm_adds_epi16(x1[0], x1[7]); + x2[7] = _mm_subs_epi16(x1[0], x1[7]); + x2[1] = _mm_adds_epi16(x1[1], x1[6]); + x2[6] = _mm_subs_epi16(x1[1], x1[6]); + x2[2] = _mm_adds_epi16(x1[2], x1[5]); + x2[5] = _mm_subs_epi16(x1[2], x1[5]); + x2[3] = _mm_adds_epi16(x1[3], x1[4]); + x2[4] = _mm_subs_epi16(x1[3], x1[4]); + x2[8] = x1[8]; + x2[9] = x1[9]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[10], x1[13], x2[10], x2[13]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[11], x1[12], x2[11], x2[12]); + x2[14] = x1[14]; + x2[15] = x1[15]; + + // stage 3 + __m128i x3[16]; + x3[0] = _mm_adds_epi16(x2[0], x2[3]); + x3[3] = _mm_subs_epi16(x2[0], x2[3]); + x3[1] = _mm_adds_epi16(x2[1], x2[2]); + x3[2] = _mm_subs_epi16(x2[1], x2[2]); + x3[4] = x2[4]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[5], x2[6], x3[5], x3[6]); + x3[7] = x2[7]; + x3[8] = _mm_adds_epi16(x2[8], x2[11]); + x3[11] = _mm_subs_epi16(x2[8], x2[11]); + x3[9] = _mm_adds_epi16(x2[9], x2[10]); + x3[10] = _mm_subs_epi16(x2[9], x2[10]); + x3[12] = _mm_subs_epi16(x2[15], x2[12]); + x3[15] = _mm_adds_epi16(x2[15], x2[12]); + x3[13] = _mm_subs_epi16(x2[14], x2[13]); + x3[14] = _mm_adds_epi16(x2[14], x2[13]); + + // stage 4 + __m128i x4[16]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x3[0], x3[1], x4[0], x4[1]); + btf_16_sse2(cospi_p48_p16, cospi_m16_p48, x3[2], x3[3], x4[2], x4[3]); + x4[4] = _mm_adds_epi16(x3[4], x3[5]); + x4[5] = _mm_subs_epi16(x3[4], x3[5]); + x4[6] = _mm_subs_epi16(x3[7], x3[6]); + x4[7] = _mm_adds_epi16(x3[7], x3[6]); + x4[8] = x3[8]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[9], x3[14], x4[9], x4[14]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[10], x3[13], x4[10], x4[13]); + x4[11] = x3[11]; + x4[12] = x3[12]; + x4[15] = x3[15]; + + // stage 5 + __m128i x5[16]; + x5[0] = x4[0]; + x5[1] = x4[1]; + x5[2] = x4[2]; + x5[3] = x4[3]; + btf_16_sse2(cospi_p56_p08, cospi_m08_p56, x4[4], x4[7], x5[4], x5[7]); + btf_16_sse2(cospi_p24_p40, cospi_m40_p24, x4[5], x4[6], x5[5], x5[6]); + x5[8] = _mm_adds_epi16(x4[8], x4[9]); + x5[9] = _mm_subs_epi16(x4[8], x4[9]); + x5[10] = _mm_subs_epi16(x4[11], x4[10]); + x5[11] = _mm_adds_epi16(x4[11], x4[10]); + x5[12] = _mm_adds_epi16(x4[12], x4[13]); + x5[13] = _mm_subs_epi16(x4[12], x4[13]); + x5[14] = _mm_subs_epi16(x4[15], x4[14]); + x5[15] = _mm_adds_epi16(x4[15], x4[14]); + + // stage 6 + __m128i x6[16]; + x6[0] = x5[0]; + x6[1] = x5[1]; + x6[2] = x5[2]; + x6[3] = x5[3]; + x6[4] = x5[4]; + x6[5] = x5[5]; + x6[6] = x5[6]; + x6[7] = x5[7]; + btf_16_sse2(cospi_p60_p04, cospi_m04_p60, x5[8], x5[15], x6[8], x6[15]); + btf_16_sse2(cospi_p28_p36, cospi_m36_p28, x5[9], x5[14], x6[9], x6[14]); + btf_16_sse2(cospi_p44_p20, cospi_m20_p44, x5[10], x5[13], x6[10], x6[13]); + btf_16_sse2(cospi_p12_p52, cospi_m52_p12, x5[11], x5[12], x6[11], x6[12]); + + // stage 7 + output[0] = x6[0]; + output[1] = x6[8]; + output[2] = x6[4]; + output[3] = x6[12]; + output[4] = x6[2]; + output[5] = x6[10]; + output[6] = x6[6]; + output[7] = x6[14]; + output[8] = x6[1]; + output[9] = x6[9]; + output[10] = x6[5]; + output[11] = x6[13]; + output[12] = x6[3]; + output[13] = x6[11]; + output[14] = x6[7]; + output[15] = x6[15]; +} + +void fdct8x32_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]); + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m48_m16 = pair_set_epi16(-cospi[48], -cospi[16]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]); + __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]); + __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]); + __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]); + __m128i cospi_m56_m08 = pair_set_epi16(-cospi[56], -cospi[8]); + __m128i cospi_m24_m40 = pair_set_epi16(-cospi[24], -cospi[40]); + __m128i cospi_p60_p04 = pair_set_epi16(cospi[60], cospi[4]); + __m128i cospi_m04_p60 = pair_set_epi16(-cospi[4], cospi[60]); + __m128i cospi_p28_p36 = pair_set_epi16(cospi[28], cospi[36]); + __m128i cospi_m36_p28 = pair_set_epi16(-cospi[36], cospi[28]); + __m128i cospi_p44_p20 = pair_set_epi16(cospi[44], cospi[20]); + __m128i cospi_m20_p44 = pair_set_epi16(-cospi[20], cospi[44]); + __m128i cospi_p12_p52 = pair_set_epi16(cospi[12], cospi[52]); + __m128i cospi_m52_p12 = pair_set_epi16(-cospi[52], cospi[12]); + __m128i cospi_p62_p02 = pair_set_epi16(cospi[62], cospi[2]); + __m128i cospi_m02_p62 = pair_set_epi16(-cospi[2], cospi[62]); + __m128i cospi_p30_p34 = pair_set_epi16(cospi[30], cospi[34]); + __m128i cospi_m34_p30 = pair_set_epi16(-cospi[34], cospi[30]); + __m128i cospi_p46_p18 = pair_set_epi16(cospi[46], cospi[18]); + __m128i cospi_m18_p46 = pair_set_epi16(-cospi[18], cospi[46]); + __m128i cospi_p14_p50 = pair_set_epi16(cospi[14], cospi[50]); + __m128i cospi_m50_p14 = pair_set_epi16(-cospi[50], cospi[14]); + __m128i cospi_p54_p10 = pair_set_epi16(cospi[54], cospi[10]); + __m128i cospi_m10_p54 = pair_set_epi16(-cospi[10], cospi[54]); + __m128i cospi_p22_p42 = pair_set_epi16(cospi[22], cospi[42]); + __m128i cospi_m42_p22 = pair_set_epi16(-cospi[42], cospi[22]); + __m128i cospi_p38_p26 = pair_set_epi16(cospi[38], cospi[26]); + __m128i cospi_m26_p38 = pair_set_epi16(-cospi[26], cospi[38]); + __m128i cospi_p06_p58 = pair_set_epi16(cospi[6], cospi[58]); + __m128i cospi_m58_p06 = pair_set_epi16(-cospi[58], cospi[6]); + + // stage 1 + __m128i x1[32]; + x1[0] = _mm_adds_epi16(input[0], input[31]); + x1[31] = _mm_subs_epi16(input[0], input[31]); + x1[1] = _mm_adds_epi16(input[1], input[30]); + x1[30] = _mm_subs_epi16(input[1], input[30]); + x1[2] = _mm_adds_epi16(input[2], input[29]); + x1[29] = _mm_subs_epi16(input[2], input[29]); + x1[3] = _mm_adds_epi16(input[3], input[28]); + x1[28] = _mm_subs_epi16(input[3], input[28]); + x1[4] = _mm_adds_epi16(input[4], input[27]); + x1[27] = _mm_subs_epi16(input[4], input[27]); + x1[5] = _mm_adds_epi16(input[5], input[26]); + x1[26] = _mm_subs_epi16(input[5], input[26]); + x1[6] = _mm_adds_epi16(input[6], input[25]); + x1[25] = _mm_subs_epi16(input[6], input[25]); + x1[7] = _mm_adds_epi16(input[7], input[24]); + x1[24] = _mm_subs_epi16(input[7], input[24]); + x1[8] = _mm_adds_epi16(input[8], input[23]); + x1[23] = _mm_subs_epi16(input[8], input[23]); + x1[9] = _mm_adds_epi16(input[9], input[22]); + x1[22] = _mm_subs_epi16(input[9], input[22]); + x1[10] = _mm_adds_epi16(input[10], input[21]); + x1[21] = _mm_subs_epi16(input[10], input[21]); + x1[11] = _mm_adds_epi16(input[11], input[20]); + x1[20] = _mm_subs_epi16(input[11], input[20]); + x1[12] = _mm_adds_epi16(input[12], input[19]); + x1[19] = _mm_subs_epi16(input[12], input[19]); + x1[13] = _mm_adds_epi16(input[13], input[18]); + x1[18] = _mm_subs_epi16(input[13], input[18]); + x1[14] = _mm_adds_epi16(input[14], input[17]); + x1[17] = _mm_subs_epi16(input[14], input[17]); + x1[15] = _mm_adds_epi16(input[15], input[16]); + x1[16] = _mm_subs_epi16(input[15], input[16]); + + // stage 2 + __m128i x2[32]; + x2[0] = _mm_adds_epi16(x1[0], x1[15]); + x2[15] = _mm_subs_epi16(x1[0], x1[15]); + x2[1] = _mm_adds_epi16(x1[1], x1[14]); + x2[14] = _mm_subs_epi16(x1[1], x1[14]); + x2[2] = _mm_adds_epi16(x1[2], x1[13]); + x2[13] = _mm_subs_epi16(x1[2], x1[13]); + x2[3] = _mm_adds_epi16(x1[3], x1[12]); + x2[12] = _mm_subs_epi16(x1[3], x1[12]); + x2[4] = _mm_adds_epi16(x1[4], x1[11]); + x2[11] = _mm_subs_epi16(x1[4], x1[11]); + x2[5] = _mm_adds_epi16(x1[5], x1[10]); + x2[10] = _mm_subs_epi16(x1[5], x1[10]); + x2[6] = _mm_adds_epi16(x1[6], x1[9]); + x2[9] = _mm_subs_epi16(x1[6], x1[9]); + x2[7] = _mm_adds_epi16(x1[7], x1[8]); + x2[8] = _mm_subs_epi16(x1[7], x1[8]); + x2[16] = x1[16]; + x2[17] = x1[17]; + x2[18] = x1[18]; + x2[19] = x1[19]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[20], x1[27], x2[20], x2[27]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[21], x1[26], x2[21], x2[26]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[22], x1[25], x2[22], x2[25]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[23], x1[24], x2[23], x2[24]); + x2[28] = x1[28]; + x2[29] = x1[29]; + x2[30] = x1[30]; + x2[31] = x1[31]; + + // stage 3 + __m128i x3[32]; + x3[0] = _mm_adds_epi16(x2[0], x2[7]); + x3[7] = _mm_subs_epi16(x2[0], x2[7]); + x3[1] = _mm_adds_epi16(x2[1], x2[6]); + x3[6] = _mm_subs_epi16(x2[1], x2[6]); + x3[2] = _mm_adds_epi16(x2[2], x2[5]); + x3[5] = _mm_subs_epi16(x2[2], x2[5]); + x3[3] = _mm_adds_epi16(x2[3], x2[4]); + x3[4] = _mm_subs_epi16(x2[3], x2[4]); + x3[8] = x2[8]; + x3[9] = x2[9]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[10], x2[13], x3[10], x3[13]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[11], x2[12], x3[11], x3[12]); + x3[14] = x2[14]; + x3[15] = x2[15]; + x3[16] = _mm_adds_epi16(x2[16], x2[23]); + x3[23] = _mm_subs_epi16(x2[16], x2[23]); + x3[17] = _mm_adds_epi16(x2[17], x2[22]); + x3[22] = _mm_subs_epi16(x2[17], x2[22]); + x3[18] = _mm_adds_epi16(x2[18], x2[21]); + x3[21] = _mm_subs_epi16(x2[18], x2[21]); + x3[19] = _mm_adds_epi16(x2[19], x2[20]); + x3[20] = _mm_subs_epi16(x2[19], x2[20]); + x3[24] = _mm_subs_epi16(x2[31], x2[24]); + x3[31] = _mm_adds_epi16(x2[31], x2[24]); + x3[25] = _mm_subs_epi16(x2[30], x2[25]); + x3[30] = _mm_adds_epi16(x2[30], x2[25]); + x3[26] = _mm_subs_epi16(x2[29], x2[26]); + x3[29] = _mm_adds_epi16(x2[29], x2[26]); + x3[27] = _mm_subs_epi16(x2[28], x2[27]); + x3[28] = _mm_adds_epi16(x2[28], x2[27]); + + // stage 4 + __m128i x4[32]; + x4[0] = _mm_adds_epi16(x3[0], x3[3]); + x4[3] = _mm_subs_epi16(x3[0], x3[3]); + x4[1] = _mm_adds_epi16(x3[1], x3[2]); + x4[2] = _mm_subs_epi16(x3[1], x3[2]); + x4[4] = x3[4]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x3[5], x3[6], x4[5], x4[6]); + x4[7] = x3[7]; + x4[8] = _mm_adds_epi16(x3[8], x3[11]); + x4[11] = _mm_subs_epi16(x3[8], x3[11]); + x4[9] = _mm_adds_epi16(x3[9], x3[10]); + x4[10] = _mm_subs_epi16(x3[9], x3[10]); + x4[12] = _mm_subs_epi16(x3[15], x3[12]); + x4[15] = _mm_adds_epi16(x3[15], x3[12]); + x4[13] = _mm_subs_epi16(x3[14], x3[13]); + x4[14] = _mm_adds_epi16(x3[14], x3[13]); + x4[16] = x3[16]; + x4[17] = x3[17]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[18], x3[29], x4[18], x4[29]); + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[19], x3[28], x4[19], x4[28]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[20], x3[27], x4[20], x4[27]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[21], x3[26], x4[21], x4[26]); + x4[22] = x3[22]; + x4[23] = x3[23]; + x4[24] = x3[24]; + x4[25] = x3[25]; + x4[30] = x3[30]; + x4[31] = x3[31]; + + // stage 5 + __m128i x5[32]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x4[0], x4[1], x5[0], x5[1]); + btf_16_sse2(cospi_p48_p16, cospi_m16_p48, x4[2], x4[3], x5[2], x5[3]); + x5[4] = _mm_adds_epi16(x4[4], x4[5]); + x5[5] = _mm_subs_epi16(x4[4], x4[5]); + x5[6] = _mm_subs_epi16(x4[7], x4[6]); + x5[7] = _mm_adds_epi16(x4[7], x4[6]); + x5[8] = x4[8]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x4[9], x4[14], x5[9], x5[14]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x4[10], x4[13], x5[10], x5[13]); + x5[11] = x4[11]; + x5[12] = x4[12]; + x5[15] = x4[15]; + x5[16] = _mm_adds_epi16(x4[16], x4[19]); + x5[19] = _mm_subs_epi16(x4[16], x4[19]); + x5[17] = _mm_adds_epi16(x4[17], x4[18]); + x5[18] = _mm_subs_epi16(x4[17], x4[18]); + x5[20] = _mm_subs_epi16(x4[23], x4[20]); + x5[23] = _mm_adds_epi16(x4[23], x4[20]); + x5[21] = _mm_subs_epi16(x4[22], x4[21]); + x5[22] = _mm_adds_epi16(x4[22], x4[21]); + x5[24] = _mm_adds_epi16(x4[24], x4[27]); + x5[27] = _mm_subs_epi16(x4[24], x4[27]); + x5[25] = _mm_adds_epi16(x4[25], x4[26]); + x5[26] = _mm_subs_epi16(x4[25], x4[26]); + x5[28] = _mm_subs_epi16(x4[31], x4[28]); + x5[31] = _mm_adds_epi16(x4[31], x4[28]); + x5[29] = _mm_subs_epi16(x4[30], x4[29]); + x5[30] = _mm_adds_epi16(x4[30], x4[29]); + + // stage 6 + __m128i x6[32]; + x6[0] = x5[0]; + x6[1] = x5[1]; + x6[2] = x5[2]; + x6[3] = x5[3]; + btf_16_sse2(cospi_p56_p08, cospi_m08_p56, x5[4], x5[7], x6[4], x6[7]); + btf_16_sse2(cospi_p24_p40, cospi_m40_p24, x5[5], x5[6], x6[5], x6[6]); + x6[8] = _mm_adds_epi16(x5[8], x5[9]); + x6[9] = _mm_subs_epi16(x5[8], x5[9]); + x6[10] = _mm_subs_epi16(x5[11], x5[10]); + x6[11] = _mm_adds_epi16(x5[11], x5[10]); + x6[12] = _mm_adds_epi16(x5[12], x5[13]); + x6[13] = _mm_subs_epi16(x5[12], x5[13]); + x6[14] = _mm_subs_epi16(x5[15], x5[14]); + x6[15] = _mm_adds_epi16(x5[15], x5[14]); + x6[16] = x5[16]; + btf_16_sse2(cospi_m08_p56, cospi_p56_p08, x5[17], x5[30], x6[17], x6[30]); + btf_16_sse2(cospi_m56_m08, cospi_m08_p56, x5[18], x5[29], x6[18], x6[29]); + x6[19] = x5[19]; + x6[20] = x5[20]; + btf_16_sse2(cospi_m40_p24, cospi_p24_p40, x5[21], x5[26], x6[21], x6[26]); + btf_16_sse2(cospi_m24_m40, cospi_m40_p24, x5[22], x5[25], x6[22], x6[25]); + x6[23] = x5[23]; + x6[24] = x5[24]; + x6[27] = x5[27]; + x6[28] = x5[28]; + x6[31] = x5[31]; + + // stage 7 + __m128i x7[32]; + x7[0] = x6[0]; + x7[1] = x6[1]; + x7[2] = x6[2]; + x7[3] = x6[3]; + x7[4] = x6[4]; + x7[5] = x6[5]; + x7[6] = x6[6]; + x7[7] = x6[7]; + btf_16_sse2(cospi_p60_p04, cospi_m04_p60, x6[8], x6[15], x7[8], x7[15]); + btf_16_sse2(cospi_p28_p36, cospi_m36_p28, x6[9], x6[14], x7[9], x7[14]); + btf_16_sse2(cospi_p44_p20, cospi_m20_p44, x6[10], x6[13], x7[10], x7[13]); + btf_16_sse2(cospi_p12_p52, cospi_m52_p12, x6[11], x6[12], x7[11], x7[12]); + x7[16] = _mm_adds_epi16(x6[16], x6[17]); + x7[17] = _mm_subs_epi16(x6[16], x6[17]); + x7[18] = _mm_subs_epi16(x6[19], x6[18]); + x7[19] = _mm_adds_epi16(x6[19], x6[18]); + x7[20] = _mm_adds_epi16(x6[20], x6[21]); + x7[21] = _mm_subs_epi16(x6[20], x6[21]); + x7[22] = _mm_subs_epi16(x6[23], x6[22]); + x7[23] = _mm_adds_epi16(x6[23], x6[22]); + x7[24] = _mm_adds_epi16(x6[24], x6[25]); + x7[25] = _mm_subs_epi16(x6[24], x6[25]); + x7[26] = _mm_subs_epi16(x6[27], x6[26]); + x7[27] = _mm_adds_epi16(x6[27], x6[26]); + x7[28] = _mm_adds_epi16(x6[28], x6[29]); + x7[29] = _mm_subs_epi16(x6[28], x6[29]); + x7[30] = _mm_subs_epi16(x6[31], x6[30]); + x7[31] = _mm_adds_epi16(x6[31], x6[30]); + + // stage 8 + __m128i x8[32]; + x8[0] = x7[0]; + x8[1] = x7[1]; + x8[2] = x7[2]; + x8[3] = x7[3]; + x8[4] = x7[4]; + x8[5] = x7[5]; + x8[6] = x7[6]; + x8[7] = x7[7]; + x8[8] = x7[8]; + x8[9] = x7[9]; + x8[10] = x7[10]; + x8[11] = x7[11]; + x8[12] = x7[12]; + x8[13] = x7[13]; + x8[14] = x7[14]; + x8[15] = x7[15]; + btf_16_sse2(cospi_p62_p02, cospi_m02_p62, x7[16], x7[31], x8[16], x8[31]); + btf_16_sse2(cospi_p30_p34, cospi_m34_p30, x7[17], x7[30], x8[17], x8[30]); + btf_16_sse2(cospi_p46_p18, cospi_m18_p46, x7[18], x7[29], x8[18], x8[29]); + btf_16_sse2(cospi_p14_p50, cospi_m50_p14, x7[19], x7[28], x8[19], x8[28]); + btf_16_sse2(cospi_p54_p10, cospi_m10_p54, x7[20], x7[27], x8[20], x8[27]); + btf_16_sse2(cospi_p22_p42, cospi_m42_p22, x7[21], x7[26], x8[21], x8[26]); + btf_16_sse2(cospi_p38_p26, cospi_m26_p38, x7[22], x7[25], x8[22], x8[25]); + btf_16_sse2(cospi_p06_p58, cospi_m58_p06, x7[23], x7[24], x8[23], x8[24]); + + // stage 9 + output[0] = x8[0]; + output[1] = x8[16]; + output[2] = x8[8]; + output[3] = x8[24]; + output[4] = x8[4]; + output[5] = x8[20]; + output[6] = x8[12]; + output[7] = x8[28]; + output[8] = x8[2]; + output[9] = x8[18]; + output[10] = x8[10]; + output[11] = x8[26]; + output[12] = x8[6]; + output[13] = x8[22]; + output[14] = x8[14]; + output[15] = x8[30]; + output[16] = x8[1]; + output[17] = x8[17]; + output[18] = x8[9]; + output[19] = x8[25]; + output[20] = x8[5]; + output[21] = x8[21]; + output[22] = x8[13]; + output[23] = x8[29]; + output[24] = x8[3]; + output[25] = x8[19]; + output[26] = x8[11]; + output[27] = x8[27]; + output[28] = x8[7]; + output[29] = x8[23]; + output[30] = x8[15]; + output[31] = x8[31]; +} + +void fdct8x64_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_m32_p32 = pair_set_epi16(-cospi[32], cospi[32]); + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_m16_p48 = pair_set_epi16(-cospi[16], cospi[48]); + __m128i cospi_p48_p16 = pair_set_epi16(cospi[48], cospi[16]); + __m128i cospi_m48_m16 = pair_set_epi16(-cospi[48], -cospi[16]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_m08_p56 = pair_set_epi16(-cospi[8], cospi[56]); + __m128i cospi_p56_p08 = pair_set_epi16(cospi[56], cospi[8]); + __m128i cospi_m56_m08 = pair_set_epi16(-cospi[56], -cospi[8]); + __m128i cospi_m40_p24 = pair_set_epi16(-cospi[40], cospi[24]); + __m128i cospi_p24_p40 = pair_set_epi16(cospi[24], cospi[40]); + __m128i cospi_m24_m40 = pair_set_epi16(-cospi[24], -cospi[40]); + __m128i cospi_p60_p04 = pair_set_epi16(cospi[60], cospi[4]); + __m128i cospi_m04_p60 = pair_set_epi16(-cospi[4], cospi[60]); + __m128i cospi_p28_p36 = pair_set_epi16(cospi[28], cospi[36]); + __m128i cospi_m36_p28 = pair_set_epi16(-cospi[36], cospi[28]); + __m128i cospi_p44_p20 = pair_set_epi16(cospi[44], cospi[20]); + __m128i cospi_m20_p44 = pair_set_epi16(-cospi[20], cospi[44]); + __m128i cospi_p12_p52 = pair_set_epi16(cospi[12], cospi[52]); + __m128i cospi_m52_p12 = pair_set_epi16(-cospi[52], cospi[12]); + __m128i cospi_m60_m04 = pair_set_epi16(-cospi[60], -cospi[4]); + __m128i cospi_m28_m36 = pair_set_epi16(-cospi[28], -cospi[36]); + __m128i cospi_m44_m20 = pair_set_epi16(-cospi[44], -cospi[20]); + __m128i cospi_m12_m52 = pair_set_epi16(-cospi[12], -cospi[52]); + __m128i cospi_p62_p02 = pair_set_epi16(cospi[62], cospi[2]); + __m128i cospi_m02_p62 = pair_set_epi16(-cospi[2], cospi[62]); + __m128i cospi_p30_p34 = pair_set_epi16(cospi[30], cospi[34]); + __m128i cospi_m34_p30 = pair_set_epi16(-cospi[34], cospi[30]); + __m128i cospi_p46_p18 = pair_set_epi16(cospi[46], cospi[18]); + __m128i cospi_m18_p46 = pair_set_epi16(-cospi[18], cospi[46]); + __m128i cospi_p14_p50 = pair_set_epi16(cospi[14], cospi[50]); + __m128i cospi_m50_p14 = pair_set_epi16(-cospi[50], cospi[14]); + __m128i cospi_p54_p10 = pair_set_epi16(cospi[54], cospi[10]); + __m128i cospi_m10_p54 = pair_set_epi16(-cospi[10], cospi[54]); + __m128i cospi_p22_p42 = pair_set_epi16(cospi[22], cospi[42]); + __m128i cospi_m42_p22 = pair_set_epi16(-cospi[42], cospi[22]); + __m128i cospi_p38_p26 = pair_set_epi16(cospi[38], cospi[26]); + __m128i cospi_m26_p38 = pair_set_epi16(-cospi[26], cospi[38]); + __m128i cospi_p06_p58 = pair_set_epi16(cospi[6], cospi[58]); + __m128i cospi_m58_p06 = pair_set_epi16(-cospi[58], cospi[6]); + __m128i cospi_p63_p01 = pair_set_epi16(cospi[63], cospi[1]); + __m128i cospi_m01_p63 = pair_set_epi16(-cospi[1], cospi[63]); + __m128i cospi_p31_p33 = pair_set_epi16(cospi[31], cospi[33]); + __m128i cospi_m33_p31 = pair_set_epi16(-cospi[33], cospi[31]); + __m128i cospi_p47_p17 = pair_set_epi16(cospi[47], cospi[17]); + __m128i cospi_m17_p47 = pair_set_epi16(-cospi[17], cospi[47]); + __m128i cospi_p15_p49 = pair_set_epi16(cospi[15], cospi[49]); + __m128i cospi_m49_p15 = pair_set_epi16(-cospi[49], cospi[15]); + __m128i cospi_p55_p09 = pair_set_epi16(cospi[55], cospi[9]); + __m128i cospi_m09_p55 = pair_set_epi16(-cospi[9], cospi[55]); + __m128i cospi_p23_p41 = pair_set_epi16(cospi[23], cospi[41]); + __m128i cospi_m41_p23 = pair_set_epi16(-cospi[41], cospi[23]); + __m128i cospi_p39_p25 = pair_set_epi16(cospi[39], cospi[25]); + __m128i cospi_m25_p39 = pair_set_epi16(-cospi[25], cospi[39]); + __m128i cospi_p07_p57 = pair_set_epi16(cospi[7], cospi[57]); + __m128i cospi_m57_p07 = pair_set_epi16(-cospi[57], cospi[7]); + __m128i cospi_p59_p05 = pair_set_epi16(cospi[59], cospi[5]); + __m128i cospi_m05_p59 = pair_set_epi16(-cospi[5], cospi[59]); + __m128i cospi_p27_p37 = pair_set_epi16(cospi[27], cospi[37]); + __m128i cospi_m37_p27 = pair_set_epi16(-cospi[37], cospi[27]); + __m128i cospi_p43_p21 = pair_set_epi16(cospi[43], cospi[21]); + __m128i cospi_m21_p43 = pair_set_epi16(-cospi[21], cospi[43]); + __m128i cospi_p11_p53 = pair_set_epi16(cospi[11], cospi[53]); + __m128i cospi_m53_p11 = pair_set_epi16(-cospi[53], cospi[11]); + __m128i cospi_p51_p13 = pair_set_epi16(cospi[51], cospi[13]); + __m128i cospi_m13_p51 = pair_set_epi16(-cospi[13], cospi[51]); + __m128i cospi_p19_p45 = pair_set_epi16(cospi[19], cospi[45]); + __m128i cospi_m45_p19 = pair_set_epi16(-cospi[45], cospi[19]); + __m128i cospi_p35_p29 = pair_set_epi16(cospi[35], cospi[29]); + __m128i cospi_m29_p35 = pair_set_epi16(-cospi[29], cospi[35]); + __m128i cospi_p03_p61 = pair_set_epi16(cospi[3], cospi[61]); + __m128i cospi_m61_p03 = pair_set_epi16(-cospi[61], cospi[3]); + + // stage 1 + __m128i x1[64]; + x1[0] = _mm_adds_epi16(input[0], input[63]); + x1[63] = _mm_subs_epi16(input[0], input[63]); + x1[1] = _mm_adds_epi16(input[1], input[62]); + x1[62] = _mm_subs_epi16(input[1], input[62]); + x1[2] = _mm_adds_epi16(input[2], input[61]); + x1[61] = _mm_subs_epi16(input[2], input[61]); + x1[3] = _mm_adds_epi16(input[3], input[60]); + x1[60] = _mm_subs_epi16(input[3], input[60]); + x1[4] = _mm_adds_epi16(input[4], input[59]); + x1[59] = _mm_subs_epi16(input[4], input[59]); + x1[5] = _mm_adds_epi16(input[5], input[58]); + x1[58] = _mm_subs_epi16(input[5], input[58]); + x1[6] = _mm_adds_epi16(input[6], input[57]); + x1[57] = _mm_subs_epi16(input[6], input[57]); + x1[7] = _mm_adds_epi16(input[7], input[56]); + x1[56] = _mm_subs_epi16(input[7], input[56]); + x1[8] = _mm_adds_epi16(input[8], input[55]); + x1[55] = _mm_subs_epi16(input[8], input[55]); + x1[9] = _mm_adds_epi16(input[9], input[54]); + x1[54] = _mm_subs_epi16(input[9], input[54]); + x1[10] = _mm_adds_epi16(input[10], input[53]); + x1[53] = _mm_subs_epi16(input[10], input[53]); + x1[11] = _mm_adds_epi16(input[11], input[52]); + x1[52] = _mm_subs_epi16(input[11], input[52]); + x1[12] = _mm_adds_epi16(input[12], input[51]); + x1[51] = _mm_subs_epi16(input[12], input[51]); + x1[13] = _mm_adds_epi16(input[13], input[50]); + x1[50] = _mm_subs_epi16(input[13], input[50]); + x1[14] = _mm_adds_epi16(input[14], input[49]); + x1[49] = _mm_subs_epi16(input[14], input[49]); + x1[15] = _mm_adds_epi16(input[15], input[48]); + x1[48] = _mm_subs_epi16(input[15], input[48]); + x1[16] = _mm_adds_epi16(input[16], input[47]); + x1[47] = _mm_subs_epi16(input[16], input[47]); + x1[17] = _mm_adds_epi16(input[17], input[46]); + x1[46] = _mm_subs_epi16(input[17], input[46]); + x1[18] = _mm_adds_epi16(input[18], input[45]); + x1[45] = _mm_subs_epi16(input[18], input[45]); + x1[19] = _mm_adds_epi16(input[19], input[44]); + x1[44] = _mm_subs_epi16(input[19], input[44]); + x1[20] = _mm_adds_epi16(input[20], input[43]); + x1[43] = _mm_subs_epi16(input[20], input[43]); + x1[21] = _mm_adds_epi16(input[21], input[42]); + x1[42] = _mm_subs_epi16(input[21], input[42]); + x1[22] = _mm_adds_epi16(input[22], input[41]); + x1[41] = _mm_subs_epi16(input[22], input[41]); + x1[23] = _mm_adds_epi16(input[23], input[40]); + x1[40] = _mm_subs_epi16(input[23], input[40]); + x1[24] = _mm_adds_epi16(input[24], input[39]); + x1[39] = _mm_subs_epi16(input[24], input[39]); + x1[25] = _mm_adds_epi16(input[25], input[38]); + x1[38] = _mm_subs_epi16(input[25], input[38]); + x1[26] = _mm_adds_epi16(input[26], input[37]); + x1[37] = _mm_subs_epi16(input[26], input[37]); + x1[27] = _mm_adds_epi16(input[27], input[36]); + x1[36] = _mm_subs_epi16(input[27], input[36]); + x1[28] = _mm_adds_epi16(input[28], input[35]); + x1[35] = _mm_subs_epi16(input[28], input[35]); + x1[29] = _mm_adds_epi16(input[29], input[34]); + x1[34] = _mm_subs_epi16(input[29], input[34]); + x1[30] = _mm_adds_epi16(input[30], input[33]); + x1[33] = _mm_subs_epi16(input[30], input[33]); + x1[31] = _mm_adds_epi16(input[31], input[32]); + x1[32] = _mm_subs_epi16(input[31], input[32]); + + // stage 2 + __m128i x2[64]; + x2[0] = _mm_adds_epi16(x1[0], x1[31]); + x2[31] = _mm_subs_epi16(x1[0], x1[31]); + x2[1] = _mm_adds_epi16(x1[1], x1[30]); + x2[30] = _mm_subs_epi16(x1[1], x1[30]); + x2[2] = _mm_adds_epi16(x1[2], x1[29]); + x2[29] = _mm_subs_epi16(x1[2], x1[29]); + x2[3] = _mm_adds_epi16(x1[3], x1[28]); + x2[28] = _mm_subs_epi16(x1[3], x1[28]); + x2[4] = _mm_adds_epi16(x1[4], x1[27]); + x2[27] = _mm_subs_epi16(x1[4], x1[27]); + x2[5] = _mm_adds_epi16(x1[5], x1[26]); + x2[26] = _mm_subs_epi16(x1[5], x1[26]); + x2[6] = _mm_adds_epi16(x1[6], x1[25]); + x2[25] = _mm_subs_epi16(x1[6], x1[25]); + x2[7] = _mm_adds_epi16(x1[7], x1[24]); + x2[24] = _mm_subs_epi16(x1[7], x1[24]); + x2[8] = _mm_adds_epi16(x1[8], x1[23]); + x2[23] = _mm_subs_epi16(x1[8], x1[23]); + x2[9] = _mm_adds_epi16(x1[9], x1[22]); + x2[22] = _mm_subs_epi16(x1[9], x1[22]); + x2[10] = _mm_adds_epi16(x1[10], x1[21]); + x2[21] = _mm_subs_epi16(x1[10], x1[21]); + x2[11] = _mm_adds_epi16(x1[11], x1[20]); + x2[20] = _mm_subs_epi16(x1[11], x1[20]); + x2[12] = _mm_adds_epi16(x1[12], x1[19]); + x2[19] = _mm_subs_epi16(x1[12], x1[19]); + x2[13] = _mm_adds_epi16(x1[13], x1[18]); + x2[18] = _mm_subs_epi16(x1[13], x1[18]); + x2[14] = _mm_adds_epi16(x1[14], x1[17]); + x2[17] = _mm_subs_epi16(x1[14], x1[17]); + x2[15] = _mm_adds_epi16(x1[15], x1[16]); + x2[16] = _mm_subs_epi16(x1[15], x1[16]); + x2[32] = x1[32]; + x2[33] = x1[33]; + x2[34] = x1[34]; + x2[35] = x1[35]; + x2[36] = x1[36]; + x2[37] = x1[37]; + x2[38] = x1[38]; + x2[39] = x1[39]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[40], x1[55], x2[40], x2[55]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[41], x1[54], x2[41], x2[54]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[42], x1[53], x2[42], x2[53]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[43], x1[52], x2[43], x2[52]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[44], x1[51], x2[44], x2[51]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[45], x1[50], x2[45], x2[50]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[46], x1[49], x2[46], x2[49]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x1[47], x1[48], x2[47], x2[48]); + x2[56] = x1[56]; + x2[57] = x1[57]; + x2[58] = x1[58]; + x2[59] = x1[59]; + x2[60] = x1[60]; + x2[61] = x1[61]; + x2[62] = x1[62]; + x2[63] = x1[63]; + + // stage 3 + __m128i x3[64]; + x3[0] = _mm_adds_epi16(x2[0], x2[15]); + x3[15] = _mm_subs_epi16(x2[0], x2[15]); + x3[1] = _mm_adds_epi16(x2[1], x2[14]); + x3[14] = _mm_subs_epi16(x2[1], x2[14]); + x3[2] = _mm_adds_epi16(x2[2], x2[13]); + x3[13] = _mm_subs_epi16(x2[2], x2[13]); + x3[3] = _mm_adds_epi16(x2[3], x2[12]); + x3[12] = _mm_subs_epi16(x2[3], x2[12]); + x3[4] = _mm_adds_epi16(x2[4], x2[11]); + x3[11] = _mm_subs_epi16(x2[4], x2[11]); + x3[5] = _mm_adds_epi16(x2[5], x2[10]); + x3[10] = _mm_subs_epi16(x2[5], x2[10]); + x3[6] = _mm_adds_epi16(x2[6], x2[9]); + x3[9] = _mm_subs_epi16(x2[6], x2[9]); + x3[7] = _mm_adds_epi16(x2[7], x2[8]); + x3[8] = _mm_subs_epi16(x2[7], x2[8]); + x3[16] = x2[16]; + x3[17] = x2[17]; + x3[18] = x2[18]; + x3[19] = x2[19]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[20], x2[27], x3[20], x3[27]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[21], x2[26], x3[21], x3[26]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[22], x2[25], x3[22], x3[25]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x2[23], x2[24], x3[23], x3[24]); + x3[28] = x2[28]; + x3[29] = x2[29]; + x3[30] = x2[30]; + x3[31] = x2[31]; + x3[32] = _mm_adds_epi16(x2[32], x2[47]); + x3[47] = _mm_subs_epi16(x2[32], x2[47]); + x3[33] = _mm_adds_epi16(x2[33], x2[46]); + x3[46] = _mm_subs_epi16(x2[33], x2[46]); + x3[34] = _mm_adds_epi16(x2[34], x2[45]); + x3[45] = _mm_subs_epi16(x2[34], x2[45]); + x3[35] = _mm_adds_epi16(x2[35], x2[44]); + x3[44] = _mm_subs_epi16(x2[35], x2[44]); + x3[36] = _mm_adds_epi16(x2[36], x2[43]); + x3[43] = _mm_subs_epi16(x2[36], x2[43]); + x3[37] = _mm_adds_epi16(x2[37], x2[42]); + x3[42] = _mm_subs_epi16(x2[37], x2[42]); + x3[38] = _mm_adds_epi16(x2[38], x2[41]); + x3[41] = _mm_subs_epi16(x2[38], x2[41]); + x3[39] = _mm_adds_epi16(x2[39], x2[40]); + x3[40] = _mm_subs_epi16(x2[39], x2[40]); + x3[48] = _mm_subs_epi16(x2[63], x2[48]); + x3[63] = _mm_adds_epi16(x2[63], x2[48]); + x3[49] = _mm_subs_epi16(x2[62], x2[49]); + x3[62] = _mm_adds_epi16(x2[62], x2[49]); + x3[50] = _mm_subs_epi16(x2[61], x2[50]); + x3[61] = _mm_adds_epi16(x2[61], x2[50]); + x3[51] = _mm_subs_epi16(x2[60], x2[51]); + x3[60] = _mm_adds_epi16(x2[60], x2[51]); + x3[52] = _mm_subs_epi16(x2[59], x2[52]); + x3[59] = _mm_adds_epi16(x2[59], x2[52]); + x3[53] = _mm_subs_epi16(x2[58], x2[53]); + x3[58] = _mm_adds_epi16(x2[58], x2[53]); + x3[54] = _mm_subs_epi16(x2[57], x2[54]); + x3[57] = _mm_adds_epi16(x2[57], x2[54]); + x3[55] = _mm_subs_epi16(x2[56], x2[55]); + x3[56] = _mm_adds_epi16(x2[56], x2[55]); + + // stage 4 + __m128i x4[64]; + x4[0] = _mm_adds_epi16(x3[0], x3[7]); + x4[7] = _mm_subs_epi16(x3[0], x3[7]); + x4[1] = _mm_adds_epi16(x3[1], x3[6]); + x4[6] = _mm_subs_epi16(x3[1], x3[6]); + x4[2] = _mm_adds_epi16(x3[2], x3[5]); + x4[5] = _mm_subs_epi16(x3[2], x3[5]); + x4[3] = _mm_adds_epi16(x3[3], x3[4]); + x4[4] = _mm_subs_epi16(x3[3], x3[4]); + x4[8] = x3[8]; + x4[9] = x3[9]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x3[10], x3[13], x4[10], x4[13]); + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x3[11], x3[12], x4[11], x4[12]); + x4[14] = x3[14]; + x4[15] = x3[15]; + x4[16] = _mm_adds_epi16(x3[16], x3[23]); + x4[23] = _mm_subs_epi16(x3[16], x3[23]); + x4[17] = _mm_adds_epi16(x3[17], x3[22]); + x4[22] = _mm_subs_epi16(x3[17], x3[22]); + x4[18] = _mm_adds_epi16(x3[18], x3[21]); + x4[21] = _mm_subs_epi16(x3[18], x3[21]); + x4[19] = _mm_adds_epi16(x3[19], x3[20]); + x4[20] = _mm_subs_epi16(x3[19], x3[20]); + x4[24] = _mm_subs_epi16(x3[31], x3[24]); + x4[31] = _mm_adds_epi16(x3[31], x3[24]); + x4[25] = _mm_subs_epi16(x3[30], x3[25]); + x4[30] = _mm_adds_epi16(x3[30], x3[25]); + x4[26] = _mm_subs_epi16(x3[29], x3[26]); + x4[29] = _mm_adds_epi16(x3[29], x3[26]); + x4[27] = _mm_subs_epi16(x3[28], x3[27]); + x4[28] = _mm_adds_epi16(x3[28], x3[27]); + x4[32] = x3[32]; + x4[33] = x3[33]; + x4[34] = x3[34]; + x4[35] = x3[35]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[36], x3[59], x4[36], x4[59]); + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[37], x3[58], x4[37], x4[58]); + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[38], x3[57], x4[38], x4[57]); + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x3[39], x3[56], x4[39], x4[56]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[40], x3[55], x4[40], x4[55]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[41], x3[54], x4[41], x4[54]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[42], x3[53], x4[42], x4[53]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x3[43], x3[52], x4[43], x4[52]); + x4[44] = x3[44]; + x4[45] = x3[45]; + x4[46] = x3[46]; + x4[47] = x3[47]; + x4[48] = x3[48]; + x4[49] = x3[49]; + x4[50] = x3[50]; + x4[51] = x3[51]; + x4[60] = x3[60]; + x4[61] = x3[61]; + x4[62] = x3[62]; + x4[63] = x3[63]; + + // stage 5 + __m128i x5[64]; + x5[0] = _mm_adds_epi16(x4[0], x4[3]); + x5[3] = _mm_subs_epi16(x4[0], x4[3]); + x5[1] = _mm_adds_epi16(x4[1], x4[2]); + x5[2] = _mm_subs_epi16(x4[1], x4[2]); + x5[4] = x4[4]; + btf_16_sse2(cospi_m32_p32, cospi_p32_p32, x4[5], x4[6], x5[5], x5[6]); + x5[7] = x4[7]; + x5[8] = _mm_adds_epi16(x4[8], x4[11]); + x5[11] = _mm_subs_epi16(x4[8], x4[11]); + x5[9] = _mm_adds_epi16(x4[9], x4[10]); + x5[10] = _mm_subs_epi16(x4[9], x4[10]); + x5[12] = _mm_subs_epi16(x4[15], x4[12]); + x5[15] = _mm_adds_epi16(x4[15], x4[12]); + x5[13] = _mm_subs_epi16(x4[14], x4[13]); + x5[14] = _mm_adds_epi16(x4[14], x4[13]); + x5[16] = x4[16]; + x5[17] = x4[17]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x4[18], x4[29], x5[18], x5[29]); + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x4[19], x4[28], x5[19], x5[28]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x4[20], x4[27], x5[20], x5[27]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x4[21], x4[26], x5[21], x5[26]); + x5[22] = x4[22]; + x5[23] = x4[23]; + x5[24] = x4[24]; + x5[25] = x4[25]; + x5[30] = x4[30]; + x5[31] = x4[31]; + x5[32] = _mm_adds_epi16(x4[32], x4[39]); + x5[39] = _mm_subs_epi16(x4[32], x4[39]); + x5[33] = _mm_adds_epi16(x4[33], x4[38]); + x5[38] = _mm_subs_epi16(x4[33], x4[38]); + x5[34] = _mm_adds_epi16(x4[34], x4[37]); + x5[37] = _mm_subs_epi16(x4[34], x4[37]); + x5[35] = _mm_adds_epi16(x4[35], x4[36]); + x5[36] = _mm_subs_epi16(x4[35], x4[36]); + x5[40] = _mm_subs_epi16(x4[47], x4[40]); + x5[47] = _mm_adds_epi16(x4[47], x4[40]); + x5[41] = _mm_subs_epi16(x4[46], x4[41]); + x5[46] = _mm_adds_epi16(x4[46], x4[41]); + x5[42] = _mm_subs_epi16(x4[45], x4[42]); + x5[45] = _mm_adds_epi16(x4[45], x4[42]); + x5[43] = _mm_subs_epi16(x4[44], x4[43]); + x5[44] = _mm_adds_epi16(x4[44], x4[43]); + x5[48] = _mm_adds_epi16(x4[48], x4[55]); + x5[55] = _mm_subs_epi16(x4[48], x4[55]); + x5[49] = _mm_adds_epi16(x4[49], x4[54]); + x5[54] = _mm_subs_epi16(x4[49], x4[54]); + x5[50] = _mm_adds_epi16(x4[50], x4[53]); + x5[53] = _mm_subs_epi16(x4[50], x4[53]); + x5[51] = _mm_adds_epi16(x4[51], x4[52]); + x5[52] = _mm_subs_epi16(x4[51], x4[52]); + x5[56] = _mm_subs_epi16(x4[63], x4[56]); + x5[63] = _mm_adds_epi16(x4[63], x4[56]); + x5[57] = _mm_subs_epi16(x4[62], x4[57]); + x5[62] = _mm_adds_epi16(x4[62], x4[57]); + x5[58] = _mm_subs_epi16(x4[61], x4[58]); + x5[61] = _mm_adds_epi16(x4[61], x4[58]); + x5[59] = _mm_subs_epi16(x4[60], x4[59]); + x5[60] = _mm_adds_epi16(x4[60], x4[59]); + + // stage 6 + __m128i x6[64]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x5[0], x5[1], x6[0], x6[1]); + btf_16_sse2(cospi_p48_p16, cospi_m16_p48, x5[2], x5[3], x6[2], x6[3]); + x6[4] = _mm_adds_epi16(x5[4], x5[5]); + x6[5] = _mm_subs_epi16(x5[4], x5[5]); + x6[6] = _mm_subs_epi16(x5[7], x5[6]); + x6[7] = _mm_adds_epi16(x5[7], x5[6]); + x6[8] = x5[8]; + btf_16_sse2(cospi_m16_p48, cospi_p48_p16, x5[9], x5[14], x6[9], x6[14]); + btf_16_sse2(cospi_m48_m16, cospi_m16_p48, x5[10], x5[13], x6[10], x6[13]); + x6[11] = x5[11]; + x6[12] = x5[12]; + x6[15] = x5[15]; + x6[16] = _mm_adds_epi16(x5[16], x5[19]); + x6[19] = _mm_subs_epi16(x5[16], x5[19]); + x6[17] = _mm_adds_epi16(x5[17], x5[18]); + x6[18] = _mm_subs_epi16(x5[17], x5[18]); + x6[20] = _mm_subs_epi16(x5[23], x5[20]); + x6[23] = _mm_adds_epi16(x5[23], x5[20]); + x6[21] = _mm_subs_epi16(x5[22], x5[21]); + x6[22] = _mm_adds_epi16(x5[22], x5[21]); + x6[24] = _mm_adds_epi16(x5[24], x5[27]); + x6[27] = _mm_subs_epi16(x5[24], x5[27]); + x6[25] = _mm_adds_epi16(x5[25], x5[26]); + x6[26] = _mm_subs_epi16(x5[25], x5[26]); + x6[28] = _mm_subs_epi16(x5[31], x5[28]); + x6[31] = _mm_adds_epi16(x5[31], x5[28]); + x6[29] = _mm_subs_epi16(x5[30], x5[29]); + x6[30] = _mm_adds_epi16(x5[30], x5[29]); + x6[32] = x5[32]; + x6[33] = x5[33]; + btf_16_sse2(cospi_m08_p56, cospi_p56_p08, x5[34], x5[61], x6[34], x6[61]); + btf_16_sse2(cospi_m08_p56, cospi_p56_p08, x5[35], x5[60], x6[35], x6[60]); + btf_16_sse2(cospi_m56_m08, cospi_m08_p56, x5[36], x5[59], x6[36], x6[59]); + btf_16_sse2(cospi_m56_m08, cospi_m08_p56, x5[37], x5[58], x6[37], x6[58]); + x6[38] = x5[38]; + x6[39] = x5[39]; + x6[40] = x5[40]; + x6[41] = x5[41]; + btf_16_sse2(cospi_m40_p24, cospi_p24_p40, x5[42], x5[53], x6[42], x6[53]); + btf_16_sse2(cospi_m40_p24, cospi_p24_p40, x5[43], x5[52], x6[43], x6[52]); + btf_16_sse2(cospi_m24_m40, cospi_m40_p24, x5[44], x5[51], x6[44], x6[51]); + btf_16_sse2(cospi_m24_m40, cospi_m40_p24, x5[45], x5[50], x6[45], x6[50]); + x6[46] = x5[46]; + x6[47] = x5[47]; + x6[48] = x5[48]; + x6[49] = x5[49]; + x6[54] = x5[54]; + x6[55] = x5[55]; + x6[56] = x5[56]; + x6[57] = x5[57]; + x6[62] = x5[62]; + x6[63] = x5[63]; + + // stage 7 + __m128i x7[64]; + x7[0] = x6[0]; + x7[1] = x6[1]; + x7[2] = x6[2]; + x7[3] = x6[3]; + btf_16_sse2(cospi_p56_p08, cospi_m08_p56, x6[4], x6[7], x7[4], x7[7]); + btf_16_sse2(cospi_p24_p40, cospi_m40_p24, x6[5], x6[6], x7[5], x7[6]); + x7[8] = _mm_adds_epi16(x6[8], x6[9]); + x7[9] = _mm_subs_epi16(x6[8], x6[9]); + x7[10] = _mm_subs_epi16(x6[11], x6[10]); + x7[11] = _mm_adds_epi16(x6[11], x6[10]); + x7[12] = _mm_adds_epi16(x6[12], x6[13]); + x7[13] = _mm_subs_epi16(x6[12], x6[13]); + x7[14] = _mm_subs_epi16(x6[15], x6[14]); + x7[15] = _mm_adds_epi16(x6[15], x6[14]); + x7[16] = x6[16]; + btf_16_sse2(cospi_m08_p56, cospi_p56_p08, x6[17], x6[30], x7[17], x7[30]); + btf_16_sse2(cospi_m56_m08, cospi_m08_p56, x6[18], x6[29], x7[18], x7[29]); + x7[19] = x6[19]; + x7[20] = x6[20]; + btf_16_sse2(cospi_m40_p24, cospi_p24_p40, x6[21], x6[26], x7[21], x7[26]); + btf_16_sse2(cospi_m24_m40, cospi_m40_p24, x6[22], x6[25], x7[22], x7[25]); + x7[23] = x6[23]; + x7[24] = x6[24]; + x7[27] = x6[27]; + x7[28] = x6[28]; + x7[31] = x6[31]; + x7[32] = _mm_adds_epi16(x6[32], x6[35]); + x7[35] = _mm_subs_epi16(x6[32], x6[35]); + x7[33] = _mm_adds_epi16(x6[33], x6[34]); + x7[34] = _mm_subs_epi16(x6[33], x6[34]); + x7[36] = _mm_subs_epi16(x6[39], x6[36]); + x7[39] = _mm_adds_epi16(x6[39], x6[36]); + x7[37] = _mm_subs_epi16(x6[38], x6[37]); + x7[38] = _mm_adds_epi16(x6[38], x6[37]); + x7[40] = _mm_adds_epi16(x6[40], x6[43]); + x7[43] = _mm_subs_epi16(x6[40], x6[43]); + x7[41] = _mm_adds_epi16(x6[41], x6[42]); + x7[42] = _mm_subs_epi16(x6[41], x6[42]); + x7[44] = _mm_subs_epi16(x6[47], x6[44]); + x7[47] = _mm_adds_epi16(x6[47], x6[44]); + x7[45] = _mm_subs_epi16(x6[46], x6[45]); + x7[46] = _mm_adds_epi16(x6[46], x6[45]); + x7[48] = _mm_adds_epi16(x6[48], x6[51]); + x7[51] = _mm_subs_epi16(x6[48], x6[51]); + x7[49] = _mm_adds_epi16(x6[49], x6[50]); + x7[50] = _mm_subs_epi16(x6[49], x6[50]); + x7[52] = _mm_subs_epi16(x6[55], x6[52]); + x7[55] = _mm_adds_epi16(x6[55], x6[52]); + x7[53] = _mm_subs_epi16(x6[54], x6[53]); + x7[54] = _mm_adds_epi16(x6[54], x6[53]); + x7[56] = _mm_adds_epi16(x6[56], x6[59]); + x7[59] = _mm_subs_epi16(x6[56], x6[59]); + x7[57] = _mm_adds_epi16(x6[57], x6[58]); + x7[58] = _mm_subs_epi16(x6[57], x6[58]); + x7[60] = _mm_subs_epi16(x6[63], x6[60]); + x7[63] = _mm_adds_epi16(x6[63], x6[60]); + x7[61] = _mm_subs_epi16(x6[62], x6[61]); + x7[62] = _mm_adds_epi16(x6[62], x6[61]); + + // stage 8 + __m128i x8[64]; + x8[0] = x7[0]; + x8[1] = x7[1]; + x8[2] = x7[2]; + x8[3] = x7[3]; + x8[4] = x7[4]; + x8[5] = x7[5]; + x8[6] = x7[6]; + x8[7] = x7[7]; + btf_16_sse2(cospi_p60_p04, cospi_m04_p60, x7[8], x7[15], x8[8], x8[15]); + btf_16_sse2(cospi_p28_p36, cospi_m36_p28, x7[9], x7[14], x8[9], x8[14]); + btf_16_sse2(cospi_p44_p20, cospi_m20_p44, x7[10], x7[13], x8[10], x8[13]); + btf_16_sse2(cospi_p12_p52, cospi_m52_p12, x7[11], x7[12], x8[11], x8[12]); + x8[16] = _mm_adds_epi16(x7[16], x7[17]); + x8[17] = _mm_subs_epi16(x7[16], x7[17]); + x8[18] = _mm_subs_epi16(x7[19], x7[18]); + x8[19] = _mm_adds_epi16(x7[19], x7[18]); + x8[20] = _mm_adds_epi16(x7[20], x7[21]); + x8[21] = _mm_subs_epi16(x7[20], x7[21]); + x8[22] = _mm_subs_epi16(x7[23], x7[22]); + x8[23] = _mm_adds_epi16(x7[23], x7[22]); + x8[24] = _mm_adds_epi16(x7[24], x7[25]); + x8[25] = _mm_subs_epi16(x7[24], x7[25]); + x8[26] = _mm_subs_epi16(x7[27], x7[26]); + x8[27] = _mm_adds_epi16(x7[27], x7[26]); + x8[28] = _mm_adds_epi16(x7[28], x7[29]); + x8[29] = _mm_subs_epi16(x7[28], x7[29]); + x8[30] = _mm_subs_epi16(x7[31], x7[30]); + x8[31] = _mm_adds_epi16(x7[31], x7[30]); + x8[32] = x7[32]; + btf_16_sse2(cospi_m04_p60, cospi_p60_p04, x7[33], x7[62], x8[33], x8[62]); + btf_16_sse2(cospi_m60_m04, cospi_m04_p60, x7[34], x7[61], x8[34], x8[61]); + x8[35] = x7[35]; + x8[36] = x7[36]; + btf_16_sse2(cospi_m36_p28, cospi_p28_p36, x7[37], x7[58], x8[37], x8[58]); + btf_16_sse2(cospi_m28_m36, cospi_m36_p28, x7[38], x7[57], x8[38], x8[57]); + x8[39] = x7[39]; + x8[40] = x7[40]; + btf_16_sse2(cospi_m20_p44, cospi_p44_p20, x7[41], x7[54], x8[41], x8[54]); + btf_16_sse2(cospi_m44_m20, cospi_m20_p44, x7[42], x7[53], x8[42], x8[53]); + x8[43] = x7[43]; + x8[44] = x7[44]; + btf_16_sse2(cospi_m52_p12, cospi_p12_p52, x7[45], x7[50], x8[45], x8[50]); + btf_16_sse2(cospi_m12_m52, cospi_m52_p12, x7[46], x7[49], x8[46], x8[49]); + x8[47] = x7[47]; + x8[48] = x7[48]; + x8[51] = x7[51]; + x8[52] = x7[52]; + x8[55] = x7[55]; + x8[56] = x7[56]; + x8[59] = x7[59]; + x8[60] = x7[60]; + x8[63] = x7[63]; + + // stage 9 + __m128i x9[64]; + x9[0] = x8[0]; + x9[1] = x8[1]; + x9[2] = x8[2]; + x9[3] = x8[3]; + x9[4] = x8[4]; + x9[5] = x8[5]; + x9[6] = x8[6]; + x9[7] = x8[7]; + x9[8] = x8[8]; + x9[9] = x8[9]; + x9[10] = x8[10]; + x9[11] = x8[11]; + x9[12] = x8[12]; + x9[13] = x8[13]; + x9[14] = x8[14]; + x9[15] = x8[15]; + btf_16_sse2(cospi_p62_p02, cospi_m02_p62, x8[16], x8[31], x9[16], x9[31]); + btf_16_sse2(cospi_p30_p34, cospi_m34_p30, x8[17], x8[30], x9[17], x9[30]); + btf_16_sse2(cospi_p46_p18, cospi_m18_p46, x8[18], x8[29], x9[18], x9[29]); + btf_16_sse2(cospi_p14_p50, cospi_m50_p14, x8[19], x8[28], x9[19], x9[28]); + btf_16_sse2(cospi_p54_p10, cospi_m10_p54, x8[20], x8[27], x9[20], x9[27]); + btf_16_sse2(cospi_p22_p42, cospi_m42_p22, x8[21], x8[26], x9[21], x9[26]); + btf_16_sse2(cospi_p38_p26, cospi_m26_p38, x8[22], x8[25], x9[22], x9[25]); + btf_16_sse2(cospi_p06_p58, cospi_m58_p06, x8[23], x8[24], x9[23], x9[24]); + x9[32] = _mm_adds_epi16(x8[32], x8[33]); + x9[33] = _mm_subs_epi16(x8[32], x8[33]); + x9[34] = _mm_subs_epi16(x8[35], x8[34]); + x9[35] = _mm_adds_epi16(x8[35], x8[34]); + x9[36] = _mm_adds_epi16(x8[36], x8[37]); + x9[37] = _mm_subs_epi16(x8[36], x8[37]); + x9[38] = _mm_subs_epi16(x8[39], x8[38]); + x9[39] = _mm_adds_epi16(x8[39], x8[38]); + x9[40] = _mm_adds_epi16(x8[40], x8[41]); + x9[41] = _mm_subs_epi16(x8[40], x8[41]); + x9[42] = _mm_subs_epi16(x8[43], x8[42]); + x9[43] = _mm_adds_epi16(x8[43], x8[42]); + x9[44] = _mm_adds_epi16(x8[44], x8[45]); + x9[45] = _mm_subs_epi16(x8[44], x8[45]); + x9[46] = _mm_subs_epi16(x8[47], x8[46]); + x9[47] = _mm_adds_epi16(x8[47], x8[46]); + x9[48] = _mm_adds_epi16(x8[48], x8[49]); + x9[49] = _mm_subs_epi16(x8[48], x8[49]); + x9[50] = _mm_subs_epi16(x8[51], x8[50]); + x9[51] = _mm_adds_epi16(x8[51], x8[50]); + x9[52] = _mm_adds_epi16(x8[52], x8[53]); + x9[53] = _mm_subs_epi16(x8[52], x8[53]); + x9[54] = _mm_subs_epi16(x8[55], x8[54]); + x9[55] = _mm_adds_epi16(x8[55], x8[54]); + x9[56] = _mm_adds_epi16(x8[56], x8[57]); + x9[57] = _mm_subs_epi16(x8[56], x8[57]); + x9[58] = _mm_subs_epi16(x8[59], x8[58]); + x9[59] = _mm_adds_epi16(x8[59], x8[58]); + x9[60] = _mm_adds_epi16(x8[60], x8[61]); + x9[61] = _mm_subs_epi16(x8[60], x8[61]); + x9[62] = _mm_subs_epi16(x8[63], x8[62]); + x9[63] = _mm_adds_epi16(x8[63], x8[62]); + + // stage 10 + __m128i x10[64]; + x10[0] = x9[0]; + x10[1] = x9[1]; + x10[2] = x9[2]; + x10[3] = x9[3]; + x10[4] = x9[4]; + x10[5] = x9[5]; + x10[6] = x9[6]; + x10[7] = x9[7]; + x10[8] = x9[8]; + x10[9] = x9[9]; + x10[10] = x9[10]; + x10[11] = x9[11]; + x10[12] = x9[12]; + x10[13] = x9[13]; + x10[14] = x9[14]; + x10[15] = x9[15]; + x10[16] = x9[16]; + x10[17] = x9[17]; + x10[18] = x9[18]; + x10[19] = x9[19]; + x10[20] = x9[20]; + x10[21] = x9[21]; + x10[22] = x9[22]; + x10[23] = x9[23]; + x10[24] = x9[24]; + x10[25] = x9[25]; + x10[26] = x9[26]; + x10[27] = x9[27]; + x10[28] = x9[28]; + x10[29] = x9[29]; + x10[30] = x9[30]; + x10[31] = x9[31]; + btf_16_sse2(cospi_p63_p01, cospi_m01_p63, x9[32], x9[63], x10[32], x10[63]); + btf_16_sse2(cospi_p31_p33, cospi_m33_p31, x9[33], x9[62], x10[33], x10[62]); + btf_16_sse2(cospi_p47_p17, cospi_m17_p47, x9[34], x9[61], x10[34], x10[61]); + btf_16_sse2(cospi_p15_p49, cospi_m49_p15, x9[35], x9[60], x10[35], x10[60]); + btf_16_sse2(cospi_p55_p09, cospi_m09_p55, x9[36], x9[59], x10[36], x10[59]); + btf_16_sse2(cospi_p23_p41, cospi_m41_p23, x9[37], x9[58], x10[37], x10[58]); + btf_16_sse2(cospi_p39_p25, cospi_m25_p39, x9[38], x9[57], x10[38], x10[57]); + btf_16_sse2(cospi_p07_p57, cospi_m57_p07, x9[39], x9[56], x10[39], x10[56]); + btf_16_sse2(cospi_p59_p05, cospi_m05_p59, x9[40], x9[55], x10[40], x10[55]); + btf_16_sse2(cospi_p27_p37, cospi_m37_p27, x9[41], x9[54], x10[41], x10[54]); + btf_16_sse2(cospi_p43_p21, cospi_m21_p43, x9[42], x9[53], x10[42], x10[53]); + btf_16_sse2(cospi_p11_p53, cospi_m53_p11, x9[43], x9[52], x10[43], x10[52]); + btf_16_sse2(cospi_p51_p13, cospi_m13_p51, x9[44], x9[51], x10[44], x10[51]); + btf_16_sse2(cospi_p19_p45, cospi_m45_p19, x9[45], x9[50], x10[45], x10[50]); + btf_16_sse2(cospi_p35_p29, cospi_m29_p35, x9[46], x9[49], x10[46], x10[49]); + btf_16_sse2(cospi_p03_p61, cospi_m61_p03, x9[47], x9[48], x10[47], x10[48]); + + // stage 11 + output[0] = x10[0]; + output[1] = x10[32]; + output[2] = x10[16]; + output[3] = x10[48]; + output[4] = x10[8]; + output[5] = x10[40]; + output[6] = x10[24]; + output[7] = x10[56]; + output[8] = x10[4]; + output[9] = x10[36]; + output[10] = x10[20]; + output[11] = x10[52]; + output[12] = x10[12]; + output[13] = x10[44]; + output[14] = x10[28]; + output[15] = x10[60]; + output[16] = x10[2]; + output[17] = x10[34]; + output[18] = x10[18]; + output[19] = x10[50]; + output[20] = x10[10]; + output[21] = x10[42]; + output[22] = x10[26]; + output[23] = x10[58]; + output[24] = x10[6]; + output[25] = x10[38]; + output[26] = x10[22]; + output[27] = x10[54]; + output[28] = x10[14]; + output[29] = x10[46]; + output[30] = x10[30]; + output[31] = x10[62]; + output[32] = x10[1]; + output[33] = x10[33]; + output[34] = x10[17]; + output[35] = x10[49]; + output[36] = x10[9]; + output[37] = x10[41]; + output[38] = x10[25]; + output[39] = x10[57]; + output[40] = x10[5]; + output[41] = x10[37]; + output[42] = x10[21]; + output[43] = x10[53]; + output[44] = x10[13]; + output[45] = x10[45]; + output[46] = x10[29]; + output[47] = x10[61]; + output[48] = x10[3]; + output[49] = x10[35]; + output[50] = x10[19]; + output[51] = x10[51]; + output[52] = x10[11]; + output[53] = x10[43]; + output[54] = x10[27]; + output[55] = x10[59]; + output[56] = x10[7]; + output[57] = x10[39]; + output[58] = x10[23]; + output[59] = x10[55]; + output[60] = x10[15]; + output[61] = x10[47]; + output[62] = x10[31]; + output[63] = x10[63]; +} + +static void fadst4x4_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *sinpi = sinpi_arr(cos_bit); + const __m128i sinpi_p01_p02 = pair_set_epi16(sinpi[1], sinpi[2]); + const __m128i sinpi_p04_m01 = pair_set_epi16(sinpi[4], -sinpi[1]); + const __m128i sinpi_p03_p04 = pair_set_epi16(sinpi[3], sinpi[4]); + const __m128i sinpi_m03_p02 = pair_set_epi16(-sinpi[3], sinpi[2]); + const __m128i sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi[3]); + const __m128i __zero = _mm_set1_epi16(0); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + const __m128i in7 = _mm_add_epi16(input[0], input[1]); + __m128i u[8], v[8]; + + u[0] = _mm_unpacklo_epi16(input[0], input[1]); + u[1] = _mm_unpacklo_epi16(input[2], input[3]); + u[2] = _mm_unpacklo_epi16(in7, __zero); + u[3] = _mm_unpacklo_epi16(input[2], __zero); + u[4] = _mm_unpacklo_epi16(input[3], __zero); + + v[0] = _mm_madd_epi16(u[0], sinpi_p01_p02); // s0 + s2 + v[1] = _mm_madd_epi16(u[1], sinpi_p03_p04); // s4 + s5 + v[2] = _mm_madd_epi16(u[2], sinpi_p03_p03); // x1 + v[3] = _mm_madd_epi16(u[0], sinpi_p04_m01); // s1 - s3 + v[4] = _mm_madd_epi16(u[1], sinpi_m03_p02); // -s4 + s6 + v[5] = _mm_madd_epi16(u[3], sinpi_p03_p03); // s4 + v[6] = _mm_madd_epi16(u[4], sinpi_p03_p03); + + u[0] = _mm_add_epi32(v[0], v[1]); + u[1] = _mm_sub_epi32(v[2], v[6]); + u[2] = _mm_add_epi32(v[3], v[4]); + u[3] = _mm_sub_epi32(u[2], u[0]); + u[4] = _mm_slli_epi32(v[5], 2); + u[5] = _mm_sub_epi32(u[4], v[5]); + u[6] = _mm_add_epi32(u[3], u[5]); + + v[0] = _mm_add_epi32(u[0], __rounding); + v[1] = _mm_add_epi32(u[1], __rounding); + v[2] = _mm_add_epi32(u[2], __rounding); + v[3] = _mm_add_epi32(u[6], __rounding); + + u[0] = _mm_srai_epi32(v[0], cos_bit); + u[1] = _mm_srai_epi32(v[1], cos_bit); + u[2] = _mm_srai_epi32(v[2], cos_bit); + u[3] = _mm_srai_epi32(v[3], cos_bit); + + output[0] = _mm_packs_epi32(u[0], u[2]); + output[1] = _mm_packs_epi32(u[1], u[3]); + output[2] = _mm_srli_si128(output[0], 8); + output[3] = _mm_srli_si128(output[1], 8); +} + +static void fadst4x8_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __zero = _mm_setzero_si128(); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p16_p48 = pair_set_epi16(cospi[16], cospi[48]); + __m128i cospi_p48_m16 = pair_set_epi16(cospi[48], -cospi[16]); + __m128i cospi_m48_p16 = pair_set_epi16(-cospi[48], cospi[16]); + __m128i cospi_p04_p60 = pair_set_epi16(cospi[4], cospi[60]); + __m128i cospi_p60_m04 = pair_set_epi16(cospi[60], -cospi[4]); + __m128i cospi_p20_p44 = pair_set_epi16(cospi[20], cospi[44]); + __m128i cospi_p44_m20 = pair_set_epi16(cospi[44], -cospi[20]); + __m128i cospi_p36_p28 = pair_set_epi16(cospi[36], cospi[28]); + __m128i cospi_p28_m36 = pair_set_epi16(cospi[28], -cospi[36]); + __m128i cospi_p52_p12 = pair_set_epi16(cospi[52], cospi[12]); + __m128i cospi_p12_m52 = pair_set_epi16(cospi[12], -cospi[52]); + + // stage 1 + __m128i x1[8]; + x1[0] = input[0]; + x1[1] = _mm_subs_epi16(__zero, input[7]); + x1[2] = _mm_subs_epi16(__zero, input[3]); + x1[3] = input[4]; + x1[4] = _mm_subs_epi16(__zero, input[1]); + x1[5] = input[6]; + x1[6] = input[2]; + x1[7] = _mm_subs_epi16(__zero, input[5]); + + // stage 2 + __m128i x2[8]; + x2[0] = x1[0]; + x2[1] = x1[1]; + btf_16_w4_sse2(&cospi_p32_p32, &cospi_p32_m32, __rounding, cos_bit, &x1[2], + &x1[3], &x2[2], &x2[3]); + x2[4] = x1[4]; + x2[5] = x1[5]; + btf_16_w4_sse2(&cospi_p32_p32, &cospi_p32_m32, __rounding, cos_bit, &x1[6], + &x1[7], &x2[6], &x2[7]); + + // stage 3 + __m128i x3[8]; + x3[0] = _mm_adds_epi16(x2[0], x2[2]); + x3[2] = _mm_subs_epi16(x2[0], x2[2]); + x3[1] = _mm_adds_epi16(x2[1], x2[3]); + x3[3] = _mm_subs_epi16(x2[1], x2[3]); + x3[4] = _mm_adds_epi16(x2[4], x2[6]); + x3[6] = _mm_subs_epi16(x2[4], x2[6]); + x3[5] = _mm_adds_epi16(x2[5], x2[7]); + x3[7] = _mm_subs_epi16(x2[5], x2[7]); + + // stage 4 + __m128i x4[8]; + x4[0] = x3[0]; + x4[1] = x3[1]; + x4[2] = x3[2]; + x4[3] = x3[3]; + btf_16_w4_sse2(&cospi_p16_p48, &cospi_p48_m16, __rounding, cos_bit, &x3[4], + &x3[5], &x4[4], &x4[5]); + btf_16_w4_sse2(&cospi_m48_p16, &cospi_p16_p48, __rounding, cos_bit, &x3[6], + &x3[7], &x4[6], &x4[7]); + + // stage 5 + __m128i x5[8]; + x5[0] = _mm_adds_epi16(x4[0], x4[4]); + x5[4] = _mm_subs_epi16(x4[0], x4[4]); + x5[1] = _mm_adds_epi16(x4[1], x4[5]); + x5[5] = _mm_subs_epi16(x4[1], x4[5]); + x5[2] = _mm_adds_epi16(x4[2], x4[6]); + x5[6] = _mm_subs_epi16(x4[2], x4[6]); + x5[3] = _mm_adds_epi16(x4[3], x4[7]); + x5[7] = _mm_subs_epi16(x4[3], x4[7]); + + // stage 6 + __m128i x6[8]; + btf_16_w4_sse2(&cospi_p04_p60, &cospi_p60_m04, __rounding, cos_bit, &x5[0], + &x5[1], &x6[0], &x6[1]); + btf_16_w4_sse2(&cospi_p20_p44, &cospi_p44_m20, __rounding, cos_bit, &x5[2], + &x5[3], &x6[2], &x6[3]); + btf_16_w4_sse2(&cospi_p36_p28, &cospi_p28_m36, __rounding, cos_bit, &x5[4], + &x5[5], &x6[4], &x6[5]); + btf_16_w4_sse2(&cospi_p52_p12, &cospi_p12_m52, __rounding, cos_bit, &x5[6], + &x5[7], &x6[6], &x6[7]); + + // stage 7 + output[0] = x6[1]; + output[1] = x6[6]; + output[2] = x6[3]; + output[3] = x6[4]; + output[4] = x6[5]; + output[5] = x6[2]; + output[6] = x6[7]; + output[7] = x6[0]; +} + +static void fadst8x4_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *sinpi = sinpi_arr(cos_bit); + const __m128i sinpi_p01_p02 = pair_set_epi16(sinpi[1], sinpi[2]); + const __m128i sinpi_p04_m01 = pair_set_epi16(sinpi[4], -sinpi[1]); + const __m128i sinpi_p03_p04 = pair_set_epi16(sinpi[3], sinpi[4]); + const __m128i sinpi_m03_p02 = pair_set_epi16(-sinpi[3], sinpi[2]); + const __m128i sinpi_p03_p03 = _mm_set1_epi16((int16_t)sinpi[3]); + const __m128i __zero = _mm_set1_epi16(0); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + const __m128i in7 = _mm_add_epi16(input[0], input[1]); + __m128i u_lo[8], u_hi[8], v_lo[8], v_hi[8]; + + u_lo[0] = _mm_unpacklo_epi16(input[0], input[1]); + u_hi[0] = _mm_unpackhi_epi16(input[0], input[1]); + u_lo[1] = _mm_unpacklo_epi16(input[2], input[3]); + u_hi[1] = _mm_unpackhi_epi16(input[2], input[3]); + u_lo[2] = _mm_unpacklo_epi16(in7, __zero); + u_hi[2] = _mm_unpackhi_epi16(in7, __zero); + u_lo[3] = _mm_unpacklo_epi16(input[2], __zero); + u_hi[3] = _mm_unpackhi_epi16(input[2], __zero); + u_lo[4] = _mm_unpacklo_epi16(input[3], __zero); + u_hi[4] = _mm_unpackhi_epi16(input[3], __zero); + + v_lo[0] = _mm_madd_epi16(u_lo[0], sinpi_p01_p02); // s0 + s2 + v_hi[0] = _mm_madd_epi16(u_hi[0], sinpi_p01_p02); // s0 + s2 + v_lo[1] = _mm_madd_epi16(u_lo[1], sinpi_p03_p04); // s4 + s5 + v_hi[1] = _mm_madd_epi16(u_hi[1], sinpi_p03_p04); // s4 + s5 + v_lo[2] = _mm_madd_epi16(u_lo[2], sinpi_p03_p03); // x1 + v_hi[2] = _mm_madd_epi16(u_hi[2], sinpi_p03_p03); // x1 + v_lo[3] = _mm_madd_epi16(u_lo[0], sinpi_p04_m01); // s1 - s3 + v_hi[3] = _mm_madd_epi16(u_hi[0], sinpi_p04_m01); // s1 - s3 + v_lo[4] = _mm_madd_epi16(u_lo[1], sinpi_m03_p02); // -s4 + s6 + v_hi[4] = _mm_madd_epi16(u_hi[1], sinpi_m03_p02); // -s4 + s6 + v_lo[5] = _mm_madd_epi16(u_lo[3], sinpi_p03_p03); // s4 + v_hi[5] = _mm_madd_epi16(u_hi[3], sinpi_p03_p03); // s4 + v_lo[6] = _mm_madd_epi16(u_lo[4], sinpi_p03_p03); + v_hi[6] = _mm_madd_epi16(u_hi[4], sinpi_p03_p03); + + u_lo[0] = _mm_add_epi32(v_lo[0], v_lo[1]); + u_hi[0] = _mm_add_epi32(v_hi[0], v_hi[1]); + u_lo[1] = _mm_sub_epi32(v_lo[2], v_lo[6]); + u_hi[1] = _mm_sub_epi32(v_hi[2], v_hi[6]); + u_lo[2] = _mm_add_epi32(v_lo[3], v_lo[4]); + u_hi[2] = _mm_add_epi32(v_hi[3], v_hi[4]); + u_lo[3] = _mm_sub_epi32(u_lo[2], u_lo[0]); + u_hi[3] = _mm_sub_epi32(u_hi[2], u_hi[0]); + u_lo[4] = _mm_slli_epi32(v_lo[5], 2); + u_hi[4] = _mm_slli_epi32(v_hi[5], 2); + u_lo[5] = _mm_sub_epi32(u_lo[4], v_lo[5]); + u_hi[5] = _mm_sub_epi32(u_hi[4], v_hi[5]); + u_lo[6] = _mm_add_epi32(u_lo[3], u_lo[5]); + u_hi[6] = _mm_add_epi32(u_hi[3], u_hi[5]); + + v_lo[0] = _mm_add_epi32(u_lo[0], __rounding); + v_hi[0] = _mm_add_epi32(u_hi[0], __rounding); + v_lo[1] = _mm_add_epi32(u_lo[1], __rounding); + v_hi[1] = _mm_add_epi32(u_hi[1], __rounding); + v_lo[2] = _mm_add_epi32(u_lo[2], __rounding); + v_hi[2] = _mm_add_epi32(u_hi[2], __rounding); + v_lo[3] = _mm_add_epi32(u_lo[6], __rounding); + v_hi[3] = _mm_add_epi32(u_hi[6], __rounding); + + u_lo[0] = _mm_srai_epi32(v_lo[0], cos_bit); + u_hi[0] = _mm_srai_epi32(v_hi[0], cos_bit); + u_lo[1] = _mm_srai_epi32(v_lo[1], cos_bit); + u_hi[1] = _mm_srai_epi32(v_hi[1], cos_bit); + u_lo[2] = _mm_srai_epi32(v_lo[2], cos_bit); + u_hi[2] = _mm_srai_epi32(v_hi[2], cos_bit); + u_lo[3] = _mm_srai_epi32(v_lo[3], cos_bit); + u_hi[3] = _mm_srai_epi32(v_hi[3], cos_bit); + + output[0] = _mm_packs_epi32(u_lo[0], u_hi[0]); + output[1] = _mm_packs_epi32(u_lo[1], u_hi[1]); + output[2] = _mm_packs_epi32(u_lo[2], u_hi[2]); + output[3] = _mm_packs_epi32(u_lo[3], u_hi[3]); +} + +static void fadst8x8_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __zero = _mm_setzero_si128(); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p16_p48 = pair_set_epi16(cospi[16], cospi[48]); + __m128i cospi_p48_m16 = pair_set_epi16(cospi[48], -cospi[16]); + __m128i cospi_m48_p16 = pair_set_epi16(-cospi[48], cospi[16]); + __m128i cospi_p04_p60 = pair_set_epi16(cospi[4], cospi[60]); + __m128i cospi_p60_m04 = pair_set_epi16(cospi[60], -cospi[4]); + __m128i cospi_p20_p44 = pair_set_epi16(cospi[20], cospi[44]); + __m128i cospi_p44_m20 = pair_set_epi16(cospi[44], -cospi[20]); + __m128i cospi_p36_p28 = pair_set_epi16(cospi[36], cospi[28]); + __m128i cospi_p28_m36 = pair_set_epi16(cospi[28], -cospi[36]); + __m128i cospi_p52_p12 = pair_set_epi16(cospi[52], cospi[12]); + __m128i cospi_p12_m52 = pair_set_epi16(cospi[12], -cospi[52]); + + // stage 1 + __m128i x1[8]; + x1[0] = input[0]; + x1[1] = _mm_subs_epi16(__zero, input[7]); + x1[2] = _mm_subs_epi16(__zero, input[3]); + x1[3] = input[4]; + x1[4] = _mm_subs_epi16(__zero, input[1]); + x1[5] = input[6]; + x1[6] = input[2]; + x1[7] = _mm_subs_epi16(__zero, input[5]); + + // stage 2 + __m128i x2[8]; + x2[0] = x1[0]; + x2[1] = x1[1]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[2], x1[3], x2[2], x2[3]); + x2[4] = x1[4]; + x2[5] = x1[5]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[6], x1[7], x2[6], x2[7]); + + // stage 3 + __m128i x3[8]; + x3[0] = _mm_adds_epi16(x2[0], x2[2]); + x3[2] = _mm_subs_epi16(x2[0], x2[2]); + x3[1] = _mm_adds_epi16(x2[1], x2[3]); + x3[3] = _mm_subs_epi16(x2[1], x2[3]); + x3[4] = _mm_adds_epi16(x2[4], x2[6]); + x3[6] = _mm_subs_epi16(x2[4], x2[6]); + x3[5] = _mm_adds_epi16(x2[5], x2[7]); + x3[7] = _mm_subs_epi16(x2[5], x2[7]); + + // stage 4 + __m128i x4[8]; + x4[0] = x3[0]; + x4[1] = x3[1]; + x4[2] = x3[2]; + x4[3] = x3[3]; + btf_16_sse2(cospi_p16_p48, cospi_p48_m16, x3[4], x3[5], x4[4], x4[5]); + btf_16_sse2(cospi_m48_p16, cospi_p16_p48, x3[6], x3[7], x4[6], x4[7]); + + // stage 5 + __m128i x5[8]; + x5[0] = _mm_adds_epi16(x4[0], x4[4]); + x5[4] = _mm_subs_epi16(x4[0], x4[4]); + x5[1] = _mm_adds_epi16(x4[1], x4[5]); + x5[5] = _mm_subs_epi16(x4[1], x4[5]); + x5[2] = _mm_adds_epi16(x4[2], x4[6]); + x5[6] = _mm_subs_epi16(x4[2], x4[6]); + x5[3] = _mm_adds_epi16(x4[3], x4[7]); + x5[7] = _mm_subs_epi16(x4[3], x4[7]); + + // stage 6 + __m128i x6[8]; + btf_16_sse2(cospi_p04_p60, cospi_p60_m04, x5[0], x5[1], x6[0], x6[1]); + btf_16_sse2(cospi_p20_p44, cospi_p44_m20, x5[2], x5[3], x6[2], x6[3]); + btf_16_sse2(cospi_p36_p28, cospi_p28_m36, x5[4], x5[5], x6[4], x6[5]); + btf_16_sse2(cospi_p52_p12, cospi_p12_m52, x5[6], x5[7], x6[6], x6[7]); + + // stage 7 + output[0] = x6[1]; + output[1] = x6[6]; + output[2] = x6[3]; + output[3] = x6[4]; + output[4] = x6[5]; + output[5] = x6[2]; + output[6] = x6[7]; + output[7] = x6[0]; +} + +static void fadst8x16_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + const int32_t *cospi = cospi_arr(cos_bit); + const __m128i __zero = _mm_setzero_si128(); + const __m128i __rounding = _mm_set1_epi32(1 << (cos_bit - 1)); + + __m128i cospi_p32_p32 = pair_set_epi16(cospi[32], cospi[32]); + __m128i cospi_p32_m32 = pair_set_epi16(cospi[32], -cospi[32]); + __m128i cospi_p16_p48 = pair_set_epi16(cospi[16], cospi[48]); + __m128i cospi_p48_m16 = pair_set_epi16(cospi[48], -cospi[16]); + __m128i cospi_m48_p16 = pair_set_epi16(-cospi[48], cospi[16]); + __m128i cospi_p08_p56 = pair_set_epi16(cospi[8], cospi[56]); + __m128i cospi_p56_m08 = pair_set_epi16(cospi[56], -cospi[8]); + __m128i cospi_p40_p24 = pair_set_epi16(cospi[40], cospi[24]); + __m128i cospi_p24_m40 = pair_set_epi16(cospi[24], -cospi[40]); + __m128i cospi_m56_p08 = pair_set_epi16(-cospi[56], cospi[8]); + __m128i cospi_m24_p40 = pair_set_epi16(-cospi[24], cospi[40]); + __m128i cospi_p02_p62 = pair_set_epi16(cospi[2], cospi[62]); + __m128i cospi_p62_m02 = pair_set_epi16(cospi[62], -cospi[2]); + __m128i cospi_p10_p54 = pair_set_epi16(cospi[10], cospi[54]); + __m128i cospi_p54_m10 = pair_set_epi16(cospi[54], -cospi[10]); + __m128i cospi_p18_p46 = pair_set_epi16(cospi[18], cospi[46]); + __m128i cospi_p46_m18 = pair_set_epi16(cospi[46], -cospi[18]); + __m128i cospi_p26_p38 = pair_set_epi16(cospi[26], cospi[38]); + __m128i cospi_p38_m26 = pair_set_epi16(cospi[38], -cospi[26]); + __m128i cospi_p34_p30 = pair_set_epi16(cospi[34], cospi[30]); + __m128i cospi_p30_m34 = pair_set_epi16(cospi[30], -cospi[34]); + __m128i cospi_p42_p22 = pair_set_epi16(cospi[42], cospi[22]); + __m128i cospi_p22_m42 = pair_set_epi16(cospi[22], -cospi[42]); + __m128i cospi_p50_p14 = pair_set_epi16(cospi[50], cospi[14]); + __m128i cospi_p14_m50 = pair_set_epi16(cospi[14], -cospi[50]); + __m128i cospi_p58_p06 = pair_set_epi16(cospi[58], cospi[6]); + __m128i cospi_p06_m58 = pair_set_epi16(cospi[6], -cospi[58]); + + // stage 1 + __m128i x1[16]; + x1[0] = input[0]; + x1[1] = _mm_subs_epi16(__zero, input[15]); + x1[2] = _mm_subs_epi16(__zero, input[7]); + x1[3] = input[8]; + x1[4] = _mm_subs_epi16(__zero, input[3]); + x1[5] = input[12]; + x1[6] = input[4]; + x1[7] = _mm_subs_epi16(__zero, input[11]); + x1[8] = _mm_subs_epi16(__zero, input[1]); + x1[9] = input[14]; + x1[10] = input[6]; + x1[11] = _mm_subs_epi16(__zero, input[9]); + x1[12] = input[2]; + x1[13] = _mm_subs_epi16(__zero, input[13]); + x1[14] = _mm_subs_epi16(__zero, input[5]); + x1[15] = input[10]; + + // stage 2 + __m128i x2[16]; + x2[0] = x1[0]; + x2[1] = x1[1]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[2], x1[3], x2[2], x2[3]); + x2[4] = x1[4]; + x2[5] = x1[5]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[6], x1[7], x2[6], x2[7]); + x2[8] = x1[8]; + x2[9] = x1[9]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[10], x1[11], x2[10], x2[11]); + x2[12] = x1[12]; + x2[13] = x1[13]; + btf_16_sse2(cospi_p32_p32, cospi_p32_m32, x1[14], x1[15], x2[14], x2[15]); + + // stage 3 + __m128i x3[16]; + x3[0] = _mm_adds_epi16(x2[0], x2[2]); + x3[2] = _mm_subs_epi16(x2[0], x2[2]); + x3[1] = _mm_adds_epi16(x2[1], x2[3]); + x3[3] = _mm_subs_epi16(x2[1], x2[3]); + x3[4] = _mm_adds_epi16(x2[4], x2[6]); + x3[6] = _mm_subs_epi16(x2[4], x2[6]); + x3[5] = _mm_adds_epi16(x2[5], x2[7]); + x3[7] = _mm_subs_epi16(x2[5], x2[7]); + x3[8] = _mm_adds_epi16(x2[8], x2[10]); + x3[10] = _mm_subs_epi16(x2[8], x2[10]); + x3[9] = _mm_adds_epi16(x2[9], x2[11]); + x3[11] = _mm_subs_epi16(x2[9], x2[11]); + x3[12] = _mm_adds_epi16(x2[12], x2[14]); + x3[14] = _mm_subs_epi16(x2[12], x2[14]); + x3[13] = _mm_adds_epi16(x2[13], x2[15]); + x3[15] = _mm_subs_epi16(x2[13], x2[15]); + + // stage 4 + __m128i x4[16]; + x4[0] = x3[0]; + x4[1] = x3[1]; + x4[2] = x3[2]; + x4[3] = x3[3]; + btf_16_sse2(cospi_p16_p48, cospi_p48_m16, x3[4], x3[5], x4[4], x4[5]); + btf_16_sse2(cospi_m48_p16, cospi_p16_p48, x3[6], x3[7], x4[6], x4[7]); + x4[8] = x3[8]; + x4[9] = x3[9]; + x4[10] = x3[10]; + x4[11] = x3[11]; + btf_16_sse2(cospi_p16_p48, cospi_p48_m16, x3[12], x3[13], x4[12], x4[13]); + btf_16_sse2(cospi_m48_p16, cospi_p16_p48, x3[14], x3[15], x4[14], x4[15]); + + // stage 5 + __m128i x5[16]; + x5[0] = _mm_adds_epi16(x4[0], x4[4]); + x5[4] = _mm_subs_epi16(x4[0], x4[4]); + x5[1] = _mm_adds_epi16(x4[1], x4[5]); + x5[5] = _mm_subs_epi16(x4[1], x4[5]); + x5[2] = _mm_adds_epi16(x4[2], x4[6]); + x5[6] = _mm_subs_epi16(x4[2], x4[6]); + x5[3] = _mm_adds_epi16(x4[3], x4[7]); + x5[7] = _mm_subs_epi16(x4[3], x4[7]); + x5[8] = _mm_adds_epi16(x4[8], x4[12]); + x5[12] = _mm_subs_epi16(x4[8], x4[12]); + x5[9] = _mm_adds_epi16(x4[9], x4[13]); + x5[13] = _mm_subs_epi16(x4[9], x4[13]); + x5[10] = _mm_adds_epi16(x4[10], x4[14]); + x5[14] = _mm_subs_epi16(x4[10], x4[14]); + x5[11] = _mm_adds_epi16(x4[11], x4[15]); + x5[15] = _mm_subs_epi16(x4[11], x4[15]); + + // stage 6 + __m128i x6[16]; + x6[0] = x5[0]; + x6[1] = x5[1]; + x6[2] = x5[2]; + x6[3] = x5[3]; + x6[4] = x5[4]; + x6[5] = x5[5]; + x6[6] = x5[6]; + x6[7] = x5[7]; + btf_16_sse2(cospi_p08_p56, cospi_p56_m08, x5[8], x5[9], x6[8], x6[9]); + btf_16_sse2(cospi_p40_p24, cospi_p24_m40, x5[10], x5[11], x6[10], x6[11]); + btf_16_sse2(cospi_m56_p08, cospi_p08_p56, x5[12], x5[13], x6[12], x6[13]); + btf_16_sse2(cospi_m24_p40, cospi_p40_p24, x5[14], x5[15], x6[14], x6[15]); + + // stage 7 + __m128i x7[16]; + x7[0] = _mm_adds_epi16(x6[0], x6[8]); + x7[8] = _mm_subs_epi16(x6[0], x6[8]); + x7[1] = _mm_adds_epi16(x6[1], x6[9]); + x7[9] = _mm_subs_epi16(x6[1], x6[9]); + x7[2] = _mm_adds_epi16(x6[2], x6[10]); + x7[10] = _mm_subs_epi16(x6[2], x6[10]); + x7[3] = _mm_adds_epi16(x6[3], x6[11]); + x7[11] = _mm_subs_epi16(x6[3], x6[11]); + x7[4] = _mm_adds_epi16(x6[4], x6[12]); + x7[12] = _mm_subs_epi16(x6[4], x6[12]); + x7[5] = _mm_adds_epi16(x6[5], x6[13]); + x7[13] = _mm_subs_epi16(x6[5], x6[13]); + x7[6] = _mm_adds_epi16(x6[6], x6[14]); + x7[14] = _mm_subs_epi16(x6[6], x6[14]); + x7[7] = _mm_adds_epi16(x6[7], x6[15]); + x7[15] = _mm_subs_epi16(x6[7], x6[15]); + + // stage 8 + __m128i x8[16]; + btf_16_sse2(cospi_p02_p62, cospi_p62_m02, x7[0], x7[1], x8[0], x8[1]); + btf_16_sse2(cospi_p10_p54, cospi_p54_m10, x7[2], x7[3], x8[2], x8[3]); + btf_16_sse2(cospi_p18_p46, cospi_p46_m18, x7[4], x7[5], x8[4], x8[5]); + btf_16_sse2(cospi_p26_p38, cospi_p38_m26, x7[6], x7[7], x8[6], x8[7]); + btf_16_sse2(cospi_p34_p30, cospi_p30_m34, x7[8], x7[9], x8[8], x8[9]); + btf_16_sse2(cospi_p42_p22, cospi_p22_m42, x7[10], x7[11], x8[10], x8[11]); + btf_16_sse2(cospi_p50_p14, cospi_p14_m50, x7[12], x7[13], x8[12], x8[13]); + btf_16_sse2(cospi_p58_p06, cospi_p06_m58, x7[14], x7[15], x8[14], x8[15]); + + // stage 9 + output[0] = x8[1]; + output[1] = x8[14]; + output[2] = x8[3]; + output[3] = x8[12]; + output[4] = x8[5]; + output[5] = x8[10]; + output[6] = x8[7]; + output[7] = x8[8]; + output[8] = x8[9]; + output[9] = x8[6]; + output[10] = x8[11]; + output[11] = x8[4]; + output[12] = x8[13]; + output[13] = x8[2]; + output[14] = x8[15]; + output[15] = x8[0]; +} + +static const transform_1d_sse2 col_txfm4x4_arr[TX_TYPES] = { + fdct4x4_new_sse2, // DCT_DCT + fadst4x4_new_sse2, // ADST_DCT + fdct4x4_new_sse2, // DCT_ADST + fadst4x4_new_sse2, // ADST_ADST + fadst4x4_new_sse2, // FLIPADST_DCT + fdct4x4_new_sse2, // DCT_FLIPADST + fadst4x4_new_sse2, // FLIPADST_FLIPADST + fadst4x4_new_sse2, // ADST_FLIPADST + fadst4x4_new_sse2, // FLIPADST_ADST + fidentity4x4_new_sse2, // IDTX + fdct4x4_new_sse2, // V_DCT + fidentity4x4_new_sse2, // H_DCT + fadst4x4_new_sse2, // V_ADST + fidentity4x4_new_sse2, // H_ADST + fadst4x4_new_sse2, // V_FLIPADST + fidentity4x4_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm4x4_arr[TX_TYPES] = { + fdct4x4_new_sse2, // DCT_DCT + fdct4x4_new_sse2, // ADST_DCT + fadst4x4_new_sse2, // DCT_ADST + fadst4x4_new_sse2, // ADST_ADST + fdct4x4_new_sse2, // FLIPADST_DCT + fadst4x4_new_sse2, // DCT_FLIPADST + fadst4x4_new_sse2, // FLIPADST_FLIPADST + fadst4x4_new_sse2, // ADST_FLIPADST + fadst4x4_new_sse2, // FLIPADST_ADST + fidentity4x4_new_sse2, // IDTX + fidentity4x4_new_sse2, // V_DCT + fdct4x4_new_sse2, // H_DCT + fidentity4x4_new_sse2, // V_ADST + fadst4x4_new_sse2, // H_ADST + fidentity4x4_new_sse2, // V_FLIPADST + fadst4x4_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 col_txfm4x8_arr[TX_TYPES] = { + fdct4x8_new_sse2, // DCT_DCT + fadst4x8_new_sse2, // ADST_DCT + fdct4x8_new_sse2, // DCT_ADST + fadst4x8_new_sse2, // ADST_ADST + fadst4x8_new_sse2, // FLIPADST_DCT + fdct4x8_new_sse2, // DCT_FLIPADST + fadst4x8_new_sse2, // FLIPADST_FLIPADST + fadst4x8_new_sse2, // ADST_FLIPADST + fadst4x8_new_sse2, // FLIPADST_ADST + fidentity8x8_new_sse2, // IDTX + fdct4x8_new_sse2, // V_DCT + fidentity8x8_new_sse2, // H_DCT + fadst4x8_new_sse2, // V_ADST + fidentity8x8_new_sse2, // H_ADST + fadst4x8_new_sse2, // V_FLIPADST + fidentity8x8_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm8x4_arr[TX_TYPES] = { + fdct8x4_new_sse2, // DCT_DCT + fdct8x4_new_sse2, // ADST_DCT + fadst8x4_new_sse2, // DCT_ADST + fadst8x4_new_sse2, // ADST_ADST + fdct8x4_new_sse2, // FLIPADST_DCT + fadst8x4_new_sse2, // DCT_FLIPADST + fadst8x4_new_sse2, // FLIPADST_FLIPADST + fadst8x4_new_sse2, // ADST_FLIPADST + fadst8x4_new_sse2, // FLIPADST_ADST + fidentity8x4_new_sse2, // IDTX + fidentity8x4_new_sse2, // V_DCT + fdct8x4_new_sse2, // H_DCT + fidentity8x4_new_sse2, // V_ADST + fadst8x4_new_sse2, // H_ADST + fidentity8x4_new_sse2, // V_FLIPADST + fadst8x4_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 col_txfm8x4_arr[TX_TYPES] = { + fdct8x4_new_sse2, // DCT_DCT + fadst8x4_new_sse2, // ADST_DCT + fdct8x4_new_sse2, // DCT_ADST + fadst8x4_new_sse2, // ADST_ADST + fadst8x4_new_sse2, // FLIPADST_DCT + fdct8x4_new_sse2, // DCT_FLIPADST + fadst8x4_new_sse2, // FLIPADST_FLIPADST + fadst8x4_new_sse2, // ADST_FLIPADST + fadst8x4_new_sse2, // FLIPADST_ADST + fidentity8x4_new_sse2, // IDTX + fdct8x4_new_sse2, // V_DCT + fidentity8x4_new_sse2, // H_DCT + fadst8x4_new_sse2, // V_ADST + fidentity8x4_new_sse2, // H_ADST + fadst8x4_new_sse2, // V_FLIPADST + fidentity8x4_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm4x8_arr[TX_TYPES] = { + fdct4x8_new_sse2, // DCT_DCT + fdct4x8_new_sse2, // ADST_DCT + fadst4x8_new_sse2, // DCT_ADST + fadst4x8_new_sse2, // ADST_ADST + fdct4x8_new_sse2, // FLIPADST_DCT + fadst4x8_new_sse2, // DCT_FLIPADST + fadst4x8_new_sse2, // FLIPADST_FLIPADST + fadst4x8_new_sse2, // ADST_FLIPADST + fadst4x8_new_sse2, // FLIPADST_ADST + fidentity8x8_new_sse2, // IDTX + fidentity8x8_new_sse2, // V_DCT + fdct4x8_new_sse2, // H_DCT + fidentity8x8_new_sse2, // V_ADST + fadst4x8_new_sse2, // H_ADST + fidentity8x8_new_sse2, // V_FLIPADST + fadst4x8_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 col_txfm8x8_arr[TX_TYPES] = { + fdct8x8_new_sse2, // DCT_DCT + fadst8x8_new_sse2, // ADST_DCT + fdct8x8_new_sse2, // DCT_ADST + fadst8x8_new_sse2, // ADST_ADST + fadst8x8_new_sse2, // FLIPADST_DCT + fdct8x8_new_sse2, // DCT_FLIPADST + fadst8x8_new_sse2, // FLIPADST_FLIPADST + fadst8x8_new_sse2, // ADST_FLIPADST + fadst8x8_new_sse2, // FLIPADST_ADST + fidentity8x8_new_sse2, // IDTX + fdct8x8_new_sse2, // V_DCT + fidentity8x8_new_sse2, // H_DCT + fadst8x8_new_sse2, // V_ADST + fidentity8x8_new_sse2, // H_ADST + fadst8x8_new_sse2, // V_FLIPADST + fidentity8x8_new_sse2, // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm8x8_arr[TX_TYPES] = { + fdct8x8_new_sse2, // DCT_DCT + fdct8x8_new_sse2, // ADST_DCT + fadst8x8_new_sse2, // DCT_ADST + fadst8x8_new_sse2, // ADST_ADST + fdct8x8_new_sse2, // FLIPADST_DCT + fadst8x8_new_sse2, // DCT_FLIPADST + fadst8x8_new_sse2, // FLIPADST_FLIPADST + fadst8x8_new_sse2, // ADST_FLIPADST + fadst8x8_new_sse2, // FLIPADST_ADST + fidentity8x8_new_sse2, // IDTX + fidentity8x8_new_sse2, // V_DCT + fdct8x8_new_sse2, // H_DCT + fidentity8x8_new_sse2, // V_ADST + fadst8x8_new_sse2, // H_ADST + fidentity8x8_new_sse2, // V_FLIPADST + fadst8x8_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 col_txfm8x16_arr[TX_TYPES] = { + fdct8x16_new_sse2, // DCT_DCT + fadst8x16_new_sse2, // ADST_DCT + fdct8x16_new_sse2, // DCT_ADST + fadst8x16_new_sse2, // ADST_ADST + fadst8x16_new_sse2, // FLIPADST_DCT + fdct8x16_new_sse2, // DCT_FLIPADST + fadst8x16_new_sse2, // FLIPADST_FLIPADST + fadst8x16_new_sse2, // ADST_FLIPADST + fadst8x16_new_sse2, // FLIPADST_ADST + fidentity8x16_new_sse2, // IDTX + fdct8x16_new_sse2, // V_DCT + fidentity8x16_new_sse2, // H_DCT + fadst8x16_new_sse2, // V_ADST + fidentity8x16_new_sse2, // H_ADST + fadst8x16_new_sse2, // V_FLIPADST + fidentity8x16_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm8x16_arr[TX_TYPES] = { + fdct8x16_new_sse2, // DCT_DCT + fdct8x16_new_sse2, // ADST_DCT + fadst8x16_new_sse2, // DCT_ADST + fadst8x16_new_sse2, // ADST_ADST + fdct8x16_new_sse2, // FLIPADST_DCT + fadst8x16_new_sse2, // DCT_FLIPADST + fadst8x16_new_sse2, // FLIPADST_FLIPADST + fadst8x16_new_sse2, // ADST_FLIPADST + fadst8x16_new_sse2, // FLIPADST_ADST + fidentity8x16_new_sse2, // IDTX + fidentity8x16_new_sse2, // V_DCT + fdct8x16_new_sse2, // H_DCT + fidentity8x16_new_sse2, // V_ADST + fadst8x16_new_sse2, // H_ADST + fidentity8x16_new_sse2, // V_FLIPADST + fadst8x16_new_sse2 // H_FLIPADST +}; + +static const transform_1d_sse2 row_txfm8x32_arr[TX_TYPES] = { + fdct8x32_new_sse2, // DCT_DCT + NULL, // ADST_DCT + NULL, // DCT_ADST + NULL, // ADST_ADST + NULL, // FLIPADST_DCT + NULL, // DCT_FLIPADST + NULL, // FLIPADST_FLIPADST + NULL, // ADST_FLIPADST + NULL, // FLIPADST_ADST + fidentity8x32_new_sse2, // IDTX + fidentity8x32_new_sse2, // V_DCT + fdct8x32_new_sse2, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +void av1_lowbd_fwd_txfm2d_4x4_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[4], buf1[4], *buf; + const int8_t *shift = fwd_txfm_shift_ls[TX_4X4]; + const int txw_idx = get_txw_idx(TX_4X4); + const int txh_idx = get_txh_idx(TX_4X4); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 4; + const int height = 4; + const transform_1d_sse2 col_txfm = col_txfm4x4_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm4x4_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) { + load_buffer_16bit_to_16bit_w4_flip(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit_w4(input, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_4x4(buf0, buf1); + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_4x4(buf, buf); + store_buffer_16bit_to_32bit_w4(buf, output, width, height); +} + +void av1_lowbd_fwd_txfm2d_4x8_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)stride; + (void)bd; + __m128i buf0[8], buf1[8], *buf; + const int8_t *shift = fwd_txfm_shift_ls[TX_4X8]; + const int txw_idx = get_txw_idx(TX_4X8); + const int txh_idx = get_txh_idx(TX_4X8); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 4; + const int height = 8; + const transform_1d_sse2 col_txfm = col_txfm4x8_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x4_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) { + load_buffer_16bit_to_16bit_w4_flip(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit_w4(input, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_4x8(buf0, buf1); + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x4(buf, buf); + store_rect_buffer_16bit_to_32bit_w4(buf, output, width, height); +} + +void av1_lowbd_fwd_txfm2d_4x16_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[16], buf1[16]; + const int8_t *shift = fwd_txfm_shift_ls[TX_4X16]; + const int txw_idx = get_txw_idx(TX_4X16); + const int txh_idx = get_txh_idx(TX_4X16); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 4; + const int height = 16; + const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x4_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) { + load_buffer_16bit_to_16bit_w4_flip(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit_w4(input, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_4x8(buf0, buf1); + transpose_16bit_4x8(buf0 + 8, buf1 + 8); + + for (int i = 0; i < 2; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + 8 * i, buf, width); + } else { + buf = buf1 + 8 * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x4(buf, buf); + store_buffer_16bit_to_32bit_w4(buf, output + 8 * width * i, width, 8); + } +} + +void av1_lowbd_fwd_txfm2d_8x4_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[8], buf1[8], *buf; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X4]; + const int txw_idx = get_txw_idx(TX_8X4); + const int txh_idx = get_txh_idx(TX_8X4); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 8; + const int height = 4; + const transform_1d_sse2 col_txfm = col_txfm8x4_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm4x8_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) + load_buffer_16bit_to_16bit_flip(input, stride, buf0, height); + else + load_buffer_16bit_to_16bit(input, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1); + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_rect_buffer_16bit_to_32bit_w8(buf, output, width, height); +} + +void av1_lowbd_fwd_txfm2d_8x8_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[8], buf1[8], *buf; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X8]; + const int txw_idx = get_txw_idx(TX_8X8); + const int txh_idx = get_txh_idx(TX_8X8); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 8; + const int height = 8; + const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x8_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) + load_buffer_16bit_to_16bit_flip(input, stride, buf0, height); + else + load_buffer_16bit_to_16bit(input, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1); + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output, width, height); +} + +void av1_lowbd_fwd_txfm2d_8x16_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[16], buf1[16]; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X16]; + const int txw_idx = get_txw_idx(TX_8X16); + const int txh_idx = get_txh_idx(TX_8X16); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 8; + const int height = 16; + const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x8_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1); + transpose_16bit_8x8(buf0 + 8, buf1 + 8); + + for (int i = 0; i < 2; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_rect_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, 8); + } +} + +void av1_lowbd_fwd_txfm2d_8x32_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[32], buf1[32]; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X32]; + const int txw_idx = get_txw_idx(TX_8X32); + const int txh_idx = get_txh_idx(TX_8X32); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 8; + const int height = 32; + const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x8_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1); + transpose_16bit_8x8(buf0 + 8, buf1 + 8); + transpose_16bit_8x8(buf0 + 16, buf1 + 16); + transpose_16bit_8x8(buf0 + 24, buf1 + 24); + + for (int i = 0; i < 4; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, 8); + } +} + +void av1_lowbd_fwd_txfm2d_16x4_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[16], buf1[16]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X4]; + const int txw_idx = get_txw_idx(TX_16X4); + const int txh_idx = get_txh_idx(TX_16X4); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 16; + const int height = 4; + const transform_1d_sse2 col_txfm = col_txfm8x4_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x16_arr[tx_type]; + __m128i *buf; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x4(buf0, buf1 + 8 * i); + } + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_4x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output, width, height); + transpose_16bit_4x8(buf + 8, buf + 8); + store_buffer_16bit_to_32bit_w8(buf + 8, output + 8, width, height); +} + +void av1_lowbd_fwd_txfm2d_16x8_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[16], buf1[16]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X8]; + const int txw_idx = get_txw_idx(TX_16X8); + const int txh_idx = get_txh_idx(TX_16X8); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 16; + const int height = 8; + const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x16_arr[tx_type]; + __m128i *buf; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1 + 8 * i); + } + + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1, buf, width); + } else { + buf = buf1; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_rect_buffer_16bit_to_32bit_w8(buf, output, width, height); + transpose_16bit_8x8(buf + 8, buf + 8); + store_rect_buffer_16bit_to_32bit_w8(buf + 8, output + 8, width, height); +} + +void av1_lowbd_fwd_txfm2d_16x16_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[16], buf1[32]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X16]; + const int txw_idx = get_txw_idx(TX_16X16); + const int txh_idx = get_txh_idx(TX_16X16); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 16; + const int height = 16; + const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x16_arr[tx_type]; + int ud_flip, lr_flip; + + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1 + 0 * width + 8 * i); + transpose_16bit_8x8(buf0 + 8, buf1 + 1 * width + 8 * i); + } + + for (int i = 0; i < 2; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, 8); + transpose_16bit_8x8(buf + 8, buf + 8); + store_buffer_16bit_to_32bit_w8(buf + 8, output + 8 * width * i + 8, width, + 8); + } +} + +void av1_lowbd_fwd_txfm2d_16x32_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[32], buf1[64]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X32]; + const int txw_idx = get_txw_idx(TX_16X32); + const int txh_idx = get_txh_idx(TX_16X32); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 16; + const int height = 32; + const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x16_arr[tx_type]; + + if (col_txfm != NULL && row_txfm != NULL) { + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 2; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0 + 0 * 8, buf1 + 0 * width + 8 * i); + transpose_16bit_8x8(buf0 + 1 * 8, buf1 + 1 * width + 8 * i); + transpose_16bit_8x8(buf0 + 2 * 8, buf1 + 2 * width + 8 * i); + transpose_16bit_8x8(buf0 + 3 * 8, buf1 + 3 * width + 8 * i); + } + + for (int i = 0; i < 4; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_rect_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, + 8); + transpose_16bit_8x8(buf + 8, buf + 8); + store_rect_buffer_16bit_to_32bit_w8(buf + 8, output + 8 * width * i + 8, + width, 8); + } + } else { + av1_fwd_txfm2d_16x32_c(input, output, stride, tx_type, bd); + } +} + +void av1_lowbd_fwd_txfm2d_32x8_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[32], buf1[32]; + const int8_t *shift = fwd_txfm_shift_ls[TX_32X8]; + const int txw_idx = get_txw_idx(TX_32X8); + const int txh_idx = get_txh_idx(TX_32X8); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 32; + const int height = 8; + const transform_1d_sse2 col_txfm = col_txfm8x8_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x32_arr[tx_type]; + + if (col_txfm != NULL && row_txfm != NULL) { + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 4; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1 + 0 * width + 8 * i); + } + + for (int i = 0; i < 1; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, + height); + transpose_16bit_8x8(buf + 8, buf + 8); + store_buffer_16bit_to_32bit_w8(buf + 8, output + 8 * width * i + 8, width, + height); + transpose_16bit_8x8(buf + 16, buf + 16); + store_buffer_16bit_to_32bit_w8(buf + 16, output + 8 * width * i + 16, + width, height); + transpose_16bit_8x8(buf + 24, buf + 24); + store_buffer_16bit_to_32bit_w8(buf + 24, output + 8 * width * i + 24, + width, height); + } + } else { + av1_fwd_txfm2d_32x16_c(input, output, stride, tx_type, bd); + } +} + +void av1_lowbd_fwd_txfm2d_32x16_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[32], buf1[64]; + const int8_t *shift = fwd_txfm_shift_ls[TX_32X16]; + const int txw_idx = get_txw_idx(TX_32X16); + const int txh_idx = get_txh_idx(TX_32X16); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 32; + const int height = 16; + const transform_1d_sse2 col_txfm = col_txfm8x16_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x32_arr[tx_type]; + + if (col_txfm != NULL && row_txfm != NULL) { + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 4; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0, buf1 + 0 * width + 8 * i); + transpose_16bit_8x8(buf0 + 8, buf1 + 1 * width + 8 * i); + } + + for (int i = 0; i < 2; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_rect_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, + 8); + transpose_16bit_8x8(buf + 8, buf + 8); + store_rect_buffer_16bit_to_32bit_w8(buf + 8, output + 8 * width * i + 8, + width, 8); + transpose_16bit_8x8(buf + 16, buf + 16); + store_rect_buffer_16bit_to_32bit_w8(buf + 16, output + 8 * width * i + 16, + width, 8); + transpose_16bit_8x8(buf + 24, buf + 24); + store_rect_buffer_16bit_to_32bit_w8(buf + 24, output + 8 * width * i + 24, + width, 8); + } + } else { + av1_fwd_txfm2d_32x16_c(input, output, stride, tx_type, bd); + } +} + +void av1_lowbd_fwd_txfm2d_32x32_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + __m128i buf0[32], buf1[128]; + const int8_t *shift = fwd_txfm_shift_ls[TX_32X32]; + const int txw_idx = get_txw_idx(TX_32X32); + const int txh_idx = get_txh_idx(TX_32X32); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = 32; + const int height = 32; + const transform_1d_sse2 col_txfm = col_txfm8x32_arr[tx_type]; + const transform_1d_sse2 row_txfm = row_txfm8x32_arr[tx_type]; + + if (col_txfm != NULL && row_txfm != NULL) { + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 4; i++) { + if (ud_flip) { + load_buffer_16bit_to_16bit_flip(input + 8 * i, stride, buf0, height); + } else { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + } + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + transpose_16bit_8x8(buf0 + 0 * 8, buf1 + 0 * width + 8 * i); + transpose_16bit_8x8(buf0 + 1 * 8, buf1 + 1 * width + 8 * i); + transpose_16bit_8x8(buf0 + 2 * 8, buf1 + 2 * width + 8 * i); + transpose_16bit_8x8(buf0 + 3 * 8, buf1 + 3 * width + 8 * i); + } + + for (int i = 0; i < 4; i++) { + __m128i *buf; + if (lr_flip) { + buf = buf0; + flip_buf_sse2(buf1 + width * i, buf, width); + } else { + buf = buf1 + width * i; + } + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + transpose_16bit_8x8(buf, buf); + store_buffer_16bit_to_32bit_w8(buf, output + 8 * width * i, width, 8); + transpose_16bit_8x8(buf + 8, buf + 8); + store_buffer_16bit_to_32bit_w8(buf + 8, output + 8 * width * i + 8, width, + 8); + transpose_16bit_8x8(buf + 16, buf + 16); + store_buffer_16bit_to_32bit_w8(buf + 16, output + 8 * width * i + 16, + width, 8); + transpose_16bit_8x8(buf + 24, buf + 24); + store_buffer_16bit_to_32bit_w8(buf + 24, output + 8 * width * i + 24, + width, 8); + } + } else { + av1_fwd_txfm2d_32x32_c(input, output, stride, tx_type, bd); + } +} + +void av1_lowbd_fwd_txfm2d_64x16_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_64X16; + __m128i buf0[64], buf1[128]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_sse2 col_txfm = fdct8x16_new_sse2; + const transform_1d_sse2 row_txfm = fdct8x64_new_sse2; + const int width_div8 = (width >> 3); + const int height_div8 = (height >> 3); + + for (int i = 0; i < width_div8; i++) { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + for (int j = 0; j < height_div8; ++j) { + transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); + } + } + + for (int i = 0; i < height_div8; i++) { + __m128i *buf = buf1 + width * i; + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + int32_t *output8 = output + 8 * 32 * i; + for (int j = 0; j < 4; ++j) { + __m128i *buf8 = buf + 8 * j; + transpose_16bit_8x8(buf8, buf8); + store_buffer_16bit_to_32bit_w8(buf8, output8 + 8 * j, 32, 8); + } + } +} + +void av1_lowbd_fwd_txfm2d_16x64_sse2(const int16_t *input, int32_t *output, + int stride, TX_TYPE tx_type, int bd) { + (void)bd; + (void)tx_type; + assert(tx_type == DCT_DCT); + const TX_SIZE tx_size = TX_16X64; + __m128i buf0[64], buf1[128]; + const int8_t *shift = fwd_txfm_shift_ls[tx_size]; + const int txw_idx = get_txw_idx(tx_size); + const int txh_idx = get_txh_idx(tx_size); + const int cos_bit_col = fwd_cos_bit_col[txw_idx][txh_idx]; + const int cos_bit_row = fwd_cos_bit_row[txw_idx][txh_idx]; + const int width = tx_size_wide[tx_size]; + const int height = tx_size_high[tx_size]; + const transform_1d_sse2 col_txfm = fdct8x64_new_sse2; + const transform_1d_sse2 row_txfm = fdct8x16_new_sse2; + const int width_div8 = (width >> 3); + const int height_div8 = (height >> 3); + + for (int i = 0; i < width_div8; i++) { + load_buffer_16bit_to_16bit(input + 8 * i, stride, buf0, height); + round_shift_16bit(buf0, height, shift[0]); + col_txfm(buf0, buf0, cos_bit_col); + round_shift_16bit(buf0, height, shift[1]); + for (int j = 0; j < height_div8; ++j) { + transpose_16bit_8x8(buf0 + j * 8, buf1 + j * width + 8 * i); + } + } + + for (int i = 0; i < AOMMIN(4, height_div8); i++) { + __m128i *buf = buf1 + width * i; + row_txfm(buf, buf, cos_bit_row); + round_shift_16bit(buf, width, shift[2]); + int32_t *output8 = output + 8 * width * i; + for (int j = 0; j < width_div8; ++j) { + __m128i *buf8 = buf + 8 * j; + transpose_16bit_8x8(buf8, buf8); + store_buffer_16bit_to_32bit_w8(buf8, output8 + 8 * j, width, 8); + } + } + // Zero out the bottom 16x32 area. + memset(output + 16 * 32, 0, 16 * 32 * sizeof(*output)); +} + +static FwdTxfm2dFunc fwd_txfm2d_func_ls[TX_SIZES_ALL] = { + av1_lowbd_fwd_txfm2d_4x4_sse2, // 4x4 transform + av1_lowbd_fwd_txfm2d_8x8_sse2, // 8x8 transform + av1_lowbd_fwd_txfm2d_16x16_sse2, // 16x16 transform + av1_lowbd_fwd_txfm2d_32x32_sse2, // 32x32 transform + NULL, // 64x64 transform + av1_lowbd_fwd_txfm2d_4x8_sse2, // 4x8 transform + av1_lowbd_fwd_txfm2d_8x4_sse2, // 8x4 transform + av1_lowbd_fwd_txfm2d_8x16_sse2, // 8x16 transform + av1_lowbd_fwd_txfm2d_16x8_sse2, // 16x8 transform + av1_lowbd_fwd_txfm2d_16x32_sse2, // 16x32 transform + av1_lowbd_fwd_txfm2d_32x16_sse2, // 32x16 transform + NULL, // 32x64 transform + NULL, // 64x32 transform + av1_lowbd_fwd_txfm2d_4x16_sse2, // 4x16 transform + av1_lowbd_fwd_txfm2d_16x4_sse2, // 16x4 transform + av1_lowbd_fwd_txfm2d_8x32_sse2, // 8x32 transform + av1_lowbd_fwd_txfm2d_32x8_sse2, // 32x8 transform + av1_lowbd_fwd_txfm2d_16x64_sse2, // 16x64 transform + av1_lowbd_fwd_txfm2d_64x16_sse2, // 64x16 transform +}; + +void av1_lowbd_fwd_txfm_sse2(const int16_t *src_diff, tran_low_t *coeff, + int diff_stride, TxfmParam *txfm_param) { + FwdTxfm2dFunc fwd_txfm2d_func = fwd_txfm2d_func_ls[txfm_param->tx_size]; + + if ((fwd_txfm2d_func == NULL) || + (txfm_param->lossless && txfm_param->tx_size == TX_4X4)) + av1_lowbd_fwd_txfm_c(src_diff, coeff, diff_stride, txfm_param); + else + fwd_txfm2d_func(src_diff, coeff, diff_stride, txfm_param->tx_type, + txfm_param->bd); +} diff --git a/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.h b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.h new file mode 100644 index 0000000000..99a6b90829 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_fwd_txfm_sse2.h @@ -0,0 +1,117 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#ifndef AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_SSE2_H_ +#define AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_SSE2_H_ + +#include <immintrin.h> + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/x86/transpose_sse2.h" +#include "aom_dsp/x86/txfm_common_sse2.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void fdct8x32_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit); +void fdct8x64_new_sse2(const __m128i *input, __m128i *output, int8_t cos_bit); + +static INLINE void fidentity4x4_new_sse2(const __m128i *const input, + __m128i *const output, + const int8_t cos_bit) { + (void)cos_bit; + const __m128i one = _mm_set1_epi16(1); + + for (int i = 0; i < 4; ++i) { + const __m128i a = _mm_unpacklo_epi16(input[i], one); + const __m128i b = scale_round_sse2(a, NewSqrt2); + output[i] = _mm_packs_epi32(b, b); + } +} + +static INLINE void fidentity8x4_new_sse2(const __m128i *const input, + __m128i *const output, + const int8_t cos_bit) { + (void)cos_bit; + const __m128i one = _mm_set1_epi16(1); + + for (int i = 0; i < 4; ++i) { + const __m128i a_lo = _mm_unpacklo_epi16(input[i], one); + const __m128i a_hi = _mm_unpackhi_epi16(input[i], one); + const __m128i b_lo = scale_round_sse2(a_lo, NewSqrt2); + const __m128i b_hi = scale_round_sse2(a_hi, NewSqrt2); + output[i] = _mm_packs_epi32(b_lo, b_hi); + } +} + +static INLINE void fidentity8x8_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + (void)cos_bit; + + output[0] = _mm_adds_epi16(input[0], input[0]); + output[1] = _mm_adds_epi16(input[1], input[1]); + output[2] = _mm_adds_epi16(input[2], input[2]); + output[3] = _mm_adds_epi16(input[3], input[3]); + output[4] = _mm_adds_epi16(input[4], input[4]); + output[5] = _mm_adds_epi16(input[5], input[5]); + output[6] = _mm_adds_epi16(input[6], input[6]); + output[7] = _mm_adds_epi16(input[7], input[7]); +} + +static INLINE void fidentity8x16_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + (void)cos_bit; + const __m128i one = _mm_set1_epi16(1); + + for (int i = 0; i < 16; ++i) { + const __m128i a_lo = _mm_unpacklo_epi16(input[i], one); + const __m128i a_hi = _mm_unpackhi_epi16(input[i], one); + const __m128i b_lo = scale_round_sse2(a_lo, 2 * NewSqrt2); + const __m128i b_hi = scale_round_sse2(a_hi, 2 * NewSqrt2); + output[i] = _mm_packs_epi32(b_lo, b_hi); + } +} + +static INLINE void fidentity8x32_new_sse2(const __m128i *input, __m128i *output, + int8_t cos_bit) { + (void)cos_bit; + for (int i = 0; i < 32; ++i) { + output[i] = _mm_slli_epi16(input[i], 2); + } +} + +static const transform_1d_sse2 col_txfm8x32_arr[TX_TYPES] = { + fdct8x32_new_sse2, // DCT_DCT + NULL, // ADST_DCT + NULL, // DCT_ADST + NULL, // ADST_ADST + NULL, // FLIPADST_DCT + NULL, // DCT_FLIPADST + NULL, // FLIPADST_FLIPADST + NULL, // ADST_FLIPADST + NULL, // FLIPADST_ADST + fidentity8x32_new_sse2, // IDTX + fdct8x32_new_sse2, // V_DCT + fidentity8x32_new_sse2, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +#ifdef __cplusplus +} +#endif + +#endif // AOM_AV1_ENCODER_X86_AV1_FWD_TXFM_SSE2_H_ diff --git a/third_party/aom/av1/encoder/x86/av1_highbd_quantize_avx2.c b/third_party/aom/av1/encoder/x86/av1_highbd_quantize_avx2.c new file mode 100644 index 0000000000..b58911fcb2 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_highbd_quantize_avx2.c @@ -0,0 +1,137 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <immintrin.h> + +#include "config/av1_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/aom_dsp_common.h" + +static INLINE void init_one_qp(const __m128i *p, __m256i *qp) { + const __m128i zero = _mm_setzero_si128(); + const __m128i dc = _mm_unpacklo_epi16(*p, zero); + const __m128i ac = _mm_unpackhi_epi16(*p, zero); + *qp = _mm256_insertf128_si256(_mm256_castsi128_si256(dc), ac, 1); +} + +static INLINE void update_qp(__m256i *qp) { + qp[0] = _mm256_permute2x128_si256(qp[0], qp[0], 0x11); + qp[1] = _mm256_permute2x128_si256(qp[1], qp[1], 0x11); + qp[2] = _mm256_permute2x128_si256(qp[2], qp[2], 0x11); +} + +static INLINE void init_qp(const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *dequant_ptr, int log_scale, + __m256i *qp) { + __m128i round = _mm_loadu_si128((const __m128i *)round_ptr); + if (log_scale) { + const __m128i round_scale = _mm_set1_epi16(1 << (15 - log_scale)); + round = _mm_mulhrs_epi16(round, round_scale); + } + const __m128i quant = _mm_loadu_si128((const __m128i *)quant_ptr); + const __m128i dequant = _mm_loadu_si128((const __m128i *)dequant_ptr); + + init_one_qp(&round, &qp[0]); + init_one_qp(&quant, &qp[1]); + init_one_qp(&dequant, &qp[2]); +} + +static INLINE void quantize(const __m256i *qp, __m256i *c, + const int16_t *iscan_ptr, int log_scale, + tran_low_t *qcoeff, tran_low_t *dqcoeff, + __m256i *eob) { + const __m256i abs_coeff = _mm256_abs_epi32(*c); + __m256i q = _mm256_add_epi32(abs_coeff, qp[0]); + + __m256i q_lo = _mm256_mul_epi32(q, qp[1]); + __m256i q_hi = _mm256_srli_epi64(q, 32); + const __m256i qp_hi = _mm256_srli_epi64(qp[1], 32); + q_hi = _mm256_mul_epi32(q_hi, qp_hi); + q_lo = _mm256_srli_epi64(q_lo, 16 - log_scale); + q_hi = _mm256_srli_epi64(q_hi, 16 - log_scale); + q_hi = _mm256_slli_epi64(q_hi, 32); + q = _mm256_or_si256(q_lo, q_hi); + const __m256i abs_s = _mm256_slli_epi32(abs_coeff, 1 + log_scale); + const __m256i mask = _mm256_cmpgt_epi32(qp[2], abs_s); + q = _mm256_andnot_si256(mask, q); + + __m256i dq = _mm256_mullo_epi32(q, qp[2]); + dq = _mm256_srai_epi32(dq, log_scale); + q = _mm256_sign_epi32(q, *c); + dq = _mm256_sign_epi32(dq, *c); + + _mm256_storeu_si256((__m256i *)qcoeff, q); + _mm256_storeu_si256((__m256i *)dqcoeff, dq); + + const __m128i isc = _mm_loadu_si128((const __m128i *)iscan_ptr); + const __m128i zr = _mm_setzero_si128(); + const __m128i lo = _mm_unpacklo_epi16(isc, zr); + const __m128i hi = _mm_unpackhi_epi16(isc, zr); + const __m256i iscan = + _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1); + + const __m256i zero = _mm256_setzero_si256(); + const __m256i zc = _mm256_cmpeq_epi32(dq, zero); + const __m256i nz = _mm256_cmpeq_epi32(zc, zero); + __m256i cur_eob = _mm256_sub_epi32(iscan, nz); + cur_eob = _mm256_and_si256(cur_eob, nz); + *eob = _mm256_max_epi32(cur_eob, *eob); +} + +void av1_highbd_quantize_fp_avx2( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan, int log_scale) { + (void)scan; + (void)zbin_ptr; + (void)quant_shift_ptr; + const unsigned int step = 8; + __m256i qp[3], coeff; + + init_qp(round_ptr, quant_ptr, dequant_ptr, log_scale, qp); + coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr); + + __m256i eob = _mm256_setzero_si256(); + quantize(qp, &coeff, iscan, log_scale, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan += step; + n_coeffs -= step; + + update_qp(qp); + while (n_coeffs > 0) { + coeff = _mm256_loadu_si256((const __m256i *)coeff_ptr); + quantize(qp, &coeff, iscan, log_scale, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan += step; + n_coeffs -= step; + } + { + __m256i eob_s; + eob_s = _mm256_shuffle_epi32(eob, 0xe); + eob = _mm256_max_epi16(eob, eob_s); + eob_s = _mm256_shufflelo_epi16(eob, 0xe); + eob = _mm256_max_epi16(eob, eob_s); + eob_s = _mm256_shufflelo_epi16(eob, 1); + eob = _mm256_max_epi16(eob, eob_s); + const __m128i final_eob = _mm_max_epi16(_mm256_castsi256_si128(eob), + _mm256_extractf128_si256(eob, 1)); + *eob_ptr = _mm_extract_epi16(final_eob, 0); + } +} diff --git a/third_party/aom/av1/encoder/x86/av1_highbd_quantize_sse4.c b/third_party/aom/av1/encoder/x86/av1_highbd_quantize_sse4.c new file mode 100644 index 0000000000..40b3b460b6 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_highbd_quantize_sse4.c @@ -0,0 +1,195 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <smmintrin.h> +#include <stdint.h> + +#include "config/av1_rtcd.h" + +#include "aom_dsp/aom_dsp_common.h" +#include "aom_dsp/x86/synonyms.h" + +// Coefficient quantization phase 1 +// param[0-2] : rounding/quan/dequan constants +static INLINE void quantize_coeff_phase1(__m128i *coeff, const __m128i *param, + const int shift, const int scale, + __m128i *qcoeff, __m128i *dquan, + __m128i *sign) { + const __m128i zero = _mm_setzero_si128(); + const __m128i one = _mm_set1_epi32(1); + + *sign = _mm_cmplt_epi32(*coeff, zero); + *sign = _mm_or_si128(*sign, one); + *coeff = _mm_abs_epi32(*coeff); + + qcoeff[0] = _mm_add_epi32(*coeff, param[0]); + qcoeff[1] = _mm_unpackhi_epi32(qcoeff[0], zero); + qcoeff[0] = _mm_unpacklo_epi32(qcoeff[0], zero); + + qcoeff[0] = _mm_mul_epi32(qcoeff[0], param[1]); + qcoeff[0] = _mm_srli_epi64(qcoeff[0], shift); + dquan[0] = _mm_mul_epi32(qcoeff[0], param[2]); + dquan[0] = _mm_srli_epi64(dquan[0], scale); + const __m128i abs_s = _mm_slli_epi32(*coeff, 1 + scale); + qcoeff[2] = _mm_cmplt_epi32(abs_s, param[3]); +} + +// Coefficient quantization phase 2 +static INLINE void quantize_coeff_phase2(__m128i *qcoeff, __m128i *dquan, + const __m128i *sign, + const __m128i *param, const int shift, + const int scale, tran_low_t *qAddr, + tran_low_t *dqAddr) { + __m128i mask0L = _mm_set_epi32(-1, -1, 0, 0); + __m128i mask0H = _mm_set_epi32(0, 0, -1, -1); + + qcoeff[1] = _mm_mul_epi32(qcoeff[1], param[1]); + qcoeff[1] = _mm_srli_epi64(qcoeff[1], shift); + dquan[1] = _mm_mul_epi32(qcoeff[1], param[2]); + dquan[1] = _mm_srli_epi64(dquan[1], scale); + + // combine L&H + qcoeff[0] = _mm_shuffle_epi32(qcoeff[0], 0xd8); + qcoeff[1] = _mm_shuffle_epi32(qcoeff[1], 0x8d); + + qcoeff[0] = _mm_and_si128(qcoeff[0], mask0H); + qcoeff[1] = _mm_and_si128(qcoeff[1], mask0L); + + dquan[0] = _mm_shuffle_epi32(dquan[0], 0xd8); + dquan[1] = _mm_shuffle_epi32(dquan[1], 0x8d); + + dquan[0] = _mm_and_si128(dquan[0], mask0H); + dquan[1] = _mm_and_si128(dquan[1], mask0L); + + qcoeff[0] = _mm_or_si128(qcoeff[0], qcoeff[1]); + dquan[0] = _mm_or_si128(dquan[0], dquan[1]); + + qcoeff[0] = _mm_sign_epi32(qcoeff[0], *sign); + dquan[0] = _mm_sign_epi32(dquan[0], *sign); + qcoeff[0] = _mm_andnot_si128(qcoeff[2], qcoeff[0]); + dquan[0] = _mm_andnot_si128(qcoeff[2], dquan[0]); + _mm_storeu_si128((__m128i *)qAddr, qcoeff[0]); + _mm_storeu_si128((__m128i *)dqAddr, dquan[0]); +} + +static INLINE void find_eob(tran_low_t *qcoeff_ptr, const int16_t *iscan, + __m128i *eob) { + const __m128i zero = _mm_setzero_si128(); + __m128i mask, iscanIdx; + const __m128i q0 = _mm_loadu_si128((__m128i const *)qcoeff_ptr); + const __m128i q1 = _mm_loadu_si128((__m128i const *)(qcoeff_ptr + 4)); + __m128i nz_flag0 = _mm_cmpeq_epi32(q0, zero); + __m128i nz_flag1 = _mm_cmpeq_epi32(q1, zero); + + nz_flag0 = _mm_cmpeq_epi32(nz_flag0, zero); + nz_flag1 = _mm_cmpeq_epi32(nz_flag1, zero); + + mask = _mm_packs_epi32(nz_flag0, nz_flag1); + iscanIdx = _mm_loadu_si128((__m128i const *)iscan); + iscanIdx = _mm_sub_epi16(iscanIdx, mask); + iscanIdx = _mm_and_si128(iscanIdx, mask); + *eob = _mm_max_epi16(*eob, iscanIdx); +} + +static INLINE uint16_t get_accumulated_eob(__m128i *eob) { + __m128i eob_shuffled; + uint16_t eobValue; + eob_shuffled = _mm_shuffle_epi32(*eob, 0xe); + *eob = _mm_max_epi16(*eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(*eob, 0xe); + *eob = _mm_max_epi16(*eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(*eob, 0x1); + *eob = _mm_max_epi16(*eob, eob_shuffled); + eobValue = _mm_extract_epi16(*eob, 0); + return eobValue; +} + +void av1_highbd_quantize_fp_sse4_1( + const tran_low_t *coeff_ptr, intptr_t count, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan, const int16_t *iscan, int log_scale) { + __m128i coeff[2], qcoeff[3], dequant[2], qparam[4], coeff_sign; + __m128i eob = _mm_setzero_si128(); + const tran_low_t *src = coeff_ptr; + tran_low_t *quanAddr = qcoeff_ptr; + tran_low_t *dquanAddr = dqcoeff_ptr; + const int shift = 16 - log_scale; + const int coeff_stride = 4; + const int quan_stride = coeff_stride; + (void)zbin_ptr; + (void)quant_shift_ptr; + (void)scan; + + memset(quanAddr, 0, count * sizeof(quanAddr[0])); + memset(dquanAddr, 0, count * sizeof(dquanAddr[0])); + + coeff[0] = _mm_loadu_si128((__m128i const *)src); + const int round1 = ROUND_POWER_OF_TWO(round_ptr[1], log_scale); + const int round0 = ROUND_POWER_OF_TWO(round_ptr[0], log_scale); + + qparam[0] = _mm_set_epi32(round1, round1, round1, round0); + qparam[1] = xx_set_64_from_32i(quant_ptr[1], quant_ptr[0]); + qparam[2] = xx_set_64_from_32i(dequant_ptr[1], dequant_ptr[0]); + qparam[3] = _mm_set_epi32(dequant_ptr[1], dequant_ptr[1], dequant_ptr[1], + dequant_ptr[0]); + + // DC and first 3 AC + quantize_coeff_phase1(&coeff[0], qparam, shift, log_scale, qcoeff, dequant, + &coeff_sign); + + // update round/quan/dquan for AC + qparam[0] = _mm_unpackhi_epi64(qparam[0], qparam[0]); + qparam[1] = xx_set1_64_from_32i(quant_ptr[1]); + qparam[2] = xx_set1_64_from_32i(dequant_ptr[1]); + qparam[3] = _mm_set1_epi32(dequant_ptr[1]); + quantize_coeff_phase2(qcoeff, dequant, &coeff_sign, qparam, shift, log_scale, + quanAddr, dquanAddr); + + // next 4 AC + coeff[1] = _mm_loadu_si128((__m128i const *)(src + coeff_stride)); + quantize_coeff_phase1(&coeff[1], qparam, shift, log_scale, qcoeff, dequant, + &coeff_sign); + quantize_coeff_phase2(qcoeff, dequant, &coeff_sign, qparam, shift, log_scale, + quanAddr + quan_stride, dquanAddr + quan_stride); + + find_eob(quanAddr, iscan, &eob); + + count -= 8; + + // loop for the rest of AC + while (count > 0) { + src += coeff_stride << 1; + quanAddr += quan_stride << 1; + dquanAddr += quan_stride << 1; + iscan += quan_stride << 1; + + coeff[0] = _mm_loadu_si128((__m128i const *)src); + coeff[1] = _mm_loadu_si128((__m128i const *)(src + coeff_stride)); + + quantize_coeff_phase1(&coeff[0], qparam, shift, log_scale, qcoeff, dequant, + &coeff_sign); + quantize_coeff_phase2(qcoeff, dequant, &coeff_sign, qparam, shift, + log_scale, quanAddr, dquanAddr); + + quantize_coeff_phase1(&coeff[1], qparam, shift, log_scale, qcoeff, dequant, + &coeff_sign); + quantize_coeff_phase2(qcoeff, dequant, &coeff_sign, qparam, shift, + log_scale, quanAddr + quan_stride, + dquanAddr + quan_stride); + + find_eob(quanAddr, iscan, &eob); + + count -= 8; + } + *eob_ptr = get_accumulated_eob(&eob); +} diff --git a/third_party/aom/av1/encoder/x86/av1_quantize_avx2.c b/third_party/aom/av1/encoder/x86/av1_quantize_avx2.c new file mode 100644 index 0000000000..df22aaba7c --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_quantize_avx2.c @@ -0,0 +1,330 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <immintrin.h> + +#include "config/av1_rtcd.h" + +#include "aom/aom_integer.h" +#include "aom_dsp/aom_dsp_common.h" + +static INLINE void read_coeff(const tran_low_t *coeff, __m256i *c) { + if (sizeof(tran_low_t) == 4) { + const __m256i x0 = _mm256_loadu_si256((const __m256i *)coeff); + const __m256i x1 = _mm256_loadu_si256((const __m256i *)coeff + 1); + *c = _mm256_packs_epi32(x0, x1); + *c = _mm256_permute4x64_epi64(*c, 0xD8); + } else { + *c = _mm256_loadu_si256((const __m256i *)coeff); + } +} + +static INLINE void write_zero(tran_low_t *qcoeff) { + const __m256i zero = _mm256_setzero_si256(); + if (sizeof(tran_low_t) == 4) { + _mm256_storeu_si256((__m256i *)qcoeff, zero); + _mm256_storeu_si256((__m256i *)qcoeff + 1, zero); + } else { + _mm256_storeu_si256((__m256i *)qcoeff, zero); + } +} + +static INLINE void init_one_qp(const __m128i *p, __m256i *qp) { + const __m128i ac = _mm_unpackhi_epi64(*p, *p); + *qp = _mm256_insertf128_si256(_mm256_castsi128_si256(*p), ac, 1); +} + +static INLINE void init_qp(const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *dequant_ptr, int log_scale, + __m256i *thr, __m256i *qp) { + __m128i round = _mm_loadu_si128((const __m128i *)round_ptr); + const __m128i quant = _mm_loadu_si128((const __m128i *)quant_ptr); + const __m128i dequant = _mm_loadu_si128((const __m128i *)dequant_ptr); + + if (log_scale > 0) { + const __m128i rnd = _mm_set1_epi16((int16_t)1 << (log_scale - 1)); + round = _mm_add_epi16(round, rnd); + round = _mm_srai_epi16(round, log_scale); + } + + init_one_qp(&round, &qp[0]); + init_one_qp(&quant, &qp[1]); + + if (log_scale == 1) { + qp[1] = _mm256_slli_epi16(qp[1], log_scale); + } + + init_one_qp(&dequant, &qp[2]); + *thr = _mm256_srai_epi16(qp[2], 1 + log_scale); +} + +static INLINE void update_qp(int log_scale, __m256i *thr, __m256i *qp) { + qp[0] = _mm256_permute2x128_si256(qp[0], qp[0], 0x11); + qp[1] = _mm256_permute2x128_si256(qp[1], qp[1], 0x11); + qp[2] = _mm256_permute2x128_si256(qp[2], qp[2], 0x11); + *thr = _mm256_srai_epi16(qp[2], 1 + log_scale); +} + +#define store_quan(q, addr) \ + do { \ + __m256i sign_bits = _mm256_srai_epi16(q, 15); \ + __m256i y0 = _mm256_unpacklo_epi16(q, sign_bits); \ + __m256i y1 = _mm256_unpackhi_epi16(q, sign_bits); \ + __m256i x0 = _mm256_permute2x128_si256(y0, y1, 0x20); \ + __m256i x1 = _mm256_permute2x128_si256(y0, y1, 0x31); \ + _mm256_storeu_si256((__m256i *)addr, x0); \ + _mm256_storeu_si256((__m256i *)addr + 1, x1); \ + } while (0) + +#define store_two_quan(q, addr1, dq, addr2) \ + do { \ + if (sizeof(tran_low_t) == 4) { \ + store_quan(q, addr1); \ + store_quan(dq, addr2); \ + } else { \ + _mm256_storeu_si256((__m256i *)addr1, q); \ + _mm256_storeu_si256((__m256i *)addr2, dq); \ + } \ + } while (0) + +static INLINE uint16_t quant_gather_eob(__m256i eob) { + const __m128i eob_lo = _mm256_castsi256_si128(eob); + const __m128i eob_hi = _mm256_extractf128_si256(eob, 1); + __m128i eob_s = _mm_max_epi16(eob_lo, eob_hi); + eob_s = _mm_subs_epu16(_mm_set1_epi16(INT16_MAX), eob_s); + eob_s = _mm_minpos_epu16(eob_s); + return INT16_MAX - _mm_extract_epi16(eob_s, 0); +} + +static INLINE void quantize(const __m256i *thr, const __m256i *qp, __m256i *c, + const int16_t *iscan_ptr, tran_low_t *qcoeff, + tran_low_t *dqcoeff, __m256i *eob) { + const __m256i abs_coeff = _mm256_abs_epi16(*c); + __m256i mask = _mm256_cmpgt_epi16(abs_coeff, *thr); + mask = _mm256_or_si256(mask, _mm256_cmpeq_epi16(abs_coeff, *thr)); + const int nzflag = _mm256_movemask_epi8(mask); + + if (nzflag) { + __m256i q = _mm256_adds_epi16(abs_coeff, qp[0]); + q = _mm256_mulhi_epi16(q, qp[1]); + q = _mm256_sign_epi16(q, *c); + const __m256i dq = _mm256_mullo_epi16(q, qp[2]); + + store_two_quan(q, qcoeff, dq, dqcoeff); + const __m256i zero = _mm256_setzero_si256(); + const __m256i iscan = _mm256_loadu_si256((const __m256i *)iscan_ptr); + const __m256i zero_coeff = _mm256_cmpeq_epi16(dq, zero); + const __m256i nzero_coeff = _mm256_cmpeq_epi16(zero_coeff, zero); + __m256i cur_eob = _mm256_sub_epi16(iscan, nzero_coeff); + cur_eob = _mm256_and_si256(cur_eob, nzero_coeff); + *eob = _mm256_max_epi16(*eob, cur_eob); + } else { + write_zero(qcoeff); + write_zero(dqcoeff); + } +} + +void av1_quantize_fp_avx2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + (void)scan_ptr; + (void)zbin_ptr; + (void)quant_shift_ptr; + const unsigned int step = 16; + + __m256i qp[3]; + __m256i coeff, thr; + const int log_scale = 0; + + init_qp(round_ptr, quant_ptr, dequant_ptr, log_scale, &thr, qp); + read_coeff(coeff_ptr, &coeff); + + __m256i eob = _mm256_setzero_si256(); + quantize(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + + update_qp(log_scale, &thr, qp); + + while (n_coeffs > 0) { + read_coeff(coeff_ptr, &coeff); + quantize(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + } + *eob_ptr = quant_gather_eob(eob); +} + +static INLINE void quantize_32x32(const __m256i *thr, const __m256i *qp, + __m256i *c, const int16_t *iscan_ptr, + tran_low_t *qcoeff, tran_low_t *dqcoeff, + __m256i *eob) { + const __m256i abs_coeff = _mm256_abs_epi16(*c); + __m256i mask = _mm256_cmpgt_epi16(abs_coeff, *thr); + mask = _mm256_or_si256(mask, _mm256_cmpeq_epi16(abs_coeff, *thr)); + const int nzflag = _mm256_movemask_epi8(mask); + + if (nzflag) { + __m256i q = _mm256_adds_epi16(abs_coeff, qp[0]); + q = _mm256_mulhi_epu16(q, qp[1]); + + __m256i dq = _mm256_mullo_epi16(q, qp[2]); + dq = _mm256_srli_epi16(dq, 1); + + q = _mm256_sign_epi16(q, *c); + dq = _mm256_sign_epi16(dq, *c); + + store_two_quan(q, qcoeff, dq, dqcoeff); + const __m256i zero = _mm256_setzero_si256(); + const __m256i iscan = _mm256_loadu_si256((const __m256i *)iscan_ptr); + const __m256i zero_coeff = _mm256_cmpeq_epi16(dq, zero); + const __m256i nzero_coeff = _mm256_cmpeq_epi16(zero_coeff, zero); + __m256i cur_eob = _mm256_sub_epi16(iscan, nzero_coeff); + cur_eob = _mm256_and_si256(cur_eob, nzero_coeff); + *eob = _mm256_max_epi16(*eob, cur_eob); + } else { + write_zero(qcoeff); + write_zero(dqcoeff); + } +} + +void av1_quantize_fp_32x32_avx2( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + (void)scan_ptr; + (void)zbin_ptr; + (void)quant_shift_ptr; + const unsigned int step = 16; + + __m256i qp[3]; + __m256i coeff, thr; + const int log_scale = 1; + + init_qp(round_ptr, quant_ptr, dequant_ptr, log_scale, &thr, qp); + read_coeff(coeff_ptr, &coeff); + + __m256i eob = _mm256_setzero_si256(); + quantize_32x32(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + + update_qp(log_scale, &thr, qp); + + while (n_coeffs > 0) { + read_coeff(coeff_ptr, &coeff); + quantize_32x32(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + } + *eob_ptr = quant_gather_eob(eob); +} + +static INLINE void quantize_64x64(const __m256i *thr, const __m256i *qp, + __m256i *c, const int16_t *iscan_ptr, + tran_low_t *qcoeff, tran_low_t *dqcoeff, + __m256i *eob) { + const __m256i abs_coeff = _mm256_abs_epi16(*c); + __m256i mask = _mm256_cmpgt_epi16(abs_coeff, *thr); + mask = _mm256_or_si256(mask, _mm256_cmpeq_epi16(abs_coeff, *thr)); + const int nzflag = _mm256_movemask_epi8(mask); + + if (nzflag) { + __m256i q = _mm256_adds_epi16(abs_coeff, qp[0]); + __m256i qh = _mm256_mulhi_epi16(q, qp[1]); + __m256i ql = _mm256_mullo_epi16(q, qp[1]); + qh = _mm256_slli_epi16(qh, 2); + ql = _mm256_srli_epi16(ql, 14); + q = _mm256_or_si256(qh, ql); + const __m256i dqh = _mm256_slli_epi16(_mm256_mulhi_epi16(q, qp[2]), 14); + const __m256i dql = _mm256_srli_epi16(_mm256_mullo_epi16(q, qp[2]), 2); + __m256i dq = _mm256_or_si256(dqh, dql); + + q = _mm256_sign_epi16(q, *c); + dq = _mm256_sign_epi16(dq, *c); + + store_two_quan(q, qcoeff, dq, dqcoeff); + const __m256i zero = _mm256_setzero_si256(); + const __m256i iscan = _mm256_loadu_si256((const __m256i *)iscan_ptr); + const __m256i zero_coeff = _mm256_cmpeq_epi16(dq, zero); + const __m256i nzero_coeff = _mm256_cmpeq_epi16(zero_coeff, zero); + __m256i cur_eob = _mm256_sub_epi16(iscan, nzero_coeff); + cur_eob = _mm256_and_si256(cur_eob, nzero_coeff); + *eob = _mm256_max_epi16(*eob, cur_eob); + } else { + write_zero(qcoeff); + write_zero(dqcoeff); + } +} + +void av1_quantize_fp_64x64_avx2( + const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, + const int16_t *round_ptr, const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, + tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + (void)scan_ptr; + (void)zbin_ptr; + (void)quant_shift_ptr; + const unsigned int step = 16; + + __m256i qp[3]; + __m256i coeff, thr; + const int log_scale = 2; + + init_qp(round_ptr, quant_ptr, dequant_ptr, log_scale, &thr, qp); + read_coeff(coeff_ptr, &coeff); + + __m256i eob = _mm256_setzero_si256(); + quantize_64x64(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + + update_qp(log_scale, &thr, qp); + + while (n_coeffs > 0) { + read_coeff(coeff_ptr, &coeff); + quantize_64x64(&thr, qp, &coeff, iscan_ptr, qcoeff_ptr, dqcoeff_ptr, &eob); + + coeff_ptr += step; + qcoeff_ptr += step; + dqcoeff_ptr += step; + iscan_ptr += step; + n_coeffs -= step; + } + *eob_ptr = quant_gather_eob(eob); +} diff --git a/third_party/aom/av1/encoder/x86/av1_quantize_sse2.c b/third_party/aom/av1/encoder/x86/av1_quantize_sse2.c new file mode 100644 index 0000000000..b07e7717f3 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_quantize_sse2.c @@ -0,0 +1,189 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <emmintrin.h> +#include <xmmintrin.h> + +#include "config/av1_rtcd.h" + +#include "aom/aom_integer.h" + +static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset, + __m128i *c0, __m128i *c1) { + const tran_low_t *addr = coeff + offset; + if (sizeof(tran_low_t) == 4) { + const __m128i x0 = _mm_load_si128((const __m128i *)addr); + const __m128i x1 = _mm_load_si128((const __m128i *)addr + 1); + const __m128i x2 = _mm_load_si128((const __m128i *)addr + 2); + const __m128i x3 = _mm_load_si128((const __m128i *)addr + 3); + *c0 = _mm_packs_epi32(x0, x1); + *c1 = _mm_packs_epi32(x2, x3); + } else { + *c0 = _mm_load_si128((const __m128i *)addr); + *c1 = _mm_load_si128((const __m128i *)addr + 1); + } +} + +static INLINE void write_qcoeff(const __m128i *qc0, const __m128i *qc1, + tran_low_t *qcoeff, intptr_t offset) { + tran_low_t *addr = qcoeff + offset; + if (sizeof(tran_low_t) == 4) { + const __m128i zero = _mm_setzero_si128(); + __m128i sign_bits = _mm_cmplt_epi16(*qc0, zero); + __m128i y0 = _mm_unpacklo_epi16(*qc0, sign_bits); + __m128i y1 = _mm_unpackhi_epi16(*qc0, sign_bits); + _mm_store_si128((__m128i *)addr, y0); + _mm_store_si128((__m128i *)addr + 1, y1); + + sign_bits = _mm_cmplt_epi16(*qc1, zero); + y0 = _mm_unpacklo_epi16(*qc1, sign_bits); + y1 = _mm_unpackhi_epi16(*qc1, sign_bits); + _mm_store_si128((__m128i *)addr + 2, y0); + _mm_store_si128((__m128i *)addr + 3, y1); + } else { + _mm_store_si128((__m128i *)addr, *qc0); + _mm_store_si128((__m128i *)addr + 1, *qc1); + } +} + +static INLINE void write_zero(tran_low_t *qcoeff, intptr_t offset) { + const __m128i zero = _mm_setzero_si128(); + tran_low_t *addr = qcoeff + offset; + if (sizeof(tran_low_t) == 4) { + _mm_store_si128((__m128i *)addr, zero); + _mm_store_si128((__m128i *)addr + 1, zero); + _mm_store_si128((__m128i *)addr + 2, zero); + _mm_store_si128((__m128i *)addr + 3, zero); + } else { + _mm_store_si128((__m128i *)addr, zero); + _mm_store_si128((__m128i *)addr + 1, zero); + } +} + +static INLINE void quantize(const int16_t *iscan_ptr, + const tran_low_t *coeff_ptr, intptr_t n_coeffs, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const __m128i *round0, const __m128i *round1, + const __m128i *quant0, const __m128i *quant1, + const __m128i *dequant0, const __m128i *dequant1, + const __m128i *thr0, const __m128i *thr1, + __m128i *eob) { + __m128i coeff0, coeff1; + // Do DC and first 15 AC + read_coeff(coeff_ptr, n_coeffs, &coeff0, &coeff1); + + // Poor man's sign extract + const __m128i coeff0_sign = _mm_srai_epi16(coeff0, 15); + const __m128i coeff1_sign = _mm_srai_epi16(coeff1, 15); + __m128i qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign); + __m128i qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + const __m128i mask0 = _mm_or_si128(_mm_cmpgt_epi16(qcoeff0, *thr0), + _mm_cmpeq_epi16(qcoeff0, *thr0)); + const __m128i mask1 = _mm_or_si128(_mm_cmpgt_epi16(qcoeff1, *thr1), + _mm_cmpeq_epi16(qcoeff1, *thr1)); + const int16_t nzflag = _mm_movemask_epi8(mask0) | _mm_movemask_epi8(mask1); + + if (nzflag) { + qcoeff0 = _mm_adds_epi16(qcoeff0, *round0); + qcoeff1 = _mm_adds_epi16(qcoeff1, *round1); + const __m128i qtmp0 = _mm_mulhi_epi16(qcoeff0, *quant0); + const __m128i qtmp1 = _mm_mulhi_epi16(qcoeff1, *quant1); + + // Reinsert signs + qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign); + qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign); + qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign); + qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign); + + write_qcoeff(&qcoeff0, &qcoeff1, qcoeff_ptr, n_coeffs); + + coeff0 = _mm_mullo_epi16(qcoeff0, *dequant0); + coeff1 = _mm_mullo_epi16(qcoeff1, *dequant1); + + write_qcoeff(&coeff0, &coeff1, dqcoeff_ptr, n_coeffs); + + const __m128i zero = _mm_setzero_si128(); + // Scan for eob + const __m128i zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero); + const __m128i zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero); + const __m128i nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero); + const __m128i nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero); + const __m128i iscan0 = + _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs)); + const __m128i iscan1 = + _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1); + // Add one to convert from indices to counts + const __m128i iscan0_nz = _mm_sub_epi16(iscan0, nzero_coeff0); + const __m128i iscan1_nz = _mm_sub_epi16(iscan1, nzero_coeff1); + const __m128i eob0 = _mm_and_si128(iscan0_nz, nzero_coeff0); + const __m128i eob1 = _mm_and_si128(iscan1_nz, nzero_coeff1); + const __m128i eob2 = _mm_max_epi16(eob0, eob1); + *eob = _mm_max_epi16(*eob, eob2); + } else { + write_zero(qcoeff_ptr, n_coeffs); + write_zero(dqcoeff_ptr, n_coeffs); + } +} + +void av1_quantize_fp_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs, + const int16_t *zbin_ptr, const int16_t *round_ptr, + const int16_t *quant_ptr, + const int16_t *quant_shift_ptr, + tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, + const int16_t *dequant_ptr, uint16_t *eob_ptr, + const int16_t *scan_ptr, const int16_t *iscan_ptr) { + (void)scan_ptr; + (void)zbin_ptr; + (void)quant_shift_ptr; + + coeff_ptr += n_coeffs; + iscan_ptr += n_coeffs; + qcoeff_ptr += n_coeffs; + dqcoeff_ptr += n_coeffs; + n_coeffs = -n_coeffs; + + const __m128i round0 = _mm_load_si128((const __m128i *)round_ptr); + const __m128i round1 = _mm_unpackhi_epi64(round0, round0); + const __m128i quant0 = _mm_load_si128((const __m128i *)quant_ptr); + const __m128i quant1 = _mm_unpackhi_epi64(quant0, quant0); + const __m128i dequant0 = _mm_load_si128((const __m128i *)dequant_ptr); + const __m128i dequant1 = _mm_unpackhi_epi64(dequant0, dequant0); + const __m128i thr0 = _mm_srai_epi16(dequant0, 1); + const __m128i thr1 = _mm_srai_epi16(dequant1, 1); + __m128i eob = _mm_setzero_si128(); + + quantize(iscan_ptr, coeff_ptr, n_coeffs, qcoeff_ptr, dqcoeff_ptr, &round0, + &round1, &quant0, &quant1, &dequant0, &dequant1, &thr0, &thr1, &eob); + + n_coeffs += 8 * 2; + + // AC only loop + while (n_coeffs < 0) { + quantize(iscan_ptr, coeff_ptr, n_coeffs, qcoeff_ptr, dqcoeff_ptr, &round1, + &round1, &quant1, &quant1, &dequant1, &dequant1, &thr1, &thr1, + &eob); + n_coeffs += 8 * 2; + } + + // Accumulate EOB + { + __m128i eob_shuffled; + eob_shuffled = _mm_shuffle_epi32(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0xe); + eob = _mm_max_epi16(eob, eob_shuffled); + eob_shuffled = _mm_shufflelo_epi16(eob, 0x1); + eob = _mm_max_epi16(eob, eob_shuffled); + *eob_ptr = _mm_extract_epi16(eob, 1); + } +} diff --git a/third_party/aom/av1/encoder/x86/av1_quantize_ssse3_x86_64.asm b/third_party/aom/av1/encoder/x86/av1_quantize_ssse3_x86_64.asm new file mode 100644 index 0000000000..ad4ae274e2 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_quantize_ssse3_x86_64.asm @@ -0,0 +1,204 @@ +; +; Copyright (c) 2016, Alliance for Open Media. All rights reserved +; +; This source code is subject to the terms of the BSD 2 Clause License and +; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +; was not distributed with this source code in the LICENSE file, you can +; obtain it at www.aomedia.org/license/software. If the Alliance for Open +; Media Patent License 1.0 was not distributed with this source code in the +; PATENTS file, you can obtain it at www.aomedia.org/license/patent. +; + +; + +%define private_prefix av1 + +%include "third_party/x86inc/x86inc.asm" + +SECTION_RODATA +pw_1: times 8 dw 1 + +SECTION .text + +%macro QUANTIZE_FP 2 +cglobal quantize_%1, 0, %2, 15, coeff, ncoeff, skip, zbin, round, quant, \ + shift, qcoeff, dqcoeff, dequant, \ + eob, scan, iscan + cmp dword skipm, 0 + jne .blank + + ; actual quantize loop - setup pointers, rounders, etc. + movifnidn coeffq, coeffmp + movifnidn ncoeffq, ncoeffmp + mov r2, dequantmp + movifnidn zbinq, zbinmp + movifnidn roundq, roundmp + movifnidn quantq, quantmp + mova m1, [roundq] ; m1 = round + mova m2, [quantq] ; m2 = quant +%ifidn %1, fp_32x32 + pcmpeqw m5, m5 + psrlw m5, 15 + paddw m1, m5 + psrlw m1, 1 ; m1 = (m1 + 1) / 2 +%endif + mova m3, [r2q] ; m3 = dequant + mov r3, qcoeffmp + mov r4, dqcoeffmp + mov r5, iscanmp +%ifidn %1, fp_32x32 + psllw m2, 1 +%endif + pxor m5, m5 ; m5 = dedicated zero + + lea coeffq, [ coeffq+ncoeffq*2] + lea r5q, [ r5q+ncoeffq*2] + lea r3q, [ r3q+ncoeffq*2] + lea r4q, [r4q+ncoeffq*2] + neg ncoeffq + + ; get DC and first 15 AC coeffs + mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i] + mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i] + pabsw m6, m9 ; m6 = abs(m9) + pabsw m11, m10 ; m11 = abs(m10) + pcmpeqw m7, m7 + + paddsw m6, m1 ; m6 += round + punpckhqdq m1, m1 + paddsw m11, m1 ; m11 += round + pmulhw m8, m6, m2 ; m8 = m6*q>>16 + punpckhqdq m2, m2 + pmulhw m13, m11, m2 ; m13 = m11*q>>16 + psignw m8, m9 ; m8 = reinsert sign + psignw m13, m10 ; m13 = reinsert sign + mova [r3q+ncoeffq*2+ 0], m8 + mova [r3q+ncoeffq*2+16], m13 +%ifidn %1, fp_32x32 + pabsw m8, m8 + pabsw m13, m13 +%endif + pmullw m8, m3 ; r4[i] = r3[i] * q + punpckhqdq m3, m3 + pmullw m13, m3 ; r4[i] = r3[i] * q +%ifidn %1, fp_32x32 + psrlw m8, 1 + psrlw m13, 1 + psignw m8, m9 + psignw m13, m10 + psrlw m0, m3, 2 +%else + psrlw m0, m3, 1 +%endif + mova [r4q+ncoeffq*2+ 0], m8 + mova [r4q+ncoeffq*2+16], m13 + pcmpeqw m8, m5 ; m8 = c[i] == 0 + pcmpeqw m13, m5 ; m13 = c[i] == 0 + mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i] + mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i] + psubw m6, m7 ; m6 = scan[i] + 1 + psubw m11, m7 ; m11 = scan[i] + 1 + pandn m8, m6 ; m8 = max(eob) + pandn m13, m11 ; m13 = max(eob) + pmaxsw m8, m13 + add ncoeffq, mmsize + jz .accumulate_eob + +.ac_only_loop: + mova m9, [ coeffq+ncoeffq*2+ 0] ; m9 = c[i] + mova m10, [ coeffq+ncoeffq*2+16] ; m10 = c[i] + pabsw m6, m9 ; m6 = abs(m9) + pabsw m11, m10 ; m11 = abs(m10) + + pcmpgtw m7, m6, m0 + pcmpgtw m12, m11, m0 + pmovmskb r6d, m7 + pmovmskb r2d, m12 + + or r6, r2 + jz .skip_iter + + pcmpeqw m7, m7 + + paddsw m6, m1 ; m6 += round + paddsw m11, m1 ; m11 += round + pmulhw m14, m6, m2 ; m14 = m6*q>>16 + pmulhw m13, m11, m2 ; m13 = m11*q>>16 + psignw m14, m9 ; m14 = reinsert sign + psignw m13, m10 ; m13 = reinsert sign + mova [r3q+ncoeffq*2+ 0], m14 + mova [r3q+ncoeffq*2+16], m13 +%ifidn %1, fp_32x32 + pabsw m14, m14 + pabsw m13, m13 +%endif + pmullw m14, m3 ; r4[i] = r3[i] * q + pmullw m13, m3 ; r4[i] = r3[i] * q +%ifidn %1, fp_32x32 + psrlw m14, 1 + psrlw m13, 1 + psignw m14, m9 + psignw m13, m10 +%endif + mova [r4q+ncoeffq*2+ 0], m14 + mova [r4q+ncoeffq*2+16], m13 + pcmpeqw m14, m5 ; m14 = c[i] == 0 + pcmpeqw m13, m5 ; m13 = c[i] == 0 + mova m6, [ r5q+ncoeffq*2+ 0] ; m6 = scan[i] + mova m11, [ r5q+ncoeffq*2+16] ; m11 = scan[i] + psubw m6, m7 ; m6 = scan[i] + 1 + psubw m11, m7 ; m11 = scan[i] + 1 + pandn m14, m6 ; m14 = max(eob) + pandn m13, m11 ; m13 = max(eob) + pmaxsw m8, m14 + pmaxsw m8, m13 + add ncoeffq, mmsize + jl .ac_only_loop + + jmp .accumulate_eob +.skip_iter: + mova [r3q+ncoeffq*2+ 0], m5 + mova [r3q+ncoeffq*2+16], m5 + mova [r4q+ncoeffq*2+ 0], m5 + mova [r4q+ncoeffq*2+16], m5 + add ncoeffq, mmsize + jl .ac_only_loop + +.accumulate_eob: + ; horizontally accumulate/max eobs and write into [eob] memory pointer + mov r2, eobmp + pshufd m7, m8, 0xe + pmaxsw m8, m7 + pshuflw m7, m8, 0xe + pmaxsw m8, m7 + pshuflw m7, m8, 0x1 + pmaxsw m8, m7 + pextrw r6, m8, 0 + mov [r2], r6 + RET + + ; skip-block, i.e. just write all zeroes +.blank: + mov r0, dqcoeffmp + movifnidn ncoeffq, ncoeffmp + mov r2, qcoeffmp + mov r3, eobmp + + lea r0q, [r0q+ncoeffq*2] + lea r2q, [r2q+ncoeffq*2] + neg ncoeffq + pxor m7, m7 +.blank_loop: + mova [r0q+ncoeffq*2+ 0], m7 + mova [r0q+ncoeffq*2+16], m7 + mova [r2q+ncoeffq*2+ 0], m7 + mova [r2q+ncoeffq*2+16], m7 + add ncoeffq, mmsize + jl .blank_loop + mov word [r3q], 0 + RET +%endmacro + +INIT_XMM ssse3 +QUANTIZE_FP fp, 7 +QUANTIZE_FP fp_32x32, 7 diff --git a/third_party/aom/av1/encoder/x86/av1_ssim_opt_x86_64.asm b/third_party/aom/av1/encoder/x86/av1_ssim_opt_x86_64.asm new file mode 100644 index 0000000000..faa2a232a3 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_ssim_opt_x86_64.asm @@ -0,0 +1,222 @@ +; +; Copyright (c) 2016, Alliance for Open Media. All rights reserved +; +; This source code is subject to the terms of the BSD 2 Clause License and +; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +; was not distributed with this source code in the LICENSE file, you can +; obtain it at www.aomedia.org/license/software. If the Alliance for Open +; Media Patent License 1.0 was not distributed with this source code in the +; PATENTS file, you can obtain it at www.aomedia.org/license/patent. +; + +; + +%include "aom_ports/x86_abi_support.asm" + +; tabulate_ssim - sums sum_s,sum_r,sum_sq_s,sum_sq_r, sum_sxr +%macro TABULATE_SSIM 0 + paddusw xmm15, xmm3 ; sum_s + paddusw xmm14, xmm4 ; sum_r + movdqa xmm1, xmm3 + pmaddwd xmm1, xmm1 + paddd xmm13, xmm1 ; sum_sq_s + movdqa xmm2, xmm4 + pmaddwd xmm2, xmm2 + paddd xmm12, xmm2 ; sum_sq_r + pmaddwd xmm3, xmm4 + paddd xmm11, xmm3 ; sum_sxr +%endmacro + +; Sum across the register %1 starting with q words +%macro SUM_ACROSS_Q 1 + movdqa xmm2,%1 + punpckldq %1,xmm0 + punpckhdq xmm2,xmm0 + paddq %1,xmm2 + movdqa xmm2,%1 + punpcklqdq %1,xmm0 + punpckhqdq xmm2,xmm0 + paddq %1,xmm2 +%endmacro + +; Sum across the register %1 starting with q words +%macro SUM_ACROSS_W 1 + movdqa xmm1, %1 + punpcklwd %1,xmm0 + punpckhwd xmm1,xmm0 + paddd %1, xmm1 + SUM_ACROSS_Q %1 +%endmacro + +SECTION .text + +;void ssim_parms_sse2( +; unsigned char *s, +; int sp, +; unsigned char *r, +; int rp +; unsigned long *sum_s, +; unsigned long *sum_r, +; unsigned long *sum_sq_s, +; unsigned long *sum_sq_r, +; unsigned long *sum_sxr); +; +; TODO: Use parm passing through structure, probably don't need the pxors +; ( calling app will initialize to 0 ) could easily fit everything in sse2 +; without too much hastle, and can probably do better estimates with psadw +; or pavgb At this point this is just meant to be first pass for calculating +; all the parms needed for 16x16 ssim so we can play with dssim as distortion +; in mode selection code. +global sym(av1_ssim_parms_16x16_sse2) PRIVATE +sym(av1_ssim_parms_16x16_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 9 + SAVE_XMM 15 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;s + mov rcx, arg(1) ;sp + mov rdi, arg(2) ;r + mov rax, arg(3) ;rp + + pxor xmm0, xmm0 + pxor xmm15,xmm15 ;sum_s + pxor xmm14,xmm14 ;sum_r + pxor xmm13,xmm13 ;sum_sq_s + pxor xmm12,xmm12 ;sum_sq_r + pxor xmm11,xmm11 ;sum_sxr + + mov rdx, 16 ;row counter +.NextRow: + + ;grab source and reference pixels + movdqu xmm5, [rsi] + movdqu xmm6, [rdi] + movdqa xmm3, xmm5 + movdqa xmm4, xmm6 + punpckhbw xmm3, xmm0 ; high_s + punpckhbw xmm4, xmm0 ; high_r + + TABULATE_SSIM + + movdqa xmm3, xmm5 + movdqa xmm4, xmm6 + punpcklbw xmm3, xmm0 ; low_s + punpcklbw xmm4, xmm0 ; low_r + + TABULATE_SSIM + + add rsi, rcx ; next s row + add rdi, rax ; next r row + + dec rdx ; counter + jnz .NextRow + + SUM_ACROSS_W xmm15 + SUM_ACROSS_W xmm14 + SUM_ACROSS_Q xmm13 + SUM_ACROSS_Q xmm12 + SUM_ACROSS_Q xmm11 + + mov rdi,arg(4) + movd [rdi], xmm15; + mov rdi,arg(5) + movd [rdi], xmm14; + mov rdi,arg(6) + movd [rdi], xmm13; + mov rdi,arg(7) + movd [rdi], xmm12; + mov rdi,arg(8) + movd [rdi], xmm11; + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +;void ssim_parms_sse2( +; unsigned char *s, +; int sp, +; unsigned char *r, +; int rp +; unsigned long *sum_s, +; unsigned long *sum_r, +; unsigned long *sum_sq_s, +; unsigned long *sum_sq_r, +; unsigned long *sum_sxr); +; +; TODO: Use parm passing through structure, probably don't need the pxors +; ( calling app will initialize to 0 ) could easily fit everything in sse2 +; without too much hastle, and can probably do better estimates with psadw +; or pavgb At this point this is just meant to be first pass for calculating +; all the parms needed for 16x16 ssim so we can play with dssim as distortion +; in mode selection code. +global sym(av1_ssim_parms_8x8_sse2) PRIVATE +sym(av1_ssim_parms_8x8_sse2): + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 9 + SAVE_XMM 15 + push rsi + push rdi + ; end prolog + + mov rsi, arg(0) ;s + mov rcx, arg(1) ;sp + mov rdi, arg(2) ;r + mov rax, arg(3) ;rp + + pxor xmm0, xmm0 + pxor xmm15,xmm15 ;sum_s + pxor xmm14,xmm14 ;sum_r + pxor xmm13,xmm13 ;sum_sq_s + pxor xmm12,xmm12 ;sum_sq_r + pxor xmm11,xmm11 ;sum_sxr + + mov rdx, 8 ;row counter +.NextRow: + + ;grab source and reference pixels + movq xmm3, [rsi] + movq xmm4, [rdi] + punpcklbw xmm3, xmm0 ; low_s + punpcklbw xmm4, xmm0 ; low_r + + TABULATE_SSIM + + add rsi, rcx ; next s row + add rdi, rax ; next r row + + dec rdx ; counter + jnz .NextRow + + SUM_ACROSS_W xmm15 + SUM_ACROSS_W xmm14 + SUM_ACROSS_Q xmm13 + SUM_ACROSS_Q xmm12 + SUM_ACROSS_Q xmm11 + + mov rdi,arg(4) + movd [rdi], xmm15; + mov rdi,arg(5) + movd [rdi], xmm14; + mov rdi,arg(6) + movd [rdi], xmm13; + mov rdi,arg(7) + movd [rdi], xmm12; + mov rdi,arg(8) + movd [rdi], xmm11; + + ; begin epilog + pop rdi + pop rsi + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret diff --git a/third_party/aom/av1/encoder/x86/av1_txfm1d_sse4.h b/third_party/aom/av1/encoder/x86/av1_txfm1d_sse4.h new file mode 100644 index 0000000000..6df2a8bdbb --- /dev/null +++ b/third_party/aom/av1/encoder/x86/av1_txfm1d_sse4.h @@ -0,0 +1,142 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#ifndef AOM_AV1_ENCODER_X86_AV1_TXFM1D_SSE4_H_ +#define AOM_AV1_ENCODER_X86_AV1_TXFM1D_SSE4_H_ + +#include <smmintrin.h> +#include "av1/common/av1_txfm.h" +#include "av1/common/x86/av1_txfm_sse4.h" + +#ifdef __cplusplus +extern "C" { +#endif + +void av1_fdct4_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_fdct8_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_fdct16_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_fdct32_new_sse4_1(const __m128i *input, __m128i *output, + int8_t cos_bit); +void av1_fdct64_new_sse4_1(const __m128i *input, __m128i *output, + int8_t cos_bit, const int instride, + const int outstride); + +void av1_fadst4_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_fadst8_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_fadst16_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); + +void av1_idct4_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_idct8_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_idct16_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_idct32_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_idct64_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); + +void av1_iadst4_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_iadst8_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +void av1_iadst16_new_sse4_1(const __m128i *input, __m128i *output, + const int8_t cos_bit, const int8_t *stage_range); +static INLINE void transpose_32_4x4(int stride, const __m128i *input, + __m128i *output) { + __m128i temp0 = _mm_unpacklo_epi32(input[0 * stride], input[2 * stride]); + __m128i temp1 = _mm_unpackhi_epi32(input[0 * stride], input[2 * stride]); + __m128i temp2 = _mm_unpacklo_epi32(input[1 * stride], input[3 * stride]); + __m128i temp3 = _mm_unpackhi_epi32(input[1 * stride], input[3 * stride]); + + output[0 * stride] = _mm_unpacklo_epi32(temp0, temp2); + output[1 * stride] = _mm_unpackhi_epi32(temp0, temp2); + output[2 * stride] = _mm_unpacklo_epi32(temp1, temp3); + output[3 * stride] = _mm_unpackhi_epi32(temp1, temp3); +} + +// the entire input block can be represent by a grid of 4x4 blocks +// each 4x4 blocks can be represent by 4 vertical __m128i +// we first transpose each 4x4 block internally +// then transpose the grid +static INLINE void transpose_32(int txfm_size, const __m128i *input, + __m128i *output) { + const int num_per_128 = 4; + const int row_size = txfm_size; + const int col_size = txfm_size / num_per_128; + int r, c; + + // transpose each 4x4 block internally + for (r = 0; r < row_size; r += 4) { + for (c = 0; c < col_size; c++) { + transpose_32_4x4(col_size, &input[r * col_size + c], + &output[c * 4 * col_size + r / 4]); + } + } +} + +// out0 = in0*w0 + in1*w1 +// out1 = -in1*w0 + in0*w1 +#define btf_32_sse4_1_type0(w0, w1, in0, in1, out0, out1, bit) \ + do { \ + const __m128i ww0 = _mm_set1_epi32(w0); \ + const __m128i ww1 = _mm_set1_epi32(w1); \ + const __m128i in0_w0 = _mm_mullo_epi32(in0, ww0); \ + const __m128i in1_w1 = _mm_mullo_epi32(in1, ww1); \ + out0 = _mm_add_epi32(in0_w0, in1_w1); \ + out0 = av1_round_shift_32_sse4_1(out0, bit); \ + const __m128i in0_w1 = _mm_mullo_epi32(in0, ww1); \ + const __m128i in1_w0 = _mm_mullo_epi32(in1, ww0); \ + out1 = _mm_sub_epi32(in0_w1, in1_w0); \ + out1 = av1_round_shift_32_sse4_1(out1, bit); \ + } while (0) + +// out0 = in0*w0 + in1*w1 +// out1 = in1*w0 - in0*w1 +#define btf_32_sse4_1_type1(w0, w1, in0, in1, out0, out1, bit) \ + do { \ + btf_32_sse4_1_type0(w1, w0, in1, in0, out0, out1, bit); \ + } while (0) + +// out0 = in0*w0 + in1*w1 +// out1 = -in1*w0 + in0*w1 +#define btf_32_type0_sse4_1_new(ww0, ww1, in0, in1, out0, out1, r, bit) \ + do { \ + const __m128i in0_w0 = _mm_mullo_epi32(in0, ww0); \ + const __m128i in1_w1 = _mm_mullo_epi32(in1, ww1); \ + out0 = _mm_add_epi32(in0_w0, in1_w1); \ + out0 = _mm_add_epi32(out0, r); \ + out0 = _mm_srai_epi32(out0, bit); \ + const __m128i in0_w1 = _mm_mullo_epi32(in0, ww1); \ + const __m128i in1_w0 = _mm_mullo_epi32(in1, ww0); \ + out1 = _mm_sub_epi32(in0_w1, in1_w0); \ + out1 = _mm_add_epi32(out1, r); \ + out1 = _mm_srai_epi32(out1, bit); \ + } while (0) + +// out0 = in0*w0 + in1*w1 +// out1 = in1*w0 - in0*w1 +#define btf_32_type1_sse4_1_new(ww0, ww1, in0, in1, out0, out1, r, bit) \ + do { \ + btf_32_type0_sse4_1_new(ww1, ww0, in1, in0, out0, out1, r, bit); \ + } while (0) + +#ifdef __cplusplus +} +#endif + +#endif // AOM_AV1_ENCODER_X86_AV1_TXFM1D_SSE4_H_ diff --git a/third_party/aom/av1/encoder/x86/corner_match_sse4.c b/third_party/aom/av1/encoder/x86/corner_match_sse4.c new file mode 100644 index 0000000000..93f37b71d3 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/corner_match_sse4.c @@ -0,0 +1,103 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdlib.h> +#include <memory.h> +#include <math.h> +#include <assert.h> + +#include <smmintrin.h> + +#include "config/av1_rtcd.h" + +#include "aom_ports/mem.h" +#include "av1/encoder/corner_match.h" + +DECLARE_ALIGNED(16, static const uint8_t, byte_mask[16]) = { + 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0 +}; +#if MATCH_SZ != 13 +#error "Need to change byte_mask in corner_match_sse4.c if MATCH_SZ != 13" +#endif + +/* Compute corr(im1, im2) * MATCH_SZ * stddev(im1), where the + correlation/standard deviation are taken over MATCH_SZ by MATCH_SZ windows + of each image, centered at (x1, y1) and (x2, y2) respectively. +*/ +double compute_cross_correlation_sse4_1(unsigned char *im1, int stride1, int x1, + int y1, unsigned char *im2, int stride2, + int x2, int y2) { + int i; + // 2 16-bit partial sums in lanes 0, 4 (== 2 32-bit partial sums in lanes 0, + // 2) + __m128i sum1_vec = _mm_setzero_si128(); + __m128i sum2_vec = _mm_setzero_si128(); + // 4 32-bit partial sums of squares + __m128i sumsq2_vec = _mm_setzero_si128(); + __m128i cross_vec = _mm_setzero_si128(); + + const __m128i mask = _mm_load_si128((__m128i *)byte_mask); + const __m128i zero = _mm_setzero_si128(); + + im1 += (y1 - MATCH_SZ_BY2) * stride1 + (x1 - MATCH_SZ_BY2); + im2 += (y2 - MATCH_SZ_BY2) * stride2 + (x2 - MATCH_SZ_BY2); + + for (i = 0; i < MATCH_SZ; ++i) { + const __m128i v1 = + _mm_and_si128(_mm_loadu_si128((__m128i *)&im1[i * stride1]), mask); + const __m128i v2 = + _mm_and_si128(_mm_loadu_si128((__m128i *)&im2[i * stride2]), mask); + + // Using the 'sad' intrinsic here is a bit faster than adding + // v1_l + v1_r and v2_l + v2_r, plus it avoids the need for a 16->32 bit + // conversion step later, for a net speedup of ~10% + sum1_vec = _mm_add_epi16(sum1_vec, _mm_sad_epu8(v1, zero)); + sum2_vec = _mm_add_epi16(sum2_vec, _mm_sad_epu8(v2, zero)); + + const __m128i v1_l = _mm_cvtepu8_epi16(v1); + const __m128i v1_r = _mm_cvtepu8_epi16(_mm_srli_si128(v1, 8)); + const __m128i v2_l = _mm_cvtepu8_epi16(v2); + const __m128i v2_r = _mm_cvtepu8_epi16(_mm_srli_si128(v2, 8)); + + sumsq2_vec = _mm_add_epi32( + sumsq2_vec, + _mm_add_epi32(_mm_madd_epi16(v2_l, v2_l), _mm_madd_epi16(v2_r, v2_r))); + cross_vec = _mm_add_epi32( + cross_vec, + _mm_add_epi32(_mm_madd_epi16(v1_l, v2_l), _mm_madd_epi16(v1_r, v2_r))); + } + + // Now we can treat the four registers (sum1_vec, sum2_vec, sumsq2_vec, + // cross_vec) + // as holding 4 32-bit elements each, which we want to sum horizontally. + // We do this by transposing and then summing vertically. + __m128i tmp_0 = _mm_unpacklo_epi32(sum1_vec, sum2_vec); + __m128i tmp_1 = _mm_unpackhi_epi32(sum1_vec, sum2_vec); + __m128i tmp_2 = _mm_unpacklo_epi32(sumsq2_vec, cross_vec); + __m128i tmp_3 = _mm_unpackhi_epi32(sumsq2_vec, cross_vec); + + __m128i tmp_4 = _mm_unpacklo_epi64(tmp_0, tmp_2); + __m128i tmp_5 = _mm_unpackhi_epi64(tmp_0, tmp_2); + __m128i tmp_6 = _mm_unpacklo_epi64(tmp_1, tmp_3); + __m128i tmp_7 = _mm_unpackhi_epi64(tmp_1, tmp_3); + + __m128i res = + _mm_add_epi32(_mm_add_epi32(tmp_4, tmp_5), _mm_add_epi32(tmp_6, tmp_7)); + + int sum1 = _mm_extract_epi32(res, 0); + int sum2 = _mm_extract_epi32(res, 1); + int sumsq2 = _mm_extract_epi32(res, 2); + int cross = _mm_extract_epi32(res, 3); + + int var2 = sumsq2 * MATCH_SZ_SQ - sum2 * sum2; + int cov = cross * MATCH_SZ_SQ - sum1 * sum2; + return cov / sqrt((double)var2); +} diff --git a/third_party/aom/av1/encoder/x86/dct_sse2.asm b/third_party/aom/av1/encoder/x86/dct_sse2.asm new file mode 100644 index 0000000000..b185548184 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/dct_sse2.asm @@ -0,0 +1,82 @@ +; +; Copyright (c) 2016, Alliance for Open Media. All rights reserved +; +; This source code is subject to the terms of the BSD 2 Clause License and +; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +; was not distributed with this source code in the LICENSE file, you can +; obtain it at www.aomedia.org/license/software. If the Alliance for Open +; Media Patent License 1.0 was not distributed with this source code in the +; PATENTS file, you can obtain it at www.aomedia.org/license/patent. +; + +%define private_prefix av1 + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +%macro TRANSFORM_COLS 0 + paddw m0, m1 + movq m4, m0 + psubw m3, m2 + psubw m4, m3 + psraw m4, 1 + movq m5, m4 + psubw m5, m1 ;b1 + psubw m4, m2 ;c1 + psubw m0, m4 + paddw m3, m5 + ; m0 a0 + SWAP 1, 4 ; m1 c1 + SWAP 2, 3 ; m2 d1 + SWAP 3, 5 ; m3 b1 +%endmacro + +%macro TRANSPOSE_4X4 0 + ; 00 01 02 03 + ; 10 11 12 13 + ; 20 21 22 23 + ; 30 31 32 33 + punpcklwd m0, m1 ; 00 10 01 11 02 12 03 13 + punpcklwd m2, m3 ; 20 30 21 31 22 32 23 33 + mova m1, m0 + punpckldq m0, m2 ; 00 10 20 30 01 11 21 31 + punpckhdq m1, m2 ; 02 12 22 32 03 13 23 33 +%endmacro + +INIT_XMM sse2 +cglobal fwht4x4, 3, 4, 8, input, output, stride + lea r3q, [inputq + strideq*4] + movq m0, [inputq] ;a1 + movq m1, [inputq + strideq*2] ;b1 + movq m2, [r3q] ;c1 + movq m3, [r3q + strideq*2] ;d1 + + TRANSFORM_COLS + TRANSPOSE_4X4 + SWAP 1, 2 + psrldq m1, m0, 8 + psrldq m3, m2, 8 + TRANSFORM_COLS + TRANSPOSE_4X4 + + psllw m0, 2 + psllw m1, 2 + + ; sign extension + mova m2, m0 + mova m3, m1 + punpcklwd m0, m0 + punpcklwd m1, m1 + punpckhwd m2, m2 + punpckhwd m3, m3 + psrad m0, 16 + psrad m1, 16 + psrad m2, 16 + psrad m3, 16 + mova [outputq], m0 + mova [outputq + 16], m2 + mova [outputq + 32], m1 + mova [outputq + 48], m3 + + RET diff --git a/third_party/aom/av1/encoder/x86/encodetxb_avx2.c b/third_party/aom/av1/encoder/x86/encodetxb_avx2.c new file mode 100644 index 0000000000..7642f57d18 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/encodetxb_avx2.c @@ -0,0 +1,130 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <emmintrin.h> // SSE2 +#include <smmintrin.h> /* SSE4.1 */ +#include <immintrin.h> /* AVX2 */ + +#include "aom/aom_integer.h" +#include "aom_dsp/x86/mem_sse2.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/txb_common.h" +#include "aom_dsp/x86/synonyms.h" +#include "aom_dsp/x86/synonyms_avx2.h" + +void av1_txb_init_levels_avx2(const tran_low_t *const coeff, const int width, + const int height, uint8_t *const levels) { + const int stride = width + TX_PAD_HOR; + const __m256i y_zeros = _mm256_setzero_si256(); + + const int32_t pre_len = sizeof(*levels) * TX_PAD_TOP * stride; + uint8_t *pre_buf = levels - TX_PAD_TOP * stride; + uint8_t *pre_buf_end = pre_buf + pre_len; + do { + yy_storeu_256(pre_buf, y_zeros); + pre_buf += 32; + } while (pre_buf < pre_buf_end); + + const int32_t bottom_len = sizeof(*levels) * (TX_PAD_BOTTOM * stride); + uint8_t *bottom_buf_end = levels + (height + TX_PAD_BOTTOM) * stride; + uint8_t *bottom_buf = bottom_buf_end - ((bottom_len + 31) & (~31)); + + do { + yy_storeu_256(bottom_buf, y_zeros); + bottom_buf += 32; + } while (bottom_buf < bottom_buf_end); + + int i = 0; + uint8_t *ls = levels; + const tran_low_t *cf = coeff; + if (width == 4) { + do { + const __m256i c0 = yy_loadu_256(cf); + const __m256i c1 = yy_loadu_256(cf + 8); + const __m256i abs01 = _mm256_abs_epi16(_mm256_packs_epi32(c0, c1)); + const __m256i abs01_8 = _mm256_packs_epi16(abs01, y_zeros); + const __m256i res_ = _mm256_shuffle_epi32(abs01_8, 0xd8); + const __m256i res = _mm256_permute4x64_epi64(res_, 0xd8); + yy_storeu_256(ls, res); + ls += 32; + cf += 16; + i += 4; + } while (i < height); + } else if (width == 8) { + do { + const __m256i coeffA = yy_loadu_256(cf); + const __m256i coeffB = yy_loadu_256(cf + 8); + const __m256i coeffC = yy_loadu_256(cf + 16); + const __m256i coeffD = yy_loadu_256(cf + 24); + const __m256i coeffAB = _mm256_packs_epi32(coeffA, coeffB); + const __m256i coeffCD = _mm256_packs_epi32(coeffC, coeffD); + const __m256i absAB = _mm256_abs_epi16(coeffAB); + const __m256i absCD = _mm256_abs_epi16(coeffCD); + const __m256i absABCD = _mm256_packs_epi16(absAB, absCD); + const __m256i res_ = _mm256_permute4x64_epi64(absABCD, 0xd8); + const __m256i res = _mm256_shuffle_epi32(res_, 0xd8); + const __m128i res0 = _mm256_castsi256_si128(res); + const __m128i res1 = _mm256_extracti128_si256(res, 1); + xx_storel_64(ls, res0); + *(int32_t *)(ls + width) = 0; + xx_storel_64(ls + stride, _mm_srli_si128(res0, 8)); + *(int32_t *)(ls + width + stride) = 0; + xx_storel_64(ls + stride * 2, res1); + *(int32_t *)(ls + width + stride * 2) = 0; + xx_storel_64(ls + stride * 3, _mm_srli_si128(res1, 8)); + *(int32_t *)(ls + width + stride * 3) = 0; + cf += 32; + ls += stride << 2; + i += 4; + } while (i < height); + } else if (width == 16) { + do { + const __m256i coeffA = yy_loadu_256(cf); + const __m256i coeffB = yy_loadu_256(cf + 8); + const __m256i coeffC = yy_loadu_256(cf + 16); + const __m256i coeffD = yy_loadu_256(cf + 24); + const __m256i coeffAB = _mm256_packs_epi32(coeffA, coeffB); + const __m256i coeffCD = _mm256_packs_epi32(coeffC, coeffD); + const __m256i absAB = _mm256_abs_epi16(coeffAB); + const __m256i absCD = _mm256_abs_epi16(coeffCD); + const __m256i absABCD = _mm256_packs_epi16(absAB, absCD); + const __m256i res_ = _mm256_permute4x64_epi64(absABCD, 0xd8); + const __m256i res = _mm256_shuffle_epi32(res_, 0xd8); + xx_storeu_128(ls, _mm256_castsi256_si128(res)); + xx_storeu_128(ls + stride, _mm256_extracti128_si256(res, 1)); + cf += 32; + *(int32_t *)(ls + width) = 0; + *(int32_t *)(ls + stride + width) = 0; + ls += stride << 1; + i += 2; + } while (i < height); + } else { + do { + const __m256i coeffA = yy_loadu_256(cf); + const __m256i coeffB = yy_loadu_256(cf + 8); + const __m256i coeffC = yy_loadu_256(cf + 16); + const __m256i coeffD = yy_loadu_256(cf + 24); + const __m256i coeffAB = _mm256_packs_epi32(coeffA, coeffB); + const __m256i coeffCD = _mm256_packs_epi32(coeffC, coeffD); + const __m256i absAB = _mm256_abs_epi16(coeffAB); + const __m256i absCD = _mm256_abs_epi16(coeffCD); + const __m256i absABCD = _mm256_packs_epi16(absAB, absCD); + const __m256i res_ = _mm256_permute4x64_epi64(absABCD, 0xd8); + const __m256i res = _mm256_shuffle_epi32(res_, 0xd8); + yy_storeu_256(ls, res); + cf += 32; + *(int32_t *)(ls + width) = 0; + ls += stride; + i += 1; + } while (i < height); + } +} diff --git a/third_party/aom/av1/encoder/x86/encodetxb_sse2.c b/third_party/aom/av1/encoder/x86/encodetxb_sse2.c new file mode 100644 index 0000000000..dedb4d02f6 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/encodetxb_sse2.c @@ -0,0 +1,505 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <emmintrin.h> // SSE2 + +#include "aom/aom_integer.h" +#include "aom_dsp/x86/mem_sse2.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/txb_common.h" + +static INLINE void load_levels_4x4x5_sse2(const uint8_t *const src, + const int stride, + const ptrdiff_t *const offsets, + __m128i *const level) { + level[0] = load_8bit_4x4_to_1_reg_sse2(src + 1, stride); + level[1] = load_8bit_4x4_to_1_reg_sse2(src + stride, stride); + level[2] = load_8bit_4x4_to_1_reg_sse2(src + offsets[0], stride); + level[3] = load_8bit_4x4_to_1_reg_sse2(src + offsets[1], stride); + level[4] = load_8bit_4x4_to_1_reg_sse2(src + offsets[2], stride); +} + +static INLINE void load_levels_8x2x5_sse2(const uint8_t *const src, + const int stride, + const ptrdiff_t *const offsets, + __m128i *const level) { + level[0] = load_8bit_8x2_to_1_reg_sse2(src + 1, stride); + level[1] = load_8bit_8x2_to_1_reg_sse2(src + stride, stride); + level[2] = load_8bit_8x2_to_1_reg_sse2(src + offsets[0], stride); + level[3] = load_8bit_8x2_to_1_reg_sse2(src + offsets[1], stride); + level[4] = load_8bit_8x2_to_1_reg_sse2(src + offsets[2], stride); +} + +static INLINE void load_levels_16x1x5_sse2(const uint8_t *const src, + const int stride, + const ptrdiff_t *const offsets, + __m128i *const level) { + level[0] = _mm_loadu_si128((__m128i *)(src + 1)); + level[1] = _mm_loadu_si128((__m128i *)(src + stride)); + level[2] = _mm_loadu_si128((__m128i *)(src + offsets[0])); + level[3] = _mm_loadu_si128((__m128i *)(src + offsets[1])); + level[4] = _mm_loadu_si128((__m128i *)(src + offsets[2])); +} + +static INLINE __m128i get_coeff_contexts_kernel_sse2(__m128i *const level) { + const __m128i const_3 = _mm_set1_epi8(3); + const __m128i const_4 = _mm_set1_epi8(4); + __m128i count; + + count = _mm_min_epu8(level[0], const_3); + level[1] = _mm_min_epu8(level[1], const_3); + level[2] = _mm_min_epu8(level[2], const_3); + level[3] = _mm_min_epu8(level[3], const_3); + level[4] = _mm_min_epu8(level[4], const_3); + count = _mm_add_epi8(count, level[1]); + count = _mm_add_epi8(count, level[2]); + count = _mm_add_epi8(count, level[3]); + count = _mm_add_epi8(count, level[4]); + count = _mm_avg_epu8(count, _mm_setzero_si128()); + count = _mm_min_epu8(count, const_4); + return count; +} + +static INLINE void get_4_nz_map_contexts_2d(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *const coeff_contexts) { + const int stride = 4 + TX_PAD_HOR; + const __m128i pos_to_offset_large = _mm_set1_epi8(21); + __m128i pos_to_offset = + (height == 4) + ? _mm_setr_epi8(0, 1, 6, 6, 1, 6, 6, 21, 6, 6, 21, 21, 6, 21, 21, 21) + : _mm_setr_epi8(0, 11, 11, 11, 11, 11, 11, 11, 6, 6, 21, 21, 6, 21, + 21, 21); + __m128i count; + __m128i level[5]; + int8_t *cc = coeff_contexts; + int row = height; + + assert(!(height % 4)); + + do { + load_levels_4x4x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)cc, count); + pos_to_offset = pos_to_offset_large; + levels += 4 * stride; + cc += 16; + row -= 4; + } while (row); + + coeff_contexts[0] = 0; +} + +static INLINE void get_4_nz_map_contexts_hor(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = 4 + TX_PAD_HOR; + const __m128i pos_to_offset = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10); + __m128i count; + __m128i level[5]; + int row = height; + + assert(!(height % 4)); + + do { + load_levels_4x4x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)coeff_contexts, count); + levels += 4 * stride; + coeff_contexts += 16; + row -= 4; + } while (row); +} + +static INLINE void get_4_nz_map_contexts_ver(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = 4 + TX_PAD_HOR; + const __m128i pos_to_offset_large = _mm_set1_epi8(SIG_COEF_CONTEXTS_2D + 10); + __m128i pos_to_offset = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10); + __m128i count; + __m128i level[5]; + int row = height; + + assert(!(height % 4)); + + do { + load_levels_4x4x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)coeff_contexts, count); + pos_to_offset = pos_to_offset_large; + levels += 4 * stride; + coeff_contexts += 16; + row -= 4; + } while (row); +} + +static INLINE void get_8_coeff_contexts_2d(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = 8 + TX_PAD_HOR; + int8_t *cc = coeff_contexts; + int row = height; + __m128i count; + __m128i level[5]; + __m128i pos_to_offset[3]; + + assert(!(height % 2)); + + if (height == 8) { + pos_to_offset[0] = + _mm_setr_epi8(0, 1, 6, 6, 21, 21, 21, 21, 1, 6, 6, 21, 21, 21, 21, 21); + pos_to_offset[1] = _mm_setr_epi8(6, 6, 21, 21, 21, 21, 21, 21, 6, 21, 21, + 21, 21, 21, 21, 21); + } else if (height < 8) { + pos_to_offset[0] = _mm_setr_epi8(0, 16, 6, 6, 21, 21, 21, 21, 16, 16, 6, 21, + 21, 21, 21, 21); + pos_to_offset[1] = _mm_setr_epi8(16, 16, 21, 21, 21, 21, 21, 21, 16, 16, 21, + 21, 21, 21, 21, 21); + } else { + pos_to_offset[0] = _mm_setr_epi8(0, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, + 11, 11, 11, 11, 11); + pos_to_offset[1] = _mm_setr_epi8(6, 6, 21, 21, 21, 21, 21, 21, 6, 21, 21, + 21, 21, 21, 21, 21); + } + pos_to_offset[2] = _mm_set1_epi8(21); + + do { + load_levels_8x2x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset[0]); + _mm_store_si128((__m128i *)cc, count); + pos_to_offset[0] = pos_to_offset[1]; + pos_to_offset[1] = pos_to_offset[2]; + levels += 2 * stride; + cc += 16; + row -= 2; + } while (row); + + coeff_contexts[0] = 0; +} + +static INLINE void get_8_coeff_contexts_hor(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = 8 + TX_PAD_HOR; + const __m128i pos_to_offset = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10); + int row = height; + __m128i count; + __m128i level[5]; + + assert(!(height % 2)); + + do { + load_levels_8x2x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)coeff_contexts, count); + levels += 2 * stride; + coeff_contexts += 16; + row -= 2; + } while (row); +} + +static INLINE void get_8_coeff_contexts_ver(const uint8_t *levels, + const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = 8 + TX_PAD_HOR; + const __m128i pos_to_offset_large = _mm_set1_epi8(SIG_COEF_CONTEXTS_2D + 10); + __m128i pos_to_offset = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 0, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 5, SIG_COEF_CONTEXTS_2D + 5); + int row = height; + __m128i count; + __m128i level[5]; + + assert(!(height % 2)); + + do { + load_levels_8x2x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)coeff_contexts, count); + pos_to_offset = pos_to_offset_large; + levels += 2 * stride; + coeff_contexts += 16; + row -= 2; + } while (row); +} + +static INLINE void get_16n_coeff_contexts_2d(const uint8_t *levels, + const int real_width, + const int real_height, + const int width, const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = width + TX_PAD_HOR; + int8_t *cc = coeff_contexts; + int row = height; + __m128i pos_to_offset[5]; + __m128i pos_to_offset_large[3]; + __m128i count; + __m128i level[5]; + + assert(!(width % 16)); + + pos_to_offset_large[2] = _mm_set1_epi8(21); + if (real_width == real_height) { + pos_to_offset[0] = _mm_setr_epi8(0, 1, 6, 6, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21); + pos_to_offset[1] = _mm_setr_epi8(1, 6, 6, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[2] = _mm_setr_epi8(6, 6, 21, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[3] = _mm_setr_epi8(6, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[4] = pos_to_offset_large[0] = pos_to_offset_large[1] = + pos_to_offset_large[2]; + } else if (real_width > real_height) { + pos_to_offset[0] = _mm_setr_epi8(0, 16, 6, 6, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[1] = _mm_setr_epi8(16, 16, 6, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[2] = pos_to_offset[3] = pos_to_offset[4] = _mm_setr_epi8( + 16, 16, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21); + pos_to_offset_large[0] = pos_to_offset_large[1] = pos_to_offset_large[2]; + } else { // real_width < real_height + pos_to_offset[0] = pos_to_offset[1] = _mm_setr_epi8( + 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11); + pos_to_offset[2] = _mm_setr_epi8(6, 6, 21, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[3] = _mm_setr_epi8(6, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, + 21, 21, 21, 21, 21); + pos_to_offset[4] = pos_to_offset_large[2]; + pos_to_offset_large[0] = pos_to_offset_large[1] = _mm_set1_epi8(11); + } + + do { + int w = width; + + do { + load_levels_16x1x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset[0]); + _mm_store_si128((__m128i *)cc, count); + levels += 16; + cc += 16; + w -= 16; + pos_to_offset[0] = pos_to_offset_large[0]; + } while (w); + + pos_to_offset[0] = pos_to_offset[1]; + pos_to_offset[1] = pos_to_offset[2]; + pos_to_offset[2] = pos_to_offset[3]; + pos_to_offset[3] = pos_to_offset[4]; + pos_to_offset_large[0] = pos_to_offset_large[1]; + pos_to_offset_large[1] = pos_to_offset_large[2]; + levels += TX_PAD_HOR; + } while (--row); + + coeff_contexts[0] = 0; +} + +static INLINE void get_16n_coeff_contexts_hor(const uint8_t *levels, + const int width, const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = width + TX_PAD_HOR; + const __m128i pos_to_offset_large = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10); + __m128i count; + __m128i level[5]; + int row = height; + + assert(!(width % 16)); + + do { + __m128i pos_to_offset = + _mm_setr_epi8(SIG_COEF_CONTEXTS_2D + 0, SIG_COEF_CONTEXTS_2D + 5, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10, + SIG_COEF_CONTEXTS_2D + 10, SIG_COEF_CONTEXTS_2D + 10); + int w = width; + + do { + load_levels_16x1x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset); + _mm_store_si128((__m128i *)coeff_contexts, count); + pos_to_offset = pos_to_offset_large; + levels += 16; + coeff_contexts += 16; + w -= 16; + } while (w); + + levels += TX_PAD_HOR; + } while (--row); +} + +static INLINE void get_16n_coeff_contexts_ver(const uint8_t *levels, + const int width, const int height, + const ptrdiff_t *const offsets, + int8_t *coeff_contexts) { + const int stride = width + TX_PAD_HOR; + __m128i pos_to_offset[3]; + __m128i count; + __m128i level[5]; + int row = height; + + assert(!(width % 16)); + + pos_to_offset[0] = _mm_set1_epi8(SIG_COEF_CONTEXTS_2D + 0); + pos_to_offset[1] = _mm_set1_epi8(SIG_COEF_CONTEXTS_2D + 5); + pos_to_offset[2] = _mm_set1_epi8(SIG_COEF_CONTEXTS_2D + 10); + + do { + int w = width; + + do { + load_levels_16x1x5_sse2(levels, stride, offsets, level); + count = get_coeff_contexts_kernel_sse2(level); + count = _mm_add_epi8(count, pos_to_offset[0]); + _mm_store_si128((__m128i *)coeff_contexts, count); + levels += 16; + coeff_contexts += 16; + w -= 16; + } while (w); + + pos_to_offset[0] = pos_to_offset[1]; + pos_to_offset[1] = pos_to_offset[2]; + levels += TX_PAD_HOR; + } while (--row); +} + +// Note: levels[] must be in the range [0, 127], inclusive. +void av1_get_nz_map_contexts_sse2(const uint8_t *const levels, + const int16_t *const scan, const uint16_t eob, + const TX_SIZE tx_size, + const TX_CLASS tx_class, + int8_t *const coeff_contexts) { + const int last_idx = eob - 1; + if (!last_idx) { + coeff_contexts[0] = 0; + return; + } + + const int real_width = tx_size_wide[tx_size]; + const int real_height = tx_size_high[tx_size]; + const int width = get_txb_wide(tx_size); + const int height = get_txb_high(tx_size); + const int stride = width + TX_PAD_HOR; + ptrdiff_t offsets[3]; + + /* coeff_contexts must be 16 byte aligned. */ + assert(!((intptr_t)coeff_contexts & 0xf)); + + if (tx_class == TX_CLASS_2D) { + offsets[0] = 0 * stride + 2; + offsets[1] = 1 * stride + 1; + offsets[2] = 2 * stride + 0; + + if (width == 4) { + get_4_nz_map_contexts_2d(levels, height, offsets, coeff_contexts); + } else if (width == 8) { + get_8_coeff_contexts_2d(levels, height, offsets, coeff_contexts); + } else if (width == 16) { + get_16n_coeff_contexts_2d(levels, real_width, real_height, width, height, + offsets, coeff_contexts); + } else { + get_16n_coeff_contexts_2d(levels, real_width, real_height, width, height, + offsets, coeff_contexts); + } + } else if (tx_class == TX_CLASS_HORIZ) { + offsets[0] = 2; + offsets[1] = 3; + offsets[2] = 4; + if (width == 4) { + get_4_nz_map_contexts_hor(levels, height, offsets, coeff_contexts); + } else if (width == 8) { + get_8_coeff_contexts_hor(levels, height, offsets, coeff_contexts); + } else { + get_16n_coeff_contexts_hor(levels, width, height, offsets, + coeff_contexts); + } + } else { // TX_CLASS_VERT + offsets[0] = 2 * stride; + offsets[1] = 3 * stride; + offsets[2] = 4 * stride; + if (width == 4) { + get_4_nz_map_contexts_ver(levels, height, offsets, coeff_contexts); + } else if (width == 8) { + get_8_coeff_contexts_ver(levels, height, offsets, coeff_contexts); + } else { + get_16n_coeff_contexts_ver(levels, width, height, offsets, + coeff_contexts); + } + } + + const int bwl = get_txb_bwl(tx_size); + const int pos = scan[last_idx]; + if (last_idx <= (height << bwl) / 8) + coeff_contexts[pos] = 1; + else if (last_idx <= (height << bwl) / 4) + coeff_contexts[pos] = 2; + else + coeff_contexts[pos] = 3; +} diff --git a/third_party/aom/av1/encoder/x86/encodetxb_sse4.c b/third_party/aom/av1/encoder/x86/encodetxb_sse4.c new file mode 100644 index 0000000000..5e0687cd38 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/encodetxb_sse4.c @@ -0,0 +1,92 @@ +/* + * Copyright (c) 2017, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <emmintrin.h> // SSE2 +#include <smmintrin.h> /* SSE4.1 */ + +#include "aom/aom_integer.h" +#include "av1/common/onyxc_int.h" +#include "av1/common/txb_common.h" +#include "aom_dsp/x86/synonyms.h" + +void av1_txb_init_levels_sse4_1(const tran_low_t *const coeff, const int width, + const int height, uint8_t *const levels) { + const int stride = width + TX_PAD_HOR; + const __m128i zeros = _mm_setzero_si128(); + + const int32_t pre_len = sizeof(*levels) * TX_PAD_TOP * stride; + uint8_t *pre_buf = levels - TX_PAD_TOP * stride; + uint8_t *pre_buf_end = pre_buf + pre_len; + do { + _mm_storeu_si128((__m128i *)(pre_buf), zeros); + pre_buf += 16; + } while (pre_buf < pre_buf_end); + + const int32_t bottom_len = sizeof(*levels) * (TX_PAD_BOTTOM * stride); + uint8_t *bottom_buf = levels + stride * height; + uint8_t *bottom_buf_end = bottom_buf + bottom_len; + do { + _mm_storeu_si128((__m128i *)(bottom_buf), zeros); + bottom_buf += 16; + } while (bottom_buf < bottom_buf_end); + + int i = 0; + uint8_t *ls = levels; + const tran_low_t *cf = coeff; + if (width == 4) { + do { + const __m128i coeffA = xx_loadu_128(cf); + const __m128i coeffB = xx_loadu_128(cf + 4); + const __m128i coeffAB = _mm_packs_epi32(coeffA, coeffB); + const __m128i absAB = _mm_abs_epi16(coeffAB); + const __m128i absAB8 = _mm_packs_epi16(absAB, zeros); + const __m128i lsAB = _mm_unpacklo_epi32(absAB8, zeros); + xx_storeu_128(ls, lsAB); + ls += (stride << 1); + cf += (width << 1); + i += 2; + } while (i < height); + } else if (width == 8) { + do { + const __m128i coeffA = xx_loadu_128(cf); + const __m128i coeffB = xx_loadu_128(cf + 4); + const __m128i coeffAB = _mm_packs_epi32(coeffA, coeffB); + const __m128i absAB = _mm_abs_epi16(coeffAB); + const __m128i absAB8 = _mm_packs_epi16(absAB, zeros); + xx_storeu_128(ls, absAB8); + ls += stride; + cf += width; + i += 1; + } while (i < height); + } else { + do { + int j = 0; + do { + const __m128i coeffA = xx_loadu_128(cf); + const __m128i coeffB = xx_loadu_128(cf + 4); + const __m128i coeffC = xx_loadu_128(cf + 8); + const __m128i coeffD = xx_loadu_128(cf + 12); + const __m128i coeffAB = _mm_packs_epi32(coeffA, coeffB); + const __m128i coeffCD = _mm_packs_epi32(coeffC, coeffD); + const __m128i absAB = _mm_abs_epi16(coeffAB); + const __m128i absCD = _mm_abs_epi16(coeffCD); + const __m128i absABCD = _mm_packs_epi16(absAB, absCD); + xx_storeu_128(ls + j, absABCD); + j += 16; + cf += 16; + } while (j < width); + *(int32_t *)(ls + width) = 0; + ls += stride; + i += 1; + } while (i < height); + } +} diff --git a/third_party/aom/av1/encoder/x86/error_intrin_avx2.c b/third_party/aom/av1/encoder/x86/error_intrin_avx2.c new file mode 100644 index 0000000000..7d4f695854 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/error_intrin_avx2.c @@ -0,0 +1,88 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <immintrin.h> // AVX2 + +#include "config/av1_rtcd.h" + +#include "aom/aom_integer.h" + +static INLINE void read_coeff(const tran_low_t *coeff, intptr_t offset, + __m256i *c) { + const tran_low_t *addr = coeff + offset; + + if (sizeof(tran_low_t) == 4) { + const __m256i x0 = _mm256_loadu_si256((const __m256i *)addr); + const __m256i x1 = _mm256_loadu_si256((const __m256i *)addr + 1); + const __m256i y = _mm256_packs_epi32(x0, x1); + *c = _mm256_permute4x64_epi64(y, 0xD8); + } else { + *c = _mm256_loadu_si256((const __m256i *)addr); + } +} + +int64_t av1_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz) { + __m256i sse_reg, ssz_reg, coeff_reg, dqcoeff_reg; + __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; + __m256i sse_reg_64hi, ssz_reg_64hi; + __m128i sse_reg128, ssz_reg128; + int64_t sse; + int i; + const __m256i zero_reg = _mm256_setzero_si256(); + + // init sse and ssz registerd to zero + sse_reg = _mm256_setzero_si256(); + ssz_reg = _mm256_setzero_si256(); + + for (i = 0; i < block_size; i += 16) { + // load 32 bytes from coeff and dqcoeff + read_coeff(coeff, i, &coeff_reg); + read_coeff(dqcoeff, i, &dqcoeff_reg); + // dqcoeff - coeff + dqcoeff_reg = _mm256_sub_epi16(dqcoeff_reg, coeff_reg); + // madd (dqcoeff - coeff) + dqcoeff_reg = _mm256_madd_epi16(dqcoeff_reg, dqcoeff_reg); + // madd coeff + coeff_reg = _mm256_madd_epi16(coeff_reg, coeff_reg); + // expand each double word of madd (dqcoeff - coeff) to quad word + exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_reg, zero_reg); + exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_reg, zero_reg); + // expand each double word of madd (coeff) to quad word + exp_coeff_lo = _mm256_unpacklo_epi32(coeff_reg, zero_reg); + exp_coeff_hi = _mm256_unpackhi_epi32(coeff_reg, zero_reg); + // add each quad word of madd (dqcoeff - coeff) and madd (coeff) + sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_lo); + ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_lo); + sse_reg = _mm256_add_epi64(sse_reg, exp_dqcoeff_hi); + ssz_reg = _mm256_add_epi64(ssz_reg, exp_coeff_hi); + } + // save the higher 64 bit of each 128 bit lane + sse_reg_64hi = _mm256_srli_si256(sse_reg, 8); + ssz_reg_64hi = _mm256_srli_si256(ssz_reg, 8); + // add the higher 64 bit to the low 64 bit + sse_reg = _mm256_add_epi64(sse_reg, sse_reg_64hi); + ssz_reg = _mm256_add_epi64(ssz_reg, ssz_reg_64hi); + + // add each 64 bit from each of the 128 bit lane of the 256 bit + sse_reg128 = _mm_add_epi64(_mm256_castsi256_si128(sse_reg), + _mm256_extractf128_si256(sse_reg, 1)); + + ssz_reg128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_reg), + _mm256_extractf128_si256(ssz_reg, 1)); + + // store the results + _mm_storel_epi64((__m128i *)(&sse), sse_reg128); + + _mm_storel_epi64((__m128i *)(ssz), ssz_reg128); + _mm256_zeroupper(); + return sse; +} diff --git a/third_party/aom/av1/encoder/x86/error_sse2.asm b/third_party/aom/av1/encoder/x86/error_sse2.asm new file mode 100644 index 0000000000..72e9e22b18 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/error_sse2.asm @@ -0,0 +1,79 @@ +; +; Copyright (c) 2016, Alliance for Open Media. All rights reserved +; +; This source code is subject to the terms of the BSD 2 Clause License and +; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +; was not distributed with this source code in the LICENSE file, you can +; obtain it at www.aomedia.org/license/software. If the Alliance for Open +; Media Patent License 1.0 was not distributed with this source code in the +; PATENTS file, you can obtain it at www.aomedia.org/license/patent. +; + +; + +%define private_prefix av1 + +%include "third_party/x86inc/x86inc.asm" + +SECTION .text + +; int64_t av1_block_error(int16_t *coeff, int16_t *dqcoeff, intptr_t block_size, +; int64_t *ssz) + +INIT_XMM sse2 +cglobal block_error, 3, 3, 8, uqc, dqc, size, ssz + pxor m4, m4 ; sse accumulator + pxor m6, m6 ; ssz accumulator + pxor m5, m5 ; dedicated zero register + lea uqcq, [uqcq+sizeq*2] + lea dqcq, [dqcq+sizeq*2] + neg sizeq +.loop: + mova m2, [uqcq+sizeq*2] + mova m0, [dqcq+sizeq*2] + mova m3, [uqcq+sizeq*2+mmsize] + mova m1, [dqcq+sizeq*2+mmsize] + psubw m0, m2 + psubw m1, m3 + ; individual errors are max. 15bit+sign, so squares are 30bit, and + ; thus the sum of 2 should fit in a 31bit integer (+ unused sign bit) + pmaddwd m0, m0 + pmaddwd m1, m1 + pmaddwd m2, m2 + pmaddwd m3, m3 + ; accumulate in 64bit + punpckldq m7, m0, m5 + punpckhdq m0, m5 + paddq m4, m7 + punpckldq m7, m1, m5 + paddq m4, m0 + punpckhdq m1, m5 + paddq m4, m7 + punpckldq m7, m2, m5 + paddq m4, m1 + punpckhdq m2, m5 + paddq m6, m7 + punpckldq m7, m3, m5 + paddq m6, m2 + punpckhdq m3, m5 + paddq m6, m7 + paddq m6, m3 + add sizeq, mmsize + jl .loop + + ; accumulate horizontally and store in return value + movhlps m5, m4 + movhlps m7, m6 + paddq m4, m5 + paddq m6, m7 +%if ARCH_X86_64 + movq rax, m4 + movq [sszq], m6 +%else + mov eax, sszm + pshufd m5, m4, 0x1 + movq [eax], m6 + movd eax, m4 + movd edx, m5 +%endif + RET diff --git a/third_party/aom/av1/encoder/x86/hash_sse42.c b/third_party/aom/av1/encoder/x86/hash_sse42.c new file mode 100644 index 0000000000..65fa463117 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/hash_sse42.c @@ -0,0 +1,51 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <stdint.h> +#include <smmintrin.h> + +// Byte-boundary alignment issues +#define ALIGN_SIZE 8 +#define ALIGN_MASK (ALIGN_SIZE - 1) + +#define CALC_CRC(op, crc, type, buf, len) \ + while ((len) >= sizeof(type)) { \ + (crc) = op((crc), *(type *)(buf)); \ + (len) -= sizeof(type); \ + buf += sizeof(type); \ + } + +/** + * Calculates 32-bit CRC for the input buffer + * polynomial is 0x11EDC6F41 + * @return A 32-bit unsigned integer representing the CRC + */ +uint32_t av1_get_crc32c_value_sse4_2(void *crc_calculator, uint8_t *p, + size_t len) { + (void)crc_calculator; + const uint8_t *buf = p; + uint32_t crc = 0xFFFFFFFF; + + // Align the input to the word boundary + for (; (len > 0) && ((intptr_t)buf & ALIGN_MASK); len--, buf++) { + crc = _mm_crc32_u8(crc, *buf); + } + +#ifdef __x86_64__ + uint64_t crc64 = crc; + CALC_CRC(_mm_crc32_u64, crc64, uint64_t, buf, len); + crc = (uint32_t)crc64; +#endif + CALC_CRC(_mm_crc32_u32, crc, uint32_t, buf, len); + CALC_CRC(_mm_crc32_u16, crc, uint16_t, buf, len); + CALC_CRC(_mm_crc32_u8, crc, uint8_t, buf, len); + return (crc ^= 0xFFFFFFFF); +} diff --git a/third_party/aom/av1/encoder/x86/highbd_block_error_intrin_sse2.c b/third_party/aom/av1/encoder/x86/highbd_block_error_intrin_sse2.c new file mode 100644 index 0000000000..777304ace7 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/highbd_block_error_intrin_sse2.c @@ -0,0 +1,72 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <emmintrin.h> +#include <stdio.h> + +#include "av1/common/common.h" + +int64_t av1_highbd_block_error_sse2(tran_low_t *coeff, tran_low_t *dqcoeff, + intptr_t block_size, int64_t *ssz, + int bps) { + int i, j, test; + uint32_t temp[4]; + __m128i max, min, cmp0, cmp1, cmp2, cmp3; + int64_t error = 0, sqcoeff = 0; + const int shift = 2 * (bps - 8); + const int rounding = shift > 0 ? 1 << (shift - 1) : 0; + + for (i = 0; i < block_size; i += 8) { + // Load the data into xmm registers + __m128i mm_coeff = _mm_load_si128((__m128i *)(coeff + i)); + __m128i mm_coeff2 = _mm_load_si128((__m128i *)(coeff + i + 4)); + __m128i mm_dqcoeff = _mm_load_si128((__m128i *)(dqcoeff + i)); + __m128i mm_dqcoeff2 = _mm_load_si128((__m128i *)(dqcoeff + i + 4)); + // Check if any values require more than 15 bit + max = _mm_set1_epi32(0x3fff); + min = _mm_set1_epi32(0xffffc000); + cmp0 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff, max), + _mm_cmplt_epi32(mm_coeff, min)); + cmp1 = _mm_xor_si128(_mm_cmpgt_epi32(mm_coeff2, max), + _mm_cmplt_epi32(mm_coeff2, min)); + cmp2 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff, max), + _mm_cmplt_epi32(mm_dqcoeff, min)); + cmp3 = _mm_xor_si128(_mm_cmpgt_epi32(mm_dqcoeff2, max), + _mm_cmplt_epi32(mm_dqcoeff2, min)); + test = _mm_movemask_epi8( + _mm_or_si128(_mm_or_si128(cmp0, cmp1), _mm_or_si128(cmp2, cmp3))); + + if (!test) { + __m128i mm_diff, error_sse2, sqcoeff_sse2; + mm_coeff = _mm_packs_epi32(mm_coeff, mm_coeff2); + mm_dqcoeff = _mm_packs_epi32(mm_dqcoeff, mm_dqcoeff2); + mm_diff = _mm_sub_epi16(mm_coeff, mm_dqcoeff); + error_sse2 = _mm_madd_epi16(mm_diff, mm_diff); + sqcoeff_sse2 = _mm_madd_epi16(mm_coeff, mm_coeff); + _mm_storeu_si128((__m128i *)temp, error_sse2); + error = error + temp[0] + temp[1] + temp[2] + temp[3]; + _mm_storeu_si128((__m128i *)temp, sqcoeff_sse2); + sqcoeff += temp[0] + temp[1] + temp[2] + temp[3]; + } else { + for (j = 0; j < 8; j++) { + const int64_t diff = coeff[i + j] - dqcoeff[i + j]; + error += diff * diff; + sqcoeff += (int64_t)coeff[i + j] * (int64_t)coeff[i + j]; + } + } + } + assert(error >= 0 && sqcoeff >= 0); + error = (error + rounding) >> shift; + sqcoeff = (sqcoeff + rounding) >> shift; + + *ssz = sqcoeff; + return error; +} diff --git a/third_party/aom/av1/encoder/x86/highbd_fwd_txfm_sse4.c b/third_party/aom/av1/encoder/x86/highbd_fwd_txfm_sse4.c new file mode 100644 index 0000000000..535485ae8e --- /dev/null +++ b/third_party/aom/av1/encoder/x86/highbd_fwd_txfm_sse4.c @@ -0,0 +1,1783 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ +#include <assert.h> +#include <smmintrin.h> /* SSE4.1 */ + +#include "config/aom_config.h" +#include "config/av1_rtcd.h" + +#include "av1/common/av1_txfm.h" +#include "av1/common/x86/highbd_txfm_utility_sse4.h" +#include "av1/encoder/av1_fwd_txfm1d_cfg.h" +#include "av1/encoder/x86/av1_txfm1d_sse4.h" +#include "aom_dsp/txfm_common.h" +#include "aom_dsp/x86/txfm_common_sse2.h" +#include "aom_ports/mem.h" + +static INLINE void load_buffer_4x4(const int16_t *input, __m128i *in, + int stride, int flipud, int fliplr, + int shift) { + if (!flipud) { + in[0] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); + in[1] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); + in[2] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride)); + in[3] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride)); + } else { + in[0] = _mm_loadl_epi64((const __m128i *)(input + 3 * stride)); + in[1] = _mm_loadl_epi64((const __m128i *)(input + 2 * stride)); + in[2] = _mm_loadl_epi64((const __m128i *)(input + 1 * stride)); + in[3] = _mm_loadl_epi64((const __m128i *)(input + 0 * stride)); + } + + if (fliplr) { + in[0] = _mm_shufflelo_epi16(in[0], 0x1b); + in[1] = _mm_shufflelo_epi16(in[1], 0x1b); + in[2] = _mm_shufflelo_epi16(in[2], 0x1b); + in[3] = _mm_shufflelo_epi16(in[3], 0x1b); + } + + in[0] = _mm_cvtepi16_epi32(in[0]); + in[1] = _mm_cvtepi16_epi32(in[1]); + in[2] = _mm_cvtepi16_epi32(in[2]); + in[3] = _mm_cvtepi16_epi32(in[3]); + + in[0] = _mm_slli_epi32(in[0], shift); + in[1] = _mm_slli_epi32(in[1], shift); + in[2] = _mm_slli_epi32(in[2], shift); + in[3] = _mm_slli_epi32(in[3], shift); +} + +// We only use stage-2 bit; +// shift[0] is used in load_buffer_4x4() +// shift[1] is used in txfm_func_col() +// shift[2] is used in txfm_func_row() +static void fdct4x4_sse4_1(__m128i *in, int bit) { + const int32_t *cospi = cospi_arr(bit); + const __m128i cospi32 = _mm_set1_epi32(cospi[32]); + const __m128i cospi48 = _mm_set1_epi32(cospi[48]); + const __m128i cospi16 = _mm_set1_epi32(cospi[16]); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + __m128i s0, s1, s2, s3; + __m128i u0, u1, u2, u3; + __m128i v0, v1, v2, v3; + + s0 = _mm_add_epi32(in[0], in[3]); + s1 = _mm_add_epi32(in[1], in[2]); + s2 = _mm_sub_epi32(in[1], in[2]); + s3 = _mm_sub_epi32(in[0], in[3]); + + // btf_32_sse4_1_type0(cospi32, cospi32, s[01], u[02], bit); + u0 = _mm_mullo_epi32(s0, cospi32); + u1 = _mm_mullo_epi32(s1, cospi32); + u2 = _mm_add_epi32(u0, u1); + v0 = _mm_sub_epi32(u0, u1); + + u3 = _mm_add_epi32(u2, rnding); + v1 = _mm_add_epi32(v0, rnding); + + u0 = _mm_srai_epi32(u3, bit); + u2 = _mm_srai_epi32(v1, bit); + + // btf_32_sse4_1_type1(cospi48, cospi16, s[23], u[13], bit); + v0 = _mm_mullo_epi32(s2, cospi48); + v1 = _mm_mullo_epi32(s3, cospi16); + v2 = _mm_add_epi32(v0, v1); + + v3 = _mm_add_epi32(v2, rnding); + u1 = _mm_srai_epi32(v3, bit); + + v0 = _mm_mullo_epi32(s2, cospi16); + v1 = _mm_mullo_epi32(s3, cospi48); + v2 = _mm_sub_epi32(v1, v0); + + v3 = _mm_add_epi32(v2, rnding); + u3 = _mm_srai_epi32(v3, bit); + + // Note: shift[1] and shift[2] are zeros + + // Transpose 4x4 32-bit + v0 = _mm_unpacklo_epi32(u0, u1); + v1 = _mm_unpackhi_epi32(u0, u1); + v2 = _mm_unpacklo_epi32(u2, u3); + v3 = _mm_unpackhi_epi32(u2, u3); + + in[0] = _mm_unpacklo_epi64(v0, v2); + in[1] = _mm_unpackhi_epi64(v0, v2); + in[2] = _mm_unpacklo_epi64(v1, v3); + in[3] = _mm_unpackhi_epi64(v1, v3); +} + +static INLINE void write_buffer_4x4(__m128i *res, int32_t *output) { + _mm_store_si128((__m128i *)(output + 0 * 4), res[0]); + _mm_store_si128((__m128i *)(output + 1 * 4), res[1]); + _mm_store_si128((__m128i *)(output + 2 * 4), res[2]); + _mm_store_si128((__m128i *)(output + 3 * 4), res[3]); +} + +static void fadst4x4_sse4_1(__m128i *in, int bit) { + const int32_t *sinpi = sinpi_arr(bit); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + const __m128i sinpi1 = _mm_set1_epi32((int)sinpi[1]); + const __m128i sinpi2 = _mm_set1_epi32((int)sinpi[2]); + const __m128i sinpi3 = _mm_set1_epi32((int)sinpi[3]); + const __m128i sinpi4 = _mm_set1_epi32((int)sinpi[4]); + __m128i t; + __m128i s0, s1, s2, s3, s4, s5, s6, s7; + __m128i x0, x1, x2, x3; + __m128i u0, u1, u2, u3; + __m128i v0, v1, v2, v3; + + s0 = _mm_mullo_epi32(in[0], sinpi1); + s1 = _mm_mullo_epi32(in[0], sinpi4); + s2 = _mm_mullo_epi32(in[1], sinpi2); + s3 = _mm_mullo_epi32(in[1], sinpi1); + s4 = _mm_mullo_epi32(in[2], sinpi3); + s5 = _mm_mullo_epi32(in[3], sinpi4); + s6 = _mm_mullo_epi32(in[3], sinpi2); + t = _mm_add_epi32(in[0], in[1]); + s7 = _mm_sub_epi32(t, in[3]); + + t = _mm_add_epi32(s0, s2); + x0 = _mm_add_epi32(t, s5); + x1 = _mm_mullo_epi32(s7, sinpi3); + t = _mm_sub_epi32(s1, s3); + x2 = _mm_add_epi32(t, s6); + x3 = s4; + + s0 = _mm_add_epi32(x0, x3); + s1 = x1; + s2 = _mm_sub_epi32(x2, x3); + t = _mm_sub_epi32(x2, x0); + s3 = _mm_add_epi32(t, x3); + + u0 = _mm_add_epi32(s0, rnding); + u0 = _mm_srai_epi32(u0, bit); + + u1 = _mm_add_epi32(s1, rnding); + u1 = _mm_srai_epi32(u1, bit); + + u2 = _mm_add_epi32(s2, rnding); + u2 = _mm_srai_epi32(u2, bit); + + u3 = _mm_add_epi32(s3, rnding); + u3 = _mm_srai_epi32(u3, bit); + + v0 = _mm_unpacklo_epi32(u0, u1); + v1 = _mm_unpackhi_epi32(u0, u1); + v2 = _mm_unpacklo_epi32(u2, u3); + v3 = _mm_unpackhi_epi32(u2, u3); + + in[0] = _mm_unpacklo_epi64(v0, v2); + in[1] = _mm_unpackhi_epi64(v0, v2); + in[2] = _mm_unpacklo_epi64(v1, v3); + in[3] = _mm_unpackhi_epi64(v1, v3); +} + +void av1_fwd_txfm2d_4x4_sse4_1(const int16_t *input, int32_t *coeff, + int input_stride, TX_TYPE tx_type, int bd) { + __m128i in[4]; + const int8_t *shift = fwd_txfm_shift_ls[TX_4X4]; + const int txw_idx = get_txw_idx(TX_4X4); + const int txh_idx = get_txh_idx(TX_4X4); + + switch (tx_type) { + case DCT_DCT: + load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]); + fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case ADST_DCT: + load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case DCT_ADST: + load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]); + fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case ADST_ADST: + load_buffer_4x4(input, in, input_stride, 0, 0, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case FLIPADST_DCT: + load_buffer_4x4(input, in, input_stride, 1, 0, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fdct4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case DCT_FLIPADST: + load_buffer_4x4(input, in, input_stride, 0, 1, shift[0]); + fdct4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case FLIPADST_FLIPADST: + load_buffer_4x4(input, in, input_stride, 1, 1, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case ADST_FLIPADST: + load_buffer_4x4(input, in, input_stride, 0, 1, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + case FLIPADST_ADST: + load_buffer_4x4(input, in, input_stride, 1, 0, shift[0]); + fadst4x4_sse4_1(in, fwd_cos_bit_col[txw_idx][txh_idx]); + fadst4x4_sse4_1(in, fwd_cos_bit_row[txw_idx][txh_idx]); + write_buffer_4x4(in, coeff); + break; + default: assert(0); + } + (void)bd; +} + +static INLINE void load_buffer_8x8(const int16_t *input, __m128i *in, + int stride, int flipud, int fliplr, + int shift) { + __m128i u; + if (!flipud) { + in[0] = _mm_load_si128((const __m128i *)(input + 0 * stride)); + in[1] = _mm_load_si128((const __m128i *)(input + 1 * stride)); + in[2] = _mm_load_si128((const __m128i *)(input + 2 * stride)); + in[3] = _mm_load_si128((const __m128i *)(input + 3 * stride)); + in[4] = _mm_load_si128((const __m128i *)(input + 4 * stride)); + in[5] = _mm_load_si128((const __m128i *)(input + 5 * stride)); + in[6] = _mm_load_si128((const __m128i *)(input + 6 * stride)); + in[7] = _mm_load_si128((const __m128i *)(input + 7 * stride)); + } else { + in[0] = _mm_load_si128((const __m128i *)(input + 7 * stride)); + in[1] = _mm_load_si128((const __m128i *)(input + 6 * stride)); + in[2] = _mm_load_si128((const __m128i *)(input + 5 * stride)); + in[3] = _mm_load_si128((const __m128i *)(input + 4 * stride)); + in[4] = _mm_load_si128((const __m128i *)(input + 3 * stride)); + in[5] = _mm_load_si128((const __m128i *)(input + 2 * stride)); + in[6] = _mm_load_si128((const __m128i *)(input + 1 * stride)); + in[7] = _mm_load_si128((const __m128i *)(input + 0 * stride)); + } + + if (fliplr) { + in[0] = mm_reverse_epi16(in[0]); + in[1] = mm_reverse_epi16(in[1]); + in[2] = mm_reverse_epi16(in[2]); + in[3] = mm_reverse_epi16(in[3]); + in[4] = mm_reverse_epi16(in[4]); + in[5] = mm_reverse_epi16(in[5]); + in[6] = mm_reverse_epi16(in[6]); + in[7] = mm_reverse_epi16(in[7]); + } + + u = _mm_unpackhi_epi64(in[4], in[4]); + in[8] = _mm_cvtepi16_epi32(in[4]); + in[9] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[5], in[5]); + in[10] = _mm_cvtepi16_epi32(in[5]); + in[11] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[6], in[6]); + in[12] = _mm_cvtepi16_epi32(in[6]); + in[13] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[7], in[7]); + in[14] = _mm_cvtepi16_epi32(in[7]); + in[15] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[3], in[3]); + in[6] = _mm_cvtepi16_epi32(in[3]); + in[7] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[2], in[2]); + in[4] = _mm_cvtepi16_epi32(in[2]); + in[5] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[1], in[1]); + in[2] = _mm_cvtepi16_epi32(in[1]); + in[3] = _mm_cvtepi16_epi32(u); + + u = _mm_unpackhi_epi64(in[0], in[0]); + in[0] = _mm_cvtepi16_epi32(in[0]); + in[1] = _mm_cvtepi16_epi32(u); + + in[0] = _mm_slli_epi32(in[0], shift); + in[1] = _mm_slli_epi32(in[1], shift); + in[2] = _mm_slli_epi32(in[2], shift); + in[3] = _mm_slli_epi32(in[3], shift); + in[4] = _mm_slli_epi32(in[4], shift); + in[5] = _mm_slli_epi32(in[5], shift); + in[6] = _mm_slli_epi32(in[6], shift); + in[7] = _mm_slli_epi32(in[7], shift); + + in[8] = _mm_slli_epi32(in[8], shift); + in[9] = _mm_slli_epi32(in[9], shift); + in[10] = _mm_slli_epi32(in[10], shift); + in[11] = _mm_slli_epi32(in[11], shift); + in[12] = _mm_slli_epi32(in[12], shift); + in[13] = _mm_slli_epi32(in[13], shift); + in[14] = _mm_slli_epi32(in[14], shift); + in[15] = _mm_slli_epi32(in[15], shift); +} + +static INLINE void col_txfm_8x8_rounding(__m128i *in, int shift) { + const __m128i rounding = _mm_set1_epi32(1 << (shift - 1)); + + in[0] = _mm_add_epi32(in[0], rounding); + in[1] = _mm_add_epi32(in[1], rounding); + in[2] = _mm_add_epi32(in[2], rounding); + in[3] = _mm_add_epi32(in[3], rounding); + in[4] = _mm_add_epi32(in[4], rounding); + in[5] = _mm_add_epi32(in[5], rounding); + in[6] = _mm_add_epi32(in[6], rounding); + in[7] = _mm_add_epi32(in[7], rounding); + in[8] = _mm_add_epi32(in[8], rounding); + in[9] = _mm_add_epi32(in[9], rounding); + in[10] = _mm_add_epi32(in[10], rounding); + in[11] = _mm_add_epi32(in[11], rounding); + in[12] = _mm_add_epi32(in[12], rounding); + in[13] = _mm_add_epi32(in[13], rounding); + in[14] = _mm_add_epi32(in[14], rounding); + in[15] = _mm_add_epi32(in[15], rounding); + + in[0] = _mm_srai_epi32(in[0], shift); + in[1] = _mm_srai_epi32(in[1], shift); + in[2] = _mm_srai_epi32(in[2], shift); + in[3] = _mm_srai_epi32(in[3], shift); + in[4] = _mm_srai_epi32(in[4], shift); + in[5] = _mm_srai_epi32(in[5], shift); + in[6] = _mm_srai_epi32(in[6], shift); + in[7] = _mm_srai_epi32(in[7], shift); + in[8] = _mm_srai_epi32(in[8], shift); + in[9] = _mm_srai_epi32(in[9], shift); + in[10] = _mm_srai_epi32(in[10], shift); + in[11] = _mm_srai_epi32(in[11], shift); + in[12] = _mm_srai_epi32(in[12], shift); + in[13] = _mm_srai_epi32(in[13], shift); + in[14] = _mm_srai_epi32(in[14], shift); + in[15] = _mm_srai_epi32(in[15], shift); +} + +static INLINE void write_buffer_8x8(const __m128i *res, int32_t *output) { + _mm_store_si128((__m128i *)(output + 0 * 4), res[0]); + _mm_store_si128((__m128i *)(output + 1 * 4), res[1]); + _mm_store_si128((__m128i *)(output + 2 * 4), res[2]); + _mm_store_si128((__m128i *)(output + 3 * 4), res[3]); + + _mm_store_si128((__m128i *)(output + 4 * 4), res[4]); + _mm_store_si128((__m128i *)(output + 5 * 4), res[5]); + _mm_store_si128((__m128i *)(output + 6 * 4), res[6]); + _mm_store_si128((__m128i *)(output + 7 * 4), res[7]); + + _mm_store_si128((__m128i *)(output + 8 * 4), res[8]); + _mm_store_si128((__m128i *)(output + 9 * 4), res[9]); + _mm_store_si128((__m128i *)(output + 10 * 4), res[10]); + _mm_store_si128((__m128i *)(output + 11 * 4), res[11]); + + _mm_store_si128((__m128i *)(output + 12 * 4), res[12]); + _mm_store_si128((__m128i *)(output + 13 * 4), res[13]); + _mm_store_si128((__m128i *)(output + 14 * 4), res[14]); + _mm_store_si128((__m128i *)(output + 15 * 4), res[15]); +} + +static INLINE void write_buffer_16x8(const __m128i *res, int32_t *output, + const int stride) { + _mm_storeu_si128((__m128i *)(output), res[0]); + _mm_storeu_si128((__m128i *)(output + 4), res[1]); + _mm_storeu_si128((__m128i *)(output + stride), res[2]); + _mm_storeu_si128((__m128i *)(output + stride + 4), res[3]); + + _mm_storeu_si128((__m128i *)(output + (stride * 2)), res[4]); + _mm_storeu_si128((__m128i *)(output + (stride * 2) + 4), res[5]); + _mm_storeu_si128((__m128i *)(output + (stride * 3)), res[6]); + _mm_storeu_si128((__m128i *)(output + (stride * 3) + 4), res[7]); + + _mm_storeu_si128((__m128i *)(output + (stride * 4)), res[8]); + _mm_storeu_si128((__m128i *)(output + (stride * 4) + 4), res[9]); + _mm_storeu_si128((__m128i *)(output + (stride * 5)), res[10]); + _mm_storeu_si128((__m128i *)(output + (stride * 5) + 4), res[11]); + + _mm_storeu_si128((__m128i *)(output + (stride * 6)), res[12]); + _mm_storeu_si128((__m128i *)(output + (stride * 6) + 4), res[13]); + _mm_storeu_si128((__m128i *)(output + (stride * 7)), res[14]); + _mm_storeu_si128((__m128i *)(output + (stride * 7) + 4), res[15]); +} + +static void fdct8x8_sse4_1(__m128i *in, __m128i *out, int bit, + const int col_num) { + (void)(col_num); + const int32_t *cospi = cospi_arr(bit); + const __m128i cospi32 = _mm_set1_epi32(cospi[32]); + const __m128i cospim32 = _mm_set1_epi32(-cospi[32]); + const __m128i cospi48 = _mm_set1_epi32(cospi[48]); + const __m128i cospi16 = _mm_set1_epi32(cospi[16]); + const __m128i cospi56 = _mm_set1_epi32(cospi[56]); + const __m128i cospi8 = _mm_set1_epi32(cospi[8]); + const __m128i cospi24 = _mm_set1_epi32(cospi[24]); + const __m128i cospi40 = _mm_set1_epi32(cospi[40]); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + __m128i u[8], v[8]; + + // Even 8 points 0, 2, ..., 14 + // stage 0 + // stage 1 + u[0] = _mm_add_epi32(in[0], in[14]); + v[7] = _mm_sub_epi32(in[0], in[14]); // v[7] + u[1] = _mm_add_epi32(in[2], in[12]); + u[6] = _mm_sub_epi32(in[2], in[12]); + u[2] = _mm_add_epi32(in[4], in[10]); + u[5] = _mm_sub_epi32(in[4], in[10]); + u[3] = _mm_add_epi32(in[6], in[8]); + v[4] = _mm_sub_epi32(in[6], in[8]); // v[4] + + // stage 2 + v[0] = _mm_add_epi32(u[0], u[3]); + v[3] = _mm_sub_epi32(u[0], u[3]); + v[1] = _mm_add_epi32(u[1], u[2]); + v[2] = _mm_sub_epi32(u[1], u[2]); + + v[5] = _mm_mullo_epi32(u[5], cospim32); + v[6] = _mm_mullo_epi32(u[6], cospi32); + v[5] = _mm_add_epi32(v[5], v[6]); + v[5] = _mm_add_epi32(v[5], rnding); + v[5] = _mm_srai_epi32(v[5], bit); + + u[0] = _mm_mullo_epi32(u[5], cospi32); + v[6] = _mm_mullo_epi32(u[6], cospim32); + v[6] = _mm_sub_epi32(u[0], v[6]); + v[6] = _mm_add_epi32(v[6], rnding); + v[6] = _mm_srai_epi32(v[6], bit); + + // stage 3 + // type 0 + v[0] = _mm_mullo_epi32(v[0], cospi32); + v[1] = _mm_mullo_epi32(v[1], cospi32); + u[0] = _mm_add_epi32(v[0], v[1]); + u[0] = _mm_add_epi32(u[0], rnding); + u[0] = _mm_srai_epi32(u[0], bit); + + u[1] = _mm_sub_epi32(v[0], v[1]); + u[1] = _mm_add_epi32(u[1], rnding); + u[1] = _mm_srai_epi32(u[1], bit); + + // type 1 + v[0] = _mm_mullo_epi32(v[2], cospi48); + v[1] = _mm_mullo_epi32(v[3], cospi16); + u[2] = _mm_add_epi32(v[0], v[1]); + u[2] = _mm_add_epi32(u[2], rnding); + u[2] = _mm_srai_epi32(u[2], bit); + + v[0] = _mm_mullo_epi32(v[2], cospi16); + v[1] = _mm_mullo_epi32(v[3], cospi48); + u[3] = _mm_sub_epi32(v[1], v[0]); + u[3] = _mm_add_epi32(u[3], rnding); + u[3] = _mm_srai_epi32(u[3], bit); + + u[4] = _mm_add_epi32(v[4], v[5]); + u[5] = _mm_sub_epi32(v[4], v[5]); + u[6] = _mm_sub_epi32(v[7], v[6]); + u[7] = _mm_add_epi32(v[7], v[6]); + + // stage 4 + // stage 5 + v[0] = _mm_mullo_epi32(u[4], cospi56); + v[1] = _mm_mullo_epi32(u[7], cospi8); + v[0] = _mm_add_epi32(v[0], v[1]); + v[0] = _mm_add_epi32(v[0], rnding); + out[2] = _mm_srai_epi32(v[0], bit); // buf0[4] + + v[0] = _mm_mullo_epi32(u[4], cospi8); + v[1] = _mm_mullo_epi32(u[7], cospi56); + v[0] = _mm_sub_epi32(v[1], v[0]); + v[0] = _mm_add_epi32(v[0], rnding); + out[14] = _mm_srai_epi32(v[0], bit); // buf0[7] + + v[0] = _mm_mullo_epi32(u[5], cospi24); + v[1] = _mm_mullo_epi32(u[6], cospi40); + v[0] = _mm_add_epi32(v[0], v[1]); + v[0] = _mm_add_epi32(v[0], rnding); + out[10] = _mm_srai_epi32(v[0], bit); // buf0[5] + + v[0] = _mm_mullo_epi32(u[5], cospi40); + v[1] = _mm_mullo_epi32(u[6], cospi24); + v[0] = _mm_sub_epi32(v[1], v[0]); + v[0] = _mm_add_epi32(v[0], rnding); + out[6] = _mm_srai_epi32(v[0], bit); // buf0[6] + + out[0] = u[0]; // buf0[0] + out[8] = u[1]; // buf0[1] + out[4] = u[2]; // buf0[2] + out[12] = u[3]; // buf0[3] + + // Odd 8 points: 1, 3, ..., 15 + // stage 0 + // stage 1 + u[0] = _mm_add_epi32(in[1], in[15]); + v[7] = _mm_sub_epi32(in[1], in[15]); // v[7] + u[1] = _mm_add_epi32(in[3], in[13]); + u[6] = _mm_sub_epi32(in[3], in[13]); + u[2] = _mm_add_epi32(in[5], in[11]); + u[5] = _mm_sub_epi32(in[5], in[11]); + u[3] = _mm_add_epi32(in[7], in[9]); + v[4] = _mm_sub_epi32(in[7], in[9]); // v[4] + + // stage 2 + v[0] = _mm_add_epi32(u[0], u[3]); + v[3] = _mm_sub_epi32(u[0], u[3]); + v[1] = _mm_add_epi32(u[1], u[2]); + v[2] = _mm_sub_epi32(u[1], u[2]); + + v[5] = _mm_mullo_epi32(u[5], cospim32); + v[6] = _mm_mullo_epi32(u[6], cospi32); + v[5] = _mm_add_epi32(v[5], v[6]); + v[5] = _mm_add_epi32(v[5], rnding); + v[5] = _mm_srai_epi32(v[5], bit); + + u[0] = _mm_mullo_epi32(u[5], cospi32); + v[6] = _mm_mullo_epi32(u[6], cospim32); + v[6] = _mm_sub_epi32(u[0], v[6]); + v[6] = _mm_add_epi32(v[6], rnding); + v[6] = _mm_srai_epi32(v[6], bit); + + // stage 3 + // type 0 + v[0] = _mm_mullo_epi32(v[0], cospi32); + v[1] = _mm_mullo_epi32(v[1], cospi32); + u[0] = _mm_add_epi32(v[0], v[1]); + u[0] = _mm_add_epi32(u[0], rnding); + u[0] = _mm_srai_epi32(u[0], bit); + + u[1] = _mm_sub_epi32(v[0], v[1]); + u[1] = _mm_add_epi32(u[1], rnding); + u[1] = _mm_srai_epi32(u[1], bit); + + // type 1 + v[0] = _mm_mullo_epi32(v[2], cospi48); + v[1] = _mm_mullo_epi32(v[3], cospi16); + u[2] = _mm_add_epi32(v[0], v[1]); + u[2] = _mm_add_epi32(u[2], rnding); + u[2] = _mm_srai_epi32(u[2], bit); + + v[0] = _mm_mullo_epi32(v[2], cospi16); + v[1] = _mm_mullo_epi32(v[3], cospi48); + u[3] = _mm_sub_epi32(v[1], v[0]); + u[3] = _mm_add_epi32(u[3], rnding); + u[3] = _mm_srai_epi32(u[3], bit); + + u[4] = _mm_add_epi32(v[4], v[5]); + u[5] = _mm_sub_epi32(v[4], v[5]); + u[6] = _mm_sub_epi32(v[7], v[6]); + u[7] = _mm_add_epi32(v[7], v[6]); + + // stage 4 + // stage 5 + v[0] = _mm_mullo_epi32(u[4], cospi56); + v[1] = _mm_mullo_epi32(u[7], cospi8); + v[0] = _mm_add_epi32(v[0], v[1]); + v[0] = _mm_add_epi32(v[0], rnding); + out[3] = _mm_srai_epi32(v[0], bit); // buf0[4] + + v[0] = _mm_mullo_epi32(u[4], cospi8); + v[1] = _mm_mullo_epi32(u[7], cospi56); + v[0] = _mm_sub_epi32(v[1], v[0]); + v[0] = _mm_add_epi32(v[0], rnding); + out[15] = _mm_srai_epi32(v[0], bit); // buf0[7] + + v[0] = _mm_mullo_epi32(u[5], cospi24); + v[1] = _mm_mullo_epi32(u[6], cospi40); + v[0] = _mm_add_epi32(v[0], v[1]); + v[0] = _mm_add_epi32(v[0], rnding); + out[11] = _mm_srai_epi32(v[0], bit); // buf0[5] + + v[0] = _mm_mullo_epi32(u[5], cospi40); + v[1] = _mm_mullo_epi32(u[6], cospi24); + v[0] = _mm_sub_epi32(v[1], v[0]); + v[0] = _mm_add_epi32(v[0], rnding); + out[7] = _mm_srai_epi32(v[0], bit); // buf0[6] + + out[1] = u[0]; // buf0[0] + out[9] = u[1]; // buf0[1] + out[5] = u[2]; // buf0[2] + out[13] = u[3]; // buf0[3] +} + +static void fadst8x8_sse4_1(__m128i *in, __m128i *out, int bit, + const int col_num) { + (void)(col_num); + const int32_t *cospi = cospi_arr(bit); + const __m128i cospi32 = _mm_set1_epi32(cospi[32]); + const __m128i cospi16 = _mm_set1_epi32(cospi[16]); + const __m128i cospim16 = _mm_set1_epi32(-cospi[16]); + const __m128i cospi48 = _mm_set1_epi32(cospi[48]); + const __m128i cospim48 = _mm_set1_epi32(-cospi[48]); + const __m128i cospi4 = _mm_set1_epi32(cospi[4]); + const __m128i cospim4 = _mm_set1_epi32(-cospi[4]); + const __m128i cospi60 = _mm_set1_epi32(cospi[60]); + const __m128i cospi20 = _mm_set1_epi32(cospi[20]); + const __m128i cospim20 = _mm_set1_epi32(-cospi[20]); + const __m128i cospi44 = _mm_set1_epi32(cospi[44]); + const __m128i cospi28 = _mm_set1_epi32(cospi[28]); + const __m128i cospi36 = _mm_set1_epi32(cospi[36]); + const __m128i cospim36 = _mm_set1_epi32(-cospi[36]); + const __m128i cospi52 = _mm_set1_epi32(cospi[52]); + const __m128i cospim52 = _mm_set1_epi32(-cospi[52]); + const __m128i cospi12 = _mm_set1_epi32(cospi[12]); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + const __m128i zero = _mm_setzero_si128(); + __m128i u0, u1, u2, u3, u4, u5, u6, u7; + __m128i v0, v1, v2, v3, v4, v5, v6, v7; + __m128i x, y; + int col; + + // Note: + // Even column: 0, 2, ..., 14 + // Odd column: 1, 3, ..., 15 + // one even column plus one odd column constructs one row (8 coeffs) + // total we have 8 rows (8x8). + for (col = 0; col < 2; ++col) { + // stage 0 + // stage 1 + u0 = in[2 * 0 + col]; + u1 = _mm_sub_epi32(zero, in[2 * 7 + col]); + u2 = _mm_sub_epi32(zero, in[2 * 3 + col]); + u3 = in[2 * 4 + col]; + u4 = _mm_sub_epi32(zero, in[2 * 1 + col]); + u5 = in[2 * 6 + col]; + u6 = in[2 * 2 + col]; + u7 = _mm_sub_epi32(zero, in[2 * 5 + col]); + + // stage 2 + v0 = u0; + v1 = u1; + + x = _mm_mullo_epi32(u2, cospi32); + y = _mm_mullo_epi32(u3, cospi32); + v2 = _mm_add_epi32(x, y); + v2 = _mm_add_epi32(v2, rnding); + v2 = _mm_srai_epi32(v2, bit); + + v3 = _mm_sub_epi32(x, y); + v3 = _mm_add_epi32(v3, rnding); + v3 = _mm_srai_epi32(v3, bit); + + v4 = u4; + v5 = u5; + + x = _mm_mullo_epi32(u6, cospi32); + y = _mm_mullo_epi32(u7, cospi32); + v6 = _mm_add_epi32(x, y); + v6 = _mm_add_epi32(v6, rnding); + v6 = _mm_srai_epi32(v6, bit); + + v7 = _mm_sub_epi32(x, y); + v7 = _mm_add_epi32(v7, rnding); + v7 = _mm_srai_epi32(v7, bit); + + // stage 3 + u0 = _mm_add_epi32(v0, v2); + u1 = _mm_add_epi32(v1, v3); + u2 = _mm_sub_epi32(v0, v2); + u3 = _mm_sub_epi32(v1, v3); + u4 = _mm_add_epi32(v4, v6); + u5 = _mm_add_epi32(v5, v7); + u6 = _mm_sub_epi32(v4, v6); + u7 = _mm_sub_epi32(v5, v7); + + // stage 4 + v0 = u0; + v1 = u1; + v2 = u2; + v3 = u3; + + x = _mm_mullo_epi32(u4, cospi16); + y = _mm_mullo_epi32(u5, cospi48); + v4 = _mm_add_epi32(x, y); + v4 = _mm_add_epi32(v4, rnding); + v4 = _mm_srai_epi32(v4, bit); + + x = _mm_mullo_epi32(u4, cospi48); + y = _mm_mullo_epi32(u5, cospim16); + v5 = _mm_add_epi32(x, y); + v5 = _mm_add_epi32(v5, rnding); + v5 = _mm_srai_epi32(v5, bit); + + x = _mm_mullo_epi32(u6, cospim48); + y = _mm_mullo_epi32(u7, cospi16); + v6 = _mm_add_epi32(x, y); + v6 = _mm_add_epi32(v6, rnding); + v6 = _mm_srai_epi32(v6, bit); + + x = _mm_mullo_epi32(u6, cospi16); + y = _mm_mullo_epi32(u7, cospi48); + v7 = _mm_add_epi32(x, y); + v7 = _mm_add_epi32(v7, rnding); + v7 = _mm_srai_epi32(v7, bit); + + // stage 5 + u0 = _mm_add_epi32(v0, v4); + u1 = _mm_add_epi32(v1, v5); + u2 = _mm_add_epi32(v2, v6); + u3 = _mm_add_epi32(v3, v7); + u4 = _mm_sub_epi32(v0, v4); + u5 = _mm_sub_epi32(v1, v5); + u6 = _mm_sub_epi32(v2, v6); + u7 = _mm_sub_epi32(v3, v7); + + // stage 6 + x = _mm_mullo_epi32(u0, cospi4); + y = _mm_mullo_epi32(u1, cospi60); + v0 = _mm_add_epi32(x, y); + v0 = _mm_add_epi32(v0, rnding); + v0 = _mm_srai_epi32(v0, bit); + + x = _mm_mullo_epi32(u0, cospi60); + y = _mm_mullo_epi32(u1, cospim4); + v1 = _mm_add_epi32(x, y); + v1 = _mm_add_epi32(v1, rnding); + v1 = _mm_srai_epi32(v1, bit); + + x = _mm_mullo_epi32(u2, cospi20); + y = _mm_mullo_epi32(u3, cospi44); + v2 = _mm_add_epi32(x, y); + v2 = _mm_add_epi32(v2, rnding); + v2 = _mm_srai_epi32(v2, bit); + + x = _mm_mullo_epi32(u2, cospi44); + y = _mm_mullo_epi32(u3, cospim20); + v3 = _mm_add_epi32(x, y); + v3 = _mm_add_epi32(v3, rnding); + v3 = _mm_srai_epi32(v3, bit); + + x = _mm_mullo_epi32(u4, cospi36); + y = _mm_mullo_epi32(u5, cospi28); + v4 = _mm_add_epi32(x, y); + v4 = _mm_add_epi32(v4, rnding); + v4 = _mm_srai_epi32(v4, bit); + + x = _mm_mullo_epi32(u4, cospi28); + y = _mm_mullo_epi32(u5, cospim36); + v5 = _mm_add_epi32(x, y); + v5 = _mm_add_epi32(v5, rnding); + v5 = _mm_srai_epi32(v5, bit); + + x = _mm_mullo_epi32(u6, cospi52); + y = _mm_mullo_epi32(u7, cospi12); + v6 = _mm_add_epi32(x, y); + v6 = _mm_add_epi32(v6, rnding); + v6 = _mm_srai_epi32(v6, bit); + + x = _mm_mullo_epi32(u6, cospi12); + y = _mm_mullo_epi32(u7, cospim52); + v7 = _mm_add_epi32(x, y); + v7 = _mm_add_epi32(v7, rnding); + v7 = _mm_srai_epi32(v7, bit); + + // stage 7 + out[2 * 0 + col] = v1; + out[2 * 1 + col] = v6; + out[2 * 2 + col] = v3; + out[2 * 3 + col] = v4; + out[2 * 4 + col] = v5; + out[2 * 5 + col] = v2; + out[2 * 6 + col] = v7; + out[2 * 7 + col] = v0; + } +} + +void av1_fwd_txfm2d_8x8_sse4_1(const int16_t *input, int32_t *coeff, int stride, + TX_TYPE tx_type, int bd) { + __m128i in[16], out[16]; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X8]; + const int txw_idx = get_txw_idx(TX_8X8); + const int txh_idx = get_txh_idx(TX_8X8); + + switch (tx_type) { + case DCT_DCT: + load_buffer_8x8(input, in, stride, 0, 0, shift[0]); + fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case ADST_DCT: + load_buffer_8x8(input, in, stride, 0, 0, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case DCT_ADST: + load_buffer_8x8(input, in, stride, 0, 0, shift[0]); + fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case ADST_ADST: + load_buffer_8x8(input, in, stride, 0, 0, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case FLIPADST_DCT: + load_buffer_8x8(input, in, stride, 1, 0, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fdct8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case DCT_FLIPADST: + load_buffer_8x8(input, in, stride, 0, 1, shift[0]); + fdct8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case FLIPADST_FLIPADST: + load_buffer_8x8(input, in, stride, 1, 1, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case ADST_FLIPADST: + load_buffer_8x8(input, in, stride, 0, 1, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + case FLIPADST_ADST: + load_buffer_8x8(input, in, stride, 1, 0, shift[0]); + fadst8x8_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], 0); + col_txfm_8x8_rounding(out, -shift[1]); + transpose_8x8(out, in); + fadst8x8_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], 0); + transpose_8x8(out, in); + write_buffer_8x8(in, coeff); + break; + default: assert(0); + } + (void)bd; +} + +// Hybrid Transform 16x16 + +static INLINE void convert_8x8_to_16x16(const __m128i *in, __m128i *out) { + int row_index = 0; + int dst_index = 0; + int src_index = 0; + + // row 0, 1, .., 7 + do { + out[dst_index] = in[src_index]; + out[dst_index + 1] = in[src_index + 1]; + out[dst_index + 2] = in[src_index + 16]; + out[dst_index + 3] = in[src_index + 17]; + dst_index += 4; + src_index += 2; + row_index += 1; + } while (row_index < 8); + + // row 8, 9, ..., 15 + src_index += 16; + do { + out[dst_index] = in[src_index]; + out[dst_index + 1] = in[src_index + 1]; + out[dst_index + 2] = in[src_index + 16]; + out[dst_index + 3] = in[src_index + 17]; + dst_index += 4; + src_index += 2; + row_index += 1; + } while (row_index < 16); +} + +static INLINE void load_buffer_16x16(const int16_t *input, __m128i *out, + int stride, int flipud, int fliplr, + int shift) { + __m128i in[64]; + // Load 4 8x8 blocks + const int16_t *topL = input; + const int16_t *topR = input + 8; + const int16_t *botL = input + 8 * stride; + const int16_t *botR = input + 8 * stride + 8; + + const int16_t *tmp; + + if (flipud) { + // Swap left columns + tmp = topL; + topL = botL; + botL = tmp; + // Swap right columns + tmp = topR; + topR = botR; + botR = tmp; + } + + if (fliplr) { + // Swap top rows + tmp = topL; + topL = topR; + topR = tmp; + // Swap bottom rows + tmp = botL; + botL = botR; + botR = tmp; + } + + // load first 8 columns + load_buffer_8x8(topL, &in[0], stride, flipud, fliplr, shift); + load_buffer_8x8(botL, &in[32], stride, flipud, fliplr, shift); + + // load second 8 columns + load_buffer_8x8(topR, &in[16], stride, flipud, fliplr, shift); + load_buffer_8x8(botR, &in[48], stride, flipud, fliplr, shift); + + convert_8x8_to_16x16(in, out); +} + +static INLINE void load_buffer_8x16(const int16_t *input, __m128i *out, + int stride, int flipud, int fliplr, + int shift) { + const int16_t *topL = input; + const int16_t *botL = input + 8 * stride; + + const int16_t *tmp; + + if (flipud) { + tmp = topL; + topL = botL; + botL = tmp; + } + + load_buffer_8x8(topL, out, stride, flipud, fliplr, shift); + load_buffer_8x8(botL, out + 16, stride, flipud, fliplr, shift); +} + +static void fdct16x16_sse4_1(__m128i *in, __m128i *out, int bit, + const int col_num) { + const int32_t *cospi = cospi_arr(bit); + const __m128i cospi32 = _mm_set1_epi32(cospi[32]); + const __m128i cospim32 = _mm_set1_epi32(-cospi[32]); + const __m128i cospi48 = _mm_set1_epi32(cospi[48]); + const __m128i cospi16 = _mm_set1_epi32(cospi[16]); + const __m128i cospim48 = _mm_set1_epi32(-cospi[48]); + const __m128i cospim16 = _mm_set1_epi32(-cospi[16]); + const __m128i cospi56 = _mm_set1_epi32(cospi[56]); + const __m128i cospi8 = _mm_set1_epi32(cospi[8]); + const __m128i cospi24 = _mm_set1_epi32(cospi[24]); + const __m128i cospi40 = _mm_set1_epi32(cospi[40]); + const __m128i cospi60 = _mm_set1_epi32(cospi[60]); + const __m128i cospi4 = _mm_set1_epi32(cospi[4]); + const __m128i cospi28 = _mm_set1_epi32(cospi[28]); + const __m128i cospi36 = _mm_set1_epi32(cospi[36]); + const __m128i cospi44 = _mm_set1_epi32(cospi[44]); + const __m128i cospi20 = _mm_set1_epi32(cospi[20]); + const __m128i cospi12 = _mm_set1_epi32(cospi[12]); + const __m128i cospi52 = _mm_set1_epi32(cospi[52]); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + __m128i u[16], v[16], x; + int col; + + // Calculate the column 0, 1, 2, 3 + for (col = 0; col < col_num; ++col) { + // stage 0 + // stage 1 + u[0] = _mm_add_epi32(in[0 * col_num + col], in[15 * col_num + col]); + u[15] = _mm_sub_epi32(in[0 * col_num + col], in[15 * col_num + col]); + u[1] = _mm_add_epi32(in[1 * col_num + col], in[14 * col_num + col]); + u[14] = _mm_sub_epi32(in[1 * col_num + col], in[14 * col_num + col]); + u[2] = _mm_add_epi32(in[2 * col_num + col], in[13 * col_num + col]); + u[13] = _mm_sub_epi32(in[2 * col_num + col], in[13 * col_num + col]); + u[3] = _mm_add_epi32(in[3 * col_num + col], in[12 * col_num + col]); + u[12] = _mm_sub_epi32(in[3 * col_num + col], in[12 * col_num + col]); + u[4] = _mm_add_epi32(in[4 * col_num + col], in[11 * col_num + col]); + u[11] = _mm_sub_epi32(in[4 * col_num + col], in[11 * col_num + col]); + u[5] = _mm_add_epi32(in[5 * col_num + col], in[10 * col_num + col]); + u[10] = _mm_sub_epi32(in[5 * col_num + col], in[10 * col_num + col]); + u[6] = _mm_add_epi32(in[6 * col_num + col], in[9 * col_num + col]); + u[9] = _mm_sub_epi32(in[6 * col_num + col], in[9 * col_num + col]); + u[7] = _mm_add_epi32(in[7 * col_num + col], in[8 * col_num + col]); + u[8] = _mm_sub_epi32(in[7 * col_num + col], in[8 * col_num + col]); + + // stage 2 + v[0] = _mm_add_epi32(u[0], u[7]); + v[7] = _mm_sub_epi32(u[0], u[7]); + v[1] = _mm_add_epi32(u[1], u[6]); + v[6] = _mm_sub_epi32(u[1], u[6]); + v[2] = _mm_add_epi32(u[2], u[5]); + v[5] = _mm_sub_epi32(u[2], u[5]); + v[3] = _mm_add_epi32(u[3], u[4]); + v[4] = _mm_sub_epi32(u[3], u[4]); + v[8] = u[8]; + v[9] = u[9]; + + v[10] = _mm_mullo_epi32(u[10], cospim32); + x = _mm_mullo_epi32(u[13], cospi32); + v[10] = _mm_add_epi32(v[10], x); + v[10] = _mm_add_epi32(v[10], rnding); + v[10] = _mm_srai_epi32(v[10], bit); + + v[13] = _mm_mullo_epi32(u[10], cospi32); + x = _mm_mullo_epi32(u[13], cospim32); + v[13] = _mm_sub_epi32(v[13], x); + v[13] = _mm_add_epi32(v[13], rnding); + v[13] = _mm_srai_epi32(v[13], bit); + + v[11] = _mm_mullo_epi32(u[11], cospim32); + x = _mm_mullo_epi32(u[12], cospi32); + v[11] = _mm_add_epi32(v[11], x); + v[11] = _mm_add_epi32(v[11], rnding); + v[11] = _mm_srai_epi32(v[11], bit); + + v[12] = _mm_mullo_epi32(u[11], cospi32); + x = _mm_mullo_epi32(u[12], cospim32); + v[12] = _mm_sub_epi32(v[12], x); + v[12] = _mm_add_epi32(v[12], rnding); + v[12] = _mm_srai_epi32(v[12], bit); + v[14] = u[14]; + v[15] = u[15]; + + // stage 3 + u[0] = _mm_add_epi32(v[0], v[3]); + u[3] = _mm_sub_epi32(v[0], v[3]); + u[1] = _mm_add_epi32(v[1], v[2]); + u[2] = _mm_sub_epi32(v[1], v[2]); + u[4] = v[4]; + + u[5] = _mm_mullo_epi32(v[5], cospim32); + x = _mm_mullo_epi32(v[6], cospi32); + u[5] = _mm_add_epi32(u[5], x); + u[5] = _mm_add_epi32(u[5], rnding); + u[5] = _mm_srai_epi32(u[5], bit); + + u[6] = _mm_mullo_epi32(v[5], cospi32); + x = _mm_mullo_epi32(v[6], cospim32); + u[6] = _mm_sub_epi32(u[6], x); + u[6] = _mm_add_epi32(u[6], rnding); + u[6] = _mm_srai_epi32(u[6], bit); + + u[7] = v[7]; + u[8] = _mm_add_epi32(v[8], v[11]); + u[11] = _mm_sub_epi32(v[8], v[11]); + u[9] = _mm_add_epi32(v[9], v[10]); + u[10] = _mm_sub_epi32(v[9], v[10]); + u[12] = _mm_sub_epi32(v[15], v[12]); + u[15] = _mm_add_epi32(v[15], v[12]); + u[13] = _mm_sub_epi32(v[14], v[13]); + u[14] = _mm_add_epi32(v[14], v[13]); + + // stage 4 + u[0] = _mm_mullo_epi32(u[0], cospi32); + u[1] = _mm_mullo_epi32(u[1], cospi32); + v[0] = _mm_add_epi32(u[0], u[1]); + v[0] = _mm_add_epi32(v[0], rnding); + v[0] = _mm_srai_epi32(v[0], bit); + + v[1] = _mm_sub_epi32(u[0], u[1]); + v[1] = _mm_add_epi32(v[1], rnding); + v[1] = _mm_srai_epi32(v[1], bit); + + v[2] = _mm_mullo_epi32(u[2], cospi48); + x = _mm_mullo_epi32(u[3], cospi16); + v[2] = _mm_add_epi32(v[2], x); + v[2] = _mm_add_epi32(v[2], rnding); + v[2] = _mm_srai_epi32(v[2], bit); + + v[3] = _mm_mullo_epi32(u[2], cospi16); + x = _mm_mullo_epi32(u[3], cospi48); + v[3] = _mm_sub_epi32(x, v[3]); + v[3] = _mm_add_epi32(v[3], rnding); + v[3] = _mm_srai_epi32(v[3], bit); + + v[4] = _mm_add_epi32(u[4], u[5]); + v[5] = _mm_sub_epi32(u[4], u[5]); + v[6] = _mm_sub_epi32(u[7], u[6]); + v[7] = _mm_add_epi32(u[7], u[6]); + v[8] = u[8]; + + v[9] = _mm_mullo_epi32(u[9], cospim16); + x = _mm_mullo_epi32(u[14], cospi48); + v[9] = _mm_add_epi32(v[9], x); + v[9] = _mm_add_epi32(v[9], rnding); + v[9] = _mm_srai_epi32(v[9], bit); + + v[14] = _mm_mullo_epi32(u[9], cospi48); + x = _mm_mullo_epi32(u[14], cospim16); + v[14] = _mm_sub_epi32(v[14], x); + v[14] = _mm_add_epi32(v[14], rnding); + v[14] = _mm_srai_epi32(v[14], bit); + + v[10] = _mm_mullo_epi32(u[10], cospim48); + x = _mm_mullo_epi32(u[13], cospim16); + v[10] = _mm_add_epi32(v[10], x); + v[10] = _mm_add_epi32(v[10], rnding); + v[10] = _mm_srai_epi32(v[10], bit); + + v[13] = _mm_mullo_epi32(u[10], cospim16); + x = _mm_mullo_epi32(u[13], cospim48); + v[13] = _mm_sub_epi32(v[13], x); + v[13] = _mm_add_epi32(v[13], rnding); + v[13] = _mm_srai_epi32(v[13], bit); + + v[11] = u[11]; + v[12] = u[12]; + v[15] = u[15]; + + // stage 5 + u[0] = v[0]; + u[1] = v[1]; + u[2] = v[2]; + u[3] = v[3]; + + u[4] = _mm_mullo_epi32(v[4], cospi56); + x = _mm_mullo_epi32(v[7], cospi8); + u[4] = _mm_add_epi32(u[4], x); + u[4] = _mm_add_epi32(u[4], rnding); + u[4] = _mm_srai_epi32(u[4], bit); + + u[7] = _mm_mullo_epi32(v[4], cospi8); + x = _mm_mullo_epi32(v[7], cospi56); + u[7] = _mm_sub_epi32(x, u[7]); + u[7] = _mm_add_epi32(u[7], rnding); + u[7] = _mm_srai_epi32(u[7], bit); + + u[5] = _mm_mullo_epi32(v[5], cospi24); + x = _mm_mullo_epi32(v[6], cospi40); + u[5] = _mm_add_epi32(u[5], x); + u[5] = _mm_add_epi32(u[5], rnding); + u[5] = _mm_srai_epi32(u[5], bit); + + u[6] = _mm_mullo_epi32(v[5], cospi40); + x = _mm_mullo_epi32(v[6], cospi24); + u[6] = _mm_sub_epi32(x, u[6]); + u[6] = _mm_add_epi32(u[6], rnding); + u[6] = _mm_srai_epi32(u[6], bit); + + u[8] = _mm_add_epi32(v[8], v[9]); + u[9] = _mm_sub_epi32(v[8], v[9]); + u[10] = _mm_sub_epi32(v[11], v[10]); + u[11] = _mm_add_epi32(v[11], v[10]); + u[12] = _mm_add_epi32(v[12], v[13]); + u[13] = _mm_sub_epi32(v[12], v[13]); + u[14] = _mm_sub_epi32(v[15], v[14]); + u[15] = _mm_add_epi32(v[15], v[14]); + + // stage 6 + v[0] = u[0]; + v[1] = u[1]; + v[2] = u[2]; + v[3] = u[3]; + v[4] = u[4]; + v[5] = u[5]; + v[6] = u[6]; + v[7] = u[7]; + + v[8] = _mm_mullo_epi32(u[8], cospi60); + x = _mm_mullo_epi32(u[15], cospi4); + v[8] = _mm_add_epi32(v[8], x); + v[8] = _mm_add_epi32(v[8], rnding); + v[8] = _mm_srai_epi32(v[8], bit); + + v[15] = _mm_mullo_epi32(u[8], cospi4); + x = _mm_mullo_epi32(u[15], cospi60); + v[15] = _mm_sub_epi32(x, v[15]); + v[15] = _mm_add_epi32(v[15], rnding); + v[15] = _mm_srai_epi32(v[15], bit); + + v[9] = _mm_mullo_epi32(u[9], cospi28); + x = _mm_mullo_epi32(u[14], cospi36); + v[9] = _mm_add_epi32(v[9], x); + v[9] = _mm_add_epi32(v[9], rnding); + v[9] = _mm_srai_epi32(v[9], bit); + + v[14] = _mm_mullo_epi32(u[9], cospi36); + x = _mm_mullo_epi32(u[14], cospi28); + v[14] = _mm_sub_epi32(x, v[14]); + v[14] = _mm_add_epi32(v[14], rnding); + v[14] = _mm_srai_epi32(v[14], bit); + + v[10] = _mm_mullo_epi32(u[10], cospi44); + x = _mm_mullo_epi32(u[13], cospi20); + v[10] = _mm_add_epi32(v[10], x); + v[10] = _mm_add_epi32(v[10], rnding); + v[10] = _mm_srai_epi32(v[10], bit); + + v[13] = _mm_mullo_epi32(u[10], cospi20); + x = _mm_mullo_epi32(u[13], cospi44); + v[13] = _mm_sub_epi32(x, v[13]); + v[13] = _mm_add_epi32(v[13], rnding); + v[13] = _mm_srai_epi32(v[13], bit); + + v[11] = _mm_mullo_epi32(u[11], cospi12); + x = _mm_mullo_epi32(u[12], cospi52); + v[11] = _mm_add_epi32(v[11], x); + v[11] = _mm_add_epi32(v[11], rnding); + v[11] = _mm_srai_epi32(v[11], bit); + + v[12] = _mm_mullo_epi32(u[11], cospi52); + x = _mm_mullo_epi32(u[12], cospi12); + v[12] = _mm_sub_epi32(x, v[12]); + v[12] = _mm_add_epi32(v[12], rnding); + v[12] = _mm_srai_epi32(v[12], bit); + + out[0 * col_num + col] = v[0]; + out[1 * col_num + col] = v[8]; + out[2 * col_num + col] = v[4]; + out[3 * col_num + col] = v[12]; + out[4 * col_num + col] = v[2]; + out[5 * col_num + col] = v[10]; + out[6 * col_num + col] = v[6]; + out[7 * col_num + col] = v[14]; + out[8 * col_num + col] = v[1]; + out[9 * col_num + col] = v[9]; + out[10 * col_num + col] = v[5]; + out[11 * col_num + col] = v[13]; + out[12 * col_num + col] = v[3]; + out[13 * col_num + col] = v[11]; + out[14 * col_num + col] = v[7]; + out[15 * col_num + col] = v[15]; + } +} + +static void fadst16x16_sse4_1(__m128i *in, __m128i *out, int bit, + const int num_cols) { + const int32_t *cospi = cospi_arr(bit); + const __m128i cospi32 = _mm_set1_epi32(cospi[32]); + const __m128i cospi48 = _mm_set1_epi32(cospi[48]); + const __m128i cospi16 = _mm_set1_epi32(cospi[16]); + const __m128i cospim16 = _mm_set1_epi32(-cospi[16]); + const __m128i cospim48 = _mm_set1_epi32(-cospi[48]); + const __m128i cospi8 = _mm_set1_epi32(cospi[8]); + const __m128i cospi56 = _mm_set1_epi32(cospi[56]); + const __m128i cospim56 = _mm_set1_epi32(-cospi[56]); + const __m128i cospim8 = _mm_set1_epi32(-cospi[8]); + const __m128i cospi24 = _mm_set1_epi32(cospi[24]); + const __m128i cospim24 = _mm_set1_epi32(-cospi[24]); + const __m128i cospim40 = _mm_set1_epi32(-cospi[40]); + const __m128i cospi40 = _mm_set1_epi32(cospi[40]); + const __m128i cospi2 = _mm_set1_epi32(cospi[2]); + const __m128i cospi62 = _mm_set1_epi32(cospi[62]); + const __m128i cospim2 = _mm_set1_epi32(-cospi[2]); + const __m128i cospi10 = _mm_set1_epi32(cospi[10]); + const __m128i cospi54 = _mm_set1_epi32(cospi[54]); + const __m128i cospim10 = _mm_set1_epi32(-cospi[10]); + const __m128i cospi18 = _mm_set1_epi32(cospi[18]); + const __m128i cospi46 = _mm_set1_epi32(cospi[46]); + const __m128i cospim18 = _mm_set1_epi32(-cospi[18]); + const __m128i cospi26 = _mm_set1_epi32(cospi[26]); + const __m128i cospi38 = _mm_set1_epi32(cospi[38]); + const __m128i cospim26 = _mm_set1_epi32(-cospi[26]); + const __m128i cospi34 = _mm_set1_epi32(cospi[34]); + const __m128i cospi30 = _mm_set1_epi32(cospi[30]); + const __m128i cospim34 = _mm_set1_epi32(-cospi[34]); + const __m128i cospi42 = _mm_set1_epi32(cospi[42]); + const __m128i cospi22 = _mm_set1_epi32(cospi[22]); + const __m128i cospim42 = _mm_set1_epi32(-cospi[42]); + const __m128i cospi50 = _mm_set1_epi32(cospi[50]); + const __m128i cospi14 = _mm_set1_epi32(cospi[14]); + const __m128i cospim50 = _mm_set1_epi32(-cospi[50]); + const __m128i cospi58 = _mm_set1_epi32(cospi[58]); + const __m128i cospi6 = _mm_set1_epi32(cospi[6]); + const __m128i cospim58 = _mm_set1_epi32(-cospi[58]); + const __m128i rnding = _mm_set1_epi32(1 << (bit - 1)); + const __m128i zero = _mm_setzero_si128(); + + __m128i u[16], v[16], x, y; + int col; + + for (col = 0; col < num_cols; ++col) { + // stage 0 + // stage 1 + u[0] = in[0 * num_cols + col]; + u[1] = _mm_sub_epi32(zero, in[15 * num_cols + col]); + u[2] = _mm_sub_epi32(zero, in[7 * num_cols + col]); + u[3] = in[8 * num_cols + col]; + u[4] = _mm_sub_epi32(zero, in[3 * num_cols + col]); + u[5] = in[12 * num_cols + col]; + u[6] = in[4 * num_cols + col]; + u[7] = _mm_sub_epi32(zero, in[11 * num_cols + col]); + u[8] = _mm_sub_epi32(zero, in[1 * num_cols + col]); + u[9] = in[14 * num_cols + col]; + u[10] = in[6 * num_cols + col]; + u[11] = _mm_sub_epi32(zero, in[9 * num_cols + col]); + u[12] = in[2 * num_cols + col]; + u[13] = _mm_sub_epi32(zero, in[13 * num_cols + col]); + u[14] = _mm_sub_epi32(zero, in[5 * num_cols + col]); + u[15] = in[10 * num_cols + col]; + + // stage 2 + v[0] = u[0]; + v[1] = u[1]; + + x = _mm_mullo_epi32(u[2], cospi32); + y = _mm_mullo_epi32(u[3], cospi32); + v[2] = _mm_add_epi32(x, y); + v[2] = _mm_add_epi32(v[2], rnding); + v[2] = _mm_srai_epi32(v[2], bit); + + v[3] = _mm_sub_epi32(x, y); + v[3] = _mm_add_epi32(v[3], rnding); + v[3] = _mm_srai_epi32(v[3], bit); + + v[4] = u[4]; + v[5] = u[5]; + + x = _mm_mullo_epi32(u[6], cospi32); + y = _mm_mullo_epi32(u[7], cospi32); + v[6] = _mm_add_epi32(x, y); + v[6] = _mm_add_epi32(v[6], rnding); + v[6] = _mm_srai_epi32(v[6], bit); + + v[7] = _mm_sub_epi32(x, y); + v[7] = _mm_add_epi32(v[7], rnding); + v[7] = _mm_srai_epi32(v[7], bit); + + v[8] = u[8]; + v[9] = u[9]; + + x = _mm_mullo_epi32(u[10], cospi32); + y = _mm_mullo_epi32(u[11], cospi32); + v[10] = _mm_add_epi32(x, y); + v[10] = _mm_add_epi32(v[10], rnding); + v[10] = _mm_srai_epi32(v[10], bit); + + v[11] = _mm_sub_epi32(x, y); + v[11] = _mm_add_epi32(v[11], rnding); + v[11] = _mm_srai_epi32(v[11], bit); + + v[12] = u[12]; + v[13] = u[13]; + + x = _mm_mullo_epi32(u[14], cospi32); + y = _mm_mullo_epi32(u[15], cospi32); + v[14] = _mm_add_epi32(x, y); + v[14] = _mm_add_epi32(v[14], rnding); + v[14] = _mm_srai_epi32(v[14], bit); + + v[15] = _mm_sub_epi32(x, y); + v[15] = _mm_add_epi32(v[15], rnding); + v[15] = _mm_srai_epi32(v[15], bit); + + // stage 3 + u[0] = _mm_add_epi32(v[0], v[2]); + u[1] = _mm_add_epi32(v[1], v[3]); + u[2] = _mm_sub_epi32(v[0], v[2]); + u[3] = _mm_sub_epi32(v[1], v[3]); + u[4] = _mm_add_epi32(v[4], v[6]); + u[5] = _mm_add_epi32(v[5], v[7]); + u[6] = _mm_sub_epi32(v[4], v[6]); + u[7] = _mm_sub_epi32(v[5], v[7]); + u[8] = _mm_add_epi32(v[8], v[10]); + u[9] = _mm_add_epi32(v[9], v[11]); + u[10] = _mm_sub_epi32(v[8], v[10]); + u[11] = _mm_sub_epi32(v[9], v[11]); + u[12] = _mm_add_epi32(v[12], v[14]); + u[13] = _mm_add_epi32(v[13], v[15]); + u[14] = _mm_sub_epi32(v[12], v[14]); + u[15] = _mm_sub_epi32(v[13], v[15]); + + // stage 4 + v[0] = u[0]; + v[1] = u[1]; + v[2] = u[2]; + v[3] = u[3]; + v[4] = half_btf_sse4_1(&cospi16, &u[4], &cospi48, &u[5], &rnding, bit); + v[5] = half_btf_sse4_1(&cospi48, &u[4], &cospim16, &u[5], &rnding, bit); + v[6] = half_btf_sse4_1(&cospim48, &u[6], &cospi16, &u[7], &rnding, bit); + v[7] = half_btf_sse4_1(&cospi16, &u[6], &cospi48, &u[7], &rnding, bit); + v[8] = u[8]; + v[9] = u[9]; + v[10] = u[10]; + v[11] = u[11]; + v[12] = half_btf_sse4_1(&cospi16, &u[12], &cospi48, &u[13], &rnding, bit); + v[13] = half_btf_sse4_1(&cospi48, &u[12], &cospim16, &u[13], &rnding, bit); + v[14] = half_btf_sse4_1(&cospim48, &u[14], &cospi16, &u[15], &rnding, bit); + v[15] = half_btf_sse4_1(&cospi16, &u[14], &cospi48, &u[15], &rnding, bit); + + // stage 5 + u[0] = _mm_add_epi32(v[0], v[4]); + u[1] = _mm_add_epi32(v[1], v[5]); + u[2] = _mm_add_epi32(v[2], v[6]); + u[3] = _mm_add_epi32(v[3], v[7]); + u[4] = _mm_sub_epi32(v[0], v[4]); + u[5] = _mm_sub_epi32(v[1], v[5]); + u[6] = _mm_sub_epi32(v[2], v[6]); + u[7] = _mm_sub_epi32(v[3], v[7]); + u[8] = _mm_add_epi32(v[8], v[12]); + u[9] = _mm_add_epi32(v[9], v[13]); + u[10] = _mm_add_epi32(v[10], v[14]); + u[11] = _mm_add_epi32(v[11], v[15]); + u[12] = _mm_sub_epi32(v[8], v[12]); + u[13] = _mm_sub_epi32(v[9], v[13]); + u[14] = _mm_sub_epi32(v[10], v[14]); + u[15] = _mm_sub_epi32(v[11], v[15]); + + // stage 6 + v[0] = u[0]; + v[1] = u[1]; + v[2] = u[2]; + v[3] = u[3]; + v[4] = u[4]; + v[5] = u[5]; + v[6] = u[6]; + v[7] = u[7]; + v[8] = half_btf_sse4_1(&cospi8, &u[8], &cospi56, &u[9], &rnding, bit); + v[9] = half_btf_sse4_1(&cospi56, &u[8], &cospim8, &u[9], &rnding, bit); + v[10] = half_btf_sse4_1(&cospi40, &u[10], &cospi24, &u[11], &rnding, bit); + v[11] = half_btf_sse4_1(&cospi24, &u[10], &cospim40, &u[11], &rnding, bit); + v[12] = half_btf_sse4_1(&cospim56, &u[12], &cospi8, &u[13], &rnding, bit); + v[13] = half_btf_sse4_1(&cospi8, &u[12], &cospi56, &u[13], &rnding, bit); + v[14] = half_btf_sse4_1(&cospim24, &u[14], &cospi40, &u[15], &rnding, bit); + v[15] = half_btf_sse4_1(&cospi40, &u[14], &cospi24, &u[15], &rnding, bit); + + // stage 7 + u[0] = _mm_add_epi32(v[0], v[8]); + u[1] = _mm_add_epi32(v[1], v[9]); + u[2] = _mm_add_epi32(v[2], v[10]); + u[3] = _mm_add_epi32(v[3], v[11]); + u[4] = _mm_add_epi32(v[4], v[12]); + u[5] = _mm_add_epi32(v[5], v[13]); + u[6] = _mm_add_epi32(v[6], v[14]); + u[7] = _mm_add_epi32(v[7], v[15]); + u[8] = _mm_sub_epi32(v[0], v[8]); + u[9] = _mm_sub_epi32(v[1], v[9]); + u[10] = _mm_sub_epi32(v[2], v[10]); + u[11] = _mm_sub_epi32(v[3], v[11]); + u[12] = _mm_sub_epi32(v[4], v[12]); + u[13] = _mm_sub_epi32(v[5], v[13]); + u[14] = _mm_sub_epi32(v[6], v[14]); + u[15] = _mm_sub_epi32(v[7], v[15]); + + // stage 8 + v[0] = half_btf_sse4_1(&cospi2, &u[0], &cospi62, &u[1], &rnding, bit); + v[1] = half_btf_sse4_1(&cospi62, &u[0], &cospim2, &u[1], &rnding, bit); + v[2] = half_btf_sse4_1(&cospi10, &u[2], &cospi54, &u[3], &rnding, bit); + v[3] = half_btf_sse4_1(&cospi54, &u[2], &cospim10, &u[3], &rnding, bit); + v[4] = half_btf_sse4_1(&cospi18, &u[4], &cospi46, &u[5], &rnding, bit); + v[5] = half_btf_sse4_1(&cospi46, &u[4], &cospim18, &u[5], &rnding, bit); + v[6] = half_btf_sse4_1(&cospi26, &u[6], &cospi38, &u[7], &rnding, bit); + v[7] = half_btf_sse4_1(&cospi38, &u[6], &cospim26, &u[7], &rnding, bit); + v[8] = half_btf_sse4_1(&cospi34, &u[8], &cospi30, &u[9], &rnding, bit); + v[9] = half_btf_sse4_1(&cospi30, &u[8], &cospim34, &u[9], &rnding, bit); + v[10] = half_btf_sse4_1(&cospi42, &u[10], &cospi22, &u[11], &rnding, bit); + v[11] = half_btf_sse4_1(&cospi22, &u[10], &cospim42, &u[11], &rnding, bit); + v[12] = half_btf_sse4_1(&cospi50, &u[12], &cospi14, &u[13], &rnding, bit); + v[13] = half_btf_sse4_1(&cospi14, &u[12], &cospim50, &u[13], &rnding, bit); + v[14] = half_btf_sse4_1(&cospi58, &u[14], &cospi6, &u[15], &rnding, bit); + v[15] = half_btf_sse4_1(&cospi6, &u[14], &cospim58, &u[15], &rnding, bit); + + // stage 9 + out[0 * num_cols + col] = v[1]; + out[1 * num_cols + col] = v[14]; + out[2 * num_cols + col] = v[3]; + out[3 * num_cols + col] = v[12]; + out[4 * num_cols + col] = v[5]; + out[5 * num_cols + col] = v[10]; + out[6 * num_cols + col] = v[7]; + out[7 * num_cols + col] = v[8]; + out[8 * num_cols + col] = v[9]; + out[9 * num_cols + col] = v[6]; + out[10 * num_cols + col] = v[11]; + out[11 * num_cols + col] = v[4]; + out[12 * num_cols + col] = v[13]; + out[13 * num_cols + col] = v[2]; + out[14 * num_cols + col] = v[15]; + out[15 * num_cols + col] = v[0]; + } +} + +static void col_txfm_16x16_rounding(__m128i *in, int shift) { + // Note: + // We split 16x16 rounding into 4 sections of 8x8 rounding, + // instead of 4 columns + col_txfm_8x8_rounding(&in[0], shift); + col_txfm_8x8_rounding(&in[16], shift); + col_txfm_8x8_rounding(&in[32], shift); + col_txfm_8x8_rounding(&in[48], shift); +} + +static void col_txfm_8x16_rounding(__m128i *in, int shift) { + col_txfm_8x8_rounding(&in[0], shift); + col_txfm_8x8_rounding(&in[16], shift); +} + +static void write_buffer_16x16(const __m128i *in, int32_t *output) { + const int size_8x8 = 16 * 4; + write_buffer_8x8(&in[0], output); + output += size_8x8; + write_buffer_8x8(&in[16], output); + output += size_8x8; + write_buffer_8x8(&in[32], output); + output += size_8x8; + write_buffer_8x8(&in[48], output); +} + +void av1_fwd_txfm2d_16x16_sse4_1(const int16_t *input, int32_t *coeff, + int stride, TX_TYPE tx_type, int bd) { + __m128i in[64], out[64]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X16]; + const int txw_idx = get_txw_idx(TX_16X16); + const int txh_idx = get_txh_idx(TX_16X16); + const int col_num = 4; + switch (tx_type) { + case DCT_DCT: + load_buffer_16x16(input, in, stride, 0, 0, shift[0]); + fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case ADST_DCT: + load_buffer_16x16(input, in, stride, 0, 0, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case DCT_ADST: + load_buffer_16x16(input, in, stride, 0, 0, shift[0]); + fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case ADST_ADST: + load_buffer_16x16(input, in, stride, 0, 0, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case FLIPADST_DCT: + load_buffer_16x16(input, in, stride, 1, 0, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fdct16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case DCT_FLIPADST: + load_buffer_16x16(input, in, stride, 0, 1, shift[0]); + fdct16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case FLIPADST_FLIPADST: + load_buffer_16x16(input, in, stride, 1, 1, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case ADST_FLIPADST: + load_buffer_16x16(input, in, stride, 0, 1, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + case FLIPADST_ADST: + load_buffer_16x16(input, in, stride, 1, 0, shift[0]); + fadst16x16_sse4_1(in, out, fwd_cos_bit_col[txw_idx][txh_idx], col_num); + col_txfm_16x16_rounding(out, -shift[1]); + transpose_16x16(out, in); + fadst16x16_sse4_1(in, out, fwd_cos_bit_row[txw_idx][txh_idx], col_num); + transpose_16x16(out, in); + write_buffer_16x16(in, coeff); + break; + default: assert(0); + } + (void)bd; +} + +static INLINE void flip_buf_sse4_1(__m128i *in, __m128i *out, int size) { + for (int i = 0; i < size; i += 2) in[30 - i] = out[i]; + for (int i = 1; i < size; i += 2) in[size - i] = out[i]; +} + +static const fwd_transform_1d_sse4_1 col_highbd_txfm8x8_arr[TX_TYPES] = { + fdct8x8_sse4_1, // DCT_DCT + fadst8x8_sse4_1, // ADST_DCT + fdct8x8_sse4_1, // DCT_ADST + fadst8x8_sse4_1, // ADST_ADST + fadst8x8_sse4_1, // FLIPADST_DCT + fdct8x8_sse4_1, // DCT_FLIPADST + fadst8x8_sse4_1, // FLIPADST_FLIPADST + fadst8x8_sse4_1, // ADST_FLIPADST + fadst8x8_sse4_1, // FLIPADST_ADST + NULL, // IDTX + NULL, // V_DCT + NULL, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +static const fwd_transform_1d_sse4_1 row_highbd_txfm8x16_arr[TX_TYPES] = { + fdct16x16_sse4_1, // DCT_DCT + fdct16x16_sse4_1, // ADST_DCT + fadst16x16_sse4_1, // DCT_ADST + fadst16x16_sse4_1, // ADST_ADST + fdct16x16_sse4_1, // FLIPADST_DCT + fadst16x16_sse4_1, // DCT_FLIPADST + fadst16x16_sse4_1, // FLIPADST_FLIPADST + fadst16x16_sse4_1, // ADST_FLIPADST + fadst16x16_sse4_1, // FLIPADST_ADST + NULL, // IDTX + NULL, // V_DCT + NULL, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +static const fwd_transform_1d_sse4_1 col_highbd_txfm8x16_arr[TX_TYPES] = { + fdct16x16_sse4_1, // DCT_DCT + fadst16x16_sse4_1, // ADST_DCT + fdct16x16_sse4_1, // DCT_ADST + fadst16x16_sse4_1, // ADST_ADST + fadst16x16_sse4_1, // FLIPADST_DCT + fdct16x16_sse4_1, // DCT_FLIPADST + fadst16x16_sse4_1, // FLIPADST_FLIPADST + fadst16x16_sse4_1, // ADST_FLIPADST + fadst16x16_sse4_1, // FLIPADST_ADST + NULL, // IDTX + NULL, // V_DCT + NULL, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; +static const fwd_transform_1d_sse4_1 row_highbd_txfm8x8_arr[TX_TYPES] = { + fdct8x8_sse4_1, // DCT_DCT + fdct8x8_sse4_1, // ADST_DCT + fadst8x8_sse4_1, // DCT_ADST + fadst8x8_sse4_1, // ADST_ADST + fdct8x8_sse4_1, // FLIPADST_DCT + fadst8x8_sse4_1, // DCT_FLIPADST + fadst8x8_sse4_1, // FLIPADST_FLIPADST + fadst8x8_sse4_1, // ADST_FLIPADST + fadst8x8_sse4_1, // FLIPADST_ADST + NULL, // IDTX + NULL, // V_DCT + NULL, // H_DCT + NULL, // V_ADST + NULL, // H_ADST + NULL, // V_FLIPADST + NULL // H_FLIPADST +}; + +void av1_fwd_txfm2d_16x8_sse4_1(const int16_t *input, int32_t *coeff, + int stride, TX_TYPE tx_type, int bd) { + __m128i in[32], out[32]; + const int8_t *shift = fwd_txfm_shift_ls[TX_16X8]; + const int txw_idx = get_txw_idx(TX_16X8); + const int txh_idx = get_txh_idx(TX_16X8); + const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x8_arr[tx_type]; + const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x16_arr[tx_type]; + int bit = fwd_cos_bit_col[txw_idx][txh_idx]; + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + for (int i = 0; i < 2; i++) { + load_buffer_8x8(input + i * 8, in, stride, ud_flip, 0, shift[0]); + col_txfm(in, in, bit, 0); + col_txfm_8x8_rounding(in, -shift[1]); + transpose_8x8(in, out + i * 16); + } + + if (lr_flip) { + flip_buf_sse4_1(in, out, 32); + row_txfm(in, out, bit, 2); + } else { + row_txfm(out, out, bit, 2); + } + + for (int i = 0; i < 2; i++) { + transpose_8x8(out + i * 16, in); + av1_round_shift_rect_array_32_sse4_1(in, in, 16, -shift[2], NewSqrt2); + write_buffer_16x8(in, coeff + i * 8, 16); + } + + (void)bd; +} + +void av1_fwd_txfm2d_8x16_sse4_1(const int16_t *input, int32_t *coeff, + int stride, TX_TYPE tx_type, int bd) { + __m128i in[32], out[32]; + const int8_t *shift = fwd_txfm_shift_ls[TX_8X16]; + const int txw_idx = get_txw_idx(TX_8X16); + const int txh_idx = get_txh_idx(TX_8X16); + const fwd_transform_1d_sse4_1 col_txfm = col_highbd_txfm8x16_arr[tx_type]; + const fwd_transform_1d_sse4_1 row_txfm = row_highbd_txfm8x8_arr[tx_type]; + int bit = fwd_cos_bit_col[txw_idx][txh_idx]; + int ud_flip, lr_flip; + get_flip_cfg(tx_type, &ud_flip, &lr_flip); + + load_buffer_8x16(input, in, stride, ud_flip, lr_flip, shift[0]); + col_txfm(in, in, bit, 2); + col_txfm_8x16_rounding(in, -shift[1]); + transpose_8x8(in, out); + transpose_8x8(in + 16, out + 16); + + for (int i = 0; i < 2; i++) { + row_txfm(out + i * 16, out, bit, 0); + transpose_8x8(out, in); + av1_round_shift_rect_array_32_sse4_1(in, in, 16, -shift[2], NewSqrt2); + write_buffer_8x8(in, coeff + i * 64); + } + + (void)bd; +} diff --git a/third_party/aom/av1/encoder/x86/pickrst_avx2.c b/third_party/aom/av1/encoder/x86/pickrst_avx2.c new file mode 100644 index 0000000000..06aaaa7eee --- /dev/null +++ b/third_party/aom/av1/encoder/x86/pickrst_avx2.c @@ -0,0 +1,403 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <immintrin.h> // AVX2 +#include "aom_dsp/x86/synonyms.h" +#include "aom_dsp/x86/synonyms_avx2.h" +#include "aom_dsp/x86/transpose_sse2.h" + +#include "config/av1_rtcd.h" +#include "av1/common/restoration.h" +#include "av1/encoder/pickrst.h" + +static INLINE void acc_stat_avx2(int32_t *dst, const uint8_t *src, + const __m128i *shuffle, const __m256i *kl) { + const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle); + const __m256i d0 = _mm256_madd_epi16(*kl, _mm256_cvtepu8_epi16(s)); + const __m256i dst0 = yy_loadu_256(dst); + const __m256i r0 = _mm256_add_epi32(dst0, d0); + yy_storeu_256(dst, r0); +} + +static INLINE void acc_stat_win7_one_line_avx2( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, + int dgd_stride, const __m128i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN], + int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { + int j, k, l; + const int wiener_win = WIENER_WIN; + for (j = h_start; j < h_end; j += 2) { + const uint8_t X1 = src[j]; + const uint8_t X2 = src[j + 1]; + *sumX += X1 + X2; + const uint8_t *dgd_ij = dgd + j; + for (k = 0; k < wiener_win; k++) { + const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int32_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint8_t D1 = dgd_ijk[l]; + const uint8_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + const __m256i kl = + _mm256_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l)))); + acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl); + } + } + } +} + +static INLINE void compute_stats_win7_opt_avx2( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, + int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const double avg = + find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; + int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; + int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int32_t sumX = 0; + const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_win7_one_line_avx2( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32); + } + for (k = 0; k < wiener_win; ++k) { + for (l = 0; l < wiener_win; ++l) { + M_int64[k][l] += M_int32[k][l]; + M_int32[k][l] = 0; + } + } + for (k = 0; k < WIENER_WIN2; ++k) { + for (l = 0; l < WIENER_WIN * 8; ++l) { + H_int64[k][l] += H_int32[k][l]; + H_int32[k][l] = 0; + } + } + } + + const double avg_square_sum = avg * avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); + double *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int64[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - + avg * (sumY[k][l] + sumY[n][m]); + } + } + } + } +} + +static INLINE void acc_stat_win5_one_line_avx2( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, + int dgd_stride, const __m128i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { + int j, k, l; + const int wiener_win = WIENER_WIN_CHROMA; + for (j = h_start; j < h_end; j += 2) { + const uint8_t X1 = src[j]; + const uint8_t X2 = src[j + 1]; + *sumX += X1 + X2; + const uint8_t *dgd_ij = dgd + j; + for (k = 0; k < wiener_win; k++) { + const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int32_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint8_t D1 = dgd_ijk[l]; + const uint8_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + const __m256i kl = + _mm256_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l)))); + acc_stat_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); + acc_stat_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); + } + } + } +} + +static INLINE void compute_stats_win5_opt_avx2( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, + int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN_CHROMA; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const double avg = + find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; + int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int32_t sumX = 0; + const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_win5_one_line_avx2( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32); + } + for (k = 0; k < wiener_win; ++k) { + for (l = 0; l < wiener_win; ++l) { + M_int64[k][l] += M_int32[k][l]; + M_int32[k][l] = 0; + } + } + for (k = 0; k < WIENER_WIN2_CHROMA; ++k) { + for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) { + H_int64[k][l] += H_int32[k][l]; + H_int32[k][l] = 0; + } + } + } + + const double avg_square_sum = avg * avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); + double *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int64[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - + avg * (sumY[k][l] + sumY[n][m]); + } + } + } + } +} + +void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd, + const uint8_t *src, int h_start, int h_end, + int v_start, int v_end, int dgd_stride, + int src_stride, double *M, double *H) { + if (wiener_win == WIENER_WIN) { + compute_stats_win7_opt_avx2(dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } else if (wiener_win == WIENER_WIN_CHROMA) { + compute_stats_win5_opt_avx2(dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } else { + av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } +} + +static INLINE __m256i pair_set_epi16(uint16_t a, uint16_t b) { + return _mm256_set1_epi32( + (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); +} + +int64_t av1_lowbd_pixel_proj_error_avx2( + const uint8_t *src8, int width, int height, int src_stride, + const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { + int i, j, k; + const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; + const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); + __m256i sum64 = _mm256_setzero_si256(); + const uint8_t *src = src8; + const uint8_t *dat = dat8; + int64_t err = 0; + if (params->r[0] > 0 && params->r[1] > 0) { + __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]); + for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); + for (j = 0; j <= width - 16; j += 16) { + const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); + const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); + const __m256i flt0_16b = _mm256_permute4x64_epi64( + _mm256_packs_epi32(yy_loadu_256(flt0 + j), + yy_loadu_256(flt0 + j + 8)), + 0xd8); + const __m256i flt1_16b = _mm256_permute4x64_epi64( + _mm256_packs_epi32(yy_loadu_256(flt1 + j), + yy_loadu_256(flt1 + j + 8)), + 0xd8); + const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); + const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0); + const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0); + const __m256i v0 = _mm256_madd_epi16( + xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u)); + const __m256i v1 = _mm256_madd_epi16( + xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u)); + const __m256i vr0 = + _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); + const __m256i vr1 = + _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); + const __m256i e0 = _mm256_sub_epi16( + _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); + const __m256i err0 = _mm256_madd_epi16(e0, e0); + sum32 = _mm256_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + flt1 += flt1_stride; + const __m256i sum64_0 = + _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); + const __m256i sum64_1 = + _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum64_0); + sum64 = _mm256_add_epi64(sum64, sum64_1); + } + } else if (params->r[0] > 0) { + __m256i xq_coeff = + pair_set_epi16(xq[0], (-xq[0] * (1 << SGRPROJ_RST_BITS))); + for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); + for (j = 0; j <= width - 16; j += 16) { + const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); + const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); + const __m256i flt0_16b = _mm256_permute4x64_epi64( + _mm256_packs_epi32(yy_loadu_256(flt0 + j), + yy_loadu_256(flt0 + j + 8)), + 0xd8); + const __m256i v0 = + _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt0_16b, d0)); + const __m256i v1 = + _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt0_16b, d0)); + const __m256i vr0 = + _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); + const __m256i vr1 = + _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); + const __m256i e0 = _mm256_sub_epi16( + _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); + const __m256i err0 = _mm256_madd_epi16(e0, e0); + sum32 = _mm256_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[0] * (flt0[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + const __m256i sum64_0 = + _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); + const __m256i sum64_1 = + _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum64_0); + sum64 = _mm256_add_epi64(sum64, sum64_1); + } + } else if (params->r[1] > 0) { + __m256i xq_coeff = pair_set_epi16(xq[1], -(xq[1] << SGRPROJ_RST_BITS)); + for (i = 0; i < height; ++i) { + __m256i sum32 = _mm256_setzero_si256(); + for (j = 0; j <= width - 16; j += 16) { + const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); + const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); + const __m256i flt1_16b = _mm256_permute4x64_epi64( + _mm256_packs_epi32(yy_loadu_256(flt1 + j), + yy_loadu_256(flt1 + j + 8)), + 0xd8); + const __m256i v0 = + _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt1_16b, d0)); + const __m256i v1 = + _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt1_16b, d0)); + const __m256i vr0 = + _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); + const __m256i vr1 = + _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); + const __m256i e0 = _mm256_sub_epi16( + _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); + const __m256i err0 = _mm256_madd_epi16(e0, e0); + sum32 = _mm256_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[1] * (flt1[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt1 += flt1_stride; + const __m256i sum64_0 = + _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); + const __m256i sum64_1 = + _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64, sum64_0); + sum64 = _mm256_add_epi64(sum64, sum64_1); + } + } else { + __m256i sum32 = _mm256_setzero_si256(); + for (i = 0; i < height; ++i) { + for (j = 0; j <= width - 16; j += 16) { + const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); + const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); + const __m256i diff0 = _mm256_sub_epi16(d0, s0); + const __m256i err0 = _mm256_madd_epi16(diff0, diff0); + sum32 = _mm256_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t e = (int32_t)(dat[k]) - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + } + const __m256i sum64_0 = + _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); + const __m256i sum64_1 = + _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); + sum64 = _mm256_add_epi64(sum64_0, sum64_1); + } + int64_t sum[4]; + yy_storeu_256(sum, sum64); + err += sum[0] + sum[1] + sum[2] + sum[3]; + return err; +} diff --git a/third_party/aom/av1/encoder/x86/pickrst_sse4.c b/third_party/aom/av1/encoder/x86/pickrst_sse4.c new file mode 100644 index 0000000000..04e4d1afc4 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/pickrst_sse4.c @@ -0,0 +1,389 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <emmintrin.h> +#include "aom_dsp/x86/synonyms.h" + +#include "config/av1_rtcd.h" +#include "av1/common/restoration.h" +#include "av1/encoder/pickrst.h" + +static INLINE void acc_stat_sse41(int32_t *dst, const uint8_t *src, + const __m128i *shuffle, const __m128i *kl) { + const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle); + const __m128i d0 = _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(s)); + const __m128i d1 = + _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(_mm_srli_si128(s, 8))); + const __m128i dst0 = xx_loadu_128(dst); + const __m128i dst1 = xx_loadu_128(dst + 4); + const __m128i r0 = _mm_add_epi32(dst0, d0); + const __m128i r1 = _mm_add_epi32(dst1, d1); + xx_storeu_128(dst, r0); + xx_storeu_128(dst + 4, r1); +} + +static INLINE void acc_stat_win7_one_line_sse4_1( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, + int dgd_stride, const __m128i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN], + int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { + const int wiener_win = 7; + int j, k, l; + for (j = h_start; j < h_end; j += 2) { + const uint8_t *dgd_ij = dgd + j; + const uint8_t X1 = src[j]; + const uint8_t X2 = src[j + 1]; + *sumX += X1 + X2; + for (k = 0; k < wiener_win; k++) { + const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int32_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint8_t D1 = dgd_ijk[l]; + const uint8_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + const __m128i kl = + _mm_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l)))); + acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl); + } + } + } +} + +static INLINE void compute_stats_win7_opt_sse4_1( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, + int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const double avg = + find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; + int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } }; + int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; + int32_t sumX = 0; + const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_win7_one_line_sse4_1( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32); + } + for (k = 0; k < wiener_win; ++k) { + for (l = 0; l < wiener_win; ++l) { + M_int64[k][l] += M_int32[k][l]; + M_int32[k][l] = 0; + } + } + for (k = 0; k < WIENER_WIN2; ++k) { + for (l = 0; l < WIENER_WIN * 8; ++l) { + H_int64[k][l] += H_int32[k][l]; + H_int32[k][l] = 0; + } + } + } + + const double avg_square_sum = avg * avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); + double *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int64[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - + avg * (sumY[k][l] + sumY[n][m]); + } + } + } + } +} + +static INLINE void acc_stat_win5_one_line_sse4_1( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, + int dgd_stride, const __m128i *shuffle, int32_t *sumX, + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], + int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { + const int wiener_win = WIENER_WIN_CHROMA; + int j, k, l; + for (j = h_start; j < h_end; j += 2) { + const uint8_t *dgd_ij = dgd + j; + const uint8_t X1 = src[j]; + const uint8_t X2 = src[j + 1]; + *sumX += X1 + X2; + for (k = 0; k < wiener_win; k++) { + const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride; + for (l = 0; l < wiener_win; l++) { + int32_t *H_ = &H_int[(l * wiener_win + k)][0]; + const uint8_t D1 = dgd_ijk[l]; + const uint8_t D2 = dgd_ijk[l + 1]; + sumY[k][l] += D1 + D2; + M_int[k][l] += D1 * X1 + D2 * X2; + + const __m128i kl = + _mm_cvtepu8_epi16(_mm_set1_epi16(*((uint16_t *)(dgd_ijk + l)))); + acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl); + acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl); + } + } + } +} + +static INLINE void compute_stats_win5_opt_sse4_1( + const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start, + int v_end, int dgd_stride, int src_stride, double *M, double *H) { + int i, j, k, l, m, n; + const int wiener_win = WIENER_WIN_CHROMA; + const int pixel_count = (h_end - h_start) * (v_end - v_start); + const int wiener_win2 = wiener_win * wiener_win; + const int wiener_halfwin = (wiener_win >> 1); + const double avg = + find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); + + int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; + int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } }; + int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; + int32_t sumX = 0; + const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; + + const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data); + for (j = v_start; j < v_end; j += 64) { + const int vert_end = AOMMIN(64, v_end - j) + j; + for (i = j; i < vert_end; i++) { + acc_stat_win5_one_line_sse4_1( + dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, + dgd_stride, &shuffle, &sumX, sumY, M_int32, H_int32); + } + for (k = 0; k < wiener_win; ++k) { + for (l = 0; l < wiener_win; ++l) { + M_int64[k][l] += M_int32[k][l]; + M_int32[k][l] = 0; + } + } + for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) { + for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) { + H_int64[k][l] += H_int32[k][l]; + H_int32[k][l] = 0; + } + } + } + + const double avg_square_sum = avg * avg * pixel_count; + for (k = 0; k < wiener_win; k++) { + for (l = 0; l < wiener_win; l++) { + const int32_t idx0 = l * wiener_win + k; + M[idx0] = M_int64[k][l] + avg_square_sum - avg * (sumX + sumY[k][l]); + double *H_ = H + idx0 * wiener_win2; + int64_t *H_int_ = &H_int64[idx0][0]; + for (m = 0; m < wiener_win; m++) { + for (n = 0; n < wiener_win; n++) { + H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum - + avg * (sumY[k][l] + sumY[n][m]); + } + } + } + } +} +void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd, + const uint8_t *src, int h_start, int h_end, + int v_start, int v_end, int dgd_stride, + int src_stride, double *M, double *H) { + if (wiener_win == WIENER_WIN) { + compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } else if (wiener_win == WIENER_WIN_CHROMA) { + compute_stats_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } else { + av1_compute_stats_c(wiener_win, dgd, src, h_start, h_end, v_start, v_end, + dgd_stride, src_stride, M, H); + } +} + +static INLINE __m128i pair_set_epi16(uint16_t a, uint16_t b) { + return _mm_set1_epi32((int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); +} + +int64_t av1_lowbd_pixel_proj_error_sse4_1( + const uint8_t *src8, int width, int height, int src_stride, + const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, + int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { + int i, j, k; + const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; + const __m128i rounding = _mm_set1_epi32(1 << (shift - 1)); + __m128i sum64 = _mm_setzero_si128(); + const uint8_t *src = src8; + const uint8_t *dat = dat8; + int64_t err = 0; + if (params->r[0] > 0 && params->r[1] > 0) { + __m128i xq_coeff = pair_set_epi16(xq[0], xq[1]); + for (i = 0; i < height; ++i) { + __m128i sum32 = _mm_setzero_si128(); + for (j = 0; j < width - 8; j += 8) { + const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j)); + const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j)); + const __m128i flt0_16b = + _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4)); + const __m128i flt1_16b = + _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4)); + const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS); + const __m128i flt0_0_sub_u = _mm_sub_epi16(flt0_16b, u0); + const __m128i flt1_0_sub_u = _mm_sub_epi16(flt1_16b, u0); + const __m128i v0 = _mm_madd_epi16( + xq_coeff, _mm_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u)); + const __m128i v1 = _mm_madd_epi16( + xq_coeff, _mm_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u)); + const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift); + const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift); + const __m128i e0 = + _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0); + const __m128i err0 = _mm_madd_epi16(e0, e0); + sum32 = _mm_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + flt1 += flt1_stride; + const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32); + const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8)); + sum64 = _mm_add_epi64(sum64, sum64_0); + sum64 = _mm_add_epi64(sum64, sum64_1); + } + } else if (params->r[0] > 0) { + __m128i xq_coeff = pair_set_epi16(xq[0], -(xq[0] << SGRPROJ_RST_BITS)); + for (i = 0; i < height; ++i) { + __m128i sum32 = _mm_setzero_si128(); + for (j = 0; j < width - 8; j += 8) { + const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j)); + const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j)); + const __m128i flt0_16b = + _mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4)); + const __m128i v0 = + _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt0_16b, d0)); + const __m128i v1 = + _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt0_16b, d0)); + const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift); + const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift); + const __m128i e0 = + _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0); + const __m128i err0 = _mm_madd_epi16(e0, e0); + sum32 = _mm_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[0] * (flt0[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt0 += flt0_stride; + const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32); + const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8)); + sum64 = _mm_add_epi64(sum64, sum64_0); + sum64 = _mm_add_epi64(sum64, sum64_1); + } + } else if (params->r[1] > 0) { + __m128i xq_coeff = pair_set_epi16(xq[1], -(xq[1] << SGRPROJ_RST_BITS)); + for (i = 0; i < height; ++i) { + __m128i sum32 = _mm_setzero_si128(); + for (j = 0; j < width - 8; j += 8) { + const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j)); + const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j)); + const __m128i flt1_16b = + _mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4)); + const __m128i v0 = + _mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt1_16b, d0)); + const __m128i v1 = + _mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt1_16b, d0)); + const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift); + const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift); + const __m128i e0 = + _mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0); + const __m128i err0 = _mm_madd_epi16(e0, e0); + sum32 = _mm_add_epi32(sum32, err0); + } + for (k = j; k < width; ++k) { + const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); + int32_t v = xq[1] * (flt1[k] - u); + const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + flt1 += flt1_stride; + const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32); + const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8)); + sum64 = _mm_add_epi64(sum64, sum64_0); + sum64 = _mm_add_epi64(sum64, sum64_1); + } + } else { + __m128i sum32 = _mm_setzero_si128(); + for (i = 0; i < height; ++i) { + for (j = 0; j < width - 16; j += 16) { + const __m128i d = xx_loadu_128(dat + j); + const __m128i s = xx_loadu_128(src + j); + const __m128i d0 = _mm_cvtepu8_epi16(d); + const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8)); + const __m128i s0 = _mm_cvtepu8_epi16(s); + const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8)); + const __m128i diff0 = _mm_sub_epi16(d0, s0); + const __m128i diff1 = _mm_sub_epi16(d1, s1); + const __m128i err0 = _mm_madd_epi16(diff0, diff0); + const __m128i err1 = _mm_madd_epi16(diff1, diff1); + sum32 = _mm_add_epi32(sum32, err0); + sum32 = _mm_add_epi32(sum32, err1); + } + for (k = j; k < width; ++k) { + const int32_t e = (int32_t)(dat[k]) - src[k]; + err += e * e; + } + dat += dat_stride; + src += src_stride; + } + const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32); + const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8)); + sum64 = _mm_add_epi64(sum64_0, sum64_1); + } + int64_t sum[2]; + xx_storeu_128(sum, sum64); + err += sum[0] + sum[1]; + return err; +} diff --git a/third_party/aom/av1/encoder/x86/temporal_filter_apply_sse2.asm b/third_party/aom/av1/encoder/x86/temporal_filter_apply_sse2.asm new file mode 100644 index 0000000000..30983d1c10 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/temporal_filter_apply_sse2.asm @@ -0,0 +1,217 @@ +; +; Copyright (c) 2016, Alliance for Open Media. All rights reserved +; +; This source code is subject to the terms of the BSD 2 Clause License and +; the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License +; was not distributed with this source code in the LICENSE file, you can +; obtain it at www.aomedia.org/license/software. If the Alliance for Open +; Media Patent License 1.0 was not distributed with this source code in the +; PATENTS file, you can obtain it at www.aomedia.org/license/patent. +; + +; + + +%include "aom_ports/x86_abi_support.asm" + +SECTION .text + +; void av1_temporal_filter_apply_sse2 | arg +; (unsigned char *frame1, | 0 +; unsigned int stride, | 1 +; unsigned char *frame2, | 2 +; unsigned int block_width, | 3 +; unsigned int block_height, | 4 +; int strength, | 5 +; int filter_weight, | 6 +; unsigned int *accumulator, | 7 +; unsigned short *count) | 8 +global sym(av1_temporal_filter_apply_sse2) PRIVATE +sym(av1_temporal_filter_apply_sse2): + + push rbp + mov rbp, rsp + SHADOW_ARGS_TO_STACK 9 + SAVE_XMM 7 + GET_GOT rbx + push rsi + push rdi + ALIGN_STACK 16, rax + %define block_width 0 + %define block_height 16 + %define strength 32 + %define filter_weight 48 + %define rounding_bit 64 + %define rbp_backup 80 + %define stack_size 96 + sub rsp, stack_size + mov [rsp + rbp_backup], rbp + ; end prolog + + mov edx, arg(3) + mov [rsp + block_width], rdx + mov edx, arg(4) + mov [rsp + block_height], rdx + movd xmm6, arg(5) + movdqa [rsp + strength], xmm6 ; where strength is used, all 16 bytes are read + + ; calculate the rounding bit outside the loop + ; 0x8000 >> (16 - strength) + mov rdx, 16 + sub rdx, arg(5) ; 16 - strength + movq xmm4, rdx ; can't use rdx w/ shift + movdqa xmm5, [GLOBAL(_const_top_bit)] + psrlw xmm5, xmm4 + movdqa [rsp + rounding_bit], xmm5 + + mov rsi, arg(0) ; src/frame1 + mov rdx, arg(2) ; predictor frame + mov rdi, arg(7) ; accumulator + mov rax, arg(8) ; count + + ; dup the filter weight and store for later + movd xmm0, arg(6) ; filter_weight + pshuflw xmm0, xmm0, 0 + punpcklwd xmm0, xmm0 + movdqa [rsp + filter_weight], xmm0 + + mov rbp, arg(1) ; stride + pxor xmm7, xmm7 ; zero for extraction + + mov rcx, [rsp + block_width] + imul rcx, [rsp + block_height] + add rcx, rdx + cmp dword ptr [rsp + block_width], 8 + jne .temporal_filter_apply_load_16 + +.temporal_filter_apply_load_8: + movq xmm0, [rsi] ; first row + lea rsi, [rsi + rbp] ; += stride + punpcklbw xmm0, xmm7 ; src[ 0- 7] + movq xmm1, [rsi] ; second row + lea rsi, [rsi + rbp] ; += stride + punpcklbw xmm1, xmm7 ; src[ 8-15] + jmp .temporal_filter_apply_load_finished + +.temporal_filter_apply_load_16: + movdqa xmm0, [rsi] ; src (frame1) + lea rsi, [rsi + rbp] ; += stride + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm7 ; src[ 0- 7] + punpckhbw xmm1, xmm7 ; src[ 8-15] + +.temporal_filter_apply_load_finished: + movdqa xmm2, [rdx] ; predictor (frame2) + movdqa xmm3, xmm2 + punpcklbw xmm2, xmm7 ; pred[ 0- 7] + punpckhbw xmm3, xmm7 ; pred[ 8-15] + + ; modifier = src_byte - pixel_value + psubw xmm0, xmm2 ; src - pred[ 0- 7] + psubw xmm1, xmm3 ; src - pred[ 8-15] + + ; modifier *= modifier + pmullw xmm0, xmm0 ; modifer[ 0- 7]^2 + pmullw xmm1, xmm1 ; modifer[ 8-15]^2 + + ; modifier *= 3 + pmullw xmm0, [GLOBAL(_const_3w)] + pmullw xmm1, [GLOBAL(_const_3w)] + + ; modifer += 0x8000 >> (16 - strength) + paddw xmm0, [rsp + rounding_bit] + paddw xmm1, [rsp + rounding_bit] + + ; modifier >>= strength + psrlw xmm0, [rsp + strength] + psrlw xmm1, [rsp + strength] + + ; modifier = 16 - modifier + ; saturation takes care of modifier > 16 + movdqa xmm3, [GLOBAL(_const_16w)] + movdqa xmm2, [GLOBAL(_const_16w)] + psubusw xmm3, xmm1 + psubusw xmm2, xmm0 + + ; modifier *= filter_weight + pmullw xmm2, [rsp + filter_weight] + pmullw xmm3, [rsp + filter_weight] + + ; count + movdqa xmm4, [rax] + movdqa xmm5, [rax+16] + ; += modifier + paddw xmm4, xmm2 + paddw xmm5, xmm3 + ; write back + movdqa [rax], xmm4 + movdqa [rax+16], xmm5 + lea rax, [rax + 16*2] ; count += 16*(sizeof(short)) + + ; load and extract the predictor up to shorts + pxor xmm7, xmm7 + movdqa xmm0, [rdx] + lea rdx, [rdx + 16*1] ; pred += 16*(sizeof(char)) + movdqa xmm1, xmm0 + punpcklbw xmm0, xmm7 ; pred[ 0- 7] + punpckhbw xmm1, xmm7 ; pred[ 8-15] + + ; modifier *= pixel_value + pmullw xmm0, xmm2 + pmullw xmm1, xmm3 + + ; expand to double words + movdqa xmm2, xmm0 + punpcklwd xmm0, xmm7 ; [ 0- 3] + punpckhwd xmm2, xmm7 ; [ 4- 7] + movdqa xmm3, xmm1 + punpcklwd xmm1, xmm7 ; [ 8-11] + punpckhwd xmm3, xmm7 ; [12-15] + + ; accumulator + movdqa xmm4, [rdi] + movdqa xmm5, [rdi+16] + movdqa xmm6, [rdi+32] + movdqa xmm7, [rdi+48] + ; += modifier + paddd xmm4, xmm0 + paddd xmm5, xmm2 + paddd xmm6, xmm1 + paddd xmm7, xmm3 + ; write back + movdqa [rdi], xmm4 + movdqa [rdi+16], xmm5 + movdqa [rdi+32], xmm6 + movdqa [rdi+48], xmm7 + lea rdi, [rdi + 16*4] ; accumulator += 16*(sizeof(int)) + + cmp rdx, rcx + je .temporal_filter_apply_epilog + pxor xmm7, xmm7 ; zero for extraction + cmp dword ptr [rsp + block_width], 16 + je .temporal_filter_apply_load_16 + jmp .temporal_filter_apply_load_8 + +.temporal_filter_apply_epilog: + ; begin epilog + mov rbp, [rsp + rbp_backup] + add rsp, stack_size + pop rsp + pop rdi + pop rsi + RESTORE_GOT + RESTORE_XMM + UNSHADOW_ARGS + pop rbp + ret + +SECTION_RODATA +align 16 +_const_3w: + times 8 dw 3 +align 16 +_const_top_bit: + times 8 dw 1<<15 +align 16 +_const_16w: + times 8 dw 16 diff --git a/third_party/aom/av1/encoder/x86/wedge_utils_avx2.c b/third_party/aom/av1/encoder/x86/wedge_utils_avx2.c new file mode 100644 index 0000000000..2a792f14e6 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/wedge_utils_avx2.c @@ -0,0 +1,215 @@ +/* + * Copyright (c) 2018, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <immintrin.h> +#include <smmintrin.h> + +#include "aom_dsp/x86/synonyms.h" +#include "aom_dsp/x86/synonyms_avx2.h" +#include "aom/aom_integer.h" + +#include "av1/common/reconinter.h" + +#define MAX_MASK_VALUE (1 << WEDGE_WEIGHT_BITS) + +/** + * See av1_wedge_sse_from_residuals_c + */ +uint64_t av1_wedge_sse_from_residuals_avx2(const int16_t *r1, const int16_t *d, + const uint8_t *m, int N) { + int n = -N; + + uint64_t csse; + + const __m256i v_mask_max_w = _mm256_set1_epi16(MAX_MASK_VALUE); + const __m256i v_zext_q = yy_set1_64_from_32i(0xffffffff); + + __m256i v_acc0_q = _mm256_setzero_si256(); + + assert(N % 64 == 0); + + r1 += N; + d += N; + m += N; + + do { + const __m256i v_r0_w = _mm256_lddqu_si256((__m256i *)(r1 + n)); + const __m256i v_d0_w = _mm256_lddqu_si256((__m256i *)(d + n)); + const __m128i v_m01_b = _mm_lddqu_si128((__m128i *)(m + n)); + + const __m256i v_rd0l_w = _mm256_unpacklo_epi16(v_d0_w, v_r0_w); + const __m256i v_rd0h_w = _mm256_unpackhi_epi16(v_d0_w, v_r0_w); + const __m256i v_m0_w = _mm256_cvtepu8_epi16(v_m01_b); + + const __m256i v_m0l_w = _mm256_unpacklo_epi16(v_m0_w, v_mask_max_w); + const __m256i v_m0h_w = _mm256_unpackhi_epi16(v_m0_w, v_mask_max_w); + + const __m256i v_t0l_d = _mm256_madd_epi16(v_rd0l_w, v_m0l_w); + const __m256i v_t0h_d = _mm256_madd_epi16(v_rd0h_w, v_m0h_w); + + const __m256i v_t0_w = _mm256_packs_epi32(v_t0l_d, v_t0h_d); + + const __m256i v_sq0_d = _mm256_madd_epi16(v_t0_w, v_t0_w); + + const __m256i v_sum0_q = _mm256_add_epi64( + _mm256_and_si256(v_sq0_d, v_zext_q), _mm256_srli_epi64(v_sq0_d, 32)); + + v_acc0_q = _mm256_add_epi64(v_acc0_q, v_sum0_q); + + n += 16; + } while (n); + + v_acc0_q = _mm256_add_epi64(v_acc0_q, _mm256_srli_si256(v_acc0_q, 8)); + __m128i v_acc_q_0 = _mm256_castsi256_si128(v_acc0_q); + __m128i v_acc_q_1 = _mm256_extracti128_si256(v_acc0_q, 1); + v_acc_q_0 = _mm_add_epi64(v_acc_q_0, v_acc_q_1); +#if ARCH_X86_64 + csse = (uint64_t)_mm_extract_epi64(v_acc_q_0, 0); +#else + xx_storel_64(&csse, v_acc_q_0); +#endif + + return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS); +} + +/** + * See av1_wedge_sign_from_residuals_c + */ +int av1_wedge_sign_from_residuals_avx2(const int16_t *ds, const uint8_t *m, + int N, int64_t limit) { + int64_t acc; + __m256i v_acc0_d = _mm256_setzero_si256(); + + // Input size limited to 8192 by the use of 32 bit accumulators and m + // being between [0, 64]. Overflow might happen at larger sizes, + // though it is practically impossible on real video input. + assert(N < 8192); + assert(N % 64 == 0); + + do { + const __m256i v_m01_b = _mm256_lddqu_si256((__m256i *)(m)); + const __m256i v_m23_b = _mm256_lddqu_si256((__m256i *)(m + 32)); + + const __m256i v_d0_w = _mm256_lddqu_si256((__m256i *)(ds)); + const __m256i v_d1_w = _mm256_lddqu_si256((__m256i *)(ds + 16)); + const __m256i v_d2_w = _mm256_lddqu_si256((__m256i *)(ds + 32)); + const __m256i v_d3_w = _mm256_lddqu_si256((__m256i *)(ds + 48)); + + const __m256i v_m0_w = + _mm256_cvtepu8_epi16(_mm256_castsi256_si128(v_m01_b)); + const __m256i v_m1_w = + _mm256_cvtepu8_epi16(_mm256_extracti128_si256(v_m01_b, 1)); + const __m256i v_m2_w = + _mm256_cvtepu8_epi16(_mm256_castsi256_si128(v_m23_b)); + const __m256i v_m3_w = + _mm256_cvtepu8_epi16(_mm256_extracti128_si256(v_m23_b, 1)); + + const __m256i v_p0_d = _mm256_madd_epi16(v_d0_w, v_m0_w); + const __m256i v_p1_d = _mm256_madd_epi16(v_d1_w, v_m1_w); + const __m256i v_p2_d = _mm256_madd_epi16(v_d2_w, v_m2_w); + const __m256i v_p3_d = _mm256_madd_epi16(v_d3_w, v_m3_w); + + const __m256i v_p01_d = _mm256_add_epi32(v_p0_d, v_p1_d); + const __m256i v_p23_d = _mm256_add_epi32(v_p2_d, v_p3_d); + + const __m256i v_p0123_d = _mm256_add_epi32(v_p01_d, v_p23_d); + + v_acc0_d = _mm256_add_epi32(v_acc0_d, v_p0123_d); + + ds += 64; + m += 64; + + N -= 64; + } while (N); + + __m256i v_sign_d = _mm256_srai_epi32(v_acc0_d, 31); + v_acc0_d = _mm256_add_epi64(_mm256_unpacklo_epi32(v_acc0_d, v_sign_d), + _mm256_unpackhi_epi32(v_acc0_d, v_sign_d)); + + __m256i v_acc_q = _mm256_add_epi64(v_acc0_d, _mm256_srli_si256(v_acc0_d, 8)); + + __m128i v_acc_q_0 = _mm256_castsi256_si128(v_acc_q); + __m128i v_acc_q_1 = _mm256_extracti128_si256(v_acc_q, 1); + v_acc_q_0 = _mm_add_epi64(v_acc_q_0, v_acc_q_1); + +#if ARCH_X86_64 + acc = (uint64_t)_mm_extract_epi64(v_acc_q_0, 0); +#else + xx_storel_64(&acc, v_acc_q_0); +#endif + + return acc > limit; +} + +/** + * av1_wedge_compute_delta_squares_c + */ +void av1_wedge_compute_delta_squares_avx2(int16_t *d, const int16_t *a, + const int16_t *b, int N) { + const __m256i v_neg_w = _mm256_set1_epi32(0xffff0001); + + assert(N % 64 == 0); + + do { + const __m256i v_a0_w = _mm256_lddqu_si256((__m256i *)(a)); + const __m256i v_b0_w = _mm256_lddqu_si256((__m256i *)(b)); + const __m256i v_a1_w = _mm256_lddqu_si256((__m256i *)(a + 16)); + const __m256i v_b1_w = _mm256_lddqu_si256((__m256i *)(b + 16)); + const __m256i v_a2_w = _mm256_lddqu_si256((__m256i *)(a + 32)); + const __m256i v_b2_w = _mm256_lddqu_si256((__m256i *)(b + 32)); + const __m256i v_a3_w = _mm256_lddqu_si256((__m256i *)(a + 48)); + const __m256i v_b3_w = _mm256_lddqu_si256((__m256i *)(b + 48)); + + const __m256i v_ab0l_w = _mm256_unpacklo_epi16(v_a0_w, v_b0_w); + const __m256i v_ab0h_w = _mm256_unpackhi_epi16(v_a0_w, v_b0_w); + const __m256i v_ab1l_w = _mm256_unpacklo_epi16(v_a1_w, v_b1_w); + const __m256i v_ab1h_w = _mm256_unpackhi_epi16(v_a1_w, v_b1_w); + const __m256i v_ab2l_w = _mm256_unpacklo_epi16(v_a2_w, v_b2_w); + const __m256i v_ab2h_w = _mm256_unpackhi_epi16(v_a2_w, v_b2_w); + const __m256i v_ab3l_w = _mm256_unpacklo_epi16(v_a3_w, v_b3_w); + const __m256i v_ab3h_w = _mm256_unpackhi_epi16(v_a3_w, v_b3_w); + + // Negate top word of pairs + const __m256i v_abl0n_w = _mm256_sign_epi16(v_ab0l_w, v_neg_w); + const __m256i v_abh0n_w = _mm256_sign_epi16(v_ab0h_w, v_neg_w); + const __m256i v_abl1n_w = _mm256_sign_epi16(v_ab1l_w, v_neg_w); + const __m256i v_abh1n_w = _mm256_sign_epi16(v_ab1h_w, v_neg_w); + const __m256i v_abl2n_w = _mm256_sign_epi16(v_ab2l_w, v_neg_w); + const __m256i v_abh2n_w = _mm256_sign_epi16(v_ab2h_w, v_neg_w); + const __m256i v_abl3n_w = _mm256_sign_epi16(v_ab3l_w, v_neg_w); + const __m256i v_abh3n_w = _mm256_sign_epi16(v_ab3h_w, v_neg_w); + + const __m256i v_r0l_w = _mm256_madd_epi16(v_ab0l_w, v_abl0n_w); + const __m256i v_r0h_w = _mm256_madd_epi16(v_ab0h_w, v_abh0n_w); + const __m256i v_r1l_w = _mm256_madd_epi16(v_ab1l_w, v_abl1n_w); + const __m256i v_r1h_w = _mm256_madd_epi16(v_ab1h_w, v_abh1n_w); + const __m256i v_r2l_w = _mm256_madd_epi16(v_ab2l_w, v_abl2n_w); + const __m256i v_r2h_w = _mm256_madd_epi16(v_ab2h_w, v_abh2n_w); + const __m256i v_r3l_w = _mm256_madd_epi16(v_ab3l_w, v_abl3n_w); + const __m256i v_r3h_w = _mm256_madd_epi16(v_ab3h_w, v_abh3n_w); + + const __m256i v_r0_w = _mm256_packs_epi32(v_r0l_w, v_r0h_w); + const __m256i v_r1_w = _mm256_packs_epi32(v_r1l_w, v_r1h_w); + const __m256i v_r2_w = _mm256_packs_epi32(v_r2l_w, v_r2h_w); + const __m256i v_r3_w = _mm256_packs_epi32(v_r3l_w, v_r3h_w); + + _mm256_store_si256((__m256i *)(d), v_r0_w); + _mm256_store_si256((__m256i *)(d + 16), v_r1_w); + _mm256_store_si256((__m256i *)(d + 32), v_r2_w); + _mm256_store_si256((__m256i *)(d + 48), v_r3_w); + + a += 64; + b += 64; + d += 64; + N -= 64; + } while (N); +} diff --git a/third_party/aom/av1/encoder/x86/wedge_utils_sse2.c b/third_party/aom/av1/encoder/x86/wedge_utils_sse2.c new file mode 100644 index 0000000000..4d2e99f258 --- /dev/null +++ b/third_party/aom/av1/encoder/x86/wedge_utils_sse2.c @@ -0,0 +1,254 @@ +/* + * Copyright (c) 2016, Alliance for Open Media. All rights reserved + * + * This source code is subject to the terms of the BSD 2 Clause License and + * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License + * was not distributed with this source code in the LICENSE file, you can + * obtain it at www.aomedia.org/license/software. If the Alliance for Open + * Media Patent License 1.0 was not distributed with this source code in the + * PATENTS file, you can obtain it at www.aomedia.org/license/patent. + */ + +#include <assert.h> +#include <immintrin.h> + +#include "aom_dsp/x86/synonyms.h" + +#include "aom/aom_integer.h" + +#include "av1/common/reconinter.h" + +#define MAX_MASK_VALUE (1 << WEDGE_WEIGHT_BITS) + +/** + * See av1_wedge_sse_from_residuals_c + */ +uint64_t av1_wedge_sse_from_residuals_sse2(const int16_t *r1, const int16_t *d, + const uint8_t *m, int N) { + int n = -N; + int n8 = n + 8; + + uint64_t csse; + + const __m128i v_mask_max_w = _mm_set1_epi16(MAX_MASK_VALUE); + const __m128i v_zext_q = xx_set1_64_from_32i(0xffffffff); + + __m128i v_acc0_q = _mm_setzero_si128(); + + assert(N % 64 == 0); + + r1 += N; + d += N; + m += N; + + do { + const __m128i v_r0_w = xx_load_128(r1 + n); + const __m128i v_r1_w = xx_load_128(r1 + n8); + const __m128i v_d0_w = xx_load_128(d + n); + const __m128i v_d1_w = xx_load_128(d + n8); + const __m128i v_m01_b = xx_load_128(m + n); + + const __m128i v_rd0l_w = _mm_unpacklo_epi16(v_d0_w, v_r0_w); + const __m128i v_rd0h_w = _mm_unpackhi_epi16(v_d0_w, v_r0_w); + const __m128i v_rd1l_w = _mm_unpacklo_epi16(v_d1_w, v_r1_w); + const __m128i v_rd1h_w = _mm_unpackhi_epi16(v_d1_w, v_r1_w); + const __m128i v_m0_w = _mm_unpacklo_epi8(v_m01_b, _mm_setzero_si128()); + const __m128i v_m1_w = _mm_unpackhi_epi8(v_m01_b, _mm_setzero_si128()); + + const __m128i v_m0l_w = _mm_unpacklo_epi16(v_m0_w, v_mask_max_w); + const __m128i v_m0h_w = _mm_unpackhi_epi16(v_m0_w, v_mask_max_w); + const __m128i v_m1l_w = _mm_unpacklo_epi16(v_m1_w, v_mask_max_w); + const __m128i v_m1h_w = _mm_unpackhi_epi16(v_m1_w, v_mask_max_w); + + const __m128i v_t0l_d = _mm_madd_epi16(v_rd0l_w, v_m0l_w); + const __m128i v_t0h_d = _mm_madd_epi16(v_rd0h_w, v_m0h_w); + const __m128i v_t1l_d = _mm_madd_epi16(v_rd1l_w, v_m1l_w); + const __m128i v_t1h_d = _mm_madd_epi16(v_rd1h_w, v_m1h_w); + + const __m128i v_t0_w = _mm_packs_epi32(v_t0l_d, v_t0h_d); + const __m128i v_t1_w = _mm_packs_epi32(v_t1l_d, v_t1h_d); + + const __m128i v_sq0_d = _mm_madd_epi16(v_t0_w, v_t0_w); + const __m128i v_sq1_d = _mm_madd_epi16(v_t1_w, v_t1_w); + + const __m128i v_sum0_q = _mm_add_epi64(_mm_and_si128(v_sq0_d, v_zext_q), + _mm_srli_epi64(v_sq0_d, 32)); + const __m128i v_sum1_q = _mm_add_epi64(_mm_and_si128(v_sq1_d, v_zext_q), + _mm_srli_epi64(v_sq1_d, 32)); + + v_acc0_q = _mm_add_epi64(v_acc0_q, v_sum0_q); + v_acc0_q = _mm_add_epi64(v_acc0_q, v_sum1_q); + + n8 += 16; + n += 16; + } while (n); + + v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8)); + +#if ARCH_X86_64 + csse = (uint64_t)_mm_cvtsi128_si64(v_acc0_q); +#else + xx_storel_64(&csse, v_acc0_q); +#endif + + return ROUND_POWER_OF_TWO(csse, 2 * WEDGE_WEIGHT_BITS); +} + +/** + * See av1_wedge_sign_from_residuals_c + */ +int av1_wedge_sign_from_residuals_sse2(const int16_t *ds, const uint8_t *m, + int N, int64_t limit) { + int64_t acc; + + __m128i v_sign_d; + __m128i v_acc0_d = _mm_setzero_si128(); + __m128i v_acc1_d = _mm_setzero_si128(); + __m128i v_acc_q; + + // Input size limited to 8192 by the use of 32 bit accumulators and m + // being between [0, 64]. Overflow might happen at larger sizes, + // though it is practically impossible on real video input. + assert(N < 8192); + assert(N % 64 == 0); + + do { + const __m128i v_m01_b = xx_load_128(m); + const __m128i v_m23_b = xx_load_128(m + 16); + const __m128i v_m45_b = xx_load_128(m + 32); + const __m128i v_m67_b = xx_load_128(m + 48); + + const __m128i v_d0_w = xx_load_128(ds); + const __m128i v_d1_w = xx_load_128(ds + 8); + const __m128i v_d2_w = xx_load_128(ds + 16); + const __m128i v_d3_w = xx_load_128(ds + 24); + const __m128i v_d4_w = xx_load_128(ds + 32); + const __m128i v_d5_w = xx_load_128(ds + 40); + const __m128i v_d6_w = xx_load_128(ds + 48); + const __m128i v_d7_w = xx_load_128(ds + 56); + + const __m128i v_m0_w = _mm_unpacklo_epi8(v_m01_b, _mm_setzero_si128()); + const __m128i v_m1_w = _mm_unpackhi_epi8(v_m01_b, _mm_setzero_si128()); + const __m128i v_m2_w = _mm_unpacklo_epi8(v_m23_b, _mm_setzero_si128()); + const __m128i v_m3_w = _mm_unpackhi_epi8(v_m23_b, _mm_setzero_si128()); + const __m128i v_m4_w = _mm_unpacklo_epi8(v_m45_b, _mm_setzero_si128()); + const __m128i v_m5_w = _mm_unpackhi_epi8(v_m45_b, _mm_setzero_si128()); + const __m128i v_m6_w = _mm_unpacklo_epi8(v_m67_b, _mm_setzero_si128()); + const __m128i v_m7_w = _mm_unpackhi_epi8(v_m67_b, _mm_setzero_si128()); + + const __m128i v_p0_d = _mm_madd_epi16(v_d0_w, v_m0_w); + const __m128i v_p1_d = _mm_madd_epi16(v_d1_w, v_m1_w); + const __m128i v_p2_d = _mm_madd_epi16(v_d2_w, v_m2_w); + const __m128i v_p3_d = _mm_madd_epi16(v_d3_w, v_m3_w); + const __m128i v_p4_d = _mm_madd_epi16(v_d4_w, v_m4_w); + const __m128i v_p5_d = _mm_madd_epi16(v_d5_w, v_m5_w); + const __m128i v_p6_d = _mm_madd_epi16(v_d6_w, v_m6_w); + const __m128i v_p7_d = _mm_madd_epi16(v_d7_w, v_m7_w); + + const __m128i v_p01_d = _mm_add_epi32(v_p0_d, v_p1_d); + const __m128i v_p23_d = _mm_add_epi32(v_p2_d, v_p3_d); + const __m128i v_p45_d = _mm_add_epi32(v_p4_d, v_p5_d); + const __m128i v_p67_d = _mm_add_epi32(v_p6_d, v_p7_d); + + const __m128i v_p0123_d = _mm_add_epi32(v_p01_d, v_p23_d); + const __m128i v_p4567_d = _mm_add_epi32(v_p45_d, v_p67_d); + + v_acc0_d = _mm_add_epi32(v_acc0_d, v_p0123_d); + v_acc1_d = _mm_add_epi32(v_acc1_d, v_p4567_d); + + ds += 64; + m += 64; + + N -= 64; + } while (N); + + v_sign_d = _mm_cmplt_epi32(v_acc0_d, _mm_setzero_si128()); + v_acc0_d = _mm_add_epi64(_mm_unpacklo_epi32(v_acc0_d, v_sign_d), + _mm_unpackhi_epi32(v_acc0_d, v_sign_d)); + + v_sign_d = _mm_cmplt_epi32(v_acc1_d, _mm_setzero_si128()); + v_acc1_d = _mm_add_epi64(_mm_unpacklo_epi32(v_acc1_d, v_sign_d), + _mm_unpackhi_epi32(v_acc1_d, v_sign_d)); + + v_acc_q = _mm_add_epi64(v_acc0_d, v_acc1_d); + + v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8)); + +#if ARCH_X86_64 + acc = (uint64_t)_mm_cvtsi128_si64(v_acc_q); +#else + xx_storel_64(&acc, v_acc_q); +#endif + + return acc > limit; +} + +// Negate under mask +static INLINE __m128i negm_epi16(__m128i v_v_w, __m128i v_mask_w) { + return _mm_sub_epi16(_mm_xor_si128(v_v_w, v_mask_w), v_mask_w); +} + +/** + * av1_wedge_compute_delta_squares_c + */ +void av1_wedge_compute_delta_squares_sse2(int16_t *d, const int16_t *a, + const int16_t *b, int N) { + const __m128i v_neg_w = + _mm_set_epi16(0xffff, 0, 0xffff, 0, 0xffff, 0, 0xffff, 0); + + assert(N % 64 == 0); + + do { + const __m128i v_a0_w = xx_load_128(a); + const __m128i v_b0_w = xx_load_128(b); + const __m128i v_a1_w = xx_load_128(a + 8); + const __m128i v_b1_w = xx_load_128(b + 8); + const __m128i v_a2_w = xx_load_128(a + 16); + const __m128i v_b2_w = xx_load_128(b + 16); + const __m128i v_a3_w = xx_load_128(a + 24); + const __m128i v_b3_w = xx_load_128(b + 24); + + const __m128i v_ab0l_w = _mm_unpacklo_epi16(v_a0_w, v_b0_w); + const __m128i v_ab0h_w = _mm_unpackhi_epi16(v_a0_w, v_b0_w); + const __m128i v_ab1l_w = _mm_unpacklo_epi16(v_a1_w, v_b1_w); + const __m128i v_ab1h_w = _mm_unpackhi_epi16(v_a1_w, v_b1_w); + const __m128i v_ab2l_w = _mm_unpacklo_epi16(v_a2_w, v_b2_w); + const __m128i v_ab2h_w = _mm_unpackhi_epi16(v_a2_w, v_b2_w); + const __m128i v_ab3l_w = _mm_unpacklo_epi16(v_a3_w, v_b3_w); + const __m128i v_ab3h_w = _mm_unpackhi_epi16(v_a3_w, v_b3_w); + + // Negate top word of pairs + const __m128i v_abl0n_w = negm_epi16(v_ab0l_w, v_neg_w); + const __m128i v_abh0n_w = negm_epi16(v_ab0h_w, v_neg_w); + const __m128i v_abl1n_w = negm_epi16(v_ab1l_w, v_neg_w); + const __m128i v_abh1n_w = negm_epi16(v_ab1h_w, v_neg_w); + const __m128i v_abl2n_w = negm_epi16(v_ab2l_w, v_neg_w); + const __m128i v_abh2n_w = negm_epi16(v_ab2h_w, v_neg_w); + const __m128i v_abl3n_w = negm_epi16(v_ab3l_w, v_neg_w); + const __m128i v_abh3n_w = negm_epi16(v_ab3h_w, v_neg_w); + + const __m128i v_r0l_w = _mm_madd_epi16(v_ab0l_w, v_abl0n_w); + const __m128i v_r0h_w = _mm_madd_epi16(v_ab0h_w, v_abh0n_w); + const __m128i v_r1l_w = _mm_madd_epi16(v_ab1l_w, v_abl1n_w); + const __m128i v_r1h_w = _mm_madd_epi16(v_ab1h_w, v_abh1n_w); + const __m128i v_r2l_w = _mm_madd_epi16(v_ab2l_w, v_abl2n_w); + const __m128i v_r2h_w = _mm_madd_epi16(v_ab2h_w, v_abh2n_w); + const __m128i v_r3l_w = _mm_madd_epi16(v_ab3l_w, v_abl3n_w); + const __m128i v_r3h_w = _mm_madd_epi16(v_ab3h_w, v_abh3n_w); + + const __m128i v_r0_w = _mm_packs_epi32(v_r0l_w, v_r0h_w); + const __m128i v_r1_w = _mm_packs_epi32(v_r1l_w, v_r1h_w); + const __m128i v_r2_w = _mm_packs_epi32(v_r2l_w, v_r2h_w); + const __m128i v_r3_w = _mm_packs_epi32(v_r3l_w, v_r3h_w); + + xx_store_128(d, v_r0_w); + xx_store_128(d + 8, v_r1_w); + xx_store_128(d + 16, v_r2_w); + xx_store_128(d + 24, v_r3_w); + + a += 32; + b += 32; + d += 32; + N -= 32; + } while (N); +} |