diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:44:51 +0000 |
commit | 9e3c08db40b8916968b9f30096c7be3f00ce9647 (patch) | |
tree | a68f146d7fa01f0134297619fbe7e33db084e0aa /third_party/python/ecdsa | |
parent | Initial commit. (diff) | |
download | thunderbird-upstream.tar.xz thunderbird-upstream.zip |
Adding upstream version 1:115.7.0.upstream/1%115.7.0upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/python/ecdsa')
28 files changed, 9534 insertions, 0 deletions
diff --git a/third_party/python/ecdsa/ecdsa-0.15.dist-info/LICENSE b/third_party/python/ecdsa/ecdsa-0.15.dist-info/LICENSE new file mode 100644 index 0000000000..474479a2ce --- /dev/null +++ b/third_party/python/ecdsa/ecdsa-0.15.dist-info/LICENSE @@ -0,0 +1,24 @@ +"python-ecdsa" Copyright (c) 2010 Brian Warner + +Portions written in 2005 by Peter Pearson and placed in the public domain. + +Permission is hereby granted, free of charge, to any person +obtaining a copy of this software and associated documentation +files (the "Software"), to deal in the Software without +restriction, including without limitation the rights to use, +copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the +Software is furnished to do so, subject to the following +conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES +OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT +HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, +WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +OTHER DEALINGS IN THE SOFTWARE. diff --git a/third_party/python/ecdsa/ecdsa-0.15.dist-info/METADATA b/third_party/python/ecdsa/ecdsa-0.15.dist-info/METADATA new file mode 100644 index 0000000000..6e8a2efe29 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa-0.15.dist-info/METADATA @@ -0,0 +1,625 @@ +Metadata-Version: 2.1 +Name: ecdsa +Version: 0.15 +Summary: ECDSA cryptographic signature library (pure python) +Home-page: http://github.com/warner/python-ecdsa +Author: Brian Warner +Author-email: warner@lothar.com +License: MIT +Platform: UNKNOWN +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 2 +Classifier: Programming Language :: Python :: 2.6 +Classifier: Programming Language :: Python :: 2.7 +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.3 +Classifier: Programming Language :: Python :: 3.4 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Requires-Python: >=2.6, !=3.0.*, !=3.1.*, !=3.2.* +Description-Content-Type: text/markdown +Requires-Dist: six (>=1.9.0) +Provides-Extra: gmpy +Requires-Dist: gmpy ; extra == 'gmpy' +Provides-Extra: gmpy2 +Requires-Dist: gmpy2 ; extra == 'gmpy2' + +# Pure-Python ECDSA + +[![build status](https://travis-ci.org/warner/python-ecdsa.png)](http://travis-ci.org/warner/python-ecdsa) +[![Coverage Status](https://coveralls.io/repos/warner/python-ecdsa/badge.svg)](https://coveralls.io/r/warner/python-ecdsa) +[![condition coverage](https://img.shields.io/badge/condition%20coverage-81%25-yellow)](https://travis-ci.org/warner/python-ecdsa/jobs/626479178#L776) +[![Latest Version](https://img.shields.io/pypi/v/ecdsa.svg?style=flat)](https://pypi.python.org/pypi/ecdsa/) + + +This is an easy-to-use implementation of ECDSA cryptography (Elliptic Curve +Digital Signature Algorithm), implemented purely in Python, released under +the MIT license. With this library, you can quickly create keypairs (signing +key and verifying key), sign messages, and verify the signatures. The keys +and signatures are very short, making them easy to handle and incorporate +into other protocols. + +## Features + +This library provides key generation, signing, and verifying, for five +popular NIST "Suite B" GF(p) (_prime field_) curves, with key lengths of 192, +224, 256, 384, and 521 bits. The "short names" for these curves, as known by +the OpenSSL tool (`openssl ecparam -list_curves`), are: `prime192v1`, +`secp224r1`, `prime256v1`, `secp384r1`, and `secp521r1`. It includes the +256-bit curve `secp256k1` used by Bitcoin. There is also support for the +regular (non-twisted) variants of Brainpool curves from 160 to 512 bits. The +"short names" of those curves are: `brainpoolP160r1`, `brainpoolP192r1`, +`brainpoolP224r1`, `brainpoolP256r1`, `brainpoolP320r1`, `brainpoolP384r1`, +`brainpoolP512r1`. +No other curves are included, but it is not too hard to add support for more +curves over prime fields. + +## Dependencies + +This library uses only Python and the 'six' package. It is compatible with +Python 2.6, 2.7 and 3.3+. It also supports execution on the alternative +implementations like pypy and pypy3. + +If `gmpy2` or `gmpy` is installed, they will be used for faster arithmetic. +Either of them can be installed after this library is installed, +`python-ecdsa` will detect their presence on start-up and use them +automatically. + +To run the OpenSSL compatibility tests, the 'openssl' tool must be in your +`PATH`. This release has been tested successfully against OpenSSL 0.9.8o, +1.0.0a, 1.0.2f and 1.1.1d (among others). + + +## Installation + +This library is available on PyPI, it's recommended to install it using `pip`: + +``` +pip install ecdsa +``` + +In case higher performance is wanted and using native code is not a problem, +it's possible to specify installation together with `gmpy2`: + +``` +pip install ecdsa[gmpy2] +``` + +or (slower, legacy option): +``` +pip install ecdsa[gmpy] +``` + +## Speed + +The following table shows how long this library takes to generate keypairs +(`keygen`), to sign data (`sign`), and to verify those signatures (`verify`). +All those values are in seconds. +For convenience, the inverses of those values are also provided: +how many keys per second can be generated (`keygen/s`), how many signatures +can be made per second (`sign/s`) and how many signatures can be verified +per second (`verify/s`). The size of raw signature (generally the smallest +way a signature can be encoded) is also provided in the `siglen` column. +Use `tox -e speed` to generate this table on your own computer. +On an Intel Core i7 4790K @ 4.0GHz I'm getting the following performance: + +``` + siglen keygen keygen/s sign sign/s verify verify/s + NIST192p: 48 0.00035s 2893.02 0.00038s 2620.53 0.00069s 1458.92 + NIST224p: 56 0.00043s 2307.11 0.00048s 2092.00 0.00088s 1131.33 + NIST256p: 64 0.00056s 1793.70 0.00061s 1639.87 0.00113s 883.79 + NIST384p: 96 0.00116s 864.33 0.00124s 806.29 0.00233s 429.87 + NIST521p: 132 0.00221s 452.16 0.00234s 427.31 0.00460s 217.19 + SECP256k1: 64 0.00056s 1772.65 0.00061s 1628.73 0.00110s 912.13 + BRAINPOOLP160r1: 40 0.00026s 3801.86 0.00029s 3401.11 0.00052s 1930.47 + BRAINPOOLP192r1: 48 0.00034s 2925.73 0.00038s 2634.34 0.00070s 1438.06 + BRAINPOOLP224r1: 56 0.00044s 2287.98 0.00048s 2083.87 0.00088s 1137.52 + BRAINPOOLP256r1: 64 0.00056s 1774.11 0.00061s 1628.25 0.00112s 890.71 + BRAINPOOLP320r1: 80 0.00081s 1238.18 0.00087s 1146.71 0.00151s 661.95 + BRAINPOOLP384r1: 96 0.00117s 855.47 0.00124s 804.56 0.00241s 414.83 + BRAINPOOLP512r1: 128 0.00223s 447.99 0.00234s 427.49 0.00437s 229.09 + + ecdh ecdh/s + NIST192p: 0.00110s 910.70 + NIST224p: 0.00143s 701.17 + NIST256p: 0.00178s 560.44 + NIST384p: 0.00383s 261.03 + NIST521p: 0.00745s 134.23 + SECP256k1: 0.00168s 596.23 + BRAINPOOLP160r1: 0.00085s 1174.02 + BRAINPOOLP192r1: 0.00113s 883.47 + BRAINPOOLP224r1: 0.00145s 687.82 + BRAINPOOLP256r1: 0.00195s 514.03 + BRAINPOOLP320r1: 0.00277s 360.80 + BRAINPOOLP384r1: 0.00412s 242.58 + BRAINPOOLP512r1: 0.00787s 127.12 +``` + +To test performance with `gmpy2` loaded, use `tox -e speedgmpy2`. +On the same machine I'm getting the following performance with `gmpy2`: +``` + siglen keygen keygen/s sign sign/s verify verify/s + NIST192p: 48 0.00017s 5945.50 0.00018s 5544.66 0.00033s 3002.54 + NIST224p: 56 0.00021s 4742.14 0.00022s 4463.52 0.00044s 2248.59 + NIST256p: 64 0.00024s 4155.73 0.00025s 3994.28 0.00047s 2105.34 + NIST384p: 96 0.00041s 2415.06 0.00043s 2316.41 0.00085s 1177.18 + NIST521p: 132 0.00072s 1391.14 0.00074s 1359.63 0.00140s 716.31 + SECP256k1: 64 0.00024s 4216.50 0.00025s 3994.52 0.00047s 2120.57 + BRAINPOOLP160r1: 40 0.00014s 7038.99 0.00015s 6501.55 0.00029s 3397.79 + BRAINPOOLP192r1: 48 0.00017s 5983.18 0.00018s 5626.08 0.00035s 2843.62 + BRAINPOOLP224r1: 56 0.00021s 4727.54 0.00022s 4464.86 0.00043s 2326.84 + BRAINPOOLP256r1: 64 0.00024s 4221.00 0.00025s 4010.26 0.00049s 2046.40 + BRAINPOOLP320r1: 80 0.00032s 3142.14 0.00033s 3009.15 0.00061s 1652.88 + BRAINPOOLP384r1: 96 0.00041s 2415.98 0.00043s 2340.35 0.00083s 1198.77 + BRAINPOOLP512r1: 128 0.00064s 1567.27 0.00066s 1526.33 0.00127s 788.51 + + ecdh ecdh/s + NIST192p: 0.00051s 1960.26 + NIST224p: 0.00067s 1502.97 + NIST256p: 0.00073s 1376.12 + NIST384p: 0.00132s 758.68 + NIST521p: 0.00231s 433.23 + SECP256k1: 0.00072s 1387.18 + BRAINPOOLP160r1: 0.00042s 2366.60 + BRAINPOOLP192r1: 0.00049s 2026.80 + BRAINPOOLP224r1: 0.00067s 1486.52 + BRAINPOOLP256r1: 0.00076s 1310.31 + BRAINPOOLP320r1: 0.00101s 986.16 + BRAINPOOLP384r1: 0.00131s 761.35 + BRAINPOOLP512r1: 0.00211s 473.30 +``` + +(there's also `gmpy` version, execute it using `tox -e speedgmpy`) + +For comparison, a highly optimised implementation (including curve-specific +assembly for some curves), like the one in OpenSSL 1.1.1d, provides following +performance numbers on the same machine. +Run `openssl speed ecdsa` and `openssl speed ecdh` to reproduce it: +``` + sign verify sign/s verify/s + 192 bits ecdsa (nistp192) 0.0002s 0.0002s 4785.6 5380.7 + 224 bits ecdsa (nistp224) 0.0000s 0.0001s 22475.6 9822.0 + 256 bits ecdsa (nistp256) 0.0000s 0.0001s 45069.6 14166.6 + 384 bits ecdsa (nistp384) 0.0008s 0.0006s 1265.6 1648.1 + 521 bits ecdsa (nistp521) 0.0003s 0.0005s 3753.1 1819.5 + 256 bits ecdsa (brainpoolP256r1) 0.0003s 0.0003s 2983.5 3333.2 + 384 bits ecdsa (brainpoolP384r1) 0.0008s 0.0007s 1258.8 1528.1 + 512 bits ecdsa (brainpoolP512r1) 0.0015s 0.0012s 675.1 860.1 + + op op/s + 192 bits ecdh (nistp192) 0.0002s 4853.4 + 224 bits ecdh (nistp224) 0.0001s 15252.1 + 256 bits ecdh (nistp256) 0.0001s 18436.3 + 384 bits ecdh (nistp384) 0.0008s 1292.7 + 521 bits ecdh (nistp521) 0.0003s 2884.7 + 256 bits ecdh (brainpoolP256r1) 0.0003s 3066.5 + 384 bits ecdh (brainpoolP384r1) 0.0008s 1298.0 + 512 bits ecdh (brainpoolP512r1) 0.0014s 694.8 +``` + +Keys and signature can be serialized in different ways (see Usage, below). +For a NIST192p key, the three basic representations require strings of the +following lengths (in bytes): + + to_string: signkey= 24, verifykey= 48, signature=48 + compressed: signkey=n/a, verifykey= 25, signature=n/a + DER: signkey=106, verifykey= 80, signature=55 + PEM: signkey=278, verifykey=162, (no support for PEM signatures) + +## History + +In 2006, Peter Pearson announced his pure-python implementation of ECDSA in a +[message to sci.crypt][1], available from his [download site][2]. In 2010, +Brian Warner wrote a wrapper around this code, to make it a bit easier and +safer to use. Hubert Kario then included an implementation of elliptic curve +cryptography that uses Jacobian coordinates internally, improving performance +about 20-fold. You are looking at the README for this wrapper. + +[1]: http://www.derkeiler.com/Newsgroups/sci.crypt/2006-01/msg00651.html +[2]: http://webpages.charter.net/curryfans/peter/downloads.html + +## Testing + +To run the full test suite, do this: + + tox -e coverage + +On an Intel Core i7 4790K @ 4.0GHz, the tests take about 16 seconds to execute. +The test suite uses +[`hypothesis`](https://github.com/HypothesisWorks/hypothesis) so there is some +inherent variability in the test suite execution time. + +One part of `test_pyecdsa.py` checks compatibility with OpenSSL, by +running the "openssl" CLI tool, make sure it's in your `PATH` if you want +to test compatibility with it. + +## Security + +This library was not designed with security in mind. If you are processing +data that needs to be protected we suggest you use a quality wrapper around +OpenSSL. [pyca/cryptography](https://cryptography.io) is one example of such +a wrapper. The primary use-case of this library is as a portable library for +interoperability testing and as a teaching tool. + +**This library does not protect against side channel attacks.** + +Do not allow attackers to measure how long it takes you to generate a keypair +or sign a message. Do not allow attackers to run code on the same physical +machine when keypair generation or signing is taking place (this includes +virtual machines). Do not allow attackers to measure how much power your +computer uses while generating the keypair or signing a message. Do not allow +attackers to measure RF interference coming from your computer while generating +a keypair or signing a message. Note: just loading the private key will cause +keypair generation. Other operations or attack vectors may also be +vulnerable to attacks. **For a sophisticated attacker observing just one +operation with a private key will be sufficient to completely +reconstruct the private key**. + +Please also note that any Pure-python cryptographic library will be vulnerable +to the same side channel attacks. This is because Python does not provide +side-channel secure primitives (with the exception of +[`hmac.compare_digest()`][3]), making side-channel secure programming +impossible. + +This library depends upon a strong source of random numbers. Do not use it on +a system where `os.urandom()` does not provide cryptographically secure +random numbers. + +[3]: https://docs.python.org/3/library/hmac.html#hmac.compare_digest + +## Usage + +You start by creating a `SigningKey`. You can use this to sign data, by passing +in data as a byte string and getting back the signature (also a byte string). +You can also ask a `SigningKey` to give you the corresponding `VerifyingKey`. +The `VerifyingKey` can be used to verify a signature, by passing it both the +data string and the signature byte string: it either returns True or raises +`BadSignatureError`. + +```python +from ecdsa import SigningKey +sk = SigningKey.generate() # uses NIST192p +vk = sk.verifying_key +signature = sk.sign(b"message") +assert vk.verify(signature, b"message") +``` + +Each `SigningKey`/`VerifyingKey` is associated with a specific curve, like +NIST192p (the default one). Longer curves are more secure, but take longer to +use, and result in longer keys and signatures. + +```python +from ecdsa import SigningKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +vk = sk.verifying_key +signature = sk.sign(b"message") +assert vk.verify(signature, b"message") +``` + +The `SigningKey` can be serialized into several different formats: the shortest +is to call `s=sk.to_string()`, and then re-create it with +`SigningKey.from_string(s, curve)` . This short form does not record the +curve, so you must be sure to pass to `from_string()` the same curve you used +for the original key. The short form of a NIST192p-based signing key is just 24 +bytes long. If a point encoding is invalid or it does not lie on the specified +curve, `from_string()` will raise `MalformedPointError`. + +```python +from ecdsa import SigningKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +sk_string = sk.to_string() +sk2 = SigningKey.from_string(sk_string, curve=NIST384p) +print(sk_string.hex()) +print(sk2.to_string().hex()) +``` + +Note: while the methods are called `to_string()` the type they return is +actually `bytes`, the "string" part is leftover from Python 2. + +`sk.to_pem()` and `sk.to_der()` will serialize the signing key into the same +formats that OpenSSL uses. The PEM file looks like the familiar ASCII-armored +`"-----BEGIN EC PRIVATE KEY-----"` base64-encoded format, and the DER format +is a shorter binary form of the same data. +`SigningKey.from_pem()/.from_der()` will undo this serialization. These +formats include the curve name, so you do not need to pass in a curve +identifier to the deserializer. In case the file is malformed `from_der()` +and `from_pem()` will raise `UnexpectedDER` or` MalformedPointError`. + +```python +from ecdsa import SigningKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +sk_pem = sk.to_pem() +sk2 = SigningKey.from_pem(sk_pem) +# sk and sk2 are the same key +``` + +Likewise, the `VerifyingKey` can be serialized in the same way: +`vk.to_string()/VerifyingKey.from_string()`, `to_pem()/from_pem()`, and +`to_der()/from_der()`. The same `curve=` argument is needed for +`VerifyingKey.from_string()`. + +```python +from ecdsa import SigningKey, VerifyingKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +vk = sk.verifying_key +vk_string = vk.to_string() +vk2 = VerifyingKey.from_string(vk_string, curve=NIST384p) +# vk and vk2 are the same key + +from ecdsa import SigningKey, VerifyingKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +vk = sk.verifying_key +vk_pem = vk.to_pem() +vk2 = VerifyingKey.from_pem(vk_pem) +# vk and vk2 are the same key +``` + +There are a couple of different ways to compute a signature. Fundamentally, +ECDSA takes a number that represents the data being signed, and returns a +pair of numbers that represent the signature. The `hashfunc=` argument to +`sk.sign()` and `vk.verify()` is used to turn an arbitrary string into +fixed-length digest, which is then turned into a number that ECDSA can sign, +and both sign and verify must use the same approach. The default value is +`hashlib.sha1`, but if you use NIST256p or a longer curve, you can use +`hashlib.sha256` instead. + +There are also multiple ways to represent a signature. The default +`sk.sign()` and `vk.verify()` methods present it as a short string, for +simplicity and minimal overhead. To use a different scheme, use the +`sk.sign(sigencode=)` and `vk.verify(sigdecode=)` arguments. There are helper +functions in the `ecdsa.util` module that can be useful here. + +It is also possible to create a `SigningKey` from a "seed", which is +deterministic. This can be used in protocols where you want to derive +consistent signing keys from some other secret, for example when you want +three separate keys and only want to store a single master secret. You should +start with a uniformly-distributed unguessable seed with about `curve.baselen` +bytes of entropy, and then use one of the helper functions in `ecdsa.util` to +convert it into an integer in the correct range, and then finally pass it +into `SigningKey.from_secret_exponent()`, like this: + +```python +import os +from ecdsa import NIST384p, SigningKey +from ecdsa.util import randrange_from_seed__trytryagain + +def make_key(seed): + secexp = randrange_from_seed__trytryagain(seed, NIST384p.order) + return SigningKey.from_secret_exponent(secexp, curve=NIST384p) + +seed = os.urandom(NIST384p.baselen) # or other starting point +sk1a = make_key(seed) +sk1b = make_key(seed) +# note: sk1a and sk1b are the same key +assert sk1a.to_string() == sk1b.to_string() +sk2 = make_key(b"2-"+seed) # different key +assert sk1a.to_string() != sk2.to_string() +``` + +In case the application will verify a lot of signatures made with a single +key, it's possible to precompute some of the internal values to make +signature verification significantly faster. The break-even point occurs at +about 100 signatures verified. + +To perform precomputation, you can call the `precompute()` method +on `VerifyingKey` instance: +```python +from ecdsa import SigningKey, NIST384p +sk = SigningKey.generate(curve=NIST384p) +vk = sk.verifying_key +vk.precompute() +signature = sk.sign(b"message") +assert vk.verify(signature, b"message") +``` + +Once `precompute()` was called, all signature verifications with this key will +be faster to execute. + +## OpenSSL Compatibility + +To produce signatures that can be verified by OpenSSL tools, or to verify +signatures that were produced by those tools, use: + +```python +# openssl ecparam -name prime256v1 -genkey -out sk.pem +# openssl ec -in sk.pem -pubout -out vk.pem +# echo "data for signing" > data +# openssl dgst -sha256 -sign sk.pem -out data.sig data +# openssl dgst -sha256 -verify vk.pem -signature data.sig data +# openssl dgst -sha256 -prverify sk.pem -signature data.sig data + +import hashlib +from ecdsa import SigningKey, VerifyingKey +from ecdsa.util import sigencode_der, sigdecode_der + +with open("vk.pem") as f: + vk = VerifyingKey.from_pem(f.read()) + +with open("data", "rb") as f: + data = f.read() + +with open("data.sig", "rb") as f: + signature = f.read() + +assert vk.verify(signature, data, hashlib.sha256, sigdecode=sigdecode_der) + +with open("sk.pem") as f: + sk = SigningKey.from_pem(f.read(), hashlib.sha256) + +new_signature = sk.sign_deterministic(data, sigencode=sigencode_der) + +with open("data.sig2", "wb") as f: + f.write(new_signature) + +# openssl dgst -sha256 -verify vk.pem -signature data.sig2 data +``` + +Note: if compatibility with OpenSSL 1.0.0 or earlier is necessary, the +`sigencode_string` and `sigdecode_string` from `ecdsa.util` can be used for +respectively writing and reading the signatures. + +The keys also can be written in format that openssl can handle: + +```python +from ecdsa import SigningKey, VerifyingKey + +with open("sk.pem") as f: + sk = SigningKey.from_pem(f.read()) +with open("sk.pem", "wb") as f: + f.write(sk.to_pem()) + +with open("vk.pem") as f: + vk = VerifyingKey.from_pem(f.read()) +with open("vk.pem", "wb") as f: + f.write(vk.to_pem()) +``` + +## Entropy + +Creating a signing key with `SigningKey.generate()` requires some form of +entropy (as opposed to +`from_secret_exponent`/`from_string`/`from_der`/`from_pem`, +which are deterministic and do not require an entropy source). The default +source is `os.urandom()`, but you can pass any other function that behaves +like `os.urandom` as the `entropy=` argument to do something different. This +may be useful in unit tests, where you want to achieve repeatable results. The +`ecdsa.util.PRNG` utility is handy here: it takes a seed and produces a strong +pseudo-random stream from it: + +```python +from ecdsa.util import PRNG +from ecdsa import SigningKey +rng1 = PRNG(b"seed") +sk1 = SigningKey.generate(entropy=rng1) +rng2 = PRNG(b"seed") +sk2 = SigningKey.generate(entropy=rng2) +# sk1 and sk2 are the same key +``` + +Likewise, ECDSA signature generation requires a random number, and each +signature must use a different one (using the same number twice will +immediately reveal the private signing key). The `sk.sign()` method takes an +`entropy=` argument which behaves the same as `SigningKey.generate(entropy=)`. + +## Deterministic Signatures + +If you call `SigningKey.sign_deterministic(data)` instead of `.sign(data)`, +the code will generate a deterministic signature instead of a random one. +This uses the algorithm from RFC6979 to safely generate a unique `k` value, +derived from the private key and the message being signed. Each time you sign +the same message with the same key, you will get the same signature (using +the same `k`). + +This may become the default in a future version, as it is not vulnerable to +failures of the entropy source. + +## Examples + +Create a NIST192p keypair and immediately save both to disk: + +```python +from ecdsa import SigningKey +sk = SigningKey.generate() +vk = sk.verifying_key +with open("private.pem", "wb") as f: + f.write(sk.to_pem()) +with open("public.pem", "wb") as f: + f.write(vk.to_pem()) +``` + +Load a signing key from disk, use it to sign a message (using SHA-1), and write +the signature to disk: + +```python +from ecdsa import SigningKey +with open("private.pem") as f: + sk = SigningKey.from_pem(f.read()) +with open("message", "rb") as f: + message = f.read() +sig = sk.sign(message) +with open("signature", "wb") as f: + f.write(sig) +``` + +Load the verifying key, message, and signature from disk, and verify the +signature (assume SHA-1 hash): + +```python +from ecdsa import VerifyingKey, BadSignatureError +vk = VerifyingKey.from_pem(open("public.pem").read()) +with open("message", "rb") as f: + message = f.read() +with open("signature", "rb") as f: + sig = f.read() +try: + vk.verify(sig, message) + print "good signature" +except BadSignatureError: + print "BAD SIGNATURE" +``` + +Create a NIST521p keypair: + +```python +from ecdsa import SigningKey, NIST521p +sk = SigningKey.generate(curve=NIST521p) +vk = sk.verifying_key +``` + +Create three independent signing keys from a master seed: + +```python +from ecdsa import NIST192p, SigningKey +from ecdsa.util import randrange_from_seed__trytryagain + +def make_key_from_seed(seed, curve=NIST192p): + secexp = randrange_from_seed__trytryagain(seed, curve.order) + return SigningKey.from_secret_exponent(secexp, curve) + +sk1 = make_key_from_seed("1:%s" % seed) +sk2 = make_key_from_seed("2:%s" % seed) +sk3 = make_key_from_seed("3:%s" % seed) +``` + +Load a verifying key from disk and print it using hex encoding in +uncompressed and compressed format (defined in X9.62 and SEC1 standards): + +```python +from ecdsa import VerifyingKey + +with open("public.pem") as f: + vk = VerifyingKey.from_pem(f.read()) + +print("uncompressed: {0}".format(vk.to_string("uncompressed").hex())) +print("compressed: {0}".format(vk.to_string("compressed").hex())) +``` + +Load a verifying key from a hex string from compressed format, output +uncompressed: + +```python +from ecdsa import VerifyingKey, NIST256p + +comp_str = '022799c0d0ee09772fdd337d4f28dc155581951d07082fb19a38aa396b67e77759' +vk = VerifyingKey.from_string(bytearray.fromhex(comp_str), curve=NIST256p) +print(vk.to_string("uncompressed").hex()) +``` + +ECDH key exchange with remote party + +```python +from ecdsa import ECDH, NIST256p + +ecdh = ECDH(curve=NIST256p) +ecdh.generate_private_key() +local_public_key = ecdh.get_public_key() +#send `local_public_key` to remote party and receive `remote_public_key` from remote party +with open("remote_public_key.pem") as e: + remote_public_key = e.read() +ecdh.load_received_public_key_pem(remote_public_key) +secret = ecdh.generate_sharedsecret_bytes() +``` + + diff --git a/third_party/python/ecdsa/ecdsa-0.15.dist-info/RECORD b/third_party/python/ecdsa/ecdsa-0.15.dist-info/RECORD new file mode 100644 index 0000000000..1a0163a7c0 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa-0.15.dist-info/RECORD @@ -0,0 +1,28 @@ +ecdsa/__init__.py,sha256=3wbqSX9mkjn_sjkbx2vU-MJbKg0uz8DYLAZE5Jk4iyc,1219 +ecdsa/_compat.py,sha256=qmUf5lfl20-p8JleM4etlhplAEN37gbBqadBxXboomo,1108 +ecdsa/_rwlock.py,sha256=UVXDDwWF115oQroaHUtQo88uhhIoMLPIKfDQq3i7ETc,2848 +ecdsa/_version.py,sha256=J5ustrqphtIgbQXJKWGzATMRfq4koBTZ2UYvZuesnRw,496 +ecdsa/curves.py,sha256=Snq0JL6lydJunmSHeeycWvUQJ8Sj5N1tavcw6ZlZ4ik,4278 +ecdsa/der.py,sha256=rfV-KrVw10YAA2EWkVA4vZgbdeEhgsXaXfDd3S5qpp8,13864 +ecdsa/ecdh.py,sha256=qsUDPGMF9-tiqLaA9xUfhNBoUQ49gtMMFrc_O1YO_BQ,10459 +ecdsa/ecdsa.py,sha256=MB7v-2hUV982oOk-OzmKLtq-GXIPjNNK-Yd_dM4VcqU,17546 +ecdsa/ellipticcurve.py,sha256=wa3Om5WkW-HszXlBzyKdGaFfbQDsLABDCSXfrBzSMx0,24278 +ecdsa/keys.py,sha256=jeDeK5-G4C5jYebV0_sQGavRUQp5grNY7CV9eOH7o7I,52990 +ecdsa/numbertheory.py,sha256=FQiMnzY92Qi-Tt2z1czVd5MvaqqXzRgwlChZwPhwxEQ,15427 +ecdsa/rfc6979.py,sha256=7MR1nf19ZBD-EDgztlJ1SfSwLjlx3ePPb9BBFW7aEHo,2701 +ecdsa/test_der.py,sha256=XGZwUhZORvAZKEiWTLDDKlF_4JBplbUmTwkfdN-KGXU,12609 +ecdsa/test_ecdh.py,sha256=VlkuPt7fqwGh1nWwLVA-10Pguu5PYqWVaEOTDO7qlGM,13472 +ecdsa/test_ecdsa.py,sha256=zGC5L5vqc8nWNOKf0KOaUu3rJuLvpICioQ8tSypEjxs,18334 +ecdsa/test_ellipticcurve.py,sha256=odDCqwJm_sQgDFja9xSklpVskpXG5ebJ4xpBONU0duQ,6160 +ecdsa/test_jacobi.py,sha256=iGtWSMLpJ8HmJlrJkU7aiC5d50I8ahHKXFWfd0o_YP4,10778 +ecdsa/test_keys.py,sha256=NcnvEHsHJ0W-5T1F7M2RS9MzdR26ELlTv2LfAgMqEaU,12701 +ecdsa/test_malformed_sigs.py,sha256=6ow1rb-A-lbFD-TZjcl6a8VV9bwV2aL5Z0kwYJ4SJfk,10170 +ecdsa/test_numbertheory.py,sha256=KwC75hI2NfVPctlYki4JIUT8hUUcoK0x1AjcXDZQrow,9004 +ecdsa/test_pyecdsa.py,sha256=FqGtHsqwOpWz3Ne0Cmgib508pcEGv1b31eEBo-PQ5bE,64737 +ecdsa/test_rw_lock.py,sha256=5Gu_H73gU8Pb1_86X3AzkLMTYOtE4qdAwDOzBsEVbjk,6899 +ecdsa/util.py,sha256=CO6Jj3kUL28fIM3KnsevxYQJ1TCAAYDgCSacDAbSMu0,14007 +ecdsa-0.15.dist-info/LICENSE,sha256=PsqYRXc9LluMydjBGdNF8ApIBuS9Zg1KPWzfnA6di7I,1147 +ecdsa-0.15.dist-info/METADATA,sha256=Vipd5pI4sqqaWMjmDzRNRkZCQaq1YDHOHkAJPlI92tw,24899 +ecdsa-0.15.dist-info/WHEEL,sha256=8zNYZbwQSXoB9IfXOjPfeNwvAsALAjffgk27FqvCWbo,110 +ecdsa-0.15.dist-info/top_level.txt,sha256=7ovPHfAPyTou19f8gOSbHm6B9dGjTibWolcCB7Zjovs,6 +ecdsa-0.15.dist-info/RECORD,, diff --git a/third_party/python/ecdsa/ecdsa-0.15.dist-info/WHEEL b/third_party/python/ecdsa/ecdsa-0.15.dist-info/WHEEL new file mode 100644 index 0000000000..8b701e93c2 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa-0.15.dist-info/WHEEL @@ -0,0 +1,6 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.33.6) +Root-Is-Purelib: true +Tag: py2-none-any +Tag: py3-none-any + diff --git a/third_party/python/ecdsa/ecdsa-0.15.dist-info/top_level.txt b/third_party/python/ecdsa/ecdsa-0.15.dist-info/top_level.txt new file mode 100644 index 0000000000..aa5efdb547 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa-0.15.dist-info/top_level.txt @@ -0,0 +1 @@ +ecdsa diff --git a/third_party/python/ecdsa/ecdsa/__init__.py b/third_party/python/ecdsa/ecdsa/__init__.py new file mode 100644 index 0000000000..eef5fe38c4 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/__init__.py @@ -0,0 +1,25 @@ +from .keys import SigningKey, VerifyingKey, BadSignatureError, BadDigestError,\ + MalformedPointError +from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p,\ + SECP256k1, BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1,\ + BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1 +from .ecdh import ECDH, NoKeyError, NoCurveError, InvalidCurveError, \ + InvalidSharedSecretError +from .der import UnexpectedDER + +# This code comes from http://github.com/warner/python-ecdsa +from ._version import get_versions +__version__ = get_versions()['version'] +del get_versions + +__all__ = ["curves", "der", "ecdsa", "ellipticcurve", "keys", "numbertheory", + "test_pyecdsa", "util", "six"] + +_hush_pyflakes = [SigningKey, VerifyingKey, BadSignatureError, BadDigestError, + MalformedPointError, UnexpectedDER, InvalidCurveError, + NoKeyError, InvalidSharedSecretError, ECDH, NoCurveError, + NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1, + BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, + BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, + BRAINPOOLP512r1] +del _hush_pyflakes diff --git a/third_party/python/ecdsa/ecdsa/_compat.py b/third_party/python/ecdsa/ecdsa/_compat.py new file mode 100644 index 0000000000..965d8c47b5 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/_compat.py @@ -0,0 +1,39 @@ +""" +Common functions for providing cross-python version compatibility. +""" +import sys +from six import integer_types + + +def str_idx_as_int(string, index): + """Take index'th byte from string, return as integer""" + val = string[index] + if isinstance(val, integer_types): + return val + return ord(val) + + +if sys.version_info < (3, 0): + def normalise_bytes(buffer_object): + """Cast the input into array of bytes.""" + # flake8 runs on py3 where `buffer` indeed doesn't exist... + return buffer(buffer_object) # noqa: F821 + + def hmac_compat(ret): + return ret + +else: + if sys.version_info < (3, 4): + # on python 3.3 hmac.hmac.update() accepts only bytes, on newer + # versions it does accept memoryview() also + def hmac_compat(data): + if not isinstance(data, bytes): + return bytes(data) + return data + else: + def hmac_compat(data): + return data + + def normalise_bytes(buffer_object): + """Cast the input into array of bytes.""" + return memoryview(buffer_object).cast('B') diff --git a/third_party/python/ecdsa/ecdsa/_rwlock.py b/third_party/python/ecdsa/ecdsa/_rwlock.py new file mode 100644 index 0000000000..e4ef78dcfc --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/_rwlock.py @@ -0,0 +1,85 @@ +# Copyright Mateusz Kobos, (c) 2011 +# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/ +# released under the MIT licence + +import threading + + +__author__ = "Mateusz Kobos" + + +class RWLock: + """ + Read-Write locking primitive + + Synchronization object used in a solution of so-called second + readers-writers problem. In this problem, many readers can simultaneously + access a share, and a writer has an exclusive access to this share. + Additionally, the following constraints should be met: + 1) no reader should be kept waiting if the share is currently opened for + reading unless a writer is also waiting for the share, + 2) no writer should be kept waiting for the share longer than absolutely + necessary. + + The implementation is based on [1, secs. 4.2.2, 4.2.6, 4.2.7] + with a modification -- adding an additional lock (C{self.__readers_queue}) + -- in accordance with [2]. + + Sources: + [1] A.B. Downey: "The little book of semaphores", Version 2.1.5, 2008 + [2] P.J. Courtois, F. Heymans, D.L. Parnas: + "Concurrent Control with 'Readers' and 'Writers'", + Communications of the ACM, 1971 (via [3]) + [3] http://en.wikipedia.org/wiki/Readers-writers_problem + """ + + def __init__(self): + """ + A lock giving an even higher priority to the writer in certain + cases (see [2] for a discussion). + """ + self.__read_switch = _LightSwitch() + self.__write_switch = _LightSwitch() + self.__no_readers = threading.Lock() + self.__no_writers = threading.Lock() + self.__readers_queue = threading.Lock() + + def reader_acquire(self): + self.__readers_queue.acquire() + self.__no_readers.acquire() + self.__read_switch.acquire(self.__no_writers) + self.__no_readers.release() + self.__readers_queue.release() + + def reader_release(self): + self.__read_switch.release(self.__no_writers) + + def writer_acquire(self): + self.__write_switch.acquire(self.__no_readers) + self.__no_writers.acquire() + + def writer_release(self): + self.__no_writers.release() + self.__write_switch.release(self.__no_readers) + + +class _LightSwitch: + """An auxiliary "light switch"-like object. The first thread turns on the + "switch", the last one turns it off (see [1, sec. 4.2.2] for details).""" + def __init__(self): + self.__counter = 0 + self.__mutex = threading.Lock() + + def acquire(self, lock): + self.__mutex.acquire() + self.__counter += 1 + if self.__counter == 1: + lock.acquire() + self.__mutex.release() + + def release(self, lock): + self.__mutex.acquire() + self.__counter -= 1 + if self.__counter == 0: + lock.release() + self.__mutex.release() diff --git a/third_party/python/ecdsa/ecdsa/_version.py b/third_party/python/ecdsa/ecdsa/_version.py new file mode 100644 index 0000000000..038d62af2c --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/_version.py @@ -0,0 +1,21 @@ + +# This file was generated by 'versioneer.py' (0.17) from +# revision-control system data, or from the parent directory name of an +# unpacked source archive. Distribution tarballs contain a pre-generated copy +# of this file. + +import json + +version_json = ''' +{ + "date": "2020-01-02T17:05:04+0100", + "dirty": false, + "error": null, + "full-revisionid": "93b04ba3ddb7c2716e07761393a179c061718c34", + "version": "0.15" +} +''' # END VERSION_JSON + + +def get_versions(): + return json.loads(version_json) diff --git a/third_party/python/ecdsa/ecdsa/curves.py b/third_party/python/ecdsa/ecdsa/curves.py new file mode 100644 index 0000000000..173a2cda88 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/curves.py @@ -0,0 +1,128 @@ +from __future__ import division + +from . import der, ecdsa +from .util import orderlen + + +# orderlen was defined in this module previously, so keep it in __all__, +# will need to mark it as deprecated later +__all__ = ["UnknownCurveError", "orderlen", "Curve", "NIST192p", + "NIST224p", "NIST256p", "NIST384p", "NIST521p", "curves", + "find_curve", "SECP256k1", "BRAINPOOLP160r1", "BRAINPOOLP192r1", + "BRAINPOOLP224r1", "BRAINPOOLP256r1", "BRAINPOOLP320r1", + "BRAINPOOLP384r1", "BRAINPOOLP512r1"] + + +class UnknownCurveError(Exception): + pass + + +class Curve: + def __init__(self, name, curve, generator, oid, openssl_name=None): + self.name = name + self.openssl_name = openssl_name # maybe None + self.curve = curve + self.generator = generator + self.order = generator.order() + self.baselen = orderlen(self.order) + self.verifying_key_length = 2*self.baselen + self.signature_length = 2*self.baselen + self.oid = oid + self.encoded_oid = der.encode_oid(*oid) + + def __repr__(self): + return self.name + + +# the NIST curves +NIST192p = Curve("NIST192p", ecdsa.curve_192, + ecdsa.generator_192, + (1, 2, 840, 10045, 3, 1, 1), "prime192v1") + + +NIST224p = Curve("NIST224p", ecdsa.curve_224, + ecdsa.generator_224, + (1, 3, 132, 0, 33), "secp224r1") + + +NIST256p = Curve("NIST256p", ecdsa.curve_256, + ecdsa.generator_256, + (1, 2, 840, 10045, 3, 1, 7), "prime256v1") + + +NIST384p = Curve("NIST384p", ecdsa.curve_384, + ecdsa.generator_384, + (1, 3, 132, 0, 34), "secp384r1") + + +NIST521p = Curve("NIST521p", ecdsa.curve_521, + ecdsa.generator_521, + (1, 3, 132, 0, 35), "secp521r1") + + +SECP256k1 = Curve("SECP256k1", ecdsa.curve_secp256k1, + ecdsa.generator_secp256k1, + (1, 3, 132, 0, 10), "secp256k1") + + +BRAINPOOLP160r1 = Curve("BRAINPOOLP160r1", + ecdsa.curve_brainpoolp160r1, + ecdsa.generator_brainpoolp160r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 1), + "brainpoolP160r1") + + +BRAINPOOLP192r1 = Curve("BRAINPOOLP192r1", + ecdsa.curve_brainpoolp192r1, + ecdsa.generator_brainpoolp192r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 3), + "brainpoolP192r1") + + +BRAINPOOLP224r1 = Curve("BRAINPOOLP224r1", + ecdsa.curve_brainpoolp224r1, + ecdsa.generator_brainpoolp224r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 5), + "brainpoolP224r1") + + +BRAINPOOLP256r1 = Curve("BRAINPOOLP256r1", + ecdsa.curve_brainpoolp256r1, + ecdsa.generator_brainpoolp256r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 7), + "brainpoolP256r1") + + +BRAINPOOLP320r1 = Curve("BRAINPOOLP320r1", + ecdsa.curve_brainpoolp320r1, + ecdsa.generator_brainpoolp320r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 9), + "brainpoolP320r1") + + +BRAINPOOLP384r1 = Curve("BRAINPOOLP384r1", + ecdsa.curve_brainpoolp384r1, + ecdsa.generator_brainpoolp384r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 11), + "brainpoolP384r1") + + +BRAINPOOLP512r1 = Curve("BRAINPOOLP512r1", + ecdsa.curve_brainpoolp512r1, + ecdsa.generator_brainpoolp512r1, + (1, 3, 36, 3, 3, 2, 8, 1, 1, 13), + "brainpoolP512r1") + + +curves = [NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1, + BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, BRAINPOOLP256r1, + BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1] + + +def find_curve(oid_curve): + for c in curves: + if c.oid == oid_curve: + return c + raise UnknownCurveError("I don't know about the curve with oid %s." + "I only know about these: %s" % + (oid_curve, [c.name for c in curves])) diff --git a/third_party/python/ecdsa/ecdsa/der.py b/third_party/python/ecdsa/ecdsa/der.py new file mode 100644 index 0000000000..ad75b37b56 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/der.py @@ -0,0 +1,384 @@ +from __future__ import division + +import binascii +import base64 +import warnings +from itertools import chain +from six import int2byte, b, text_type +from ._compat import str_idx_as_int + + +class UnexpectedDER(Exception): + pass + + +def encode_constructed(tag, value): + return int2byte(0xa0+tag) + encode_length(len(value)) + value + + +def encode_integer(r): + assert r >= 0 # can't support negative numbers yet + h = ("%x" % r).encode() + if len(h) % 2: + h = b("0") + h + s = binascii.unhexlify(h) + num = str_idx_as_int(s, 0) + if num <= 0x7f: + return b("\x02") + encode_length(len(s)) + s + else: + # DER integers are two's complement, so if the first byte is + # 0x80-0xff then we need an extra 0x00 byte to prevent it from + # looking negative. + return b("\x02") + encode_length(len(s)+1) + b("\x00") + s + + +# sentry object to check if an argument was specified (used to detect +# deprecated calling convention) +_sentry = object() + + +def encode_bitstring(s, unused=_sentry): + """ + Encode a binary string as a BIT STRING using :term:`DER` encoding. + + Note, because there is no native Python object that can encode an actual + bit string, this function only accepts byte strings as the `s` argument. + The byte string is the actual bit string that will be encoded, padded + on the right (least significant bits, looking from big endian perspective) + to the first full byte. If the bit string has a bit length that is multiple + of 8, then the padding should not be included. For correct DER encoding + the padding bits MUST be set to 0. + + Number of bits of padding need to be provided as the `unused` parameter. + In case they are specified as None, it means the number of unused bits + is already encoded in the string as the first byte. + + The deprecated call convention specifies just the `s` parameters and + encodes the number of unused bits as first parameter (same convention + as with None). + + Empty string must be encoded with `unused` specified as 0. + + Future version of python-ecdsa will make specifying the `unused` argument + mandatory. + + :param s: bytes to encode + :type s: bytes like object + :param unused: number of bits at the end of `s` that are unused, must be + between 0 and 7 (inclusive) + :type unused: int or None + + :raises ValueError: when `unused` is too large or too small + + :return: `s` encoded using DER + :rtype: bytes + """ + encoded_unused = b'' + len_extra = 0 + if unused is _sentry: + warnings.warn("Legacy call convention used, unused= needs to be " + "specified", + DeprecationWarning) + elif unused is not None: + if not 0 <= unused <= 7: + raise ValueError("unused must be integer between 0 and 7") + if unused: + if not s: + raise ValueError("unused is non-zero but s is empty") + last = str_idx_as_int(s, -1) + if last & (2 ** unused - 1): + raise ValueError("unused bits must be zeros in DER") + encoded_unused = int2byte(unused) + len_extra = 1 + return b("\x03") + encode_length(len(s) + len_extra) + encoded_unused + s + + +def encode_octet_string(s): + return b("\x04") + encode_length(len(s)) + s + + +def encode_oid(first, second, *pieces): + assert 0 <= first < 2 and 0 <= second <= 39 or first == 2 and 0 <= second + body = b''.join(chain([encode_number(40*first+second)], + (encode_number(p) for p in pieces))) + return b'\x06' + encode_length(len(body)) + body + + +def encode_sequence(*encoded_pieces): + total_len = sum([len(p) for p in encoded_pieces]) + return b('\x30') + encode_length(total_len) + b('').join(encoded_pieces) + + +def encode_number(n): + b128_digits = [] + while n: + b128_digits.insert(0, (n & 0x7f) | 0x80) + n = n >> 7 + if not b128_digits: + b128_digits.append(0) + b128_digits[-1] &= 0x7f + return b('').join([int2byte(d) for d in b128_digits]) + + +def remove_constructed(string): + s0 = str_idx_as_int(string, 0) + if (s0 & 0xe0) != 0xa0: + raise UnexpectedDER("wanted type 'constructed tag' (0xa0-0xbf), " + "got 0x%02x" % s0) + tag = s0 & 0x1f + length, llen = read_length(string[1:]) + body = string[1+llen:1+llen+length] + rest = string[1+llen+length:] + return tag, body, rest + + +def remove_sequence(string): + if not string: + raise UnexpectedDER("Empty string does not encode a sequence") + if string[:1] != b"\x30": + n = str_idx_as_int(string, 0) + raise UnexpectedDER("wanted type 'sequence' (0x30), got 0x%02x" % n) + length, lengthlength = read_length(string[1:]) + if length > len(string) - 1 - lengthlength: + raise UnexpectedDER("Length longer than the provided buffer") + endseq = 1+lengthlength+length + return string[1+lengthlength:endseq], string[endseq:] + + +def remove_octet_string(string): + if string[:1] != b"\x04": + n = str_idx_as_int(string, 0) + raise UnexpectedDER("wanted type 'octetstring' (0x04), got 0x%02x" % n) + length, llen = read_length(string[1:]) + body = string[1+llen:1+llen+length] + rest = string[1+llen+length:] + return body, rest + + +def remove_object(string): + if not string: + raise UnexpectedDER( + "Empty string does not encode an object identifier") + if string[:1] != b"\x06": + n = str_idx_as_int(string, 0) + raise UnexpectedDER("wanted type 'object' (0x06), got 0x%02x" % n) + length, lengthlength = read_length(string[1:]) + body = string[1+lengthlength:1+lengthlength+length] + rest = string[1+lengthlength+length:] + if not body: + raise UnexpectedDER("Empty object identifier") + if len(body) != length: + raise UnexpectedDER( + "Length of object identifier longer than the provided buffer") + numbers = [] + while body: + n, ll = read_number(body) + numbers.append(n) + body = body[ll:] + n0 = numbers.pop(0) + if n0 < 80: + first = n0 // 40 + else: + first = 2 + second = n0 - (40 * first) + numbers.insert(0, first) + numbers.insert(1, second) + return tuple(numbers), rest + + +def remove_integer(string): + if not string: + raise UnexpectedDER("Empty string is an invalid encoding of an " + "integer") + if string[:1] != b"\x02": + n = str_idx_as_int(string, 0) + raise UnexpectedDER("wanted type 'integer' (0x02), got 0x%02x" % n) + length, llen = read_length(string[1:]) + if length > len(string) - 1 - llen: + raise UnexpectedDER("Length longer than provided buffer") + if length == 0: + raise UnexpectedDER("0-byte long encoding of integer") + numberbytes = string[1+llen:1+llen+length] + rest = string[1+llen+length:] + msb = str_idx_as_int(numberbytes, 0) + if not msb < 0x80: + raise UnexpectedDER("Negative integers are not supported") + # check if the encoding is the minimal one (DER requirement) + if length > 1 and not msb: + # leading zero byte is allowed if the integer would have been + # considered a negative number otherwise + smsb = str_idx_as_int(numberbytes, 1) + if smsb < 0x80: + raise UnexpectedDER("Invalid encoding of integer, unnecessary " + "zero padding bytes") + return int(binascii.hexlify(numberbytes), 16), rest + + +def read_number(string): + number = 0 + llen = 0 + if str_idx_as_int(string, 0) == 0x80: + raise UnexpectedDER("Non minimal encoding of OID subidentifier") + # base-128 big endian, with most significant bit set in all but the last + # byte + while True: + if llen >= len(string): + raise UnexpectedDER("ran out of length bytes") + number = number << 7 + d = str_idx_as_int(string, llen) + number += (d & 0x7f) + llen += 1 + if not d & 0x80: + break + return number, llen + + +def encode_length(l): + assert l >= 0 + if l < 0x80: + return int2byte(l) + s = ("%x" % l).encode() + if len(s) % 2: + s = b("0") + s + s = binascii.unhexlify(s) + llen = len(s) + return int2byte(0x80 | llen) + s + + +def read_length(string): + if not string: + raise UnexpectedDER("Empty string can't encode valid length value") + num = str_idx_as_int(string, 0) + if not (num & 0x80): + # short form + return (num & 0x7f), 1 + # else long-form: b0&0x7f is number of additional base256 length bytes, + # big-endian + llen = num & 0x7f + if not llen: + raise UnexpectedDER("Invalid length encoding, length of length is 0") + if llen > len(string)-1: + raise UnexpectedDER("Length of length longer than provided buffer") + # verify that the encoding is minimal possible (DER requirement) + msb = str_idx_as_int(string, 1) + if not msb or llen == 1 and msb < 0x80: + raise UnexpectedDER("Not minimal encoding of length") + return int(binascii.hexlify(string[1:1+llen]), 16), 1+llen + + +def remove_bitstring(string, expect_unused=_sentry): + """ + Remove a BIT STRING object from `string` following :term:`DER`. + + The `expect_unused` can be used to specify if the bit string should + have the amount of unused bits decoded or not. If it's an integer, any + read BIT STRING that has number of unused bits different from specified + value will cause UnexpectedDER exception to be raised (this is especially + useful when decoding BIT STRINGS that have DER encoded object in them; + DER encoding is byte oriented, so the unused bits will always equal 0). + + If the `expect_unused` is specified as None, the first element returned + will be a tuple, with the first value being the extracted bit string + while the second value will be the decoded number of unused bits. + + If the `expect_unused` is unspecified, the decoding of byte with + number of unused bits will not be attempted and the bit string will be + returned as-is, the callee will be required to decode it and verify its + correctness. + + Future version of python will require the `expected_unused` parameter + to be specified. + + :param string: string of bytes to extract the BIT STRING from + :type string: bytes like object + :param expect_unused: number of bits that should be unused in the BIT + STRING, or None, to return it to caller + :type expect_unused: int or None + + :raises UnexpectedDER: when the encoding does not follow DER. + + :return: a tuple with first element being the extracted bit string and + the second being the remaining bytes in the string (if any); if the + `expect_unused` is specified as None, the first element of the returned + tuple will be a tuple itself, with first element being the bit string + as bytes and the second element being the number of unused bits at the + end of the byte array as an integer + :rtype: tuple + """ + if not string: + raise UnexpectedDER("Empty string does not encode a bitstring") + if expect_unused is _sentry: + warnings.warn("Legacy call convention used, expect_unused= needs to be" + " specified", + DeprecationWarning) + num = str_idx_as_int(string, 0) + if string[:1] != b"\x03": + raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" % num) + length, llen = read_length(string[1:]) + if not length: + raise UnexpectedDER("Invalid length of bit string, can't be 0") + body = string[1+llen:1+llen+length] + rest = string[1+llen+length:] + if expect_unused is not _sentry: + unused = str_idx_as_int(body, 0) + if not 0 <= unused <= 7: + raise UnexpectedDER("Invalid encoding of unused bits") + if expect_unused is not None and expect_unused != unused: + raise UnexpectedDER("Unexpected number of unused bits") + body = body[1:] + if unused: + if not body: + raise UnexpectedDER("Invalid encoding of empty bit string") + last = str_idx_as_int(body, -1) + # verify that all the unused bits are set to zero (DER requirement) + if last & (2 ** unused - 1): + raise UnexpectedDER("Non zero padding bits in bit string") + if expect_unused is None: + body = (body, unused) + return body, rest + +# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING) + + +# signatures: (from RFC3279) +# ansi-X9-62 OBJECT IDENTIFIER ::= { +# iso(1) member-body(2) us(840) 10045 } +# +# id-ecSigType OBJECT IDENTIFIER ::= { +# ansi-X9-62 signatures(4) } +# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= { +# id-ecSigType 1 } +## so 1,2,840,10045,4,1 +## so 0x42, .. .. + +# Ecdsa-Sig-Value ::= SEQUENCE { +# r INTEGER, +# s INTEGER } + +# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 } +# +# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 } + +# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021) +# secp224r1 OBJECT IDENTIFIER ::= { +# iso(1) identified-organization(3) certicom(132) curve(0) 33 } +# and the secp384r1 is (t=06,l=05,v=2b81040022) +# secp384r1 OBJECT IDENTIFIER ::= { +# iso(1) identified-organization(3) certicom(132) curve(0) 34 } + +def unpem(pem): + if isinstance(pem, text_type): + pem = pem.encode() + + d = b("").join([l.strip() for l in pem.split(b("\n")) + if l and not l.startswith(b("-----"))]) + return base64.b64decode(d) + + +def topem(der, name): + b64 = base64.b64encode(der) + lines = [("-----BEGIN %s-----\n" % name).encode()] + lines.extend([b64[start:start+64]+b("\n") + for start in range(0, len(b64), 64)]) + lines.append(("-----END %s-----\n" % name).encode()) + return b("").join(lines) diff --git a/third_party/python/ecdsa/ecdsa/ecdh.py b/third_party/python/ecdsa/ecdsa/ecdh.py new file mode 100644 index 0000000000..88848f5503 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/ecdh.py @@ -0,0 +1,306 @@ +""" +Class for performing Elliptic-curve Diffie-Hellman (ECDH) operations. +""" + +from .util import number_to_string +from .ellipticcurve import INFINITY +from .keys import SigningKey, VerifyingKey + + +__all__ = ["ECDH", "NoKeyError", "NoCurveError", "InvalidCurveError", + "InvalidSharedSecretError"] + + +class NoKeyError(Exception): + """ECDH. Key not found but it is needed for operation.""" + + pass + + +class NoCurveError(Exception): + """ECDH. Curve not set but it is needed for operation.""" + + pass + + +class InvalidCurveError(Exception): + """ECDH. Raised in case the public and private keys use different curves.""" + + pass + + +class InvalidSharedSecretError(Exception): + """ECDH. Raised in case the shared secret we obtained is an INFINITY.""" + + pass + + +class ECDH(object): + """ + Elliptic-curve Diffie-Hellman (ECDH). A key agreement protocol. + + Allows two parties, each having an elliptic-curve public-private key + pair, to establish a shared secret over an insecure channel + """"" + + def __init__(self, curve=None, private_key=None, public_key=None): + """ + ECDH init. + + Call can be initialised without parameters, then the first operation + (loading either key) will set the used curve. + All parameters must be ultimately set before shared secret + calculation will be allowed. + + :param curve: curve for operations + :type curve: Curve + :param private_key: `my` private key for ECDH + :type private_key: SigningKey + :param public_key: `their` public key for ECDH + :type public_key: VerifyingKey + """ + self.curve = curve + self.private_key = None + self.public_key = None + if private_key: + self.load_private_key(private_key) + if public_key: + self.load_received_public_key(public_key) + + def _get_shared_secret(self, remote_public_key): + if not self.private_key: + raise NoKeyError( + "Private key needs to be set to create shared secret") + if not self.public_key: + raise NoKeyError( + "Public key needs to be set to create shared secret") + if not (self.private_key.curve == self.curve == remote_public_key.curve): + raise InvalidCurveError( + "Curves for public key and private key is not equal.") + + # shared secret = PUBKEYtheirs * PRIVATEKEYours + result = remote_public_key.pubkey.point * self.private_key.privkey.secret_multiplier + if result == INFINITY: + raise InvalidSharedSecretError( + "Invalid shared secret (INFINITY).") + + return result.x() + + def set_curve(self, key_curve): + """ + Set the working curve for ecdh operations. + + :param key_curve: curve from `curves` module + :type key_curve: Curve + """ + self.curve = key_curve + + def generate_private_key(self): + """ + Generate local private key for ecdh operation with curve that was set. + + :raises NoCurveError: Curve must be set before key generation. + + :return: public (verifying) key from this private key. + :rtype: VerifyingKey object + """ + if not self.curve: + raise NoCurveError("Curve must be set prior to key generation.") + return self.load_private_key(SigningKey.generate(curve=self.curve)) + + def load_private_key(self, private_key): + """ + Load private key from SigningKey (keys.py) object. + + Needs to have the same curve as was set with set_curve method. + If curve is not set - it sets from this SigningKey + + :param private_key: Initialised SigningKey class + :type private_key: SigningKey + + :raises InvalidCurveError: private_key curve not the same as self.curve + + :return: public (verifying) key from this private key. + :rtype: VerifyingKey object + """ + if not self.curve: + self.curve = private_key.curve + if self.curve != private_key.curve: + raise InvalidCurveError("Curve mismatch.") + self.private_key = private_key + return self.private_key.get_verifying_key() + + def load_private_key_bytes(self, private_key): + """ + Load private key from byte string. + + Uses current curve and checks if the provided key matches + the curve of ECDH key agreement. + Key loads via from_string method of SigningKey class + + :param private_key: private key in bytes string format + :type private_key: :term:`bytes-like object` + + :raises NoCurveError: Curve must be set before loading. + + :return: public (verifying) key from this private key. + :rtype: VerifyingKey object + """ + if not self.curve: + raise NoCurveError("Curve must be set prior to key load.") + return self.load_private_key( + SigningKey.from_string(private_key, curve=self.curve)) + + def load_private_key_der(self, private_key_der): + """ + Load private key from DER byte string. + + Compares the curve of the DER-encoded key with the ECDH set curve, + uses the former if unset. + + Note, the only DER format supported is the RFC5915 + Look at keys.py:SigningKey.from_der() + + :param private_key_der: string with the DER encoding of private ECDSA key + :type private_key_der: string + + :raises InvalidCurveError: private_key curve not the same as self.curve + + :return: public (verifying) key from this private key. + :rtype: VerifyingKey object + """ + return self.load_private_key(SigningKey.from_der(private_key_der)) + + def load_private_key_pem(self, private_key_pem): + """ + Load private key from PEM string. + + Compares the curve of the DER-encoded key with the ECDH set curve, + uses the former if unset. + + Note, the only PEM format supported is the RFC5915 + Look at keys.py:SigningKey.from_pem() + it needs to have `EC PRIVATE KEY` section + + :param private_key_pem: string with PEM-encoded private ECDSA key + :type private_key_pem: string + + :raises InvalidCurveError: private_key curve not the same as self.curve + + :return: public (verifying) key from this private key. + :rtype: VerifyingKey object + """ + return self.load_private_key(SigningKey.from_pem(private_key_pem)) + + def get_public_key(self): + """ + Provides a public key that matches the local private key. + + Needs to be sent to the remote party. + + :return: public (verifying) key from local private key. + :rtype: VerifyingKey object + """ + return self.private_key.get_verifying_key() + + def load_received_public_key(self, public_key): + """ + Load public key from VerifyingKey (keys.py) object. + + Needs to have the same curve as set as current for ecdh operation. + If curve is not set - it sets it from VerifyingKey. + + :param public_key: Initialised VerifyingKey class + :type public_key: VerifyingKey + + :raises InvalidCurveError: public_key curve not the same as self.curve + """ + if not self.curve: + self.curve = public_key.curve + if self.curve != public_key.curve: + raise InvalidCurveError("Curve mismatch.") + self.public_key = public_key + + def load_received_public_key_bytes(self, public_key_str): + """ + Load public key from byte string. + + Uses current curve and checks if key length corresponds to + the current curve. + Key loads via from_string method of VerifyingKey class + + :param public_key_str: public key in bytes string format + :type public_key_str: :term:`bytes-like object` + """ + return self.load_received_public_key( + VerifyingKey.from_string(public_key_str, self.curve)) + + def load_received_public_key_der(self, public_key_der): + """ + Load public key from DER byte string. + + Compares the curve of the DER-encoded key with the ECDH set curve, + uses the former if unset. + + Note, the only DER format supported is the RFC5912 + Look at keys.py:VerifyingKey.from_der() + + :param public_key_der: string with the DER encoding of public ECDSA key + :type public_key_der: string + + :raises InvalidCurveError: public_key curve not the same as self.curve + """ + return self.load_received_public_key(VerifyingKey.from_der(public_key_der)) + + def load_received_public_key_pem(self, public_key_pem): + """ + Load public key from PEM string. + + Compares the curve of the PEM-encoded key with the ECDH set curve, + uses the former if unset. + + Note, the only PEM format supported is the RFC5912 + Look at keys.py:VerifyingKey.from_pem() + + :param public_key_pem: string with PEM-encoded public ECDSA key + :type public_key_pem: string + + :raises InvalidCurveError: public_key curve not the same as self.curve + """ + return self.load_received_public_key(VerifyingKey.from_pem(public_key_pem)) + + def generate_sharedsecret_bytes(self): + """ + Generate shared secret from local private key and remote public key. + + The objects needs to have both private key and received public key + before generation is allowed. + + :raises InvalidCurveError: public_key curve not the same as self.curve + :raises NoKeyError: public_key or private_key is not set + + :return: shared secret + :rtype: byte string + """ + return number_to_string( + self.generate_sharedsecret(), + self.private_key.curve.order) + + def generate_sharedsecret(self): + """ + Generate shared secret from local private key and remote public key. + + The objects needs to have both private key and received public key + before generation is allowed. + + It's the same for local and remote party. + shared secret(local private key, remote public key ) == + shared secret (local public key, remote private key) + + :raises InvalidCurveError: public_key curve not the same as self.curve + :raises NoKeyError: public_key or private_key is not set + + :return: shared secret + :rtype: int + """ + return self._get_shared_secret(self.public_key) diff --git a/third_party/python/ecdsa/ecdsa/ecdsa.py b/third_party/python/ecdsa/ecdsa/ecdsa.py new file mode 100644 index 0000000000..4e9bab0898 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/ecdsa.py @@ -0,0 +1,446 @@ +#! /usr/bin/env python + +""" +Implementation of Elliptic-Curve Digital Signatures. + +Classes and methods for elliptic-curve signatures: +private keys, public keys, signatures, +NIST prime-modulus curves with modulus lengths of +192, 224, 256, 384, and 521 bits. + +Example: + + # (In real-life applications, you would probably want to + # protect against defects in SystemRandom.) + from random import SystemRandom + randrange = SystemRandom().randrange + + # Generate a public/private key pair using the NIST Curve P-192: + + g = generator_192 + n = g.order() + secret = randrange( 1, n ) + pubkey = Public_key( g, g * secret ) + privkey = Private_key( pubkey, secret ) + + # Signing a hash value: + + hash = randrange( 1, n ) + signature = privkey.sign( hash, randrange( 1, n ) ) + + # Verifying a signature for a hash value: + + if pubkey.verifies( hash, signature ): + print_("Demo verification succeeded.") + else: + print_("*** Demo verification failed.") + + # Verification fails if the hash value is modified: + + if pubkey.verifies( hash-1, signature ): + print_("**** Demo verification failed to reject tampered hash.") + else: + print_("Demo verification correctly rejected tampered hash.") + +Version of 2009.05.16. + +Revision history: + 2005.12.31 - Initial version. + 2008.11.25 - Substantial revisions introducing new classes. + 2009.05.16 - Warn against using random.randrange in real applications. + 2009.05.17 - Use random.SystemRandom by default. + +Written in 2005 by Peter Pearson and placed in the public domain. +""" + +from six import int2byte, b +from . import ellipticcurve +from . import numbertheory +from .util import bit_length + + +class RSZeroError(RuntimeError): + pass + + +class InvalidPointError(RuntimeError): + pass + + +class Signature(object): + """ECDSA signature. + """ + def __init__(self, r, s): + self.r = r + self.s = s + + def recover_public_keys(self, hash, generator): + """Returns two public keys for which the signature is valid + hash is signed hash + generator is the used generator of the signature + """ + curve = generator.curve() + n = generator.order() + r = self.r + s = self.s + e = hash + x = r + + # Compute the curve point with x as x-coordinate + alpha = (pow(x, 3, curve.p()) + (curve.a() * x) + curve.b()) % curve.p() + beta = numbertheory.square_root_mod_prime(alpha, curve.p()) + y = beta if beta % 2 == 0 else curve.p() - beta + + # Compute the public key + R1 = ellipticcurve.PointJacobi(curve, x, y, 1, n) + Q1 = numbertheory.inverse_mod(r, n) * (s * R1 + (-e % n) * generator) + Pk1 = Public_key(generator, Q1) + + # And the second solution + R2 = ellipticcurve.PointJacobi(curve, x, -y, 1, n) + Q2 = numbertheory.inverse_mod(r, n) * (s * R2 + (-e % n) * generator) + Pk2 = Public_key(generator, Q2) + + return [Pk1, Pk2] + + +class Public_key(object): + """Public key for ECDSA. + """ + + def __init__(self, generator, point, verify=True): + """ + Low level ECDSA public key object. + + :param generator: the Point that generates the group (the base point) + :param point: the Point that defines the public key + :param bool verify: if True check if point is valid point on curve + + :raises InvalidPointError: if the point parameters are invalid or + point does not lie on the curve + """ + + self.curve = generator.curve() + self.generator = generator + self.point = point + n = generator.order() + p = self.curve.p() + if not (0 <= point.x() < p) or not (0 <= point.y() < p): + raise InvalidPointError("The public point has x or y out of range.") + if verify and not self.curve.contains_point(point.x(), point.y()): + raise InvalidPointError("Point does not lie on the curve") + if not n: + raise InvalidPointError("Generator point must have order.") + # for curve parameters with base point with cofactor 1, all points + # that are on the curve are scalar multiples of the base point, so + # verifying that is not necessary. See Section 3.2.2.1 of SEC 1 v2 + if verify and self.curve.cofactor() != 1 and \ + not n * point == ellipticcurve.INFINITY: + raise InvalidPointError("Generator point order is bad.") + + def __eq__(self, other): + if isinstance(other, Public_key): + """Return True if the points are identical, False otherwise.""" + return self.curve == other.curve \ + and self.point == other.point + return NotImplemented + + def verifies(self, hash, signature): + """Verify that signature is a valid signature of hash. + Return True if the signature is valid. + """ + + # From X9.62 J.3.1. + + G = self.generator + n = G.order() + r = signature.r + s = signature.s + if r < 1 or r > n - 1: + return False + if s < 1 or s > n - 1: + return False + c = numbertheory.inverse_mod(s, n) + u1 = (hash * c) % n + u2 = (r * c) % n + if hasattr(G, "mul_add"): + xy = G.mul_add(u1, self.point, u2) + else: + xy = u1 * G + u2 * self.point + v = xy.x() % n + return v == r + + +class Private_key(object): + """Private key for ECDSA. + """ + + def __init__(self, public_key, secret_multiplier): + """public_key is of class Public_key; + secret_multiplier is a large integer. + """ + + self.public_key = public_key + self.secret_multiplier = secret_multiplier + + def __eq__(self, other): + if isinstance(other, Private_key): + """Return True if the points are identical, False otherwise.""" + return self.public_key == other.public_key \ + and self.secret_multiplier == other.secret_multiplier + return NotImplemented + + def sign(self, hash, random_k): + """Return a signature for the provided hash, using the provided + random nonce. It is absolutely vital that random_k be an unpredictable + number in the range [1, self.public_key.point.order()-1]. If + an attacker can guess random_k, he can compute our private key from a + single signature. Also, if an attacker knows a few high-order + bits (or a few low-order bits) of random_k, he can compute our private + key from many signatures. The generation of nonces with adequate + cryptographic strength is very difficult and far beyond the scope + of this comment. + + May raise RuntimeError, in which case retrying with a new + random value k is in order. + """ + + G = self.public_key.generator + n = G.order() + k = random_k % n + # Fix the bit-length of the random nonce, + # so that it doesn't leak via timing. + # This does not change that ks = k mod n + ks = k + n + kt = ks + n + if bit_length(ks) == bit_length(n): + p1 = kt * G + else: + p1 = ks * G + r = p1.x() % n + if r == 0: + raise RSZeroError("amazingly unlucky random number r") + s = (numbertheory.inverse_mod(k, n) + * (hash + (self.secret_multiplier * r) % n)) % n + if s == 0: + raise RSZeroError("amazingly unlucky random number s") + return Signature(r, s) + + +def int_to_string(x): + """Convert integer x into a string of bytes, as per X9.62.""" + assert x >= 0 + if x == 0: + return b('\0') + result = [] + while x: + ordinal = x & 0xFF + result.append(int2byte(ordinal)) + x >>= 8 + + result.reverse() + return b('').join(result) + + +def string_to_int(s): + """Convert a string of bytes into an integer, as per X9.62.""" + result = 0 + for c in s: + if not isinstance(c, int): + c = ord(c) + result = 256 * result + c + return result + + +def digest_integer(m): + """Convert an integer into a string of bytes, compute + its SHA-1 hash, and convert the result to an integer.""" + # + # I don't expect this function to be used much. I wrote + # it in order to be able to duplicate the examples + # in ECDSAVS. + # + from hashlib import sha1 + return string_to_int(sha1(int_to_string(m)).digest()) + + +def point_is_valid(generator, x, y): + """Is (x,y) a valid public key based on the specified generator?""" + + # These are the tests specified in X9.62. + + n = generator.order() + curve = generator.curve() + p = curve.p() + if not (0 <= x < p) or not (0 <= y < p): + return False + if not curve.contains_point(x, y): + return False + if curve.cofactor() != 1 and \ + not n * ellipticcurve.PointJacobi(curve, x, y, 1)\ + == ellipticcurve.INFINITY: + return False + return True + + +# NIST Curve P-192: +_p = 6277101735386680763835789423207666416083908700390324961279 +_r = 6277101735386680763835789423176059013767194773182842284081 +# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L +# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L +_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 +_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 +_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 + +curve_192 = ellipticcurve.CurveFp(_p, -3, _b, 1) +generator_192 = ellipticcurve.PointJacobi( + curve_192, _Gx, _Gy, 1, _r, generator=True) + + +# NIST Curve P-224: +_p = 26959946667150639794667015087019630673557916260026308143510066298881 +_r = 26959946667150639794667015087019625940457807714424391721682722368061 +# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L +# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL +_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4 +_Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21 +_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34 + +curve_224 = ellipticcurve.CurveFp(_p, -3, _b, 1) +generator_224 = ellipticcurve.PointJacobi( + curve_224, _Gx, _Gy, 1, _r, generator=True) + +# NIST Curve P-256: +_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951 +_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369 +# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L +# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL +_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b +_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 +_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 + +curve_256 = ellipticcurve.CurveFp(_p, -3, _b, 1) +generator_256 = ellipticcurve.PointJacobi( + curve_256, _Gx, _Gy, 1, _r, generator=True) + +# NIST Curve P-384: +_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319 +_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643 +# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L +# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L +_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef +_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7 +_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f + +curve_384 = ellipticcurve.CurveFp(_p, -3, _b, 1) +generator_384 = ellipticcurve.PointJacobi( + curve_384, _Gx, _Gy, 1, _r, generator=True) + +# NIST Curve P-521: +_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151 +_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449 +# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL +# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L +_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 +_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 +_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 + +curve_521 = ellipticcurve.CurveFp(_p, -3, _b, 1) +generator_521 = ellipticcurve.PointJacobi( + curve_521, _Gx, _Gy, 1, _r, generator=True) + +# Certicom secp256-k1 +_a = 0x0000000000000000000000000000000000000000000000000000000000000000 +_b = 0x0000000000000000000000000000000000000000000000000000000000000007 +_p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f +_Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 +_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 +_r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 + +curve_secp256k1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_secp256k1 = ellipticcurve.PointJacobi( + curve_secp256k1, _Gx, _Gy, 1, _r, generator=True) + +# Brainpool P-160-r1 +_a = 0x340E7BE2A280EB74E2BE61BADA745D97E8F7C300 +_b = 0x1E589A8595423412134FAA2DBDEC95C8D8675E58 +_p = 0xE95E4A5F737059DC60DFC7AD95B3D8139515620F +_Gx = 0xBED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3 +_Gy = 0x1667CB477A1A8EC338F94741669C976316DA6321 +_q = 0xE95E4A5F737059DC60DF5991D45029409E60FC09 + +curve_brainpoolp160r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp160r1 = ellipticcurve.PointJacobi( + curve_brainpoolp160r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-192-r1 +_a = 0x6A91174076B1E0E19C39C031FE8685C1CAE040E5C69A28EF +_b = 0x469A28EF7C28CCA3DC721D044F4496BCCA7EF4146FBF25C9 +_p = 0xC302F41D932A36CDA7A3463093D18DB78FCE476DE1A86297 +_Gx = 0xC0A0647EAAB6A48753B033C56CB0F0900A2F5C4853375FD6 +_Gy = 0x14B690866ABD5BB88B5F4828C1490002E6773FA2FA299B8F +_q = 0xC302F41D932A36CDA7A3462F9E9E916B5BE8F1029AC4ACC1 + +curve_brainpoolp192r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp192r1 = ellipticcurve.PointJacobi( + curve_brainpoolp192r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-224-r1 +_a = 0x68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43 +_b = 0x2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B +_p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF +_Gx = 0x0D9029AD2C7E5CF4340823B2A87DC68C9E4CE3174C1E6EFDEE12C07D +_Gy = 0x58AA56F772C0726F24C6B89E4ECDAC24354B9E99CAA3F6D3761402CD +_q = 0xD7C134AA264366862A18302575D0FB98D116BC4B6DDEBCA3A5A7939F + +curve_brainpoolp224r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp224r1 = ellipticcurve.PointJacobi( + curve_brainpoolp224r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-256-r1 +_a = 0x7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9 +_b = 0x26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6 +_p = 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377 +_Gx = 0x8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262 +_Gy = 0x547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997 +_q = 0xA9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7 + +curve_brainpoolp256r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp256r1 = ellipticcurve.PointJacobi( + curve_brainpoolp256r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-320-r1 +_a = 0x3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9F492F375A97D860EB4 +_b = 0x520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539816F5EB4AC8FB1F1A6 +_p = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC28FCD412B1F1B32E27 +_Gx = 0x43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599C710AF8D0D39E20611 +_Gy = 0x14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6AC7D35245D1692E8EE1 +_q = 0xD35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658E98691555B44C59311 + +curve_brainpoolp320r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp320r1 = ellipticcurve.PointJacobi( + curve_brainpoolp320r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-384-r1 +_a = 0x7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826 +_b = 0x04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11 +_p = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53 +_Gx = 0x1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E +_Gy = 0x8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315 +_q = 0x8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565 + +curve_brainpoolp384r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp384r1 = ellipticcurve.PointJacobi( + curve_brainpoolp384r1, _Gx, _Gy, 1, _q, generator=True) + +# Brainpool P-512-r1 +_a = 0x7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA +_b = 0x3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723 +_p = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3 +_Gx = 0x81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822 +_Gy = 0x7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892 +_q = 0xAADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069 + +curve_brainpoolp512r1 = ellipticcurve.CurveFp(_p, _a, _b, 1) +generator_brainpoolp512r1 = ellipticcurve.PointJacobi( + curve_brainpoolp512r1, _Gx, _Gy, 1, _q, generator=True) diff --git a/third_party/python/ecdsa/ecdsa/ellipticcurve.py b/third_party/python/ecdsa/ecdsa/ellipticcurve.py new file mode 100644 index 0000000000..3420454db4 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/ellipticcurve.py @@ -0,0 +1,780 @@ +#! /usr/bin/env python +# -*- coding: utf-8 -*- +# +# Implementation of elliptic curves, for cryptographic applications. +# +# This module doesn't provide any way to choose a random elliptic +# curve, nor to verify that an elliptic curve was chosen randomly, +# because one can simply use NIST's standard curves. +# +# Notes from X9.62-1998 (draft): +# Nomenclature: +# - Q is a public key. +# The "Elliptic Curve Domain Parameters" include: +# - q is the "field size", which in our case equals p. +# - p is a big prime. +# - G is a point of prime order (5.1.1.1). +# - n is the order of G (5.1.1.1). +# Public-key validation (5.2.2): +# - Verify that Q is not the point at infinity. +# - Verify that X_Q and Y_Q are in [0,p-1]. +# - Verify that Q is on the curve. +# - Verify that nQ is the point at infinity. +# Signature generation (5.3): +# - Pick random k from [1,n-1]. +# Signature checking (5.4.2): +# - Verify that r and s are in [1,n-1]. +# +# Version of 2008.11.25. +# +# Revision history: +# 2005.12.31 - Initial version. +# 2008.11.25 - Change CurveFp.is_on to contains_point. +# +# Written in 2005 by Peter Pearson and placed in the public domain. + +from __future__ import division + +try: + from gmpy2 import mpz + GMPY = True +except ImportError: + try: + from gmpy import mpz + GMPY = True + except ImportError: + GMPY = False + + +from six import python_2_unicode_compatible +from . import numbertheory +from ._rwlock import RWLock + + +@python_2_unicode_compatible +class CurveFp(object): + """Elliptic Curve over the field of integers modulo a prime.""" + + if GMPY: + def __init__(self, p, a, b, h=None): + """ + The curve of points satisfying y^2 = x^3 + a*x + b (mod p). + + h is an integer that is the cofactor of the elliptic curve domain + parameters; it is the number of points satisfying the elliptic curve + equation divided by the order of the base point. It is used for selection + of efficient algorithm for public point verification. + """ + self.__p = mpz(p) + self.__a = mpz(a) + self.__b = mpz(b) + # h is not used in calculations and it can be None, so don't use + # gmpy with it + self.__h = h + else: + def __init__(self, p, a, b, h=None): + """ + The curve of points satisfying y^2 = x^3 + a*x + b (mod p). + + h is an integer that is the cofactor of the elliptic curve domain + parameters; it is the number of points satisfying the elliptic curve + equation divided by the order of the base point. It is used for selection + of efficient algorithm for public point verification. + """ + self.__p = p + self.__a = a + self.__b = b + self.__h = h + + def __eq__(self, other): + if isinstance(other, CurveFp): + """Return True if the curves are identical, False otherwise.""" + return self.__p == other.__p \ + and self.__a == other.__a \ + and self.__b == other.__b + return NotImplemented + + def __hash__(self): + return hash((self.__p, self.__a, self.__b)) + + def p(self): + return self.__p + + def a(self): + return self.__a + + def b(self): + return self.__b + + def cofactor(self): + return self.__h + + def contains_point(self, x, y): + """Is the point (x,y) on this curve?""" + return (y * y - ((x * x + self.__a) * x + self.__b)) % self.__p == 0 + + def __str__(self): + return "CurveFp(p=%d, a=%d, b=%d, h=%d)" % ( + self.__p, self.__a, self.__b, self.__h) + + +class PointJacobi(object): + """ + Point on an elliptic curve. Uses Jacobi coordinates. + + In Jacobian coordinates, there are three parameters, X, Y and Z. + They correspond to affine parameters 'x' and 'y' like so: + + x = X / Z² + y = Y / Z³ + """ + def __init__(self, curve, x, y, z, order=None, generator=False): + """ + Initialise a point that uses Jacobi representation internally. + + :param CurveFp curve: curve on which the point resides + :param int x: the X parameter of Jacobi representation (equal to x when + converting from affine coordinates + :param int y: the Y parameter of Jacobi representation (equal to y when + converting from affine coordinates + :param int z: the Z parameter of Jacobi representation (equal to 1 when + converting from affine coordinates + :param int order: the point order, must be non zero when using + generator=True + :param bool generator: the point provided is a curve generator, as + such, it will be commonly used with scalar multiplication. This will + cause to precompute multiplication table for it + """ + self.__curve = curve + # since it's generally better (faster) to use scaled points vs unscaled + # ones, use writer-biased RWLock for locking: + self._scale_lock = RWLock() + if GMPY: + self.__x = mpz(x) + self.__y = mpz(y) + self.__z = mpz(z) + self.__order = order and mpz(order) + else: + self.__x = x + self.__y = y + self.__z = z + self.__order = order + self.__precompute = [] + if generator: + assert order + i = 1 + order *= 2 + doubler = PointJacobi(curve, x, y, z, order) + order *= 2 + self.__precompute.append((doubler.x(), doubler.y())) + + while i < order: + i *= 2 + doubler = doubler.double().scale() + self.__precompute.append((doubler.x(), doubler.y())) + + def __eq__(self, other): + """Compare two points with each-other.""" + try: + self._scale_lock.reader_acquire() + if other is INFINITY: + return not self.__y or not self.__z + x1, y1, z1 = self.__x, self.__y, self.__z + finally: + self._scale_lock.reader_release() + if isinstance(other, Point): + x2, y2, z2 = other.x(), other.y(), 1 + elif isinstance(other, PointJacobi): + try: + other._scale_lock.reader_acquire() + x2, y2, z2 = other.__x, other.__y, other.__z + finally: + other._scale_lock.reader_release() + else: + return NotImplemented + if self.__curve != other.curve(): + return False + p = self.__curve.p() + + zz1 = z1 * z1 % p + zz2 = z2 * z2 % p + + # compare the fractions by bringing them to the same denominator + # depend on short-circuit to save 4 multiplications in case of inequality + return (x1 * zz2 - x2 * zz1) % p == 0 and \ + (y1 * zz2 * z2 - y2 * zz1 * z1) % p == 0 + + def order(self): + """Return the order of the point. + + None if it is undefined. + """ + return self.__order + + def curve(self): + """Return curve over which the point is defined.""" + return self.__curve + + def x(self): + """ + Return affine x coordinate. + + This method should be used only when the 'y' coordinate is not needed. + It's computationally more efficient to use `to_affine()` and then + call x() and y() on the returned instance. Or call `scale()` + and then x() and y() on the returned instance. + """ + try: + self._scale_lock.reader_acquire() + if self.__z == 1: + return self.__x + x = self.__x + z = self.__z + finally: + self._scale_lock.reader_release() + p = self.__curve.p() + z = numbertheory.inverse_mod(z, p) + return x * z**2 % p + + def y(self): + """ + Return affine y coordinate. + + This method should be used only when the 'x' coordinate is not needed. + It's computationally more efficient to use `to_affine()` and then + call x() and y() on the returned instance. Or call `scale()` + and then x() and y() on the returned instance. + """ + try: + self._scale_lock.reader_acquire() + if self.__z == 1: + return self.__y + y = self.__y + z = self.__z + finally: + self._scale_lock.reader_release() + p = self.__curve.p() + z = numbertheory.inverse_mod(z, p) + return y * z**3 % p + + def scale(self): + """ + Return point scaled so that z == 1. + + Modifies point in place, returns self. + """ + try: + self._scale_lock.reader_acquire() + if self.__z == 1: + return self + finally: + self._scale_lock.reader_release() + + try: + self._scale_lock.writer_acquire() + # scaling already scaled point is safe (as inverse of 1 is 1) and + # quick so we don't need to optimise for the unlikely event when + # two threads hit the lock at the same time + p = self.__curve.p() + z_inv = numbertheory.inverse_mod(self.__z, p) + zz_inv = z_inv * z_inv % p + self.__x = self.__x * zz_inv % p + self.__y = self.__y * zz_inv * z_inv % p + # we are setting the z last so that the check above will return true + # only after all values were already updated + self.__z = 1 + finally: + self._scale_lock.writer_release() + return self + + def to_affine(self): + """Return point in affine form.""" + if not self.__y or not self.__z: + return INFINITY + self.scale() + # after point is scaled, it's immutable, so no need to perform locking + return Point(self.__curve, self.__x, + self.__y, self.__order) + + @staticmethod + def from_affine(point, generator=False): + """Create from an affine point. + + :param bool generator: set to True to make the point to precalculate + multiplication table - useful for public point when verifying many + signatures (around 100 or so) or for generator points of a curve. + """ + return PointJacobi(point.curve(), point.x(), point.y(), 1, + point.order(), generator) + + # plese note that all the methods that use the equations from hyperelliptic + # are formatted in a way to maximise performance. + # Things that make code faster: multiplying instead of taking to the power + # (`xx = x * x; xxxx = xx * xx % p` is faster than `xxxx = x**4 % p` and + # `pow(x, 4, p)`), + # multiple assignments at the same time (`x1, x2 = self.x1, self.x2` is + # faster than `x1 = self.x1; x2 = self.x2`), + # similarly, sometimes the `% p` is skipped if it makes the calculation + # faster and the result of calculation is later reduced modulo `p` + + def _double_with_z_1(self, X1, Y1, p, a): + """Add a point to itself with z == 1.""" + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-mdbl-2007-bl + XX, YY = X1 * X1 % p, Y1 * Y1 % p + if not YY: + return 0, 0, 1 + YYYY = YY * YY % p + S = 2 * ((X1 + YY)**2 - XX - YYYY) % p + M = 3 * XX + a + T = (M * M - 2 * S) % p + # X3 = T + Y3 = (M * (S - T) - 8 * YYYY) % p + Z3 = 2 * Y1 % p + return T, Y3, Z3 + + def _double(self, X1, Y1, Z1, p, a): + """Add a point to itself, arbitrary z.""" + if Z1 == 1: + return self._double_with_z_1(X1, Y1, p, a) + if not Z1: + return 0, 0, 1 + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl + XX, YY = X1 * X1 % p, Y1 * Y1 % p + if not YY: + return 0, 0, 1 + YYYY = YY * YY % p + ZZ = Z1 * Z1 % p + S = 2 * ((X1 + YY)**2 - XX - YYYY) % p + M = (3 * XX + a * ZZ * ZZ) % p + T = (M * M - 2 * S) % p + # X3 = T + Y3 = (M * (S - T) - 8 * YYYY) % p + Z3 = ((Y1 + Z1)**2 - YY - ZZ) % p + + return T, Y3, Z3 + + def double(self): + """Add a point to itself.""" + if not self.__y: + return INFINITY + + p, a = self.__curve.p(), self.__curve.a() + + try: + self._scale_lock.reader_acquire() + X1, Y1, Z1 = self.__x, self.__y, self.__z + finally: + self._scale_lock.reader_release() + + X3, Y3, Z3 = self._double(X1, Y1, Z1, p, a) + + if not Y3 or not Z3: + return INFINITY + return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) + + def _add_with_z_1(self, X1, Y1, X2, Y2, p): + """add points when both Z1 and Z2 equal 1""" + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-mmadd-2007-bl + H = X2 - X1 + HH = H * H + I = 4 * HH % p + J = H * I + r = 2 * (Y2 - Y1) + if not H and not r: + return self._double_with_z_1(X1, Y1, p, self.__curve.a()) + V = X1 * I + X3 = (r**2 - J - 2 * V) % p + Y3 = (r * (V - X3) - 2 * Y1 * J) % p + Z3 = 2 * H % p + return X3, Y3, Z3 + + def _add_with_z_eq(self, X1, Y1, Z1, X2, Y2, p): + """add points when Z1 == Z2""" + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-zadd-2007-m + A = (X2 - X1)**2 % p + B = X1 * A % p + C = X2 * A + D = (Y2 - Y1)**2 % p + if not A and not D: + return self._double(X1, Y1, Z1, p, self.__curve.a()) + X3 = (D - B - C) % p + Y3 = ((Y2 - Y1) * (B - X3) - Y1 * (C - B)) % p + Z3 = Z1 * (X2 - X1) % p + return X3, Y3, Z3 + + def _add_with_z2_1(self, X1, Y1, Z1, X2, Y2, p): + """add points when Z2 == 1""" + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-madd-2007-bl + Z1Z1 = Z1 * Z1 % p + U2, S2 = X2 * Z1Z1 % p, Y2 * Z1 * Z1Z1 % p + H = (U2 - X1) % p + HH = H * H % p + I = 4 * HH % p + J = H * I + r = 2 * (S2 - Y1) % p + if not r and not H: + return self._double_with_z_1(X2, Y2, p, self.__curve.a()) + V = X1 * I + X3 = (r * r - J - 2 * V) % p + Y3 = (r * (V - X3) - 2 * Y1 * J) % p + Z3 = ((Z1 + H)**2 - Z1Z1 - HH) % p + return X3, Y3, Z3 + + def _add_with_z_ne(self, X1, Y1, Z1, X2, Y2, Z2, p): + """add points with arbitrary z""" + # after: + # http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl + Z1Z1 = Z1 * Z1 % p + Z2Z2 = Z2 * Z2 % p + U1 = X1 * Z2Z2 % p + U2 = X2 * Z1Z1 % p + S1 = Y1 * Z2 * Z2Z2 % p + S2 = Y2 * Z1 * Z1Z1 % p + H = U2 - U1 + I = 4 * H * H % p + J = H * I % p + r = 2 * (S2 - S1) % p + if not H and not r: + return self._double(X1, Y1, Z1, p, self.__curve.a()) + V = U1 * I + X3 = (r * r - J - 2 * V) % p + Y3 = (r * (V - X3) - 2 * S1 * J) % p + Z3 = ((Z1 + Z2)**2 - Z1Z1 - Z2Z2) * H % p + + return X3, Y3, Z3 + + def __radd__(self, other): + """Add other to self.""" + return self + other + + def _add(self, X1, Y1, Z1, X2, Y2, Z2, p): + """add two points, select fastest method.""" + if not Y1 or not Z1: + return X2, Y2, Z2 + if not Y2 or not Z2: + return X1, Y1, Z1 + if Z1 == Z2: + if Z1 == 1: + return self._add_with_z_1(X1, Y1, X2, Y2, p) + return self._add_with_z_eq(X1, Y1, Z1, X2, Y2, p) + if Z1 == 1: + return self._add_with_z2_1(X2, Y2, Z2, X1, Y1, p) + if Z2 == 1: + return self._add_with_z2_1(X1, Y1, Z1, X2, Y2, p) + return self._add_with_z_ne(X1, Y1, Z1, X2, Y2, Z2, p) + + def __add__(self, other): + """Add two points on elliptic curve.""" + if self == INFINITY: + return other + if other == INFINITY: + return self + if isinstance(other, Point): + other = PointJacobi.from_affine(other) + if self.__curve != other.__curve: + raise ValueError("The other point is on different curve") + + p = self.__curve.p() + try: + self._scale_lock.reader_acquire() + X1, Y1, Z1 = self.__x, self.__y, self.__z + finally: + self._scale_lock.reader_release() + try: + other._scale_lock.reader_acquire() + X2, Y2, Z2 = other.__x, other.__y, other.__z + finally: + other._scale_lock.reader_release() + X3, Y3, Z3 = self._add(X1, Y1, Z1, X2, Y2, Z2, p) + + if not Y3 or not Z3: + return INFINITY + return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) + + def __rmul__(self, other): + """Multiply point by an integer.""" + return self * other + + def _mul_precompute(self, other): + """Multiply point by integer with precomputation table.""" + X3, Y3, Z3, p = 0, 0, 1, self.__curve.p() + _add = self._add + for X2, Y2 in self.__precompute: + if other % 2: + if other % 4 >= 2: + other = (other + 1)//2 + X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p) + else: + other = (other - 1)//2 + X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) + else: + other //= 2 + + if not Y3 or not Z3: + return INFINITY + return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) + + @staticmethod + def _naf(mult): + """Calculate non-adjacent form of number.""" + ret = [] + while mult: + if mult % 2: + nd = mult % 4 + if nd >= 2: + nd = nd - 4 + ret += [nd] + mult -= nd + else: + ret += [0] + mult //= 2 + return ret + + def __mul__(self, other): + """Multiply point by an integer.""" + if not self.__y or not other: + return INFINITY + if other == 1: + return self + if self.__order: + # order*2 as a protection for Minerva + other = other % (self.__order*2) + if self.__precompute: + return self._mul_precompute(other) + + self = self.scale() + # once scaled, point is immutable, not need to lock + X2, Y2 = self.__x, self.__y + X3, Y3, Z3 = 0, 0, 1 + p, a = self.__curve.p(), self.__curve.a() + _double = self._double + _add = self._add + # since adding points when at least one of them is scaled + # is quicker, reverse the NAF order + for i in reversed(self._naf(other)): + X3, Y3, Z3 = _double(X3, Y3, Z3, p, a) + if i < 0: + X3, Y3, Z3 = _add(X3, Y3, Z3, X2, -Y2, 1, p) + elif i > 0: + X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) + + if not Y3 or not Z3: + return INFINITY + + return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) + + @staticmethod + def _leftmost_bit(x): + """Return integer with the same magnitude as x but hamming weight of 1""" + assert x > 0 + result = 1 + while result <= x: + result = 2 * result + return result // 2 + + def mul_add(self, self_mul, other, other_mul): + """ + Do two multiplications at the same time, add results. + + calculates self*self_mul + other*other_mul + """ + if other is INFINITY or other_mul == 0: + return self * self_mul + if self_mul == 0: + return other * other_mul + if not isinstance(other, PointJacobi): + other = PointJacobi.from_affine(other) + # when the points have precomputed answers, then multiplying them alone + # is faster (as it uses NAF) + if self.__precompute and other.__precompute: + return self * self_mul + other * other_mul + + if self.__order: + self_mul = self_mul % self.__order + other_mul = other_mul % self.__order + + i = self._leftmost_bit(max(self_mul, other_mul))*2 + X3, Y3, Z3 = 0, 0, 1 + p, a = self.__curve.p(), self.__curve.a() + self = self.scale() + # after scaling, point is immutable, no need for locking + X1, Y1 = self.__x, self.__y + other = other.scale() + X2, Y2 = other.__x, other.__y + both = (self + other).scale() + X4, Y4 = both.__x, both.__y + _double = self._double + _add = self._add + while i > 1: + X3, Y3, Z3 = _double(X3, Y3, Z3, p, a) + i = i // 2 + + if self_mul & i and other_mul & i: + X3, Y3, Z3 = _add(X3, Y3, Z3, X4, Y4, 1, p) + elif self_mul & i: + X3, Y3, Z3 = _add(X3, Y3, Z3, X1, Y1, 1, p) + elif other_mul & i: + X3, Y3, Z3 = _add(X3, Y3, Z3, X2, Y2, 1, p) + + if not Y3 or not Z3: + return INFINITY + + return PointJacobi(self.__curve, X3, Y3, Z3, self.__order) + + def __neg__(self): + """Return negated point.""" + try: + self._scale_lock.reader_acquire() + return PointJacobi(self.__curve, self.__x, -self.__y, self.__z, + self.__order) + finally: + self._scale_lock.reader_release() + + +class Point(object): + """A point on an elliptic curve. Altering x and y is forbidding, + but they can be read by the x() and y() methods.""" + def __init__(self, curve, x, y, order=None): + """curve, x, y, order; order (optional) is the order of this point.""" + self.__curve = curve + if GMPY: + self.__x = x and mpz(x) + self.__y = y and mpz(y) + self.__order = order and mpz(order) + else: + self.__x = x + self.__y = y + self.__order = order + # self.curve is allowed to be None only for INFINITY: + if self.__curve: + assert self.__curve.contains_point(x, y) + # for curves with cofactor 1, all points that are on the curve are scalar + # multiples of the base point, so performing multiplication is not + # necessary to verify that. See Section 3.2.2.1 of SEC 1 v2 + if curve and curve.cofactor() != 1 and order: + assert self * order == INFINITY + + def __eq__(self, other): + """Return True if the points are identical, False otherwise.""" + if isinstance(other, Point): + return self.__curve == other.__curve \ + and self.__x == other.__x \ + and self.__y == other.__y + return NotImplemented + + def __neg__(self): + return Point(self.__curve, self.__x, self.__curve.p() - self.__y) + + def __add__(self, other): + """Add one point to another point.""" + + # X9.62 B.3: + + if not isinstance(other, Point): + return NotImplemented + if other == INFINITY: + return self + if self == INFINITY: + return other + assert self.__curve == other.__curve + if self.__x == other.__x: + if (self.__y + other.__y) % self.__curve.p() == 0: + return INFINITY + else: + return self.double() + + p = self.__curve.p() + + l = ((other.__y - self.__y) * \ + numbertheory.inverse_mod(other.__x - self.__x, p)) % p + + x3 = (l * l - self.__x - other.__x) % p + y3 = (l * (self.__x - x3) - self.__y) % p + + return Point(self.__curve, x3, y3) + + def __mul__(self, other): + """Multiply a point by an integer.""" + + def leftmost_bit(x): + assert x > 0 + result = 1 + while result <= x: + result = 2 * result + return result // 2 + + e = other + if e == 0 or (self.__order and e % self.__order == 0): + return INFINITY + if self == INFINITY: + return INFINITY + if e < 0: + return (-self) * (-e) + + # From X9.62 D.3.2: + + e3 = 3 * e + negative_self = Point(self.__curve, self.__x, -self.__y, self.__order) + i = leftmost_bit(e3) // 2 + result = self + # print_("Multiplying %s by %d (e3 = %d):" % (self, other, e3)) + while i > 1: + result = result.double() + if (e3 & i) != 0 and (e & i) == 0: + result = result + self + if (e3 & i) == 0 and (e & i) != 0: + result = result + negative_self + # print_(". . . i = %d, result = %s" % ( i, result )) + i = i // 2 + + return result + + def __rmul__(self, other): + """Multiply a point by an integer.""" + + return self * other + + def __str__(self): + if self == INFINITY: + return "infinity" + return "(%d,%d)" % (self.__x, self.__y) + + def double(self): + """Return a new point that is twice the old.""" + + if self == INFINITY: + return INFINITY + + # X9.62 B.3: + + p = self.__curve.p() + a = self.__curve.a() + + l = ((3 * self.__x * self.__x + a) * \ + numbertheory.inverse_mod(2 * self.__y, p)) % p + + x3 = (l * l - 2 * self.__x) % p + y3 = (l * (self.__x - x3) - self.__y) % p + + return Point(self.__curve, x3, y3) + + def x(self): + return self.__x + + def y(self): + return self.__y + + def curve(self): + return self.__curve + + def order(self): + return self.__order + + +# This one point is the Point At Infinity for all purposes: +INFINITY = Point(None, None, None) diff --git a/third_party/python/ecdsa/ecdsa/keys.py b/third_party/python/ecdsa/ecdsa/keys.py new file mode 100644 index 0000000000..172fdf5874 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/keys.py @@ -0,0 +1,1219 @@ +""" +Primary classes for performing signing and verification operations. + +.. glossary:: + + raw encoding + Conversion of public, private keys and signatures (which in + mathematical sense are integers or pairs of integers) to strings of + bytes that does not use any special tags or encoding rules. + For any given curve, all keys of the same type or signatures will be + encoded to byte strings of the same length. In more formal sense, + the integers are encoded as big-endian, constant length byte strings, + where the string length is determined by the curve order (e.g. + for NIST256p the order is 256 bits long, so the private key will be 32 + bytes long while public key will be 64 bytes long). The encoding of a + single integer is zero-padded on the left if the numerical value is + low. In case of public keys and signatures, which are comprised of two + integers, the integers are simply concatenated. + + uncompressed + The most common formatting specified in PKIX standards. Specified in + X9.62 and SEC1 standards. The only difference between it and + :term:`raw encoding` is the prepending of a 0x04 byte. Thus an + uncompressed NIST256p public key encoding will be 65 bytes long. + + compressed + The public point representation that uses half of bytes of the + :term:`uncompressed` encoding (rounded up). It uses the first byte of + the encoding to specify the sign of the y coordinate and encodes the + x coordinate as-is. The first byte of the encoding is equal to + 0x02 or 0x03. Compressed encoding of NIST256p public key will be 33 + bytes long. + + hybrid + A combination of :term:`uncompressed` and :term:`compressed` encodings. + Both x and y coordinates are stored just as in :term:`compressed` + encoding, but the first byte reflects the sign of the y coordinate. The + first byte of the encoding will be equal to 0x06 or 0x7. Hybrid + encoding of NIST256p public key will be 65 bytes long. + + PEM + The acronym stands for Privacy Enhanced Email, but currently it is used + primarily as the way to encode :term:`DER` objects into text that can + be either easily copy-pasted or transferred over email. + It uses headers like ``-----BEGIN <type of contents>-----`` and footers + like ``-----END <type of contents>-----`` to separate multiple + types of objects in the same file or the object from the surrounding + comments. The actual object stored is base64 encoded. + + DER + Distinguished Encoding Rules, the way to encode :term:`ASN.1` objects + deterministically and uniquely into byte strings. + + ASN.1 + Abstract Syntax Notation 1 is a standard description language for + specifying serialisation and deserialisation of data structures in a + portable and cross-platform way. + + bytes-like object + All the types that implement the buffer protocol. That includes + ``str`` (only on python2), ``bytes``, ``bytesarray``, ``array.array` + and ``memoryview`` of those objects. + Please note that ``array.array` serialisation (converting it to byte + string) is endianess dependant! Signature computed over ``array.array`` + of integers on a big-endian system will not be verified on a + little-endian system and vice-versa. +""" + +import binascii +from hashlib import sha1 +from six import PY3, b +from . import ecdsa +from . import der +from . import rfc6979 +from . import ellipticcurve +from .curves import NIST192p, find_curve +from .numbertheory import square_root_mod_prime, SquareRootError +from .ecdsa import RSZeroError +from .util import string_to_number, number_to_string, randrange +from .util import sigencode_string, sigdecode_string +from .util import oid_ecPublicKey, encoded_oid_ecPublicKey, MalformedSignature +from ._compat import normalise_bytes + + +__all__ = ["BadSignatureError", "BadDigestError", "VerifyingKey", "SigningKey", + "MalformedPointError"] + + +class BadSignatureError(Exception): + """ + Raised when verification of signature failed. + + Will be raised irrespective of reason of the failure: + + * the calculated or provided hash does not match the signature + * the signature does not match the curve/public key + * the encoding of the signature is malformed + * the size of the signature does not match the curve of the VerifyingKey + """ + + pass + + +class BadDigestError(Exception): + """Raised in case the selected hash is too large for the curve.""" + + pass + + +class MalformedPointError(AssertionError): + """Raised in case the encoding of private or public key is malformed.""" + + pass + + +class VerifyingKey(object): + """ + Class for handling keys that can verify signatures (public keys). + + :ivar ecdsa.curves.Curve curve: The Curve over which all the cryptographic + operations will take place + :ivar default_hashfunc: the function that will be used for hashing the + data. Should implement the same API as hashlib.sha1 + :vartype default_hashfunc: callable + :ivar pubkey: the actual public key + :vartype pubkey: ecdsa.ecdsa.Public_key + """ + + def __init__(self, _error__please_use_generate=None): + """Unsupported, please use one of the classmethods to initialise.""" + if not _error__please_use_generate: + raise TypeError("Please use VerifyingKey.generate() to " + "construct me") + self.curve = None + self.default_hashfunc = None + self.pubkey = None + + def __repr__(self): + pub_key = self.to_string("compressed") + return "VerifyingKey.from_string({0!r}, {1!r}, {2})".format( + pub_key, self.curve, self.default_hashfunc().name) + + def __eq__(self, other): + """Return True if the points are identical, False otherwise.""" + if isinstance(other, VerifyingKey): + return self.curve == other.curve \ + and self.pubkey == other.pubkey + return NotImplemented + + @classmethod + def from_public_point(cls, point, curve=NIST192p, hashfunc=sha1, + validate_point=True): + """ + Initialise the object from a Point object. + + This is a low-level method, generally you will not want to use it. + + :param point: The point to wrap around, the actual public key + :type point: ecdsa.ellipticcurve.Point + :param curve: The curve on which the point needs to reside, defaults + to NIST192p + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + verification, needs to implement the same interface + as hashlib.sha1 + :type hashfunc: callable + :type bool validate_point: whether to check if the point lies on curve + should always be used if the public point is not a result + of our own calculation + + :raises MalformedPointError: if the public point does not lie on the + curve + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + self = cls(_error__please_use_generate=True) + if not isinstance(point, ellipticcurve.PointJacobi): + point = ellipticcurve.PointJacobi.from_affine(point) + self.curve = curve + self.default_hashfunc = hashfunc + try: + self.pubkey = ecdsa.Public_key(curve.generator, point, + validate_point) + except ecdsa.InvalidPointError: + raise MalformedPointError("Point does not lie on the curve") + self.pubkey.order = curve.order + return self + + def precompute(self): + self.pubkey.point = ellipticcurve.PointJacobi.from_affine( + self.pubkey.point, True) + + @staticmethod + def _from_raw_encoding(string, curve): + """ + Decode public point from :term:`raw encoding`. + + :term:`raw encoding` is the same as the :term:`uncompressed` encoding, + but without the 0x04 byte at the beginning. + """ + order = curve.order + # real assert, from_string() should not call us with different length + assert len(string) == curve.verifying_key_length + xs = string[:curve.baselen] + ys = string[curve.baselen:] + if len(xs) != curve.baselen: + raise MalformedPointError("Unexpected length of encoded x") + if len(ys) != curve.baselen: + raise MalformedPointError("Unexpected length of encoded y") + x = string_to_number(xs) + y = string_to_number(ys) + + return ellipticcurve.PointJacobi(curve.curve, x, y, 1, order) + + @staticmethod + def _from_compressed(string, curve): + """Decode public point from compressed encoding.""" + if string[:1] not in (b('\x02'), b('\x03')): + raise MalformedPointError("Malformed compressed point encoding") + + is_even = string[:1] == b('\x02') + x = string_to_number(string[1:]) + order = curve.order + p = curve.curve.p() + alpha = (pow(x, 3, p) + (curve.curve.a() * x) + curve.curve.b()) % p + try: + beta = square_root_mod_prime(alpha, p) + except SquareRootError as e: + raise MalformedPointError( + "Encoding does not correspond to a point on curve", e) + if is_even == bool(beta & 1): + y = p - beta + else: + y = beta + return ellipticcurve.PointJacobi(curve.curve, x, y, 1, order) + + @classmethod + def _from_hybrid(cls, string, curve, validate_point): + """Decode public point from hybrid encoding.""" + # real assert, from_string() should not call us with different types + assert string[:1] in (b('\x06'), b('\x07')) + + # primarily use the uncompressed as it's easiest to handle + point = cls._from_raw_encoding(string[1:], curve) + + # but validate if it's self-consistent if we're asked to do that + if validate_point \ + and (point.y() & 1 and string[:1] != b('\x07') + or (not point.y() & 1) and string[:1] != b('\x06')): + raise MalformedPointError("Inconsistent hybrid point encoding") + + return point + + @classmethod + def from_string(cls, string, curve=NIST192p, hashfunc=sha1, + validate_point=True): + """ + Initialise the object from byte encoding of public key. + + The method does accept and automatically detect the type of point + encoding used. It supports the :term:`raw encoding`, + :term:`uncompressed`, :term:`compressed` and :term:`hybrid` encodings. + + Note, while the method is named "from_string" it's a misnomer from + Python 2 days when there were no binary strings. In Python 3 the + input needs to be a bytes-like object. + + :param string: single point encoding of the public key + :type string: :term:`bytes-like object` + :param curve: the curve on which the public key is expected to lie + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + verification, needs to implement the same interface as hashlib.sha1 + :type hashfunc: callable + :param validate_point: whether to verify that the point lies on the + provided curve or not, defaults to True + :type validate_point: bool + + :raises MalformedPointError: if the public point does not lie on the + curve or the encoding is invalid + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + string = normalise_bytes(string) + sig_len = len(string) + if sig_len == curve.verifying_key_length: + point = cls._from_raw_encoding(string, curve) + elif sig_len == curve.verifying_key_length + 1: + if string[:1] in (b('\x06'), b('\x07')): + point = cls._from_hybrid(string, curve, validate_point) + elif string[:1] == b('\x04'): + point = cls._from_raw_encoding(string[1:], curve) + else: + raise MalformedPointError( + "Invalid X9.62 encoding of the public point") + elif sig_len == curve.baselen + 1: + point = cls._from_compressed(string, curve) + else: + raise MalformedPointError( + "Length of string does not match lengths of " + "any of the supported encodings of {0} " + "curve.".format(curve.name)) + return cls.from_public_point(point, curve, hashfunc, + validate_point) + + @classmethod + def from_pem(cls, string, hashfunc=sha1): + """ + Initialise from public key stored in :term:`PEM` format. + + The PEM header of the key should be ``BEGIN PUBLIC KEY``. + + See the :func:`~VerifyingKey.from_der()` method for details of the + format supported. + + Note: only a single PEM object encoding is supported in provided + string. + + :param string: text with PEM-encoded public ECDSA key + :type string: str + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + return cls.from_der(der.unpem(string), hashfunc=hashfunc) + + @classmethod + def from_der(cls, string, hashfunc=sha1): + """ + Initialise the key stored in :term:`DER` format. + + The expected format of the key is the SubjectPublicKeyInfo structure + from RFC5912 (for RSA keys, it's known as the PKCS#1 format):: + + SubjectPublicKeyInfo {PUBLIC-KEY: IOSet} ::= SEQUENCE { + algorithm AlgorithmIdentifier {PUBLIC-KEY, {IOSet}}, + subjectPublicKey BIT STRING + } + + Note: only public EC keys are supported by this method. The + SubjectPublicKeyInfo.algorithm.algorithm field must specify + id-ecPublicKey (see RFC3279). + + Only the named curve encoding is supported, thus the + SubjectPublicKeyInfo.algorithm.parameters field needs to be an + object identifier. A sequence in that field indicates an explicit + parameter curve encoding, this format is not supported. A NULL object + in that field indicates an "implicitlyCA" encoding, where the curve + parameters come from CA certificate, those, again, are not supported. + + :param string: binary string with the DER encoding of public ECDSA key + :type string: bytes-like object + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + string = normalise_bytes(string) + # [[oid_ecPublicKey,oid_curve], point_str_bitstring] + s1, empty = der.remove_sequence(string) + if empty != b"": + raise der.UnexpectedDER("trailing junk after DER pubkey: %s" % + binascii.hexlify(empty)) + s2, point_str_bitstring = der.remove_sequence(s1) + # s2 = oid_ecPublicKey,oid_curve + oid_pk, rest = der.remove_object(s2) + oid_curve, empty = der.remove_object(rest) + if empty != b"": + raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" % + binascii.hexlify(empty)) + if not oid_pk == oid_ecPublicKey: + raise der.UnexpectedDER("Unexpected object identifier in DER " + "encoding: {0!r}".format(oid_pk)) + curve = find_curve(oid_curve) + point_str, empty = der.remove_bitstring(point_str_bitstring, 0) + if empty != b"": + raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" % + binascii.hexlify(empty)) + # raw encoding of point is invalid in DER files + if len(point_str) == curve.verifying_key_length: + raise der.UnexpectedDER("Malformed encoding of public point") + return cls.from_string(point_str, curve, hashfunc=hashfunc) + + @classmethod + def from_public_key_recovery(cls, signature, data, curve, hashfunc=sha1, + sigdecode=sigdecode_string): + """ + Return keys that can be used as verifiers of the provided signature. + + Tries to recover the public key that can be used to verify the + signature, usually returns two keys like that. + + :param signature: the byte string with the encoded signature + :type signature: bytes-like object + :param data: the data to be hashed for signature verification + :type data: bytes-like object + :param curve: the curve over which the signature was performed + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + verification, needs to implement the same interface as hashlib.sha1 + :type hashfunc: callable + :param sigdecode: Callable to define the way the signature needs to + be decoded to an object, needs to handle `signature` as the + first parameter, the curve order (an int) as the second and return + a tuple with two integers, "r" as the first one and "s" as the + second one. See :func:`ecdsa.util.sigdecode_string` and + :func:`ecdsa.util.sigdecode_der` for examples. + :type sigdecode: callable + + :return: Initialised VerifyingKey objects + :rtype: list of VerifyingKey + """ + data = normalise_bytes(data) + digest = hashfunc(data).digest() + return cls.from_public_key_recovery_with_digest( + signature, digest, curve, hashfunc=hashfunc, + sigdecode=sigdecode) + + @classmethod + def from_public_key_recovery_with_digest( + cls, signature, digest, curve, + hashfunc=sha1, sigdecode=sigdecode_string): + """ + Return keys that can be used as verifiers of the provided signature. + + Tries to recover the public key that can be used to verify the + signature, usually returns two keys like that. + + :param signature: the byte string with the encoded signature + :type signature: bytes-like object + :param digest: the hash value of the message signed by the signature + :type digest: bytes-like object + :param curve: the curve over which the signature was performed + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + verification, needs to implement the same interface as hashlib.sha1 + :type hashfunc: callable + :param sigdecode: Callable to define the way the signature needs to + be decoded to an object, needs to handle `signature` as the + first parameter, the curve order (an int) as the second and return + a tuple with two integers, "r" as the first one and "s" as the + second one. See :func:`ecdsa.util.sigdecode_string` and + :func:`ecdsa.util.sigdecode_der` for examples. + :type sigdecode: callable + + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + generator = curve.generator + r, s = sigdecode(signature, generator.order()) + sig = ecdsa.Signature(r, s) + + digest = normalise_bytes(digest) + digest_as_number = string_to_number(digest) + pks = sig.recover_public_keys(digest_as_number, generator) + + # Transforms the ecdsa.Public_key object into a VerifyingKey + verifying_keys = [cls.from_public_point(pk.point, curve, hashfunc) + for pk in pks] + return verifying_keys + + def _raw_encode(self): + """Convert the public key to the :term:`raw encoding`.""" + order = self.pubkey.order + x_str = number_to_string(self.pubkey.point.x(), order) + y_str = number_to_string(self.pubkey.point.y(), order) + return x_str + y_str + + def _compressed_encode(self): + """Encode the public point into the compressed form.""" + order = self.pubkey.order + x_str = number_to_string(self.pubkey.point.x(), order) + if self.pubkey.point.y() & 1: + return b('\x03') + x_str + else: + return b('\x02') + x_str + + def _hybrid_encode(self): + """Encode the public point into the hybrid form.""" + raw_enc = self._raw_encode() + if self.pubkey.point.y() & 1: + return b('\x07') + raw_enc + else: + return b('\x06') + raw_enc + + def to_string(self, encoding="raw"): + """ + Convert the public key to a byte string. + + The method by default uses the :term:`raw encoding` (specified + by `encoding="raw"`. It can also output keys in :term:`uncompressed`, + :term:`compressed` and :term:`hybrid` formats. + + Remember that the curve identification is not part of the encoding + so to decode the point using :func:`~VerifyingKey.from_string`, curve + needs to be specified. + + Note: while the method is called "to_string", it's a misnomer from + Python 2 days when character strings and byte strings shared type. + On Python 3 the returned type will be `bytes`. + + :return: :term:`raw encoding` of the public key (public point) on the + curve + :rtype: bytes + """ + assert encoding in ("raw", "uncompressed", "compressed", "hybrid") + if encoding == "raw": + return self._raw_encode() + elif encoding == "uncompressed": + return b('\x04') + self._raw_encode() + elif encoding == "hybrid": + return self._hybrid_encode() + else: + return self._compressed_encode() + + def to_pem(self, point_encoding="uncompressed"): + """ + Convert the public key to the :term:`PEM` format. + + The PEM header of the key will be ``BEGIN PUBLIC KEY``. + + The format of the key is described in the + :func:`~VerifyingKey.from_der()` method. + This method supports only "named curve" encoding of keys. + + :param str point_encoding: specification of the encoding format + of public keys. "uncompressed" is most portable, "compressed" is + smallest. "hybrid" is uncommon and unsupported by most + implementations, it is as big as "uncompressed". + + :return: portable encoding of the public key + :rtype: str + """ + return der.topem(self.to_der(point_encoding), "PUBLIC KEY") + + def to_der(self, point_encoding="uncompressed"): + """ + Convert the public key to the :term:`DER` format. + + The format of the key is described in the + :func:`~VerifyingKey.from_der()` method. + This method supports only "named curve" encoding of keys. + + :param str point_encoding: specification of the encoding format + of public keys. "uncompressed" is most portable, "compressed" is + smallest. "hybrid" is uncommon and unsupported by most + implementations, it is as big as "uncompressed". + + :return: DER encoding of the public key + :rtype: bytes + """ + if point_encoding == "raw": + raise ValueError("raw point_encoding not allowed in DER") + point_str = self.to_string(point_encoding) + return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey, + self.curve.encoded_oid), + # 0 is the number of unused bits in the + # bit string + der.encode_bitstring(point_str, 0)) + + def verify(self, signature, data, hashfunc=None, + sigdecode=sigdecode_string): + """ + Verify a signature made over provided data. + + Will hash `data` to verify the signature. + + By default expects signature in :term:`raw encoding`. Can also be used + to verify signatures in ASN.1 DER encoding by using + :func:`ecdsa.util.sigdecode_der` + as the `sigdecode` parameter. + + :param signature: encoding of the signature + :type signature: sigdecode method dependant + :param data: data signed by the `signature`, will be hashed using + `hashfunc`, if specified, or default hash function + :type data: bytes like object + :param hashfunc: The default hash function that will be used for + verification, needs to implement the same interface as hashlib.sha1 + :type hashfunc: callable + :param sigdecode: Callable to define the way the signature needs to + be decoded to an object, needs to handle `signature` as the + first parameter, the curve order (an int) as the second and return + a tuple with two integers, "r" as the first one and "s" as the + second one. See :func:`ecdsa.util.sigdecode_string` and + :func:`ecdsa.util.sigdecode_der` for examples. + :type sigdecode: callable + + :raises BadSignatureError: if the signature is invalid or malformed + + :return: True if the verification was successful + :rtype: bool + """ + # signature doesn't have to be a bytes-like-object so don't normalise + # it, the decoders will do that + data = normalise_bytes(data) + + hashfunc = hashfunc or self.default_hashfunc + digest = hashfunc(data).digest() + return self.verify_digest(signature, digest, sigdecode, True) + + def verify_digest(self, signature, digest, sigdecode=sigdecode_string, + allow_truncate=False): + """ + Verify a signature made over provided hash value. + + By default expects signature in :term:`raw encoding`. Can also be used + to verify signatures in ASN.1 DER encoding by using + :func:`ecdsa.util.sigdecode_der` + as the `sigdecode` parameter. + + :param signature: encoding of the signature + :type signature: sigdecode method dependant + :param digest: raw hash value that the signature authenticates. + :type digest: bytes like object + :param sigdecode: Callable to define the way the signature needs to + be decoded to an object, needs to handle `signature` as the + first parameter, the curve order (an int) as the second and return + a tuple with two integers, "r" as the first one and "s" as the + second one. See :func:`ecdsa.util.sigdecode_string` and + :func:`ecdsa.util.sigdecode_der` for examples. + :type sigdecode: callable + :param bool allow_truncate: if True, the provided digest can have + bigger bit-size than the order of the curve, the extra bits (at + the end of the digest) will be truncated. Use it when verifying + SHA-384 output using NIST256p or in similar situations. + + :raises BadSignatureError: if the signature is invalid or malformed + :raises BadDigestError: if the provided digest is too big for the curve + associated with this VerifyingKey and allow_truncate was not set + + :return: True if the verification was successful + :rtype: bool + """ + # signature doesn't have to be a bytes-like-object so don't normalise + # it, the decoders will do that + digest = normalise_bytes(digest) + if allow_truncate: + digest = digest[:self.curve.baselen] + if len(digest) > self.curve.baselen: + raise BadDigestError("this curve (%s) is too short " + "for your digest (%d)" % (self.curve.name, + 8 * len(digest))) + number = string_to_number(digest) + try: + r, s = sigdecode(signature, self.pubkey.order) + except (der.UnexpectedDER, MalformedSignature) as e: + raise BadSignatureError("Malformed formatting of signature", e) + sig = ecdsa.Signature(r, s) + if self.pubkey.verifies(number, sig): + return True + raise BadSignatureError("Signature verification failed") + + +class SigningKey(object): + """ + Class for handling keys that can create signatures (private keys). + + :ivar ecdsa.curves.Curve curve: The Curve over which all the cryptographic + operations will take place + :ivar default_hashfunc: the function that will be used for hashing the + data. Should implement the same API as hashlib.sha1 + :ivar int baselen: the length of a :term:`raw encoding` of private key + :ivar ecdsa.keys.VerifyingKey verifying_key: the public key + associated with this private key + :ivar ecdsa.ecdsa.Private_key privkey: the actual private key + """ + + def __init__(self, _error__please_use_generate=None): + """Unsupported, please use one of the classmethods to initialise.""" + if not _error__please_use_generate: + raise TypeError("Please use SigningKey.generate() to construct me") + self.curve = None + self.default_hashfunc = None + self.baselen = None + self.verifying_key = None + self.privkey = None + + def __eq__(self, other): + """Return True if the points are identical, False otherwise.""" + if isinstance(other, SigningKey): + return self.curve == other.curve \ + and self.verifying_key == other.verifying_key \ + and self.privkey == other.privkey + return NotImplemented + + @classmethod + def generate(cls, curve=NIST192p, entropy=None, hashfunc=sha1): + """ + Generate a random private key. + + :param curve: The curve on which the point needs to reside, defaults + to NIST192p + :type curve: ecdsa.curves.Curve + :param entropy: Source of randomness for generating the private keys, + should provide cryptographically secure random numbers if the keys + need to be secure. Uses os.urandom() by default. + :type entropy: callable + :param hashfunc: The default hash function that will be used for + signing, needs to implement the same interface + as hashlib.sha1 + :type hashfunc: callable + + :return: Initialised SigningKey object + :rtype: SigningKey + """ + secexp = randrange(curve.order, entropy) + return cls.from_secret_exponent(secexp, curve, hashfunc) + + @classmethod + def from_secret_exponent(cls, secexp, curve=NIST192p, hashfunc=sha1): + """ + Create a private key from a random integer. + + Note: it's a low level method, it's recommended to use the + :func:`~SigningKey.generate` method to create private keys. + + :param int secexp: secret multiplier (the actual private key in ECDSA). + Needs to be an integer between 1 and the curve order. + :param curve: The curve on which the point needs to reside + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + signing, needs to implement the same interface + as hashlib.sha1 + :type hashfunc: callable + + :raises MalformedPointError: when the provided secexp is too large + or too small for the curve selected + :raises RuntimeError: if the generation of public key from private + key failed + + :return: Initialised SigningKey object + :rtype: SigningKey + """ + self = cls(_error__please_use_generate=True) + self.curve = curve + self.default_hashfunc = hashfunc + self.baselen = curve.baselen + n = curve.order + if not 1 <= secexp < n: + raise MalformedPointError( + "Invalid value for secexp, expected integer between 1 and {0}" + .format(n)) + pubkey_point = curve.generator * secexp + if hasattr(pubkey_point, "scale"): + pubkey_point = pubkey_point.scale() + self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve, + hashfunc, False) + pubkey = self.verifying_key.pubkey + self.privkey = ecdsa.Private_key(pubkey, secexp) + self.privkey.order = n + return self + + @classmethod + def from_string(cls, string, curve=NIST192p, hashfunc=sha1): + """ + Decode the private key from :term:`raw encoding`. + + Note: the name of this method is a misnomer coming from days of + Python 2, when binary strings and character strings shared a type. + In Python 3, the expected type is `bytes`. + + :param string: the raw encoding of the private key + :type string: bytes like object + :param curve: The curve on which the point needs to reside + :type curve: ecdsa.curves.Curve + :param hashfunc: The default hash function that will be used for + signing, needs to implement the same interface + as hashlib.sha1 + :type hashfunc: callable + + :raises MalformedPointError: if the length of encoding doesn't match + the provided curve or the encoded values is too large + :raises RuntimeError: if the generation of public key from private + key failed + + :return: Initialised SigningKey object + :rtype: SigningKey + """ + string = normalise_bytes(string) + if len(string) != curve.baselen: + raise MalformedPointError( + "Invalid length of private key, received {0}, expected {1}" + .format(len(string), curve.baselen)) + secexp = string_to_number(string) + return cls.from_secret_exponent(secexp, curve, hashfunc) + + @classmethod + def from_pem(cls, string, hashfunc=sha1): + """ + Initialise from key stored in :term:`PEM` format. + + Note, the only PEM format supported is the un-encrypted RFC5915 + (the sslay format) supported by OpenSSL, the more common PKCS#8 format + is NOT supported (see: + https://github.com/warner/python-ecdsa/issues/113 ) + + ``openssl ec -in pkcs8.pem -out sslay.pem`` can be used to + convert PKCS#8 file to this legacy format. + + The legacy format files have the header with the string + ``BEGIN EC PRIVATE KEY``. + Encrypted files (ones that include the string + ``Proc-Type: 4,ENCRYPTED`` + right after the PEM header) are not supported. + + See :func:`~SigningKey.from_der` for ASN.1 syntax of the objects in + this files. + + :param string: text with PEM-encoded private ECDSA key + :type string: str + + :raises MalformedPointError: if the length of encoding doesn't match + the provided curve or the encoded values is too large + :raises RuntimeError: if the generation of public key from private + key failed + :raises UnexpectedDER: if the encoding of the PEM file is incorrect + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + # the privkey pem may have multiple sections, commonly it also has + # "EC PARAMETERS", we need just "EC PRIVATE KEY". + if PY3 and isinstance(string, str): + string = string.encode() + privkey_pem = string[string.index(b("-----BEGIN EC PRIVATE KEY-----")):] + return cls.from_der(der.unpem(privkey_pem), hashfunc) + + @classmethod + def from_der(cls, string, hashfunc=sha1): + """ + Initialise from key stored in :term:`DER` format. + + Note, the only DER format supported is the RFC5915 + (the sslay format) supported by OpenSSL, the more common PKCS#8 format + is NOT supported (see: + https://github.com/warner/python-ecdsa/issues/113 ) + + ``openssl ec -in pkcs8.pem -outform der -out sslay.der`` can be + used to convert PKCS#8 file to this legacy format. + + The encoding of the ASN.1 object in those files follows following + syntax specified in RFC5915:: + + ECPrivateKey ::= SEQUENCE { + version INTEGER { ecPrivkeyVer1(1) }} (ecPrivkeyVer1), + privateKey OCTET STRING, + parameters [0] ECParameters {{ NamedCurve }} OPTIONAL, + publicKey [1] BIT STRING OPTIONAL + } + + The only format supported for the `parameters` field is the named + curve method. Explicit encoding of curve parameters is not supported. + + While `parameters` field is defined as optional, this implementation + requires its presence for correct parsing of the keys. + + `publicKey` field is ignored completely (errors, if any, in it will + be undetected). + + :param string: binary string with DER-encoded private ECDSA key + :type string: bytes like object + + :raises MalformedPointError: if the length of encoding doesn't match + the provided curve or the encoded values is too large + :raises RuntimeError: if the generation of public key from private + key failed + :raises UnexpectedDER: if the encoding of the DER file is incorrect + + :return: Initialised VerifyingKey object + :rtype: VerifyingKey + """ + string = normalise_bytes(string) + s, empty = der.remove_sequence(string) + if empty != b(""): + raise der.UnexpectedDER("trailing junk after DER privkey: %s" % + binascii.hexlify(empty)) + one, s = der.remove_integer(s) + if one != 1: + raise der.UnexpectedDER("expected '1' at start of DER privkey," + " got %d" % one) + privkey_str, s = der.remove_octet_string(s) + tag, curve_oid_str, s = der.remove_constructed(s) + if tag != 0: + raise der.UnexpectedDER("expected tag 0 in DER privkey," + " got %d" % tag) + curve_oid, empty = der.remove_object(curve_oid_str) + if empty != b(""): + raise der.UnexpectedDER("trailing junk after DER privkey " + "curve_oid: %s" % binascii.hexlify(empty)) + curve = find_curve(curve_oid) + + # we don't actually care about the following fields + # + # tag, pubkey_bitstring, s = der.remove_constructed(s) + # if tag != 1: + # raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d" + # % tag) + # pubkey_str = der.remove_bitstring(pubkey_bitstring, 0) + # if empty != "": + # raise der.UnexpectedDER("trailing junk after DER privkey " + # "pubkeystr: %s" % binascii.hexlify(empty)) + + # our from_string method likes fixed-length privkey strings + if len(privkey_str) < curve.baselen: + privkey_str = b("\x00") * (curve.baselen - len(privkey_str)) + privkey_str + return cls.from_string(privkey_str, curve, hashfunc) + + def to_string(self): + """ + Convert the private key to :term:`raw encoding`. + + Note: while the method is named "to_string", its name comes from + Python 2 days, when binary and character strings used the same type. + The type used in Python 3 is `bytes`. + + :return: raw encoding of private key + :rtype: bytes + """ + secexp = self.privkey.secret_multiplier + s = number_to_string(secexp, self.privkey.order) + return s + + def to_pem(self, point_encoding="uncompressed"): + """ + Convert the private key to the :term:`PEM` format. + + See :func:`~SigningKey.from_pem` method for format description. + + Only the named curve format is supported. + The public key will be included in generated string. + + The PEM header will specify ``BEGIN EC PRIVATE KEY`` + + :param str point_encoding: format to use for encoding public point + + :return: PEM encoded private key + :rtype: str + """ + # TODO: "BEGIN ECPARAMETERS" + return der.topem(self.to_der(point_encoding), "EC PRIVATE KEY") + + def to_der(self, point_encoding="uncompressed"): + """ + Convert the private key to the :term:`DER` format. + + See :func:`~SigningKey.from_der` method for format specification. + + Only the named curve format is supported. + The public key will be included in the generated string. + + :param str point_encoding: format to use for encoding public point + + :return: DER encoded private key + :rtype: bytes + """ + # SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1), + # cont[1],bitstring]) + if point_encoding == "raw": + raise ValueError("raw encoding not allowed in DER") + encoded_vk = self.get_verifying_key().to_string(point_encoding) + # the 0 in encode_bitstring specifies the number of unused bits + # in the `encoded_vk` string + return der.encode_sequence( + der.encode_integer(1), + der.encode_octet_string(self.to_string()), + der.encode_constructed(0, self.curve.encoded_oid), + der.encode_constructed(1, der.encode_bitstring(encoded_vk, 0))) + + def get_verifying_key(self): + """ + Return the VerifyingKey associated with this private key. + + Equivalent to reading the `verifying_key` field of an instance. + + :return: a public key that can be used to verify the signatures made + with this SigningKey + :rtype: VerifyingKey + """ + return self.verifying_key + + def sign_deterministic(self, data, hashfunc=None, + sigencode=sigencode_string, + extra_entropy=b''): + """ + Create signature over data using the deterministic RFC6679 algorithm. + + The data will be hashed using the `hashfunc` function before signing. + + This is the recommended method for performing signatures when hashing + of data is necessary. + + :param data: data to be hashed and computed signature over + :type data: bytes like object + :param hashfunc: hash function to use for computing the signature, + if unspecified, the default hash function selected during + object initialisation will be used (see + `VerifyingKey.default_hashfunc`). The object needs to implement + the same interface as hashlib.sha1. + :type hashfunc: callable + :param sigencode: function used to encode the signature. + The function needs to accept three parameters: the two integers + that are the signature and the order of the curve over which the + signature was computed. It needs to return an encoded signature. + See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` + as examples of such functions. + :type sigencode: callable + :param extra_entropy: additional data that will be fed into the random + number generator used in the RFC6979 process. Entirely optional. + :type extra_entropy: bytes like object + + :return: encoded signature over `data` + :rtype: bytes or sigencode function dependant type + """ + hashfunc = hashfunc or self.default_hashfunc + data = normalise_bytes(data) + extra_entropy = normalise_bytes(extra_entropy) + digest = hashfunc(data).digest() + + return self.sign_digest_deterministic( + digest, hashfunc=hashfunc, sigencode=sigencode, + extra_entropy=extra_entropy, allow_truncate=True) + + def sign_digest_deterministic(self, digest, hashfunc=None, + sigencode=sigencode_string, + extra_entropy=b'', allow_truncate=False): + """ + Create signature for digest using the deterministic RFC6679 algorithm. + + `digest` should be the output of cryptographically secure hash function + like SHA256 or SHA-3-256. + + This is the recommended method for performing signatures when no + hashing of data is necessary. + + :param digest: hash of data that will be signed + :type digest: bytes like object + :param hashfunc: hash function to use for computing the random "k" + value from RFC6979 process, + if unspecified, the default hash function selected during + object initialisation will be used (see + `VerifyingKey.default_hashfunc`). The object needs to implement + the same interface as hashlib.sha1. + :type hashfunc: callable + :param sigencode: function used to encode the signature. + The function needs to accept three parameters: the two integers + that are the signature and the order of the curve over which the + signature was computed. It needs to return an encoded signature. + See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` + as examples of such functions. + :type sigencode: callable + :param extra_entropy: additional data that will be fed into the random + number generator used in the RFC6979 process. Entirely optional. + :type extra_entropy: bytes like object + :param bool allow_truncate: if True, the provided digest can have + bigger bit-size than the order of the curve, the extra bits (at + the end of the digest) will be truncated. Use it when signing + SHA-384 output using NIST256p or in similar situations. + + :return: encoded signature for the `digest` hash + :rtype: bytes or sigencode function dependant type + """ + secexp = self.privkey.secret_multiplier + hashfunc = hashfunc or self.default_hashfunc + digest = normalise_bytes(digest) + extra_entropy = normalise_bytes(extra_entropy) + + def simple_r_s(r, s, order): + return r, s, order + + retry_gen = 0 + while True: + k = rfc6979.generate_k( + self.curve.generator.order(), secexp, hashfunc, digest, + retry_gen=retry_gen, extra_entropy=extra_entropy) + try: + r, s, order = self.sign_digest(digest, + sigencode=simple_r_s, + k=k, + allow_truncate=allow_truncate) + break + except RSZeroError: + retry_gen += 1 + + return sigencode(r, s, order) + + def sign(self, data, entropy=None, hashfunc=None, + sigencode=sigencode_string, k=None): + """ + Create signature over data using the probabilistic ECDSA algorithm. + + This method uses the standard ECDSA algorithm that requires a + cryptographically secure random number generator. + + It's recommended to use the :func:`~SigningKey.sign_deterministic` + method instead of this one. + + :param data: data that will be hashed for signing + :type data: bytes like object + :param callable entropy: randomness source, os.urandom by default + :param hashfunc: hash function to use for hashing the provided `data`. + If unspecified the default hash function selected during + object initialisation will be used (see + `VerifyingKey.default_hashfunc`). + Should behave like hashlib.sha1. The output length of the + hash (in bytes) must not be longer than the length of the curve + order (rounded up to the nearest byte), so using SHA256 with + NIST256p is ok, but SHA256 with NIST192p is not. (In the 2**-96ish + unlikely event of a hash output larger than the curve order, the + hash will effectively be wrapped mod n). + Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode, + or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256. + :type hashfunc: callable + :param sigencode: function used to encode the signature. + The function needs to accept three parameters: the two integers + that are the signature and the order of the curve over which the + signature was computed. It needs to return an encoded signature. + See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` + as examples of such functions. + :type sigencode: callable + :param int k: a pre-selected nonce for calculating the signature. + In typical use cases, it should be set to None (the default) to + allow its generation from an entropy source. + + :raises RSZeroError: in the unlikely event when "r" parameter or + "s" parameter is equal 0 as that would leak the key. Calee should + try a better entropy source or different 'k' in such case. + + :return: encoded signature of the hash of `data` + :rtype: bytes or sigencode function dependant type + """ + hashfunc = hashfunc or self.default_hashfunc + data = normalise_bytes(data) + h = hashfunc(data).digest() + return self.sign_digest(h, entropy, sigencode, k, allow_truncate=True) + + def sign_digest(self, digest, entropy=None, sigencode=sigencode_string, + k=None, allow_truncate=False): + """ + Create signature over digest using the probabilistic ECDSA algorithm. + + This method uses the standard ECDSA algorithm that requires a + cryptographically secure random number generator. + + This method does not hash the input. + + It's recommended to use the + :func:`~SigningKey.sign_digest_deterministic` method + instead of this one. + + :param digest: hash value that will be signed + :type digest: bytes like object + :param callable entropy: randomness source, os.urandom by default + :param sigencode: function used to encode the signature. + The function needs to accept three parameters: the two integers + that are the signature and the order of the curve over which the + signature was computed. It needs to return an encoded signature. + See `ecdsa.util.sigencode_string` and `ecdsa.util.sigencode_der` + as examples of such functions. + :type sigencode: callable + :param int k: a pre-selected nonce for calculating the signature. + In typical use cases, it should be set to None (the default) to + allow its generation from an entropy source. + :param bool allow_truncate: if True, the provided digest can have + bigger bit-size than the order of the curve, the extra bits (at + the end of the digest) will be truncated. Use it when signing + SHA-384 output using NIST256p or in similar situations. + + :raises RSZeroError: in the unlikely event when "r" parameter or + "s" parameter is equal 0 as that would leak the key. Calee should + try a better entropy source in such case. + + :return: encoded signature for the `digest` hash + :rtype: bytes or sigencode function dependant type + """ + digest = normalise_bytes(digest) + if allow_truncate: + digest = digest[:self.curve.baselen] + if len(digest) > self.curve.baselen: + raise BadDigestError("this curve (%s) is too short " + "for your digest (%d)" % (self.curve.name, + 8 * len(digest))) + number = string_to_number(digest) + r, s = self.sign_number(number, entropy, k) + return sigencode(r, s, self.privkey.order) + + def sign_number(self, number, entropy=None, k=None): + """ + Sign an integer directly. + + Note, this is a low level method, usually you will want to use + :func:`~SigningKey.sign_deterministic` or + :func:`~SigningKey.sign_digest_deterministic`. + + :param int number: number to sign using the probabilistic ECDSA + algorithm. + :param callable entropy: entropy source, os.urandom by default + :param int k: pre-selected nonce for signature operation. If unset + it will be selected at random using the entropy source. + + :raises RSZeroError: in the unlikely event when "r" parameter or + "s" parameter is equal 0 as that would leak the key. Calee should + try a different 'k' in such case. + + :return: the "r" and "s" parameters of the signature + :rtype: tuple of ints + """ + order = self.privkey.order + + if k is not None: + _k = k + else: + _k = randrange(order, entropy) + + assert 1 <= _k < order + sig = self.privkey.sign(number, _k) + return sig.r, sig.s diff --git a/third_party/python/ecdsa/ecdsa/numbertheory.py b/third_party/python/ecdsa/ecdsa/numbertheory.py new file mode 100644 index 0000000000..b300440c59 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/numbertheory.py @@ -0,0 +1,600 @@ +#! /usr/bin/env python +# +# Provide some simple capabilities from number theory. +# +# Version of 2008.11.14. +# +# Written in 2005 and 2006 by Peter Pearson and placed in the public domain. +# Revision history: +# 2008.11.14: Use pow(base, exponent, modulus) for modular_exp. +# Make gcd and lcm accept arbitrarly many arguments. + +from __future__ import division + +from six import integer_types, PY3 +from six.moves import reduce +try: + xrange +except NameError: + xrange = range +try: + from gmpy2 import powmod + GMPY2 = True + GMPY = False +except ImportError: + GMPY2 = False + try: + from gmpy import mpz + GMPY = True + except ImportError: + GMPY = False + +import math +import warnings + + +class Error(Exception): + """Base class for exceptions in this module.""" + pass + + +class SquareRootError(Error): + pass + + +class NegativeExponentError(Error): + pass + + +def modular_exp(base, exponent, modulus): # pragma: no cover + """Raise base to exponent, reducing by modulus""" + # deprecated in 0.14 + warnings.warn("Function is unused in library code. If you use this code, " + "change to pow() builtin.", DeprecationWarning) + if exponent < 0: + raise NegativeExponentError("Negative exponents (%d) not allowed" + % exponent) + return pow(base, exponent, modulus) + + +def polynomial_reduce_mod(poly, polymod, p): + """Reduce poly by polymod, integer arithmetic modulo p. + + Polynomials are represented as lists of coefficients + of increasing powers of x.""" + + # This module has been tested only by extensive use + # in calculating modular square roots. + + # Just to make this easy, require a monic polynomial: + assert polymod[-1] == 1 + + assert len(polymod) > 1 + + while len(poly) >= len(polymod): + if poly[-1] != 0: + for i in xrange(2, len(polymod) + 1): + poly[-i] = (poly[-i] - poly[-1] * polymod[-i]) % p + poly = poly[0:-1] + + return poly + + +def polynomial_multiply_mod(m1, m2, polymod, p): + """Polynomial multiplication modulo a polynomial over ints mod p. + + Polynomials are represented as lists of coefficients + of increasing powers of x.""" + + # This is just a seat-of-the-pants implementation. + + # This module has been tested only by extensive use + # in calculating modular square roots. + + # Initialize the product to zero: + + prod = (len(m1) + len(m2) - 1) * [0] + + # Add together all the cross-terms: + + for i in xrange(len(m1)): + for j in xrange(len(m2)): + prod[i + j] = (prod[i + j] + m1[i] * m2[j]) % p + + return polynomial_reduce_mod(prod, polymod, p) + + +def polynomial_exp_mod(base, exponent, polymod, p): + """Polynomial exponentiation modulo a polynomial over ints mod p. + + Polynomials are represented as lists of coefficients + of increasing powers of x.""" + + # Based on the Handbook of Applied Cryptography, algorithm 2.227. + + # This module has been tested only by extensive use + # in calculating modular square roots. + + assert exponent < p + + if exponent == 0: + return [1] + + G = base + k = exponent + if k % 2 == 1: + s = G + else: + s = [1] + + while k > 1: + k = k // 2 + G = polynomial_multiply_mod(G, G, polymod, p) + if k % 2 == 1: + s = polynomial_multiply_mod(G, s, polymod, p) + + return s + + +def jacobi(a, n): + """Jacobi symbol""" + + # Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149. + + # This function has been tested by comparison with a small + # table printed in HAC, and by extensive use in calculating + # modular square roots. + + assert n >= 3 + assert n % 2 == 1 + a = a % n + if a == 0: + return 0 + if a == 1: + return 1 + a1, e = a, 0 + while a1 % 2 == 0: + a1, e = a1 // 2, e + 1 + if e % 2 == 0 or n % 8 == 1 or n % 8 == 7: + s = 1 + else: + s = -1 + if a1 == 1: + return s + if n % 4 == 3 and a1 % 4 == 3: + s = -s + return s * jacobi(n % a1, a1) + + +def square_root_mod_prime(a, p): + """Modular square root of a, mod p, p prime.""" + + # Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39. + + # This module has been tested for all values in [0,p-1] for + # every prime p from 3 to 1229. + + assert 0 <= a < p + assert 1 < p + + if a == 0: + return 0 + if p == 2: + return a + + jac = jacobi(a, p) + if jac == -1: + raise SquareRootError("%d has no square root modulo %d" \ + % (a, p)) + + if p % 4 == 3: + return pow(a, (p + 1) // 4, p) + + if p % 8 == 5: + d = pow(a, (p - 1) // 4, p) + if d == 1: + return pow(a, (p + 3) // 8, p) + if d == p - 1: + return (2 * a * pow(4 * a, (p - 5) // 8, p)) % p + raise RuntimeError("Shouldn't get here.") + + if PY3: + range_top = p + else: + # xrange on python2 can take integers representable as C long only + range_top = min(0x7fffffff, p) + for b in xrange(2, range_top): + if jacobi(b * b - 4 * a, p) == -1: + f = (a, -b, 1) + ff = polynomial_exp_mod((0, 1), (p + 1) // 2, f, p) + assert ff[1] == 0 + return ff[0] + raise RuntimeError("No b found.") + + +if GMPY2: + def inverse_mod(a, m): + """Inverse of a mod m.""" + if a == 0: + return 0 + return powmod(a, -1, m) +elif GMPY: + def inverse_mod(a, m): + """Inverse of a mod m.""" + # while libgmp likely does support inverses modulo, it is accessible + # only using the native `pow()` function, and `pow()` sanity checks + # the parameters before passing them on to underlying implementation + # on Python2 + if a == 0: + return 0 + a = mpz(a) + m = mpz(m) + + lm, hm = mpz(1), mpz(0) + low, high = a % m, m + while low > 1: + r = high // low + lm, low, hm, high = hm - lm * r, high - low * r, lm, low + + return lm % m +else: + def inverse_mod(a, m): + """Inverse of a mod m.""" + + if a == 0: + return 0 + + lm, hm = 1, 0 + low, high = a % m, m + while low > 1: + r = high // low + lm, low, hm, high = hm - lm * r, high - low * r, lm, low + + return lm % m + + +try: + gcd2 = math.gcd +except AttributeError: + def gcd2(a, b): + """Greatest common divisor using Euclid's algorithm.""" + while a: + a, b = b % a, a + return b + + +def gcd(*a): + """Greatest common divisor. + + Usage: gcd([ 2, 4, 6 ]) + or: gcd(2, 4, 6) + """ + + if len(a) > 1: + return reduce(gcd2, a) + if hasattr(a[0], "__iter__"): + return reduce(gcd2, a[0]) + return a[0] + + +def lcm2(a, b): + """Least common multiple of two integers.""" + + return (a * b) // gcd(a, b) + + +def lcm(*a): + """Least common multiple. + + Usage: lcm([ 3, 4, 5 ]) + or: lcm(3, 4, 5) + """ + + if len(a) > 1: + return reduce(lcm2, a) + if hasattr(a[0], "__iter__"): + return reduce(lcm2, a[0]) + return a[0] + + +def factorization(n): + """Decompose n into a list of (prime,exponent) pairs.""" + + assert isinstance(n, integer_types) + + if n < 2: + return [] + + result = [] + d = 2 + + # Test the small primes: + + for d in smallprimes: + if d > n: + break + q, r = divmod(n, d) + if r == 0: + count = 1 + while d <= n: + n = q + q, r = divmod(n, d) + if r != 0: + break + count = count + 1 + result.append((d, count)) + + # If n is still greater than the last of our small primes, + # it may require further work: + + if n > smallprimes[-1]: + if is_prime(n): # If what's left is prime, it's easy: + result.append((n, 1)) + else: # Ugh. Search stupidly for a divisor: + d = smallprimes[-1] + while 1: + d = d + 2 # Try the next divisor. + q, r = divmod(n, d) + if q < d: # n < d*d means we're done, n = 1 or prime. + break + if r == 0: # d divides n. How many times? + count = 1 + n = q + while d <= n: # As long as d might still divide n, + q, r = divmod(n, d) # see if it does. + if r != 0: + break + n = q # It does. Reduce n, increase count. + count = count + 1 + result.append((d, count)) + if n > 1: + result.append((n, 1)) + + return result + + +def phi(n): # pragma: no cover + """Return the Euler totient function of n.""" + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + assert isinstance(n, integer_types) + + if n < 3: + return 1 + + result = 1 + ff = factorization(n) + for f in ff: + e = f[1] + if e > 1: + result = result * f[0] ** (e - 1) * (f[0] - 1) + else: + result = result * (f[0] - 1) + return result + + +def carmichael(n): # pragma: no cover + """Return Carmichael function of n. + + Carmichael(n) is the smallest integer x such that + m**x = 1 mod n for all m relatively prime to n. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + return carmichael_of_factorized(factorization(n)) + + +def carmichael_of_factorized(f_list): # pragma: no cover + """Return the Carmichael function of a number that is + represented as a list of (prime,exponent) pairs. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + if len(f_list) < 1: + return 1 + + result = carmichael_of_ppower(f_list[0]) + for i in xrange(1, len(f_list)): + result = lcm(result, carmichael_of_ppower(f_list[i])) + + return result + + +def carmichael_of_ppower(pp): # pragma: no cover + """Carmichael function of the given power of the given prime. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + p, a = pp + if p == 2 and a > 2: + return 2**(a - 2) + else: + return (p - 1) * p**(a - 1) + + +def order_mod(x, m): # pragma: no cover + """Return the order of x in the multiplicative group mod m. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + # Warning: this implementation is not very clever, and will + # take a long time if m is very large. + + if m <= 1: + return 0 + + assert gcd(x, m) == 1 + + z = x + result = 1 + while z != 1: + z = (z * x) % m + result = result + 1 + return result + + +def largest_factor_relatively_prime(a, b): # pragma: no cover + """Return the largest factor of a relatively prime to b. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + while 1: + d = gcd(a, b) + if d <= 1: + break + b = d + while 1: + q, r = divmod(a, d) + if r > 0: + break + a = q + return a + + +def kinda_order_mod(x, m): # pragma: no cover + """Return the order of x in the multiplicative group mod m', + where m' is the largest factor of m relatively prime to x. + """ + # deprecated in 0.14 + warnings.warn("Function is unused by library code. If you use this code, " + "please open an issue in " + "https://github.com/warner/python-ecdsa", + DeprecationWarning) + + return order_mod(x, largest_factor_relatively_prime(m, x)) + + +def is_prime(n): + """Return True if x is prime, False otherwise. + + We use the Miller-Rabin test, as given in Menezes et al. p. 138. + This test is not exact: there are composite values n for which + it returns True. + + In testing the odd numbers from 10000001 to 19999999, + about 66 composites got past the first test, + 5 got past the second test, and none got past the third. + Since factors of 2, 3, 5, 7, and 11 were detected during + preliminary screening, the number of numbers tested by + Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7) + = 4.57 million. + """ + + # (This is used to study the risk of false positives:) + global miller_rabin_test_count + + miller_rabin_test_count = 0 + + if n <= smallprimes[-1]: + if n in smallprimes: + return True + else: + return False + + if gcd(n, 2 * 3 * 5 * 7 * 11) != 1: + return False + + # Choose a number of iterations sufficient to reduce the + # probability of accepting a composite below 2**-80 + # (from Menezes et al. Table 4.4): + + t = 40 + n_bits = 1 + int(math.log(n, 2)) + for k, tt in ((100, 27), + (150, 18), + (200, 15), + (250, 12), + (300, 9), + (350, 8), + (400, 7), + (450, 6), + (550, 5), + (650, 4), + (850, 3), + (1300, 2), + ): + if n_bits < k: + break + t = tt + + # Run the test t times: + + s = 0 + r = n - 1 + while (r % 2) == 0: + s = s + 1 + r = r // 2 + for i in xrange(t): + a = smallprimes[i] + y = pow(a, r, n) + if y != 1 and y != n - 1: + j = 1 + while j <= s - 1 and y != n - 1: + y = pow(y, 2, n) + if y == 1: + miller_rabin_test_count = i + 1 + return False + j = j + 1 + if y != n - 1: + miller_rabin_test_count = i + 1 + return False + return True + + +def next_prime(starting_value): + "Return the smallest prime larger than the starting value." + + if starting_value < 2: + return 2 + result = (starting_value + 1) | 1 + while not is_prime(result): + result = result + 2 + return result + + +smallprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, + 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, + 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, + 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, + 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, + 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, + 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, + 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, + 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, + 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, + 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, + 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, + 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, + 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, + 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, + 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, + 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, + 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, + 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, + 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229] + +miller_rabin_test_count = 0 diff --git a/third_party/python/ecdsa/ecdsa/rfc6979.py b/third_party/python/ecdsa/ecdsa/rfc6979.py new file mode 100644 index 0000000000..a48938123d --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/rfc6979.py @@ -0,0 +1,107 @@ +''' +RFC 6979: + Deterministic Usage of the Digital Signature Algorithm (DSA) and + Elliptic Curve Digital Signature Algorithm (ECDSA) + + http://tools.ietf.org/html/rfc6979 + +Many thanks to Coda Hale for his implementation in Go language: + https://github.com/codahale/rfc6979 +''' + +import hmac +from binascii import hexlify +from .util import number_to_string, number_to_string_crop, bit_length +from ._compat import hmac_compat + + +# bit_length was defined in this module previously so keep it for backwards +# compatibility, will need to deprecate and remove it later +__all__ = ["bit_length", "bits2int", "bits2octets", "generate_k"] + + +def bits2int(data, qlen): + x = int(hexlify(data), 16) + l = len(data) * 8 + + if l > qlen: + return x >> (l - qlen) + return x + + +def bits2octets(data, order): + z1 = bits2int(data, bit_length(order)) + z2 = z1 - order + + if z2 < 0: + z2 = z1 + + return number_to_string_crop(z2, order) + + +# https://tools.ietf.org/html/rfc6979#section-3.2 +def generate_k(order, secexp, hash_func, data, retry_gen=0, extra_entropy=b''): + ''' + order - order of the DSA generator used in the signature + secexp - secure exponent (private key) in numeric form + hash_func - reference to the same hash function used for generating hash + data - hash in binary form of the signing data + retry_gen - int - how many good 'k' values to skip before returning + extra_entropy - extra added data in binary form as per section-3.6 of + rfc6979 + ''' + + qlen = bit_length(order) + holen = hash_func().digest_size + rolen = (qlen + 7) / 8 + bx = (hmac_compat(number_to_string(secexp, order)), + hmac_compat(bits2octets(data, order)), + hmac_compat(extra_entropy)) + + # Step B + v = b'\x01' * holen + + # Step C + k = b'\x00' * holen + + # Step D + + k = hmac.new(k, digestmod=hash_func) + k.update(v + b'\x00') + for i in bx: + k.update(i) + k = k.digest() + + # Step E + v = hmac.new(k, v, hash_func).digest() + + # Step F + k = hmac.new(k, digestmod=hash_func) + k.update(v + b'\x01') + for i in bx: + k.update(i) + k = k.digest() + + # Step G + v = hmac.new(k, v, hash_func).digest() + + # Step H + while True: + # Step H1 + t = b'' + + # Step H2 + while len(t) < rolen: + v = hmac.new(k, v, hash_func).digest() + t += v + + # Step H3 + secret = bits2int(t, qlen) + + if 1 <= secret < order: + if retry_gen <= 0: + return secret + retry_gen -= 1 + + k = hmac.new(k, v + b'\x00', hash_func).digest() + v = hmac.new(k, v, hash_func).digest() diff --git a/third_party/python/ecdsa/ecdsa/test_der.py b/third_party/python/ecdsa/ecdsa/test_der.py new file mode 100644 index 0000000000..e6cd593d3e --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_der.py @@ -0,0 +1,384 @@ + +# compatibility with Python 2.6, for that we need unittest2 package, +# which is not available on 3.3 or 3.4 +import warnings +from binascii import hexlify +try: + import unittest2 as unittest +except ImportError: + import unittest +from six import b +import hypothesis.strategies as st +from hypothesis import given, example +import pytest +from ._compat import str_idx_as_int +from .curves import NIST256p, NIST224p +from .der import remove_integer, UnexpectedDER, read_length, encode_bitstring,\ + remove_bitstring, remove_object, encode_oid + + +class TestRemoveInteger(unittest.TestCase): + # DER requires the integers to be 0-padded only if they would be + # interpreted as negative, check if those errors are detected + def test_non_minimal_encoding(self): + with self.assertRaises(UnexpectedDER): + remove_integer(b('\x02\x02\x00\x01')) + + def test_negative_with_high_bit_set(self): + with self.assertRaises(UnexpectedDER): + remove_integer(b('\x02\x01\x80')) + + def test_minimal_with_high_bit_set(self): + val, rem = remove_integer(b('\x02\x02\x00\x80')) + + self.assertEqual(val, 0x80) + self.assertFalse(rem) + + def test_two_zero_bytes_with_high_bit_set(self): + with self.assertRaises(UnexpectedDER): + remove_integer(b('\x02\x03\x00\x00\xff')) + + def test_zero_length_integer(self): + with self.assertRaises(UnexpectedDER): + remove_integer(b('\x02\x00')) + + def test_empty_string(self): + with self.assertRaises(UnexpectedDER): + remove_integer(b('')) + + def test_encoding_of_zero(self): + val, rem = remove_integer(b('\x02\x01\x00')) + + self.assertEqual(val, 0) + self.assertFalse(rem) + + def test_encoding_of_127(self): + val, rem = remove_integer(b('\x02\x01\x7f')) + + self.assertEqual(val, 127) + self.assertFalse(rem) + + def test_encoding_of_128(self): + val, rem = remove_integer(b('\x02\x02\x00\x80')) + + self.assertEqual(val, 128) + self.assertFalse(rem) + + +class TestReadLength(unittest.TestCase): + # DER requires the lengths between 0 and 127 to be encoded using the short + # form and lengths above that encoded with minimal number of bytes + # necessary + def test_zero_length(self): + self.assertEqual((0, 1), read_length(b('\x00'))) + + def test_two_byte_zero_length(self): + with self.assertRaises(UnexpectedDER): + read_length(b('\x81\x00')) + + def test_two_byte_small_length(self): + with self.assertRaises(UnexpectedDER): + read_length(b('\x81\x7f')) + + def test_long_form_with_zero_length(self): + with self.assertRaises(UnexpectedDER): + read_length(b('\x80')) + + def test_smallest_two_byte_length(self): + self.assertEqual((128, 2), read_length(b('\x81\x80'))) + + def test_zero_padded_length(self): + with self.assertRaises(UnexpectedDER): + read_length(b('\x82\x00\x80')) + + def test_two_three_byte_length(self): + self.assertEqual((256, 3), read_length(b'\x82\x01\x00')) + + def test_empty_string(self): + with self.assertRaises(UnexpectedDER): + read_length(b('')) + + def test_length_overflow(self): + with self.assertRaises(UnexpectedDER): + read_length(b('\x83\x01\x00')) + + +class TestEncodeBitstring(unittest.TestCase): + # DER requires BIT STRINGS to include a number of padding bits in the + # encoded byte string, that padding must be between 0 and 7 + + def test_old_call_convention(self): + """This is the old way to use the function.""" + warnings.simplefilter('always') + with pytest.warns(DeprecationWarning) as warns: + der = encode_bitstring(b'\x00\xff') + + self.assertEqual(len(warns), 1) + self.assertIn("unused= needs to be specified", + warns[0].message.args[0]) + + self.assertEqual(der, b'\x03\x02\x00\xff') + + def test_new_call_convention(self): + """This is how it should be called now.""" + warnings.simplefilter('always') + with pytest.warns(None) as warns: + der = encode_bitstring(b'\xff', 0) + + # verify that new call convention doesn't raise Warnings + self.assertEqual(len(warns), 0) + + self.assertEqual(der, b'\x03\x02\x00\xff') + + def test_implicit_unused_bits(self): + """ + Writing bit string with already included the number of unused bits. + """ + warnings.simplefilter('always') + with pytest.warns(None) as warns: + der = encode_bitstring(b'\x00\xff', None) + + # verify that new call convention doesn't raise Warnings + self.assertEqual(len(warns), 0) + + self.assertEqual(der, b'\x03\x02\x00\xff') + + def test_explicit_unused_bits(self): + der = encode_bitstring(b'\xff\xf0', 4) + + self.assertEqual(der, b'\x03\x03\x04\xff\xf0') + + def test_empty_string(self): + self.assertEqual(encode_bitstring(b'', 0), b'\x03\x01\x00') + + def test_invalid_unused_count(self): + with self.assertRaises(ValueError): + encode_bitstring(b'\xff\x00', 8) + + def test_invalid_unused_with_empty_string(self): + with self.assertRaises(ValueError): + encode_bitstring(b'', 1) + + def test_non_zero_padding_bits(self): + with self.assertRaises(ValueError): + encode_bitstring(b'\xff', 2) + + +class TestRemoveBitstring(unittest.TestCase): + def test_old_call_convention(self): + """This is the old way to call the function.""" + warnings.simplefilter('always') + with pytest.warns(DeprecationWarning) as warns: + bits, rest = remove_bitstring(b'\x03\x02\x00\xff') + + self.assertEqual(len(warns), 1) + self.assertIn("expect_unused= needs to be specified", + warns[0].message.args[0]) + + self.assertEqual(bits, b'\x00\xff') + self.assertEqual(rest, b'') + + def test_new_call_convention(self): + warnings.simplefilter('always') + with pytest.warns(None) as warns: + bits, rest = remove_bitstring(b'\x03\x02\x00\xff', 0) + + self.assertEqual(len(warns), 0) + + self.assertEqual(bits, b'\xff') + self.assertEqual(rest, b'') + + def test_implicit_unexpected_unused(self): + warnings.simplefilter('always') + with pytest.warns(None) as warns: + bits, rest = remove_bitstring(b'\x03\x02\x00\xff', None) + + self.assertEqual(len(warns), 0) + + self.assertEqual(bits, (b'\xff', 0)) + self.assertEqual(rest, b'') + + def test_with_padding(self): + ret, rest = remove_bitstring(b'\x03\x02\x04\xf0', None) + + self.assertEqual(ret, (b'\xf0', 4)) + self.assertEqual(rest, b'') + + def test_not_a_bitstring(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x02\x02\x00\xff', None) + + def test_empty_encoding(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03\x00', None) + + def test_empty_string(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'', None) + + def test_no_length(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03', None) + + def test_unexpected_number_of_unused_bits(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03\x02\x00\xff', 1) + + def test_invalid_encoding_of_unused_bits(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03\x03\x08\xff\x00', None) + + def test_invalid_encoding_of_empty_string(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03\x01\x01', None) + + def test_invalid_padding_bits(self): + with self.assertRaises(UnexpectedDER): + remove_bitstring(b'\x03\x02\x01\xff', None) + + +class TestStrIdxAsInt(unittest.TestCase): + def test_str(self): + self.assertEqual(115, str_idx_as_int('str', 0)) + + def test_bytes(self): + self.assertEqual(115, str_idx_as_int(b'str', 0)) + + def test_bytearray(self): + self.assertEqual(115, str_idx_as_int(bytearray(b'str'), 0)) + + +class TestEncodeOid(unittest.TestCase): + def test_pub_key_oid(self): + oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1) + self.assertEqual(hexlify(oid_ecPublicKey), b("06072a8648ce3d0201")) + + def test_nist224p_oid(self): + self.assertEqual(hexlify(NIST224p.encoded_oid), b("06052b81040021")) + + def test_nist256p_oid(self): + self.assertEqual(hexlify(NIST256p.encoded_oid), + b"06082a8648ce3d030107") + + def test_large_second_subid(self): + # from X.690, section 8.19.5 + oid = encode_oid(2, 999, 3) + self.assertEqual(oid, b'\x06\x03\x88\x37\x03') + + def test_with_two_subids(self): + oid = encode_oid(2, 999) + self.assertEqual(oid, b'\x06\x02\x88\x37') + + def test_zero_zero(self): + oid = encode_oid(0, 0) + self.assertEqual(oid, b'\x06\x01\x00') + + def test_with_wrong_types(self): + with self.assertRaises((TypeError, AssertionError)): + encode_oid(0, None) + + def test_with_small_first_large_second(self): + with self.assertRaises(AssertionError): + encode_oid(1, 40) + + def test_small_first_max_second(self): + oid = encode_oid(1, 39) + self.assertEqual(oid, b'\x06\x01\x4f') + + def test_with_invalid_first(self): + with self.assertRaises(AssertionError): + encode_oid(3, 39) + + +class TestRemoveObject(unittest.TestCase): + @classmethod + def setUpClass(cls): + cls.oid_ecPublicKey = encode_oid(1, 2, 840, 10045, 2, 1) + + def test_pub_key_oid(self): + oid, rest = remove_object(self.oid_ecPublicKey) + self.assertEqual(rest, b'') + self.assertEqual(oid, (1, 2, 840, 10045, 2, 1)) + + def test_with_extra_bytes(self): + oid, rest = remove_object(self.oid_ecPublicKey + b'more') + self.assertEqual(rest, b'more') + self.assertEqual(oid, (1, 2, 840, 10045, 2, 1)) + + def test_with_large_second_subid(self): + # from X.690, section 8.19.5 + oid, rest = remove_object(b'\x06\x03\x88\x37\x03') + self.assertEqual(rest, b'') + self.assertEqual(oid, (2, 999, 3)) + + def test_with_padded_first_subid(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x02\x80\x00') + + def test_with_padded_second_subid(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x04\x88\x37\x80\x01') + + def test_with_missing_last_byte_of_multi_byte(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x03\x88\x37\x83') + + def test_with_two_subids(self): + oid, rest = remove_object(b'\x06\x02\x88\x37') + self.assertEqual(rest, b'') + self.assertEqual(oid, (2, 999)) + + def test_zero_zero(self): + oid, rest = remove_object(b'\x06\x01\x00') + self.assertEqual(rest, b'') + self.assertEqual(oid, (0, 0)) + + def test_empty_string(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'') + + def test_missing_length(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06') + + def test_empty_oid(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x00') + + def test_empty_oid_overflow(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x01') + + def test_with_wrong_type(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x04\x02\x88\x37') + + def test_with_too_long_length(self): + with self.assertRaises(UnexpectedDER): + remove_object(b'\x06\x03\x88\x37') + + +@st.composite +def st_oid(draw, max_value=2**512, max_size=50): + """ + Hypothesis strategy that returns valid OBJECT IDENTIFIERs as tuples + + :param max_value: maximum value of any single sub-identifier + :param max_size: maximum length of the generated OID + """ + first = draw(st.integers(min_value=0, max_value=2)) + if first < 2: + second = draw(st.integers(min_value=0, max_value=39)) + else: + second = draw(st.integers(min_value=0, max_value=max_value)) + rest = draw(st.lists(st.integers(min_value=0, max_value=max_value), + max_size=max_size)) + return (first, second) + tuple(rest) + + +@given(st_oid()) +def test_oids(ids): + encoded_oid = encode_oid(*ids) + decoded_oid, rest = remove_object(encoded_oid) + assert rest == b'' + assert decoded_oid == ids diff --git a/third_party/python/ecdsa/ecdsa/test_ecdh.py b/third_party/python/ecdsa/ecdsa/test_ecdh.py new file mode 100644 index 0000000000..74c8bbab64 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_ecdh.py @@ -0,0 +1,350 @@ + +import os +import shutil +import subprocess +import pytest +from binascii import hexlify, unhexlify + +from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p +from .curves import curves +from .ecdh import ECDH, InvalidCurveError, \ + InvalidSharedSecretError, NoKeyError +from .keys import SigningKey, VerifyingKey + + +@pytest.mark.parametrize("vcurve", curves, ids=[curve.name for curve in curves]) +def test_ecdh_each(vcurve): + ecdh1 = ECDH(curve=vcurve) + ecdh2 = ECDH(curve=vcurve) + + ecdh2.generate_private_key() + ecdh1.load_received_public_key(ecdh2.get_public_key()) + ecdh2.load_received_public_key(ecdh1.generate_private_key()) + + secret1 = ecdh1.generate_sharedsecret_bytes() + secret2 = ecdh2.generate_sharedsecret_bytes() + assert secret1 == secret2 + + +def test_ecdh_no_public_key(): + ecdh1 = ECDH(curve=NIST192p) + + with pytest.raises(NoKeyError): + ecdh1.generate_sharedsecret_bytes() + + ecdh1.generate_private_key() + + with pytest.raises(NoKeyError): + ecdh1.generate_sharedsecret_bytes() + + +def test_ecdh_wrong_public_key_curve(): + ecdh1 = ECDH(curve=NIST192p) + ecdh1.generate_private_key() + ecdh2 = ECDH(curve=NIST256p) + ecdh2.generate_private_key() + + with pytest.raises(InvalidCurveError): + ecdh1.load_received_public_key(ecdh2.get_public_key()) + + with pytest.raises(InvalidCurveError): + ecdh2.load_received_public_key(ecdh1.get_public_key()) + + ecdh1.public_key = ecdh2.get_public_key() + ecdh2.public_key = ecdh1.get_public_key() + + with pytest.raises(InvalidCurveError): + ecdh1.generate_sharedsecret_bytes() + + with pytest.raises(InvalidCurveError): + ecdh2.generate_sharedsecret_bytes() + + +def test_ecdh_invalid_shared_secret_curve(): + ecdh1 = ECDH(curve=NIST256p) + ecdh1.generate_private_key() + + ecdh1.load_received_public_key(SigningKey.generate(NIST256p).get_verifying_key()) + + ecdh1.private_key.privkey.secret_multiplier = ecdh1.private_key.curve.order + + with pytest.raises(InvalidSharedSecretError): + ecdh1.generate_sharedsecret_bytes() + + +# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp192r1.txt +# https://github.com/scogliani/ecc-test-vectors/blob/master/ecdh_kat/secp256r1.txt +# https://github.com/coruus/nist-testvectors/blob/master/csrc.nist.gov/groups/STM/cavp/documents/components/ecccdhtestvectors/KAS_ECC_CDH_PrimitiveTest.txt +@pytest.mark.parametrize( + "curve,privatekey,pubkey,secret", + [ + pytest.param( + NIST192p, + "f17d3fea367b74d340851ca4270dcb24c271f445bed9d527", + "42ea6dd9969dd2a61fea1aac7f8e98edcc896c6e55857cc0" + "dfbe5d7c61fac88b11811bde328e8a0d12bf01a9d204b523", + "803d8ab2e5b6e6fca715737c3a82f7ce3c783124f6d51cd0", + id="NIST192p-1" + ), + pytest.param( + NIST192p, + "56e853349d96fe4c442448dacb7cf92bb7a95dcf574a9bd5", + "deb5712fa027ac8d2f22c455ccb73a91e17b6512b5e030e7" + "7e2690a02cc9b28708431a29fb54b87b1f0c14e011ac2125", + "c208847568b98835d7312cef1f97f7aa298283152313c29d", + id="NIST192p-2" + ), + pytest.param( + NIST192p, + "c6ef61fe12e80bf56f2d3f7d0bb757394519906d55500949", + "4edaa8efc5a0f40f843663ec5815e7762dddc008e663c20f" + "0a9f8dc67a3e60ef6d64b522185d03df1fc0adfd42478279", + "87229107047a3b611920d6e3b2c0c89bea4f49412260b8dd", + id="NIST192p-3" + ), + pytest.param( + NIST192p, + "e6747b9c23ba7044f38ff7e62c35e4038920f5a0163d3cda", + "8887c276edeed3e9e866b46d58d895c73fbd80b63e382e88" + "04c5097ba6645e16206cfb70f7052655947dd44a17f1f9d5", + "eec0bed8fc55e1feddc82158fd6dc0d48a4d796aaf47d46c", + id="NIST192p-4" + ), + pytest.param( + NIST192p, + "beabedd0154a1afcfc85d52181c10f5eb47adc51f655047d", + "0d045f30254adc1fcefa8a5b1f31bf4e739dd327cd18d594" + "542c314e41427c08278a08ce8d7305f3b5b849c72d8aff73", + "716e743b1b37a2cd8479f0a3d5a74c10ba2599be18d7e2f4", + id="NIST192p-5" + ), + pytest.param( + NIST192p, + "cf70354226667321d6e2baf40999e2fd74c7a0f793fa8699", + "fb35ca20d2e96665c51b98e8f6eb3d79113508d8bccd4516" + "368eec0d5bfb847721df6aaff0e5d48c444f74bf9cd8a5a7", + "f67053b934459985a315cb017bf0302891798d45d0e19508", + id="NIST192p-6" + ), + pytest.param( + NIST224p, + "8346a60fc6f293ca5a0d2af68ba71d1dd389e5e40837942df3e43cbd", + "af33cd0629bc7e996320a3f40368f74de8704fa37b8fab69abaae280" + "882092ccbba7930f419a8a4f9bb16978bbc3838729992559a6f2e2d7", + "7d96f9a3bd3c05cf5cc37feb8b9d5209d5c2597464dec3e9983743e8", + id="NIST224p" + ), + pytest.param( + NIST256p, + "7d7dc5f71eb29ddaf80d6214632eeae03d9058af1fb6d22ed80badb62bc1a534", + "700c48f77f56584c5cc632ca65640db91b6bacce3a4df6b42ce7cc838833d287" + "db71e509e3fd9b060ddb20ba5c51dcc5948d46fbf640dfe0441782cab85fa4ac", + "46fc62106420ff012e54a434fbdd2d25ccc5852060561e68040dd7778997bd7b", + id="NIST256p-1" + ), + pytest.param( + NIST256p, + "38f65d6dce47676044d58ce5139582d568f64bb16098d179dbab07741dd5caf5", + "809f04289c64348c01515eb03d5ce7ac1a8cb9498f5caa50197e58d43a86a7ae" + "b29d84e811197f25eba8f5194092cb6ff440e26d4421011372461f579271cda3", + "057d636096cb80b67a8c038c890e887d1adfa4195e9b3ce241c8a778c59cda67", + id="NIST256p-2" + ), + pytest.param( + NIST256p, + "1accfaf1b97712b85a6f54b148985a1bdc4c9bec0bd258cad4b3d603f49f32c8", + "a2339c12d4a03c33546de533268b4ad667debf458b464d77443636440ee7fec3" + "ef48a3ab26e20220bcda2c1851076839dae88eae962869a497bf73cb66faf536", + "2d457b78b4614132477618a5b077965ec90730a8c81a1c75d6d4ec68005d67ec", + id="NIST256p-3" + ), + pytest.param( + NIST256p, + "207c43a79bfee03db6f4b944f53d2fb76cc49ef1c9c4d34d51b6c65c4db6932d", + "df3989b9fa55495719b3cf46dccd28b5153f7808191dd518eff0c3cff2b705ed" + "422294ff46003429d739a33206c8752552c8ba54a270defc06e221e0feaf6ac4", + "96441259534b80f6aee3d287a6bb17b5094dd4277d9e294f8fe73e48bf2a0024", + id="NIST256p-4" + ), + pytest.param( + NIST256p, + "59137e38152350b195c9718d39673d519838055ad908dd4757152fd8255c09bf", + "41192d2813e79561e6a1d6f53c8bc1a433a199c835e141b05a74a97b0faeb922" + "1af98cc45e98a7e041b01cf35f462b7562281351c8ebf3ffa02e33a0722a1328", + "19d44c8d63e8e8dd12c22a87b8cd4ece27acdde04dbf47f7f27537a6999a8e62", + id="NIST256p-5" + ), + pytest.param( + NIST256p, + "f5f8e0174610a661277979b58ce5c90fee6c9b3bb346a90a7196255e40b132ef", + "33e82092a0f1fb38f5649d5867fba28b503172b7035574bf8e5b7100a3052792" + "f2cf6b601e0a05945e335550bf648d782f46186c772c0f20d3cd0d6b8ca14b2f", + "664e45d5bba4ac931cd65d52017e4be9b19a515f669bea4703542a2c525cd3d3", + id="NIST256p-6" + ), + pytest.param( + NIST384p, + "3cc3122a68f0d95027ad38c067916ba0eb8c38894d22e1b1" + "5618b6818a661774ad463b205da88cf699ab4d43c9cf98a1", + "a7c76b970c3b5fe8b05d2838ae04ab47697b9eaf52e76459" + "2efda27fe7513272734466b400091adbf2d68c58e0c50066" + "ac68f19f2e1cb879aed43a9969b91a0839c4c38a49749b66" + "1efedf243451915ed0905a32b060992b468c64766fc8437a", + "5f9d29dc5e31a163060356213669c8ce132e22f57c9a04f4" + "0ba7fcead493b457e5621e766c40a2e3d4d6a04b25e533f1", + id="NIST384p" + ), + pytest.param( + NIST521p, + "017eecc07ab4b329068fba65e56a1f8890aa935e57134ae0ffcce802735151f4ea" + "c6564f6ee9974c5e6887a1fefee5743ae2241bfeb95d5ce31ddcb6f9edb4d6fc47", + "00685a48e86c79f0f0875f7bc18d25eb5fc8c0b07e5da4f4370f3a949034085433" + "4b1e1b87fa395464c60626124a4e70d0f785601d37c09870ebf176666877a2046d" + "01ba52c56fc8776d9e8f5db4f0cc27636d0b741bbe05400697942e80b739884a83" + "bde99e0f6716939e632bc8986fa18dccd443a348b6c3e522497955a4f3c302f676", + "005fc70477c3e63bc3954bd0df3ea0d1f41ee21746ed95fc5e1fdf90930d5e1366" + "72d72cc770742d1711c3c3a4c334a0ad9759436a4d3c5bf6e74b9578fac148c831", + id="NIST521p" + ), + ], +) +def test_ecdh_NIST(curve,privatekey,pubkey,secret): + ecdh = ECDH(curve=curve) + ecdh.load_private_key_bytes(unhexlify(privatekey)) + ecdh.load_received_public_key_bytes(unhexlify(pubkey)) + + sharedsecret = ecdh.generate_sharedsecret_bytes() + + assert sharedsecret == unhexlify(secret) + + +pem_local_private_key = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" + "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" + "bA==\n" + "-----END EC PRIVATE KEY-----\n") +der_local_private_key = ( + "305f02010104185ec8420bd6ef9252a942e989043ca29f561fa525770eb1c5a00a06082a864" + "8ce3d030101a13403320004b88177d084ef17f5e45639408028360f9f59b4a4d7264e62da06" + "51dce47a35a4c5b45cf51593423a8b557b9c2099f36c") +pem_remote_public_key = ( + "-----BEGIN PUBLIC KEY-----\n" + "MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n" + "Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n" + "-----END PUBLIC KEY-----\n") +der_remote_public_key = ( + "3049301306072a8648ce3d020106082a8648ce3d03010103320004b88177d084ef17f5e4563" + "9408028360f9f59b4a4d7264e62da0651dce47a35a4c5b45cf51593423a8b557b9c2099f36c") +gshared_secret = "8f457e34982478d1c34b9cd2d0c15911b72dd60d869e2cea" + + +def test_ecdh_pem(): + ecdh = ECDH() + ecdh.load_private_key_pem(pem_local_private_key) + ecdh.load_received_public_key_pem(pem_remote_public_key) + + sharedsecret = ecdh.generate_sharedsecret_bytes() + + assert sharedsecret == unhexlify(gshared_secret) + + +def test_ecdh_der(): + ecdh = ECDH() + ecdh.load_private_key_der(unhexlify(der_local_private_key)) + ecdh.load_received_public_key_der(unhexlify(der_remote_public_key)) + + sharedsecret = ecdh.generate_sharedsecret_bytes() + + assert sharedsecret == unhexlify(gshared_secret) + + +# Exception classes used by run_openssl. +class RunOpenSslError(Exception): + pass + + +def run_openssl(cmd): + OPENSSL = "openssl" + p = subprocess.Popen([OPENSSL] + cmd.split(), + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT) + stdout, ignored = p.communicate() + if p.returncode != 0: + raise RunOpenSslError( + "cmd '%s %s' failed: rc=%s, stdout/err was %s" % + (OPENSSL, cmd, p.returncode, stdout)) + return stdout.decode() + + +OPENSSL_SUPPORTED_CURVES = set(c.split(':')[0].strip() for c in + run_openssl("ecparam -list_curves") + .split('\n')) + + +@pytest.mark.parametrize("vcurve", curves, ids=[curve.name for curve in curves]) +def test_ecdh_with_openssl(vcurve): + assert vcurve.openssl_name + + if vcurve.openssl_name not in OPENSSL_SUPPORTED_CURVES: + pytest.skip("system openssl does not support " + vcurve.openssl_name) + return + + try: + hlp = run_openssl("pkeyutl -help") + if hlp.find("-derive") == 0: + pytest.skip("system openssl does not support `pkeyutl -derive`") + return + except RunOpenSslError: + pytest.skip("system openssl does not support `pkeyutl -derive`") + return + + if os.path.isdir("t"): + shutil.rmtree("t") + os.mkdir("t") + run_openssl("ecparam -name %s -genkey -out t/privkey1.pem" % vcurve.openssl_name) + run_openssl("ecparam -name %s -genkey -out t/privkey2.pem" % vcurve.openssl_name) + run_openssl("ec -in t/privkey1.pem -pubout -out t/pubkey1.pem") + + ecdh1 = ECDH(curve=vcurve) + ecdh2 = ECDH(curve=vcurve) + with open("t/privkey1.pem") as e: + key = e.read() + ecdh1.load_private_key_pem(key) + with open("t/privkey2.pem") as e: + key = e.read() + ecdh2.load_private_key_pem(key) + + with open("t/pubkey1.pem") as e: + key = e.read() + vk1 = VerifyingKey.from_pem(key) + assert vk1.to_string() == ecdh1.get_public_key().to_string() + vk2 = ecdh2.get_public_key() + with open("t/pubkey2.pem", "wb") as e: + e.write(vk2.to_pem()) + + ecdh1.load_received_public_key(vk2) + ecdh2.load_received_public_key(vk1) + secret1 = ecdh1.generate_sharedsecret_bytes() + secret2 = ecdh2.generate_sharedsecret_bytes() + + assert secret1 == secret2 + + try: + run_openssl("pkeyutl -derive -inkey t/privkey1.pem -peerkey t/pubkey2.pem -out t/secret1") + run_openssl("pkeyutl -derive -inkey t/privkey2.pem -peerkey t/pubkey1.pem -out t/secret2") + except RunOpenSslError: + pytest.skip("system openssl does not support `pkeyutl -derive`") + return + + with open("t/secret1", "rb") as e: + ssl_secret1 = e.read() + with open("t/secret1", "rb") as e: + ssl_secret2 = e.read() + + if len(ssl_secret1) != vk1.curve.baselen: + pytest.skip("system openssl does not support `pkeyutl -derive`") + return + + assert ssl_secret1 == ssl_secret2 + assert secret1 == ssl_secret1 diff --git a/third_party/python/ecdsa/ecdsa/test_ecdsa.py b/third_party/python/ecdsa/ecdsa/test_ecdsa.py new file mode 100644 index 0000000000..71c68913ac --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_ecdsa.py @@ -0,0 +1,448 @@ +from __future__ import print_function +import sys +import hypothesis.strategies as st +from hypothesis import given, settings, note, example +try: + import unittest2 as unittest +except ImportError: + import unittest +import pytest +from .ecdsa import Private_key, Public_key, Signature, \ + generator_192, digest_integer, ellipticcurve, point_is_valid, \ + generator_224, generator_256, generator_384, generator_521, \ + generator_secp256k1 + + +HYP_SETTINGS = {} +# old hypothesis doesn't have the "deadline" setting +if sys.version_info > (2, 7): # pragma: no branch + # SEC521p is slow, allow long execution for it + HYP_SETTINGS["deadline"] = 5000 + + +class TestP192FromX9_62(unittest.TestCase): + """Check test vectors from X9.62""" + @classmethod + def setUpClass(cls): + cls.d = 651056770906015076056810763456358567190100156695615665659 + cls.Q = cls.d * generator_192 + cls.k = 6140507067065001063065065565667405560006161556565665656654 + cls.R = cls.k * generator_192 + + cls.msg = 968236873715988614170569073515315707566766479517 + cls.pubk = Public_key(generator_192, generator_192 * cls.d) + cls.privk = Private_key(cls.pubk, cls.d) + cls.sig = cls.privk.sign(cls.msg, cls.k) + + def test_point_multiplication(self): + assert self.Q.x() == 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5 + + def test_point_multiplication_2(self): + assert self.R.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD + assert self.R.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835 + + def test_mult_and_addition(self): + u1 = 2563697409189434185194736134579731015366492496392189760599 + u2 = 6266643813348617967186477710235785849136406323338782220568 + temp = u1 * generator_192 + u2 * self.Q + assert temp.x() == 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD + assert temp.y() == 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835 + + def test_signature(self): + r, s = self.sig.r, self.sig.s + assert r == 3342403536405981729393488334694600415596881826869351677613 + assert s == 5735822328888155254683894997897571951568553642892029982342 + + def test_verification(self): + assert self.pubk.verifies(self.msg, self.sig) + + def test_rejection(self): + assert not self.pubk.verifies(self.msg - 1, self.sig) + + +class TestPublicKey(unittest.TestCase): + + def test_equality_public_keys(self): + gen = generator_192 + x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 + y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f + point = ellipticcurve.Point(gen.curve(), x, y) + pub_key1 = Public_key(gen, point) + pub_key2 = Public_key(gen, point) + self.assertEqual(pub_key1, pub_key2) + + def test_inequality_public_key(self): + gen = generator_192 + x1 = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 + y1 = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f + point1 = ellipticcurve.Point(gen.curve(), x1, y1) + + x2 = 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15 + y2 = 0x7b482604199367f1f303f9ef627f922f97023e90eae08abf + point2 = ellipticcurve.Point(gen.curve(), x2, y2) + + pub_key1 = Public_key(gen, point1) + pub_key2 = Public_key(gen, point2) + self.assertNotEqual(pub_key1, pub_key2) + + def test_inequality_public_key_not_implemented(self): + gen = generator_192 + x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 + y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f + point = ellipticcurve.Point(gen.curve(), x, y) + pub_key = Public_key(gen, point) + self.assertNotEqual(pub_key, None) + + +class TestPrivateKey(unittest.TestCase): + + @classmethod + def setUpClass(cls): + gen = generator_192 + x = 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6 + y = 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f + point = ellipticcurve.Point(gen.curve(), x, y) + cls.pub_key = Public_key(gen, point) + + def test_equality_private_keys(self): + pr_key1 = Private_key(self.pub_key, 100) + pr_key2 = Private_key(self.pub_key, 100) + self.assertEqual(pr_key1, pr_key2) + + def test_inequality_private_keys(self): + pr_key1 = Private_key(self.pub_key, 100) + pr_key2 = Private_key(self.pub_key, 200) + self.assertNotEqual(pr_key1, pr_key2) + + def test_inequality_private_keys_not_implemented(self): + pr_key = Private_key(self.pub_key, 100) + self.assertNotEqual(pr_key, None) + + +# Testing point validity, as per ECDSAVS.pdf B.2.2: +P192_POINTS = [ + (generator_192, + 0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83a, + 0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfc, + False), + + (generator_192, + 0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73b, + 0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adb, + False), + + (generator_192, + 0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792, + 0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6, + False), + + (generator_192, + 0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6, + 0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f, + True), + + (generator_192, + 0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70, + 0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4e, + True), + + (generator_192, + 0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedced, + 0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9, + True), + + (generator_192, + 0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15, + 0x7b482604199367f1f303f9ef627f922f97023e90eae08abf, + True), + + (generator_192, + 0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798eda, + 0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835, + False), + + (generator_192, + 0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12, + 0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2, + False), + + (generator_192, + 0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43, + 0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caa, + False), + + (generator_192, + 0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbc, + 0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6, + False), + + (generator_192, + 0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253, + 0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923, + False)] + + +@pytest.mark.parametrize("generator,x,y,expected", P192_POINTS) +def test_point_validity(generator, x, y, expected): + """ + `generator` defines the curve; is `(x, y)` a point on + this curve? `expected` is True if the right answer is Yes. + """ + assert point_is_valid(generator, x, y) == expected + + +# Trying signature-verification tests from ECDSAVS.pdf B.2.4: +CURVE_192_KATS = [ + (generator_192, + int("0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee" + "425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30" + "d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff79" + "8cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d1" + "58", 16), + 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7ac, + 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4, + 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916, + 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479, + True), + + (generator_192, + int("0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db1" + "2e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a" + "91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db3" + "26ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63" + "f4", 16), + 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7, + 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7, + 0x8285261607283ba18f335026130bab31840dcfd9c3e555af, + 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06c, + True), + + (generator_192, + int("0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911" + "b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cd" + "d41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d30" + "3f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42" + "dd", 16), + 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7, + 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336, + 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91, + 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09, + False), + + (generator_192, + int("0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b56309" + "7ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8" + "bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447" + "bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd" + "8a", 16), + 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0b, + 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4, + 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1, + 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520, + False), + + (generator_192, + int("0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d3919" + "2e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196" + "683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bc" + "eae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072" + "fb", 16), + 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828, + 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ff, + 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796, + 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0, + False), + + (generator_192, + int("0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397c" + "e15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aa" + "e98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc" + "55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca" + "6d", 16), + 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19f, + 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686, + 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325, + 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633, + False), + + (generator_192, + int("0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f" + "698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98" + "f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a2" + "78461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76" + "e1", 16), + 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04, + 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1, + 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1c, + 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50, + False), + + (generator_192, + int("0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6" + "c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7" + "a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b" + "9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6b" + "a2", 16), + 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaa, + 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3e, + 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955, + 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95, + False), + + (generator_192, + int("0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a" + "961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc91" + "0250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53" + "808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb6" + "58", 16), + 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2f, + 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ec, + 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62, + 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289, + False), + + (generator_192, + int("0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e102" + "88acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c9" + "0a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9e" + "a387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c9" + "7a", 16), + 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4a, + 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905, + 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73b, + 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5, + True), + + (generator_192, + int("0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f645" + "0d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d90" + "64e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8c" + "e1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd045" + "6d", 16), + 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecef, + 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1, + 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06, + 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dc, + False), + + (generator_192, + int("0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae" + "5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214e" + "ed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c4" + "40341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839" + "d7", 16), + 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753, + 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520, + 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668, + 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599, + False), + + (generator_192, + int("0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf99866" + "70a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b412" + "69bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52" + "e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160ce" + "f3", 16), + 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835, + 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76b, + 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ff, + 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068, + False), + + (generator_192, + int("0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f" + "387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add502357" + "2720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670" + "716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1", 16), + 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0, + 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8da, + 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23, + 0x738421cf5e049159d69c57a915143e226cac8355e149afe9, + False), + + (generator_192, + int("0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5af" + "a261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461" + "184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6d" + "b377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb", 16), + 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77, + 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22, + 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1, + 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9, + False) + ] + + +@pytest.mark.parametrize("gen,msg,qx,qy,r,s,expected", CURVE_192_KATS) +def test_signature_validity(gen, msg, qx, qy, r, s, expected): + """ + `msg` = message, `qx` and `qy` represent the base point on + elliptic curve of `gen`, `r` and `s` are the signature, and + `expected` is True iff the signature is expected to be valid.""" + pubk = Public_key(gen, + ellipticcurve.Point(gen.curve(), qx, qy)) + assert expected == pubk.verifies(digest_integer(msg), Signature(r, s)) + + +@pytest.mark.parametrize("gen,msg,qx,qy,r,s,expected", + [x for x in CURVE_192_KATS if x[6]]) +def test_pk_recovery(gen, msg, r, s, qx, qy, expected): + del expected + sign = Signature(r, s) + pks = sign.recover_public_keys(digest_integer(msg), gen) + + assert pks + + # Test if the signature is valid for all found public keys + for pk in pks: + q = pk.point + test_signature_validity(gen, msg, q.x(), q.y(), r, s, True) + + # Test if the original public key is in the set of found keys + original_q = ellipticcurve.Point(gen.curve(), qx, qy) + points = [pk.point for pk in pks] + assert original_q in points + + +@st.composite +def st_random_gen_key_msg_nonce(draw): + """Hypothesis strategy for test_sig_verify().""" + name_gen = { + "generator_192": generator_192, + "generator_224": generator_224, + "generator_256": generator_256, + "generator_secp256k1": generator_secp256k1, + "generator_384": generator_384, + "generator_521": generator_521} + name = draw(st.sampled_from(sorted(name_gen.keys()))) + note("Generator used: {0}".format(name)) + generator = name_gen[name] + order = int(generator.order()) + + key = draw(st.integers(min_value=1, max_value=order)) + msg = draw(st.integers(min_value=1, max_value=order)) + nonce = draw(st.integers(min_value=1, max_value=order+1) | + st.integers(min_value=order>>1, max_value=order)) + return generator, key, msg, nonce + + +SIG_VER_SETTINGS = dict(HYP_SETTINGS) +SIG_VER_SETTINGS["max_examples"] = 10 +@settings(**SIG_VER_SETTINGS) +@example((generator_224, 4, 1, 1)) +@given(st_random_gen_key_msg_nonce()) +def test_sig_verify(args): + """ + Check if signing and verification works for arbitrary messages and + that signatures for other messages are rejected. + """ + generator, sec_mult, msg, nonce = args + + pubkey = Public_key(generator, generator * sec_mult) + privkey = Private_key(pubkey, sec_mult) + + signature = privkey.sign(msg, nonce) + + assert pubkey.verifies(msg, signature) + + assert not pubkey.verifies(msg - 1, signature) diff --git a/third_party/python/ecdsa/ecdsa/test_ellipticcurve.py b/third_party/python/ecdsa/ecdsa/test_ellipticcurve.py new file mode 100644 index 0000000000..924134cecd --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_ellipticcurve.py @@ -0,0 +1,188 @@ +import pytest +from six import print_ +try: + import unittest2 as unittest +except ImportError: + import unittest +from hypothesis import given, settings +import hypothesis.strategies as st +try: + from hypothesis import HealthCheck + HC_PRESENT=True +except ImportError: # pragma: no cover + HC_PRESENT=False +from .numbertheory import inverse_mod +from .ellipticcurve import CurveFp, INFINITY, Point + + +HYP_SETTINGS={} +if HC_PRESENT: # pragma: no branch + HYP_SETTINGS['suppress_health_check']=[HealthCheck.too_slow] + HYP_SETTINGS['deadline'] = 5000 + + +# NIST Curve P-192: +p = 6277101735386680763835789423207666416083908700390324961279 +r = 6277101735386680763835789423176059013767194773182842284081 +# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5 +# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 +b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 +Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 +Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 + +c192 = CurveFp(p, -3, b) +p192 = Point(c192, Gx, Gy, r) + +c_23 = CurveFp(23, 1, 1) +g_23 = Point(c_23, 13, 7, 7) + + +HYP_SLOW_SETTINGS=dict(HYP_SETTINGS) +HYP_SLOW_SETTINGS["max_examples"]=10 + + +@settings(**HYP_SLOW_SETTINGS) +@given(st.integers(min_value=1, max_value=r+1)) +def test_p192_mult_tests(multiple): + inv_m = inverse_mod(multiple, r) + + p1 = p192 * multiple + assert p1 * inv_m == p192 + + +def add_n_times(point, n): + ret = INFINITY + i = 0 + while i <= n: + yield ret + ret = ret + point + i += 1 + + +# From X9.62 I.1 (p. 96): +@pytest.mark.parametrize( + "p, m, check", + [(g_23, n, exp) for n, exp in enumerate(add_n_times(g_23, 8))], + ids=["g_23 test with mult {0}".format(i) for i in range(9)]) +def test_add_and_mult_equivalence(p, m, check): + assert p * m == check + + +class TestCurve(unittest.TestCase): + + @classmethod + def setUpClass(cls): + cls.c_23 = CurveFp(23, 1, 1) + + def test_equality_curves(self): + self.assertEqual(self.c_23, CurveFp(23, 1, 1)) + + def test_inequality_curves(self): + c192 = CurveFp(p, -3, b) + self.assertNotEqual(self.c_23, c192) + + def test_usability_in_a_hashed_collection_curves(self): + {self.c_23: None} + + def test_hashability_curves(self): + hash(self.c_23) + + def test_conflation_curves(self): + ne1, ne2, ne3 = CurveFp(24, 1, 1), CurveFp(23, 2, 1), CurveFp(23, 1, 2) + eq1, eq2, eq3 = CurveFp(23, 1, 1), CurveFp(23, 1, 1), self.c_23 + self.assertEqual(len(set((c_23, eq1, eq2, eq3))), 1) + self.assertEqual(len(set((c_23, ne1, ne2, ne3))), 4) + self.assertDictEqual({c_23: None}, {eq1: None}) + self.assertTrue(eq2 in {eq3: None}) + + +class TestPoint(unittest.TestCase): + + @classmethod + def setUpClass(cls): + cls.c_23 = CurveFp(23, 1, 1) + cls.g_23 = Point(cls.c_23, 13, 7, 7) + + p = 6277101735386680763835789423207666416083908700390324961279 + r = 6277101735386680763835789423176059013767194773182842284081 + # s = 0x3045ae6fc8422f64ed579528d38120eae12196d5 + # c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65 + b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 + Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 + Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 + + cls.c192 = CurveFp(p, -3, b) + cls.p192 = Point(cls.c192, Gx, Gy, r) + + def test_p192(self): + # Checking against some sample computations presented + # in X9.62: + d = 651056770906015076056810763456358567190100156695615665659 + Q = d * self.p192 + self.assertEqual(Q.x(), 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5) + + k = 6140507067065001063065065565667405560006161556565665656654 + R = k * self.p192 + self.assertEqual(R.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD) + self.assertEqual(R.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835) + + u1 = 2563697409189434185194736134579731015366492496392189760599 + u2 = 6266643813348617967186477710235785849136406323338782220568 + temp = u1 * self.p192 + u2 * Q + self.assertEqual(temp.x(), 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD) + self.assertEqual(temp.y(), 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835) + + def test_double_infinity(self): + p1 = INFINITY + p3 = p1.double() + self.assertEqual(p1, p3) + self.assertEqual(p3.x(), p1.x()) + self.assertEqual(p3.y(), p3.y()) + + def test_double(self): + x1, y1, x3, y3 = (3, 10, 7, 12) + + p1 = Point(self.c_23, x1, y1) + p3 = p1.double() + self.assertEqual(p3.x(), x3) + self.assertEqual(p3.y(), y3) + + def test_multiply(self): + x1, y1, m, x3, y3 = (3, 10, 2, 7, 12) + p1 = Point(self.c_23, x1, y1) + p3 = p1 * m + self.assertEqual(p3.x(), x3) + self.assertEqual(p3.y(), y3) + + # Trivial tests from X9.62 B.3: + def test_add(self): + """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" + + x1, y1, x2, y2, x3, y3 = (3, 10, 9, 7, 17, 20) + p1 = Point(self.c_23, x1, y1) + p2 = Point(self.c_23, x2, y2) + p3 = p1 + p2 + self.assertEqual(p3.x(), x3) + self.assertEqual(p3.y(), y3) + + def test_add_as_double(self): + """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3).""" + + x1, y1, x2, y2, x3, y3 = (3, 10, 3, 10, 7, 12) + p1 = Point(self.c_23, x1, y1) + p2 = Point(self.c_23, x2, y2) + p3 = p1 + p2 + self.assertEqual(p3.x(), x3) + self.assertEqual(p3.y(), y3) + + def test_equality_points(self): + self.assertEqual(self.g_23, Point(self.c_23, 13, 7, 7)) + + def test_inequality_points(self): + c = CurveFp(100, -3, 100) + p = Point(c, 100, 100, 100) + self.assertNotEqual(self.g_23, p) + + def test_inaquality_points_diff_types(self): + c = CurveFp(100, -3, 100) + self.assertNotEqual(self.g_23, c) diff --git a/third_party/python/ecdsa/ecdsa/test_jacobi.py b/third_party/python/ecdsa/ecdsa/test_jacobi.py new file mode 100644 index 0000000000..35e524212a --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_jacobi.py @@ -0,0 +1,365 @@ + +try: + import unittest2 as unittest +except ImportError: + import unittest + +import hypothesis.strategies as st +from hypothesis import given, assume, settings, example + +from .ellipticcurve import Point, PointJacobi, INFINITY +from .ecdsa import generator_256, curve_256, generator_224 +from .numbertheory import inverse_mod + +class TestJacobi(unittest.TestCase): + def test___init__(self): + curve = object() + x = 2 + y = 3 + z = 1 + order = 4 + pj = PointJacobi(curve, x, y, z, order) + + self.assertEqual(pj.order(), order) + self.assertIs(pj.curve(), curve) + self.assertEqual(pj.x(), x) + self.assertEqual(pj.y(), y) + + def test_add_with_different_curves(self): + p_a = PointJacobi.from_affine(generator_256) + p_b = PointJacobi.from_affine(generator_224) + + with self.assertRaises(ValueError): + p_a + p_b + + def test_compare_different_curves(self): + self.assertNotEqual(generator_256, generator_224) + + def test_equality_with_non_point(self): + pj = PointJacobi.from_affine(generator_256) + + self.assertNotEqual(pj, "value") + + def test_conversion(self): + pj = PointJacobi.from_affine(generator_256) + pw = pj.to_affine() + + self.assertEqual(generator_256, pw) + + def test_single_double(self): + pj = PointJacobi.from_affine(generator_256) + pw = generator_256.double() + + pj = pj.double() + + self.assertEqual(pj.x(), pw.x()) + self.assertEqual(pj.y(), pw.y()) + + def test_double_with_zero_point(self): + pj = PointJacobi(curve_256, 0, 0, 1) + + pj = pj.double() + + self.assertIs(pj, INFINITY) + + def test_double_with_zero_equivalent_point(self): + pj = PointJacobi(curve_256, 0, curve_256.p(), 1) + + pj = pj.double() + + self.assertIs(pj, INFINITY) + + def test_double_with_zero_equivalent_point_non_1_z(self): + pj = PointJacobi(curve_256, 0, curve_256.p(), 2) + + pj = pj.double() + + self.assertIs(pj, INFINITY) + + def test_compare_with_affine_point(self): + pj = PointJacobi.from_affine(generator_256) + pa = pj.to_affine() + + self.assertEqual(pj, pa) + self.assertEqual(pa, pj) + + def test_to_affine_with_zero_point(self): + pj = PointJacobi(curve_256, 0, 0, 1) + + pa = pj.to_affine() + + self.assertIs(pa, INFINITY) + + def test_add_with_affine_point(self): + pj = PointJacobi.from_affine(generator_256) + pa = pj.to_affine() + + s = pj + pa + + self.assertEqual(s, pj.double()) + + def test_radd_with_affine_point(self): + pj = PointJacobi.from_affine(generator_256) + pa = pj.to_affine() + + s = pa + pj + + self.assertEqual(s, pj.double()) + + def test_add_with_infinity(self): + pj = PointJacobi.from_affine(generator_256) + + s = pj + INFINITY + + self.assertEqual(s, pj) + + def test_add_zero_point_to_affine(self): + pa = PointJacobi.from_affine(generator_256).to_affine() + pj = PointJacobi(curve_256, 0, 0, 1) + + s = pj + pa + + self.assertIs(s, pa) + + def test_multiply_by_zero(self): + pj = PointJacobi.from_affine(generator_256) + + pj = pj * 0 + + self.assertIs(pj, INFINITY) + + def test_zero_point_multiply_by_one(self): + pj = PointJacobi(curve_256, 0, 0, 1) + + pj = pj * 1 + + self.assertIs(pj, INFINITY) + + def test_multiply_by_one(self): + pj = PointJacobi.from_affine(generator_256) + pw = generator_256 * 1 + + pj = pj * 1 + + self.assertEqual(pj.x(), pw.x()) + self.assertEqual(pj.y(), pw.y()) + + def test_multiply_by_two(self): + pj = PointJacobi.from_affine(generator_256) + pw = generator_256 * 2 + + pj = pj * 2 + + self.assertEqual(pj.x(), pw.x()) + self.assertEqual(pj.y(), pw.y()) + + def test_rmul_by_two(self): + pj = PointJacobi.from_affine(generator_256) + pw = generator_256 * 2 + + pj = 2 * pj + + self.assertEqual(pj, pw) + + def test_compare_non_zero_with_infinity(self): + pj = PointJacobi.from_affine(generator_256) + + self.assertNotEqual(pj, INFINITY) + + def test_compare_zero_point_with_infinity(self): + pj = PointJacobi(curve_256, 0, 0, 1) + + self.assertEqual(pj, INFINITY) + + def test_compare_double_with_multiply(self): + pj = PointJacobi.from_affine(generator_256) + dbl = pj.double() + mlpl = pj * 2 + + self.assertEqual(dbl, mlpl) + + @settings(max_examples=10) + @given(st.integers(min_value=0, max_value=int(generator_256.order()))) + def test_multiplications(self, mul): + pj = PointJacobi.from_affine(generator_256) + pw = pj.to_affine() * mul + + pj = pj * mul + + self.assertEqual((pj.x(), pj.y()), (pw.x(), pw.y())) + self.assertEqual(pj, pw) + + @settings(max_examples=10) + @given(st.integers(min_value=0, max_value=int(generator_256.order()))) + @example(0) + @example(int(generator_256.order())) + def test_precompute(self, mul): + precomp = PointJacobi.from_affine(generator_256, True) + pj = PointJacobi.from_affine(generator_256) + + a = precomp * mul + b = pj * mul + + self.assertEqual(a, b) + + @settings(max_examples=10) + @given(st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(generator_256.order()))) + @example(3, 3) + def test_add_scaled_points(self, a_mul, b_mul): + j_g = PointJacobi.from_affine(generator_256) + a = PointJacobi.from_affine(j_g * a_mul) + b = PointJacobi.from_affine(j_g * b_mul) + + c = a + b + + self.assertEqual(c, j_g * (a_mul + b_mul)) + + @settings(max_examples=10) + @given(st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(curve_256.p()-1))) + def test_add_one_scaled_point(self, a_mul, b_mul, new_z): + j_g = PointJacobi.from_affine(generator_256) + a = PointJacobi.from_affine(j_g * a_mul) + b = PointJacobi.from_affine(j_g * b_mul) + + p = curve_256.p() + + assume(inverse_mod(new_z, p)) + + new_zz = new_z * new_z % p + + b = PointJacobi( + curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z) + + c = a + b + + self.assertEqual(c, j_g * (a_mul + b_mul)) + + @settings(max_examples=10) + @given(st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(curve_256.p()-1))) + @example(1, 1, 1) + @example(3, 3, 3) + @example(2, int(generator_256.order()-2), 1) + @example(2, int(generator_256.order()-2), 3) + def test_add_same_scale_points(self, a_mul, b_mul, new_z): + j_g = PointJacobi.from_affine(generator_256) + a = PointJacobi.from_affine(j_g * a_mul) + b = PointJacobi.from_affine(j_g * b_mul) + + p = curve_256.p() + + assume(inverse_mod(new_z, p)) + + new_zz = new_z * new_z % p + + a = PointJacobi( + curve_256, a.x() * new_zz % p, a.y() * new_zz * new_z % p, new_z) + b = PointJacobi( + curve_256, b.x() * new_zz % p, b.y() * new_zz * new_z % p, new_z) + + c = a + b + + self.assertEqual(c, j_g * (a_mul + b_mul)) + + @settings(max_examples=14) + @given(st.integers(min_value=1, max_value=int(generator_256.order())), + st.integers(min_value=1, max_value=int(generator_256.order())), + st.lists(st.integers(min_value=1, max_value=int(curve_256.p()-1)), + min_size=2, max_size=2, unique=True)) + @example(2, 2, [2, 1]) + @example(2, 2, [2, 3]) + @example(2, int(generator_256.order()-2), [2, 3]) + @example(2, int(generator_256.order()-2), [2, 1]) + def test_add_different_scale_points(self, a_mul, b_mul, new_z): + j_g = PointJacobi.from_affine(generator_256) + a = PointJacobi.from_affine(j_g * a_mul) + b = PointJacobi.from_affine(j_g * b_mul) + + p = curve_256.p() + + assume(inverse_mod(new_z[0], p)) + assume(inverse_mod(new_z[1], p)) + + new_zz0 = new_z[0] * new_z[0] % p + new_zz1 = new_z[1] * new_z[1] % p + + a = PointJacobi( + curve_256, + a.x() * new_zz0 % p, + a.y() * new_zz0 * new_z[0] % p, + new_z[0]) + b = PointJacobi( + curve_256, + b.x() * new_zz1 % p, + b.y() * new_zz1 * new_z[1] % p, + new_z[1]) + + c = a + b + + self.assertEqual(c, j_g * (a_mul + b_mul)) + + def test_add_point_3_times(self): + j_g = PointJacobi.from_affine(generator_256) + + self.assertEqual(j_g * 3, j_g + j_g + j_g) + + def test_mul_add_inf(self): + j_g = PointJacobi.from_affine(generator_256) + + self.assertEqual(j_g, j_g.mul_add(1, INFINITY, 1)) + + def test_mul_add_same(self): + j_g = PointJacobi.from_affine(generator_256) + + self.assertEqual(j_g * 2, j_g.mul_add(1, j_g, 1)) + + def test_mul_add_precompute(self): + j_g = PointJacobi.from_affine(generator_256, True) + b = PointJacobi.from_affine(j_g * 255, True) + + self.assertEqual(j_g * 256, j_g + b) + self.assertEqual(j_g * (5 + 255 * 7), j_g * 5 + b * 7) + self.assertEqual(j_g * (5 + 255 * 7), j_g.mul_add(5, b, 7)) + + def test_mul_add_precompute_large(self): + j_g = PointJacobi.from_affine(generator_256, True) + b = PointJacobi.from_affine(j_g * 255, True) + + self.assertEqual(j_g * 256, j_g + b) + self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), + j_g * 0xff00 + b * 0xf0f0) + self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), + j_g.mul_add(0xff00, b, 0xf0f0)) + + def test_mul_add_to_mul(self): + j_g = PointJacobi.from_affine(generator_256) + + a = j_g * 3 + b = j_g.mul_add(2, j_g, 1) + + self.assertEqual(a, b) + + def test_mul_add(self): + j_g = PointJacobi.from_affine(generator_256) + + w_a = generator_256 * 255 + w_b = generator_256 * (0xa8*0xf0) + j_b = j_g * 0xa8 + + ret = j_g.mul_add(255, j_b, 0xf0) + + self.assertEqual(ret.to_affine(), w_a + w_b) + + def test_mul_add_large(self): + j_g = PointJacobi.from_affine(generator_256) + b = PointJacobi.from_affine(j_g * 255) + + self.assertEqual(j_g * 256, j_g + b) + self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), + j_g * 0xff00 + b * 0xf0f0) + self.assertEqual(j_g * (0xff00 + 255 * 0xf0f0), + j_g.mul_add(0xff00, b, 0xf0f0)) diff --git a/third_party/python/ecdsa/ecdsa/test_keys.py b/third_party/python/ecdsa/ecdsa/test_keys.py new file mode 100644 index 0000000000..56e128421e --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_keys.py @@ -0,0 +1,373 @@ +try: + import unittest2 as unittest +except ImportError: + import unittest + +try: + buffer +except NameError: + buffer = memoryview + +import array +import six +import sys +import pytest +import hashlib + +from .keys import VerifyingKey, SigningKey +from .der import unpem +from .util import sigencode_string, sigencode_der, sigencode_strings, \ + sigdecode_string, sigdecode_der, sigdecode_strings + + +class TestVerifyingKeyFromString(unittest.TestCase): + """ + Verify that ecdsa.keys.VerifyingKey.from_string() can be used with + bytes-like objects + """ + + @classmethod + def setUpClass(cls): + cls.key_bytes = (b'\x04L\xa2\x95\xdb\xc7Z\xd7\x1f\x93\nz\xcf\x97\xcf' + b'\xd7\xc2\xd9o\xfe8}X!\xae\xd4\xfah\xfa^\rpI\xba\xd1' + b'Y\xfb\x92xa\xebo+\x9cG\xfav\xca') + cls.vk = VerifyingKey.from_string(cls.key_bytes) + + def test_bytes(self): + self.assertIsNotNone(self.vk) + self.assertIsInstance(self.vk, VerifyingKey) + self.assertEqual( + self.vk.pubkey.point.x(), + 105419898848891948935835657980914000059957975659675736097) + self.assertEqual( + self.vk.pubkey.point.y(), + 4286866841217412202667522375431381222214611213481632495306) + + def test_bytes_memoryview(self): + vk = VerifyingKey.from_string(buffer(self.key_bytes)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytearray(self): + vk = VerifyingKey.from_string(bytearray(self.key_bytes)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytesarray_memoryview(self): + vk = VerifyingKey.from_string(buffer(bytearray(self.key_bytes))) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_bytes(self): + arr = array.array('B', self.key_bytes) + vk = VerifyingKey.from_string(arr) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_bytes_memoryview(self): + arr = array.array('B', self.key_bytes) + vk = VerifyingKey.from_string(buffer(arr)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_ints(self): + arr = array.array('I', self.key_bytes) + vk = VerifyingKey.from_string(arr) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_ints_memoryview(self): + arr = array.array('I', self.key_bytes) + vk = VerifyingKey.from_string(buffer(arr)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytes_uncompressed(self): + vk = VerifyingKey.from_string(b'\x04' + self.key_bytes) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytearray_uncompressed(self): + vk = VerifyingKey.from_string(bytearray(b'\x04' + self.key_bytes)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytes_compressed(self): + vk = VerifyingKey.from_string(b'\x02' + self.key_bytes[:24]) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytearray_compressed(self): + vk = VerifyingKey.from_string(bytearray(b'\x02' + self.key_bytes[:24])) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + +class TestVerifyingKeyFromDer(unittest.TestCase): + """ + Verify that ecdsa.keys.VerifyingKey.from_der() can be used with + bytes-like objects. + """ + @classmethod + def setUpClass(cls): + prv_key_str = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" + "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" + "bA==\n" + "-----END EC PRIVATE KEY-----\n") + key_str = ( + "-----BEGIN PUBLIC KEY-----\n" + "MEkwEwYHKoZIzj0CAQYIKoZIzj0DAQEDMgAEuIF30ITvF/XkVjlAgCg2D59ZtKTX\n" + "Jk5i2gZR3OR6NaTFtFz1FZNCOotVe5wgmfNs\n" + "-----END PUBLIC KEY-----\n") + cls.key_pem = key_str + + cls.key_bytes = unpem(key_str) + assert isinstance(cls.key_bytes, bytes) + cls.vk = VerifyingKey.from_pem(key_str) + cls.sk = SigningKey.from_pem(prv_key_str) + + key_str = ( + "-----BEGIN PUBLIC KEY-----\n" + "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8\n" + "Poqzgjau4kfxBPyZimeRfuY/9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n" + "-----END PUBLIC KEY-----\n" + ) + cls.vk2 = VerifyingKey.from_pem(key_str) + + def test_custom_hashfunc(self): + vk = VerifyingKey.from_der(self.key_bytes, hashlib.sha256) + + self.assertIs(vk.default_hashfunc, hashlib.sha256) + + def test_from_pem_with_custom_hashfunc(self): + vk = VerifyingKey.from_pem(self.key_pem, hashlib.sha256) + + self.assertIs(vk.default_hashfunc, hashlib.sha256) + + def test_bytes(self): + vk = VerifyingKey.from_der(self.key_bytes) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytes_memoryview(self): + vk = VerifyingKey.from_der(buffer(self.key_bytes)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytearray(self): + vk = VerifyingKey.from_der(bytearray(self.key_bytes)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_bytesarray_memoryview(self): + vk = VerifyingKey.from_der(buffer(bytearray(self.key_bytes))) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_bytes(self): + arr = array.array('B', self.key_bytes) + vk = VerifyingKey.from_der(arr) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_array_array_of_bytes_memoryview(self): + arr = array.array('B', self.key_bytes) + vk = VerifyingKey.from_der(buffer(arr)) + + self.assertEqual(self.vk.to_string(), vk.to_string()) + + def test_equality_on_verifying_keys(self): + self.assertEqual(self.vk, self.sk.get_verifying_key()) + + def test_inequality_on_verifying_keys(self): + self.assertNotEqual(self.vk, self.vk2) + + def test_inequality_on_verifying_keys_not_implemented(self): + self.assertNotEqual(self.vk, None) + + +class TestSigningKey(unittest.TestCase): + """ + Verify that ecdsa.keys.SigningKey.from_der() can be used with + bytes-like objects. + """ + @classmethod + def setUpClass(cls): + prv_key_str = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" + "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" + "bA==\n" + "-----END EC PRIVATE KEY-----\n") + cls.sk1 = SigningKey.from_pem(prv_key_str) + + prv_key_str = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MHcCAQEEIKlL2EAm5NPPZuXwxRf4nXMk0A80y6UUbiQ17be/qFhRoAoGCCqGSM49\n" + "AwEHoUQDQgAE4H3iRbG4TSrsSRb/gusPQB/4YcN8Poqzgjau4kfxBPyZimeRfuY/\n" + "9g/wMmPuhGl4BUve51DsnKJFRr8psk0ieA==\n" + "-----END EC PRIVATE KEY-----\n") + cls.sk2 = SigningKey.from_pem(prv_key_str) + + def test_equality_on_signing_keys(self): + sk = SigningKey.from_secret_exponent(self.sk1.privkey.secret_multiplier, self.sk1.curve) + self.assertEqual(self.sk1, sk) + + def test_inequality_on_signing_keys(self): + self.assertNotEqual(self.sk1, self.sk2) + + def test_inequality_on_signing_keys_not_implemented(self): + self.assertNotEqual(self.sk1, None) + +# test VerifyingKey.verify() +prv_key_str = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" + "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" + "bA==\n" + "-----END EC PRIVATE KEY-----\n") +key_bytes = unpem(prv_key_str) +assert isinstance(key_bytes, bytes) +sk = SigningKey.from_der(key_bytes) +vk = sk.verifying_key + +data = (b"some string for signing" + b"contents don't really matter" + b"but do include also some crazy values: " + b"\x00\x01\t\r\n\x00\x00\x00\xff\xf0") +assert len(data) % 4 == 0 +sha1 = hashlib.sha1() +sha1.update(data) +data_hash = sha1.digest() +assert isinstance(data_hash, bytes) +sig_raw = sk.sign(data, sigencode=sigencode_string) +assert isinstance(sig_raw, bytes) +sig_der = sk.sign(data, sigencode=sigencode_der) +assert isinstance(sig_der, bytes) +sig_strings = sk.sign(data, sigencode=sigencode_strings) +assert isinstance(sig_strings[0], bytes) + +verifiers = [] +for modifier, fun in [ + ("bytes", lambda x: x), + ("bytes memoryview", lambda x: buffer(x)), + ("bytearray", lambda x: bytearray(x)), + ("bytearray memoryview", lambda x: buffer(bytearray(x))), + ("array.array of bytes", lambda x: array.array('B', x)), + ("array.array of bytes memoryview", lambda x: buffer(array.array('B', x))), + ("array.array of ints", lambda x: array.array('I', x)), + ("array.array of ints memoryview", lambda x: buffer(array.array('I', x))) + ]: + if "ints" in modifier: + conv = lambda x: x + else: + conv = fun + for sig_format, signature, decoder, mod_apply in [ + ("raw", sig_raw, sigdecode_string, lambda x: conv(x)), + ("der", sig_der, sigdecode_der, lambda x: conv(x)), + ("strings", sig_strings, sigdecode_strings, lambda x: + tuple(conv(i) for i in x)) + ]: + for method_name, vrf_mthd, vrf_data in [ + ("verify", vk.verify, data), + ("verify_digest", vk.verify_digest, data_hash) + ]: + verifiers.append(pytest.param( + signature, decoder, mod_apply, fun, vrf_mthd, vrf_data, + id="{2}-{0}-{1}".format(modifier, sig_format, method_name))) + +@pytest.mark.parametrize( + "signature,decoder,mod_apply,fun,vrf_mthd,vrf_data", + verifiers) +def test_VerifyingKey_verify( + signature, decoder, mod_apply, fun, vrf_mthd, vrf_data): + sig = mod_apply(signature) + + assert vrf_mthd(sig, fun(vrf_data), sigdecode=decoder) + + +# test SigningKey.from_string() +prv_key_bytes = (b'^\xc8B\x0b\xd6\xef\x92R\xa9B\xe9\x89\x04<\xa2' + b'\x9fV\x1f\xa5%w\x0e\xb1\xc5') +assert len(prv_key_bytes) == 24 +converters = [] +for modifier, convert in [ + ("bytes", lambda x: x), + ("bytes memoryview", buffer), + ("bytearray", bytearray), + ("bytearray memoryview", lambda x: buffer(bytearray(x))), + ("array.array of bytes", lambda x: array.array('B', x)), + ("array.array of bytes memoryview", + lambda x: buffer(array.array('B', x))), + ("array.array of ints", lambda x: array.array('I', x)), + ("array.array of ints memoryview", + lambda x: buffer(array.array('I', x))) + ]: + converters.append(pytest.param( + convert, + id=modifier)) + +@pytest.mark.parametrize("convert", converters) +def test_SigningKey_from_string(convert): + key = convert(prv_key_bytes) + sk = SigningKey.from_string(key) + + assert sk.to_string() == prv_key_bytes + + +# test SigningKey.from_der() +prv_key_str = ( + "-----BEGIN EC PRIVATE KEY-----\n" + "MF8CAQEEGF7IQgvW75JSqULpiQQ8op9WH6Uldw6xxaAKBggqhkjOPQMBAaE0AzIA\n" + "BLiBd9CE7xf15FY5QIAoNg+fWbSk1yZOYtoGUdzkejWkxbRc9RWTQjqLVXucIJnz\n" + "bA==\n" + "-----END EC PRIVATE KEY-----\n") +key_bytes = unpem(prv_key_str) +assert isinstance(key_bytes, bytes) + +# last two converters are for array.array of ints, those require input +# that's multiple of 4, which no curve we support produces +@pytest.mark.parametrize("convert", converters[:-2]) +def test_SigningKey_from_der(convert): + key = convert(key_bytes) + sk = SigningKey.from_der(key) + + assert sk.to_string() == prv_key_bytes + + +# test SigningKey.sign_deterministic() +extra_entropy=b'\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11' + +@pytest.mark.parametrize("convert", converters) +def test_SigningKey_sign_deterministic(convert): + sig = sk.sign_deterministic( + convert(data), + extra_entropy=convert(extra_entropy)) + + vk.verify(sig, data) + + +# test SigningKey.sign_digest_deterministic() +@pytest.mark.parametrize("convert", converters) +def test_SigningKey_sign_digest_deterministic(convert): + sig = sk.sign_digest_deterministic( + convert(data_hash), + extra_entropy=convert(extra_entropy)) + + vk.verify(sig, data) + + +@pytest.mark.parametrize("convert", converters) +def test_SigningKey_sign(convert): + sig = sk.sign(convert(data)) + + vk.verify(sig, data) + + +@pytest.mark.parametrize("convert", converters) +def test_SigningKey_sign_digest(convert): + sig = sk.sign_digest(convert(data_hash)) + + vk.verify(sig, data) diff --git a/third_party/python/ecdsa/ecdsa/test_malformed_sigs.py b/third_party/python/ecdsa/ecdsa/test_malformed_sigs.py new file mode 100644 index 0000000000..c1dca44a0e --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_malformed_sigs.py @@ -0,0 +1,306 @@ +from __future__ import with_statement, division + +import hashlib +try: + from hashlib import algorithms_available +except ImportError: # pragma: no cover + algorithms_available = [ + "md5", "sha1", "sha224", "sha256", "sha384", "sha512"] +from functools import partial +import pytest +import sys +from six import binary_type +import hypothesis.strategies as st +from hypothesis import note, assume, given, settings, example + +from .keys import SigningKey +from .keys import BadSignatureError +from .util import sigencode_der, sigencode_string +from .util import sigdecode_der, sigdecode_string +from .curves import curves, NIST256p +from .der import encode_integer, encode_bitstring, encode_octet_string, \ + encode_oid, encode_sequence, encode_constructed + + +example_data = b"some data to sign" +"""Since the data is hashed for processing, really any string will do.""" + + +hash_and_size = [(name, hashlib.new(name).digest_size) + for name in algorithms_available] +"""Pairs of hash names and their output sizes. +Needed for pairing with curves as we don't support hashes +bigger than order sizes of curves.""" + + +keys_and_sigs = [] +"""Name of the curve+hash combination, VerifyingKey and DER signature.""" + + +# for hypothesis strategy shrinking we want smallest curves and hashes first +for curve in sorted(curves, key=lambda x: x.baselen): + for hash_alg in [name for name, size in + sorted(hash_and_size, key=lambda x: x[1]) + if 0 < size <= curve.baselen]: + sk = SigningKey.generate( + curve, + hashfunc=partial(hashlib.new, hash_alg)) + + keys_and_sigs.append( + ("{0} {1}".format(curve, hash_alg), + sk.verifying_key, + sk.sign(example_data, sigencode=sigencode_der))) + + +# first make sure that the signatures can be verified +@pytest.mark.parametrize( + "verifying_key,signature", + [pytest.param(vk, sig, id=name) for name, vk, sig in keys_and_sigs]) +def test_signatures(verifying_key, signature): + assert verifying_key.verify(signature, example_data, + sigdecode=sigdecode_der) + + +@st.composite +def st_fuzzed_sig(draw, keys_and_sigs): + """ + Hypothesis strategy that generates pairs of VerifyingKey and malformed + signatures created by fuzzing of a valid signature. + """ + name, verifying_key, old_sig = draw(st.sampled_from(keys_and_sigs)) + note("Configuration: {0}".format(name)) + + sig = bytearray(old_sig) + + # decide which bytes should be removed + to_remove = draw(st.lists( + st.integers(min_value=0, max_value=len(sig)-1), + unique=True)) + to_remove.sort() + for i in reversed(to_remove): + del sig[i] + note("Remove bytes: {0}".format(to_remove)) + + # decide which bytes of the original signature should be changed + if sig: # pragma: no branch + xors = draw(st.dictionaries( + st.integers(min_value=0, max_value=len(sig)-1), + st.integers(min_value=1, max_value=255))) + for i, val in xors.items(): + sig[i] ^= val + note("xors: {0}".format(xors)) + + # decide where new data should be inserted + insert_pos = draw(st.integers(min_value=0, max_value=len(sig))) + # NIST521p signature is about 140 bytes long, test slightly longer + insert_data = draw(st.binary(max_size=256)) + + sig = sig[:insert_pos] + insert_data + sig[insert_pos:] + note("Inserted at position {0} bytes: {1!r}" + .format(insert_pos, insert_data)) + + sig = bytes(sig) + # make sure that there was performed at least one mutation on the data + assume(to_remove or xors or insert_data) + # and that the mutations didn't cancel each-other out + assume(sig != old_sig) + + return verifying_key, sig + + +params = {} +# not supported in hypothesis 2.0.0 +if sys.version_info >= (2, 7): # pragma: no branch + from hypothesis import HealthCheck + # deadline=5s because NIST521p are slow to verify + params["deadline"] = 5000 + params["suppress_health_check"] = [HealthCheck.data_too_large, + HealthCheck.filter_too_much, + HealthCheck.too_slow] + +slow_params = dict(params) +slow_params["max_examples"] = 10 + + +@settings(**params) +@given(st_fuzzed_sig(keys_and_sigs)) +def test_fuzzed_der_signatures(args): + verifying_key, sig = args + + with pytest.raises(BadSignatureError): + verifying_key.verify(sig, example_data, sigdecode=sigdecode_der) + + +@st.composite +def st_random_der_ecdsa_sig_value(draw): + """ + Hypothesis strategy for selecting random values and encoding them + to ECDSA-Sig-Value object:: + + ECDSA-Sig-Value ::= SEQUENCE { + r INTEGER, + s INTEGER + } + """ + name, verifying_key, _ = draw(st.sampled_from(keys_and_sigs)) + note("Configuration: {0}".format(name)) + order = int(verifying_key.curve.order) + + # the encode_integer doesn't suport negative numbers, would be nice + # to generate them too, but we have coverage for remove_integer() + # verifying that it doesn't accept them, so meh. + # Test all numbers around the ones that can show up (around order) + # way smaller and slightly bigger + r = draw(st.integers(min_value=0, max_value=order << 4) | + st.integers(min_value=order >> 2, max_value=order+1)) + s = draw(st.integers(min_value=0, max_value=order << 4) | + st.integers(min_value=order >> 2, max_value=order+1)) + + sig = encode_sequence(encode_integer(r), encode_integer(s)) + + return verifying_key, sig + + +@settings(**slow_params) +@given(st_random_der_ecdsa_sig_value()) +def test_random_der_ecdsa_sig_value(params): + """ + Check if random values encoded in ECDSA-Sig-Value structure are rejected + as signature. + """ + verifying_key, sig = params + + with pytest.raises(BadSignatureError): + verifying_key.verify(sig, example_data, sigdecode=sigdecode_der) + + +def st_der_integer(*args, **kwargs): + """ + Hypothesis strategy that returns a random positive integer as DER + INTEGER. + Parameters are passed to hypothesis.strategy.integer. + """ + if "min_value" not in kwargs: # pragma: no branch + kwargs["min_value"] = 0 + return st.builds(encode_integer, st.integers(*args, **kwargs)) + + +@st.composite +def st_der_bit_string(draw, *args, **kwargs): + """ + Hypothesis strategy that returns a random DER BIT STRING. + Parameters are passed to hypothesis.strategy.binary. + """ + data = draw(st.binary(*args, **kwargs)) + if data: + unused = draw(st.integers(min_value=0, max_value=7)) + data = bytearray(data) + data[-1] &= - (2**unused) + data = bytes(data) + else: + unused = 0 + return encode_bitstring(data, unused) + + +def st_der_octet_string(*args, **kwargs): + """ + Hypothesis strategy that returns a random DER OCTET STRING object. + Parameters are passed to hypothesis.strategy.binary + """ + return st.builds(encode_octet_string, st.binary(*args, **kwargs)) + + +def st_der_null(): + """ + Hypothesis strategy that returns DER NULL object. + """ + return st.just(b'\x05\x00') + + +@st.composite +def st_der_oid(draw): + """ + Hypothesis strategy that returns DER OBJECT IDENTIFIER objects. + """ + first = draw(st.integers(min_value=0, max_value=2)) + if first < 2: + second = draw(st.integers(min_value=0, max_value=39)) + else: + second = draw(st.integers(min_value=0, max_value=2**512)) + rest = draw(st.lists(st.integers(min_value=0, max_value=2**512), + max_size=50)) + return encode_oid(first, second, *rest) + + +def st_der(): + """ + Hypothesis strategy that returns random DER structures. + + A valid DER structure is any primitive object, an octet encoding + of a valid DER structure, sequence of valid DER objects or a constructed + encoding of any of the above. + """ + return st.recursive( + st.just(b'') | st_der_integer(max_value=2**4096) | + st_der_bit_string(max_size=1024**2) | + st_der_octet_string(max_size=1024**2) | st_der_null() | st_der_oid(), + lambda children: + st.builds(lambda x: encode_octet_string(x), st.one_of(children)) | + st.builds(lambda x: encode_bitstring(x, 0), st.one_of(children)) | + st.builds(lambda x: encode_sequence(*x), + st.lists(children, max_size=200)) | + st.builds(lambda tag, x: + encode_constructed(tag, x), + st.integers(min_value=0, max_value=0x3f), + st.one_of(children)), + max_leaves=40 + ) + + +@settings(**params) +@given(st.sampled_from(keys_and_sigs), st_der()) +def test_random_der_as_signature(params, der): + """Check if random DER structures are rejected as signature""" + name, verifying_key, _ = params + + with pytest.raises(BadSignatureError): + verifying_key.verify(der, example_data, sigdecode=sigdecode_der) + + +@settings(**params) +@given(st.sampled_from(keys_and_sigs), st.binary(max_size=1024**2)) +@example( + keys_and_sigs[0], + encode_sequence(encode_integer(0), encode_integer(0))) +@example( + keys_and_sigs[0], + encode_sequence(encode_integer(1), encode_integer(1)) + b'\x00') +@example( + keys_and_sigs[0], + encode_sequence(*[encode_integer(1)] * 3)) +def test_random_bytes_as_signature(params, der): + """Check if random bytes are rejected as signature""" + name, verifying_key, _ = params + + with pytest.raises(BadSignatureError): + verifying_key.verify(der, example_data, sigdecode=sigdecode_der) + + +keys_and_string_sigs = [ + (name, verifying_key, + sigencode_string(*sigdecode_der(sig, verifying_key.curve.order), + order=verifying_key.curve.order)) + for name, verifying_key, sig in keys_and_sigs] +""" +Name of the curve+hash combination, VerifyingKey and signature as a +byte string. +""" + + +@settings(**params) +@given(st_fuzzed_sig(keys_and_string_sigs)) +def test_fuzzed_string_signatures(params): + verifying_key, sig = params + + with pytest.raises(BadSignatureError): + verifying_key.verify(sig, example_data, sigdecode=sigdecode_string) diff --git a/third_party/python/ecdsa/ecdsa/test_numbertheory.py b/third_party/python/ecdsa/ecdsa/test_numbertheory.py new file mode 100644 index 0000000000..4cec4fd6a7 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_numbertheory.py @@ -0,0 +1,275 @@ +import operator +from six import print_ +from functools import reduce +import operator +try: + import unittest2 as unittest +except ImportError: + import unittest +import hypothesis.strategies as st +import pytest +from hypothesis import given, settings, example +try: + from hypothesis import HealthCheck + HC_PRESENT=True +except ImportError: # pragma: no cover + HC_PRESENT=False +from .numbertheory import (SquareRootError, factorization, gcd, lcm, + jacobi, inverse_mod, + is_prime, next_prime, smallprimes, + square_root_mod_prime) + + +BIGPRIMES = (999671, + 999683, + 999721, + 999727, + 999749, + 999763, + 999769, + 999773, + 999809, + 999853, + 999863, + 999883, + 999907, + 999917, + 999931, + 999953, + 999959, + 999961, + 999979, + 999983) + + +@pytest.mark.parametrize( + "prime, next_p", + [(p, q) for p, q in zip(BIGPRIMES[:-1], BIGPRIMES[1:])]) +def test_next_prime(prime, next_p): + assert next_prime(prime) == next_p + + +@pytest.mark.parametrize( + "val", + [-1, 0, 1]) +def test_next_prime_with_nums_less_2(val): + assert next_prime(val) == 2 + + +@pytest.mark.parametrize("prime", smallprimes) +def test_square_root_mod_prime_for_small_primes(prime): + squares = set() + for num in range(0, 1 + prime // 2): + sq = num * num % prime + squares.add(sq) + root = square_root_mod_prime(sq, prime) + # tested for real with TestNumbertheory.test_square_root_mod_prime + assert root * root % prime == sq + + for nonsquare in range(0, prime): + if nonsquare in squares: + continue + with pytest.raises(SquareRootError): + square_root_mod_prime(nonsquare, prime) + + +@st.composite +def st_two_nums_rel_prime(draw): + # 521-bit is the biggest curve we operate on, use 1024 for a bit + # of breathing space + mod = draw(st.integers(min_value=2, max_value=2**1024)) + num = draw(st.integers(min_value=1, max_value=mod-1) + .filter(lambda x: gcd(x, mod) == 1)) + return num, mod + + +@st.composite +def st_primes(draw, *args, **kwargs): + if "min_value" not in kwargs: # pragma: no branch + kwargs["min_value"] = 1 + prime = draw(st.sampled_from(smallprimes) | + st.integers(*args, **kwargs) + .filter(is_prime)) + return prime + + +@st.composite +def st_num_square_prime(draw): + prime = draw(st_primes(max_value=2**1024)) + num = draw(st.integers(min_value=0, max_value=1 + prime // 2)) + sq = num * num % prime + return sq, prime + + +@st.composite +def st_comp_with_com_fac(draw): + """ + Strategy that returns lists of numbers, all having a common factor. + """ + primes = draw(st.lists(st_primes(max_value=2**512), min_size=1, + max_size=10)) + # select random prime(s) that will make the common factor of composites + com_fac_primes = draw(st.lists(st.sampled_from(primes), + min_size=1, max_size=20)) + com_fac = reduce(operator.mul, com_fac_primes, 1) + + # select at most 20 lists (returned numbers), + # each having at most 30 primes (factors) including none (then the number + # will be 1) + comp_primes = draw( + st.integers(min_value=1, max_value=20). + flatmap(lambda n: st.lists(st.lists(st.sampled_from(primes), + max_size=30), + min_size=1, max_size=n))) + + return [reduce(operator.mul, nums, 1) * com_fac for nums in comp_primes] + + +@st.composite +def st_comp_no_com_fac(draw): + """ + Strategy that returns lists of numbers that don't have a common factor. + """ + primes = draw(st.lists(st_primes(max_value=2**512), + min_size=2, max_size=10, unique=True)) + # first select the primes that will create the uncommon factor + # between returned numbers + uncom_fac_primes = draw(st.lists( + st.sampled_from(primes), + min_size=1, max_size=len(primes)-1, unique=True)) + uncom_fac = reduce(operator.mul, uncom_fac_primes, 1) + + # then build composites from leftover primes + leftover_primes = [i for i in primes if i not in uncom_fac_primes] + + assert leftover_primes + assert uncom_fac_primes + + # select at most 20 lists, each having at most 30 primes + # selected from the leftover_primes list + number_primes = draw( + st.integers(min_value=1, max_value=20). + flatmap(lambda n: st.lists(st.lists(st.sampled_from(leftover_primes), + max_size=30), + min_size=1, max_size=n))) + + numbers = [reduce(operator.mul, nums, 1) for nums in number_primes] + + insert_at = draw(st.integers(min_value=0, max_value=len(numbers))) + numbers.insert(insert_at, uncom_fac) + return numbers + + +HYP_SETTINGS = {} +if HC_PRESENT: # pragma: no branch + HYP_SETTINGS['suppress_health_check']=[HealthCheck.filter_too_much, + HealthCheck.too_slow] + # the factorization() sometimes takes a long time to finish + HYP_SETTINGS['deadline'] = 5000 + + +HYP_SLOW_SETTINGS=dict(HYP_SETTINGS) +HYP_SLOW_SETTINGS["max_examples"] = 10 + + +class TestNumbertheory(unittest.TestCase): + def test_gcd(self): + assert gcd(3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13) == 3 * 5 + assert gcd([3 * 5 * 7, 3 * 5 * 11, 3 * 5 * 13]) == 3 * 5 + assert gcd(3) == 3 + + @unittest.skipUnless(HC_PRESENT, + "Hypothesis 2.0.0 can't be made tolerant of hard to " + "meet requirements (like `is_prime()`), the test " + "case times-out on it") + @settings(**HYP_SLOW_SETTINGS) + @given(st_comp_with_com_fac()) + def test_gcd_with_com_factor(self, numbers): + n = gcd(numbers) + assert 1 in numbers or n != 1 + for i in numbers: + assert i % n == 0 + + @unittest.skipUnless(HC_PRESENT, + "Hypothesis 2.0.0 can't be made tolerant of hard to " + "meet requirements (like `is_prime()`), the test " + "case times-out on it") + @settings(**HYP_SLOW_SETTINGS) + @given(st_comp_no_com_fac()) + def test_gcd_with_uncom_factor(self, numbers): + n = gcd(numbers) + assert n == 1 + + @given(st.lists(st.integers(min_value=1, max_value=2**8192), + min_size=1, max_size=20)) + def test_gcd_with_random_numbers(self, numbers): + n = gcd(numbers) + for i in numbers: + # check that at least it's a divider + assert i % n == 0 + + def test_lcm(self): + assert lcm(3, 5 * 3, 7 * 3) == 3 * 5 * 7 + assert lcm([3, 5 * 3, 7 * 3]) == 3 * 5 * 7 + assert lcm(3) == 3 + + @given(st.lists(st.integers(min_value=1, max_value=2**8192), + min_size=1, max_size=20)) + def test_lcm_with_random_numbers(self, numbers): + n = lcm(numbers) + for i in numbers: + assert n % i == 0 + + @unittest.skipUnless(HC_PRESENT, + "Hypothesis 2.0.0 can't be made tolerant of hard to " + "meet requirements (like `is_prime()`), the test " + "case times-out on it") + @settings(**HYP_SETTINGS) + @given(st_num_square_prime()) + def test_square_root_mod_prime(self, vals): + square, prime = vals + + calc = square_root_mod_prime(square, prime) + assert calc * calc % prime == square + + @settings(**HYP_SETTINGS) + @given(st.integers(min_value=1, max_value=10**12)) + @example(265399 * 1526929) + @example(373297 ** 2 * 553991) + def test_factorization(self, num): + factors = factorization(num) + mult = 1 + for i in factors: + mult *= i[0] ** i[1] + assert mult == num + + @settings(**HYP_SETTINGS) + @given(st.integers(min_value=3, max_value=1000).filter(lambda x: x % 2)) + def test_jacobi(self, mod): + if is_prime(mod): + squares = set() + for root in range(1, mod): + assert jacobi(root * root, mod) == 1 + squares.add(root * root % mod) + for i in range(1, mod): + if i not in squares: + assert jacobi(i, mod) == -1 + else: + factors = factorization(mod) + for a in range(1, mod): + c = 1 + for i in factors: + c *= jacobi(a, i[0]) ** i[1] + assert c == jacobi(a, mod) + + @given(st_two_nums_rel_prime()) + def test_inverse_mod(self, nums): + num, mod = nums + + inv = inverse_mod(num, mod) + + assert 0 < inv < mod + assert num * inv % mod == 1 + + def test_inverse_mod_with_zero(self): + assert 0 == inverse_mod(0, 11) diff --git a/third_party/python/ecdsa/ecdsa/test_pyecdsa.py b/third_party/python/ecdsa/ecdsa/test_pyecdsa.py new file mode 100644 index 0000000000..d83eb01d10 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_pyecdsa.py @@ -0,0 +1,1445 @@ +from __future__ import with_statement, division + +try: + import unittest2 as unittest +except ImportError: + import unittest +import os +import time +import shutil +import subprocess +import pytest +from binascii import hexlify, unhexlify +from hashlib import sha1, sha256, sha384, sha512 +import hashlib +from functools import partial + +from hypothesis import given +import hypothesis.strategies as st + +from six import b, print_, binary_type +from .keys import SigningKey, VerifyingKey +from .keys import BadSignatureError, MalformedPointError, BadDigestError +from . import util +from .util import sigencode_der, sigencode_strings +from .util import sigdecode_der, sigdecode_strings +from .util import number_to_string, encoded_oid_ecPublicKey, \ + MalformedSignature +from .curves import Curve, UnknownCurveError +from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, \ + SECP256k1, BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, \ + BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, BRAINPOOLP512r1, \ + curves +from .ecdsa import curve_brainpoolp224r1, curve_brainpoolp256r1, \ + curve_brainpoolp384r1, curve_brainpoolp512r1 +from .ellipticcurve import Point +from . import der +from . import rfc6979 +from . import ecdsa + + +class SubprocessError(Exception): + pass + + +def run_openssl(cmd): + OPENSSL = "openssl" + p = subprocess.Popen([OPENSSL] + cmd.split(), + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT) + stdout, ignored = p.communicate() + if p.returncode != 0: + raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" % + (OPENSSL, cmd, p.returncode, stdout)) + return stdout.decode() + + +class ECDSA(unittest.TestCase): + def test_basic(self): + priv = SigningKey.generate() + pub = priv.get_verifying_key() + + data = b("blahblah") + sig = priv.sign(data) + + self.assertTrue(pub.verify(sig, data)) + self.assertRaises(BadSignatureError, pub.verify, sig, data + b("bad")) + + pub2 = VerifyingKey.from_string(pub.to_string()) + self.assertTrue(pub2.verify(sig, data)) + + def test_deterministic(self): + data = b("blahblah") + secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16) + + priv = SigningKey.from_secret_exponent(secexp, SECP256k1, sha256) + pub = priv.get_verifying_key() + + k = rfc6979.generate_k( + SECP256k1.generator.order(), secexp, sha256, sha256(data).digest()) + + sig1 = priv.sign(data, k=k) + self.assertTrue(pub.verify(sig1, data)) + + sig2 = priv.sign(data, k=k) + self.assertTrue(pub.verify(sig2, data)) + + sig3 = priv.sign_deterministic(data, sha256) + self.assertTrue(pub.verify(sig3, data)) + + self.assertEqual(sig1, sig2) + self.assertEqual(sig1, sig3) + + def test_bad_usage(self): + # sk=SigningKey() is wrong + self.assertRaises(TypeError, SigningKey) + self.assertRaises(TypeError, VerifyingKey) + + def test_lengths(self): + default = NIST192p + priv = SigningKey.generate() + pub = priv.get_verifying_key() + self.assertEqual(len(pub.to_string()), default.verifying_key_length) + sig = priv.sign(b("data")) + self.assertEqual(len(sig), default.signature_length) + for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, + BRAINPOOLP160r1, BRAINPOOLP192r1, BRAINPOOLP224r1, + BRAINPOOLP256r1, BRAINPOOLP320r1, BRAINPOOLP384r1, + BRAINPOOLP512r1): + start = time.time() + priv = SigningKey.generate(curve=curve) + pub1 = priv.get_verifying_key() + keygen_time = time.time() - start + pub2 = VerifyingKey.from_string(pub1.to_string(), curve) + self.assertEqual(pub1.to_string(), pub2.to_string()) + self.assertEqual(len(pub1.to_string()), + curve.verifying_key_length) + start = time.time() + sig = priv.sign(b("data")) + sign_time = time.time() - start + self.assertEqual(len(sig), curve.signature_length) + + def test_serialize(self): + seed = b("secret") + curve = NIST192p + secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order) + secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order) + self.assertEqual(secexp1, secexp2) + priv1 = SigningKey.from_secret_exponent(secexp1, curve) + priv2 = SigningKey.from_secret_exponent(secexp2, curve) + self.assertEqual(hexlify(priv1.to_string()), + hexlify(priv2.to_string())) + self.assertEqual(priv1.to_pem(), priv2.to_pem()) + pub1 = priv1.get_verifying_key() + pub2 = priv2.get_verifying_key() + data = b("data") + sig1 = priv1.sign(data) + sig2 = priv2.sign(data) + self.assertTrue(pub1.verify(sig1, data)) + self.assertTrue(pub2.verify(sig1, data)) + self.assertTrue(pub1.verify(sig2, data)) + self.assertTrue(pub2.verify(sig2, data)) + self.assertEqual(hexlify(pub1.to_string()), + hexlify(pub2.to_string())) + + def test_nonrandom(self): + s = b("all the entropy in the entire world, compressed into one line") + + def not_much_entropy(numbytes): + return s[:numbytes] + + # we control the entropy source, these two keys should be identical: + priv1 = SigningKey.generate(entropy=not_much_entropy) + priv2 = SigningKey.generate(entropy=not_much_entropy) + self.assertEqual(hexlify(priv1.get_verifying_key().to_string()), + hexlify(priv2.get_verifying_key().to_string())) + # likewise, signatures should be identical. Obviously you'd never + # want to do this with keys you care about, because the secrecy of + # the private key depends upon using different random numbers for + # each signature + sig1 = priv1.sign(b("data"), entropy=not_much_entropy) + sig2 = priv2.sign(b("data"), entropy=not_much_entropy) + self.assertEqual(hexlify(sig1), hexlify(sig2)) + + def assertTruePrivkeysEqual(self, priv1, priv2): + self.assertEqual(priv1.privkey.secret_multiplier, + priv2.privkey.secret_multiplier) + self.assertEqual(priv1.privkey.public_key.generator, + priv2.privkey.public_key.generator) + + def test_privkey_creation(self): + s = b("all the entropy in the entire world, compressed into one line") + + def not_much_entropy(numbytes): + return s[:numbytes] + + priv1 = SigningKey.generate() + self.assertEqual(priv1.baselen, NIST192p.baselen) + + priv1 = SigningKey.generate(curve=NIST224p) + self.assertEqual(priv1.baselen, NIST224p.baselen) + + priv1 = SigningKey.generate(entropy=not_much_entropy) + self.assertEqual(priv1.baselen, NIST192p.baselen) + priv2 = SigningKey.generate(entropy=not_much_entropy) + self.assertEqual(priv2.baselen, NIST192p.baselen) + self.assertTruePrivkeysEqual(priv1, priv2) + + priv1 = SigningKey.from_secret_exponent(secexp=3) + self.assertEqual(priv1.baselen, NIST192p.baselen) + priv2 = SigningKey.from_secret_exponent(secexp=3) + self.assertTruePrivkeysEqual(priv1, priv2) + + priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p) + self.assertEqual(priv1.baselen, NIST224p.baselen) + + def test_privkey_strings(self): + priv1 = SigningKey.generate() + s1 = priv1.to_string() + self.assertEqual(type(s1), binary_type) + self.assertEqual(len(s1), NIST192p.baselen) + priv2 = SigningKey.from_string(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + s1 = priv1.to_pem() + self.assertEqual(type(s1), binary_type) + self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) + self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) + priv2 = SigningKey.from_pem(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + s1 = priv1.to_der() + self.assertEqual(type(s1), binary_type) + priv2 = SigningKey.from_der(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + priv1 = SigningKey.generate(curve=NIST256p) + s1 = priv1.to_pem() + self.assertEqual(type(s1), binary_type) + self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) + self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) + priv2 = SigningKey.from_pem(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + s1 = priv1.to_der() + self.assertEqual(type(s1), binary_type) + priv2 = SigningKey.from_der(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + def test_privkey_strings_brainpool(self): + priv1 = SigningKey.generate(curve=BRAINPOOLP512r1) + s1 = priv1.to_pem() + self.assertEqual(type(s1), binary_type) + self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----"))) + self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----"))) + priv2 = SigningKey.from_pem(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + s1 = priv1.to_der() + self.assertEqual(type(s1), binary_type) + priv2 = SigningKey.from_der(s1) + self.assertTruePrivkeysEqual(priv1, priv2) + + def assertTruePubkeysEqual(self, pub1, pub2): + self.assertEqual(pub1.pubkey.point, pub2.pubkey.point) + self.assertEqual(pub1.pubkey.generator, pub2.pubkey.generator) + self.assertEqual(pub1.curve, pub2.curve) + + def test_pubkey_strings(self): + priv1 = SigningKey.generate() + pub1 = priv1.get_verifying_key() + s1 = pub1.to_string() + self.assertEqual(type(s1), binary_type) + self.assertEqual(len(s1), NIST192p.verifying_key_length) + pub2 = VerifyingKey.from_string(s1) + self.assertTruePubkeysEqual(pub1, pub2) + + priv1 = SigningKey.generate(curve=NIST256p) + pub1 = priv1.get_verifying_key() + s1 = pub1.to_string() + self.assertEqual(type(s1), binary_type) + self.assertEqual(len(s1), NIST256p.verifying_key_length) + pub2 = VerifyingKey.from_string(s1, curve=NIST256p) + self.assertTruePubkeysEqual(pub1, pub2) + + pub1_der = pub1.to_der() + self.assertEqual(type(pub1_der), binary_type) + pub2 = VerifyingKey.from_der(pub1_der) + self.assertTruePubkeysEqual(pub1, pub2) + + self.assertRaises(der.UnexpectedDER, + VerifyingKey.from_der, pub1_der + b("junk")) + badpub = VerifyingKey.from_der(pub1_der) + + class FakeGenerator: + def order(self): + return 123456789 + + badcurve = Curve("unknown", None, FakeGenerator(), (1, 2, 3, 4, 5, 6), None) + badpub.curve = badcurve + badder = badpub.to_der() + self.assertRaises(UnknownCurveError, VerifyingKey.from_der, badder) + + pem = pub1.to_pem() + self.assertEqual(type(pem), binary_type) + self.assertTrue(pem.startswith(b("-----BEGIN PUBLIC KEY-----")), pem) + self.assertTrue(pem.strip().endswith(b("-----END PUBLIC KEY-----")), pem) + pub2 = VerifyingKey.from_pem(pem) + self.assertTruePubkeysEqual(pub1, pub2) + + def test_pubkey_strings_brainpool(self): + priv1 = SigningKey.generate(curve=BRAINPOOLP512r1) + pub1 = priv1.get_verifying_key() + s1 = pub1.to_string() + self.assertEqual(type(s1), binary_type) + self.assertEqual(len(s1), BRAINPOOLP512r1.verifying_key_length) + pub2 = VerifyingKey.from_string(s1, curve=BRAINPOOLP512r1) + self.assertTruePubkeysEqual(pub1, pub2) + + pub1_der = pub1.to_der() + self.assertEqual(type(pub1_der), binary_type) + pub2 = VerifyingKey.from_der(pub1_der) + self.assertTruePubkeysEqual(pub1, pub2) + + def test_vk_to_der_with_invalid_point_encoding(self): + sk = SigningKey.generate() + vk = sk.verifying_key + + with self.assertRaises(ValueError): + vk.to_der("raw") + + def test_sk_to_der_with_invalid_point_encoding(self): + sk = SigningKey.generate() + + with self.assertRaises(ValueError): + sk.to_der("raw") + + def test_vk_from_der_garbage_after_curve_oid(self): + type_oid_der = encoded_oid_ecPublicKey + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + \ + b('garbage') + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\x00\xff', None) + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(der.UnexpectedDER): + VerifyingKey.from_der(to_decode) + + def test_vk_from_der_invalid_key_type(self): + type_oid_der = der.encode_oid(*(1, 2, 3)) + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\x00\xff', None) + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(der.UnexpectedDER): + VerifyingKey.from_der(to_decode) + + def test_vk_from_der_garbage_after_point_string(self): + type_oid_der = encoded_oid_ecPublicKey + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\x00\xff', None) + b('garbage') + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(der.UnexpectedDER): + VerifyingKey.from_der(to_decode) + + def test_vk_from_der_invalid_bitstring(self): + type_oid_der = encoded_oid_ecPublicKey + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\x08\xff', None) + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(der.UnexpectedDER): + VerifyingKey.from_der(to_decode) + + def test_vk_from_der_with_invalid_length_of_encoding(self): + type_oid_der = encoded_oid_ecPublicKey + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\xff'*64, 0) + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_der(to_decode) + + def test_vk_from_der_with_raw_encoding(self): + type_oid_der = encoded_oid_ecPublicKey + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + enc_type_der = der.encode_sequence(type_oid_der, curve_oid_der) + point_der = der.encode_bitstring(b'\xff'*48, 0) + to_decode = der.encode_sequence(enc_type_der, point_der) + + with self.assertRaises(der.UnexpectedDER): + VerifyingKey.from_der(to_decode) + + def test_signature_strings(self): + priv1 = SigningKey.generate() + pub1 = priv1.get_verifying_key() + data = b("data") + + sig = priv1.sign(data) + self.assertEqual(type(sig), binary_type) + self.assertEqual(len(sig), NIST192p.signature_length) + self.assertTrue(pub1.verify(sig, data)) + + sig = priv1.sign(data, sigencode=sigencode_strings) + self.assertEqual(type(sig), tuple) + self.assertEqual(len(sig), 2) + self.assertEqual(type(sig[0]), binary_type) + self.assertEqual(type(sig[1]), binary_type) + self.assertEqual(len(sig[0]), NIST192p.baselen) + self.assertEqual(len(sig[1]), NIST192p.baselen) + self.assertTrue(pub1.verify(sig, data, sigdecode=sigdecode_strings)) + + sig_der = priv1.sign(data, sigencode=sigencode_der) + self.assertEqual(type(sig_der), binary_type) + self.assertTrue(pub1.verify(sig_der, data, sigdecode=sigdecode_der)) + + def test_sig_decode_strings_with_invalid_count(self): + with self.assertRaises(MalformedSignature): + sigdecode_strings([b('one'), b('two'), b('three')], 0xff) + + def test_sig_decode_strings_with_wrong_r_len(self): + with self.assertRaises(MalformedSignature): + sigdecode_strings([b('one'), b('two')], 0xff) + + def test_sig_decode_strings_with_wrong_s_len(self): + with self.assertRaises(MalformedSignature): + sigdecode_strings([b('\xa0'), b('\xb0\xff')], 0xff) + + def test_verify_with_too_long_input(self): + sk = SigningKey.generate() + vk = sk.verifying_key + + with self.assertRaises(BadDigestError): + vk.verify_digest(None, b('\x00') * 128) + + def test_sk_from_secret_exponent_with_wrong_sec_exponent(self): + with self.assertRaises(MalformedPointError): + SigningKey.from_secret_exponent(0) + + def test_sk_from_string_with_wrong_len_string(self): + with self.assertRaises(MalformedPointError): + SigningKey.from_string(b('\x01')) + + def test_sk_from_der_with_junk_after_sequence(self): + ver_der = der.encode_integer(1) + to_decode = der.encode_sequence(ver_der) + b('garbage') + + with self.assertRaises(der.UnexpectedDER): + SigningKey.from_der(to_decode) + + def test_sk_from_der_with_wrong_version(self): + ver_der = der.encode_integer(0) + to_decode = der.encode_sequence(ver_der) + + with self.assertRaises(der.UnexpectedDER): + SigningKey.from_der(to_decode) + + def test_sk_from_der_invalid_const_tag(self): + ver_der = der.encode_integer(1) + privkey_der = der.encode_octet_string(b('\x00\xff')) + curve_oid_der = der.encode_oid(*(1, 2, 3)) + const_der = der.encode_constructed(1, curve_oid_der) + to_decode = der.encode_sequence(ver_der, privkey_der, const_der, + curve_oid_der) + + with self.assertRaises(der.UnexpectedDER): + SigningKey.from_der(to_decode) + + def test_sk_from_der_garbage_after_privkey_oid(self): + ver_der = der.encode_integer(1) + privkey_der = der.encode_octet_string(b('\x00\xff')) + curve_oid_der = der.encode_oid(*(1, 2, 3)) + b('garbage') + const_der = der.encode_constructed(0, curve_oid_der) + to_decode = der.encode_sequence(ver_der, privkey_der, const_der, + curve_oid_der) + + with self.assertRaises(der.UnexpectedDER): + SigningKey.from_der(to_decode) + + def test_sk_from_der_with_short_privkey(self): + ver_der = der.encode_integer(1) + privkey_der = der.encode_octet_string(b('\x00\xff')) + curve_oid_der = der.encode_oid(*(1, 2, 840, 10045, 3, 1, 1)) + const_der = der.encode_constructed(0, curve_oid_der) + to_decode = der.encode_sequence(ver_der, privkey_der, const_der, + curve_oid_der) + + sk = SigningKey.from_der(to_decode) + self.assertEqual(sk.privkey.secret_multiplier, 255) + + def test_sign_with_too_long_hash(self): + sk = SigningKey.from_secret_exponent(12) + + with self.assertRaises(BadDigestError): + sk.sign_digest(b('\xff') * 64) + + def test_hashfunc(self): + sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256) + data = b("security level is 128 bits") + sig = sk.sign(data) + vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(), + curve=NIST256p, hashfunc=sha256) + self.assertTrue(vk.verify(sig, data)) + + sk2 = SigningKey.generate(curve=NIST256p) + sig2 = sk2.sign(data, hashfunc=sha256) + vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(), + curve=NIST256p, hashfunc=sha256) + self.assertTrue(vk2.verify(sig2, data)) + + vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(), + curve=NIST256p) + self.assertTrue(vk3.verify(sig, data, hashfunc=sha256)) + + def test_public_key_recovery(self): + # Create keys + curve = NIST256p + + sk = SigningKey.generate(curve=curve) + vk = sk.get_verifying_key() + + # Sign a message + data = b("blahblah") + signature = sk.sign(data) + + # Recover verifying keys + recovered_vks = VerifyingKey.from_public_key_recovery(signature, data, curve) + + # Test if each pk is valid + for recovered_vk in recovered_vks: + # Test if recovered vk is valid for the data + self.assertTrue(recovered_vk.verify(signature, data)) + + # Test if properties are equal + self.assertEqual(vk.curve, recovered_vk.curve) + self.assertEqual(vk.default_hashfunc, recovered_vk.default_hashfunc) + + # Test if original vk is the list of recovered keys + self.assertTrue( + vk.pubkey.point in [recovered_vk.pubkey.point for recovered_vk in recovered_vks]) + + def test_public_key_recovery_with_custom_hash(self): + # Create keys + curve = NIST256p + + sk = SigningKey.generate(curve=curve, hashfunc=sha256) + vk = sk.get_verifying_key() + + # Sign a message + data = b("blahblah") + signature = sk.sign(data) + + # Recover verifying keys + recovered_vks = VerifyingKey.\ + from_public_key_recovery(signature, data, curve, + hashfunc=sha256) + + # Test if each pk is valid + for recovered_vk in recovered_vks: + # Test if recovered vk is valid for the data + self.assertTrue(recovered_vk.verify(signature, data)) + + # Test if properties are equal + self.assertEqual(vk.curve, recovered_vk.curve) + self.assertEqual(sha256, recovered_vk.default_hashfunc) + + # Test if original vk is the list of recovered keys + self.assertTrue(vk.pubkey.point in + [recovered_vk.pubkey.point for recovered_vk in recovered_vks]) + + def test_encoding(self): + sk = SigningKey.from_secret_exponent(123456789) + vk = sk.verifying_key + + exp = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + self.assertEqual(vk.to_string(), exp) + self.assertEqual(vk.to_string('raw'), exp) + self.assertEqual(vk.to_string('uncompressed'), b('\x04') + exp) + self.assertEqual(vk.to_string('compressed'), b('\x02') + exp[:24]) + self.assertEqual(vk.to_string('hybrid'), b('\x06') + exp) + + def test_decoding(self): + sk = SigningKey.from_secret_exponent(123456789) + vk = sk.verifying_key + + enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + + from_raw = VerifyingKey.from_string(enc) + self.assertEqual(from_raw.pubkey.point, vk.pubkey.point) + + from_uncompressed = VerifyingKey.from_string(b('\x04') + enc) + self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point) + + from_compressed = VerifyingKey.from_string(b('\x02') + enc[:24]) + self.assertEqual(from_compressed.pubkey.point, vk.pubkey.point) + + from_uncompressed = VerifyingKey.from_string(b('\x06') + enc) + self.assertEqual(from_uncompressed.pubkey.point, vk.pubkey.point) + + def test_decoding_with_malformed_uncompressed(self): + enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x02') + enc) + + def test_decoding_with_malformed_compressed(self): + enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x01') + enc[:24]) + + def test_decoding_with_inconsistent_hybrid(self): + enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x07') + enc) + + def test_decoding_with_point_not_on_curve(self): + enc = b('\x0c\xe0\x1d\xe0d\x1c\x8eS\x8a\xc0\x9eK\xa8x !\xd5\xc2\xc3' + '\xfd\xc8\xa0c\xff\xfb\x02\xb9\xc4\x84)\x1a\x0f\x8b\x87\xa4' + 'z\x8a#\xb5\x97\xecO\xb6\xa0HQ\x89*') + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(enc[:47] + b('\x00')) + + def test_decoding_with_point_at_infinity(self): + # decoding it is unsupported, as it's not necessary to encode it + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x00')) + + def test_not_lying_on_curve(self): + enc = number_to_string(NIST192p.curve.p(), NIST192p.curve.p()+1) + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x02') + enc) + + def test_from_string_with_invalid_curve_too_short_ver_key_len(self): + # both verifying_key_length and baselen are calculated internally + # by the Curve constructor, but since we depend on them verify + # that inconsistent values are detected + curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2)) + curve.verifying_key_length = 16 + curve.baselen = 32 + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x00')*16, curve) + + def test_from_string_with_invalid_curve_too_long_ver_key_len(self): + # both verifying_key_length and baselen are calculated internally + # by the Curve constructor, but since we depend on them verify + # that inconsistent values are detected + curve = Curve("test", ecdsa.curve_192, ecdsa.generator_192, (1, 2)) + curve.verifying_key_length = 16 + curve.baselen = 16 + + with self.assertRaises(MalformedPointError): + VerifyingKey.from_string(b('\x00')*16, curve) + + +@pytest.mark.parametrize("val,even", + [(i, j) for i in range(256) for j in [True, False]]) +def test_VerifyingKey_decode_with_small_values(val, even): + enc = number_to_string(val, NIST192p.order) + + if even: + enc = b('\x02') + enc + else: + enc = b('\x03') + enc + + # small values can both be actual valid public keys and not, verify that + # only expected exceptions are raised if they are not + try: + vk = VerifyingKey.from_string(enc) + assert isinstance(vk, VerifyingKey) + except MalformedPointError: + assert True + + +params = [] +for curve in curves: + for enc in ["raw", "uncompressed", "compressed", "hybrid"]: + params.append(pytest.param(curve, enc, id="{0}-{1}".format( + curve.name, enc))) + + +@pytest.mark.parametrize("curve,encoding", params) +def test_VerifyingKey_encode_decode(curve, encoding): + sk = SigningKey.generate(curve=curve) + vk = sk.verifying_key + + encoded = vk.to_string(encoding) + + from_enc = VerifyingKey.from_string(encoded, curve=curve) + + assert vk.pubkey.point == from_enc.pubkey.point + + +class OpenSSL(unittest.TestCase): + # test interoperability with OpenSSL tools. Note that openssl's ECDSA + # sign/verify arguments changed between 0.9.8 and 1.0.0: the early + # versions require "-ecdsa-with-SHA1", the later versions want just + # "-SHA1" (or to leave out that argument entirely, which means the + # signature will use some default digest algorithm, probably determined + # by the key, probably always SHA1). + # + # openssl ecparam -name secp224r1 -genkey -out privkey.pem + # openssl ec -in privkey.pem -text -noout # get the priv/pub keys + # openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt + # openssl asn1parse -in data.sig -inform DER + # data.sig is 64 bytes, probably 56b plus ASN1 overhead + # openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $? + # openssl ec -in privkey.pem -pubout -out pubkey.pem + # openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der + + OPENSSL_SUPPORTED_CURVES = set(c.split(':')[0].strip() for c in + run_openssl("ecparam -list_curves") + .split('\n')) + + def get_openssl_messagedigest_arg(self, hash_name): + v = run_openssl("version") + # e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010", + # or "OpenSSL 0.9.8o 01 Jun 2010" + vs = v.split()[1].split(".") + if vs >= ["1", "0", "0"]: # pragma: no cover + return "-{0}".format(hash_name) + else: # pragma: no cover + return "-ecdsa-with-{0}".format(hash_name) + + # sk: 1:OpenSSL->python 2:python->OpenSSL + # vk: 3:OpenSSL->python 4:python->OpenSSL + # sig: 5:OpenSSL->python 6:python->OpenSSL + + @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime192v1") + def test_from_openssl_nist192p(self): + return self.do_test_from_openssl(NIST192p) + + @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime192v1") + def test_from_openssl_nist192p_sha256(self): + return self.do_test_from_openssl(NIST192p, "SHA256") + + @pytest.mark.skipif("secp224r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp224r1") + def test_from_openssl_nist224p(self): + return self.do_test_from_openssl(NIST224p) + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_from_openssl_nist256p(self): + return self.do_test_from_openssl(NIST256p) + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_from_openssl_nist256p_sha384(self): + return self.do_test_from_openssl(NIST256p, "SHA384") + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_from_openssl_nist256p_sha512(self): + return self.do_test_from_openssl(NIST256p, "SHA512") + + @pytest.mark.skipif("secp384r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp384r1") + def test_from_openssl_nist384p(self): + return self.do_test_from_openssl(NIST384p) + + @pytest.mark.skipif("secp521r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp521r1") + def test_from_openssl_nist521p(self): + return self.do_test_from_openssl(NIST521p) + + @pytest.mark.skipif("secp256k1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp256k1") + def test_from_openssl_secp256k1(self): + return self.do_test_from_openssl(SECP256k1) + + @pytest.mark.skipif("brainpoolP160r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP160r1") + def test_from_openssl_brainpoolp160r1(self): + return self.do_test_from_openssl(BRAINPOOLP160r1) + + @pytest.mark.skipif("brainpoolP192r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP192r1") + def test_from_openssl_brainpoolp192r1(self): + return self.do_test_from_openssl(BRAINPOOLP192r1) + + @pytest.mark.skipif("brainpoolP224r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP224r1") + def test_from_openssl_brainpoolp224r1(self): + return self.do_test_from_openssl(BRAINPOOLP224r1) + + @pytest.mark.skipif("brainpoolP256r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP256r1") + def test_from_openssl_brainpoolp256r1(self): + return self.do_test_from_openssl(BRAINPOOLP256r1) + + @pytest.mark.skipif("brainpoolP320r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP320r1") + def test_from_openssl_brainpoolp320r1(self): + return self.do_test_from_openssl(BRAINPOOLP320r1) + + @pytest.mark.skipif("brainpoolP384r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP384r1") + def test_from_openssl_brainpoolp384r1(self): + return self.do_test_from_openssl(BRAINPOOLP384r1) + + @pytest.mark.skipif("brainpoolP512r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP512r1") + def test_from_openssl_brainpoolp512r1(self): + return self.do_test_from_openssl(BRAINPOOLP512r1) + + def do_test_from_openssl(self, curve, hash_name="SHA1"): + curvename = curve.openssl_name + assert curvename + # OpenSSL: create sk, vk, sign. + # Python: read vk(3), checksig(5), read sk(1), sign, check + mdarg = self.get_openssl_messagedigest_arg(hash_name) + if os.path.isdir("t"): # pragma: no cover + shutil.rmtree("t") + os.mkdir("t") + run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename) + run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem") + data = b("data") + with open("t/data.txt", "wb") as e: + e.write(data) + run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg) + run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg) + with open("t/pubkey.pem", "rb") as e: + pubkey_pem = e.read() + vk = VerifyingKey.from_pem(pubkey_pem) # 3 + with open("t/data.sig", "rb") as e: + sig_der = e.read() + self.assertTrue(vk.verify(sig_der, data, # 5 + hashfunc=partial(hashlib.new, hash_name), + sigdecode=sigdecode_der)) + + with open("t/privkey.pem") as e: + fp = e.read() + sk = SigningKey.from_pem(fp) # 1 + sig = sk.sign( + data, + hashfunc=partial(hashlib.new, hash_name), + ) + self.assertTrue(vk.verify(sig, + data, + hashfunc=partial(hashlib.new, hash_name))) + + @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime192v1") + def test_to_openssl_nist192p(self): + self.do_test_to_openssl(NIST192p) + + @pytest.mark.skipif("prime192v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime192v1") + def test_to_openssl_nist192p_sha256(self): + self.do_test_to_openssl(NIST192p, "SHA256") + + @pytest.mark.skipif("secp224r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp224r1") + def test_to_openssl_nist224p(self): + self.do_test_to_openssl(NIST224p) + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_to_openssl_nist256p(self): + self.do_test_to_openssl(NIST256p) + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_to_openssl_nist256p_sha384(self): + self.do_test_to_openssl(NIST256p, "SHA384") + + @pytest.mark.skipif("prime256v1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support prime256v1") + def test_to_openssl_nist256p_sha512(self): + self.do_test_to_openssl(NIST256p, "SHA512") + + @pytest.mark.skipif("secp384r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp384r1") + def test_to_openssl_nist384p(self): + self.do_test_to_openssl(NIST384p) + + @pytest.mark.skipif("secp521r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp521r1") + def test_to_openssl_nist521p(self): + self.do_test_to_openssl(NIST521p) + + @pytest.mark.skipif("secp256k1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support secp256k1") + def test_to_openssl_secp256k1(self): + self.do_test_to_openssl(SECP256k1) + + @pytest.mark.skipif("brainpoolP160r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP160r1") + def test_to_openssl_brainpoolp160r1(self): + self.do_test_to_openssl(BRAINPOOLP160r1) + + @pytest.mark.skipif("brainpoolP192r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP192r1") + def test_to_openssl_brainpoolp192r1(self): + self.do_test_to_openssl(BRAINPOOLP192r1) + + @pytest.mark.skipif("brainpoolP224r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP224r1") + def test_to_openssl_brainpoolp224r1(self): + self.do_test_to_openssl(BRAINPOOLP224r1) + + @pytest.mark.skipif("brainpoolP256r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP256r1") + def test_to_openssl_brainpoolp256r1(self): + self.do_test_to_openssl(BRAINPOOLP256r1) + + @pytest.mark.skipif("brainpoolP320r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP320r1") + def test_to_openssl_brainpoolp320r1(self): + self.do_test_to_openssl(BRAINPOOLP320r1) + + @pytest.mark.skipif("brainpoolP384r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP384r1") + def test_to_openssl_brainpoolp384r1(self): + self.do_test_to_openssl(BRAINPOOLP384r1) + + @pytest.mark.skipif("brainpoolP512r1" not in OPENSSL_SUPPORTED_CURVES, + reason="system openssl does not support brainpoolP512r1") + def test_to_openssl_brainpoolp512r1(self): + self.do_test_to_openssl(BRAINPOOLP512r1) + + def do_test_to_openssl(self, curve, hash_name="SHA1"): + curvename = curve.openssl_name + assert curvename + # Python: create sk, vk, sign. + # OpenSSL: read vk(4), checksig(6), read sk(2), sign, check + mdarg = self.get_openssl_messagedigest_arg(hash_name) + if os.path.isdir("t"): # pragma: no cover + shutil.rmtree("t") + os.mkdir("t") + sk = SigningKey.generate(curve=curve) + vk = sk.get_verifying_key() + data = b("data") + with open("t/pubkey.der", "wb") as e: + e.write(vk.to_der()) # 4 + with open("t/pubkey.pem", "wb") as e: + e.write(vk.to_pem()) # 4 + sig_der = sk.sign(data, hashfunc=partial(hashlib.new, hash_name), + sigencode=sigencode_der) + + with open("t/data.sig", "wb") as e: + e.write(sig_der) # 6 + with open("t/data.txt", "wb") as e: + e.write(data) + with open("t/baddata.txt", "wb") as e: + e.write(data + b("corrupt")) + + self.assertRaises(SubprocessError, run_openssl, + "dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg) + run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg) + + with open("t/privkey.pem", "wb") as e: + e.write(sk.to_pem()) # 2 + run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg) + run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg) + + +class DER(unittest.TestCase): + def test_integer(self): + self.assertEqual(der.encode_integer(0), b("\x02\x01\x00")) + self.assertEqual(der.encode_integer(1), b("\x02\x01\x01")) + self.assertEqual(der.encode_integer(127), b("\x02\x01\x7f")) + self.assertEqual(der.encode_integer(128), b("\x02\x02\x00\x80")) + self.assertEqual(der.encode_integer(256), b("\x02\x02\x01\x00")) + # self.assertEqual(der.encode_integer(-1), b("\x02\x01\xff")) + + def s(n): + return der.remove_integer(der.encode_integer(n) + b("junk")) + self.assertEqual(s(0), (0, b("junk"))) + self.assertEqual(s(1), (1, b("junk"))) + self.assertEqual(s(127), (127, b("junk"))) + self.assertEqual(s(128), (128, b("junk"))) + self.assertEqual(s(256), (256, b("junk"))) + self.assertEqual(s(1234567890123456789012345678901234567890), + (1234567890123456789012345678901234567890, b("junk"))) + + def test_number(self): + self.assertEqual(der.encode_number(0), b("\x00")) + self.assertEqual(der.encode_number(127), b("\x7f")) + self.assertEqual(der.encode_number(128), b("\x81\x00")) + self.assertEqual(der.encode_number(3 * 128 + 7), b("\x83\x07")) + # self.assertEqual(der.read_number("\x81\x9b" + "more"), (155, 2)) + # self.assertEqual(der.encode_number(155), b("\x81\x9b")) + for n in (0, 1, 2, 127, 128, 3 * 128 + 7, 840, 10045): # , 155): + x = der.encode_number(n) + b("more") + n1, llen = der.read_number(x) + self.assertEqual(n1, n) + self.assertEqual(x[llen:], b("more")) + + def test_length(self): + self.assertEqual(der.encode_length(0), b("\x00")) + self.assertEqual(der.encode_length(127), b("\x7f")) + self.assertEqual(der.encode_length(128), b("\x81\x80")) + self.assertEqual(der.encode_length(255), b("\x81\xff")) + self.assertEqual(der.encode_length(256), b("\x82\x01\x00")) + self.assertEqual(der.encode_length(3 * 256 + 7), b("\x82\x03\x07")) + self.assertEqual(der.read_length(b("\x81\x9b") + b("more")), (155, 2)) + self.assertEqual(der.encode_length(155), b("\x81\x9b")) + for n in (0, 1, 2, 127, 128, 255, 256, 3 * 256 + 7, 155): + x = der.encode_length(n) + b("more") + n1, llen = der.read_length(x) + self.assertEqual(n1, n) + self.assertEqual(x[llen:], b("more")) + + def test_sequence(self): + x = der.encode_sequence(b("ABC"), b("DEF")) + b("GHI") + self.assertEqual(x, b("\x30\x06ABCDEFGHI")) + x1, rest = der.remove_sequence(x) + self.assertEqual(x1, b("ABCDEF")) + self.assertEqual(rest, b("GHI")) + + def test_constructed(self): + x = der.encode_constructed(0, NIST224p.encoded_oid) + self.assertEqual(hexlify(x), b("a007") + b("06052b81040021")) + x = der.encode_constructed(1, unhexlify(b("0102030a0b0c"))) + self.assertEqual(hexlify(x), b("a106") + b("0102030a0b0c")) + + +class Util(unittest.TestCase): + def test_trytryagain(self): + tta = util.randrange_from_seed__trytryagain + for i in range(1000): + seed = "seed-%d" % i + for order in (2**8 - 2, 2**8 - 1, 2**8, 2**8 + 1, 2**8 + 2, + 2**16 - 1, 2**16 + 1): + n = tta(seed, order) + self.assertTrue(1 <= n < order, (1, n, order)) + # this trytryagain *does* provide long-term stability + self.assertEqual(("%x" % (tta("seed", NIST224p.order))).encode(), + b("6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc")) + + @given(st.integers(min_value=0, max_value=10**200)) + def test_randrange(self, i): + # util.randrange does not provide long-term stability: we might + # change the algorithm in the future. + entropy = util.PRNG("seed-%d" % i) + for order in (2**8 - 2, 2**8 - 1, 2**8, + 2**16 - 1, 2**16 + 1, + ): + # that oddball 2**16+1 takes half our runtime + n = util.randrange(order, entropy=entropy) + self.assertTrue(1 <= n < order, (1, n, order)) + + def OFF_test_prove_uniformity(self): # pragma: no cover + order = 2**8 - 2 + counts = dict([(i, 0) for i in range(1, order)]) + assert 0 not in counts + assert order not in counts + for i in range(1000000): + seed = "seed-%d" % i + n = util.randrange_from_seed__trytryagain(seed, order) + counts[n] += 1 + # this technique should use the full range + self.assertTrue(counts[order - 1]) + for i in range(1, order): + print_("%3d: %s" % (i, "*" * (counts[i] // 100))) + + +class RFC6979(unittest.TestCase): + # https://tools.ietf.org/html/rfc6979#appendix-A.1 + def _do(self, generator, secexp, hsh, hash_func, expected): + actual = rfc6979.generate_k(generator.order(), secexp, hash_func, hsh) + self.assertEqual(expected, actual) + + def test_SECP256k1(self): + '''RFC doesn't contain test vectors for SECP256k1 used in bitcoin. + This vector has been computed by Golang reference implementation instead.''' + self._do( + generator=SECP256k1.generator, + secexp=int("9d0219792467d7d37b4d43298a7d0c05", 16), + hsh=sha256(b("sample")).digest(), + hash_func=sha256, + expected=int("8fa1f95d514760e498f28957b824ee6ec39ed64826ff4fecc2b5739ec45b91cd", 16)) + + def test_SECP256k1_2(self): + self._do( + generator=SECP256k1.generator, + secexp=int("cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50", 16), + hsh=sha256(b("sample")).digest(), + hash_func=sha256, + expected=int("2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3", 16)) + + def test_SECP256k1_3(self): + self._do( + generator=SECP256k1.generator, + secexp=0x1, + hsh=sha256(b("Satoshi Nakamoto")).digest(), + hash_func=sha256, + expected=0x8F8A276C19F4149656B280621E358CCE24F5F52542772691EE69063B74F15D15) + + def test_SECP256k1_4(self): + self._do( + generator=SECP256k1.generator, + secexp=0x1, + hsh=sha256(b("All those moments will be lost in time, like tears in rain. Time to die...")).digest(), + hash_func=sha256, + expected=0x38AA22D72376B4DBC472E06C3BA403EE0A394DA63FC58D88686C611ABA98D6B3) + + def test_SECP256k1_5(self): + self._do( + generator=SECP256k1.generator, + secexp=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140, + hsh=sha256(b("Satoshi Nakamoto")).digest(), + hash_func=sha256, + expected=0x33A19B60E25FB6F4435AF53A3D42D493644827367E6453928554F43E49AA6F90) + + def test_SECP256k1_6(self): + self._do( + generator=SECP256k1.generator, + secexp=0xf8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181, + hsh=sha256(b("Alan Turing")).digest(), + hash_func=sha256, + expected=0x525A82B70E67874398067543FD84C83D30C175FDC45FDEEE082FE13B1D7CFDF1) + + def test_1(self): + # Basic example of the RFC, it also tests 'try-try-again' from Step H of rfc6979 + self._do( + generator=Point(None, 0, 0, int("4000000000000000000020108A2E0CC0D99F8A5EF", 16)), + secexp=int("09A4D6792295A7F730FC3F2B49CBC0F62E862272F", 16), + hsh=unhexlify(b("AF2BDBE1AA9B6EC1E2ADE1D694F41FC71A831D0268E9891562113D8A62ADD1BF")), + hash_func=sha256, + expected=int("23AF4074C90A02B3FE61D286D5C87F425E6BDD81B", 16)) + + def test_2(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha1(b("sample")).digest(), + hash_func=sha1, + expected=int("37D7CA00D2C7B0E5E412AC03BD44BA837FDD5B28CD3B0021", 16)) + + def test_3(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha256(b("sample")).digest(), + hash_func=sha256, + expected=int("32B1B6D7D42A05CB449065727A84804FB1A3E34D8F261496", 16)) + + def test_4(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha512(b("sample")).digest(), + hash_func=sha512, + expected=int("A2AC7AB055E4F20692D49209544C203A7D1F2C0BFBC75DB1", 16)) + + def test_5(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha1(b("test")).digest(), + hash_func=sha1, + expected=int("D9CF9C3D3297D3260773A1DA7418DB5537AB8DD93DE7FA25", 16)) + + def test_6(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha256(b("test")).digest(), + hash_func=sha256, + expected=int("5C4CE89CF56D9E7C77C8585339B006B97B5F0680B4306C6C", 16)) + + def test_7(self): + self._do( + generator=NIST192p.generator, + secexp=int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16), + hsh=sha512(b("test")).digest(), + hash_func=sha512, + expected=int("0758753A5254759C7CFBAD2E2D9B0792EEE44136C9480527", 16)) + + def test_8(self): + self._do( + generator=NIST521p.generator, + secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), + hsh=sha1(b("sample")).digest(), + hash_func=sha1, + expected=int("089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9", 16)) + + def test_9(self): + self._do( + generator=NIST521p.generator, + secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), + hsh=sha256(b("sample")).digest(), + hash_func=sha256, + expected=int("0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0", 16)) + + def test_10(self): + self._do( + generator=NIST521p.generator, + secexp=int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16), + hsh=sha512(b("test")).digest(), + hash_func=sha512, + expected=int("16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D", 16)) + + +class ECDH(unittest.TestCase): + def _do(self, curve, generator, dA, x_qA, y_qA, dB, x_qB, y_qB, x_Z, y_Z): + qA = dA * generator + qB = dB * generator + Z = dA * qB + self.assertEqual(Point(curve, x_qA, y_qA), qA) + self.assertEqual(Point(curve, x_qB, y_qB), qB) + self.assertTrue((dA * qB) == + (dA * dB * generator) == + (dB * dA * generator) == + (dB * qA)) + self.assertEqual(Point(curve, x_Z, y_Z), Z) + + +class RFC6932(ECDH): + # https://tools.ietf.org/html/rfc6932#appendix-A.1 + + def test_brainpoolP224r1(self): + self._do( + curve=curve_brainpoolp224r1, + generator=BRAINPOOLP224r1.generator, + dA=int("7C4B7A2C8A4BAD1FBB7D79CC0955DB7C6A4660CA64CC4778159B495E", + 16), + x_qA=int("B104A67A6F6E85E14EC1825E1539E8ECDBBF584922367DD88C6BDCF2", + 16), + y_qA=int("46D782E7FDB5F60CD8404301AC5949C58EDB26BC68BA07695B750A94", + 16), + dB=int("63976D4AAE6CD0F6DD18DEFEF55D96569D0507C03E74D6486FFA28FB", + 16), + x_qB=int("2A97089A9296147B71B21A4B574E1278245B536F14D8C2B9D07A874E", + 16), + y_qB=int("9B900D7C77A709A797276B8CA1BA61BB95B546FC29F862E44D59D25B", + 16), + x_Z=int("312DFD98783F9FB77B9704945A73BEB6DCCBE3B65D0F967DCAB574EB", + 16), + y_Z=int("6F800811D64114B1C48C621AB3357CF93F496E4238696A2A012B3C98", + 16)) + + def test_brainpoolP256r1(self): + self._do( + curve=curve_brainpoolp256r1, + generator=BRAINPOOLP256r1.generator, + dA=int("041EB8B1E2BC681BCE8E39963B2E9FC415B05283313DD1A8BCC055F11AE" + "49699", 16), + x_qA=int("78028496B5ECAAB3C8B6C12E45DB1E02C9E4D26B4113BC4F015F60C5C" + "CC0D206", 16), + y_qA=int("A2AE1762A3831C1D20F03F8D1E3C0C39AFE6F09B4D44BBE80CD100987" + "B05F92B", 16), + dB=int("06F5240EACDB9837BC96D48274C8AA834B6C87BA9CC3EEDD81F99A16B8D" + "804D3", 16), + x_qB=int("8E07E219BA588916C5B06AA30A2F464C2F2ACFC1610A3BE2FB240B635" + "341F0DB", 16), + y_qB=int("148EA1D7D1E7E54B9555B6C9AC90629C18B63BEE5D7AA6949EBBF47B2" + "4FDE40D", 16), + x_Z=int("05E940915549E9F6A4A75693716E37466ABA79B4BF2919877A16DD2CC2" + "E23708", 16), + y_Z=int("6BC23B6702BC5A019438CEEA107DAAD8B94232FFBBC350F3B137628FE6" + "FD134C", 16)) + + def test_brainpoolP384r1(self): + self._do( + curve=curve_brainpoolp384r1, + generator=BRAINPOOLP384r1.generator, + dA=int("014EC0755B78594BA47FB0A56F6173045B4331E74BA1A6F47322E70D79D" + "828D97E095884CA72B73FDABD5910DF0FA76A", 16), + x_qA=int("45CB26E4384DAF6FB776885307B9A38B7AD1B5C692E0C32F012533277" + "8F3B8D3F50CA358099B30DEB5EE69A95C058B4E", 16), + y_qA=int("8173A1C54AFFA7E781D0E1E1D12C0DC2B74F4DF58E4A4E3AF7026C5D3" + "2DC530A2CD89C859BB4B4B768497F49AB8CC859", 16), + dB=int("6B461CB79BD0EA519A87D6828815D8CE7CD9B3CAA0B5A8262CBCD550A01" + "5C90095B976F3529957506E1224A861711D54", 16), + x_qB=int("01BF92A92EE4BE8DED1A911125C209B03F99E3161CFCC986DC7711383" + "FC30AF9CE28CA3386D59E2C8D72CE1E7B4666E8", 16), + y_qB=int("3289C4A3A4FEE035E39BDB885D509D224A142FF9FBCC5CFE5CCBB3026" + "8EE47487ED8044858D31D848F7A95C635A347AC", 16), + x_Z=int("04CC4FF3DCCCB07AF24E0ACC529955B36D7C807772B92FCBE48F3AFE9A" + "2F370A1F98D3FA73FD0C0747C632E12F1423EC", 16), + y_Z=int("7F465F90BD69AFB8F828A214EB9716D66ABC59F17AF7C75EE7F1DE22AB" + "5D05085F5A01A9382D05BF72D96698FE3FF64E", 16)) + + def test_brainpoolP512r1(self): + self._do( + curve=curve_brainpoolp512r1, + generator=BRAINPOOLP512r1.generator, + dA=int("636B6BE0482A6C1C41AA7AE7B245E983392DB94CECEA2660A379CFE1595" + "59E357581825391175FC195D28BAC0CF03A7841A383B95C262B98378287" + "4CCE6FE333", 16), + x_qA=int("0562E68B9AF7CBFD5565C6B16883B777FF11C199161ECC427A39D17EC" + "2166499389571D6A994977C56AD8252658BA8A1B72AE42F4FB7532151" + "AFC3EF0971CCDA", 16), + y_qA=int("A7CA2D8191E21776A89860AFBC1F582FAA308D551C1DC6133AF9F9C3C" + "AD59998D70079548140B90B1F311AFB378AA81F51B275B2BE6B7DEE97" + "8EFC7343EA642E", 16), + dB=int("0AF4E7F6D52EDD52907BB8DBAB3992A0BB696EC10DF11892FF205B66D38" + "1ECE72314E6A6EA079CEA06961DBA5AE6422EF2E9EE803A1F236FB96A17" + "99B86E5C8B", 16), + x_qB=int("5A7954E32663DFF11AE24712D87419F26B708AC2B92877D6BFEE2BFC4" + "3714D89BBDB6D24D807BBD3AEB7F0C325F862E8BADE4F74636B97EAAC" + "E739E11720D323", 16), + y_qB=int("96D14621A9283A1BED84DE8DD64836B2C0758B11441179DC0C54C0D49" + "A47C03807D171DD544B72CAAEF7B7CE01C7753E2CAD1A861ECA55A719" + "54EE1BA35E04BE", 16), + x_Z=int("1EE8321A4BBF93B9CF8921AB209850EC9B7066D1984EF08C2BB7232362" + "08AC8F1A483E79461A00E0D5F6921CE9D360502F85C812BEDEE23AC5B2" + "10E5811B191E", 16), + y_Z=int("2632095B7B936174B41FD2FAF369B1D18DCADEED7E410A7E251F083109" + "7C50D02CFED02607B6A2D5ADB4C0006008562208631875B58B54ECDA5A" + "4F9FE9EAABA6", 16)) + + +class RFC7027(ECDH): + # https://tools.ietf.org/html/rfc7027#appendix-A + + def test_brainpoolP256r1(self): + self._do( + curve=curve_brainpoolp256r1, + generator=BRAINPOOLP256r1.generator, + dA=int("81DB1EE100150FF2EA338D708271BE38300CB54241D79950F77B0630398" + "04F1D", 16), + x_qA=int("44106E913F92BC02A1705D9953A8414DB95E1AAA49E81D9E85F929A8E" + "3100BE5", 16), + y_qA=int("8AB4846F11CACCB73CE49CBDD120F5A900A69FD32C272223F789EF10E" + "B089BDC", 16), + dB=int("55E40BC41E37E3E2AD25C3C6654511FFA8474A91A0032087593852D3E7D" + "76BD3", 16), + x_qB=int("8D2D688C6CF93E1160AD04CC4429117DC2C41825E1E9FCA0ADDD34E6F" + "1B39F7B", 16), + y_qB=int("990C57520812BE512641E47034832106BC7D3E8DD0E4C7F1136D70065" + "47CEC6A", 16), + x_Z=int("89AFC39D41D3B327814B80940B042590F96556EC91E6AE7939BCE31F3A" + "18BF2B", 16), + y_Z=int("49C27868F4ECA2179BFD7D59B1E3BF34C1DBDE61AE12931648F43E5963" + "2504DE", 16)) + + def test_brainpoolP384r1(self): + self._do( + curve=curve_brainpoolp384r1, + generator=BRAINPOOLP384r1.generator, + dA=int("1E20F5E048A5886F1F157C74E91BDE2B98C8B52D58E5003D57053FC4B0B" + "D65D6F15EB5D1EE1610DF870795143627D042", 16), + x_qA=int("68B665DD91C195800650CDD363C625F4E742E8134667B767B1B476793" + "588F885AB698C852D4A6E77A252D6380FCAF068", 16), + y_qA=int("55BC91A39C9EC01DEE36017B7D673A931236D2F1F5C83942D049E3FA2" + "0607493E0D038FF2FD30C2AB67D15C85F7FAA59", 16), + dB=int("032640BC6003C59260F7250C3DB58CE647F98E1260ACCE4ACDA3DD869F7" + "4E01F8BA5E0324309DB6A9831497ABAC96670", 16), + x_qB=int("4D44326F269A597A5B58BBA565DA5556ED7FD9A8A9EB76C25F46DB69D" + "19DC8CE6AD18E404B15738B2086DF37E71D1EB4", 16), + y_qB=int("62D692136DE56CBE93BF5FA3188EF58BC8A3A0EC6C1E151A21038A42E" + "9185329B5B275903D192F8D4E1F32FE9CC78C48", 16), + x_Z=int("0BD9D3A7EA0B3D519D09D8E48D0785FB744A6B355E6304BC51C229FBBC" + "E239BBADF6403715C35D4FB2A5444F575D4F42", 16), + y_Z=int("0DF213417EBE4D8E40A5F76F66C56470C489A3478D146DECF6DF0D94BA" + "E9E598157290F8756066975F1DB34B2324B7BD", 16)) + + def test_brainpoolP512r1(self): + self._do( + curve=curve_brainpoolp512r1, + generator=BRAINPOOLP512r1.generator, + dA=int("16302FF0DBBB5A8D733DAB7141C1B45ACBC8715939677F6A56850A38BD8" + "7BD59B09E80279609FF333EB9D4C061231FB26F92EEB04982A5F1D1764C" + "AD57665422", 16), + x_qA=int("0A420517E406AAC0ACDCE90FCD71487718D3B953EFD7FBEC5F7F27E28" + "C6149999397E91E029E06457DB2D3E640668B392C2A7E737A7F0BF044" + "36D11640FD09FD", 16), + y_qA=int("72E6882E8DB28AAD36237CD25D580DB23783961C8DC52DFA2EC138AD4" + "72A0FCEF3887CF62B623B2A87DE5C588301EA3E5FC269B373B60724F5" + "E82A6AD147FDE7", 16), + dB=int("230E18E1BCC88A362FA54E4EA3902009292F7F8033624FD471B5D8ACE49" + "D12CFABBC19963DAB8E2F1EBA00BFFB29E4D72D13F2224562F405CB8050" + "3666B25429", 16), + x_qB=int("9D45F66DE5D67E2E6DB6E93A59CE0BB48106097FF78A081DE781CDB31" + "FCE8CCBAAEA8DD4320C4119F1E9CD437A2EAB3731FA9668AB268D871D" + "EDA55A5473199F", 16), + y_qB=int("2FDC313095BCDD5FB3A91636F07A959C8E86B5636A1E930E8396049CB" + "481961D365CC11453A06C719835475B12CB52FC3C383BCE35E27EF194" + "512B71876285FA", 16), + x_Z=int("A7927098655F1F9976FA50A9D566865DC530331846381C87256BAF3226" + "244B76D36403C024D7BBF0AA0803EAFF405D3D24F11A9B5C0BEF679FE1" + "454B21C4CD1F", 16), + y_Z=int("7DB71C3DEF63212841C463E881BDCF055523BD368240E6C3143BD8DEF8" + "B3B3223B95E0F53082FF5E412F4222537A43DF1C6D25729DDB51620A83" + "2BE6A26680A2", 16)) + + +# https://tools.ietf.org/html/rfc4754#page-5 +@pytest.mark.parametrize("w, gwx, gwy, k, msg, md, r, s, curve", + [pytest.param( + "DC51D3866A15BACDE33D96F992FCA99DA7E6EF0934E7097559C27F1614C88A7F", + "2442A5CC0ECD015FA3CA31DC8E2BBC70BF42D60CBCA20085E0822CB04235E970", + "6FC98BD7E50211A4A27102FA3549DF79EBCB4BF246B80945CDDFE7D509BBFD7D", + "9E56F509196784D963D1C0A401510EE7ADA3DCC5DEE04B154BF61AF1D5A6DECE", + b"abc", + sha256, + "CB28E0999B9C7715FD0A80D8E47A77079716CBBF917DD72E97566EA1C066957C", + "86FA3BB4E26CAD5BF90B7F81899256CE7594BB1EA0C89212748BFF3B3D5B0315", + NIST256p, + id="ECDSA-256"), + pytest.param( + "0BEB646634BA87735D77AE4809A0EBEA865535DE4C1E1DCB692E84708E81A5AF" + "62E528C38B2A81B35309668D73524D9F", + "96281BF8DD5E0525CA049C048D345D3082968D10FEDF5C5ACA0C64E6465A97EA" + "5CE10C9DFEC21797415710721F437922", + "447688BA94708EB6E2E4D59F6AB6D7EDFF9301D249FE49C33096655F5D502FAD" + "3D383B91C5E7EDAA2B714CC99D5743CA", + "B4B74E44D71A13D568003D7489908D564C7761E229C58CBFA18950096EB7463B" + "854D7FA992F934D927376285E63414FA", + b'abc', + sha384, + "FB017B914E29149432D8BAC29A514640B46F53DDAB2C69948084E2930F1C8F7E" + "08E07C9C63F2D21A07DCB56A6AF56EB3", + "B263A1305E057F984D38726A1B46874109F417BCA112674C528262A40A629AF1" + "CBB9F516CE0FA7D2FF630863A00E8B9F", + NIST384p, + id="ECDSA-384"), + pytest.param( + "0065FDA3409451DCAB0A0EAD45495112A3D813C17BFD34BDF8C1209D7DF58491" + "20597779060A7FF9D704ADF78B570FFAD6F062E95C7E0C5D5481C5B153B48B37" + "5FA1", + "0151518F1AF0F563517EDD5485190DF95A4BF57B5CBA4CF2A9A3F6474725A35F" + "7AFE0A6DDEB8BEDBCD6A197E592D40188901CECD650699C9B5E456AEA5ADD190" + "52A8", + "006F3B142EA1BFFF7E2837AD44C9E4FF6D2D34C73184BBAD90026DD5E6E85317" + "D9DF45CAD7803C6C20035B2F3FF63AFF4E1BA64D1C077577DA3F4286C58F0AEA" + "E643", + "00C1C2B305419F5A41344D7E4359933D734096F556197A9B244342B8B62F46F9" + "373778F9DE6B6497B1EF825FF24F42F9B4A4BD7382CFC3378A540B1B7F0C1B95" + "6C2F", + b'abc', + sha512, + "0154FD3836AF92D0DCA57DD5341D3053988534FDE8318FC6AAAAB68E2E6F4339" + "B19F2F281A7E0B22C269D93CF8794A9278880ED7DBB8D9362CAEACEE54432055" + "2251", + "017705A7030290D1CEB605A9A1BB03FF9CDD521E87A696EC926C8C10C8362DF4" + "975367101F67D1CF9BCCBF2F3D239534FA509E70AAC851AE01AAC68D62F86647" + "2660", + NIST521p, + id="ECDSA-521") + ]) +def test_RFC4754_vectors(w, gwx, gwy, k, msg, md, r, s, curve): + sk = SigningKey.from_string(unhexlify(w), curve) + vk = VerifyingKey.from_string(unhexlify(gwx + gwy), curve) + assert sk.verifying_key == vk + sig = sk.sign(msg, hashfunc=md, sigencode=sigencode_strings, k=int(k, 16)) + + assert sig == (unhexlify(r), unhexlify(s)) + + assert vk.verify(sig, msg, md, sigdecode_strings) diff --git a/third_party/python/ecdsa/ecdsa/test_rw_lock.py b/third_party/python/ecdsa/ecdsa/test_rw_lock.py new file mode 100644 index 0000000000..de11d15622 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/test_rw_lock.py @@ -0,0 +1,175 @@ +# Copyright Mateusz Kobos, (c) 2011 +# https://code.activestate.com/recipes/577803-reader-writer-lock-with-priority-for-writers/ +# released under the MIT licence + +import unittest +import threading +import time +import copy +from ._rwlock import RWLock + + +class Writer(threading.Thread): + def __init__(self, buffer_, rw_lock, init_sleep_time, sleep_time, to_write): + """ + @param buffer_: common buffer_ shared by the readers and writers + @type buffer_: list + @type rw_lock: L{RWLock} + @param init_sleep_time: sleep time before doing any action + @type init_sleep_time: C{float} + @param sleep_time: sleep time while in critical section + @type sleep_time: C{float} + @param to_write: data that will be appended to the buffer + """ + threading.Thread.__init__(self) + self.__buffer = buffer_ + self.__rw_lock = rw_lock + self.__init_sleep_time = init_sleep_time + self.__sleep_time = sleep_time + self.__to_write = to_write + self.entry_time = None + """Time of entry to the critical section""" + self.exit_time = None + """Time of exit from the critical section""" + + def run(self): + time.sleep(self.__init_sleep_time) + self.__rw_lock.writer_acquire() + self.entry_time = time.time() + time.sleep(self.__sleep_time) + self.__buffer.append(self.__to_write) + self.exit_time = time.time() + self.__rw_lock.writer_release() + + +class Reader(threading.Thread): + def __init__(self, buffer_, rw_lock, init_sleep_time, sleep_time): + """ + @param buffer_: common buffer shared by the readers and writers + @type buffer_: list + @type rw_lock: L{RWLock} + @param init_sleep_time: sleep time before doing any action + @type init_sleep_time: C{float} + @param sleep_time: sleep time while in critical section + @type sleep_time: C{float} + """ + threading.Thread.__init__(self) + self.__buffer = buffer_ + self.__rw_lock = rw_lock + self.__init_sleep_time = init_sleep_time + self.__sleep_time = sleep_time + self.buffer_read = None + """a copy of a the buffer read while in critical section""" + self.entry_time = None + """Time of entry to the critical section""" + self.exit_time = None + """Time of exit from the critical section""" + + def run(self): + time.sleep(self.__init_sleep_time) + self.__rw_lock.reader_acquire() + self.entry_time = time.time() + time.sleep(self.__sleep_time) + self.buffer_read = copy.deepcopy(self.__buffer) + self.exit_time = time.time() + self.__rw_lock.reader_release() + + +class RWLockTestCase(unittest.TestCase): + def test_readers_nonexclusive_access(self): + (buffer_, rw_lock, threads) = self.__init_variables() + + threads.append(Reader(buffer_, rw_lock, 0, 0)) + threads.append(Writer(buffer_, rw_lock, 0.2, 0.4, 1)) + threads.append(Reader(buffer_, rw_lock, 0.3, 0.3)) + threads.append(Reader(buffer_, rw_lock, 0.5, 0)) + + self.__start_and_join_threads(threads) + + ## The third reader should enter after the second one but it should + ## exit before the second one exits + ## (i.e. the readers should be in the critical section + ## at the same time) + + self.assertEqual([], threads[0].buffer_read) + self.assertEqual([1], threads[2].buffer_read) + self.assertEqual([1], threads[3].buffer_read) + self.assert_(threads[1].exit_time <= threads[2].entry_time) + self.assert_(threads[2].entry_time <= threads[3].entry_time) + self.assert_(threads[3].exit_time < threads[2].exit_time) + + def test_writers_exclusive_access(self): + (buffer_, rw_lock, threads) = self.__init_variables() + + threads.append(Writer(buffer_, rw_lock, 0, 0.4, 1)) + threads.append(Writer(buffer_, rw_lock, 0.1, 0, 2)) + threads.append(Reader(buffer_, rw_lock, 0.2, 0)) + + self.__start_and_join_threads(threads) + + ## The second writer should wait for the first one to exit + + self.assertEqual([1, 2], threads[2].buffer_read) + self.assert_(threads[0].exit_time <= threads[1].entry_time) + self.assert_(threads[1].exit_time <= threads[2].exit_time) + + def test_writer_priority(self): + (buffer_, rw_lock, threads) = self.__init_variables() + + threads.append(Writer(buffer_, rw_lock, 0, 0, 1)) + threads.append(Reader(buffer_, rw_lock, 0.1, 0.4)) + threads.append(Writer(buffer_, rw_lock, 0.2, 0, 2)) + threads.append(Reader(buffer_, rw_lock, 0.3, 0)) + threads.append(Reader(buffer_, rw_lock, 0.3, 0)) + + self.__start_and_join_threads(threads) + + ## The second writer should go before the second and the third reader + + self.assertEqual([1], threads[1].buffer_read) + self.assertEqual([1, 2], threads[3].buffer_read) + self.assertEqual([1, 2], threads[4].buffer_read) + self.assert_(threads[0].exit_time < threads[1].entry_time) + self.assert_(threads[1].exit_time <= threads[2].entry_time) + self.assert_(threads[2].exit_time <= threads[3].entry_time) + self.assert_(threads[2].exit_time <= threads[4].entry_time) + + def test_many_writers_priority(self): + (buffer_, rw_lock, threads) = self.__init_variables() + + threads.append(Writer(buffer_, rw_lock, 0, 0, 1)) + threads.append(Reader(buffer_, rw_lock, 0.1, 0.6)) + threads.append(Writer(buffer_, rw_lock, 0.2, 0.1, 2)) + threads.append(Reader(buffer_, rw_lock, 0.3, 0)) + threads.append(Reader(buffer_, rw_lock, 0.4, 0)) + threads.append(Writer(buffer_, rw_lock, 0.5, 0.1, 3)) + + self.__start_and_join_threads(threads) + + ## The two last writers should go first -- after the first reader and + ## before the second and the third reader + + self.assertEqual([1], threads[1].buffer_read) + self.assertEqual([1, 2, 3], threads[3].buffer_read) + self.assertEqual([1, 2, 3], threads[4].buffer_read) + self.assert_(threads[0].exit_time < threads[1].entry_time) + self.assert_(threads[1].exit_time <= threads[2].entry_time) + self.assert_(threads[1].exit_time <= threads[5].entry_time) + self.assert_(threads[2].exit_time <= threads[3].entry_time) + self.assert_(threads[2].exit_time <= threads[4].entry_time) + self.assert_(threads[5].exit_time <= threads[3].entry_time) + self.assert_(threads[5].exit_time <= threads[4].entry_time) + + @staticmethod + def __init_variables(): + buffer_ = [] + rw_lock = RWLock() + threads = [] + return (buffer_, rw_lock, threads) + + @staticmethod + def __start_and_join_threads(threads): + for t in threads: + t.start() + for t in threads: + t.join() diff --git a/third_party/python/ecdsa/ecdsa/util.py b/third_party/python/ecdsa/ecdsa/util.py new file mode 100644 index 0000000000..5f1c7500b6 --- /dev/null +++ b/third_party/python/ecdsa/ecdsa/util.py @@ -0,0 +1,401 @@ +from __future__ import division + +import os +import math +import binascii +import sys +from hashlib import sha256 +from six import PY3, int2byte, b, next +from . import der +from ._compat import normalise_bytes + +# RFC5480: +# The "unrestricted" algorithm identifier is: +# id-ecPublicKey OBJECT IDENTIFIER ::= { +# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 } + +oid_ecPublicKey = (1, 2, 840, 10045, 2, 1) +encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey) + +if sys.version > '3': + def entropy_to_bits(ent_256): + """Convert a bytestring to string of 0's and 1's""" + return bin(int.from_bytes(ent_256, 'big'))[2:].zfill(len(ent_256)*8) +else: + def entropy_to_bits(ent_256): + """Convert a bytestring to string of 0's and 1's""" + return ''.join(bin(ord(x))[2:].zfill(8) for x in ent_256) + + +if sys.version < '2.7': + # Can't add a method to a built-in type so we are stuck with this + def bit_length(x): + return len(bin(x)) - 2 +else: + def bit_length(x): + return x.bit_length() or 1 + + +def orderlen(order): + return (1+len("%x" % order))//2 # bytes + + +def randrange(order, entropy=None): + """Return a random integer k such that 1 <= k < order, uniformly + distributed across that range. Worst case should be a mean of 2 loops at + (2**k)+2. + + Note that this function is not declared to be forwards-compatible: we may + change the behavior in future releases. The entropy= argument (which + should get a callable that behaves like os.urandom) can be used to + achieve stability within a given release (for repeatable unit tests), but + should not be used as a long-term-compatible key generation algorithm. + """ + assert order > 1 + if entropy is None: + entropy = os.urandom + upper_2 = bit_length(order-2) + upper_256 = upper_2//8 + 1 + while True: # I don't think this needs a counter with bit-wise randrange + ent_256 = entropy(upper_256) + ent_2 = entropy_to_bits(ent_256) + rand_num = int(ent_2[:upper_2], base=2) + 1 + if 0 < rand_num < order: + return rand_num + + +class PRNG: + # this returns a callable which, when invoked with an integer N, will + # return N pseudorandom bytes. Note: this is a short-term PRNG, meant + # primarily for the needs of randrange_from_seed__trytryagain(), which + # only needs to run it a few times per seed. It does not provide + # protection against state compromise (forward security). + def __init__(self, seed): + self.generator = self.block_generator(seed) + + def __call__(self, numbytes): + a = [next(self.generator) for i in range(numbytes)] + + if PY3: + return bytes(a) + else: + return "".join(a) + + def block_generator(self, seed): + counter = 0 + while True: + for byte in sha256(("prng-%d-%s" % (counter, seed)).encode()).digest(): + yield byte + counter += 1 + + +def randrange_from_seed__overshoot_modulo(seed, order): + # hash the data, then turn the digest into a number in [1,order). + # + # We use David-Sarah Hopwood's suggestion: turn it into a number that's + # sufficiently larger than the group order, then modulo it down to fit. + # This should give adequate (but not perfect) uniformity, and simple + # code. There are other choices: try-try-again is the main one. + base = PRNG(seed)(2 * orderlen(order)) + number = (int(binascii.hexlify(base), 16) % (order - 1)) + 1 + assert 1 <= number < order, (1, number, order) + return number + + +def lsb_of_ones(numbits): + return (1 << numbits) - 1 + + +def bits_and_bytes(order): + bits = int(math.log(order - 1, 2) + 1) + bytes = bits // 8 + extrabits = bits % 8 + return bits, bytes, extrabits + + +# the following randrange_from_seed__METHOD() functions take an +# arbitrarily-sized secret seed and turn it into a number that obeys the same +# range limits as randrange() above. They are meant for deriving consistent +# signing keys from a secret rather than generating them randomly, for +# example a protocol in which three signing keys are derived from a master +# secret. You should use a uniformly-distributed unguessable seed with about +# curve.baselen bytes of entropy. To use one, do this: +# seed = os.urandom(curve.baselen) # or other starting point +# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order) +# sk = SigningKey.from_secret_exponent(secexp, curve) + +def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256): + # hash the seed, then turn the digest into a number in [1,order), but + # don't worry about trying to uniformly fill the range. This will lose, + # on average, four bits of entropy. + bits, _bytes, extrabits = bits_and_bytes(order) + if extrabits: + _bytes += 1 + base = hashmod(seed).digest()[:_bytes] + base = "\x00" * (_bytes - len(base)) + base + number = 1 + int(binascii.hexlify(base), 16) + assert 1 <= number < order + return number + + +def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256): + # like string_to_randrange_truncate_bytes, but only lose an average of + # half a bit + bits = int(math.log(order - 1, 2) + 1) + maxbytes = (bits + 7) // 8 + base = hashmod(seed).digest()[:maxbytes] + base = "\x00" * (maxbytes - len(base)) + base + topbits = 8 * maxbytes - bits + if topbits: + base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:] + number = 1 + int(binascii.hexlify(base), 16) + assert 1 <= number < order + return number + + +def randrange_from_seed__trytryagain(seed, order): + # figure out exactly how many bits we need (rounded up to the nearest + # bit), so we can reduce the chance of looping to less than 0.5 . This is + # specified to feed from a byte-oriented PRNG, and discards the + # high-order bits of the first byte as necessary to get the right number + # of bits. The average number of loops will range from 1.0 (when + # order=2**k-1) to 2.0 (when order=2**k+1). + assert order > 1 + bits, bytes, extrabits = bits_and_bytes(order) + generate = PRNG(seed) + while True: + extrabyte = b("") + if extrabits: + extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits)) + guess = string_to_number(extrabyte + generate(bytes)) + 1 + if 1 <= guess < order: + return guess + + +def number_to_string(num, order): + l = orderlen(order) + fmt_str = "%0" + str(2 * l) + "x" + string = binascii.unhexlify((fmt_str % num).encode()) + assert len(string) == l, (len(string), l) + return string + + +def number_to_string_crop(num, order): + l = orderlen(order) + fmt_str = "%0" + str(2 * l) + "x" + string = binascii.unhexlify((fmt_str % num).encode()) + return string[:l] + + +def string_to_number(string): + return int(binascii.hexlify(string), 16) + + +def string_to_number_fixedlen(string, order): + l = orderlen(order) + assert len(string) == l, (len(string), l) + return int(binascii.hexlify(string), 16) + + +# these methods are useful for the sigencode= argument to SK.sign() and the +# sigdecode= argument to VK.verify(), and control how the signature is packed +# or unpacked. + +def sigencode_strings(r, s, order): + r_str = number_to_string(r, order) + s_str = number_to_string(s, order) + return (r_str, s_str) + + +def sigencode_string(r, s, order): + """ + Encode the signature to raw format (:term:`raw encoding`) + + It's expected that this function will be used as a `sigencode=` parameter + in :func:`ecdsa.keys.SigningKey.sign` method. + + :param int r: first parameter of the signature + :param int s: second parameter of the signature + :param int order: the order of the curve over which the signature was + computed + + :return: raw encoding of ECDSA signature + :rtype: bytes + """ + # for any given curve, the size of the signature numbers is + # fixed, so just use simple concatenation + r_str, s_str = sigencode_strings(r, s, order) + return r_str + s_str + + +def sigencode_der(r, s, order): + """ + Encode the signature into the ECDSA-Sig-Value structure using :term:`DER`. + + Encodes the signature to the following :term:`ASN.1` structure:: + + Ecdsa-Sig-Value ::= SEQUENCE { + r INTEGER, + s INTEGER + } + + It's expected that this function will be used as a `sigencode=` parameter + in :func:`ecdsa.keys.SigningKey.sign` method. + + :param int r: first parameter of the signature + :param int s: second parameter of the signature + :param int order: the order of the curve over which the signature was + computed + + :return: DER encoding of ECDSA signature + :rtype: bytes + """ + return der.encode_sequence(der.encode_integer(r), der.encode_integer(s)) + + +# canonical versions of sigencode methods +# these enforce low S values, by negating the value (modulo the order) if above order/2 +# see CECKey::Sign() https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214 +def sigencode_strings_canonize(r, s, order): + if s > order / 2: + s = order - s + return sigencode_strings(r, s, order) + + +def sigencode_string_canonize(r, s, order): + if s > order / 2: + s = order - s + return sigencode_string(r, s, order) + + +def sigencode_der_canonize(r, s, order): + if s > order / 2: + s = order - s + return sigencode_der(r, s, order) + + +class MalformedSignature(Exception): + """ + Raised by decoding functions when the signature is malformed. + + Malformed in this context means that the relevant strings or integers + do not match what a signature over provided curve would create. Either + because the byte strings have incorrect lengths or because the encoded + values are too large. + """ + + pass + + +def sigdecode_string(signature, order): + """ + Decoder for :term:`raw encoding` of ECDSA signatures. + + raw encoding is a simple concatenation of the two integers that comprise + the signature, with each encoded using the same amount of bytes depending + on curve size/order. + + It's expected that this function will be used as the `sigdecode=` + parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. + + :param signature: encoded signature + :type signature: bytes like object + :param order: order of the curve over which the signature was computed + :type order: int + + :raises MalformedSignature: when the encoding of the signature is invalid + + :return: tuple with decoded 'r' and 's' values of signature + :rtype: tuple of ints + """ + signature = normalise_bytes(signature) + l = orderlen(order) + if not len(signature) == 2 * l: + raise MalformedSignature( + "Invalid length of signature, expected {0} bytes long, " + "provided string is {1} bytes long" + .format(2 * l, len(signature))) + r = string_to_number_fixedlen(signature[:l], order) + s = string_to_number_fixedlen(signature[l:], order) + return r, s + + +def sigdecode_strings(rs_strings, order): + """ + Decode the signature from two strings. + + First string needs to be a big endian encoding of 'r', second needs to + be a big endian encoding of the 's' parameter of an ECDSA signature. + + It's expected that this function will be used as the `sigdecode=` + parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. + + :param list rs_strings: list of two bytes-like objects, each encoding one + parameter of signature + :param int order: order of the curve over which the signature was computed + + :raises MalformedSignature: when the encoding of the signature is invalid + + :return: tuple with decoded 'r' and 's' values of signature + :rtype: tuple of ints + """ + if not len(rs_strings) == 2: + raise MalformedSignature( + "Invalid number of strings provided: {0}, expected 2" + .format(len(rs_strings))) + (r_str, s_str) = rs_strings + r_str = normalise_bytes(r_str) + s_str = normalise_bytes(s_str) + l = orderlen(order) + if not len(r_str) == l: + raise MalformedSignature( + "Invalid length of first string ('r' parameter), " + "expected {0} bytes long, provided string is {1} bytes long" + .format(l, len(r_str))) + if not len(s_str) == l: + raise MalformedSignature( + "Invalid length of second string ('s' parameter), " + "expected {0} bytes long, provided string is {1} bytes long" + .format(l, len(s_str))) + r = string_to_number_fixedlen(r_str, order) + s = string_to_number_fixedlen(s_str, order) + return r, s + + +def sigdecode_der(sig_der, order): + """ + Decoder for DER format of ECDSA signatures. + + DER format of signature is one that uses the :term:`ASN.1` :term:`DER` + rules to encode it as a sequence of two integers:: + + Ecdsa-Sig-Value ::= SEQUENCE { + r INTEGER, + s INTEGER + } + + It's expected that this function will be used as as the `sigdecode=` + parameter to the :func:`ecdsa.keys.VerifyingKey.verify` method. + + :param sig_der: encoded signature + :type sig_der: bytes like object + :param order: order of the curve over which the signature was computed + :type order: int + + :raises UnexpectedDER: when the encoding of signature is invalid + + :return: tuple with decoded 'r' and 's' values of signature + :rtype: tuple of ints + """ + sig_der = normalise_bytes(sig_der) + # return der.encode_sequence(der.encode_integer(r), der.encode_integer(s)) + rs_strings, empty = der.remove_sequence(sig_der) + if empty != b"": + raise der.UnexpectedDER("trailing junk after DER sig: %s" % + binascii.hexlify(empty)) + r, rest = der.remove_integer(rs_strings) + s, empty = der.remove_integer(rest) + if empty != b"": + raise der.UnexpectedDER("trailing junk after DER numbers: %s" % + binascii.hexlify(empty)) + return r, s |