summaryrefslogtreecommitdiffstats
path: root/third_party/aom/test/fft_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/test/fft_test.cc')
-rw-r--r--third_party/aom/test/fft_test.cc256
1 files changed, 256 insertions, 0 deletions
diff --git a/third_party/aom/test/fft_test.cc b/third_party/aom/test/fft_test.cc
new file mode 100644
index 0000000000..e24e451a33
--- /dev/null
+++ b/third_party/aom/test/fft_test.cc
@@ -0,0 +1,256 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <math.h>
+
+#include <algorithm>
+#include <complex>
+#include <vector>
+
+#include "aom_dsp/fft_common.h"
+#include "aom_mem/aom_mem.h"
+#include "av1/common/common.h"
+#include "config/aom_dsp_rtcd.h"
+#include "test/acm_random.h"
+#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
+
+namespace {
+
+typedef void (*tform_fun_t)(const float *input, float *temp, float *output);
+
+// Simple 1D FFT implementation
+template <typename InputType>
+void fft(const InputType *data, std::complex<float> *result, int n) {
+ if (n == 1) {
+ result[0] = data[0];
+ return;
+ }
+ std::vector<InputType> temp(n);
+ for (int k = 0; k < n / 2; ++k) {
+ temp[k] = data[2 * k];
+ temp[n / 2 + k] = data[2 * k + 1];
+ }
+ fft(&temp[0], result, n / 2);
+ fft(&temp[n / 2], result + n / 2, n / 2);
+ for (int k = 0; k < n / 2; ++k) {
+ std::complex<float> w = std::complex<float>((float)cos(2. * PI * k / n),
+ (float)-sin(2. * PI * k / n));
+ std::complex<float> a = result[k];
+ std::complex<float> b = result[n / 2 + k];
+ result[k] = a + w * b;
+ result[n / 2 + k] = a - w * b;
+ }
+}
+
+void transpose(std::vector<std::complex<float> > *data, int n) {
+ for (int y = 0; y < n; ++y) {
+ for (int x = y + 1; x < n; ++x) {
+ std::swap((*data)[y * n + x], (*data)[x * n + y]);
+ }
+ }
+}
+
+// Simple 2D FFT implementation
+template <class InputType>
+std::vector<std::complex<float> > fft2d(const InputType *input, int n) {
+ std::vector<std::complex<float> > rowfft(n * n);
+ std::vector<std::complex<float> > result(n * n);
+ for (int y = 0; y < n; ++y) {
+ fft(input + y * n, &rowfft[y * n], n);
+ }
+ transpose(&rowfft, n);
+ for (int y = 0; y < n; ++y) {
+ fft(&rowfft[y * n], &result[y * n], n);
+ }
+ transpose(&result, n);
+ return result;
+}
+
+struct FFTTestArg {
+ int n;
+ void (*fft)(const float *input, float *temp, float *output);
+ FFTTestArg(int n_in, tform_fun_t fft_in) : n(n_in), fft(fft_in) {}
+};
+
+std::ostream &operator<<(std::ostream &os, const FFTTestArg &test_arg) {
+ return os << "fft_arg { n:" << test_arg.n << " fft:" << test_arg.fft << " }";
+}
+
+class FFT2DTest : public ::testing::TestWithParam<FFTTestArg> {
+ protected:
+ void SetUp() {
+ int n = GetParam().n;
+ input_ = (float *)aom_memalign(32, sizeof(*input_) * n * n);
+ temp_ = (float *)aom_memalign(32, sizeof(*temp_) * n * n);
+ output_ = (float *)aom_memalign(32, sizeof(*output_) * n * n * 2);
+ memset(input_, 0, sizeof(*input_) * n * n);
+ memset(temp_, 0, sizeof(*temp_) * n * n);
+ memset(output_, 0, sizeof(*output_) * n * n * 2);
+ }
+ void TearDown() {
+ aom_free(input_);
+ aom_free(temp_);
+ aom_free(output_);
+ }
+ float *input_;
+ float *temp_;
+ float *output_;
+};
+
+TEST_P(FFT2DTest, Correct) {
+ int n = GetParam().n;
+ for (int i = 0; i < n * n; ++i) {
+ input_[i] = 1;
+ std::vector<std::complex<float> > expected = fft2d<float>(&input_[0], n);
+ GetParam().fft(&input_[0], &temp_[0], &output_[0]);
+ for (int y = 0; y < n; ++y) {
+ for (int x = 0; x < (n / 2) + 1; ++x) {
+ EXPECT_NEAR(expected[y * n + x].real(), output_[2 * (y * n + x)], 1e-5);
+ EXPECT_NEAR(expected[y * n + x].imag(), output_[2 * (y * n + x) + 1],
+ 1e-5);
+ }
+ }
+ input_[i] = 0;
+ }
+}
+
+TEST_P(FFT2DTest, Benchmark) {
+ int n = GetParam().n;
+ float sum = 0;
+ for (int i = 0; i < 1000 * (64 - n); ++i) {
+ input_[i % (n * n)] = 1;
+ GetParam().fft(&input_[0], &temp_[0], &output_[0]);
+ sum += output_[0];
+ input_[i % (n * n)] = 0;
+ }
+}
+
+INSTANTIATE_TEST_CASE_P(C, FFT2DTest,
+ ::testing::Values(FFTTestArg(2, aom_fft2x2_float_c),
+ FFTTestArg(4, aom_fft4x4_float_c),
+ FFTTestArg(8, aom_fft8x8_float_c),
+ FFTTestArg(16, aom_fft16x16_float_c),
+ FFTTestArg(32,
+ aom_fft32x32_float_c)));
+#if ARCH_X86 || ARCH_X86_64
+#if HAVE_SSE2
+INSTANTIATE_TEST_CASE_P(
+ SSE2, FFT2DTest,
+ ::testing::Values(FFTTestArg(4, aom_fft4x4_float_sse2),
+ FFTTestArg(8, aom_fft8x8_float_sse2),
+ FFTTestArg(16, aom_fft16x16_float_sse2),
+ FFTTestArg(32, aom_fft32x32_float_sse2)));
+#endif // HAVE_SSE2
+#if HAVE_AVX2
+INSTANTIATE_TEST_CASE_P(
+ AVX2, FFT2DTest,
+ ::testing::Values(FFTTestArg(8, aom_fft8x8_float_avx2),
+ FFTTestArg(16, aom_fft16x16_float_avx2),
+ FFTTestArg(32, aom_fft32x32_float_avx2)));
+#endif // HAVE_AVX2
+#endif // ARCH_X86 || ARCH_X86_64
+
+struct IFFTTestArg {
+ int n;
+ tform_fun_t ifft;
+ IFFTTestArg(int n_in, tform_fun_t ifft_in) : n(n_in), ifft(ifft_in) {}
+};
+
+std::ostream &operator<<(std::ostream &os, const IFFTTestArg &test_arg) {
+ return os << "ifft_arg { n:" << test_arg.n << " fft:" << test_arg.ifft
+ << " }";
+}
+
+class IFFT2DTest : public ::testing::TestWithParam<IFFTTestArg> {
+ protected:
+ void SetUp() {
+ int n = GetParam().n;
+ input_ = (float *)aom_memalign(32, sizeof(*input_) * n * n * 2);
+ temp_ = (float *)aom_memalign(32, sizeof(*temp_) * n * n * 2);
+ output_ = (float *)aom_memalign(32, sizeof(*output_) * n * n);
+ memset(input_, 0, sizeof(*input_) * n * n * 2);
+ memset(temp_, 0, sizeof(*temp_) * n * n * 2);
+ memset(output_, 0, sizeof(*output_) * n * n);
+ }
+ void TearDown() {
+ aom_free(input_);
+ aom_free(temp_);
+ aom_free(output_);
+ }
+ float *input_;
+ float *temp_;
+ float *output_;
+};
+
+TEST_P(IFFT2DTest, Correctness) {
+ int n = GetParam().n;
+ ASSERT_GE(n, 2);
+ std::vector<float> expected(n * n);
+ std::vector<float> actual(n * n);
+ // Do forward transform then invert to make sure we get back expected
+ for (int y = 0; y < n; ++y) {
+ for (int x = 0; x < n; ++x) {
+ expected[y * n + x] = 1;
+ std::vector<std::complex<float> > input_c = fft2d(&expected[0], n);
+ for (int i = 0; i < n * n; ++i) {
+ input_[2 * i + 0] = input_c[i].real();
+ input_[2 * i + 1] = input_c[i].imag();
+ }
+ GetParam().ifft(&input_[0], &temp_[0], &output_[0]);
+
+ for (int yy = 0; yy < n; ++yy) {
+ for (int xx = 0; xx < n; ++xx) {
+ EXPECT_NEAR(expected[yy * n + xx], output_[yy * n + xx] / (n * n),
+ 1e-5);
+ }
+ }
+ expected[y * n + x] = 0;
+ }
+ }
+};
+
+TEST_P(IFFT2DTest, Benchmark) {
+ int n = GetParam().n;
+ float sum = 0;
+ for (int i = 0; i < 1000 * (64 - n); ++i) {
+ input_[i % (n * n)] = 1;
+ GetParam().ifft(&input_[0], &temp_[0], &output_[0]);
+ sum += output_[0];
+ input_[i % (n * n)] = 0;
+ }
+}
+INSTANTIATE_TEST_CASE_P(
+ C, IFFT2DTest,
+ ::testing::Values(IFFTTestArg(2, aom_ifft2x2_float_c),
+ IFFTTestArg(4, aom_ifft4x4_float_c),
+ IFFTTestArg(8, aom_ifft8x8_float_c),
+ IFFTTestArg(16, aom_ifft16x16_float_c),
+ IFFTTestArg(32, aom_ifft32x32_float_c)));
+#if ARCH_X86 || ARCH_X86_64
+#if HAVE_SSE2
+INSTANTIATE_TEST_CASE_P(
+ SSE2, IFFT2DTest,
+ ::testing::Values(IFFTTestArg(4, aom_ifft4x4_float_sse2),
+ IFFTTestArg(8, aom_ifft8x8_float_sse2),
+ IFFTTestArg(16, aom_ifft16x16_float_sse2),
+ IFFTTestArg(32, aom_ifft32x32_float_sse2)));
+#endif // HAVE_SSE2
+
+#if HAVE_AVX2
+INSTANTIATE_TEST_CASE_P(
+ AVX2, IFFT2DTest,
+ ::testing::Values(IFFTTestArg(8, aom_ifft8x8_float_avx2),
+ IFFTTestArg(16, aom_ifft16x16_float_avx2),
+ IFFTTestArg(32, aom_ifft32x32_float_avx2)));
+#endif // HAVE_AVX2
+#endif // ARCH_X86 || ARCH_X86_64
+
+} // namespace