summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/contrib/math/math-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/highway/hwy/contrib/math/math-inl.h')
-rw-r--r--third_party/highway/hwy/contrib/math/math-inl.h1242
1 files changed, 1242 insertions, 0 deletions
diff --git a/third_party/highway/hwy/contrib/math/math-inl.h b/third_party/highway/hwy/contrib/math/math-inl.h
new file mode 100644
index 0000000000..b4cbb5d119
--- /dev/null
+++ b/third_party/highway/hwy/contrib/math/math-inl.h
@@ -0,0 +1,1242 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Include guard (still compiled once per target)
+#if defined(HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+/**
+ * Highway SIMD version of std::acos(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: [-1, +1]
+ * @return arc cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Acos(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAcos(const D d, VecArg<V> x) {
+ return Acos(d, x);
+}
+
+/**
+ * Highway SIMD version of std::acosh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[1, +FLT_MAX], float64[1, +DBL_MAX]
+ * @return hyperbolic arc cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Acosh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAcosh(const D d, VecArg<V> x) {
+ return Acosh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::asin(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: [-1, +1]
+ * @return arc sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Asin(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAsin(const D d, VecArg<V> x) {
+ return Asin(d, x);
+}
+
+/**
+ * Highway SIMD version of std::asinh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return hyperbolic arc sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Asinh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAsinh(const D d, VecArg<V> x) {
+ return Asinh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::atan(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return arc tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Atan(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAtan(const D d, VecArg<V> x) {
+ return Atan(d, x);
+}
+
+/**
+ * Highway SIMD version of std::atanh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: (-1, +1)
+ * @return hyperbolic arc tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Atanh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAtanh(const D d, VecArg<V> x) {
+ return Atanh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::cos(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: [-39000, +39000]
+ * @return cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Cos(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallCos(const D d, VecArg<V> x) {
+ return Cos(d, x);
+}
+
+/**
+ * Highway SIMD version of std::exp(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 1
+ * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706]
+ * @return e^x
+ */
+template <class D, class V>
+HWY_INLINE V Exp(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallExp(const D d, VecArg<V> x) {
+ return Exp(d, x);
+}
+
+/**
+ * Highway SIMD version of std::expm1(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706]
+ * @return e^x - 1
+ */
+template <class D, class V>
+HWY_INLINE V Expm1(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallExpm1(const D d, VecArg<V> x) {
+ return Expm1(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return natural logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog(const D d, VecArg<V> x) {
+ return Log(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log10(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return base 10 logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log10(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog10(const D d, VecArg<V> x) {
+ return Log10(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log1p(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32[0, +FLT_MAX], float64[0, +DBL_MAX]
+ * @return log(1 + x)
+ */
+template <class D, class V>
+HWY_INLINE V Log1p(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog1p(const D d, VecArg<V> x) {
+ return Log1p(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log2(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return base 2 logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log2(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog2(const D d, VecArg<V> x) {
+ return Log2(d, x);
+}
+
+/**
+ * Highway SIMD version of std::sin(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: [-39000, +39000]
+ * @return sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Sin(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallSin(const D d, VecArg<V> x) {
+ return Sin(d, x);
+}
+
+/**
+ * Highway SIMD version of std::sinh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-88.7228, +88.7228], float64[-709, +709]
+ * @return hyperbolic sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Sinh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallSinh(const D d, VecArg<V> x) {
+ return Sinh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::tanh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return hyperbolic tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Tanh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallTanh(const D d, VecArg<V> x) {
+ return Tanh(d, x);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Implementation
+////////////////////////////////////////////////////////////////////////////////
+namespace impl {
+
+// Estrin's Scheme is a faster method for evaluating large polynomials on
+// super scalar architectures. It works by factoring the Horner's Method
+// polynomial into power of two sub-trees that can be evaluated in parallel.
+// Wikipedia Link: https://en.wikipedia.org/wiki/Estrin%27s_scheme
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1) {
+ return MulAdd(c1, x, c0);
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2) {
+ T x2 = Mul(x, x);
+ return MulAdd(x2, c2, MulAdd(c1, x, c0));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3) {
+ T x2 = Mul(x, x);
+ return MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, c4, MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(c5, x, c4),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(x2, c6, MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, c8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(c9, x, c8),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(x2, c10, MulAdd(c9, x, c8)),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8)),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(
+ x8, MulAdd(x4, c12, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(c13, x, c12),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, c14, MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, c16,
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16, T c17) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, MulAdd(c17, x, c16),
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16, T c17,
+ T c18) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, MulAdd(x2, c18, MulAdd(c17, x, c16)),
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+
+template <class FloatOrDouble>
+struct AsinImpl {};
+template <class FloatOrDouble>
+struct AtanImpl {};
+template <class FloatOrDouble>
+struct CosSinImpl {};
+template <class FloatOrDouble>
+struct ExpImpl {};
+template <class FloatOrDouble>
+struct LogImpl {};
+
+template <>
+struct AsinImpl<float> {
+ // Polynomial approximation for asin(x) over the range [0, 0.5).
+ template <class D, class V>
+ HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) {
+ const auto k0 = Set(d, +0.1666677296f);
+ const auto k1 = Set(d, +0.07495029271f);
+ const auto k2 = Set(d, +0.04547423869f);
+ const auto k3 = Set(d, +0.02424046025f);
+ const auto k4 = Set(d, +0.04197454825f);
+
+ return Estrin(x2, k0, k1, k2, k3, k4);
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct AsinImpl<double> {
+ // Polynomial approximation for asin(x) over the range [0, 0.5).
+ template <class D, class V>
+ HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) {
+ const auto k0 = Set(d, +0.1666666666666497543);
+ const auto k1 = Set(d, +0.07500000000378581611);
+ const auto k2 = Set(d, +0.04464285681377102438);
+ const auto k3 = Set(d, +0.03038195928038132237);
+ const auto k4 = Set(d, +0.02237176181932048341);
+ const auto k5 = Set(d, +0.01735956991223614604);
+ const auto k6 = Set(d, +0.01388715184501609218);
+ const auto k7 = Set(d, +0.01215360525577377331);
+ const auto k8 = Set(d, +0.006606077476277170610);
+ const auto k9 = Set(d, +0.01929045477267910674);
+ const auto k10 = Set(d, -0.01581918243329996643);
+ const auto k11 = Set(d, +0.03161587650653934628);
+
+ return Estrin(x2, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11);
+ }
+};
+
+#endif
+
+template <>
+struct AtanImpl<float> {
+ // Polynomial approximation for atan(x) over the range [0, 1.0).
+ template <class D, class V>
+ HWY_INLINE V AtanPoly(D d, V x) {
+ const auto k0 = Set(d, -0.333331018686294555664062f);
+ const auto k1 = Set(d, +0.199926957488059997558594f);
+ const auto k2 = Set(d, -0.142027363181114196777344f);
+ const auto k3 = Set(d, +0.106347933411598205566406f);
+ const auto k4 = Set(d, -0.0748900920152664184570312f);
+ const auto k5 = Set(d, +0.0425049886107444763183594f);
+ const auto k6 = Set(d, -0.0159569028764963150024414f);
+ const auto k7 = Set(d, +0.00282363896258175373077393f);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7), Mul(y, x), x);
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct AtanImpl<double> {
+ // Polynomial approximation for atan(x) over the range [0, 1.0).
+ template <class D, class V>
+ HWY_INLINE V AtanPoly(D d, V x) {
+ const auto k0 = Set(d, -0.333333333333311110369124);
+ const auto k1 = Set(d, +0.199999999996591265594148);
+ const auto k2 = Set(d, -0.14285714266771329383765);
+ const auto k3 = Set(d, +0.111111105648261418443745);
+ const auto k4 = Set(d, -0.090908995008245008229153);
+ const auto k5 = Set(d, +0.0769219538311769618355029);
+ const auto k6 = Set(d, -0.0666573579361080525984562);
+ const auto k7 = Set(d, +0.0587666392926673580854313);
+ const auto k8 = Set(d, -0.0523674852303482457616113);
+ const auto k9 = Set(d, +0.0466667150077840625632675);
+ const auto k10 = Set(d, -0.0407629191276836500001934);
+ const auto k11 = Set(d, +0.0337852580001353069993897);
+ const auto k12 = Set(d, -0.0254517624932312641616861);
+ const auto k13 = Set(d, +0.016599329773529201970117);
+ const auto k14 = Set(d, -0.00889896195887655491740809);
+ const auto k15 = Set(d, +0.00370026744188713119232403);
+ const auto k16 = Set(d, -0.00110611831486672482563471);
+ const auto k17 = Set(d, +0.000209850076645816976906797);
+ const auto k18 = Set(d, -1.88796008463073496563746e-5);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11,
+ k12, k13, k14, k15, k16, k17, k18),
+ Mul(y, x), x);
+ }
+};
+
+#endif
+
+template <>
+struct CosSinImpl<float> {
+ // Rounds float toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return ConvertTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V Poly(D d, V x) {
+ const auto k0 = Set(d, -1.66666597127914428710938e-1f);
+ const auto k1 = Set(d, +8.33307858556509017944336e-3f);
+ const auto k2 = Set(d, -1.981069071916863322258e-4f);
+ const auto k3 = Set(d, +2.6083159809786593541503e-6f);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3), Mul(y, x), x);
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V CosReduce(D d, V x, VI32 q) {
+ // kHalfPiPart0f + kHalfPiPart1f + kHalfPiPart2f + kHalfPiPart3f ~= -pi/2
+ const V kHalfPiPart0f = Set(d, -0.5f * 3.140625f);
+ const V kHalfPiPart1f = Set(d, -0.5f * 0.0009670257568359375f);
+ const V kHalfPiPart2f = Set(d, -0.5f * 6.2771141529083251953e-7f);
+ const V kHalfPiPart3f = Set(d, -0.5f * 1.2154201256553420762e-10f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kHalfPiPart0f, x);
+ x = MulAdd(qf, kHalfPiPart1f, x);
+ x = MulAdd(qf, kHalfPiPart2f, x);
+ x = MulAdd(qf, kHalfPiPart3f, x);
+ return x;
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V SinReduce(D d, V x, VI32 q) {
+ // kPiPart0f + kPiPart1f + kPiPart2f + kPiPart3f ~= -pi
+ const V kPiPart0f = Set(d, -3.140625f);
+ const V kPiPart1f = Set(d, -0.0009670257568359375f);
+ const V kPiPart2f = Set(d, -6.2771141529083251953e-7f);
+ const V kPiPart3f = Set(d, -1.2154201256553420762e-10f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kPiPart0f, x);
+ x = MulAdd(qf, kPiPart1f, x);
+ x = MulAdd(qf, kPiPart2f, x);
+ x = MulAdd(qf, kPiPart3f, x);
+ return x;
+ }
+
+ // (q & 2) == 0 ? -0.0 : +0.0
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<float, D>> CosSignFromQuadrant(D d, VI32 q) {
+ const VI32 kTwo = Set(Rebind<int32_t, D>(), 2);
+ return BitCast(d, ShiftLeft<30>(AndNot(q, kTwo)));
+ }
+
+ // ((q & 1) ? -0.0 : +0.0)
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<float, D>> SinSignFromQuadrant(D d, VI32 q) {
+ const VI32 kOne = Set(Rebind<int32_t, D>(), 1);
+ return BitCast(d, ShiftLeft<31>(And(q, kOne)));
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct CosSinImpl<double> {
+ // Rounds double toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return DemoteTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V Poly(D d, V x) {
+ const auto k0 = Set(d, -0.166666666666666657414808);
+ const auto k1 = Set(d, +0.00833333333333332974823815);
+ const auto k2 = Set(d, -0.000198412698412696162806809);
+ const auto k3 = Set(d, +2.75573192239198747630416e-6);
+ const auto k4 = Set(d, -2.50521083763502045810755e-8);
+ const auto k5 = Set(d, +1.60590430605664501629054e-10);
+ const auto k6 = Set(d, -7.64712219118158833288484e-13);
+ const auto k7 = Set(d, +2.81009972710863200091251e-15);
+ const auto k8 = Set(d, -7.97255955009037868891952e-18);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8), Mul(y, x), x);
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V CosReduce(D d, V x, VI32 q) {
+ // kHalfPiPart0d + kHalfPiPart1d + kHalfPiPart2d + kHalfPiPart3d ~= -pi/2
+ const V kHalfPiPart0d = Set(d, -0.5 * 3.1415926218032836914);
+ const V kHalfPiPart1d = Set(d, -0.5 * 3.1786509424591713469e-8);
+ const V kHalfPiPart2d = Set(d, -0.5 * 1.2246467864107188502e-16);
+ const V kHalfPiPart3d = Set(d, -0.5 * 1.2736634327021899816e-24);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kHalfPiPart0d, x);
+ x = MulAdd(qf, kHalfPiPart1d, x);
+ x = MulAdd(qf, kHalfPiPart2d, x);
+ x = MulAdd(qf, kHalfPiPart3d, x);
+ return x;
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V SinReduce(D d, V x, VI32 q) {
+ // kPiPart0d + kPiPart1d + kPiPart2d + kPiPart3d ~= -pi
+ const V kPiPart0d = Set(d, -3.1415926218032836914);
+ const V kPiPart1d = Set(d, -3.1786509424591713469e-8);
+ const V kPiPart2d = Set(d, -1.2246467864107188502e-16);
+ const V kPiPart3d = Set(d, -1.2736634327021899816e-24);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kPiPart0d, x);
+ x = MulAdd(qf, kPiPart1d, x);
+ x = MulAdd(qf, kPiPart2d, x);
+ x = MulAdd(qf, kPiPart3d, x);
+ return x;
+ }
+
+ // (q & 2) == 0 ? -0.0 : +0.0
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<double, D>> CosSignFromQuadrant(D d, VI32 q) {
+ const VI32 kTwo = Set(Rebind<int32_t, D>(), 2);
+ return BitCast(
+ d, ShiftLeft<62>(PromoteTo(Rebind<int64_t, D>(), AndNot(q, kTwo))));
+ }
+
+ // ((q & 1) ? -0.0 : +0.0)
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<double, D>> SinSignFromQuadrant(D d, VI32 q) {
+ const VI32 kOne = Set(Rebind<int32_t, D>(), 1);
+ return BitCast(
+ d, ShiftLeft<63>(PromoteTo(Rebind<int64_t, D>(), And(q, kOne))));
+ }
+};
+
+#endif
+
+template <>
+struct ExpImpl<float> {
+ // Rounds float toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return ConvertTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V ExpPoly(D d, V x) {
+ const auto k0 = Set(d, +0.5f);
+ const auto k1 = Set(d, +0.166666671633720397949219f);
+ const auto k2 = Set(d, +0.0416664853692054748535156f);
+ const auto k3 = Set(d, +0.00833336077630519866943359f);
+ const auto k4 = Set(d, +0.00139304355252534151077271f);
+ const auto k5 = Set(d, +0.000198527617612853646278381f);
+
+ return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5), Mul(x, x), x);
+ }
+
+ // Computes 2^x, where x is an integer.
+ template <class D, class VI32>
+ HWY_INLINE Vec<D> Pow2I(D d, VI32 x) {
+ const Rebind<int32_t, D> di32;
+ const VI32 kOffset = Set(di32, 0x7F);
+ return BitCast(d, ShiftLeft<23>(Add(x, kOffset)));
+ }
+
+ // Sets the exponent of 'x' to 2^e.
+ template <class D, class V, class VI32>
+ HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) {
+ const VI32 y = ShiftRight<1>(e);
+ return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y)));
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V ExpReduce(D d, V x, VI32 q) {
+ // kLn2Part0f + kLn2Part1f ~= -ln(2)
+ const V kLn2Part0f = Set(d, -0.693145751953125f);
+ const V kLn2Part1f = Set(d, -1.428606765330187045e-6f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kLn2Part0f, x);
+ x = MulAdd(qf, kLn2Part1f, x);
+ return x;
+ }
+};
+
+template <>
+struct LogImpl<float> {
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> Log2p1NoSubnormal(D /*d*/, V x) {
+ const Rebind<int32_t, D> di32;
+ const Rebind<uint32_t, D> du32;
+ const auto kBias = Set(di32, 0x7F);
+ return Sub(BitCast(di32, ShiftRight<23>(BitCast(du32, x))), kBias);
+ }
+
+ // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)].
+ template <class D, class V>
+ HWY_INLINE V LogPoly(D d, V x) {
+ const V k0 = Set(d, 0.66666662693f);
+ const V k1 = Set(d, 0.40000972152f);
+ const V k2 = Set(d, 0.28498786688f);
+ const V k3 = Set(d, 0.24279078841f);
+
+ const V x2 = Mul(x, x);
+ const V x4 = Mul(x2, x2);
+ return MulAdd(MulAdd(k2, x4, k0), x2, Mul(MulAdd(k3, x4, k1), x4));
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+template <>
+struct ExpImpl<double> {
+ // Rounds double toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return DemoteTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V ExpPoly(D d, V x) {
+ const auto k0 = Set(d, +0.5);
+ const auto k1 = Set(d, +0.166666666666666851703837);
+ const auto k2 = Set(d, +0.0416666666666665047591422);
+ const auto k3 = Set(d, +0.00833333333331652721664984);
+ const auto k4 = Set(d, +0.00138888888889774492207962);
+ const auto k5 = Set(d, +0.000198412698960509205564975);
+ const auto k6 = Set(d, +2.4801587159235472998791e-5);
+ const auto k7 = Set(d, +2.75572362911928827629423e-6);
+ const auto k8 = Set(d, +2.75573911234900471893338e-7);
+ const auto k9 = Set(d, +2.51112930892876518610661e-8);
+ const auto k10 = Set(d, +2.08860621107283687536341e-9);
+
+ return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10),
+ Mul(x, x), x);
+ }
+
+ // Computes 2^x, where x is an integer.
+ template <class D, class VI32>
+ HWY_INLINE Vec<D> Pow2I(D d, VI32 x) {
+ const Rebind<int32_t, D> di32;
+ const Rebind<int64_t, D> di64;
+ const VI32 kOffset = Set(di32, 0x3FF);
+ return BitCast(d, ShiftLeft<52>(PromoteTo(di64, Add(x, kOffset))));
+ }
+
+ // Sets the exponent of 'x' to 2^e.
+ template <class D, class V, class VI32>
+ HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) {
+ const VI32 y = ShiftRight<1>(e);
+ return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y)));
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V ExpReduce(D d, V x, VI32 q) {
+ // kLn2Part0d + kLn2Part1d ~= -ln(2)
+ const V kLn2Part0d = Set(d, -0.6931471805596629565116018);
+ const V kLn2Part1d = Set(d, -0.28235290563031577122588448175e-12);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kLn2Part0d, x);
+ x = MulAdd(qf, kLn2Part1d, x);
+ return x;
+ }
+};
+
+template <>
+struct LogImpl<double> {
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int64_t, D>> Log2p1NoSubnormal(D /*d*/, V x) {
+ const Rebind<int64_t, D> di64;
+ const Rebind<uint64_t, D> du64;
+ return Sub(BitCast(di64, ShiftRight<52>(BitCast(du64, x))),
+ Set(di64, 0x3FF));
+ }
+
+ // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)].
+ template <class D, class V>
+ HWY_INLINE V LogPoly(D d, V x) {
+ const V k0 = Set(d, 0.6666666666666735130);
+ const V k1 = Set(d, 0.3999999999940941908);
+ const V k2 = Set(d, 0.2857142874366239149);
+ const V k3 = Set(d, 0.2222219843214978396);
+ const V k4 = Set(d, 0.1818357216161805012);
+ const V k5 = Set(d, 0.1531383769920937332);
+ const V k6 = Set(d, 0.1479819860511658591);
+
+ const V x2 = Mul(x, x);
+ const V x4 = Mul(x2, x2);
+ return MulAdd(MulAdd(MulAdd(MulAdd(k6, x4, k4), x4, k2), x4, k0), x2,
+ (Mul(MulAdd(MulAdd(k5, x4, k3), x4, k1), x4)));
+ }
+};
+
+#endif
+
+template <class D, class V, bool kAllowSubnormals = true>
+HWY_INLINE V Log(const D d, V x) {
+ // http://git.musl-libc.org/cgit/musl/tree/src/math/log.c for more info.
+ using T = TFromD<D>;
+ impl::LogImpl<T> impl;
+
+ constexpr bool kIsF32 = (sizeof(T) == 4);
+
+ // Float Constants
+ const V kLn2Hi = Set(d, kIsF32 ? static_cast<T>(0.69313812256f)
+ : static_cast<T>(0.693147180369123816490));
+ const V kLn2Lo = Set(d, kIsF32 ? static_cast<T>(9.0580006145e-6f)
+ : static_cast<T>(1.90821492927058770002e-10));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kMinNormal = Set(d, kIsF32 ? static_cast<T>(1.175494351e-38f)
+ : static_cast<T>(2.2250738585072014e-308));
+ const V kScale = Set(d, kIsF32 ? static_cast<T>(3.355443200e+7f)
+ : static_cast<T>(1.8014398509481984e+16));
+
+ // Integer Constants
+ using TI = MakeSigned<T>;
+ const Rebind<TI, D> di;
+ using VI = decltype(Zero(di));
+ const VI kLowerBits = Set(di, kIsF32 ? static_cast<TI>(0x00000000L)
+ : static_cast<TI>(0xFFFFFFFFLL));
+ const VI kMagic = Set(di, kIsF32 ? static_cast<TI>(0x3F3504F3L)
+ : static_cast<TI>(0x3FE6A09E00000000LL));
+ const VI kExpMask = Set(di, kIsF32 ? static_cast<TI>(0x3F800000L)
+ : static_cast<TI>(0x3FF0000000000000LL));
+ const VI kExpScale =
+ Set(di, kIsF32 ? static_cast<TI>(-25) : static_cast<TI>(-54));
+ const VI kManMask = Set(di, kIsF32 ? static_cast<TI>(0x7FFFFFL)
+ : static_cast<TI>(0xFFFFF00000000LL));
+
+ // Scale up 'x' so that it is no longer denormalized.
+ VI exp_bits;
+ V exp;
+ if (kAllowSubnormals == true) {
+ const auto is_denormal = Lt(x, kMinNormal);
+ x = IfThenElse(is_denormal, Mul(x, kScale), x);
+
+ // Compute the new exponent.
+ exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic));
+ const VI exp_scale =
+ BitCast(di, IfThenElseZero(is_denormal, BitCast(d, kExpScale)));
+ exp = ConvertTo(
+ d, Add(exp_scale, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits))));
+ } else {
+ // Compute the new exponent.
+ exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic));
+ exp = ConvertTo(d, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits)));
+ }
+
+ // Renormalize.
+ const V y = Or(And(x, BitCast(d, kLowerBits)),
+ BitCast(d, Add(And(exp_bits, kManMask), kMagic)));
+
+ // Approximate and reconstruct.
+ const V ym1 = Sub(y, kOne);
+ const V z = Div(ym1, Add(y, kOne));
+
+ return MulSub(
+ exp, kLn2Hi,
+ Sub(MulSub(z, Sub(ym1, impl.LogPoly(d, z)), Mul(exp, kLn2Lo)), ym1));
+}
+
+} // namespace impl
+
+template <class D, class V>
+HWY_INLINE V Acos(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kZero = Zero(d);
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kPi = Set(d, static_cast<T>(+3.14159265358979323846264));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign_x = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign_x);
+ const auto mask = Lt(abs_x, kHalf);
+ const V yy =
+ IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf));
+ const V y = IfThenElse(mask, abs_x, Sqrt(yy));
+
+ impl::AsinImpl<T> impl;
+ const V t = Mul(impl.AsinPoly(d, yy, y), Mul(y, yy));
+
+ const V t_plus_y = Add(t, y);
+ const V z =
+ IfThenElse(mask, Sub(kPiOverTwo, Add(Xor(y, sign_x), Xor(t, sign_x))),
+ Add(t_plus_y, t_plus_y));
+ return IfThenElse(Or(mask, Ge(x, kZero)), z, Sub(kPi, z));
+}
+
+template <class D, class V>
+HWY_INLINE V Acosh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kLarge = Set(d, static_cast<T>(268435456.0));
+ const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const auto is_x_large = Gt(x, kLarge);
+ const auto is_x_gt_2 = Gt(x, kTwo);
+
+ const V x_minus_1 = Sub(x, kOne);
+ const V y0 = MulSub(kTwo, x, Div(kOne, Add(Sqrt(MulSub(x, x, kOne)), x)));
+ const V y1 =
+ Add(Sqrt(MulAdd(x_minus_1, kTwo, Mul(x_minus_1, x_minus_1))), x_minus_1);
+ const V y2 =
+ IfThenElse(is_x_gt_2, IfThenElse(is_x_large, x, y0), Add(y1, kOne));
+ const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2);
+
+ const auto is_pole = Eq(y2, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne);
+ return Add(IfThenElse(is_x_gt_2, z,
+ IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor))),
+ IfThenElseZero(is_x_large, kLog2));
+}
+
+template <class D, class V>
+HWY_INLINE V Asin(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign_x = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign_x);
+ const auto mask = Lt(abs_x, kHalf);
+ const V yy =
+ IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf));
+ const V y = IfThenElse(mask, abs_x, Sqrt(yy));
+
+ impl::AsinImpl<T> impl;
+ const V z0 = MulAdd(impl.AsinPoly(d, yy, y), Mul(yy, y), y);
+ const V z1 = NegMulAdd(z0, kTwo, kPiOverTwo);
+ return Or(IfThenElse(mask, z0, z1), sign_x);
+}
+
+template <class D, class V>
+HWY_INLINE V Asinh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kSmall = Set(d, static_cast<T>(1.0 / 268435456.0));
+ const V kLarge = Set(d, static_cast<T>(268435456.0));
+ const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign_x = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign_x);
+
+ const auto is_x_large = Gt(abs_x, kLarge);
+ const auto is_x_lt_2 = Lt(abs_x, kTwo);
+
+ const V x2 = Mul(x, x);
+ const V sqrt_x2_plus_1 = Sqrt(Add(x2, kOne));
+
+ const V y0 = MulAdd(abs_x, kTwo, Div(kOne, Add(sqrt_x2_plus_1, abs_x)));
+ const V y1 = Add(Div(x2, Add(sqrt_x2_plus_1, kOne)), abs_x);
+ const V y2 =
+ IfThenElse(is_x_lt_2, Add(y1, kOne), IfThenElse(is_x_large, abs_x, y0));
+ const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2);
+
+ const auto is_pole = Eq(y2, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne);
+ const auto large = IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor));
+ const V y = IfThenElse(Lt(abs_x, kSmall), x, large);
+ return Or(Add(IfThenElse(is_x_lt_2, y, z), IfThenElseZero(is_x_large, kLog2)),
+ sign_x);
+}
+
+template <class D, class V>
+HWY_INLINE V Atan(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign);
+ const auto mask = Gt(abs_x, kOne);
+
+ impl::AtanImpl<T> impl;
+ const auto divisor = IfThenElse(mask, abs_x, kOne);
+ const V y = impl.AtanPoly(d, IfThenElse(mask, Div(kOne, divisor), abs_x));
+ return Or(IfThenElse(mask, Sub(kPiOverTwo, y), y), sign);
+}
+
+template <class D, class V>
+HWY_INLINE V Atanh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ return Mul(Log1p(d, Div(Add(abs_x, abs_x), Sub(kOne, abs_x))),
+ Xor(kHalf, sign));
+}
+
+template <class D, class V>
+HWY_INLINE V Cos(const D d, V x) {
+ using T = TFromD<D>;
+ impl::CosSinImpl<T> impl;
+
+ // Float Constants
+ const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153));
+
+ // Integer Constants
+ const Rebind<int32_t, D> di32;
+ using VI32 = decltype(Zero(di32));
+ const VI32 kOne = Set(di32, 1);
+
+ const V y = Abs(x); // cos(x) == cos(|x|)
+
+ // Compute the quadrant, q = int(|x| / pi) * 2 + 1
+ const VI32 q = Add(ShiftLeft<1>(impl.ToInt32(d, Mul(y, kOneOverPi))), kOne);
+
+ // Reduce range, apply sign, and approximate.
+ return impl.Poly(
+ d, Xor(impl.CosReduce(d, y, q), impl.CosSignFromQuadrant(d, q)));
+}
+
+template <class D, class V>
+HWY_INLINE V Exp(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kLowerBound =
+ Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0)));
+ const V kNegZero = Set(d, static_cast<T>(-0.0));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681));
+
+ impl::ExpImpl<T> impl;
+
+ // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5))
+ const auto q =
+ impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero))));
+
+ // Reduce, approximate, and then reconstruct.
+ const V y = impl.LoadExpShortRange(
+ d, Add(impl.ExpPoly(d, impl.ExpReduce(d, x, q)), kOne), q);
+ return IfThenElseZero(Ge(x, kLowerBound), y);
+}
+
+template <class D, class V>
+HWY_INLINE V Expm1(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kLowerBound =
+ Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0)));
+ const V kLn2Over2 = Set(d, static_cast<T>(+0.346573590279972654708616));
+ const V kNegOne = Set(d, static_cast<T>(-1.0));
+ const V kNegZero = Set(d, static_cast<T>(-0.0));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681));
+
+ impl::ExpImpl<T> impl;
+
+ // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5))
+ const auto q =
+ impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero))));
+
+ // Reduce, approximate, and then reconstruct.
+ const V y = impl.ExpPoly(d, impl.ExpReduce(d, x, q));
+ const V z = IfThenElse(Lt(Abs(x), kLn2Over2), y,
+ Sub(impl.LoadExpShortRange(d, Add(y, kOne), q), kOne));
+ return IfThenElse(Lt(x, kLowerBound), kNegOne, z);
+}
+
+template <class D, class V>
+HWY_INLINE V Log(const D d, V x) {
+ return impl::Log<D, V, /*kAllowSubnormals=*/true>(d, x);
+}
+
+template <class D, class V>
+HWY_INLINE V Log10(const D d, V x) {
+ using T = TFromD<D>;
+ return Mul(Log(d, x), Set(d, static_cast<T>(0.4342944819032518276511)));
+}
+
+template <class D, class V>
+HWY_INLINE V Log1p(const D d, V x) {
+ using T = TFromD<D>;
+ const V kOne = Set(d, static_cast<T>(+1.0));
+
+ const V y = Add(x, kOne);
+ const auto is_pole = Eq(y, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y), kOne);
+ const auto non_pole =
+ Mul(impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y), Div(x, divisor));
+ return IfThenElse(is_pole, x, non_pole);
+}
+
+template <class D, class V>
+HWY_INLINE V Log2(const D d, V x) {
+ using T = TFromD<D>;
+ return Mul(Log(d, x), Set(d, static_cast<T>(1.44269504088896340735992)));
+}
+
+template <class D, class V>
+HWY_INLINE V Sin(const D d, V x) {
+ using T = TFromD<D>;
+ impl::CosSinImpl<T> impl;
+
+ // Float Constants
+ const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153));
+ const V kHalf = Set(d, static_cast<T>(0.5));
+
+ // Integer Constants
+ const Rebind<int32_t, D> di32;
+ using VI32 = decltype(Zero(di32));
+
+ const V abs_x = Abs(x);
+ const V sign_x = Xor(abs_x, x);
+
+ // Compute the quadrant, q = int((|x| / pi) + 0.5)
+ const VI32 q = impl.ToInt32(d, MulAdd(abs_x, kOneOverPi, kHalf));
+
+ // Reduce range, apply sign, and approximate.
+ return impl.Poly(d, Xor(impl.SinReduce(d, abs_x, q),
+ Xor(impl.SinSignFromQuadrant(d, q), sign_x)));
+}
+
+template <class D, class V>
+HWY_INLINE V Sinh(const D d, V x) {
+ using T = TFromD<D>;
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ const V y = Expm1(d, abs_x);
+ const V z = Mul(Div(Add(y, kTwo), Add(y, kOne)), Mul(y, kHalf));
+ return Xor(z, sign); // Reapply the sign bit
+}
+
+template <class D, class V>
+HWY_INLINE V Tanh(const D d, V x) {
+ using T = TFromD<D>;
+ const V kLimit = Set(d, static_cast<T>(18.714973875));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ const V y = Expm1(d, Mul(abs_x, kTwo));
+ const V z = IfThenElse(Gt(abs_x, kLimit), kOne, Div(y, Add(y, kTwo)));
+ return Xor(z, sign); // Reapply the sign bit
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_