diff options
Diffstat (limited to 'third_party/jpeg-xl/lib/jxl/convolve_separable5.cc')
-rw-r--r-- | third_party/jpeg-xl/lib/jxl/convolve_separable5.cc | 261 |
1 files changed, 261 insertions, 0 deletions
diff --git a/third_party/jpeg-xl/lib/jxl/convolve_separable5.cc b/third_party/jpeg-xl/lib/jxl/convolve_separable5.cc new file mode 100644 index 0000000000..b26ff54bbc --- /dev/null +++ b/third_party/jpeg-xl/lib/jxl/convolve_separable5.cc @@ -0,0 +1,261 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/convolve.h" + +#undef HWY_TARGET_INCLUDE +#define HWY_TARGET_INCLUDE "lib/jxl/convolve_separable5.cc" +#include <hwy/foreach_target.h> +#include <hwy/highway.h> + +#include "lib/jxl/convolve-inl.h" + +HWY_BEFORE_NAMESPACE(); +namespace jxl { +namespace HWY_NAMESPACE { + +// These templates are not found via ADL. +using hwy::HWY_NAMESPACE::Add; +using hwy::HWY_NAMESPACE::Mul; +using hwy::HWY_NAMESPACE::MulAdd; +using hwy::HWY_NAMESPACE::Vec; + +// 5x5 convolution by separable kernel with a single scan through the input. +// This is more cache-efficient than separate horizontal/vertical passes, and +// possibly faster (given enough registers) than tiling and/or transposing. +// +// Overview: imagine a 5x5 window around a central pixel. First convolve the +// rows by multiplying the pixels with the corresponding weights from +// WeightsSeparable5.horz[abs(x_offset) * 4]. Then multiply each of these +// intermediate results by the corresponding vertical weight, i.e. +// vert[abs(y_offset) * 4]. Finally, store the sum of these values as the +// convolution result at the position of the central pixel in the output. +// +// Each of these operations uses SIMD vectors. The central pixel and most +// importantly the output are aligned, so neighnoring pixels (e.g. x_offset=1) +// require unaligned loads. Because weights are supplied in identical groups of +// 4, we can use LoadDup128 to load them (slightly faster). +// +// Uses mirrored boundary handling. Until x >= kRadius, the horizontal +// convolution uses Neighbors class to shuffle vectors as if each of its lanes +// had been loaded from the mirrored offset. Similarly, the last full vector to +// write uses mirroring. In the case of scalar vectors, Neighbors is not usable +// and the value is loaded directly. Otherwise, the number of valid pixels +// modulo the vector size enables a small optimization: for smaller offsets, +// a non-mirrored load is sufficient. +class Separable5Strategy { + using D = HWY_CAPPED(float, 16); + using V = Vec<D>; + + public: + static constexpr int64_t kRadius = 2; + + template <size_t kSizeModN, class WrapRow> + static JXL_MAYBE_INLINE void ConvolveRow( + const float* const JXL_RESTRICT row_m, const size_t xsize, + const int64_t stride, const WrapRow& wrap_row, + const WeightsSeparable5& weights, float* const JXL_RESTRICT row_out) { + const D d; + const int64_t neg_stride = -stride; // allows LEA addressing. + const float* const JXL_RESTRICT row_t2 = + wrap_row(row_m + 2 * neg_stride, stride); + const float* const JXL_RESTRICT row_t1 = + wrap_row(row_m + 1 * neg_stride, stride); + const float* const JXL_RESTRICT row_b1 = + wrap_row(row_m + 1 * stride, stride); + const float* const JXL_RESTRICT row_b2 = + wrap_row(row_m + 2 * stride, stride); + + const V wh0 = LoadDup128(d, weights.horz + 0 * 4); + const V wh1 = LoadDup128(d, weights.horz + 1 * 4); + const V wh2 = LoadDup128(d, weights.horz + 2 * 4); + const V wv0 = LoadDup128(d, weights.vert + 0 * 4); + const V wv1 = LoadDup128(d, weights.vert + 1 * 4); + const V wv2 = LoadDup128(d, weights.vert + 2 * 4); + + size_t x = 0; + + // More than one iteration for scalars. + for (; x < kRadius; x += Lanes(d)) { + const V conv0 = + Mul(HorzConvolveFirst(row_m, x, xsize, wh0, wh1, wh2), wv0); + + const V conv1t = HorzConvolveFirst(row_t1, x, xsize, wh0, wh1, wh2); + const V conv1b = HorzConvolveFirst(row_b1, x, xsize, wh0, wh1, wh2); + const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0); + + const V conv2t = HorzConvolveFirst(row_t2, x, xsize, wh0, wh1, wh2); + const V conv2b = HorzConvolveFirst(row_b2, x, xsize, wh0, wh1, wh2); + const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1); + Store(conv2, d, row_out + x); + } + + // Main loop: load inputs without padding + for (; x + Lanes(d) + kRadius <= xsize; x += Lanes(d)) { + const V conv0 = Mul(HorzConvolve(row_m + x, wh0, wh1, wh2), wv0); + + const V conv1t = HorzConvolve(row_t1 + x, wh0, wh1, wh2); + const V conv1b = HorzConvolve(row_b1 + x, wh0, wh1, wh2); + const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0); + + const V conv2t = HorzConvolve(row_t2 + x, wh0, wh1, wh2); + const V conv2b = HorzConvolve(row_b2 + x, wh0, wh1, wh2); + const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1); + Store(conv2, d, row_out + x); + } + + // Last full vector to write (the above loop handled mod >= kRadius) +#if HWY_TARGET == HWY_SCALAR + while (x < xsize) { +#else + if (kSizeModN < kRadius) { +#endif + const V conv0 = + Mul(HorzConvolveLast<kSizeModN>(row_m, x, xsize, wh0, wh1, wh2), wv0); + + const V conv1t = + HorzConvolveLast<kSizeModN>(row_t1, x, xsize, wh0, wh1, wh2); + const V conv1b = + HorzConvolveLast<kSizeModN>(row_b1, x, xsize, wh0, wh1, wh2); + const V conv1 = MulAdd(Add(conv1t, conv1b), wv1, conv0); + + const V conv2t = + HorzConvolveLast<kSizeModN>(row_t2, x, xsize, wh0, wh1, wh2); + const V conv2b = + HorzConvolveLast<kSizeModN>(row_b2, x, xsize, wh0, wh1, wh2); + const V conv2 = MulAdd(Add(conv2t, conv2b), wv2, conv1); + Store(conv2, d, row_out + x); + x += Lanes(d); + } + + // If mod = 0, the above vector was the last. + if (kSizeModN != 0) { + for (; x < xsize; ++x) { + float mul = 0.0f; + for (int64_t dy = -kRadius; dy <= kRadius; ++dy) { + const float wy = weights.vert[std::abs(dy) * 4]; + const float* clamped_row = wrap_row(row_m + dy * stride, stride); + for (int64_t dx = -kRadius; dx <= kRadius; ++dx) { + const float wx = weights.horz[std::abs(dx) * 4]; + const int64_t clamped_x = Mirror(x + dx, xsize); + mul += clamped_row[clamped_x] * wx * wy; + } + } + row_out[x] = mul; + } + } + } + + private: + // Same as HorzConvolve for the first/last vector in a row. + static JXL_MAYBE_INLINE V HorzConvolveFirst( + const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize, + const V wh0, const V wh1, const V wh2) { + const D d; + const V c = LoadU(d, row + x); + const V mul0 = Mul(c, wh0); + +#if HWY_TARGET == HWY_SCALAR + const V l1 = LoadU(d, row + Mirror(x - 1, xsize)); + const V l2 = LoadU(d, row + Mirror(x - 2, xsize)); +#else + (void)xsize; + const V l1 = Neighbors::FirstL1(c); + const V l2 = Neighbors::FirstL2(c); +#endif + + const V r1 = LoadU(d, row + x + 1); + const V r2 = LoadU(d, row + x + 2); + + const V mul1 = MulAdd(Add(l1, r1), wh1, mul0); + const V mul2 = MulAdd(Add(l2, r2), wh2, mul1); + return mul2; + } + + template <size_t kSizeModN> + static JXL_MAYBE_INLINE V + HorzConvolveLast(const float* const JXL_RESTRICT row, const int64_t x, + const int64_t xsize, const V wh0, const V wh1, const V wh2) { + const D d; + const V c = LoadU(d, row + x); + const V mul0 = Mul(c, wh0); + + const V l1 = LoadU(d, row + x - 1); + const V l2 = LoadU(d, row + x - 2); + + V r1, r2; +#if HWY_TARGET == HWY_SCALAR + r1 = LoadU(d, row + Mirror(x + 1, xsize)); + r2 = LoadU(d, row + Mirror(x + 2, xsize)); +#else + const size_t N = Lanes(d); + if (kSizeModN == 0) { + r2 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 2))); + r1 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 1))); + } else { // == 1 + const auto last = LoadU(d, row + xsize - N); + r2 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 1))); + r1 = last; + } +#endif + + // Sum of pixels with Manhattan distance i, multiplied by weights[i]. + const V sum1 = Add(l1, r1); + const V mul1 = MulAdd(sum1, wh1, mul0); + const V sum2 = Add(l2, r2); + const V mul2 = MulAdd(sum2, wh2, mul1); + return mul2; + } + + // Requires kRadius valid pixels before/after pos. + static JXL_MAYBE_INLINE V HorzConvolve(const float* const JXL_RESTRICT pos, + const V wh0, const V wh1, + const V wh2) { + const D d; + const V c = LoadU(d, pos); + const V mul0 = Mul(c, wh0); + + // Loading anew is faster than combining vectors. + const V l1 = LoadU(d, pos - 1); + const V r1 = LoadU(d, pos + 1); + const V l2 = LoadU(d, pos - 2); + const V r2 = LoadU(d, pos + 2); + // Sum of pixels with Manhattan distance i, multiplied by weights[i]. + const V sum1 = Add(l1, r1); + const V mul1 = MulAdd(sum1, wh1, mul0); + const V sum2 = Add(l2, r2); + const V mul2 = MulAdd(sum2, wh2, mul1); + return mul2; + } +}; + +void Separable5(const ImageF& in, const Rect& rect, + const WeightsSeparable5& weights, ThreadPool* pool, + ImageF* out) { + using Conv = ConvolveT<Separable5Strategy>; + if (rect.xsize() >= Conv::MinWidth()) { + return Conv::Run(in, rect, weights, pool, out); + } + + return SlowSeparable5(in, rect, weights, pool, out); +} + +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace jxl +HWY_AFTER_NAMESPACE(); + +#if HWY_ONCE +namespace jxl { + +HWY_EXPORT(Separable5); +void Separable5(const ImageF& in, const Rect& rect, + const WeightsSeparable5& weights, ThreadPool* pool, + ImageF* out) { + return HWY_DYNAMIC_DISPATCH(Separable5)(in, rect, weights, pool, out); +} + +} // namespace jxl +#endif // HWY_ONCE |