1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
|
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/utils/SkPolyUtils.h"
#include "include/core/SkRect.h"
#include "include/core/SkTypes.h"
#include "include/private/base/SkDebug.h"
#include "include/private/base/SkFloatingPoint.h"
#include "include/private/base/SkMalloc.h"
#include "include/private/base/SkTArray.h"
#include "include/private/base/SkTDArray.h"
#include "include/private/base/SkTemplates.h"
#include "src/base/SkTDPQueue.h"
#include "src/base/SkTInternalLList.h"
#include "src/base/SkVx.h"
#include "src/core/SkPointPriv.h"
#include "src/core/SkRectPriv.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <new>
using namespace skia_private;
#if !defined(SK_ENABLE_OPTIMIZE_SIZE)
//////////////////////////////////////////////////////////////////////////////////
// Helper data structures and functions
struct OffsetSegment {
SkPoint fP0;
SkVector fV;
};
constexpr SkScalar kCrossTolerance = SK_ScalarNearlyZero * SK_ScalarNearlyZero;
// Computes perpDot for point p compared to segment defined by origin p0 and vector v.
// A positive value means the point is to the left of the segment,
// negative is to the right, 0 is collinear.
static int compute_side(const SkPoint& p0, const SkVector& v, const SkPoint& p) {
SkVector w = p - p0;
SkScalar perpDot = v.cross(w);
if (!SkScalarNearlyZero(perpDot, kCrossTolerance)) {
return ((perpDot > 0) ? 1 : -1);
}
return 0;
}
// Returns 1 for cw, -1 for ccw and 0 if zero signed area (either degenerate or self-intersecting)
int SkGetPolygonWinding(const SkPoint* polygonVerts, int polygonSize) {
if (polygonSize < 3) {
return 0;
}
// compute area and use sign to determine winding
SkScalar quadArea = 0;
SkVector v0 = polygonVerts[1] - polygonVerts[0];
for (int curr = 2; curr < polygonSize; ++curr) {
SkVector v1 = polygonVerts[curr] - polygonVerts[0];
quadArea += v0.cross(v1);
v0 = v1;
}
if (SkScalarNearlyZero(quadArea, kCrossTolerance)) {
return 0;
}
// 1 == ccw, -1 == cw
return (quadArea > 0) ? 1 : -1;
}
// Compute difference vector to offset p0-p1 'offset' units in direction specified by 'side'
bool compute_offset_vector(const SkPoint& p0, const SkPoint& p1, SkScalar offset, int side,
SkPoint* vector) {
SkASSERT(side == -1 || side == 1);
// if distances are equal, can just outset by the perpendicular
SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
if (!perp.setLength(offset*side)) {
return false;
}
*vector = perp;
return true;
}
// check interval to see if intersection is in segment
static inline bool outside_interval(SkScalar numer, SkScalar denom, bool denomPositive) {
return (denomPositive && (numer < 0 || numer > denom)) ||
(!denomPositive && (numer > 0 || numer < denom));
}
// special zero-length test when we're using vdotv as a denominator
static inline bool zero_length(const SkPoint& v, SkScalar vdotv) {
return !(SkScalarsAreFinite(v.fX, v.fY) && vdotv);
}
// Compute the intersection 'p' between segments s0 and s1, if any.
// 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
// Returns false if there is no intersection.
// If the length squared of a segment is 0, then we treat the segment as degenerate
// and use only the first endpoint for tests.
static bool compute_intersection(const OffsetSegment& s0, const OffsetSegment& s1,
SkPoint* p, SkScalar* s, SkScalar* t) {
const SkVector& v0 = s0.fV;
const SkVector& v1 = s1.fV;
SkVector w = s1.fP0 - s0.fP0;
SkScalar denom = v0.cross(v1);
bool denomPositive = (denom > 0);
SkScalar sNumer, tNumer;
if (SkScalarNearlyZero(denom, kCrossTolerance)) {
// segments are parallel, but not collinear
if (!SkScalarNearlyZero(w.cross(v0), kCrossTolerance) ||
!SkScalarNearlyZero(w.cross(v1), kCrossTolerance)) {
return false;
}
// Check for zero-length segments
SkScalar v0dotv0 = v0.dot(v0);
if (zero_length(v0, v0dotv0)) {
// Both are zero-length
SkScalar v1dotv1 = v1.dot(v1);
if (zero_length(v1, v1dotv1)) {
// Check if they're the same point
if (!SkPointPriv::CanNormalize(w.fX, w.fY)) {
*p = s0.fP0;
*s = 0;
*t = 0;
return true;
} else {
// Intersection is indeterminate
return false;
}
}
// Otherwise project segment0's origin onto segment1
tNumer = v1.dot(-w);
denom = v1dotv1;
if (outside_interval(tNumer, denom, true)) {
return false;
}
sNumer = 0;
} else {
// Project segment1's endpoints onto segment0
sNumer = v0.dot(w);
denom = v0dotv0;
tNumer = 0;
if (outside_interval(sNumer, denom, true)) {
// The first endpoint doesn't lie on segment0
// If segment1 is degenerate, then there's no collision
SkScalar v1dotv1 = v1.dot(v1);
if (zero_length(v1, v1dotv1)) {
return false;
}
// Otherwise try the other one
SkScalar oldSNumer = sNumer;
sNumer = v0.dot(w + v1);
tNumer = denom;
if (outside_interval(sNumer, denom, true)) {
// it's possible that segment1's interval surrounds segment0
// this is false if params have the same signs, and in that case no collision
if (sNumer*oldSNumer > 0) {
return false;
}
// otherwise project segment0's endpoint onto segment1 instead
sNumer = 0;
tNumer = v1.dot(-w);
denom = v1dotv1;
}
}
}
} else {
sNumer = w.cross(v1);
if (outside_interval(sNumer, denom, denomPositive)) {
return false;
}
tNumer = w.cross(v0);
if (outside_interval(tNumer, denom, denomPositive)) {
return false;
}
}
SkScalar localS = sNumer/denom;
SkScalar localT = tNumer/denom;
*p = s0.fP0 + v0*localS;
*s = localS;
*t = localT;
return true;
}
bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) {
if (polygonSize < 3) {
return false;
}
SkScalar lastPerpDot = 0;
int xSignChangeCount = 0;
int ySignChangeCount = 0;
int prevIndex = polygonSize - 1;
int currIndex = 0;
int nextIndex = 1;
SkVector v0 = polygonVerts[currIndex] - polygonVerts[prevIndex];
SkScalar lastVx = v0.fX;
SkScalar lastVy = v0.fY;
SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
for (int i = 0; i < polygonSize; ++i) {
if (!polygonVerts[i].isFinite()) {
return false;
}
// Check that winding direction is always the same (otherwise we have a reflex vertex)
SkScalar perpDot = v0.cross(v1);
if (lastPerpDot*perpDot < 0) {
return false;
}
if (0 != perpDot) {
lastPerpDot = perpDot;
}
// Check that the signs of the edge vectors don't change more than twice per coordinate
if (lastVx*v1.fX < 0) {
xSignChangeCount++;
}
if (lastVy*v1.fY < 0) {
ySignChangeCount++;
}
if (xSignChangeCount > 2 || ySignChangeCount > 2) {
return false;
}
prevIndex = currIndex;
currIndex = nextIndex;
nextIndex = (currIndex + 1) % polygonSize;
if (v1.fX != 0) {
lastVx = v1.fX;
}
if (v1.fY != 0) {
lastVy = v1.fY;
}
v0 = v1;
v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
}
return true;
}
struct OffsetEdge {
OffsetEdge* fPrev;
OffsetEdge* fNext;
OffsetSegment fOffset;
SkPoint fIntersection;
SkScalar fTValue;
uint16_t fIndex;
uint16_t fEnd;
void init(uint16_t start = 0, uint16_t end = 0) {
fIntersection = fOffset.fP0;
fTValue = SK_ScalarMin;
fIndex = start;
fEnd = end;
}
// special intersection check that looks for endpoint intersection
bool checkIntersection(const OffsetEdge* that,
SkPoint* p, SkScalar* s, SkScalar* t) {
if (this->fEnd == that->fIndex) {
SkPoint p1 = this->fOffset.fP0 + this->fOffset.fV;
if (SkPointPriv::EqualsWithinTolerance(p1, that->fOffset.fP0)) {
*p = p1;
*s = SK_Scalar1;
*t = 0;
return true;
}
}
return compute_intersection(this->fOffset, that->fOffset, p, s, t);
}
// computes the line intersection and then the "distance" from that to this
// this is really a signed squared distance, where negative means that
// the intersection lies inside this->fOffset
SkScalar computeCrossingDistance(const OffsetEdge* that) {
const OffsetSegment& s0 = this->fOffset;
const OffsetSegment& s1 = that->fOffset;
const SkVector& v0 = s0.fV;
const SkVector& v1 = s1.fV;
SkScalar denom = v0.cross(v1);
if (SkScalarNearlyZero(denom, kCrossTolerance)) {
// segments are parallel
return SK_ScalarMax;
}
SkVector w = s1.fP0 - s0.fP0;
SkScalar localS = w.cross(v1) / denom;
if (localS < 0) {
localS = -localS;
} else {
localS -= SK_Scalar1;
}
localS *= SkScalarAbs(localS);
localS *= v0.dot(v0);
return localS;
}
};
static void remove_node(const OffsetEdge* node, OffsetEdge** head) {
// remove from linked list
node->fPrev->fNext = node->fNext;
node->fNext->fPrev = node->fPrev;
if (node == *head) {
*head = (node->fNext == node) ? nullptr : node->fNext;
}
}
//////////////////////////////////////////////////////////////////////////////////
// The objective here is to inset all of the edges by the given distance, and then
// remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
// we should only be making left-hand turns (for cw polygons, we use the winding
// parameter to reverse this). We detect this by checking whether the second intersection
// on an edge is closer to its tail than the first one.
//
// We might also have the case that there is no intersection between two neighboring inset edges.
// In this case, one edge will lie to the right of the other and should be discarded along with
// its previous intersection (if any).
//
// Note: the assumption is that inputPolygon is convex and has no coincident points.
//
bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
SkScalar inset, SkTDArray<SkPoint>* insetPolygon) {
if (inputPolygonSize < 3) {
return false;
}
// restrict this to match other routines
// practically we don't want anything bigger than this anyway
if (inputPolygonSize > std::numeric_limits<uint16_t>::max()) {
return false;
}
// can't inset by a negative or non-finite amount
if (inset < -SK_ScalarNearlyZero || !SkScalarIsFinite(inset)) {
return false;
}
// insetting close to zero just returns the original poly
if (inset <= SK_ScalarNearlyZero) {
for (int i = 0; i < inputPolygonSize; ++i) {
*insetPolygon->append() = inputPolygonVerts[i];
}
return true;
}
// get winding direction
int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
if (0 == winding) {
return false;
}
// set up
AutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize);
int prev = inputPolygonSize - 1;
for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) {
int next = (curr + 1) % inputPolygonSize;
if (!inputPolygonVerts[curr].isFinite()) {
return false;
}
// check for convexity just to be sure
if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr] - inputPolygonVerts[prev],
inputPolygonVerts[next])*winding < 0) {
return false;
}
SkVector v = inputPolygonVerts[next] - inputPolygonVerts[curr];
SkVector perp = SkVector::Make(-v.fY, v.fX);
perp.setLength(inset*winding);
edgeData[curr].fPrev = &edgeData[prev];
edgeData[curr].fNext = &edgeData[next];
edgeData[curr].fOffset.fP0 = inputPolygonVerts[curr] + perp;
edgeData[curr].fOffset.fV = v;
edgeData[curr].init();
}
OffsetEdge* head = &edgeData[0];
OffsetEdge* currEdge = head;
OffsetEdge* prevEdge = currEdge->fPrev;
int insetVertexCount = inputPolygonSize;
unsigned int iterations = 0;
unsigned int maxIterations = inputPolygonSize * inputPolygonSize;
while (head && prevEdge != currEdge) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > maxIterations) {
return false;
}
SkScalar s, t;
SkPoint intersection;
if (compute_intersection(prevEdge->fOffset, currEdge->fOffset,
&intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < prevEdge->fTValue) {
// no point in considering this one again
remove_node(prevEdge, &head);
--insetVertexCount;
// go back one segment
prevEdge = prevEdge->fPrev;
// we've already considered this intersection, we're done
} else if (currEdge->fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
currEdge->fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
currEdge->fIntersection = intersection;
currEdge->fTValue = t;
// go to next segment
prevEdge = currEdge;
currEdge = currEdge->fNext;
}
} else {
// if prev to right side of curr
int side = winding*compute_side(currEdge->fOffset.fP0,
currEdge->fOffset.fV,
prevEdge->fOffset.fP0);
if (side < 0 &&
side == winding*compute_side(currEdge->fOffset.fP0,
currEdge->fOffset.fV,
prevEdge->fOffset.fP0 + prevEdge->fOffset.fV)) {
// no point in considering this one again
remove_node(prevEdge, &head);
--insetVertexCount;
// go back one segment
prevEdge = prevEdge->fPrev;
} else {
// move to next segment
remove_node(currEdge, &head);
--insetVertexCount;
currEdge = currEdge->fNext;
}
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
insetPolygon->reset();
if (!head) {
return false;
}
static constexpr SkScalar kCleanupTolerance = 0.01f;
if (insetVertexCount >= 0) {
insetPolygon->reserve(insetVertexCount);
}
int currIndex = 0;
*insetPolygon->append() = head->fIntersection;
currEdge = head->fNext;
while (currEdge != head) {
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
(*insetPolygon)[currIndex],
kCleanupTolerance)) {
*insetPolygon->append() = currEdge->fIntersection;
currIndex++;
}
currEdge = currEdge->fNext;
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
kCleanupTolerance)) {
insetPolygon->pop_back();
}
return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->size());
}
///////////////////////////////////////////////////////////////////////////////////////////
// compute the number of points needed for a circular join when offsetting a reflex vertex
bool SkComputeRadialSteps(const SkVector& v1, const SkVector& v2, SkScalar offset,
SkScalar* rotSin, SkScalar* rotCos, int* n) {
const SkScalar kRecipPixelsPerArcSegment = 0.25f;
SkScalar rCos = v1.dot(v2);
if (!SkScalarIsFinite(rCos)) {
return false;
}
SkScalar rSin = v1.cross(v2);
if (!SkScalarIsFinite(rSin)) {
return false;
}
SkScalar theta = SkScalarATan2(rSin, rCos);
SkScalar floatSteps = SkScalarAbs(offset*theta*kRecipPixelsPerArcSegment);
// limit the number of steps to at most max uint16_t (that's all we can index)
// knock one value off the top to account for rounding
if (floatSteps >= std::numeric_limits<uint16_t>::max()) {
return false;
}
int steps = SkScalarRoundToInt(floatSteps);
SkScalar dTheta = steps > 0 ? theta / steps : 0;
*rotSin = SkScalarSin(dTheta);
*rotCos = SkScalarCos(dTheta);
// Our offset may be so large that we end up with a tiny dTheta, in which case we
// lose precision when computing rotSin and rotCos.
if (steps > 0 && (*rotSin == 0 || *rotCos == 1)) {
return false;
}
*n = steps;
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////
// a point is "left" to another if its x-coord is less, or if equal, its y-coord is greater
static bool left(const SkPoint& p0, const SkPoint& p1) {
return p0.fX < p1.fX || (!(p0.fX > p1.fX) && p0.fY > p1.fY);
}
// a point is "right" to another if its x-coord is greater, or if equal, its y-coord is less
static bool right(const SkPoint& p0, const SkPoint& p1) {
return p0.fX > p1.fX || (!(p0.fX < p1.fX) && p0.fY < p1.fY);
}
struct Vertex {
static bool Left(const Vertex& qv0, const Vertex& qv1) {
return left(qv0.fPosition, qv1.fPosition);
}
// packed to fit into 16 bytes (one cache line)
SkPoint fPosition;
uint16_t fIndex; // index in unsorted polygon
uint16_t fPrevIndex; // indices for previous and next vertex in unsorted polygon
uint16_t fNextIndex;
uint16_t fFlags;
};
enum VertexFlags {
kPrevLeft_VertexFlag = 0x1,
kNextLeft_VertexFlag = 0x2,
};
struct ActiveEdge {
ActiveEdge() : fChild{ nullptr, nullptr }, fAbove(nullptr), fBelow(nullptr), fRed(false) {}
ActiveEdge(const SkPoint& p0, const SkVector& v, uint16_t index0, uint16_t index1)
: fSegment({ p0, v })
, fIndex0(index0)
, fIndex1(index1)
, fAbove(nullptr)
, fBelow(nullptr)
, fRed(true) {
fChild[0] = nullptr;
fChild[1] = nullptr;
}
// Returns true if "this" is above "that", assuming this->p0 is to the left of that->p0
// This is only used to verify the edgelist -- the actual test for insertion/deletion is much
// simpler because we can make certain assumptions then.
bool aboveIfLeft(const ActiveEdge* that) const {
const SkPoint& p0 = this->fSegment.fP0;
const SkPoint& q0 = that->fSegment.fP0;
SkASSERT(p0.fX <= q0.fX);
SkVector d = q0 - p0;
const SkVector& v = this->fSegment.fV;
const SkVector& w = that->fSegment.fV;
// The idea here is that if the vector between the origins of the two segments (d)
// rotates counterclockwise up to the vector representing the "this" segment (v),
// then we know that "this" is above "that". If the result is clockwise we say it's below.
if (this->fIndex0 != that->fIndex0) {
SkScalar cross = d.cross(v);
if (cross > kCrossTolerance) {
return true;
} else if (cross < -kCrossTolerance) {
return false;
}
} else if (this->fIndex1 == that->fIndex1) {
return false;
}
// At this point either the two origins are nearly equal or the origin of "that"
// lies on dv. So then we try the same for the vector from the tail of "this"
// to the head of "that". Again, ccw means "this" is above "that".
// d = that.P1 - this.P0
// = that.fP0 + that.fV - this.fP0
// = that.fP0 - this.fP0 + that.fV
// = old_d + that.fV
d += w;
SkScalar cross = d.cross(v);
if (cross > kCrossTolerance) {
return true;
} else if (cross < -kCrossTolerance) {
return false;
}
// If the previous check fails, the two segments are nearly collinear
// First check y-coord of first endpoints
if (p0.fX < q0.fX) {
return (p0.fY >= q0.fY);
} else if (p0.fY > q0.fY) {
return true;
} else if (p0.fY < q0.fY) {
return false;
}
// The first endpoints are the same, so check the other endpoint
SkPoint p1 = p0 + v;
SkPoint q1 = q0 + w;
if (p1.fX < q1.fX) {
return (p1.fY >= q1.fY);
} else {
return (p1.fY > q1.fY);
}
}
// same as leftAndAbove(), but generalized
bool above(const ActiveEdge* that) const {
const SkPoint& p0 = this->fSegment.fP0;
const SkPoint& q0 = that->fSegment.fP0;
if (right(p0, q0)) {
return !that->aboveIfLeft(this);
} else {
return this->aboveIfLeft(that);
}
}
bool intersect(const SkPoint& q0, const SkVector& w, uint16_t index0, uint16_t index1) const {
// check first to see if these edges are neighbors in the polygon
if (this->fIndex0 == index0 || this->fIndex1 == index0 ||
this->fIndex0 == index1 || this->fIndex1 == index1) {
return false;
}
// We don't need the exact intersection point so we can do a simpler test here.
const SkPoint& p0 = this->fSegment.fP0;
const SkVector& v = this->fSegment.fV;
SkPoint p1 = p0 + v;
SkPoint q1 = q0 + w;
// We assume some x-overlap due to how the edgelist works
// This allows us to simplify our test
// We need some slop here because storing the vector and recomputing the second endpoint
// doesn't necessary give us the original result in floating point.
// TODO: Store vector as double? Store endpoint as well?
SkASSERT(q0.fX <= p1.fX + SK_ScalarNearlyZero);
// if each segment straddles the other (i.e., the endpoints have different sides)
// then they intersect
bool result;
if (p0.fX < q0.fX) {
if (q1.fX < p1.fX) {
result = (compute_side(p0, v, q0)*compute_side(p0, v, q1) < 0);
} else {
result = (compute_side(p0, v, q0)*compute_side(q0, w, p1) > 0);
}
} else {
if (p1.fX < q1.fX) {
result = (compute_side(q0, w, p0)*compute_side(q0, w, p1) < 0);
} else {
result = (compute_side(q0, w, p0)*compute_side(p0, v, q1) > 0);
}
}
return result;
}
bool intersect(const ActiveEdge* edge) {
return this->intersect(edge->fSegment.fP0, edge->fSegment.fV, edge->fIndex0, edge->fIndex1);
}
bool lessThan(const ActiveEdge* that) const {
SkASSERT(!this->above(this));
SkASSERT(!that->above(that));
SkASSERT(!(this->above(that) && that->above(this)));
return this->above(that);
}
bool equals(uint16_t index0, uint16_t index1) const {
return (this->fIndex0 == index0 && this->fIndex1 == index1);
}
OffsetSegment fSegment;
uint16_t fIndex0; // indices for previous and next vertex in polygon
uint16_t fIndex1;
ActiveEdge* fChild[2];
ActiveEdge* fAbove;
ActiveEdge* fBelow;
int32_t fRed;
};
class ActiveEdgeList {
public:
ActiveEdgeList(int maxEdges) {
fAllocation = (char*) sk_malloc_throw(sizeof(ActiveEdge)*maxEdges);
fCurrFree = 0;
fMaxFree = maxEdges;
}
~ActiveEdgeList() {
fTreeHead.fChild[1] = nullptr;
sk_free(fAllocation);
}
bool insert(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
SkVector v = p1 - p0;
if (!v.isFinite()) {
return false;
}
// empty tree case -- easy
if (!fTreeHead.fChild[1]) {
ActiveEdge* root = fTreeHead.fChild[1] = this->allocate(p0, v, index0, index1);
SkASSERT(root);
if (!root) {
return false;
}
root->fRed = false;
return true;
}
// set up helpers
ActiveEdge* top = &fTreeHead;
ActiveEdge *grandparent = nullptr;
ActiveEdge *parent = nullptr;
ActiveEdge *curr = top->fChild[1];
int dir = 0;
int last = 0; // ?
// predecessor and successor, for intersection check
ActiveEdge* pred = nullptr;
ActiveEdge* succ = nullptr;
// search down the tree
while (true) {
if (!curr) {
// check for intersection with predecessor and successor
if ((pred && pred->intersect(p0, v, index0, index1)) ||
(succ && succ->intersect(p0, v, index0, index1))) {
return false;
}
// insert new node at bottom
parent->fChild[dir] = curr = this->allocate(p0, v, index0, index1);
SkASSERT(curr);
if (!curr) {
return false;
}
curr->fAbove = pred;
curr->fBelow = succ;
if (pred) {
if (pred->fSegment.fP0 == curr->fSegment.fP0 &&
pred->fSegment.fV == curr->fSegment.fV) {
return false;
}
pred->fBelow = curr;
}
if (succ) {
if (succ->fSegment.fP0 == curr->fSegment.fP0 &&
succ->fSegment.fV == curr->fSegment.fV) {
return false;
}
succ->fAbove = curr;
}
if (IsRed(parent)) {
int dir2 = (top->fChild[1] == grandparent);
if (curr == parent->fChild[last]) {
top->fChild[dir2] = SingleRotation(grandparent, !last);
} else {
top->fChild[dir2] = DoubleRotation(grandparent, !last);
}
}
break;
} else if (IsRed(curr->fChild[0]) && IsRed(curr->fChild[1])) {
// color flip
curr->fRed = true;
curr->fChild[0]->fRed = false;
curr->fChild[1]->fRed = false;
if (IsRed(parent)) {
int dir2 = (top->fChild[1] == grandparent);
if (curr == parent->fChild[last]) {
top->fChild[dir2] = SingleRotation(grandparent, !last);
} else {
top->fChild[dir2] = DoubleRotation(grandparent, !last);
}
}
}
last = dir;
int side;
// check to see if segment is above or below
if (curr->fIndex0 == index0) {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
} else {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
}
if (0 == side) {
return false;
}
dir = (side < 0);
if (0 == dir) {
succ = curr;
} else {
pred = curr;
}
// update helpers
if (grandparent) {
top = grandparent;
}
grandparent = parent;
parent = curr;
curr = curr->fChild[dir];
}
// update root and make it black
fTreeHead.fChild[1]->fRed = false;
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
return true;
}
// replaces edge p0p1 with p1p2
bool replace(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
uint16_t index0, uint16_t index1, uint16_t index2) {
if (!fTreeHead.fChild[1]) {
return false;
}
SkVector v = p2 - p1;
ActiveEdge* curr = &fTreeHead;
ActiveEdge* found = nullptr;
int dir = 1;
// search
while (curr->fChild[dir] != nullptr) {
// update helpers
curr = curr->fChild[dir];
// save found node
if (curr->equals(index0, index1)) {
found = curr;
break;
} else {
// check to see if segment is above or below
int side;
if (curr->fIndex1 == index1) {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
} else {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
}
if (0 == side) {
return false;
}
dir = (side < 0);
}
}
if (!found) {
return false;
}
// replace if found
ActiveEdge* pred = found->fAbove;
ActiveEdge* succ = found->fBelow;
// check deletion and insert intersection cases
if (pred && (pred->intersect(found) || pred->intersect(p1, v, index1, index2))) {
return false;
}
if (succ && (succ->intersect(found) || succ->intersect(p1, v, index1, index2))) {
return false;
}
found->fSegment.fP0 = p1;
found->fSegment.fV = v;
found->fIndex0 = index1;
found->fIndex1 = index2;
// above and below should stay the same
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
return true;
}
bool remove(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
if (!fTreeHead.fChild[1]) {
return false;
}
ActiveEdge* curr = &fTreeHead;
ActiveEdge* parent = nullptr;
ActiveEdge* grandparent = nullptr;
ActiveEdge* found = nullptr;
int dir = 1;
// search and push a red node down
while (curr->fChild[dir] != nullptr) {
int last = dir;
// update helpers
grandparent = parent;
parent = curr;
curr = curr->fChild[dir];
// save found node
if (curr->equals(index0, index1)) {
found = curr;
dir = 0;
} else {
// check to see if segment is above or below
int side;
if (curr->fIndex1 == index1) {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p0);
} else {
side = compute_side(curr->fSegment.fP0, curr->fSegment.fV, p1);
}
if (0 == side) {
return false;
}
dir = (side < 0);
}
// push the red node down
if (!IsRed(curr) && !IsRed(curr->fChild[dir])) {
if (IsRed(curr->fChild[!dir])) {
parent = parent->fChild[last] = SingleRotation(curr, dir);
} else {
ActiveEdge *s = parent->fChild[!last];
if (s != nullptr) {
if (!IsRed(s->fChild[!last]) && !IsRed(s->fChild[last])) {
// color flip
parent->fRed = false;
s->fRed = true;
curr->fRed = true;
} else {
int dir2 = (grandparent->fChild[1] == parent);
if (IsRed(s->fChild[last])) {
grandparent->fChild[dir2] = DoubleRotation(parent, last);
} else if (IsRed(s->fChild[!last])) {
grandparent->fChild[dir2] = SingleRotation(parent, last);
}
// ensure correct coloring
curr->fRed = grandparent->fChild[dir2]->fRed = true;
grandparent->fChild[dir2]->fChild[0]->fRed = false;
grandparent->fChild[dir2]->fChild[1]->fRed = false;
}
}
}
}
}
// replace and remove if found
if (found) {
ActiveEdge* pred = found->fAbove;
ActiveEdge* succ = found->fBelow;
if ((pred && pred->intersect(found)) || (succ && succ->intersect(found))) {
return false;
}
if (found != curr) {
found->fSegment = curr->fSegment;
found->fIndex0 = curr->fIndex0;
found->fIndex1 = curr->fIndex1;
found->fAbove = curr->fAbove;
pred = found->fAbove;
// we don't need to set found->fBelow here
} else {
if (succ) {
succ->fAbove = pred;
}
}
if (pred) {
pred->fBelow = curr->fBelow;
}
parent->fChild[parent->fChild[1] == curr] = curr->fChild[!curr->fChild[0]];
// no need to delete
curr->fAbove = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
curr->fBelow = reinterpret_cast<ActiveEdge*>(0xdeadbeefll);
if (fTreeHead.fChild[1]) {
fTreeHead.fChild[1]->fRed = false;
}
}
// update root and make it black
if (fTreeHead.fChild[1]) {
fTreeHead.fChild[1]->fRed = false;
}
SkDEBUGCODE(VerifyTree(fTreeHead.fChild[1]));
return true;
}
private:
// allocator
ActiveEdge * allocate(const SkPoint& p0, const SkPoint& p1, uint16_t index0, uint16_t index1) {
if (fCurrFree >= fMaxFree) {
return nullptr;
}
char* bytes = fAllocation + sizeof(ActiveEdge)*fCurrFree;
++fCurrFree;
return new(bytes) ActiveEdge(p0, p1, index0, index1);
}
///////////////////////////////////////////////////////////////////////////////////
// Red-black tree methods
///////////////////////////////////////////////////////////////////////////////////
static bool IsRed(const ActiveEdge* node) {
return node && node->fRed;
}
static ActiveEdge* SingleRotation(ActiveEdge* node, int dir) {
ActiveEdge* tmp = node->fChild[!dir];
node->fChild[!dir] = tmp->fChild[dir];
tmp->fChild[dir] = node;
node->fRed = true;
tmp->fRed = false;
return tmp;
}
static ActiveEdge* DoubleRotation(ActiveEdge* node, int dir) {
node->fChild[!dir] = SingleRotation(node->fChild[!dir], !dir);
return SingleRotation(node, dir);
}
// returns black link count
static int VerifyTree(const ActiveEdge* tree) {
if (!tree) {
return 1;
}
const ActiveEdge* left = tree->fChild[0];
const ActiveEdge* right = tree->fChild[1];
// no consecutive red links
if (IsRed(tree) && (IsRed(left) || IsRed(right))) {
SkASSERT(false);
return 0;
}
// check secondary links
if (tree->fAbove) {
SkASSERT(tree->fAbove->fBelow == tree);
SkASSERT(tree->fAbove->lessThan(tree));
}
if (tree->fBelow) {
SkASSERT(tree->fBelow->fAbove == tree);
SkASSERT(tree->lessThan(tree->fBelow));
}
// violates binary tree order
if ((left && tree->lessThan(left)) || (right && right->lessThan(tree))) {
SkASSERT(false);
return 0;
}
int leftCount = VerifyTree(left);
int rightCount = VerifyTree(right);
// return black link count
if (leftCount != 0 && rightCount != 0) {
// black height mismatch
if (leftCount != rightCount) {
SkASSERT(false);
return 0;
}
return IsRed(tree) ? leftCount : leftCount + 1;
} else {
return 0;
}
}
ActiveEdge fTreeHead;
char* fAllocation;
int fCurrFree;
int fMaxFree;
};
// Here we implement a sweep line algorithm to determine whether the provided points
// represent a simple polygon, i.e., the polygon is non-self-intersecting.
// We first insert the vertices into a priority queue sorting horizontally from left to right.
// Then as we pop the vertices from the queue we generate events which indicate that an edge
// should be added or removed from an edge list. If any intersections are detected in the edge
// list, then we know the polygon is self-intersecting and hence not simple.
bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) {
if (polygonSize < 3) {
return false;
}
// If it's convex, it's simple
if (SkIsConvexPolygon(polygon, polygonSize)) {
return true;
}
// practically speaking, it takes too long to process large polygons
if (polygonSize > 2048) {
return false;
}
SkTDPQueue <Vertex, Vertex::Left> vertexQueue(polygonSize);
for (int i = 0; i < polygonSize; ++i) {
Vertex newVertex;
if (!polygon[i].isFinite()) {
return false;
}
newVertex.fPosition = polygon[i];
newVertex.fIndex = i;
newVertex.fPrevIndex = (i - 1 + polygonSize) % polygonSize;
newVertex.fNextIndex = (i + 1) % polygonSize;
newVertex.fFlags = 0;
// The two edges adjacent to this vertex are the same, so polygon is not simple
if (polygon[newVertex.fPrevIndex] == polygon[newVertex.fNextIndex]) {
return false;
}
if (left(polygon[newVertex.fPrevIndex], polygon[i])) {
newVertex.fFlags |= kPrevLeft_VertexFlag;
}
if (left(polygon[newVertex.fNextIndex], polygon[i])) {
newVertex.fFlags |= kNextLeft_VertexFlag;
}
vertexQueue.insert(newVertex);
}
// pop each vertex from the queue and generate events depending on
// where it lies relative to its neighboring edges
ActiveEdgeList sweepLine(polygonSize);
while (vertexQueue.count() > 0) {
const Vertex& v = vertexQueue.peek();
// both to the right -- insert both
if (v.fFlags == 0) {
if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) {
break;
}
if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) {
break;
}
// both to the left -- remove both
} else if (v.fFlags == (kPrevLeft_VertexFlag | kNextLeft_VertexFlag)) {
if (!sweepLine.remove(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex)) {
break;
}
if (!sweepLine.remove(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex)) {
break;
}
// one to left and right -- replace one with another
} else {
if (v.fFlags & kPrevLeft_VertexFlag) {
if (!sweepLine.replace(polygon[v.fPrevIndex], v.fPosition, polygon[v.fNextIndex],
v.fPrevIndex, v.fIndex, v.fNextIndex)) {
break;
}
} else {
SkASSERT(v.fFlags & kNextLeft_VertexFlag);
if (!sweepLine.replace(polygon[v.fNextIndex], v.fPosition, polygon[v.fPrevIndex],
v.fNextIndex, v.fIndex, v.fPrevIndex)) {
break;
}
}
}
vertexQueue.pop();
}
return (vertexQueue.count() == 0);
}
///////////////////////////////////////////////////////////////////////////////////////////
// helper function for SkOffsetSimplePolygon
static void setup_offset_edge(OffsetEdge* currEdge,
const SkPoint& endpoint0, const SkPoint& endpoint1,
uint16_t startIndex, uint16_t endIndex) {
currEdge->fOffset.fP0 = endpoint0;
currEdge->fOffset.fV = endpoint1 - endpoint0;
currEdge->init(startIndex, endIndex);
}
static bool is_reflex_vertex(const SkPoint* inputPolygonVerts, int winding, SkScalar offset,
uint16_t prevIndex, uint16_t currIndex, uint16_t nextIndex) {
int side = compute_side(inputPolygonVerts[prevIndex],
inputPolygonVerts[currIndex] - inputPolygonVerts[prevIndex],
inputPolygonVerts[nextIndex]);
// if reflex point, we need to add extra edges
return (side*winding*offset < 0);
}
bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
const SkRect& bounds, SkScalar offset,
SkTDArray<SkPoint>* offsetPolygon, SkTDArray<int>* polygonIndices) {
if (inputPolygonSize < 3) {
return false;
}
// need to be able to represent all the vertices in the 16-bit indices
if (inputPolygonSize >= std::numeric_limits<uint16_t>::max()) {
return false;
}
if (!SkScalarIsFinite(offset)) {
return false;
}
// can't inset more than the half bounds of the polygon
if (offset > std::min(SkTAbs(SkRectPriv::HalfWidth(bounds)),
SkTAbs(SkRectPriv::HalfHeight(bounds)))) {
return false;
}
// offsetting close to zero just returns the original poly
if (SkScalarNearlyZero(offset)) {
for (int i = 0; i < inputPolygonSize; ++i) {
*offsetPolygon->append() = inputPolygonVerts[i];
if (polygonIndices) {
*polygonIndices->append() = i;
}
}
return true;
}
// get winding direction
int winding = SkGetPolygonWinding(inputPolygonVerts, inputPolygonSize);
if (0 == winding) {
return false;
}
// build normals
AutoSTMalloc<64, SkVector> normals(inputPolygonSize);
unsigned int numEdges = 0;
for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
currIndex < inputPolygonSize;
prevIndex = currIndex, ++currIndex) {
if (!inputPolygonVerts[currIndex].isFinite()) {
return false;
}
int nextIndex = (currIndex + 1) % inputPolygonSize;
if (!compute_offset_vector(inputPolygonVerts[currIndex], inputPolygonVerts[nextIndex],
offset, winding, &normals[currIndex])) {
return false;
}
if (currIndex > 0) {
// if reflex point, we need to add extra edges
if (is_reflex_vertex(inputPolygonVerts, winding, offset,
prevIndex, currIndex, nextIndex)) {
SkScalar rotSin, rotCos;
int numSteps;
if (!SkComputeRadialSteps(normals[prevIndex], normals[currIndex], offset,
&rotSin, &rotCos, &numSteps)) {
return false;
}
numEdges += std::max(numSteps, 1);
}
}
numEdges++;
}
// finish up the edge counting
if (is_reflex_vertex(inputPolygonVerts, winding, offset, inputPolygonSize-1, 0, 1)) {
SkScalar rotSin, rotCos;
int numSteps;
if (!SkComputeRadialSteps(normals[inputPolygonSize-1], normals[0], offset,
&rotSin, &rotCos, &numSteps)) {
return false;
}
numEdges += std::max(numSteps, 1);
}
// Make sure we don't overflow the max array count.
// We shouldn't overflow numEdges, as SkComputeRadialSteps returns a max of 2^16-1,
// and we have a max of 2^16-1 original vertices.
if (numEdges > (unsigned int)std::numeric_limits<int32_t>::max()) {
return false;
}
// build initial offset edge list
SkSTArray<64, OffsetEdge> edgeData(numEdges);
OffsetEdge* prevEdge = nullptr;
for (int currIndex = 0, prevIndex = inputPolygonSize - 1;
currIndex < inputPolygonSize;
prevIndex = currIndex, ++currIndex) {
int nextIndex = (currIndex + 1) % inputPolygonSize;
// if reflex point, fill in curve
if (is_reflex_vertex(inputPolygonVerts, winding, offset,
prevIndex, currIndex, nextIndex)) {
SkScalar rotSin, rotCos;
int numSteps;
SkVector prevNormal = normals[prevIndex];
if (!SkComputeRadialSteps(prevNormal, normals[currIndex], offset,
&rotSin, &rotCos, &numSteps)) {
return false;
}
auto currEdge = edgeData.push_back_n(std::max(numSteps, 1));
for (int i = 0; i < numSteps - 1; ++i) {
SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin,
prevNormal.fY*rotCos + prevNormal.fX*rotSin);
setup_offset_edge(currEdge,
inputPolygonVerts[currIndex] + prevNormal,
inputPolygonVerts[currIndex] + currNormal,
currIndex, currIndex);
prevNormal = currNormal;
currEdge->fPrev = prevEdge;
if (prevEdge) {
prevEdge->fNext = currEdge;
}
prevEdge = currEdge;
++currEdge;
}
setup_offset_edge(currEdge,
inputPolygonVerts[currIndex] + prevNormal,
inputPolygonVerts[currIndex] + normals[currIndex],
currIndex, currIndex);
currEdge->fPrev = prevEdge;
if (prevEdge) {
prevEdge->fNext = currEdge;
}
prevEdge = currEdge;
}
// Add the edge
auto currEdge = edgeData.push_back_n(1);
setup_offset_edge(currEdge,
inputPolygonVerts[currIndex] + normals[currIndex],
inputPolygonVerts[nextIndex] + normals[currIndex],
currIndex, nextIndex);
currEdge->fPrev = prevEdge;
if (prevEdge) {
prevEdge->fNext = currEdge;
}
prevEdge = currEdge;
}
// close up the linked list
SkASSERT(prevEdge);
prevEdge->fNext = &edgeData[0];
edgeData[0].fPrev = prevEdge;
// now clip edges
SkASSERT(edgeData.size() == (int)numEdges);
auto head = &edgeData[0];
auto currEdge = head;
unsigned int offsetVertexCount = numEdges;
unsigned long long iterations = 0;
unsigned long long maxIterations = (unsigned long long)(numEdges) * numEdges;
while (head && prevEdge != currEdge && offsetVertexCount > 0) {
++iterations;
// we should check each edge against each other edge at most once
if (iterations > maxIterations) {
return false;
}
SkScalar s, t;
SkPoint intersection;
if (prevEdge->checkIntersection(currEdge, &intersection, &s, &t)) {
// if new intersection is further back on previous inset from the prior intersection
if (s < prevEdge->fTValue) {
// no point in considering this one again
remove_node(prevEdge, &head);
--offsetVertexCount;
// go back one segment
prevEdge = prevEdge->fPrev;
// we've already considered this intersection, we're done
} else if (currEdge->fTValue > SK_ScalarMin &&
SkPointPriv::EqualsWithinTolerance(intersection,
currEdge->fIntersection,
1.0e-6f)) {
break;
} else {
// add intersection
currEdge->fIntersection = intersection;
currEdge->fTValue = t;
currEdge->fIndex = prevEdge->fEnd;
// go to next segment
prevEdge = currEdge;
currEdge = currEdge->fNext;
}
} else {
// If there is no intersection, we want to minimize the distance between
// the point where the segment lines cross and the segments themselves.
OffsetEdge* prevPrevEdge = prevEdge->fPrev;
OffsetEdge* currNextEdge = currEdge->fNext;
SkScalar dist0 = currEdge->computeCrossingDistance(prevPrevEdge);
SkScalar dist1 = prevEdge->computeCrossingDistance(currNextEdge);
// if both lead to direct collision
if (dist0 < 0 && dist1 < 0) {
// check first to see if either represent parts of one contour
SkPoint p1 = prevPrevEdge->fOffset.fP0 + prevPrevEdge->fOffset.fV;
bool prevSameContour = SkPointPriv::EqualsWithinTolerance(p1,
prevEdge->fOffset.fP0);
p1 = currEdge->fOffset.fP0 + currEdge->fOffset.fV;
bool currSameContour = SkPointPriv::EqualsWithinTolerance(p1,
currNextEdge->fOffset.fP0);
// want to step along contour to find intersections rather than jump to new one
if (currSameContour && !prevSameContour) {
remove_node(currEdge, &head);
currEdge = currNextEdge;
--offsetVertexCount;
continue;
} else if (prevSameContour && !currSameContour) {
remove_node(prevEdge, &head);
prevEdge = prevPrevEdge;
--offsetVertexCount;
continue;
}
}
// otherwise minimize collision distance along segment
if (dist0 < dist1) {
remove_node(prevEdge, &head);
prevEdge = prevPrevEdge;
} else {
remove_node(currEdge, &head);
currEdge = currNextEdge;
}
--offsetVertexCount;
}
}
// store all the valid intersections that aren't nearly coincident
// TODO: look at the main algorithm and see if we can detect these better
offsetPolygon->reset();
if (!head || offsetVertexCount == 0 ||
offsetVertexCount >= std::numeric_limits<uint16_t>::max()) {
return false;
}
static constexpr SkScalar kCleanupTolerance = 0.01f;
offsetPolygon->reserve(offsetVertexCount);
int currIndex = 0;
*offsetPolygon->append() = head->fIntersection;
if (polygonIndices) {
*polygonIndices->append() = head->fIndex;
}
currEdge = head->fNext;
while (currEdge != head) {
if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection,
(*offsetPolygon)[currIndex],
kCleanupTolerance)) {
*offsetPolygon->append() = currEdge->fIntersection;
if (polygonIndices) {
*polygonIndices->append() = currEdge->fIndex;
}
currIndex++;
}
currEdge = currEdge->fNext;
}
// make sure the first and last points aren't coincident
if (currIndex >= 1 &&
SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex],
kCleanupTolerance)) {
offsetPolygon->pop_back();
if (polygonIndices) {
polygonIndices->pop_back();
}
}
// check winding of offset polygon (it should be same as the original polygon)
SkScalar offsetWinding = SkGetPolygonWinding(offsetPolygon->begin(), offsetPolygon->size());
return (winding*offsetWinding > 0 &&
SkIsSimplePolygon(offsetPolygon->begin(), offsetPolygon->size()));
}
//////////////////////////////////////////////////////////////////////////////////////////
struct TriangulationVertex {
SK_DECLARE_INTERNAL_LLIST_INTERFACE(TriangulationVertex);
enum class VertexType { kConvex, kReflex };
SkPoint fPosition;
VertexType fVertexType;
uint16_t fIndex;
uint16_t fPrevIndex;
uint16_t fNextIndex;
};
static void compute_triangle_bounds(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
SkRect* bounds) {
skvx::float4 min, max;
min = max = skvx::float4(p0.fX, p0.fY, p0.fX, p0.fY);
skvx::float4 xy(p1.fX, p1.fY, p2.fX, p2.fY);
min = skvx::min(min, xy);
max = skvx::max(max, xy);
bounds->setLTRB(std::min(min[0], min[2]), std::min(min[1], min[3]),
std::max(max[0], max[2]), std::max(max[1], max[3]));
}
// test to see if point p is in triangle p0p1p2.
// for now assuming strictly inside -- if on the edge it's outside
static bool point_in_triangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
const SkPoint& p) {
SkVector v0 = p1 - p0;
SkVector v1 = p2 - p1;
SkScalar n = v0.cross(v1);
SkVector w0 = p - p0;
if (n*v0.cross(w0) < SK_ScalarNearlyZero) {
return false;
}
SkVector w1 = p - p1;
if (n*v1.cross(w1) < SK_ScalarNearlyZero) {
return false;
}
SkVector v2 = p0 - p2;
SkVector w2 = p - p2;
if (n*v2.cross(w2) < SK_ScalarNearlyZero) {
return false;
}
return true;
}
// Data structure to track reflex vertices and check whether any are inside a given triangle
class ReflexHash {
public:
bool init(const SkRect& bounds, int vertexCount) {
fBounds = bounds;
fNumVerts = 0;
SkScalar width = bounds.width();
SkScalar height = bounds.height();
if (!SkScalarIsFinite(width) || !SkScalarIsFinite(height)) {
return false;
}
// We want vertexCount grid cells, roughly distributed to match the bounds ratio
SkScalar hCount = SkScalarSqrt(sk_ieee_float_divide(vertexCount*width, height));
if (!SkScalarIsFinite(hCount)) {
return false;
}
fHCount = std::max(std::min(SkScalarRoundToInt(hCount), vertexCount), 1);
fVCount = vertexCount/fHCount;
fGridConversion.set(sk_ieee_float_divide(fHCount - 0.001f, width),
sk_ieee_float_divide(fVCount - 0.001f, height));
if (!fGridConversion.isFinite()) {
return false;
}
fGrid.resize(fHCount*fVCount);
for (int i = 0; i < fGrid.size(); ++i) {
fGrid[i].reset();
}
return true;
}
void add(TriangulationVertex* v) {
int index = hash(v);
fGrid[index].addToTail(v);
++fNumVerts;
}
void remove(TriangulationVertex* v) {
int index = hash(v);
fGrid[index].remove(v);
--fNumVerts;
}
bool checkTriangle(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
uint16_t ignoreIndex0, uint16_t ignoreIndex1) const {
if (!fNumVerts) {
return false;
}
SkRect triBounds;
compute_triangle_bounds(p0, p1, p2, &triBounds);
int h0 = (triBounds.fLeft - fBounds.fLeft)*fGridConversion.fX;
int h1 = (triBounds.fRight - fBounds.fLeft)*fGridConversion.fX;
int v0 = (triBounds.fTop - fBounds.fTop)*fGridConversion.fY;
int v1 = (triBounds.fBottom - fBounds.fTop)*fGridConversion.fY;
for (int v = v0; v <= v1; ++v) {
for (int h = h0; h <= h1; ++h) {
int i = v * fHCount + h;
for (SkTInternalLList<TriangulationVertex>::Iter reflexIter = fGrid[i].begin();
reflexIter != fGrid[i].end(); ++reflexIter) {
TriangulationVertex* reflexVertex = *reflexIter;
if (reflexVertex->fIndex != ignoreIndex0 &&
reflexVertex->fIndex != ignoreIndex1 &&
point_in_triangle(p0, p1, p2, reflexVertex->fPosition)) {
return true;
}
}
}
}
return false;
}
private:
int hash(TriangulationVertex* vert) const {
int h = (vert->fPosition.fX - fBounds.fLeft)*fGridConversion.fX;
int v = (vert->fPosition.fY - fBounds.fTop)*fGridConversion.fY;
SkASSERT(v*fHCount + h >= 0);
return v*fHCount + h;
}
SkRect fBounds;
int fHCount;
int fVCount;
int fNumVerts;
// converts distance from the origin to a grid location (when cast to int)
SkVector fGridConversion;
SkTDArray<SkTInternalLList<TriangulationVertex>> fGrid;
};
// Check to see if a reflex vertex has become a convex vertex after clipping an ear
static void reclassify_vertex(TriangulationVertex* p, const SkPoint* polygonVerts,
int winding, ReflexHash* reflexHash,
SkTInternalLList<TriangulationVertex>* convexList) {
if (TriangulationVertex::VertexType::kReflex == p->fVertexType) {
SkVector v0 = p->fPosition - polygonVerts[p->fPrevIndex];
SkVector v1 = polygonVerts[p->fNextIndex] - p->fPosition;
if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
p->fVertexType = TriangulationVertex::VertexType::kConvex;
reflexHash->remove(p);
p->fPrev = p->fNext = nullptr;
convexList->addToTail(p);
}
}
}
bool SkTriangulateSimplePolygon(const SkPoint* polygonVerts, uint16_t* indexMap, int polygonSize,
SkTDArray<uint16_t>* triangleIndices) {
if (polygonSize < 3) {
return false;
}
// need to be able to represent all the vertices in the 16-bit indices
if (polygonSize >= std::numeric_limits<uint16_t>::max()) {
return false;
}
// get bounds
SkRect bounds;
if (!bounds.setBoundsCheck(polygonVerts, polygonSize)) {
return false;
}
// get winding direction
// TODO: we do this for all the polygon routines -- might be better to have the client
// compute it and pass it in
int winding = SkGetPolygonWinding(polygonVerts, polygonSize);
if (0 == winding) {
return false;
}
// Set up vertices
AutoSTArray<64, TriangulationVertex> triangulationVertices(polygonSize);
int prevIndex = polygonSize - 1;
SkVector v0 = polygonVerts[0] - polygonVerts[prevIndex];
for (int currIndex = 0; currIndex < polygonSize; ++currIndex) {
int nextIndex = (currIndex + 1) % polygonSize;
triangulationVertices[currIndex] = TriangulationVertex{};
triangulationVertices[currIndex].fPosition = polygonVerts[currIndex];
triangulationVertices[currIndex].fIndex = currIndex;
triangulationVertices[currIndex].fPrevIndex = prevIndex;
triangulationVertices[currIndex].fNextIndex = nextIndex;
SkVector v1 = polygonVerts[nextIndex] - polygonVerts[currIndex];
if (winding*v0.cross(v1) > SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kConvex;
} else {
triangulationVertices[currIndex].fVertexType = TriangulationVertex::VertexType::kReflex;
}
prevIndex = currIndex;
v0 = v1;
}
// Classify initial vertices into a list of convex vertices and a hash of reflex vertices
// TODO: possibly sort the convexList in some way to get better triangles
SkTInternalLList<TriangulationVertex> convexList;
ReflexHash reflexHash;
if (!reflexHash.init(bounds, polygonSize)) {
return false;
}
prevIndex = polygonSize - 1;
for (int currIndex = 0; currIndex < polygonSize; prevIndex = currIndex, ++currIndex) {
TriangulationVertex::VertexType currType = triangulationVertices[currIndex].fVertexType;
if (TriangulationVertex::VertexType::kConvex == currType) {
int nextIndex = (currIndex + 1) % polygonSize;
TriangulationVertex::VertexType prevType = triangulationVertices[prevIndex].fVertexType;
TriangulationVertex::VertexType nextType = triangulationVertices[nextIndex].fVertexType;
// We prioritize clipping vertices with neighboring reflex vertices.
// The intent here is that it will cull reflex vertices more quickly.
if (TriangulationVertex::VertexType::kReflex == prevType ||
TriangulationVertex::VertexType::kReflex == nextType) {
convexList.addToHead(&triangulationVertices[currIndex]);
} else {
convexList.addToTail(&triangulationVertices[currIndex]);
}
} else {
// We treat near collinear vertices as reflex
reflexHash.add(&triangulationVertices[currIndex]);
}
}
// The general concept: We are trying to find three neighboring vertices where
// no other vertex lies inside the triangle (an "ear"). If we find one, we clip
// that ear off, and then repeat on the new polygon. Once we get down to three vertices
// we have triangulated the entire polygon.
// In the worst case this is an n^2 algorithm. We can cut down the search space somewhat by
// noting that only convex vertices can be potential ears, and we only need to check whether
// any reflex vertices lie inside the ear.
triangleIndices->reserve(triangleIndices->size() + 3 * (polygonSize - 2));
int vertexCount = polygonSize;
while (vertexCount > 3) {
bool success = false;
TriangulationVertex* earVertex = nullptr;
TriangulationVertex* p0 = nullptr;
TriangulationVertex* p2 = nullptr;
// find a convex vertex to clip
for (SkTInternalLList<TriangulationVertex>::Iter convexIter = convexList.begin();
convexIter != convexList.end(); ++convexIter) {
earVertex = *convexIter;
SkASSERT(TriangulationVertex::VertexType::kReflex != earVertex->fVertexType);
p0 = &triangulationVertices[earVertex->fPrevIndex];
p2 = &triangulationVertices[earVertex->fNextIndex];
// see if any reflex vertices are inside the ear
bool failed = reflexHash.checkTriangle(p0->fPosition, earVertex->fPosition,
p2->fPosition, p0->fIndex, p2->fIndex);
if (failed) {
continue;
}
// found one we can clip
success = true;
break;
}
// If we can't find any ears to clip, this probably isn't a simple polygon
if (!success) {
return false;
}
// add indices
auto indices = triangleIndices->append(3);
indices[0] = indexMap[p0->fIndex];
indices[1] = indexMap[earVertex->fIndex];
indices[2] = indexMap[p2->fIndex];
// clip the ear
convexList.remove(earVertex);
--vertexCount;
// reclassify reflex verts
p0->fNextIndex = earVertex->fNextIndex;
reclassify_vertex(p0, polygonVerts, winding, &reflexHash, &convexList);
p2->fPrevIndex = earVertex->fPrevIndex;
reclassify_vertex(p2, polygonVerts, winding, &reflexHash, &convexList);
}
// output indices
for (SkTInternalLList<TriangulationVertex>::Iter vertexIter = convexList.begin();
vertexIter != convexList.end(); ++vertexIter) {
TriangulationVertex* vertex = *vertexIter;
*triangleIndices->append() = indexMap[vertex->fIndex];
}
return true;
}
#endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
|