1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// PHC is a probabilistic heap checker. A tiny fraction of randomly chosen heap
// allocations are subject to some expensive checking via the use of OS page
// access protection. A failed check triggers a crash, whereupon useful
// information about the failure is put into the crash report. The cost and
// coverage for each user is minimal, but spread over the entire user base the
// coverage becomes significant.
//
// The idea comes from Chromium, where it is called GWP-ASAN. (Firefox uses PHC
// as the name because GWP-ASAN is long, awkward, and doesn't have any
// particular meaning.)
//
// In the current implementation up to 64 allocations per process can become
// PHC allocations. These allocations must be page-sized or smaller. Each PHC
// allocation gets its own page, and when the allocation is freed its page is
// marked inaccessible until the page is reused for another allocation. This
// means that a use-after-free defect (which includes double-frees) will be
// caught if the use occurs before the page is reused for another allocation.
// The crash report will contain stack traces for the allocation site, the free
// site, and the use-after-free site, which is often enough to diagnose the
// defect.
//
// Also, each PHC allocation is followed by a guard page. The PHC allocation is
// positioned so that its end abuts the guard page (or as close as possible,
// given alignment constraints). This means that a bounds violation at the end
// of the allocation (overflow) will be caught. The crash report will contain
// stack traces for the allocation site and the bounds violation use site,
// which is often enough to diagnose the defect.
//
// (A bounds violation at the start of the allocation (underflow) will not be
// caught, unless it is sufficiently large to hit the preceding allocation's
// guard page, which is not that likely. It would be possible to look more
// assiduously for underflow by randomly placing some allocations at the end of
// the page and some at the start of the page, and GWP-ASAN does this. PHC does
// not, however, because overflow is likely to be much more common than
// underflow in practice.)
//
// We use a simple heuristic to categorize a guard page access as overflow or
// underflow: if the address falls in the lower half of the guard page, we
// assume it is overflow, otherwise we assume it is underflow. More
// sophisticated heuristics are possible, but this one is very simple, and it is
// likely that most overflows/underflows in practice are very close to the page
// boundary.
//
// The design space for the randomization strategy is large. The current
// implementation has a large random delay before it starts operating, and a
// small random delay between each PHC allocation attempt. Each freed PHC
// allocation is quarantined for a medium random delay before being reused, in
// order to increase the chance of catching UAFs.
//
// The basic cost of PHC's operation is as follows.
//
// - The physical memory cost is 64 pages plus some metadata (including stack
// traces) for each page. This amounts to 256 KiB per process on
// architectures with 4 KiB pages and 1024 KiB on macOS/AArch64 which uses
// 16 KiB pages.
//
// - The virtual memory cost is the physical memory cost plus the guard pages:
// another 64 pages. This amounts to another 256 KiB per process on
// architectures with 4 KiB pages and 1024 KiB on macOS/AArch64 which uses
// 16 KiB pages. PHC is currently only enabled on 64-bit platforms so the
// impact of the virtual memory usage is negligible.
//
// - Every allocation requires a size check and a decrement-and-check of an
// atomic counter. When the counter reaches zero a PHC allocation can occur,
// which involves marking a page as accessible and getting a stack trace for
// the allocation site. Otherwise, mozjemalloc performs the allocation.
//
// - Every deallocation requires a range check on the pointer to see if it
// involves a PHC allocation. (The choice to only do PHC allocations that are
// a page or smaller enables this range check, because the 64 pages are
// contiguous. Allowing larger allocations would make this more complicated,
// and we definitely don't want something as slow as a hash table lookup on
// every deallocation.) PHC deallocations involve marking a page as
// inaccessible and getting a stack trace for the deallocation site.
//
// Note that calls to realloc(), free(), and malloc_usable_size() will
// immediately crash if the given pointer falls within a page allocation's
// page, but does not point to the start of the allocation itself.
//
// void* p = malloc(64);
// free(p + 1); // p+1 doesn't point to the allocation start; crash
//
// Such crashes will not have the PHC fields in the crash report.
//
// PHC-specific tests can be run with the following commands:
// - gtests: `./mach gtest '*PHC*'`
// - xpcshell-tests: `./mach test toolkit/crashreporter/test/unit`
// - This runs some non-PHC tests as well.
#include "PHC.h"
#include <stdlib.h>
#include <time.h>
#include <algorithm>
#ifdef XP_WIN
# include <process.h>
#else
# include <sys/mman.h>
# include <sys/types.h>
# include <pthread.h>
# include <unistd.h>
#endif
#include "replace_malloc.h"
#include "FdPrintf.h"
#include "Mutex.h"
#include "mozilla/Assertions.h"
#include "mozilla/Atomics.h"
#include "mozilla/Attributes.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Maybe.h"
#include "mozilla/StackWalk.h"
#include "mozilla/ThreadLocal.h"
#include "mozilla/XorShift128PlusRNG.h"
using namespace mozilla;
//---------------------------------------------------------------------------
// Utilities
//---------------------------------------------------------------------------
#ifdef ANDROID
// Android doesn't have pthread_atfork defined in pthread.h.
extern "C" MOZ_EXPORT int pthread_atfork(void (*)(void), void (*)(void),
void (*)(void));
#endif
#ifndef DISALLOW_COPY_AND_ASSIGN
# define DISALLOW_COPY_AND_ASSIGN(T) \
T(const T&); \
void operator=(const T&)
#endif
static malloc_table_t sMallocTable;
// This class provides infallible operations for the small number of heap
// allocations that PHC does for itself. It would be nice if we could use the
// InfallibleAllocPolicy from mozalloc, but PHC cannot use mozalloc.
class InfallibleAllocPolicy {
public:
static void AbortOnFailure(const void* aP) {
if (!aP) {
MOZ_CRASH("PHC failed to allocate");
}
}
template <class T>
static T* new_() {
void* p = sMallocTable.malloc(sizeof(T));
AbortOnFailure(p);
return new (p) T;
}
};
//---------------------------------------------------------------------------
// Stack traces
//---------------------------------------------------------------------------
// This code is similar to the equivalent code within DMD.
class StackTrace : public phc::StackTrace {
public:
StackTrace() : phc::StackTrace() {}
void Clear() { mLength = 0; }
void Fill();
private:
static void StackWalkCallback(uint32_t aFrameNumber, void* aPc, void* aSp,
void* aClosure) {
StackTrace* st = (StackTrace*)aClosure;
MOZ_ASSERT(st->mLength < kMaxFrames);
st->mPcs[st->mLength] = aPc;
st->mLength++;
MOZ_ASSERT(st->mLength == aFrameNumber);
}
};
// WARNING WARNING WARNING: this function must only be called when GMut::sMutex
// is *not* locked, otherwise we might get deadlocks.
//
// How? On Windows, MozStackWalk() can lock a mutex, M, from the shared library
// loader. Another thread might call malloc() while holding M locked (when
// loading a shared library) and try to lock GMut::sMutex, causing a deadlock.
// So GMut::sMutex can't be locked during the call to MozStackWalk(). (For
// details, see https://bugzilla.mozilla.org/show_bug.cgi?id=374829#c8. On
// Linux, something similar can happen; see bug 824340. So we just disallow it
// on all platforms.)
//
// In DMD, to avoid this problem we temporarily unlock the equivalent mutex for
// the MozStackWalk() call. But that's grotty, and things are a bit different
// here, so we just require that stack traces be obtained before locking
// GMut::sMutex.
//
// Unfortunately, there is no reliable way at compile-time or run-time to ensure
// this pre-condition. Hence this large comment.
//
void StackTrace::Fill() {
mLength = 0;
#if defined(XP_WIN) && defined(_M_IX86)
// This avoids MozStackWalk(), which causes unusably slow startup on Win32
// when it is called during static initialization (see bug 1241684).
//
// This code is cribbed from the Gecko Profiler, which also uses
// FramePointerStackWalk() on Win32: Registers::SyncPopulate() for the
// frame pointer, and GetStackTop() for the stack end.
CONTEXT context;
RtlCaptureContext(&context);
void** fp = reinterpret_cast<void**>(context.Ebp);
PNT_TIB pTib = reinterpret_cast<PNT_TIB>(NtCurrentTeb());
void* stackEnd = static_cast<void*>(pTib->StackBase);
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
#elif defined(XP_MACOSX)
// This avoids MozStackWalk(), which has become unusably slow on Mac due to
// changes in libunwind.
//
// This code is cribbed from the Gecko Profiler, which also uses
// FramePointerStackWalk() on Mac: Registers::SyncPopulate() for the frame
// pointer, and GetStackTop() for the stack end.
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wframe-address"
void** fp = reinterpret_cast<void**>(__builtin_frame_address(1));
# pragma GCC diagnostic pop
void* stackEnd = pthread_get_stackaddr_np(pthread_self());
FramePointerStackWalk(StackWalkCallback, kMaxFrames, this, fp, stackEnd);
#else
MozStackWalk(StackWalkCallback, nullptr, kMaxFrames, this);
#endif
}
//---------------------------------------------------------------------------
// Logging
//---------------------------------------------------------------------------
// Change this to 1 to enable some PHC logging. Useful for debugging.
#define PHC_LOGGING 0
#if PHC_LOGGING
static size_t GetPid() { return size_t(getpid()); }
static size_t GetTid() {
# if defined(XP_WIN)
return size_t(GetCurrentThreadId());
# else
return size_t(pthread_self());
# endif
}
# if defined(XP_WIN)
# define LOG_STDERR \
reinterpret_cast<intptr_t>(GetStdHandle(STD_ERROR_HANDLE))
# else
# define LOG_STDERR 2
# endif
# define LOG(fmt, ...) \
FdPrintf(LOG_STDERR, "PHC[%zu,%zu,~%zu] " fmt, GetPid(), GetTid(), \
size_t(GAtomic::Now()), __VA_ARGS__)
#else
# define LOG(fmt, ...)
#endif // PHC_LOGGING
//---------------------------------------------------------------------------
// Global state
//---------------------------------------------------------------------------
// Throughout this entire file time is measured as the number of sub-page
// allocations performed (by PHC and mozjemalloc combined). `Time` is 64-bit
// because we could have more than 2**32 allocations in a long-running session.
// `Delay` is 32-bit because the delays used within PHC are always much smaller
// than 2**32.
using Time = uint64_t; // A moment in time.
using Delay = uint32_t; // A time duration.
// PHC only runs if the page size is 4 KiB; anything more is uncommon and would
// use too much memory. So we hardwire this size for all platforms but macOS
// on ARM processors. For the latter we make an exception because the minimum
// page size supported is 16KiB so there's no way to go below that.
static const size_t kPageSize =
#if defined(XP_MACOSX) && defined(__aarch64__)
16384
#else
4096
#endif
;
// There are two kinds of page.
// - Allocation pages, from which allocations are made.
// - Guard pages, which are never touched by PHC.
//
// These page kinds are interleaved; each allocation page has a guard page on
// either side.
static const size_t kNumAllocPages = kPageSize == 4096 ? 4096 : 1024;
static const size_t kNumAllPages = kNumAllocPages * 2 + 1;
// The total size of the allocation pages and guard pages.
static const size_t kAllPagesSize = kNumAllPages * kPageSize;
// The junk value used to fill new allocation in debug builds. It's same value
// as the one used by mozjemalloc. PHC applies it unconditionally in debug
// builds. Unlike mozjemalloc, PHC doesn't consult the MALLOC_OPTIONS
// environment variable to possibly change that behaviour.
//
// Also note that, unlike mozjemalloc, PHC doesn't have a poison value for freed
// allocations because freed allocations are protected by OS page protection.
#ifdef DEBUG
const uint8_t kAllocJunk = 0xe4;
#endif
// The maximum time.
static const Time kMaxTime = ~(Time(0));
// The average delay before doing any page allocations at the start of a
// process. Note that roughly 1 million allocations occur in the main process
// while starting the browser. The delay range is 1..kAvgFirstAllocDelay*2.
static const Delay kAvgFirstAllocDelay = 64 * 1024;
// The average delay until the next attempted page allocation, once we get past
// the first delay. The delay range is 1..kAvgAllocDelay*2.
static const Delay kAvgAllocDelay = 16 * 1024;
// The average delay before reusing a freed page. Should be significantly larger
// than kAvgAllocDelay, otherwise there's not much point in having it. The delay
// range is (kAvgAllocDelay / 2)..(kAvgAllocDelay / 2 * 3). This is different to
// the other delay ranges in not having a minimum of 1, because that's such a
// short delay that there is a high likelihood of bad stacks in any crash
// report.
static const Delay kAvgPageReuseDelay = 256 * 1024;
// Truncate aRnd to the range (1 .. AvgDelay*2). If aRnd is random, this
// results in an average value of aAvgDelay + 0.5, which is close enough to
// aAvgDelay. aAvgDelay must be a power-of-two (otherwise it will crash) for
// speed.
template <Delay AvgDelay>
constexpr Delay Rnd64ToDelay(uint64_t aRnd) {
static_assert(IsPowerOfTwo(AvgDelay), "must be a power of two");
return aRnd % (AvgDelay * 2) + 1;
}
// Maps a pointer to a PHC-specific structure:
// - Nothing
// - A guard page (it is unspecified which one)
// - An allocation page (with an index < kNumAllocPages)
//
// The standard way of handling a PtrKind is to check IsNothing(), and if that
// fails, to check IsGuardPage(), and if that fails, to call AllocPage().
class PtrKind {
private:
enum class Tag : uint8_t {
Nothing,
GuardPage,
AllocPage,
};
Tag mTag;
uintptr_t mIndex; // Only used if mTag == Tag::AllocPage.
public:
// Detect what a pointer points to. This constructor must be fast because it
// is called for every call to free(), realloc(), malloc_usable_size(), and
// jemalloc_ptr_info().
PtrKind(const void* aPtr, const uint8_t* aPagesStart,
const uint8_t* aPagesLimit) {
if (!(aPagesStart <= aPtr && aPtr < aPagesLimit)) {
mTag = Tag::Nothing;
} else {
uintptr_t offset = static_cast<const uint8_t*>(aPtr) - aPagesStart;
uintptr_t allPageIndex = offset / kPageSize;
MOZ_ASSERT(allPageIndex < kNumAllPages);
if (allPageIndex & 1) {
// Odd-indexed pages are allocation pages.
uintptr_t allocPageIndex = allPageIndex / 2;
MOZ_ASSERT(allocPageIndex < kNumAllocPages);
mTag = Tag::AllocPage;
mIndex = allocPageIndex;
} else {
// Even-numbered pages are guard pages.
mTag = Tag::GuardPage;
}
}
}
bool IsNothing() const { return mTag == Tag::Nothing; }
bool IsGuardPage() const { return mTag == Tag::GuardPage; }
// This should only be called after IsNothing() and IsGuardPage() have been
// checked and failed.
uintptr_t AllocPageIndex() const {
MOZ_RELEASE_ASSERT(mTag == Tag::AllocPage);
return mIndex;
}
};
// Shared, atomic, mutable global state.
class GAtomic {
public:
static void Init(Delay aFirstDelay) {
sAllocDelay = aFirstDelay;
LOG("Initial sAllocDelay <- %zu\n", size_t(aFirstDelay));
}
static Time Now() { return sNow; }
static void IncrementNow() { sNow++; }
// Decrements the delay and returns the decremented value.
static int32_t DecrementDelay() { return --sAllocDelay; }
static void SetAllocDelay(Delay aAllocDelay) { sAllocDelay = aAllocDelay; }
private:
// The current time. Relaxed semantics because it's primarily used for
// determining if an allocation can be recycled yet and therefore it doesn't
// need to be exact.
static Atomic<Time, Relaxed> sNow;
// Delay until the next attempt at a page allocation. See the comment in
// MaybePageAlloc() for an explanation of why it is a signed integer, and why
// it uses ReleaseAcquire semantics.
static Atomic<Delay, ReleaseAcquire> sAllocDelay;
};
Atomic<Time, Relaxed> GAtomic::sNow;
Atomic<Delay, ReleaseAcquire> GAtomic::sAllocDelay;
// Shared, immutable global state. Initialized by replace_init() and never
// changed after that. replace_init() runs early enough that no synchronization
// is needed.
class GConst {
private:
// The bounds of the allocated pages.
uint8_t* const mPagesStart;
uint8_t* const mPagesLimit;
// Allocates the allocation pages and the guard pages, contiguously.
uint8_t* AllocAllPages() {
// Allocate the pages so that they are inaccessible. They are never freed,
// because it would happen at process termination when it would be of little
// use.
void* pages =
#ifdef XP_WIN
VirtualAlloc(nullptr, kAllPagesSize, MEM_RESERVE, PAGE_NOACCESS);
#else
mmap(nullptr, kAllPagesSize, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1,
0);
#endif
if (!pages) {
MOZ_CRASH();
}
return static_cast<uint8_t*>(pages);
}
public:
GConst()
: mPagesStart(AllocAllPages()), mPagesLimit(mPagesStart + kAllPagesSize) {
LOG("AllocAllPages at %p..%p\n", mPagesStart, mPagesLimit);
}
class PtrKind PtrKind(const void* aPtr) {
class PtrKind pk(aPtr, mPagesStart, mPagesLimit);
return pk;
}
bool IsInFirstGuardPage(const void* aPtr) {
return mPagesStart <= aPtr && aPtr < mPagesStart + kPageSize;
}
// Get the address of the allocation page referred to via an index. Used when
// marking the page as accessible/inaccessible.
uint8_t* AllocPagePtr(uintptr_t aIndex) {
MOZ_ASSERT(aIndex < kNumAllocPages);
// Multiply by two and add one to account for allocation pages *and* guard
// pages.
return mPagesStart + (2 * aIndex + 1) * kPageSize;
}
};
static GConst* gConst;
// On MacOS, the first __thread/thread_local access calls malloc, which leads
// to an infinite loop. So we use pthread-based TLS instead, which somehow
// doesn't have this problem.
#if !defined(XP_DARWIN)
# define PHC_THREAD_LOCAL(T) MOZ_THREAD_LOCAL(T)
#else
# define PHC_THREAD_LOCAL(T) \
detail::ThreadLocal<T, detail::ThreadLocalKeyStorage>
#endif
// Thread-local state.
class GTls {
GTls(const GTls&) = delete;
const GTls& operator=(const GTls&) = delete;
// When true, PHC does as little as possible.
//
// (a) It does not allocate any new page allocations.
//
// (b) It avoids doing any operations that might call malloc/free/etc., which
// would cause re-entry into PHC. (In practice, MozStackWalk() is the
// only such operation.) Note that calls to the functions in sMallocTable
// are ok.
//
// For example, replace_malloc() will just fall back to mozjemalloc. However,
// operations involving existing allocations are more complex, because those
// existing allocations may be page allocations. For example, if
// replace_free() is passed a page allocation on a PHC-disabled thread, it
// will free the page allocation in the usual way, but it will get a dummy
// freeStack in order to avoid calling MozStackWalk(), as per (b) above.
//
// This single disabling mechanism has two distinct uses.
//
// - It's used to prevent re-entry into PHC, which can cause correctness
// problems. For example, consider this sequence.
//
// 1. enter replace_free()
// 2. which calls PageFree()
// 3. which calls MozStackWalk()
// 4. which locks a mutex M, and then calls malloc
// 5. enter replace_malloc()
// 6. which calls MaybePageAlloc()
// 7. which calls MozStackWalk()
// 8. which (re)locks a mutex M --> deadlock
//
// We avoid this sequence by "disabling" the thread in PageFree() (at step
// 2), which causes MaybePageAlloc() to fail, avoiding the call to
// MozStackWalk() (at step 7).
//
// In practice, realloc or free of a PHC allocation is unlikely on a thread
// that is disabled because of this use: MozStackWalk() will probably only
// realloc/free allocations that it allocated itself, but those won't be
// page allocations because PHC is disabled before calling MozStackWalk().
//
// (Note that MaybePageAlloc() could safely do a page allocation so long as
// it avoided calling MozStackWalk() by getting a dummy allocStack. But it
// wouldn't be useful, and it would prevent the second use below.)
//
// - It's used to prevent PHC allocations in some tests that rely on
// mozjemalloc's exact allocation behaviour, which PHC does not replicate
// exactly. (Note that (b) isn't necessary for this use -- MozStackWalk()
// could be safely called -- but it is necessary for the first use above.)
//
static PHC_THREAD_LOCAL(bool) tlsIsDisabled;
public:
static void Init() {
if (!tlsIsDisabled.init()) {
MOZ_CRASH();
}
}
static void DisableOnCurrentThread() {
MOZ_ASSERT(!GTls::tlsIsDisabled.get());
tlsIsDisabled.set(true);
}
static void EnableOnCurrentThread() {
MOZ_ASSERT(GTls::tlsIsDisabled.get());
tlsIsDisabled.set(false);
}
static bool IsDisabledOnCurrentThread() { return tlsIsDisabled.get(); }
};
PHC_THREAD_LOCAL(bool) GTls::tlsIsDisabled;
class AutoDisableOnCurrentThread {
AutoDisableOnCurrentThread(const AutoDisableOnCurrentThread&) = delete;
const AutoDisableOnCurrentThread& operator=(
const AutoDisableOnCurrentThread&) = delete;
public:
explicit AutoDisableOnCurrentThread() { GTls::DisableOnCurrentThread(); }
~AutoDisableOnCurrentThread() { GTls::EnableOnCurrentThread(); }
};
// This type is used as a proof-of-lock token, to make it clear which functions
// require sMutex to be locked.
using GMutLock = const MutexAutoLock&;
// Shared, mutable global state. Protected by sMutex; all accessing functions
// take a GMutLock as proof that sMutex is held.
class GMut {
enum class AllocPageState {
NeverAllocated = 0,
InUse = 1,
Freed = 2,
};
// Metadata for each allocation page.
class AllocPageInfo {
public:
AllocPageInfo()
: mState(AllocPageState::NeverAllocated),
mArenaId(),
mBaseAddr(nullptr),
mAllocStack(),
mFreeStack(),
mReuseTime(0) {}
// The current allocation page state.
AllocPageState mState;
// The arena that the allocation is nominally from. This isn't meaningful
// within PHC, which has no arenas. But it is necessary for reallocation of
// page allocations as normal allocations, such as in this code:
//
// p = moz_arena_malloc(arenaId, 4096);
// realloc(p, 8192);
//
// The realloc is more than one page, and thus too large for PHC to handle.
// Therefore, if PHC handles the first allocation, it must ask mozjemalloc
// to allocate the 8192 bytes in the correct arena, and to do that, it must
// call sMallocTable.moz_arena_malloc with the correct arenaId under the
// covers. Therefore it must record that arenaId.
//
// This field is also needed for jemalloc_ptr_info() to work, because it
// also returns the arena ID (but only in debug builds).
//
// - NeverAllocated: must be 0.
// - InUse | Freed: can be any valid arena ID value.
Maybe<arena_id_t> mArenaId;
// The starting address of the allocation. Will not be the same as the page
// address unless the allocation is a full page.
// - NeverAllocated: must be 0.
// - InUse | Freed: must be within the allocation page.
uint8_t* mBaseAddr;
// Usable size is computed as the number of bytes between the pointer and
// the end of the allocation page. This might be bigger than the requested
// size, especially if an outsized alignment is requested.
size_t UsableSize() const {
return mState == AllocPageState::NeverAllocated
? 0
: kPageSize - (reinterpret_cast<uintptr_t>(mBaseAddr) &
(kPageSize - 1));
}
// The internal fragmentation for this allocation.
size_t FragmentationBytes() const {
MOZ_ASSERT(kPageSize >= UsableSize());
return mState == AllocPageState::InUse ? kPageSize - UsableSize() : 0;
}
// The allocation stack.
// - NeverAllocated: Nothing.
// - InUse | Freed: Some.
Maybe<StackTrace> mAllocStack;
// The free stack.
// - NeverAllocated | InUse: Nothing.
// - Freed: Some.
Maybe<StackTrace> mFreeStack;
// The time at which the page is available for reuse, as measured against
// GAtomic::sNow. When the page is in use this value will be kMaxTime.
// - NeverAllocated: must be 0.
// - InUse: must be kMaxTime.
// - Freed: must be > 0 and < kMaxTime.
Time mReuseTime;
};
public:
// The mutex that protects the other members.
static Mutex sMutex MOZ_UNANNOTATED;
GMut() : mRNG(RandomSeed<0>(), RandomSeed<1>()), mAllocPages() {
sMutex.Init();
}
uint64_t Random64(GMutLock) { return mRNG.next(); }
bool IsPageInUse(GMutLock, uintptr_t aIndex) {
return mAllocPages[aIndex].mState == AllocPageState::InUse;
}
// Is the page free? And if so, has enough time passed that we can use it?
bool IsPageAllocatable(GMutLock, uintptr_t aIndex, Time aNow) {
const AllocPageInfo& page = mAllocPages[aIndex];
return page.mState != AllocPageState::InUse && aNow >= page.mReuseTime;
}
// Get the address of the allocation page referred to via an index. Used
// when checking pointers against page boundaries.
uint8_t* AllocPageBaseAddr(GMutLock, uintptr_t aIndex) {
return mAllocPages[aIndex].mBaseAddr;
}
Maybe<arena_id_t> PageArena(GMutLock aLock, uintptr_t aIndex) {
const AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
return page.mArenaId;
}
size_t PageUsableSize(GMutLock aLock, uintptr_t aIndex) {
const AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
return page.UsableSize();
}
// The total fragmentation in PHC
size_t FragmentationBytes() const {
size_t sum = 0;
for (const auto& page : mAllocPages) {
sum += page.FragmentationBytes();
}
return sum;
}
void SetPageInUse(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId, uint8_t* aBaseAddr,
const StackTrace& aAllocStack) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageNotInUse(aLock, page);
page.mState = AllocPageState::InUse;
page.mArenaId = aArenaId;
page.mBaseAddr = aBaseAddr;
page.mAllocStack = Some(aAllocStack);
page.mFreeStack = Nothing();
page.mReuseTime = kMaxTime;
}
#if PHC_LOGGING
Time GetFreeTime(uintptr_t aIndex) const { return mFreeTime[aIndex]; }
#endif
void ResizePageInUse(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId, uint8_t* aNewBaseAddr,
const StackTrace& aAllocStack) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
// page.mState is not changed.
if (aArenaId.isSome()) {
// Crash if the arenas don't match.
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
}
page.mBaseAddr = aNewBaseAddr;
// We could just keep the original alloc stack, but the realloc stack is
// more recent and therefore seems more useful.
page.mAllocStack = Some(aAllocStack);
// page.mFreeStack is not changed.
// page.mReuseTime is not changed.
};
void SetPageFreed(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId,
const StackTrace& aFreeStack, Delay aReuseDelay) {
AllocPageInfo& page = mAllocPages[aIndex];
AssertAllocPageInUse(aLock, page);
page.mState = AllocPageState::Freed;
// page.mArenaId is left unchanged, for jemalloc_ptr_info() calls that
// occur after freeing (e.g. in the PtrInfo test in TestJemalloc.cpp).
if (aArenaId.isSome()) {
// Crash if the arenas don't match.
MOZ_RELEASE_ASSERT(page.mArenaId == aArenaId);
}
// page.musableSize is left unchanged, for reporting on UAF, and for
// jemalloc_ptr_info() calls that occur after freeing (e.g. in the PtrInfo
// test in TestJemalloc.cpp).
// page.mAllocStack is left unchanged, for reporting on UAF.
page.mFreeStack = Some(aFreeStack);
Time now = GAtomic::Now();
#if PHC_LOGGING
mFreeTime[aIndex] = now;
#endif
page.mReuseTime = now + aReuseDelay;
}
static void CrashOnGuardPage(void* aPtr) {
// An operation on a guard page? This is a bounds violation. Deliberately
// touch the page in question, to cause a crash that triggers the usual PHC
// machinery.
LOG("CrashOnGuardPage(%p), bounds violation\n", aPtr);
*static_cast<uint8_t*>(aPtr) = 0;
MOZ_CRASH("unreachable");
}
void EnsureValidAndInUse(GMutLock, void* aPtr, uintptr_t aIndex)
MOZ_REQUIRES(sMutex) {
const AllocPageInfo& page = mAllocPages[aIndex];
// The pointer must point to the start of the allocation.
MOZ_RELEASE_ASSERT(page.mBaseAddr == aPtr);
if (page.mState == AllocPageState::Freed) {
LOG("EnsureValidAndInUse(%p), use-after-free\n", aPtr);
// An operation on a freed page? This is a particular kind of
// use-after-free. Deliberately touch the page in question, in order to
// cause a crash that triggers the usual PHC machinery. But unlock sMutex
// first, because that self-same PHC machinery needs to re-lock it, and
// the crash causes non-local control flow so sMutex won't be unlocked
// the normal way in the caller.
sMutex.Unlock();
*static_cast<uint8_t*>(aPtr) = 0;
MOZ_CRASH("unreachable");
}
}
void FillAddrInfo(GMutLock, uintptr_t aIndex, const void* aBaseAddr,
bool isGuardPage, phc::AddrInfo& aOut) {
const AllocPageInfo& page = mAllocPages[aIndex];
if (isGuardPage) {
aOut.mKind = phc::AddrInfo::Kind::GuardPage;
} else {
switch (page.mState) {
case AllocPageState::NeverAllocated:
aOut.mKind = phc::AddrInfo::Kind::NeverAllocatedPage;
break;
case AllocPageState::InUse:
aOut.mKind = phc::AddrInfo::Kind::InUsePage;
break;
case AllocPageState::Freed:
aOut.mKind = phc::AddrInfo::Kind::FreedPage;
break;
default:
MOZ_CRASH();
}
}
aOut.mBaseAddr = page.mBaseAddr;
aOut.mUsableSize = page.UsableSize();
aOut.mAllocStack = page.mAllocStack;
aOut.mFreeStack = page.mFreeStack;
}
void FillJemallocPtrInfo(GMutLock, const void* aPtr, uintptr_t aIndex,
jemalloc_ptr_info_t* aInfo) {
const AllocPageInfo& page = mAllocPages[aIndex];
switch (page.mState) {
case AllocPageState::NeverAllocated:
break;
case AllocPageState::InUse: {
// Only return TagLiveAlloc if the pointer is within the bounds of the
// allocation's usable size.
uint8_t* base = page.mBaseAddr;
uint8_t* limit = base + page.UsableSize();
if (base <= aPtr && aPtr < limit) {
*aInfo = {TagLiveAlloc, page.mBaseAddr, page.UsableSize(),
page.mArenaId.valueOr(0)};
return;
}
break;
}
case AllocPageState::Freed: {
// Only return TagFreedAlloc if the pointer is within the bounds of the
// former allocation's usable size.
uint8_t* base = page.mBaseAddr;
uint8_t* limit = base + page.UsableSize();
if (base <= aPtr && aPtr < limit) {
*aInfo = {TagFreedAlloc, page.mBaseAddr, page.UsableSize(),
page.mArenaId.valueOr(0)};
return;
}
break;
}
default:
MOZ_CRASH();
}
// Pointers into guard pages will end up here, as will pointers into
// allocation pages that aren't within the allocation's bounds.
*aInfo = {TagUnknown, nullptr, 0, 0};
}
#ifndef XP_WIN
static void prefork() MOZ_NO_THREAD_SAFETY_ANALYSIS { sMutex.Lock(); }
static void postfork_parent() MOZ_NO_THREAD_SAFETY_ANALYSIS {
sMutex.Unlock();
}
static void postfork_child() { sMutex.Init(); }
#endif
#if PHC_LOGGING
void IncPageAllocHits(GMutLock) { mPageAllocHits++; }
void IncPageAllocMisses(GMutLock) { mPageAllocMisses++; }
#else
void IncPageAllocHits(GMutLock) {}
void IncPageAllocMisses(GMutLock) {}
#endif
#if PHC_LOGGING
struct PageStats {
size_t mNumAlloced = 0;
size_t mNumFreed = 0;
};
PageStats GetPageStats(GMutLock) {
PageStats stats;
for (const auto& page : mAllocPages) {
stats.mNumAlloced += page.mState == AllocPageState::InUse ? 1 : 0;
stats.mNumFreed += page.mState == AllocPageState::Freed ? 1 : 0;
}
return stats;
}
size_t PageAllocHits(GMutLock) { return mPageAllocHits; }
size_t PageAllocAttempts(GMutLock) {
return mPageAllocHits + mPageAllocMisses;
}
// This is an integer because FdPrintf only supports integer printing.
size_t PageAllocHitRate(GMutLock) {
return mPageAllocHits * 100 / (mPageAllocHits + mPageAllocMisses);
}
#endif
private:
template <int N>
uint64_t RandomSeed() {
// An older version of this code used RandomUint64() here, but on Mac that
// function uses arc4random(), which can allocate, which would cause
// re-entry, which would be bad. So we just use time() and a local variable
// address. These are mediocre sources of entropy, but good enough for PHC.
static_assert(N == 0 || N == 1, "must be 0 or 1");
uint64_t seed;
if (N == 0) {
time_t t = time(nullptr);
seed = t ^ (t << 32);
} else {
seed = uintptr_t(&seed) ^ (uintptr_t(&seed) << 32);
}
return seed;
}
void AssertAllocPageInUse(GMutLock, const AllocPageInfo& aPage) {
MOZ_ASSERT(aPage.mState == AllocPageState::InUse);
// There is nothing to assert about aPage.mArenaId.
MOZ_ASSERT(aPage.mBaseAddr);
MOZ_ASSERT(aPage.UsableSize() > 0);
MOZ_ASSERT(aPage.mAllocStack.isSome());
MOZ_ASSERT(aPage.mFreeStack.isNothing());
MOZ_ASSERT(aPage.mReuseTime == kMaxTime);
}
void AssertAllocPageNotInUse(GMutLock, const AllocPageInfo& aPage) {
// We can assert a lot about `NeverAllocated` pages, but not much about
// `Freed` pages.
#ifdef DEBUG
bool isFresh = aPage.mState == AllocPageState::NeverAllocated;
MOZ_ASSERT(isFresh || aPage.mState == AllocPageState::Freed);
MOZ_ASSERT_IF(isFresh, aPage.mArenaId == Nothing());
MOZ_ASSERT(isFresh == (aPage.mBaseAddr == nullptr));
MOZ_ASSERT(isFresh == (aPage.mAllocStack.isNothing()));
MOZ_ASSERT(isFresh == (aPage.mFreeStack.isNothing()));
MOZ_ASSERT(aPage.mReuseTime != kMaxTime);
#endif
}
// RNG for deciding which allocations to treat specially. It doesn't need to
// be high quality.
//
// This is a raw pointer for the reason explained in the comment above
// GMut's constructor. Don't change it to UniquePtr or anything like that.
non_crypto::XorShift128PlusRNG mRNG;
AllocPageInfo mAllocPages[kNumAllocPages];
#if PHC_LOGGING
Time mFreeTime[kNumAllocPages];
// How many allocations that could have been page allocs actually were? As
// constrained kNumAllocPages. If the hit ratio isn't close to 100% it's
// likely that the global constants are poorly chosen.
size_t mPageAllocHits = 0;
size_t mPageAllocMisses = 0;
#endif
};
Mutex GMut::sMutex;
static GMut* gMut;
//---------------------------------------------------------------------------
// Page allocation operations
//---------------------------------------------------------------------------
// Attempt a page allocation if the time and the size are right. Allocated
// memory is zeroed if aZero is true. On failure, the caller should attempt a
// normal allocation via sMallocTable. Can be called in a context where
// GMut::sMutex is locked.
static void* MaybePageAlloc(const Maybe<arena_id_t>& aArenaId, size_t aReqSize,
size_t aAlignment, bool aZero) {
MOZ_ASSERT(IsPowerOfTwo(aAlignment));
if (aReqSize > kPageSize) {
return nullptr;
}
GAtomic::IncrementNow();
// Decrement the delay. If it's zero, we do a page allocation and reset the
// delay to a random number. Because the assignment to the random number isn't
// atomic w.r.t. the decrement, we might have a sequence like this:
//
// Thread 1 Thread 2 Thread 3
// -------- -------- --------
// (a) newDelay = --sAllocDelay (-> 0)
// (b) --sAllocDelay (-> -1)
// (c) (newDelay != 0) fails
// (d) --sAllocDelay (-> -2)
// (e) sAllocDelay = new_random_number()
//
// It's critical that sAllocDelay has ReleaseAcquire semantics, because that
// guarantees that exactly one thread will see sAllocDelay have the value 0.
// (Relaxed semantics wouldn't guarantee that.)
//
// It's also nice that sAllocDelay is signed, given that we can decrement to
// below zero. (Strictly speaking, an unsigned integer would also work due
// to wrapping, but a signed integer is conceptually cleaner.)
//
// Finally, note that the decrements that occur between (a) and (e) above are
// effectively ignored, because (e) clobbers them. This shouldn't be a
// problem; it effectively just adds a little more randomness to
// new_random_number(). An early version of this code tried to account for
// these decrements by doing `sAllocDelay += new_random_number()`. However, if
// new_random_value() is small, the number of decrements between (a) and (e)
// can easily exceed it, whereupon sAllocDelay ends up negative after
// `sAllocDelay += new_random_number()`, and the zero-check never succeeds
// again. (At least, not until sAllocDelay wraps around on overflow, which
// would take a very long time indeed.)
//
int32_t newDelay = GAtomic::DecrementDelay();
if (newDelay != 0) {
return nullptr;
}
if (GTls::IsDisabledOnCurrentThread()) {
return nullptr;
}
// Disable on this thread *before* getting the stack trace.
AutoDisableOnCurrentThread disable;
// Get the stack trace *before* locking the mutex. If we return nullptr then
// it was a waste, but it's not so frequent, and doing a stack walk while
// the mutex is locked is problematic (see the big comment on
// StackTrace::Fill() for details).
StackTrace allocStack;
allocStack.Fill();
MutexAutoLock lock(GMut::sMutex);
Time now = GAtomic::Now();
Delay newAllocDelay = Rnd64ToDelay<kAvgAllocDelay>(gMut->Random64(lock));
// We start at a random page alloc and wrap around, to ensure pages get even
// amounts of use.
uint8_t* ptr = nullptr;
uint8_t* pagePtr = nullptr;
for (uintptr_t n = 0, i = size_t(gMut->Random64(lock)) % kNumAllocPages;
n < kNumAllocPages; n++, i = (i + 1) % kNumAllocPages) {
if (!gMut->IsPageAllocatable(lock, i, now)) {
continue;
}
#if PHC_LOGGING
Time lifetime = 0;
#endif
pagePtr = gConst->AllocPagePtr(i);
MOZ_ASSERT(pagePtr);
bool ok =
#ifdef XP_WIN
!!VirtualAlloc(pagePtr, kPageSize, MEM_COMMIT, PAGE_READWRITE);
#else
mprotect(pagePtr, kPageSize, PROT_READ | PROT_WRITE) == 0;
#endif
if (!ok) {
pagePtr = nullptr;
continue;
}
size_t usableSize = sMallocTable.malloc_good_size(aReqSize);
MOZ_ASSERT(usableSize > 0);
// Put the allocation as close to the end of the page as possible,
// allowing for alignment requirements.
ptr = pagePtr + kPageSize - usableSize;
if (aAlignment != 1) {
ptr = reinterpret_cast<uint8_t*>(
(reinterpret_cast<uintptr_t>(ptr) & ~(aAlignment - 1)));
}
#if PHC_LOGGING
Time then = gMut->GetFreeTime(i);
lifetime = then != 0 ? now - then : 0;
#endif
gMut->SetPageInUse(lock, i, aArenaId, ptr, allocStack);
if (aZero) {
memset(ptr, 0, usableSize);
} else {
#ifdef DEBUG
memset(ptr, kAllocJunk, usableSize);
#endif
}
gMut->IncPageAllocHits(lock);
#if PHC_LOGGING
GMut::PageStats stats = gMut->GetPageStats(lock);
#endif
LOG("PageAlloc(%zu, %zu) -> %p[%zu]/%p (%zu) (z%zu), sAllocDelay <- %zu, "
"fullness %zu/%zu/%zu, hits %zu/%zu (%zu%%), lifetime %zu\n",
aReqSize, aAlignment, pagePtr, i, ptr, usableSize, size_t(aZero),
size_t(newAllocDelay), stats.mNumAlloced, stats.mNumFreed,
kNumAllocPages, gMut->PageAllocHits(lock),
gMut->PageAllocAttempts(lock), gMut->PageAllocHitRate(lock), lifetime);
break;
}
if (!pagePtr) {
// No pages are available, or VirtualAlloc/mprotect failed.
gMut->IncPageAllocMisses(lock);
#if PHC_LOGGING
GMut::PageStats stats = gMut->GetPageStats(lock);
#endif
LOG("No PageAlloc(%zu, %zu), sAllocDelay <- %zu, fullness %zu/%zu/%zu, "
"hits %zu/%zu (%zu%%)\n",
aReqSize, aAlignment, size_t(newAllocDelay), stats.mNumAlloced,
stats.mNumFreed, kNumAllocPages, gMut->PageAllocHits(lock),
gMut->PageAllocAttempts(lock), gMut->PageAllocHitRate(lock));
}
// Set the new alloc delay.
GAtomic::SetAllocDelay(newAllocDelay);
return ptr;
}
static void FreePage(GMutLock aLock, uintptr_t aIndex,
const Maybe<arena_id_t>& aArenaId,
const StackTrace& aFreeStack, Delay aReuseDelay) {
void* pagePtr = gConst->AllocPagePtr(aIndex);
#ifdef XP_WIN
if (!VirtualFree(pagePtr, kPageSize, MEM_DECOMMIT)) {
MOZ_CRASH("VirtualFree failed");
}
#else
if (mmap(pagePtr, kPageSize, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON,
-1, 0) == MAP_FAILED) {
MOZ_CRASH("mmap failed");
}
#endif
gMut->SetPageFreed(aLock, aIndex, aArenaId, aFreeStack, aReuseDelay);
}
//---------------------------------------------------------------------------
// replace-malloc machinery
//---------------------------------------------------------------------------
// This handles malloc, moz_arena_malloc, and realloc-with-a-nullptr.
MOZ_ALWAYS_INLINE static void* PageMalloc(const Maybe<arena_id_t>& aArenaId,
size_t aReqSize) {
void* ptr = MaybePageAlloc(aArenaId, aReqSize, /* aAlignment */ 1,
/* aZero */ false);
return ptr ? ptr
: (aArenaId.isSome()
? sMallocTable.moz_arena_malloc(*aArenaId, aReqSize)
: sMallocTable.malloc(aReqSize));
}
static void* replace_malloc(size_t aReqSize) {
return PageMalloc(Nothing(), aReqSize);
}
static Delay ReuseDelay(GMutLock aLock) {
return (kAvgPageReuseDelay / 2) +
Rnd64ToDelay<kAvgPageReuseDelay / 2>(gMut->Random64(aLock));
}
// This handles both calloc and moz_arena_calloc.
MOZ_ALWAYS_INLINE static void* PageCalloc(const Maybe<arena_id_t>& aArenaId,
size_t aNum, size_t aReqSize) {
CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aNum) * aReqSize;
if (!checkedSize.isValid()) {
return nullptr;
}
void* ptr = MaybePageAlloc(aArenaId, checkedSize.value(), /* aAlignment */ 1,
/* aZero */ true);
return ptr ? ptr
: (aArenaId.isSome()
? sMallocTable.moz_arena_calloc(*aArenaId, aNum, aReqSize)
: sMallocTable.calloc(aNum, aReqSize));
}
static void* replace_calloc(size_t aNum, size_t aReqSize) {
return PageCalloc(Nothing(), aNum, aReqSize);
}
// This function handles both realloc and moz_arena_realloc.
//
// As always, realloc is complicated, and doubly so when there are two
// different kinds of allocations in play. Here are the possible transitions,
// and what we do in practice.
//
// - normal-to-normal: This is straightforward and obviously necessary.
//
// - normal-to-page: This is disallowed because it would require getting the
// arenaId of the normal allocation, which isn't possible in non-DEBUG builds
// for security reasons.
//
// - page-to-page: This is done whenever possible, i.e. whenever the new size
// is less than or equal to 4 KiB. This choice counterbalances the
// disallowing of normal-to-page allocations, in order to avoid biasing
// towards or away from page allocations. It always occurs in-place.
//
// - page-to-normal: this is done only when necessary, i.e. only when the new
// size is greater than 4 KiB. This choice naturally flows from the
// prior choice on page-to-page transitions.
//
// In summary: realloc doesn't change the allocation kind unless it must.
//
MOZ_ALWAYS_INLINE static void* PageRealloc(const Maybe<arena_id_t>& aArenaId,
void* aOldPtr, size_t aNewSize) {
if (!aOldPtr) {
// Null pointer. Treat like malloc(aNewSize).
return PageMalloc(aArenaId, aNewSize);
}
PtrKind pk = gConst->PtrKind(aOldPtr);
if (pk.IsNothing()) {
// A normal-to-normal transition.
return aArenaId.isSome()
? sMallocTable.moz_arena_realloc(*aArenaId, aOldPtr, aNewSize)
: sMallocTable.realloc(aOldPtr, aNewSize);
}
if (pk.IsGuardPage()) {
GMut::CrashOnGuardPage(aOldPtr);
}
// At this point we know we have an allocation page.
uintptr_t index = pk.AllocPageIndex();
// A page-to-something transition.
// Note that `disable` has no effect unless it is emplaced below.
Maybe<AutoDisableOnCurrentThread> disable;
// Get the stack trace *before* locking the mutex.
StackTrace stack;
if (GTls::IsDisabledOnCurrentThread()) {
// PHC is disabled on this thread. Leave the stack empty.
} else {
// Disable on this thread *before* getting the stack trace.
disable.emplace();
stack.Fill();
}
MutexAutoLock lock(GMut::sMutex);
// Check for realloc() of a freed block.
gMut->EnsureValidAndInUse(lock, aOldPtr, index);
if (aNewSize <= kPageSize) {
// A page-to-page transition. Just keep using the page allocation. We do
// this even if the thread is disabled, because it doesn't create a new
// page allocation. Note that ResizePageInUse() checks aArenaId.
//
// Move the bytes with memmove(), because the old allocation and the new
// allocation overlap. Move the usable size rather than the requested size,
// because the user might have used malloc_usable_size() and filled up the
// usable size.
size_t oldUsableSize = gMut->PageUsableSize(lock, index);
size_t newUsableSize = sMallocTable.malloc_good_size(aNewSize);
uint8_t* pagePtr = gConst->AllocPagePtr(index);
uint8_t* newPtr = pagePtr + kPageSize - newUsableSize;
memmove(newPtr, aOldPtr, std::min(oldUsableSize, aNewSize));
gMut->ResizePageInUse(lock, index, aArenaId, newPtr, stack);
LOG("PageRealloc-Reuse(%p, %zu) -> %p\n", aOldPtr, aNewSize, newPtr);
return newPtr;
}
// A page-to-normal transition (with the new size greater than page-sized).
// (Note that aArenaId is checked below.)
void* newPtr;
if (aArenaId.isSome()) {
newPtr = sMallocTable.moz_arena_malloc(*aArenaId, aNewSize);
} else {
Maybe<arena_id_t> oldArenaId = gMut->PageArena(lock, index);
newPtr = (oldArenaId.isSome()
? sMallocTable.moz_arena_malloc(*oldArenaId, aNewSize)
: sMallocTable.malloc(aNewSize));
}
if (!newPtr) {
return nullptr;
}
MOZ_ASSERT(aNewSize > kPageSize);
Delay reuseDelay = ReuseDelay(lock);
// Copy the usable size rather than the requested size, because the user
// might have used malloc_usable_size() and filled up the usable size. Note
// that FreePage() checks aArenaId (via SetPageFreed()).
size_t oldUsableSize = gMut->PageUsableSize(lock, index);
memcpy(newPtr, aOldPtr, std::min(oldUsableSize, aNewSize));
FreePage(lock, index, aArenaId, stack, reuseDelay);
LOG("PageRealloc-Free(%p[%zu], %zu) -> %p, %zu delay, reuse at ~%zu\n",
aOldPtr, index, aNewSize, newPtr, size_t(reuseDelay),
size_t(GAtomic::Now()) + reuseDelay);
return newPtr;
}
static void* replace_realloc(void* aOldPtr, size_t aNewSize) {
return PageRealloc(Nothing(), aOldPtr, aNewSize);
}
// This handles both free and moz_arena_free.
MOZ_ALWAYS_INLINE static void PageFree(const Maybe<arena_id_t>& aArenaId,
void* aPtr) {
PtrKind pk = gConst->PtrKind(aPtr);
if (pk.IsNothing()) {
// Not a page allocation.
return aArenaId.isSome() ? sMallocTable.moz_arena_free(*aArenaId, aPtr)
: sMallocTable.free(aPtr);
}
if (pk.IsGuardPage()) {
GMut::CrashOnGuardPage(aPtr);
}
// At this point we know we have an allocation page.
uintptr_t index = pk.AllocPageIndex();
// Note that `disable` has no effect unless it is emplaced below.
Maybe<AutoDisableOnCurrentThread> disable;
// Get the stack trace *before* locking the mutex.
StackTrace freeStack;
if (GTls::IsDisabledOnCurrentThread()) {
// PHC is disabled on this thread. Leave the stack empty.
} else {
// Disable on this thread *before* getting the stack trace.
disable.emplace();
freeStack.Fill();
}
MutexAutoLock lock(GMut::sMutex);
// Check for a double-free.
gMut->EnsureValidAndInUse(lock, aPtr, index);
// Note that FreePage() checks aArenaId (via SetPageFreed()).
Delay reuseDelay = ReuseDelay(lock);
FreePage(lock, index, aArenaId, freeStack, reuseDelay);
#if PHC_LOGGING
GMut::PageStats stats = gMut->GetPageStats(lock);
#endif
LOG("PageFree(%p[%zu]), %zu delay, reuse at ~%zu, fullness %zu/%zu/%zu\n",
aPtr, index, size_t(reuseDelay), size_t(GAtomic::Now()) + reuseDelay,
stats.mNumAlloced, stats.mNumFreed, kNumAllocPages);
}
static void replace_free(void* aPtr) { return PageFree(Nothing(), aPtr); }
// This handles memalign and moz_arena_memalign.
MOZ_ALWAYS_INLINE static void* PageMemalign(const Maybe<arena_id_t>& aArenaId,
size_t aAlignment,
size_t aReqSize) {
MOZ_RELEASE_ASSERT(IsPowerOfTwo(aAlignment));
// PHC can't satisfy an alignment greater than a page size, so fall back to
// mozjemalloc in that case.
void* ptr = nullptr;
if (aAlignment <= kPageSize) {
ptr = MaybePageAlloc(aArenaId, aReqSize, aAlignment, /* aZero */ false);
}
return ptr ? ptr
: (aArenaId.isSome()
? sMallocTable.moz_arena_memalign(*aArenaId, aAlignment,
aReqSize)
: sMallocTable.memalign(aAlignment, aReqSize));
}
static void* replace_memalign(size_t aAlignment, size_t aReqSize) {
return PageMemalign(Nothing(), aAlignment, aReqSize);
}
static size_t replace_malloc_usable_size(usable_ptr_t aPtr) {
PtrKind pk = gConst->PtrKind(aPtr);
if (pk.IsNothing()) {
// Not a page allocation. Measure it normally.
return sMallocTable.malloc_usable_size(aPtr);
}
if (pk.IsGuardPage()) {
GMut::CrashOnGuardPage(const_cast<void*>(aPtr));
}
// At this point we know aPtr lands within an allocation page, due to the
// math done in the PtrKind constructor. But if aPtr points to memory
// before the base address of the allocation, we return 0.
uintptr_t index = pk.AllocPageIndex();
MutexAutoLock lock(GMut::sMutex);
void* pageBaseAddr = gMut->AllocPageBaseAddr(lock, index);
if (MOZ_UNLIKELY(aPtr < pageBaseAddr)) {
return 0;
}
return gMut->PageUsableSize(lock, index);
}
static size_t metadata_size() {
return sMallocTable.malloc_usable_size(gConst) +
sMallocTable.malloc_usable_size(gMut);
}
void replace_jemalloc_stats(jemalloc_stats_t* aStats,
jemalloc_bin_stats_t* aBinStats) {
sMallocTable.jemalloc_stats_internal(aStats, aBinStats);
// Add all the pages to `mapped`.
size_t mapped = kAllPagesSize;
aStats->mapped += mapped;
size_t allocated = 0;
{
MutexAutoLock lock(GMut::sMutex);
// Add usable space of in-use allocations to `allocated`.
for (size_t i = 0; i < kNumAllocPages; i++) {
if (gMut->IsPageInUse(lock, i)) {
allocated += gMut->PageUsableSize(lock, i);
}
}
}
aStats->allocated += allocated;
// guards is the gap between `allocated` and `mapped`. In some ways this
// almost fits into aStats->wasted since it feels like wasted memory. However
// wasted should only include committed memory and these guard pages are
// uncommitted. Therefore we don't include it anywhere.
// size_t guards = mapped - allocated;
// aStats.page_cache and aStats.bin_unused are left unchanged because PHC
// doesn't have anything corresponding to those.
// The metadata is stored in normal heap allocations, so they're measured by
// mozjemalloc as `allocated`. Move them into `bookkeeping`.
// They're also reported under explicit/heap-overhead/phc/fragmentation in
// about:memory.
size_t bookkeeping = metadata_size();
aStats->allocated -= bookkeeping;
aStats->bookkeeping += bookkeeping;
}
void replace_jemalloc_ptr_info(const void* aPtr, jemalloc_ptr_info_t* aInfo) {
// We need to implement this properly, because various code locations do
// things like checking that allocations are in the expected arena.
PtrKind pk = gConst->PtrKind(aPtr);
if (pk.IsNothing()) {
// Not a page allocation.
return sMallocTable.jemalloc_ptr_info(aPtr, aInfo);
}
if (pk.IsGuardPage()) {
// Treat a guard page as unknown because there's no better alternative.
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
// At this point we know we have an allocation page.
uintptr_t index = pk.AllocPageIndex();
MutexAutoLock lock(GMut::sMutex);
gMut->FillJemallocPtrInfo(lock, aPtr, index, aInfo);
#if DEBUG
LOG("JemallocPtrInfo(%p[%zu]) -> {%zu, %p, %zu, %zu}\n", aPtr, index,
size_t(aInfo->tag), aInfo->addr, aInfo->size, aInfo->arenaId);
#else
LOG("JemallocPtrInfo(%p[%zu]) -> {%zu, %p, %zu}\n", aPtr, index,
size_t(aInfo->tag), aInfo->addr, aInfo->size);
#endif
}
arena_id_t replace_moz_create_arena_with_params(arena_params_t* aParams) {
// No need to do anything special here.
return sMallocTable.moz_create_arena_with_params(aParams);
}
void replace_moz_dispose_arena(arena_id_t aArenaId) {
// No need to do anything special here.
return sMallocTable.moz_dispose_arena(aArenaId);
}
void replace_moz_set_max_dirty_page_modifier(int32_t aModifier) {
// No need to do anything special here.
return sMallocTable.moz_set_max_dirty_page_modifier(aModifier);
}
void* replace_moz_arena_malloc(arena_id_t aArenaId, size_t aReqSize) {
return PageMalloc(Some(aArenaId), aReqSize);
}
void* replace_moz_arena_calloc(arena_id_t aArenaId, size_t aNum,
size_t aReqSize) {
return PageCalloc(Some(aArenaId), aNum, aReqSize);
}
void* replace_moz_arena_realloc(arena_id_t aArenaId, void* aOldPtr,
size_t aNewSize) {
return PageRealloc(Some(aArenaId), aOldPtr, aNewSize);
}
void replace_moz_arena_free(arena_id_t aArenaId, void* aPtr) {
return PageFree(Some(aArenaId), aPtr);
}
void* replace_moz_arena_memalign(arena_id_t aArenaId, size_t aAlignment,
size_t aReqSize) {
return PageMemalign(Some(aArenaId), aAlignment, aReqSize);
}
class PHCBridge : public ReplaceMallocBridge {
virtual bool IsPHCAllocation(const void* aPtr, phc::AddrInfo* aOut) override {
PtrKind pk = gConst->PtrKind(aPtr);
if (pk.IsNothing()) {
return false;
}
bool isGuardPage = false;
if (pk.IsGuardPage()) {
if ((uintptr_t(aPtr) % kPageSize) < (kPageSize / 2)) {
// The address is in the lower half of a guard page, so it's probably an
// overflow. But first check that it is not on the very first guard
// page, in which case it cannot be an overflow, and we ignore it.
if (gConst->IsInFirstGuardPage(aPtr)) {
return false;
}
// Get the allocation page preceding this guard page.
pk = gConst->PtrKind(static_cast<const uint8_t*>(aPtr) - kPageSize);
} else {
// The address is in the upper half of a guard page, so it's probably an
// underflow. Get the allocation page following this guard page.
pk = gConst->PtrKind(static_cast<const uint8_t*>(aPtr) + kPageSize);
}
// Make a note of the fact that we hit a guard page.
isGuardPage = true;
}
// At this point we know we have an allocation page.
uintptr_t index = pk.AllocPageIndex();
if (aOut) {
MutexAutoLock lock(GMut::sMutex);
gMut->FillAddrInfo(lock, index, aPtr, isGuardPage, *aOut);
LOG("IsPHCAllocation: %zu, %p, %zu, %zu, %zu\n", size_t(aOut->mKind),
aOut->mBaseAddr, aOut->mUsableSize,
aOut->mAllocStack.isSome() ? aOut->mAllocStack->mLength : 0,
aOut->mFreeStack.isSome() ? aOut->mFreeStack->mLength : 0);
}
return true;
}
virtual void DisablePHCOnCurrentThread() override {
GTls::DisableOnCurrentThread();
LOG("DisablePHCOnCurrentThread: %zu\n", 0ul);
}
virtual void ReenablePHCOnCurrentThread() override {
GTls::EnableOnCurrentThread();
LOG("ReenablePHCOnCurrentThread: %zu\n", 0ul);
}
virtual bool IsPHCEnabledOnCurrentThread() override {
bool enabled = !GTls::IsDisabledOnCurrentThread();
LOG("IsPHCEnabledOnCurrentThread: %zu\n", size_t(enabled));
return enabled;
}
virtual void PHCMemoryUsage(
mozilla::phc::MemoryUsage& aMemoryUsage) override {
aMemoryUsage.mMetadataBytes = metadata_size();
if (gMut) {
MutexAutoLock lock(GMut::sMutex);
aMemoryUsage.mFragmentationBytes = gMut->FragmentationBytes();
} else {
aMemoryUsage.mFragmentationBytes = 0;
}
}
};
// WARNING: this function runs *very* early -- before all static initializers
// have run. For this reason, non-scalar globals (gConst, gMut) are allocated
// dynamically (so we can guarantee their construction in this function) rather
// than statically. GAtomic and GTls contain simple static data that doesn't
// involve static initializers so they don't need to be allocated dynamically.
void replace_init(malloc_table_t* aMallocTable, ReplaceMallocBridge** aBridge) {
// Don't run PHC if the page size isn't 4 KiB.
jemalloc_stats_t stats;
aMallocTable->jemalloc_stats_internal(&stats, nullptr);
if (stats.page_size != kPageSize) {
return;
}
sMallocTable = *aMallocTable;
// The choices of which functions to replace are complex enough that we set
// them individually instead of using MALLOC_FUNCS/malloc_decls.h.
aMallocTable->malloc = replace_malloc;
aMallocTable->calloc = replace_calloc;
aMallocTable->realloc = replace_realloc;
aMallocTable->free = replace_free;
aMallocTable->memalign = replace_memalign;
// posix_memalign, aligned_alloc & valloc: unset, which means they fall back
// to replace_memalign.
aMallocTable->malloc_usable_size = replace_malloc_usable_size;
// default malloc_good_size: the default suffices.
aMallocTable->jemalloc_stats_internal = replace_jemalloc_stats;
// jemalloc_purge_freed_pages: the default suffices.
// jemalloc_free_dirty_pages: the default suffices.
// jemalloc_thread_local_arena: the default suffices.
aMallocTable->jemalloc_ptr_info = replace_jemalloc_ptr_info;
aMallocTable->moz_create_arena_with_params =
replace_moz_create_arena_with_params;
aMallocTable->moz_dispose_arena = replace_moz_dispose_arena;
aMallocTable->moz_arena_malloc = replace_moz_arena_malloc;
aMallocTable->moz_arena_calloc = replace_moz_arena_calloc;
aMallocTable->moz_arena_realloc = replace_moz_arena_realloc;
aMallocTable->moz_arena_free = replace_moz_arena_free;
aMallocTable->moz_arena_memalign = replace_moz_arena_memalign;
static PHCBridge bridge;
*aBridge = &bridge;
#ifndef XP_WIN
// Avoid deadlocks when forking by acquiring our state lock prior to forking
// and releasing it after forking. See |LogAlloc|'s |replace_init| for
// in-depth details.
//
// Note: This must run after attempting an allocation so as to give the
// system malloc a chance to insert its own atfork handler.
sMallocTable.malloc(-1);
pthread_atfork(GMut::prefork, GMut::postfork_parent, GMut::postfork_child);
#endif
// gConst and gMut are never freed. They live for the life of the process.
gConst = InfallibleAllocPolicy::new_<GConst>();
GTls::Init();
gMut = InfallibleAllocPolicy::new_<GMut>();
{
MutexAutoLock lock(GMut::sMutex);
Delay firstAllocDelay =
Rnd64ToDelay<kAvgFirstAllocDelay>(gMut->Random64(lock));
GAtomic::Init(firstAllocDelay);
}
}
|