summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy/contrib/dot/dot-inl.h
blob: e04636f1b859d460fec1573f272ba7b3a281dbee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright 2021 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Include guard (still compiled once per target)
#include <cmath>

#if defined(HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_) == \
    defined(HWY_TARGET_TOGGLE)
#ifdef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
#undef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
#else
#define HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
#endif

#include "hwy/highway.h"

HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {

struct Dot {
  // Specify zero or more of these, ORed together, as the kAssumptions template
  // argument to Compute. Each one may improve performance or reduce code size,
  // at the cost of additional requirements on the arguments.
  enum Assumptions {
    // num_elements is at least N, which may be up to HWY_MAX_BYTES / sizeof(T).
    kAtLeastOneVector = 1,
    // num_elements is divisible by N (a power of two, so this can be used if
    // the problem size is known to be a power of two >= HWY_MAX_BYTES /
    // sizeof(T)).
    kMultipleOfVector = 2,
    // RoundUpTo(num_elements, N) elements are accessible; their value does not
    // matter (will be treated as if they were zero).
    kPaddedToVector = 4,
  };

  // Returns sum{pa[i] * pb[i]} for float or double inputs. Aligning the
  // pointers to a multiple of N elements is helpful but not required.
  template <int kAssumptions, class D, typename T = TFromD<D>,
            HWY_IF_NOT_LANE_SIZE_D(D, 2)>
  static HWY_INLINE T Compute(const D d, const T* const HWY_RESTRICT pa,
                              const T* const HWY_RESTRICT pb,
                              const size_t num_elements) {
    static_assert(IsFloat<T>(), "MulAdd requires float type");
    using V = decltype(Zero(d));

    const size_t N = Lanes(d);
    size_t i = 0;

    constexpr bool kIsAtLeastOneVector =
        (kAssumptions & kAtLeastOneVector) != 0;
    constexpr bool kIsMultipleOfVector =
        (kAssumptions & kMultipleOfVector) != 0;
    constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0;

    // Won't be able to do a full vector load without padding => scalar loop.
    if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector &&
        HWY_UNLIKELY(num_elements < N)) {
      // Only 2x unroll to avoid excessive code size.
      T sum0 = T(0);
      T sum1 = T(0);
      for (; i + 2 <= num_elements; i += 2) {
        sum0 += pa[i + 0] * pb[i + 0];
        sum1 += pa[i + 1] * pb[i + 1];
      }
      if (i < num_elements) {
        sum1 += pa[i] * pb[i];
      }
      return sum0 + sum1;
    }

    // Compiler doesn't make independent sum* accumulators, so unroll manually.
    // 2 FMA ports * 4 cycle latency = up to 8 in-flight, but that is excessive
    // for unaligned inputs (each unaligned pointer halves the throughput
    // because it occupies both L1 load ports for a cycle). We cannot have
    // arrays of vectors on RVV/SVE, so always unroll 4x.
    V sum0 = Zero(d);
    V sum1 = Zero(d);
    V sum2 = Zero(d);
    V sum3 = Zero(d);

    // Main loop: unrolled
    for (; i + 4 * N <= num_elements; /* i += 4 * N */) {  // incr in loop
      const auto a0 = LoadU(d, pa + i);
      const auto b0 = LoadU(d, pb + i);
      i += N;
      sum0 = MulAdd(a0, b0, sum0);
      const auto a1 = LoadU(d, pa + i);
      const auto b1 = LoadU(d, pb + i);
      i += N;
      sum1 = MulAdd(a1, b1, sum1);
      const auto a2 = LoadU(d, pa + i);
      const auto b2 = LoadU(d, pb + i);
      i += N;
      sum2 = MulAdd(a2, b2, sum2);
      const auto a3 = LoadU(d, pa + i);
      const auto b3 = LoadU(d, pb + i);
      i += N;
      sum3 = MulAdd(a3, b3, sum3);
    }

    // Up to 3 iterations of whole vectors
    for (; i + N <= num_elements; i += N) {
      const auto a = LoadU(d, pa + i);
      const auto b = LoadU(d, pb + i);
      sum0 = MulAdd(a, b, sum0);
    }

    if (!kIsMultipleOfVector) {
      const size_t remaining = num_elements - i;
      if (remaining != 0) {
        if (kIsPaddedToVector) {
          const auto mask = FirstN(d, remaining);
          const auto a = LoadU(d, pa + i);
          const auto b = LoadU(d, pb + i);
          sum1 = MulAdd(IfThenElseZero(mask, a), IfThenElseZero(mask, b), sum1);
        } else {
          // Unaligned load such that the last element is in the highest lane -
          // ensures we do not touch any elements outside the valid range.
          // If we get here, then num_elements >= N.
          HWY_DASSERT(i >= N);
          i += remaining - N;
          const auto skip = FirstN(d, N - remaining);
          const auto a = LoadU(d, pa + i);  // always unaligned
          const auto b = LoadU(d, pb + i);
          sum1 = MulAdd(IfThenZeroElse(skip, a), IfThenZeroElse(skip, b), sum1);
        }
      }
    }  // kMultipleOfVector

    // Reduction tree: sum of all accumulators by pairs, then across lanes.
    sum0 = Add(sum0, sum1);
    sum2 = Add(sum2, sum3);
    sum0 = Add(sum0, sum2);
    return GetLane(SumOfLanes(d, sum0));
  }

  // Returns sum{pa[i] * pb[i]} for bfloat16 inputs. Aligning the pointers to a
  // multiple of N elements is helpful but not required.
  template <int kAssumptions, class D>
  static HWY_INLINE float Compute(const D d,
                                  const bfloat16_t* const HWY_RESTRICT pa,
                                  const bfloat16_t* const HWY_RESTRICT pb,
                                  const size_t num_elements) {
    const RebindToUnsigned<D> du16;
    const Repartition<float, D> df32;

    using V = decltype(Zero(df32));
    const size_t N = Lanes(d);
    size_t i = 0;

    constexpr bool kIsAtLeastOneVector =
        (kAssumptions & kAtLeastOneVector) != 0;
    constexpr bool kIsMultipleOfVector =
        (kAssumptions & kMultipleOfVector) != 0;
    constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0;

    // Won't be able to do a full vector load without padding => scalar loop.
    if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector &&
        HWY_UNLIKELY(num_elements < N)) {
      float sum0 = 0.0f;  // Only 2x unroll to avoid excessive code size for..
      float sum1 = 0.0f;  // this unlikely(?) case.
      for (; i + 2 <= num_elements; i += 2) {
        sum0 += F32FromBF16(pa[i + 0]) * F32FromBF16(pb[i + 0]);
        sum1 += F32FromBF16(pa[i + 1]) * F32FromBF16(pb[i + 1]);
      }
      if (i < num_elements) {
        sum1 += F32FromBF16(pa[i]) * F32FromBF16(pb[i]);
      }
      return sum0 + sum1;
    }

    // See comment in the other Compute() overload. Unroll 2x, but we need
    // twice as many sums for ReorderWidenMulAccumulate.
    V sum0 = Zero(df32);
    V sum1 = Zero(df32);
    V sum2 = Zero(df32);
    V sum3 = Zero(df32);

    // Main loop: unrolled
    for (; i + 2 * N <= num_elements; /* i += 2 * N */) {  // incr in loop
      const auto a0 = LoadU(d, pa + i);
      const auto b0 = LoadU(d, pb + i);
      i += N;
      sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1);
      const auto a1 = LoadU(d, pa + i);
      const auto b1 = LoadU(d, pb + i);
      i += N;
      sum2 = ReorderWidenMulAccumulate(df32, a1, b1, sum2, sum3);
    }

    // Possibly one more iteration of whole vectors
    if (i + N <= num_elements) {
      const auto a0 = LoadU(d, pa + i);
      const auto b0 = LoadU(d, pb + i);
      i += N;
      sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1);
    }

    if (!kIsMultipleOfVector) {
      const size_t remaining = num_elements - i;
      if (remaining != 0) {
        if (kIsPaddedToVector) {
          const auto mask = FirstN(du16, remaining);
          const auto va = LoadU(d, pa + i);
          const auto vb = LoadU(d, pb + i);
          const auto a16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, va)));
          const auto b16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, vb)));
          sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3);

        } else {
          // Unaligned load such that the last element is in the highest lane -
          // ensures we do not touch any elements outside the valid range.
          // If we get here, then num_elements >= N.
          HWY_DASSERT(i >= N);
          i += remaining - N;
          const auto skip = FirstN(du16, N - remaining);
          const auto va = LoadU(d, pa + i);  // always unaligned
          const auto vb = LoadU(d, pb + i);
          const auto a16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, va)));
          const auto b16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, vb)));
          sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3);
        }
      }
    }  // kMultipleOfVector

    // Reduction tree: sum of all accumulators by pairs, then across lanes.
    sum0 = Add(sum0, sum1);
    sum2 = Add(sum2, sum3);
    sum0 = Add(sum0, sum2);
    return GetLane(SumOfLanes(df32, sum0));
  }
};

// NOLINTNEXTLINE(google-readability-namespace-comments)
}  // namespace HWY_NAMESPACE
}  // namespace hwy
HWY_AFTER_NAMESPACE();

#endif  // HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_