1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
/*
* Copyright (c) 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/time_controller/simulated_thread.h"
#include <algorithm>
#include <utility>
namespace webrtc {
namespace {
// A socket server that does nothing. It's different from NullSocketServer in
// that it does allow sleep/wakeup. This avoids usage of an Event instance which
// otherwise would cause issues with the simulated Yeild behavior.
class DummySocketServer : public rtc::SocketServer {
public:
rtc::Socket* CreateSocket(int family, int type) override {
RTC_DCHECK_NOTREACHED();
return nullptr;
}
bool Wait(TimeDelta max_wait_duration, bool process_io) override {
RTC_CHECK(max_wait_duration.IsZero());
return true;
}
void WakeUp() override {}
};
} // namespace
SimulatedThread::SimulatedThread(
sim_time_impl::SimulatedTimeControllerImpl* handler,
absl::string_view name,
std::unique_ptr<rtc::SocketServer> socket_server)
: rtc::Thread(socket_server ? std::move(socket_server)
: std::make_unique<DummySocketServer>()),
handler_(handler),
name_(new char[name.size()]) {
std::copy_n(name.begin(), name.size(), name_);
}
SimulatedThread::~SimulatedThread() {
handler_->Unregister(this);
delete[] name_;
}
void SimulatedThread::RunReady(Timestamp at_time) {
CurrentThreadSetter set_current(this);
ProcessMessages(0);
int delay_ms = GetDelay();
MutexLock lock(&lock_);
if (delay_ms == kForever) {
next_run_time_ = Timestamp::PlusInfinity();
} else {
next_run_time_ = at_time + TimeDelta::Millis(delay_ms);
}
}
void SimulatedThread::BlockingCall(rtc::FunctionView<void()> functor) {
if (IsQuitting())
return;
if (IsCurrent()) {
functor();
} else {
TaskQueueBase* yielding_from = TaskQueueBase::Current();
handler_->StartYield(yielding_from);
RunReady(Timestamp::MinusInfinity());
CurrentThreadSetter set_current(this);
functor();
handler_->StopYield(yielding_from);
}
}
void SimulatedThread::PostTask(absl::AnyInvocable<void() &&> task) {
rtc::Thread::PostTask(std::move(task));
MutexLock lock(&lock_);
next_run_time_ = Timestamp::MinusInfinity();
}
void SimulatedThread::PostDelayedTask(absl::AnyInvocable<void() &&> task,
TimeDelta delay) {
rtc::Thread::PostDelayedTask(std::move(task), delay);
MutexLock lock(&lock_);
next_run_time_ =
std::min(next_run_time_, Timestamp::Millis(rtc::TimeMillis()) + delay);
}
void SimulatedThread::PostDelayedHighPrecisionTask(
absl::AnyInvocable<void() &&> task,
TimeDelta delay) {
rtc::Thread::PostDelayedHighPrecisionTask(std::move(task), delay);
MutexLock lock(&lock_);
next_run_time_ =
std::min(next_run_time_, Timestamp::Millis(rtc::TimeMillis()) + delay);
}
void SimulatedThread::Stop() {
Thread::Quit();
}
SimulatedMainThread::SimulatedMainThread(
sim_time_impl::SimulatedTimeControllerImpl* handler)
: SimulatedThread(handler, "main", nullptr), current_setter_(this) {}
SimulatedMainThread::~SimulatedMainThread() {
// Removes pending tasks in case they keep shared pointer references to
// objects whose destructor expects to run before the Thread destructor.
Stop();
DoDestroy();
}
} // namespace webrtc
|