1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
/*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* i386 CMOS starts out with 14 bytes clock data alpha has something
* similar, but with details depending on the machine type.
*
* byte 0: seconds 0-59
* byte 2: minutes 0-59
* byte 4: hours 0-23 in 24hr mode,
* 1-12 in 12hr mode, with high bit unset/set
* if am/pm.
* byte 6: weekday 1-7, Sunday=1
* byte 7: day of the month 1-31
* byte 8: month 1-12
* byte 9: year 0-99
*
* Numbers are stored in BCD/binary if bit 2 of byte 11 is unset/set The
* clock is in 12hr/24hr mode if bit 1 of byte 11 is unset/set The clock is
* undefined (being updated) if bit 7 of byte 10 is set. The clock is frozen
* (to be updated) by setting bit 7 of byte 11 Bit 7 of byte 14 indicates
* whether the CMOS clock is reliable: it is 1 if RTC power has been good
* since this bit was last read; it is 0 when the battery is dead and system
* power has been off.
*
* Avoid setting the RTC clock within 2 seconds of the day rollover that
* starts a new month or enters daylight saving time.
*
* The century situation is messy:
*
* Usually byte 50 (0x32) gives the century (in BCD, so 19 or 20 hex), but
* IBM PS/2 has (part of) a checksum there and uses byte 55 (0x37).
* Sometimes byte 127 (0x7f) or Bank 1, byte 0x48 gives the century. The
* original RTC will not access any century byte; some modern versions will.
* If a modern RTC or BIOS increments the century byte it may go from 0x19
* to 0x20, but in some buggy cases 0x1a is produced.
*/
/*
* A struct tm has int fields
* tm_sec 0-59, 60 or 61 only for leap seconds
* tm_min 0-59
* tm_hour 0-23
* tm_mday 1-31
* tm_mon 0-11
* tm_year number of years since 1900
* tm_wday 0-6, 0=Sunday
* tm_yday 0-365
* tm_isdst >0: yes, 0: no, <0: unknown
*/
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "c.h"
#include "nls.h"
#include "pathnames.h"
/* for inb, outb */
#ifdef HAVE_SYS_IO_H
# include <sys/io.h>
#elif defined(HAVE_ASM_IO_H)
# include <asm/io.h>
#else
# error "no sys/io.h or asm/io.h"
#endif /* HAVE_SYS_IO_H, HAVE_ASM_IO_H */
#include "hwclock.h"
#define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10)
#define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10)
#define IOPL_NOT_IMPLEMENTED -2
/*
* POSIX uses 1900 as epoch for a struct tm, and 1970 for a time_t.
*/
#define TM_EPOCH 1900
static unsigned short clock_ctl_addr = 0x70;
static unsigned short clock_data_addr = 0x71;
/*
* Hmmh, this isn't very atomic. Maybe we should force an error instead?
*
* TODO: optimize the access to CMOS by mlockall(MCL_CURRENT) and SCHED_FIFO
*/
static unsigned long atomic(unsigned long (*op) (unsigned long),
unsigned long arg)
{
return (*op) (arg);
}
/*
* We only want to read CMOS data, but unfortunately writing to bit 7
* disables (1) or enables (0) NMI; since this bit is read-only we have
* to guess the old status. Various docs suggest that one should disable
* NMI while reading/writing CMOS data, and enable it again afterwards.
* This would yield the sequence
*
* outb (reg | 0x80, 0x70);
* val = inb(0x71);
* outb (0x0d, 0x70); // 0x0d: random read-only location
*
* Other docs state that "any write to 0x70 should be followed by an
* action to 0x71 or the RTC will be left in an unknown state". Most
* docs say that it doesn't matter at all what one does.
*
* bit 0x80: disable NMI while reading - should we? Let us follow the
* kernel and not disable. Called only with 0 <= reg < 128
*/
static inline unsigned long cmos_read(unsigned long reg)
{
outb(reg, clock_ctl_addr);
return inb(clock_data_addr);
}
static inline unsigned long cmos_write(unsigned long reg, unsigned long val)
{
outb(reg, clock_ctl_addr);
outb(val, clock_data_addr);
return 0;
}
static unsigned long cmos_set_time(unsigned long arg)
{
unsigned char save_control, save_freq_select, pmbit = 0;
struct tm tm = *(struct tm *)arg;
/*
* CMOS byte 10 (clock status register A) has 3 bitfields:
* bit 7: 1 if data invalid, update in progress (read-only bit)
* (this is raised 224 us before the actual update starts)
* 6-4 select base frequency
* 010: 32768 Hz time base (default)
* 111: reset
* all other combinations are manufacturer-dependent
* (e.g.: DS1287: 010 = start oscillator, anything else = stop)
* 3-0 rate selection bits for interrupt
* 0000 none (may stop RTC)
* 0001, 0010 give same frequency as 1000, 1001
* 0011 122 microseconds (minimum, 8192 Hz)
* .... each increase by 1 halves the frequency, doubles the period
* 1111 500 milliseconds (maximum, 2 Hz)
* 0110 976.562 microseconds (default 1024 Hz)
*/
save_control = cmos_read(11); /* tell the clock it's being set */
cmos_write(11, (save_control | 0x80));
save_freq_select = cmos_read(10); /* stop and reset prescaler */
cmos_write(10, (save_freq_select | 0x70));
tm.tm_year %= 100;
tm.tm_mon += 1;
tm.tm_wday += 1;
if (!(save_control & 0x02)) { /* 12hr mode; the default is 24hr mode */
if (tm.tm_hour == 0)
tm.tm_hour = 24;
if (tm.tm_hour > 12) {
tm.tm_hour -= 12;
pmbit = 0x80;
}
}
if (!(save_control & 0x04)) { /* BCD mode - the default */
BIN_TO_BCD(tm.tm_sec);
BIN_TO_BCD(tm.tm_min);
BIN_TO_BCD(tm.tm_hour);
BIN_TO_BCD(tm.tm_wday);
BIN_TO_BCD(tm.tm_mday);
BIN_TO_BCD(tm.tm_mon);
BIN_TO_BCD(tm.tm_year);
}
cmos_write(0, tm.tm_sec);
cmos_write(2, tm.tm_min);
cmos_write(4, tm.tm_hour | pmbit);
cmos_write(6, tm.tm_wday);
cmos_write(7, tm.tm_mday);
cmos_write(8, tm.tm_mon);
cmos_write(9, tm.tm_year);
/*
* The kernel sources, linux/arch/i386/kernel/time.c, have the
* following comment:
*
* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
cmos_write(11, save_control);
cmos_write(10, save_freq_select);
return 0;
}
static int hclock_read(unsigned long reg)
{
return atomic(cmos_read, reg);
}
static void hclock_set_time(const struct tm *tm)
{
atomic(cmos_set_time, (unsigned long)(tm));
}
static inline int cmos_clock_busy(void)
{
return
/* poll bit 7 (UIP) of Control Register A */
(hclock_read(10) & 0x80);
}
static int synchronize_to_clock_tick_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)))
{
int i;
/*
* Wait for rise. Should be within a second, but in case something
* weird happens, we have a limit on this loop to reduce the impact
* of this failure.
*/
for (i = 0; !cmos_clock_busy(); i++)
if (i >= 10000000)
return 1;
/* Wait for fall. Should be within 2.228 ms. */
for (i = 0; cmos_clock_busy(); i++)
if (i >= 1000000)
return 1;
return 0;
}
/*
* Read the hardware clock and return the current time via <tm> argument.
* Assume we have an ISA machine and read the clock directly with CPU I/O
* instructions.
*
* This function is not totally reliable. It takes a finite and
* unpredictable amount of time to execute the code below. During that time,
* the clock may change and we may even read an invalid value in the middle
* of an update. We do a few checks to minimize this possibility, but only
* the kernel can actually read the clock properly, since it can execute
* code in a short and predictable amount of time (by turning of
* interrupts).
*
* In practice, the chance of this function returning the wrong time is
* extremely remote.
*/
static int read_hardware_clock_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)), struct tm *tm)
{
unsigned char status = 0, pmbit = 0;
while (1) {
/*
* Bit 7 of Byte 10 of the Hardware Clock value is the
* Update In Progress (UIP) bit, which is on while and 244
* uS before the Hardware Clock updates itself. It updates
* the counters individually, so reading them during an
* update would produce garbage. The update takes 2mS, so we
* could be spinning here that long waiting for this bit to
* turn off.
*
* Furthermore, it is pathologically possible for us to be
* in this code so long that even if the UIP bit is not on
* at first, the clock has changed while we were running. We
* check for that too, and if it happens, we start over.
*/
if (!cmos_clock_busy()) {
/* No clock update in progress, go ahead and read */
tm->tm_sec = hclock_read(0);
tm->tm_min = hclock_read(2);
tm->tm_hour = hclock_read(4);
tm->tm_wday = hclock_read(6);
tm->tm_mday = hclock_read(7);
tm->tm_mon = hclock_read(8);
tm->tm_year = hclock_read(9);
status = hclock_read(11);
/*
* Unless the clock changed while we were reading,
* consider this a good clock read .
*/
if (tm->tm_sec == hclock_read(0))
break;
}
/*
* Yes, in theory we could have been running for 60 seconds
* and the above test wouldn't work!
*/
}
if (!(status & 0x04)) { /* BCD mode - the default */
BCD_TO_BIN(tm->tm_sec);
BCD_TO_BIN(tm->tm_min);
pmbit = (tm->tm_hour & 0x80);
tm->tm_hour &= 0x7f;
BCD_TO_BIN(tm->tm_hour);
BCD_TO_BIN(tm->tm_wday);
BCD_TO_BIN(tm->tm_mday);
BCD_TO_BIN(tm->tm_mon);
BCD_TO_BIN(tm->tm_year);
}
/*
* We don't use the century byte of the Hardware Clock since we
* don't know its address (usually 50 or 55). Here, we follow the
* advice of the X/Open Base Working Group: "if century is not
* specified, then values in the range [69-99] refer to years in the
* twentieth century (1969 to 1999 inclusive), and values in the
* range [00-68] refer to years in the twenty-first century (2000 to
* 2068 inclusive)."
*/
tm->tm_wday -= 1;
tm->tm_mon -= 1;
if (tm->tm_year < 69)
tm->tm_year += 100;
if (pmbit) {
tm->tm_hour += 12;
if (tm->tm_hour == 24)
tm->tm_hour = 0;
}
tm->tm_isdst = -1; /* don't know whether it's daylight */
return 0;
}
static int set_hardware_clock_cmos(const struct hwclock_control *ctl
__attribute__((__unused__)),
const struct tm *new_broken_time)
{
hclock_set_time(new_broken_time);
return 0;
}
# if defined(HAVE_IOPL)
static int i386_iopl(const int level)
{
return iopl(level);
}
# else
static int i386_iopl(const int level __attribute__ ((__unused__)))
{
extern int ioperm(unsigned long from, unsigned long num, int turn_on);
return ioperm(clock_ctl_addr, 2, 1);
}
# endif
static int get_permissions_cmos(void)
{
int rc;
rc = i386_iopl(3);
if (rc == IOPL_NOT_IMPLEMENTED) {
warnx(_("ISA port access is not implemented"));
} else if (rc != 0) {
warn(_("iopl() port access failed"));
}
return rc;
}
static const char *get_device_path(void)
{
return NULL;
}
static const struct clock_ops cmos_interface = {
N_("Using direct ISA access to the clock"),
get_permissions_cmos,
read_hardware_clock_cmos,
set_hardware_clock_cmos,
synchronize_to_clock_tick_cmos,
get_device_path,
};
/*
* return &cmos if cmos clock present, NULL otherwise.
*/
const struct clock_ops *probe_for_cmos_clock(void)
{
return &cmos_interface;
}
|