summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-11 08:17:27 +0000
commitf215e02bf85f68d3a6106c2a1f4f7f063f819064 (patch)
tree6bb5b92c046312c4e95ac2620b10ddf482d3fa8b /src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c
parentInitial commit. (diff)
downloadvirtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.tar.xz
virtualbox-f215e02bf85f68d3a6106c2a1f4f7f063f819064.zip
Adding upstream version 7.0.14-dfsg.upstream/7.0.14-dfsg
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c')
-rw-r--r--src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c1739
1 files changed, 1739 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c b/src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c
new file mode 100644
index 00000000..68886a8c
--- /dev/null
+++ b/src/VBox/Runtime/r0drv/linux/timer-r0drv-linux.c
@@ -0,0 +1,1739 @@
+/* $Id: timer-r0drv-linux.c $ */
+/** @file
+ * IPRT - Timers, Ring-0 Driver, Linux.
+ */
+
+/*
+ * Copyright (C) 2006-2023 Oracle and/or its affiliates.
+ *
+ * This file is part of VirtualBox base platform packages, as
+ * available from https://www.virtualbox.org.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation, in version 3 of the
+ * License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, see <https://www.gnu.org/licenses>.
+ *
+ * The contents of this file may alternatively be used under the terms
+ * of the Common Development and Distribution License Version 1.0
+ * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
+ * in the VirtualBox distribution, in which case the provisions of the
+ * CDDL are applicable instead of those of the GPL.
+ *
+ * You may elect to license modified versions of this file under the
+ * terms and conditions of either the GPL or the CDDL or both.
+ *
+ * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#include "the-linux-kernel.h"
+#include "internal/iprt.h"
+
+#include <iprt/timer.h>
+#include <iprt/time.h>
+#include <iprt/mp.h>
+#include <iprt/cpuset.h>
+#include <iprt/spinlock.h>
+#include <iprt/err.h>
+#include <iprt/asm.h>
+#include <iprt/assert.h>
+#include <iprt/alloc.h>
+
+#include "internal/magics.h"
+
+/** @def RTTIMER_LINUX_WITH_HRTIMER
+ * Whether to use high resolution timers. */
+#if !defined(RTTIMER_LINUX_WITH_HRTIMER) \
+ && defined(IPRT_LINUX_HAS_HRTIMER)
+# define RTTIMER_LINUX_WITH_HRTIMER
+#endif
+
+#if RTLNX_VER_MAX(2,6,31)
+# define mod_timer_pinned mod_timer
+# define HRTIMER_MODE_ABS_PINNED HRTIMER_MODE_ABS
+#endif
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+/**
+ * Timer state machine.
+ *
+ * This is used to try handle the issues with MP events and
+ * timers that runs on all CPUs. It's relatively nasty :-/
+ */
+typedef enum RTTIMERLNXSTATE
+{
+ /** Stopped. */
+ RTTIMERLNXSTATE_STOPPED = 0,
+ /** Transient state; next ACTIVE. */
+ RTTIMERLNXSTATE_STARTING,
+ /** Transient state; next ACTIVE. (not really necessary) */
+ RTTIMERLNXSTATE_MP_STARTING,
+ /** Active. */
+ RTTIMERLNXSTATE_ACTIVE,
+ /** Active and in callback; next ACTIVE, STOPPED or CALLBACK_DESTROYING. */
+ RTTIMERLNXSTATE_CALLBACK,
+ /** Stopped while in the callback; next STOPPED. */
+ RTTIMERLNXSTATE_CB_STOPPING,
+ /** Restarted while in the callback; next ACTIVE, STOPPED, DESTROYING. */
+ RTTIMERLNXSTATE_CB_RESTARTING,
+ /** The callback shall destroy the timer; next STOPPED. */
+ RTTIMERLNXSTATE_CB_DESTROYING,
+ /** Transient state; next STOPPED. */
+ RTTIMERLNXSTATE_STOPPING,
+ /** Transient state; next STOPPED. */
+ RTTIMERLNXSTATE_MP_STOPPING,
+ /** The usual 32-bit hack. */
+ RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
+} RTTIMERLNXSTATE;
+
+
+/**
+ * A Linux sub-timer.
+ */
+typedef struct RTTIMERLNXSUBTIMER
+{
+ /** Timer specific data. */
+ union
+ {
+#if defined(RTTIMER_LINUX_WITH_HRTIMER)
+ /** High resolution timer. */
+ struct
+ {
+ /** The linux timer structure. */
+ struct hrtimer LnxTimer;
+ } Hr;
+#endif
+ /** Standard timer. */
+ struct
+ {
+ /** The linux timer structure. */
+ struct timer_list LnxTimer;
+ /** The start of the current run (ns).
+ * This is used to calculate when the timer ought to fire the next time. */
+ uint64_t u64NextTS;
+ /** When the timer was started. */
+ uint64_t nsStartTS;
+ /** The u64NextTS in jiffies. */
+ unsigned long ulNextJiffies;
+ /** Set when starting or changing the timer so that u64StartTs
+ * and u64NextTS gets reinitialized (eliminating some jitter). */
+ bool volatile fFirstAfterChg;
+ } Std;
+ } u;
+ /** The current tick number. */
+ uint64_t iTick;
+ /** Restart the single shot timer at this specific time.
+ * Used when a single shot timer is restarted from the callback. */
+ uint64_t volatile uNsRestartAt;
+ /** Pointer to the parent timer. */
+ PRTTIMER pParent;
+ /** The current sub-timer state. */
+ RTTIMERLNXSTATE volatile enmState;
+} RTTIMERLNXSUBTIMER;
+/** Pointer to a linux sub-timer. */
+typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
+
+
+/**
+ * The internal representation of an Linux timer handle.
+ */
+typedef struct RTTIMER
+{
+ /** Magic.
+ * This is RTTIMER_MAGIC, but changes to something else before the timer
+ * is destroyed to indicate clearly that thread should exit. */
+ uint32_t volatile u32Magic;
+ /** Spinlock synchronizing the fSuspended and MP event handling.
+ * This is NIL_RTSPINLOCK if cCpus == 1. */
+ RTSPINLOCK hSpinlock;
+ /** Flag indicating that the timer is suspended. */
+ bool volatile fSuspended;
+ /** Whether the timer must run on one specific CPU or not. */
+ bool fSpecificCpu;
+#ifdef CONFIG_SMP
+ /** Whether the timer must run on all CPUs or not. */
+ bool fAllCpus;
+#endif /* else: All -> specific on non-SMP kernels */
+ /** Whether it is a high resolution timer or a standard one. */
+ bool fHighRes;
+ /** The id of the CPU it must run on if fSpecificCpu is set. */
+ RTCPUID idCpu;
+ /** The number of CPUs this timer should run on. */
+ RTCPUID cCpus;
+ /** Callback. */
+ PFNRTTIMER pfnTimer;
+ /** User argument. */
+ void *pvUser;
+ /** The timer interval. 0 if one-shot. */
+ uint64_t volatile u64NanoInterval;
+ /** This is set to the number of jiffies between ticks if the interval is
+ * an exact number of jiffies. (Standard timers only.) */
+ unsigned long volatile cJiffies;
+ /** The change interval spinlock for standard timers only. */
+ spinlock_t ChgIntLock;
+ /** Workqueue item for delayed destruction. */
+ RTR0LNXWORKQUEUEITEM DtorWorkqueueItem;
+ /** Sub-timers.
+ * Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
+ * an entry for all possible cpus. In that case the index will be the same as
+ * for the RTCpuSet. */
+ RTTIMERLNXSUBTIMER aSubTimers[1];
+} RTTIMER;
+
+
+/**
+ * A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
+ */
+typedef struct RTTIMERLINUXSTARTONCPUARGS
+{
+ /** The current time (RTTimeSystemNanoTS). */
+ uint64_t u64Now;
+ /** When to start firing (delta). */
+ uint64_t u64First;
+} RTTIMERLINUXSTARTONCPUARGS;
+/** Pointer to a rtTimerLinuxStartOnCpu argument package. */
+typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+#ifdef CONFIG_SMP
+static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
+#endif
+
+#if 0
+#define DEBUG_HACKING
+#include <iprt/string.h>
+#include <iprt/asm-amd64-x86.h>
+static void myLogBackdoorPrintf(const char *pszFormat, ...)
+{
+ char szTmp[256];
+ va_list args;
+ size_t cb;
+
+ cb = RTStrPrintf(szTmp, sizeof(szTmp) - 10, "%d: ", RTMpCpuId());
+ va_start(args, pszFormat);
+ cb += RTStrPrintfV(&szTmp[cb], sizeof(szTmp) - cb, pszFormat, args);
+ va_end(args);
+
+ ASMOutStrU8(0x504, (uint8_t *)&szTmp[0], cb);
+}
+# define RTAssertMsg1Weak(pszExpr, uLine, pszFile, pszFunction) \
+ myLogBackdoorPrintf("\n!!Guest Assertion failed!!\n%s(%d) %s\n%s\n", uLine, pszFile, pszFunction, (pszExpr))
+# define RTAssertMsg2Weak myLogBackdoorPrintf
+# define RTTIMERLNX_LOG(a) myLogBackdoorPrintf a
+#else
+# define RTTIMERLNX_LOG(a) do { } while (0)
+#endif
+
+/**
+ * Sets the state.
+ */
+DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
+{
+#ifdef DEBUG_HACKING
+ RTTIMERLNX_LOG(("set %d -> %d\n", *penmState, enmNewState));
+#endif
+ ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
+}
+
+
+/**
+ * Sets the state if it has a certain value.
+ *
+ * @return true if xchg was done.
+ * @return false if xchg wasn't done.
+ */
+#ifdef DEBUG_HACKING
+#define rtTimerLnxCmpXchgState(penmState, enmNewState, enmCurState) rtTimerLnxCmpXchgStateDebug(penmState, enmNewState, enmCurState, __LINE__)
+static bool rtTimerLnxCmpXchgStateDebug(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
+ RTTIMERLNXSTATE enmCurState, uint32_t uLine)
+{
+ RTTIMERLNXSTATE enmOldState = enmCurState;
+ bool fRc = ASMAtomicCmpXchgExU32((uint32_t volatile *)penmState, enmNewState, enmCurState, (uint32_t *)&enmOldState);
+ RTTIMERLNX_LOG(("cxg %d -> %d - %d at %u\n", enmOldState, enmNewState, fRc, uLine));
+ return fRc;
+}
+#else
+DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
+ RTTIMERLNXSTATE enmCurState)
+{
+ return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
+}
+#endif
+
+
+/**
+ * Gets the state.
+ */
+DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
+{
+ return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
+}
+
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+
+/**
+ * Converts a nano second time stamp to ktime_t.
+ *
+ * ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
+ *
+ * @returns ktime_t.
+ * @param cNanoSecs Nanoseconds.
+ */
+DECLINLINE(ktime_t) rtTimerLnxNanoToKt(uint64_t cNanoSecs)
+{
+ /* With some luck the compiler optimizes the division out of this... (Bet it doesn't.) */
+ return ktime_set(cNanoSecs / 1000000000, cNanoSecs % 1000000000);
+}
+
+/**
+ * Converts ktime_t to a nano second time stamp.
+ *
+ * ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
+ *
+ * @returns nano second time stamp.
+ * @param Kt ktime_t.
+ */
+DECLINLINE(uint64_t) rtTimerLnxKtToNano(ktime_t Kt)
+{
+ return ktime_to_ns(Kt);
+}
+
+#endif /* RTTIMER_LINUX_WITH_HRTIMER */
+
+/**
+ * Converts a nano second interval to jiffies.
+ *
+ * @returns Jiffies.
+ * @param cNanoSecs Nanoseconds.
+ */
+DECLINLINE(unsigned long) rtTimerLnxNanoToJiffies(uint64_t cNanoSecs)
+{
+ /* this can be made even better... */
+ if (cNanoSecs > (uint64_t)TICK_NSEC * MAX_JIFFY_OFFSET)
+ return MAX_JIFFY_OFFSET;
+# if ARCH_BITS == 32
+ if (RT_LIKELY(cNanoSecs <= UINT32_MAX))
+ return ((uint32_t)cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
+# endif
+ return (cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
+}
+
+
+/**
+ * Starts a sub-timer (RTTimerStart).
+ *
+ * @param pSubTimer The sub-timer to start.
+ * @param u64Now The current timestamp (RTTimeSystemNanoTS()).
+ * @param u64First The interval from u64Now to the first time the timer should fire.
+ * @param fPinned true = timer pinned to a specific CPU,
+ * false = timer can migrate between CPUs
+ * @param fHighRes Whether the user requested a high resolution timer or not.
+ * @param enmOldState The old timer state.
+ */
+static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First,
+ bool fPinned, bool fHighRes)
+{
+ /*
+ * Calc when it should start firing.
+ */
+ uint64_t u64NextTS = u64Now + u64First;
+ if (!fHighRes)
+ {
+ pSubTimer->u.Std.u64NextTS = u64NextTS;
+ pSubTimer->u.Std.nsStartTS = u64NextTS;
+ }
+ RTTIMERLNX_LOG(("startsubtimer %p\n", pSubTimer->pParent));
+
+ pSubTimer->iTick = 0;
+
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ if (fHighRes)
+ hrtimer_start(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(u64NextTS),
+ fPinned ? HRTIMER_MODE_ABS_PINNED : HRTIMER_MODE_ABS);
+ else
+#endif
+ {
+ unsigned long cJiffies = !u64First ? 0 : rtTimerLnxNanoToJiffies(u64First);
+ pSubTimer->u.Std.ulNextJiffies = jiffies + cJiffies;
+ pSubTimer->u.Std.fFirstAfterChg = true;
+#ifdef CONFIG_SMP
+ if (fPinned)
+ {
+# if RTLNX_VER_MIN(4,8,0)
+ mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+# else
+ mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+# endif
+ }
+ else
+#endif
+ mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+ }
+
+ /* Be a bit careful here since we could be racing the callback. */
+ if (!rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_STARTING))
+ rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_MP_STARTING);
+}
+
+
+/**
+ * Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
+ *
+ * The caller has already changed the state, so we will not be in a callback
+ * situation wrt to the calling thread.
+ *
+ * @param pSubTimer The sub-timer.
+ * @param fHighRes Whether the user requested a high resolution timer or not.
+ */
+static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, bool fHighRes)
+{
+ RTTIMERLNX_LOG(("stopsubtimer %p %d\n", pSubTimer->pParent, fHighRes));
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ if (fHighRes)
+ {
+ /* There is no equivalent to del_timer in the hrtimer API,
+ hrtimer_cancel() == del_timer_sync(). Just like the WARN_ON in
+ del_timer_sync() asserts, waiting for a timer callback to complete
+ is deadlock prone, so don't do it. */
+ int rc = hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
+ if (rc < 0)
+ {
+ hrtimer_start(&pSubTimer->u.Hr.LnxTimer, ktime_set(KTIME_SEC_MAX, 0), HRTIMER_MODE_ABS);
+ hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
+ }
+ }
+ else
+#endif
+ del_timer(&pSubTimer->u.Std.LnxTimer);
+
+ rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
+}
+
+
+/**
+ * Used by RTTimerDestroy and rtTimerLnxCallbackDestroy to do the actual work.
+ *
+ * @param pTimer The timer in question.
+ */
+static void rtTimerLnxDestroyIt(PRTTIMER pTimer)
+{
+ RTSPINLOCK hSpinlock = pTimer->hSpinlock;
+ RTCPUID iCpu;
+ Assert(pTimer->fSuspended);
+ RTTIMERLNX_LOG(("destroyit %p\n", pTimer));
+
+ /*
+ * Remove the MP notifications first because it'll reduce the risk of
+ * us overtaking any MP event that might theoretically be racing us here.
+ */
+#ifdef CONFIG_SMP
+ if ( pTimer->cCpus > 1
+ && hSpinlock != NIL_RTSPINLOCK)
+ {
+ int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
+ AssertRC(rc);
+ }
+#endif /* CONFIG_SMP */
+
+ /*
+ * Invalidate the handle.
+ */
+ ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
+
+ /*
+ * Make sure all timers have stopped executing since we're stopping them in
+ * an asynchronous manner up in rtTimerLnxStopSubTimer.
+ */
+ iCpu = pTimer->cCpus;
+ while (iCpu-- > 0)
+ {
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ if (pTimer->fHighRes)
+ hrtimer_cancel(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer);
+ else
+#endif
+ del_timer_sync(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
+ }
+
+ /*
+ * Finally, free the resources.
+ */
+ RTMemFreeEx(pTimer, RT_UOFFSETOF_DYN(RTTIMER, aSubTimers[pTimer->cCpus]));
+ if (hSpinlock != NIL_RTSPINLOCK)
+ RTSpinlockDestroy(hSpinlock);
+}
+
+
+/**
+ * Workqueue callback (no DECLCALLBACK!) for deferred destruction.
+ *
+ * @param pWork Pointer to the DtorWorkqueueItem member of our timer
+ * structure.
+ */
+static void rtTimerLnxDestroyDeferred(RTR0LNXWORKQUEUEITEM *pWork)
+{
+ PRTTIMER pTimer = RT_FROM_MEMBER(pWork, RTTIMER, DtorWorkqueueItem);
+ rtTimerLnxDestroyIt(pTimer);
+}
+
+
+/**
+ * Called when the timer was destroyed by the callback function.
+ *
+ * @param pTimer The timer.
+ * @param pSubTimer The sub-timer which we're handling, the state of this
+ * will be RTTIMERLNXSTATE_CALLBACK_DESTROYING.
+ */
+static void rtTimerLnxCallbackDestroy(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
+{
+ /*
+ * If it's an omni timer, the last dude does the destroying.
+ */
+ if (pTimer->cCpus > 1)
+ {
+ uint32_t iCpu = pTimer->cCpus;
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ Assert(pSubTimer->enmState == RTTIMERLNXSTATE_CB_DESTROYING);
+ rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
+
+ while (iCpu-- > 0)
+ if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
+ {
+ RTSpinlockRelease(pTimer->hSpinlock);
+ return;
+ }
+
+ RTSpinlockRelease(pTimer->hSpinlock);
+ }
+
+ /*
+ * Destroying a timer from the callback is unsafe since the callout code
+ * might be touching the timer structure upon return (hrtimer does!). So,
+ * we have to defer the actual destruction to the IRPT workqueue.
+ */
+ rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
+}
+
+
+#ifdef CONFIG_SMP
+/**
+ * Deal with a sub-timer that has migrated.
+ *
+ * @param pTimer The timer.
+ * @param pSubTimer The sub-timer.
+ */
+static void rtTimerLnxCallbackHandleMigration(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
+{
+ RTTIMERLNXSTATE enmState;
+ if (pTimer->cCpus > 1)
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ do
+ {
+ enmState = rtTimerLnxGetState(&pSubTimer->enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_STOPPING:
+ case RTTIMERLNXSTATE_MP_STOPPING:
+ enmState = RTTIMERLNXSTATE_STOPPED;
+ RT_FALL_THRU();
+ case RTTIMERLNXSTATE_STOPPED:
+ break;
+
+ default:
+ AssertMsgFailed(("%d\n", enmState));
+ RT_FALL_THRU();
+ case RTTIMERLNXSTATE_STARTING:
+ case RTTIMERLNXSTATE_MP_STARTING:
+ case RTTIMERLNXSTATE_ACTIVE:
+ case RTTIMERLNXSTATE_CALLBACK:
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, enmState))
+ enmState = RTTIMERLNXSTATE_STOPPED;
+ break;
+
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ {
+ if (pTimer->cCpus > 1)
+ RTSpinlockRelease(pTimer->hSpinlock);
+
+ rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
+ return;
+ }
+ }
+ } while (enmState != RTTIMERLNXSTATE_STOPPED);
+
+ if (pTimer->cCpus > 1)
+ RTSpinlockRelease(pTimer->hSpinlock);
+}
+#endif /* CONFIG_SMP */
+
+
+/**
+ * The slow path of rtTimerLnxChangeToCallbackState.
+ *
+ * @returns true if changed successfully, false if not.
+ * @param pSubTimer The sub-timer.
+ */
+static bool rtTimerLnxChangeToCallbackStateSlow(PRTTIMERLNXSUBTIMER pSubTimer)
+{
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_ACTIVE:
+ case RTTIMERLNXSTATE_STARTING:
+ case RTTIMERLNXSTATE_MP_STARTING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, enmState))
+ return true;
+ break;
+
+ case RTTIMERLNXSTATE_CALLBACK:
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ AssertMsgFailed(("%d\n", enmState)); RT_FALL_THRU();
+ default:
+ return false;
+ }
+ ASMNopPause();
+ }
+}
+
+
+/**
+ * Tries to change the sub-timer state to 'callback'.
+ *
+ * @returns true if changed successfully, false if not.
+ * @param pSubTimer The sub-timer.
+ */
+DECLINLINE(bool) rtTimerLnxChangeToCallbackState(PRTTIMERLNXSUBTIMER pSubTimer)
+{
+ if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, RTTIMERLNXSTATE_ACTIVE)))
+ return true;
+ return rtTimerLnxChangeToCallbackStateSlow(pSubTimer);
+}
+
+
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+/**
+ * Timer callback function for high resolution timers.
+ *
+ * @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a
+ * one-shot or interval timer.
+ * @param pHrTimer Pointer to the sub-timer structure.
+ */
+static enum hrtimer_restart rtTimerLinuxHrCallback(struct hrtimer *pHrTimer)
+{
+ PRTTIMERLNXSUBTIMER pSubTimer = RT_FROM_MEMBER(pHrTimer, RTTIMERLNXSUBTIMER, u.Hr.LnxTimer);
+ PRTTIMER pTimer = pSubTimer->pParent;
+
+
+ RTTIMERLNX_LOG(("hrcallback %p\n", pTimer));
+ if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
+ return HRTIMER_NORESTART;
+
+#ifdef CONFIG_SMP
+ /*
+ * Check for unwanted migration.
+ */
+ if (pTimer->fAllCpus || pTimer->fSpecificCpu)
+ {
+ RTCPUID idCpu = RTMpCpuId();
+ if (RT_UNLIKELY( pTimer->fAllCpus
+ ? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
+ : pTimer->idCpu != idCpu))
+ {
+ rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
+ return HRTIMER_NORESTART;
+ }
+ }
+#endif
+
+ if (pTimer->u64NanoInterval)
+ {
+ /*
+ * Periodic timer, run it and update the native timer afterwards so
+ * we can handle RTTimerStop and RTTimerChangeInterval from the
+ * callback as well as a racing control thread.
+ */
+ pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
+ hrtimer_add_expires_ns(&pSubTimer->u.Hr.LnxTimer, ASMAtomicReadU64(&pTimer->u64NanoInterval));
+ if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
+ return HRTIMER_RESTART;
+ }
+ else
+ {
+ /*
+ * One shot timer (no omni), stop it before dispatching it.
+ * Allow RTTimerStart as well as RTTimerDestroy to be called from
+ * the callback.
+ */
+ ASMAtomicWriteBool(&pTimer->fSuspended, true);
+ pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
+ if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
+ return HRTIMER_NORESTART;
+ }
+
+ /*
+ * Some state change occurred while we were in the callback routine.
+ */
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
+ return HRTIMER_NORESTART;
+
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
+ return HRTIMER_NORESTART;
+ break;
+
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
+ {
+ pSubTimer->iTick = 0;
+ hrtimer_set_expires(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(pSubTimer->uNsRestartAt));
+ return HRTIMER_RESTART;
+ }
+ break;
+
+ default:
+ AssertMsgFailed(("%d\n", enmState));
+ return HRTIMER_NORESTART;
+ }
+ ASMNopPause();
+ }
+}
+#endif /* RTTIMER_LINUX_WITH_HRTIMER */
+
+
+#if RTLNX_VER_MIN(4,15,0)
+/**
+ * Timer callback function for standard timers.
+ *
+ * @param pLnxTimer Pointer to the Linux timer structure.
+ */
+static void rtTimerLinuxStdCallback(struct timer_list *pLnxTimer)
+{
+ PRTTIMERLNXSUBTIMER pSubTimer = from_timer(pSubTimer, pLnxTimer, u.Std.LnxTimer);
+#else
+/**
+ * Timer callback function for standard timers.
+ *
+ * @param ulUser Address of the sub-timer structure.
+ */
+static void rtTimerLinuxStdCallback(unsigned long ulUser)
+{
+ PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
+#endif
+ PRTTIMER pTimer = pSubTimer->pParent;
+
+ RTTIMERLNX_LOG(("stdcallback %p\n", pTimer));
+ if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
+ return;
+
+#ifdef CONFIG_SMP
+ /*
+ * Check for unwanted migration.
+ */
+ if (pTimer->fAllCpus || pTimer->fSpecificCpu)
+ {
+ RTCPUID idCpu = RTMpCpuId();
+ if (RT_UNLIKELY( pTimer->fAllCpus
+ ? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
+ : pTimer->idCpu != idCpu))
+ {
+ rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
+ return;
+ }
+ }
+#endif
+
+ if (pTimer->u64NanoInterval)
+ {
+ /*
+ * Interval timer, calculate the next timeout.
+ *
+ * The first time around, we'll re-adjust the u.Std.u64NextTS to
+ * try prevent some jittering if we were started at a bad time.
+ */
+ const uint64_t iTick = ++pSubTimer->iTick;
+ unsigned long uCurJiffies = jiffies;
+ unsigned long ulNextJiffies;
+ uint64_t u64NanoInterval;
+ unsigned long cJiffies;
+ unsigned long flFlags;
+
+ spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
+ u64NanoInterval = pTimer->u64NanoInterval;
+ cJiffies = pTimer->cJiffies;
+ if (RT_UNLIKELY(pSubTimer->u.Std.fFirstAfterChg))
+ {
+ pSubTimer->u.Std.fFirstAfterChg = false;
+ pSubTimer->u.Std.u64NextTS = RTTimeSystemNanoTS();
+ pSubTimer->u.Std.nsStartTS = pSubTimer->u.Std.u64NextTS - u64NanoInterval * (iTick - 1);
+ pSubTimer->u.Std.ulNextJiffies = uCurJiffies = jiffies;
+ }
+ spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
+
+ pSubTimer->u.Std.u64NextTS += u64NanoInterval;
+ if (cJiffies)
+ {
+ ulNextJiffies = pSubTimer->u.Std.ulNextJiffies + cJiffies;
+ pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
+ if (time_after_eq(ulNextJiffies, uCurJiffies))
+ { /* likely */ }
+ else
+ {
+ unsigned long cJiffiesBehind = uCurJiffies - ulNextJiffies;
+ ulNextJiffies = uCurJiffies + cJiffies / 2;
+ if (cJiffiesBehind >= HZ / 4) /* Conside if we're lagging too far behind. Screw the u64NextTS member. */
+ pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
+ /*else: Don't update u.Std.ulNextJiffies so we can continue catching up in the next tick. */
+ }
+ }
+ else
+ {
+ const uint64_t u64NanoTS = RTTimeSystemNanoTS();
+ const int64_t cNsBehind = u64NanoTS - pSubTimer->u.Std.u64NextTS;
+ if (cNsBehind <= 0)
+ ulNextJiffies = uCurJiffies + rtTimerLnxNanoToJiffies(pSubTimer->u.Std.u64NextTS - u64NanoTS);
+ else if (u64NanoInterval >= RT_NS_1SEC_64 * 2 / HZ)
+ {
+ ulNextJiffies = uCurJiffies + rtTimerLnxNanoToJiffies(u64NanoInterval / 2);
+ if (cNsBehind >= RT_NS_1SEC_64 / HZ / 4) /* Conside if we're lagging too far behind. */
+ pSubTimer->u.Std.u64NextTS = u64NanoTS + u64NanoInterval / 2;
+ }
+ else
+ {
+ ulNextJiffies = uCurJiffies + 1;
+ if (cNsBehind >= RT_NS_1SEC_64 / HZ / 4) /* Conside if we're lagging too far behind. */
+ pSubTimer->u.Std.u64NextTS = u64NanoTS + RT_NS_1SEC_64 / HZ;
+ }
+ pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
+ }
+
+ /*
+ * Run the timer and re-arm it unless the state changed .
+ * .
+ * We must re-arm it afterwards as we're not in a position to undo this .
+ * operation if for instance someone stopped or destroyed us while we .
+ * were in the callback. (Linux takes care of any races here.)
+ */
+ pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
+ if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
+ {
+#ifdef CONFIG_SMP
+ if (pTimer->fSpecificCpu || pTimer->fAllCpus)
+ {
+# if RTLNX_VER_MIN(4,8,0)
+ mod_timer(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
+# else
+ mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
+# endif
+ }
+ else
+#endif
+ mod_timer(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
+ return;
+ }
+ }
+ else
+ {
+ /*
+ * One shot timer, stop it before dispatching it.
+ * Allow RTTimerStart as well as RTTimerDestroy to be called from
+ * the callback.
+ */
+ ASMAtomicWriteBool(&pTimer->fSuspended, true);
+ pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
+ if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
+ return;
+ }
+
+ /*
+ * Some state change occurred while we were in the callback routine.
+ */
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
+ return;
+
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
+ return;
+ break;
+
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
+ {
+ uint64_t u64NanoTS;
+ uint64_t u64NextTS;
+ unsigned long flFlags;
+
+ spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
+ u64NextTS = pSubTimer->uNsRestartAt;
+ u64NanoTS = RTTimeSystemNanoTS();
+ pSubTimer->iTick = 0;
+ pSubTimer->u.Std.u64NextTS = u64NextTS;
+ pSubTimer->u.Std.fFirstAfterChg = true;
+ pSubTimer->u.Std.ulNextJiffies = u64NextTS > u64NanoTS
+ ? jiffies + rtTimerLnxNanoToJiffies(u64NextTS - u64NanoTS)
+ : jiffies;
+ spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
+
+#ifdef CONFIG_SMP
+ if (pTimer->fSpecificCpu || pTimer->fAllCpus)
+ {
+# if RTLNX_VER_MIN(4,8,0)
+ mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+# else
+ mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+# endif
+ }
+ else
+#endif
+ mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
+ return;
+ }
+ break;
+
+ default:
+ AssertMsgFailed(("%d\n", enmState));
+ return;
+ }
+ ASMNopPause();
+ }
+}
+
+
+#ifdef CONFIG_SMP
+
+/**
+ * Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
+ *
+ * @param idCpu The current CPU.
+ * @param pvUser1 Pointer to the timer.
+ * @param pvUser2 Pointer to the argument structure.
+ */
+static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
+{
+ PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
+ PRTTIMER pTimer = (PRTTIMER)pvUser1;
+ Assert(idCpu < pTimer->cCpus);
+ rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
+}
+
+
+/**
+ * Worker for RTTimerStart() that takes care of the ugly bits.
+ *
+ * @returns RTTimerStart() return value.
+ * @param pTimer The timer.
+ * @param pArgs The argument structure.
+ */
+static int rtTimerLnxOmniStart(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
+{
+ RTCPUID iCpu;
+ RTCPUSET OnlineSet;
+ RTCPUSET OnlineSet2;
+ int rc2;
+
+ /*
+ * Prepare all the sub-timers for the startup and then flag the timer
+ * as a whole as non-suspended, make sure we get them all before
+ * clearing fSuspended as the MP handler will be waiting on this
+ * should something happen while we're looping.
+ */
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ /* Just make it a omni timer restriction that no stop/start races are allowed. */
+ for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
+ if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
+ {
+ RTSpinlockRelease(pTimer->hSpinlock);
+ return VERR_TIMER_BUSY;
+ }
+
+ do
+ {
+ RTMpGetOnlineSet(&OnlineSet);
+ for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
+ {
+ Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
+ rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
+ RTCpuSetIsMember(&OnlineSet, iCpu)
+ ? RTTIMERLNXSTATE_STARTING
+ : RTTIMERLNXSTATE_STOPPED);
+ }
+ } while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
+
+ ASMAtomicWriteBool(&pTimer->fSuspended, false);
+
+ RTSpinlockRelease(pTimer->hSpinlock);
+
+ /*
+ * Start them (can't find any exported function that allows me to
+ * do this without the cross calls).
+ */
+ pArgs->u64Now = RTTimeSystemNanoTS();
+ rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
+ AssertRC(rc2); /* screw this if it fails. */
+
+ /*
+ * Reset the sub-timers who didn't start up (ALL CPUs case).
+ */
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
+ {
+ /** @todo very odd case for a rainy day. Cpus that temporarily went offline while
+ * we were between calls needs to nudged as the MP handler will ignore events for
+ * them because of the STARTING state. This is an extremely unlikely case - not that
+ * that means anything in my experience... ;-) */
+ RTTIMERLNX_LOG(("what!? iCpu=%u -> didn't start\n", iCpu));
+ }
+
+ RTSpinlockRelease(pTimer->hSpinlock);
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Worker for RTTimerStop() that takes care of the ugly SMP bits.
+ *
+ * @returns true if there was any active callbacks, false if not.
+ * @param pTimer The timer (valid).
+ * @param fForDestroy Whether this is for RTTimerDestroy or not.
+ */
+static bool rtTimerLnxOmniStop(PRTTIMER pTimer, bool fForDestroy)
+{
+ bool fActiveCallbacks = false;
+ RTCPUID iCpu;
+ RTTIMERLNXSTATE enmState;
+
+
+ /*
+ * Mark the timer as suspended and flag all timers as stopping, except
+ * for those being stopped by an MP event.
+ */
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ ASMAtomicWriteBool(&pTimer->fSuspended, true);
+ for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
+ {
+ for (;;)
+ {
+ enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
+ if ( enmState == RTTIMERLNXSTATE_STOPPED
+ || enmState == RTTIMERLNXSTATE_MP_STOPPING)
+ break;
+ if ( enmState == RTTIMERLNXSTATE_CALLBACK
+ || enmState == RTTIMERLNXSTATE_CB_STOPPING
+ || enmState == RTTIMERLNXSTATE_CB_RESTARTING)
+ {
+ Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState,
+ !fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
+ enmState))
+ {
+ fActiveCallbacks = true;
+ break;
+ }
+ }
+ else
+ {
+ Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState))
+ break;
+ }
+ ASMNopPause();
+ }
+ }
+
+ RTSpinlockRelease(pTimer->hSpinlock);
+
+ /*
+ * Do the actual stopping. Fortunately, this doesn't require any IPIs.
+ * Unfortunately it cannot be done synchronously.
+ */
+ for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
+ if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
+ rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu], pTimer->fHighRes);
+
+ return fActiveCallbacks;
+}
+
+
+/**
+ * Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
+ * to start a sub-timer on a cpu that just have come online.
+ *
+ * @param idCpu The current CPU.
+ * @param pvUser1 Pointer to the timer.
+ * @param pvUser2 Pointer to the argument structure.
+ */
+static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
+{
+ PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
+ PRTTIMER pTimer = (PRTTIMER)pvUser1;
+ RTSPINLOCK hSpinlock;
+ Assert(idCpu < pTimer->cCpus);
+
+ /*
+ * We have to be kind of careful here as we might be racing RTTimerStop
+ * (and/or RTTimerDestroy, thus the paranoia.
+ */
+ hSpinlock = pTimer->hSpinlock;
+ if ( hSpinlock != NIL_RTSPINLOCK
+ && pTimer->u32Magic == RTTIMER_MAGIC)
+ {
+ RTSpinlockAcquire(hSpinlock);
+
+ if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
+ && pTimer->u32Magic == RTTIMER_MAGIC)
+ {
+ /* We're sane and the timer is not suspended yet. */
+ PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
+ rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
+ }
+
+ RTSpinlockRelease(hSpinlock);
+ }
+}
+
+
+/**
+ * MP event notification callback.
+ *
+ * @param enmEvent The event.
+ * @param idCpu The cpu it applies to.
+ * @param pvUser The timer.
+ */
+static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
+{
+ PRTTIMER pTimer = (PRTTIMER)pvUser;
+ PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
+ RTSPINLOCK hSpinlock;
+
+ Assert(idCpu < pTimer->cCpus);
+
+ /*
+ * Some initial paranoia.
+ */
+ if (pTimer->u32Magic != RTTIMER_MAGIC)
+ return;
+ hSpinlock = pTimer->hSpinlock;
+ if (hSpinlock == NIL_RTSPINLOCK)
+ return;
+
+ RTSpinlockAcquire(hSpinlock);
+
+ /* Is it active? */
+ if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
+ && pTimer->u32Magic == RTTIMER_MAGIC)
+ {
+ switch (enmEvent)
+ {
+ /*
+ * Try do it without leaving the spin lock, but if we have to, retake it
+ * when we're on the right cpu.
+ */
+ case RTMPEVENT_ONLINE:
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
+ {
+ RTTIMERLINUXSTARTONCPUARGS Args;
+ Args.u64Now = RTTimeSystemNanoTS();
+ Args.u64First = 0;
+
+ if (RTMpCpuId() == idCpu)
+ rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First, true /*fPinned*/, pTimer->fHighRes);
+ else
+ {
+ rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
+ RTSpinlockRelease(hSpinlock);
+
+ RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
+ return; /* we've left the spinlock */
+ }
+ }
+ break;
+
+ /*
+ * The CPU is (going) offline, make sure the sub-timer is stopped.
+ *
+ * Linux will migrate it to a different CPU, but we don't want this. The
+ * timer function is checking for this.
+ */
+ case RTMPEVENT_OFFLINE:
+ {
+ RTTIMERLNXSTATE enmState;
+ while ( (enmState = rtTimerLnxGetState(&pSubTimer->enmState)) == RTTIMERLNXSTATE_ACTIVE
+ || enmState == RTTIMERLNXSTATE_CALLBACK
+ || enmState == RTTIMERLNXSTATE_CB_RESTARTING)
+ {
+ if (enmState == RTTIMERLNXSTATE_ACTIVE)
+ {
+ if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
+ {
+ RTSpinlockRelease(hSpinlock);
+
+ rtTimerLnxStopSubTimer(pSubTimer, pTimer->fHighRes);
+ return; /* we've left the spinlock */
+ }
+ }
+ else if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CB_STOPPING, enmState))
+ break;
+
+ /* State not stable, try again. */
+ ASMNopPause();
+ }
+ break;
+ }
+ }
+ }
+
+ RTSpinlockRelease(hSpinlock);
+}
+
+#endif /* CONFIG_SMP */
+
+
+/**
+ * Callback function use by RTTimerStart via RTMpOnSpecific to start a timer
+ * running on a specific CPU.
+ *
+ * @param idCpu The current CPU.
+ * @param pvUser1 Pointer to the timer.
+ * @param pvUser2 Pointer to the argument structure.
+ */
+static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
+{
+ PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
+ PRTTIMER pTimer = (PRTTIMER)pvUser1;
+ RT_NOREF_PV(idCpu);
+ rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
+}
+
+
+RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
+{
+ RTTIMERLINUXSTARTONCPUARGS Args;
+ int rc2;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * Validate.
+ */
+ AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
+ AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
+
+ if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
+ return VERR_TIMER_ACTIVE;
+ RTTIMERLNX_LOG(("start %p cCpus=%d\n", pTimer, pTimer->cCpus));
+
+ Args.u64First = u64First;
+#ifdef CONFIG_SMP
+ /*
+ * Omni timer?
+ */
+ if (pTimer->fAllCpus)
+ {
+ rc2 = rtTimerLnxOmniStart(pTimer, &Args);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc2;
+ }
+#endif
+
+ /*
+ * Simple timer - Pretty straight forward if it wasn't for restarting.
+ */
+ Args.u64Now = RTTimeSystemNanoTS();
+ ASMAtomicWriteU64(&pTimer->aSubTimers[0].uNsRestartAt, Args.u64Now + u64First);
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_STOPPED:
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING, RTTIMERLNXSTATE_STOPPED))
+ {
+ ASMAtomicWriteBool(&pTimer->fSuspended, false);
+ if (!pTimer->fSpecificCpu)
+ rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First,
+ false /*fPinned*/, pTimer->fHighRes);
+ else
+ {
+ rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
+ if (RT_FAILURE(rc2))
+ {
+ /* Suspend it, the cpu id is probably invalid or offline. */
+ ASMAtomicWriteBool(&pTimer->fSuspended, true);
+ rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
+ return rc2;
+ }
+ }
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+ break;
+
+ case RTTIMERLNXSTATE_CALLBACK:
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_CB_RESTARTING, enmState))
+ {
+ ASMAtomicWriteBool(&pTimer->fSuspended, false);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+ break;
+
+ default:
+ AssertMsgFailed(("%d\n", enmState));
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_INTERNAL_ERROR_4;
+ }
+ ASMNopPause();
+ }
+}
+RT_EXPORT_SYMBOL(RTTimerStart);
+
+
+/**
+ * Common worker for RTTimerStop and RTTimerDestroy.
+ *
+ * @returns true if there was any active callbacks, false if not.
+ * @param pTimer The timer to stop.
+ * @param fForDestroy Whether it's RTTimerDestroy calling or not.
+ */
+static bool rtTimerLnxStop(PRTTIMER pTimer, bool fForDestroy)
+{
+ RTTIMERLNX_LOG(("lnxstop %p %d\n", pTimer, fForDestroy));
+#ifdef CONFIG_SMP
+ /*
+ * Omni timer?
+ */
+ if (pTimer->fAllCpus)
+ return rtTimerLnxOmniStop(pTimer, fForDestroy);
+#endif
+
+ /*
+ * Simple timer.
+ */
+ ASMAtomicWriteBool(&pTimer->fSuspended, true);
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_ACTIVE:
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING, RTTIMERLNXSTATE_ACTIVE))
+ {
+ rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0], pTimer->fHighRes);
+ return false;
+ }
+ break;
+
+ case RTTIMERLNXSTATE_CALLBACK:
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
+ if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState,
+ !fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
+ enmState))
+ return true;
+ break;
+
+ case RTTIMERLNXSTATE_STOPPED:
+ return VINF_SUCCESS;
+
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
+ return true;
+
+ default:
+ case RTTIMERLNXSTATE_STARTING:
+ case RTTIMERLNXSTATE_MP_STARTING:
+ case RTTIMERLNXSTATE_STOPPING:
+ case RTTIMERLNXSTATE_MP_STOPPING:
+ AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
+ return false;
+ }
+
+ /* State not stable, try again. */
+ ASMNopPause();
+ }
+}
+
+
+RTDECL(int) RTTimerStop(PRTTIMER pTimer)
+{
+ /*
+ * Validate.
+ */
+ IPRT_LINUX_SAVE_EFL_AC();
+ AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
+ AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
+ RTTIMERLNX_LOG(("stop %p\n", pTimer));
+
+ if (ASMAtomicUoReadBool(&pTimer->fSuspended))
+ return VERR_TIMER_SUSPENDED;
+
+ rtTimerLnxStop(pTimer, false /*fForDestroy*/);
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+RT_EXPORT_SYMBOL(RTTimerStop);
+
+
+RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
+{
+ unsigned long cJiffies;
+ unsigned long flFlags;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * Validate.
+ */
+ AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
+ AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
+ AssertReturn(u64NanoInterval, VERR_INVALID_PARAMETER);
+ AssertReturn(u64NanoInterval < UINT64_MAX / 8, VERR_INVALID_PARAMETER);
+ AssertReturn(pTimer->u64NanoInterval, VERR_INVALID_STATE);
+ RTTIMERLNX_LOG(("change %p %llu\n", pTimer, u64NanoInterval));
+
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ /*
+ * For the high resolution timers it is easy since we don't care so much
+ * about when it is applied to the sub-timers.
+ */
+ if (pTimer->fHighRes)
+ {
+ ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+ }
+#endif
+
+ /*
+ * Standard timers have a bit more complicated way of calculating
+ * their interval and such. So, forget omni timers for now.
+ */
+ if (pTimer->cCpus > 1)
+ return VERR_NOT_SUPPORTED;
+
+ cJiffies = u64NanoInterval / (RT_NS_1SEC / HZ);
+ if (cJiffies * (RT_NS_1SEC / HZ) != u64NanoInterval)
+ cJiffies = 0;
+
+ spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
+ pTimer->aSubTimers[0].u.Std.fFirstAfterChg = true;
+ pTimer->cJiffies = cJiffies;
+ ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
+ spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+RT_EXPORT_SYMBOL(RTTimerChangeInterval);
+
+
+RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
+{
+ bool fCanDestroy;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ /*
+ * Validate. It's ok to pass NULL pointer.
+ */
+ if (pTimer == /*NIL_RTTIMER*/ NULL)
+ return VINF_SUCCESS;
+ AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
+ AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
+ RTTIMERLNX_LOG(("destroy %p\n", pTimer));
+/** @todo We should invalidate the magic here! */
+
+ /*
+ * Stop the timer if it's still active, then destroy it if we can.
+ */
+ if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
+ fCanDestroy = rtTimerLnxStop(pTimer, true /*fForDestroy*/);
+ else
+ {
+ uint32_t iCpu = pTimer->cCpus;
+ if (pTimer->cCpus > 1)
+ RTSpinlockAcquire(pTimer->hSpinlock);
+
+ fCanDestroy = true;
+ while (iCpu-- > 0)
+ {
+ for (;;)
+ {
+ RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
+ switch (enmState)
+ {
+ case RTTIMERLNXSTATE_CALLBACK:
+ case RTTIMERLNXSTATE_CB_RESTARTING:
+ case RTTIMERLNXSTATE_CB_STOPPING:
+ if (!rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_CB_DESTROYING, enmState))
+ continue;
+ fCanDestroy = false;
+ break;
+
+ case RTTIMERLNXSTATE_CB_DESTROYING:
+ AssertMsgFailed(("%d\n", enmState));
+ fCanDestroy = false;
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+ }
+
+ if (pTimer->cCpus > 1)
+ RTSpinlockRelease(pTimer->hSpinlock);
+ }
+
+ if (fCanDestroy)
+ {
+ /* For paranoid reasons, defer actually destroying the semaphore when
+ in atomic or interrupt context. */
+#if RTLNX_VER_MIN(2,5,32)
+ if (in_atomic() || in_interrupt())
+#else
+ if (in_interrupt())
+#endif
+ rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
+ else
+ rtTimerLnxDestroyIt(pTimer);
+ }
+
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+RT_EXPORT_SYMBOL(RTTimerDestroy);
+
+
+RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
+{
+ PRTTIMER pTimer;
+ RTCPUID iCpu;
+ unsigned cCpus;
+ int rc;
+ IPRT_LINUX_SAVE_EFL_AC();
+
+ rtR0LnxWorkqueueFlush(); /* for 2.4 */
+ *ppTimer = NULL;
+
+ /*
+ * Validate flags.
+ */
+ if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_INVALID_PARAMETER;
+ }
+ if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
+ && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
+ && !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VERR_CPU_NOT_FOUND;
+ }
+
+ /*
+ * Allocate the timer handler.
+ */
+ cCpus = 1;
+#ifdef CONFIG_SMP
+ if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
+ {
+ cCpus = RTMpGetMaxCpuId() + 1;
+ Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
+ AssertReturnStmt(u64NanoInterval, IPRT_LINUX_RESTORE_EFL_AC(), VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
+ }
+#endif
+
+ rc = RTMemAllocEx(RT_UOFFSETOF_DYN(RTTIMER, aSubTimers[cCpus]), 0,
+ RTMEMALLOCEX_FLAGS_ZEROED | RTMEMALLOCEX_FLAGS_ANY_CTX_FREE, (void **)&pTimer);
+ if (RT_FAILURE(rc))
+ {
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+ }
+
+ /*
+ * Initialize it.
+ */
+ pTimer->u32Magic = RTTIMER_MAGIC;
+ pTimer->hSpinlock = NIL_RTSPINLOCK;
+ pTimer->fSuspended = true;
+ pTimer->fHighRes = !!(fFlags & RTTIMER_FLAGS_HIGH_RES);
+#ifdef CONFIG_SMP
+ pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
+ pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
+ pTimer->idCpu = pTimer->fSpecificCpu
+ ? RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)
+ : NIL_RTCPUID;
+#else
+ pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
+ pTimer->idCpu = RTMpCpuId();
+#endif
+ pTimer->cCpus = cCpus;
+ pTimer->pfnTimer = pfnTimer;
+ pTimer->pvUser = pvUser;
+ pTimer->u64NanoInterval = u64NanoInterval;
+ pTimer->cJiffies = u64NanoInterval / (RT_NS_1SEC / HZ);
+ if (pTimer->cJiffies * (RT_NS_1SEC / HZ) != u64NanoInterval)
+ pTimer->cJiffies = 0;
+ spin_lock_init(&pTimer->ChgIntLock);
+
+ for (iCpu = 0; iCpu < cCpus; iCpu++)
+ {
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ if (pTimer->fHighRes)
+ {
+ hrtimer_init(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+ pTimer->aSubTimers[iCpu].u.Hr.LnxTimer.function = rtTimerLinuxHrCallback;
+ }
+ else
+#endif
+ {
+#if RTLNX_VER_MIN(4,15,0)
+ timer_setup(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer, rtTimerLinuxStdCallback, TIMER_PINNED);
+#elif RTLNX_VER_MIN(4,8,0)
+ init_timer_pinned(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
+#else
+ init_timer(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
+#endif
+#if RTLNX_VER_MAX(4,15,0)
+ pTimer->aSubTimers[iCpu].u.Std.LnxTimer.data = (unsigned long)&pTimer->aSubTimers[iCpu];
+ pTimer->aSubTimers[iCpu].u.Std.LnxTimer.function = rtTimerLinuxStdCallback;
+#endif
+ pTimer->aSubTimers[iCpu].u.Std.LnxTimer.expires = jiffies;
+ pTimer->aSubTimers[iCpu].u.Std.u64NextTS = 0;
+ }
+ pTimer->aSubTimers[iCpu].iTick = 0;
+ pTimer->aSubTimers[iCpu].pParent = pTimer;
+ pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
+ }
+
+#ifdef CONFIG_SMP
+ /*
+ * If this is running on ALL cpus, we'll have to register a callback
+ * for MP events (so timers can be started/stopped on cpus going
+ * online/offline). We also create the spinlock for synchronizing
+ * stop/start/mp-event.
+ */
+ if (cCpus > 1)
+ {
+ int rc = RTSpinlockCreate(&pTimer->hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTTimerLnx");
+ if (RT_SUCCESS(rc))
+ rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
+ else
+ pTimer->hSpinlock = NIL_RTSPINLOCK;
+ if (RT_FAILURE(rc))
+ {
+ RTTimerDestroy(pTimer);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return rc;
+ }
+ }
+#endif /* CONFIG_SMP */
+
+ RTTIMERLNX_LOG(("create %p hires=%d fFlags=%#x cCpus=%u\n", pTimer, pTimer->fHighRes, fFlags, cCpus));
+ *ppTimer = pTimer;
+ IPRT_LINUX_RESTORE_EFL_AC();
+ return VINF_SUCCESS;
+}
+RT_EXPORT_SYMBOL(RTTimerCreateEx);
+
+
+RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
+{
+#if 0 /** @todo Not sure if this is what we want or not... Add new API for
+ * querying the resolution of the high res timers? */
+ struct timespec Ts;
+ int rc;
+ IPRT_LINUX_SAVE_EFL_AC();
+ rc = hrtimer_get_res(CLOCK_MONOTONIC, &Ts);
+ IPRT_LINUX_RESTORE_EFL_AC();
+ if (!rc)
+ {
+ Assert(!Ts.tv_sec);
+ return Ts.tv_nsec;
+ }
+#endif
+ /* */
+#if RTLNX_VER_MAX(4,9,0) || RTLNX_VER_MIN(4,13,0)
+ /* On 4.9, 4.10 and 4.12 we've observed tstRTR0Timer failures of the omni timer tests
+ where we get about half of the ticks we want. The failing test is using this value
+ as interval. So, this is a very very crude hack to try make omni timers work
+ correctly without actually knowing what's going wrong... */
+ return RT_NS_1SEC * 2 / HZ; /* ns */
+#else
+ return RT_NS_1SEC / HZ; /* ns */
+#endif
+}
+RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
+
+
+RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
+{
+ RT_NOREF_PV(u32Request); RT_NOREF_PV(*pu32Granted);
+ return VERR_NOT_SUPPORTED;
+}
+RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
+
+
+RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
+{
+ RT_NOREF_PV(u32Granted);
+ return VERR_NOT_SUPPORTED;
+}
+RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);
+
+
+RTDECL(bool) RTTimerCanDoHighResolution(void)
+{
+#ifdef RTTIMER_LINUX_WITH_HRTIMER
+ return true;
+#else
+ return false;
+#endif
+}
+RT_EXPORT_SYMBOL(RTTimerCanDoHighResolution);
+