summaryrefslogtreecommitdiffstats
path: root/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c')
-rw-r--r--src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c1214
1 files changed, 1214 insertions, 0 deletions
diff --git a/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c b/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c
new file mode 100644
index 00000000..d4ca1d30
--- /dev/null
+++ b/src/VBox/ExtPacks/VBoxDTrace/onnv/uts/common/dtrace/dcpc.c
@@ -0,0 +1,1214 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#include <sys/errno.h>
+#include <sys/cpuvar.h>
+#include <sys/stat.h>
+#include <sys/modctl.h>
+#include <sys/cmn_err.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/ksynch.h>
+#include <sys/conf.h>
+#include <sys/kmem.h>
+#include <sys/kcpc.h>
+#include <sys/cap_util.h>
+#include <sys/cpc_pcbe.h>
+#include <sys/cpc_impl.h>
+#include <sys/dtrace_impl.h>
+
+/*
+ * DTrace CPU Performance Counter Provider
+ * ---------------------------------------
+ *
+ * The DTrace cpc provider allows DTrace consumers to access the CPU
+ * performance counter overflow mechanism of a CPU. The configuration
+ * presented in a probe specification is programmed into the performance
+ * counter hardware of all available CPUs on a system. Programming the
+ * hardware causes a counter on each CPU to begin counting events of the
+ * given type. When the specified number of events have occurred, an overflow
+ * interrupt will be generated and the probe is fired.
+ *
+ * The required configuration for the performance counter is encoded into
+ * the probe specification and this includes the performance counter event
+ * name, processor mode, overflow rate and an optional unit mask.
+ *
+ * Most processors provide several counters (PICs) which can count all or a
+ * subset of the events available for a given CPU. However, when overflow
+ * profiling is being used, not all CPUs can detect which counter generated the
+ * overflow interrupt. In this case we cannot reliably determine which counter
+ * overflowed and we therefore only allow such CPUs to configure one event at
+ * a time. Processors that can determine the counter which overflowed are
+ * allowed to program as many events at one time as possible (in theory up to
+ * the number of instrumentation counters supported by that platform).
+ * Therefore, multiple consumers can enable multiple probes at the same time
+ * on such platforms. Platforms which cannot determine the source of an
+ * overflow interrupt are only allowed to program a single event at one time.
+ *
+ * The performance counter hardware is made available to consumers on a
+ * first-come, first-served basis. Only a finite amount of hardware resource
+ * is available and, while we make every attempt to accomodate requests from
+ * consumers, we must deny requests when hardware resources have been exhausted.
+ * A consumer will fail to enable probes when resources are currently in use.
+ *
+ * The cpc provider contends for shared hardware resources along with other
+ * consumers of the kernel CPU performance counter subsystem (e.g. cpustat(1M)).
+ * Only one such consumer can use the performance counters at any one time and
+ * counters are made available on a first-come, first-served basis. As with
+ * cpustat, the cpc provider has priority over per-LWP libcpc usage (e.g.
+ * cputrack(1)). Invoking the cpc provider will cause all existing per-LWP
+ * counter contexts to be invalidated.
+ */
+
+typedef struct dcpc_probe {
+ char dcpc_event_name[CPC_MAX_EVENT_LEN];
+ int dcpc_flag; /* flags (USER/SYS) */
+ uint32_t dcpc_ovfval; /* overflow value */
+ int64_t dcpc_umask; /* umask/emask for this event */
+ int dcpc_picno; /* pic this event is programmed in */
+ int dcpc_enabled; /* probe is actually enabled? */
+ int dcpc_disabling; /* probe is currently being disabled */
+ dtrace_id_t dcpc_id; /* probeid this request is enabling */
+ int dcpc_actv_req_idx; /* idx into dcpc_actv_reqs[] */
+} dcpc_probe_t;
+
+static dev_info_t *dcpc_devi;
+static dtrace_provider_id_t dcpc_pid;
+static dcpc_probe_t **dcpc_actv_reqs;
+static uint32_t dcpc_enablings = 0;
+static int dcpc_ovf_mask = 0;
+static int dcpc_mult_ovf_cap = 0;
+static int dcpc_mask_type = 0;
+
+/*
+ * When the dcpc provider is loaded, dcpc_min_overflow is set to either
+ * DCPC_MIN_OVF_DEFAULT or the value that dcpc-min-overflow is set to in
+ * the dcpc.conf file. Decrease this value to set probes with smaller
+ * overflow values. Remember that very small values could render a system
+ * unusable with frequently occurring events.
+ */
+#define DCPC_MIN_OVF_DEFAULT 5000
+static uint32_t dcpc_min_overflow;
+
+static int dcpc_aframes = 0; /* override for artificial frame setting */
+#if defined(__x86)
+#define DCPC_ARTIFICIAL_FRAMES 8
+#elif defined(__sparc)
+#define DCPC_ARTIFICIAL_FRAMES 2
+#endif
+
+/*
+ * Called from the platform overflow interrupt handler. 'bitmap' is a mask
+ * which contains the pic(s) that have overflowed.
+ */
+static void
+dcpc_fire(uint64_t bitmap)
+{
+ int i;
+
+ /*
+ * No counter was marked as overflowing. Shout about it and get out.
+ */
+ if ((bitmap & dcpc_ovf_mask) == 0) {
+ cmn_err(CE_NOTE, "dcpc_fire: no counter overflow found\n");
+ return;
+ }
+
+ /*
+ * This is the common case of a processor that doesn't support
+ * multiple overflow events. Such systems are only allowed a single
+ * enabling and therefore we just look for the first entry in
+ * the active request array.
+ */
+ if (!dcpc_mult_ovf_cap) {
+ for (i = 0; i < cpc_ncounters; i++) {
+ if (dcpc_actv_reqs[i] != NULL) {
+ dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
+ CPU->cpu_cpcprofile_pc,
+ CPU->cpu_cpcprofile_upc, 0, 0, 0);
+ return;
+ }
+ }
+ return;
+ }
+
+ /*
+ * This is a processor capable of handling multiple overflow events.
+ * Iterate over the array of active requests and locate the counters
+ * that overflowed (note: it is possible for more than one counter to
+ * have overflowed at the same time).
+ */
+ for (i = 0; i < cpc_ncounters; i++) {
+ if (dcpc_actv_reqs[i] != NULL &&
+ (bitmap & (1ULL << dcpc_actv_reqs[i]->dcpc_picno))) {
+ dtrace_probe(dcpc_actv_reqs[i]->dcpc_id,
+ CPU->cpu_cpcprofile_pc,
+ CPU->cpu_cpcprofile_upc, 0, 0, 0);
+ }
+ }
+}
+
+static void
+dcpc_create_probe(dtrace_provider_id_t id, const char *probename,
+ char *eventname, int64_t umask, uint32_t ovfval, char flag)
+{
+ dcpc_probe_t *pp;
+ int nr_frames = DCPC_ARTIFICIAL_FRAMES + dtrace_mach_aframes();
+
+ if (dcpc_aframes)
+ nr_frames = dcpc_aframes;
+
+ if (dtrace_probe_lookup(id, NULL, NULL, probename) != 0)
+ return;
+
+ pp = kmem_zalloc(sizeof (dcpc_probe_t), KM_SLEEP);
+ (void) strncpy(pp->dcpc_event_name, eventname,
+ sizeof (pp->dcpc_event_name) - 1);
+ pp->dcpc_event_name[sizeof (pp->dcpc_event_name) - 1] = '\0';
+ pp->dcpc_flag = flag | CPC_OVF_NOTIFY_EMT;
+ pp->dcpc_ovfval = ovfval;
+ pp->dcpc_umask = umask;
+ pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
+
+ pp->dcpc_id = dtrace_probe_create(id, NULL, NULL, probename,
+ nr_frames, pp);
+}
+
+/*ARGSUSED*/
+static void
+dcpc_provide(void *arg, const dtrace_probedesc_t *desc)
+{
+ /*
+ * The format of a probe is:
+ *
+ * event_name-mode-{optional_umask}-overflow_rate
+ * e.g.
+ * DC_refill_from_system-user-0x1e-50000, or,
+ * DC_refill_from_system-all-10000
+ *
+ */
+ char *str, *end, *p;
+ int i, flag = 0;
+ char event[CPC_MAX_EVENT_LEN];
+ long umask = -1, val = 0;
+ size_t evlen, len;
+
+ /*
+ * The 'cpc' provider offers no probes by default.
+ */
+ if (desc == NULL)
+ return;
+
+ len = strlen(desc->dtpd_name);
+ p = str = kmem_alloc(len + 1, KM_SLEEP);
+ (void) strcpy(str, desc->dtpd_name);
+
+ /*
+ * We have a poor man's strtok() going on here. Replace any hyphens
+ * in the the probe name with NULL characters in order to make it
+ * easy to parse the string with regular string functions.
+ */
+ for (i = 0; i < len; i++) {
+ if (str[i] == '-')
+ str[i] = '\0';
+ }
+
+ /*
+ * The first part of the string must be either a platform event
+ * name or a generic event name.
+ */
+ evlen = strlen(p);
+ (void) strncpy(event, p, CPC_MAX_EVENT_LEN - 1);
+ event[CPC_MAX_EVENT_LEN - 1] = '\0';
+
+ /*
+ * The next part of the name is the mode specification. Valid
+ * settings are "user", "kernel" or "all".
+ */
+ p += evlen + 1;
+
+ if (strcmp(p, "user") == 0)
+ flag |= CPC_COUNT_USER;
+ else if (strcmp(p, "kernel") == 0)
+ flag |= CPC_COUNT_SYSTEM;
+ else if (strcmp(p, "all") == 0)
+ flag |= CPC_COUNT_USER | CPC_COUNT_SYSTEM;
+ else
+ goto err;
+
+ /*
+ * Next we either have a mask specification followed by an overflow
+ * rate or just an overflow rate on its own.
+ */
+ p += strlen(p) + 1;
+ if (p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
+ /*
+ * A unit mask can only be specified if:
+ * 1) this performance counter back end supports masks.
+ * 2) the specified event is platform specific.
+ * 3) a valid hex number is converted.
+ * 4) no extraneous characters follow the mask specification.
+ */
+ if (dcpc_mask_type != 0 && strncmp(event, "PAPI", 4) != 0 &&
+ ddi_strtol(p, &end, 16, &umask) == 0 &&
+ end == p + strlen(p)) {
+ p += strlen(p) + 1;
+ } else {
+ goto err;
+ }
+ }
+
+ /*
+ * This final part must be an overflow value which has to be greater
+ * than the minimum permissible overflow rate.
+ */
+ if ((ddi_strtol(p, &end, 10, &val) != 0) || end != p + strlen(p) ||
+ val < dcpc_min_overflow)
+ goto err;
+
+ /*
+ * Validate the event and create the probe.
+ */
+ for (i = 0; i < cpc_ncounters; i++) {
+ char *events, *cp, *p, *end;
+ int found = 0, j;
+ size_t llen;
+
+ if ((events = kcpc_list_events(i)) == NULL)
+ goto err;
+
+ llen = strlen(events);
+ p = cp = ddi_strdup(events, KM_NOSLEEP);
+ end = cp + llen;
+
+ for (j = 0; j < llen; j++) {
+ if (cp[j] == ',')
+ cp[j] = '\0';
+ }
+
+ while (p < end && found == 0) {
+ if (strcmp(p, event) == 0) {
+ dcpc_create_probe(dcpc_pid, desc->dtpd_name,
+ event, umask, (uint32_t)val, flag);
+ found = 1;
+ }
+ p += strlen(p) + 1;
+ }
+ kmem_free(cp, llen + 1);
+
+ if (found)
+ break;
+ }
+
+err:
+ kmem_free(str, len + 1);
+}
+
+/*ARGSUSED*/
+static void
+dcpc_destroy(void *arg, dtrace_id_t id, void *parg)
+{
+ dcpc_probe_t *pp = parg;
+
+ ASSERT(pp->dcpc_enabled == 0);
+ kmem_free(pp, sizeof (dcpc_probe_t));
+}
+
+/*ARGSUSED*/
+static int
+dcpc_usermode(void *arg, dtrace_id_t id, void *parg)
+{
+ return (CPU->cpu_cpcprofile_pc == 0);
+}
+
+static void
+dcpc_populate_set(cpu_t *c, dcpc_probe_t *pp, kcpc_set_t *set, int reqno)
+{
+ kcpc_set_t *oset;
+ int i;
+
+ (void) strncpy(set->ks_req[reqno].kr_event, pp->dcpc_event_name,
+ CPC_MAX_EVENT_LEN);
+ set->ks_req[reqno].kr_config = NULL;
+ set->ks_req[reqno].kr_index = reqno;
+ set->ks_req[reqno].kr_picnum = -1;
+ set->ks_req[reqno].kr_flags = pp->dcpc_flag;
+
+ /*
+ * If a unit mask has been specified then detect which attribute
+ * the platform needs. For now, it's either "umask" or "emask".
+ */
+ if (pp->dcpc_umask >= 0) {
+ set->ks_req[reqno].kr_attr =
+ kmem_zalloc(sizeof (kcpc_attr_t), KM_SLEEP);
+ set->ks_req[reqno].kr_nattrs = 1;
+ if (dcpc_mask_type & DCPC_UMASK)
+ (void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
+ "umask", 5);
+ else
+ (void) strncpy(set->ks_req[reqno].kr_attr->ka_name,
+ "emask", 5);
+ set->ks_req[reqno].kr_attr->ka_val = pp->dcpc_umask;
+ } else {
+ set->ks_req[reqno].kr_attr = NULL;
+ set->ks_req[reqno].kr_nattrs = 0;
+ }
+
+ /*
+ * If this probe is enabled, obtain its current countdown value
+ * and use that. The CPUs cpc context might not exist yet if we
+ * are dealing with a CPU that is just coming online.
+ */
+ if (pp->dcpc_enabled && (c->cpu_cpc_ctx != NULL)) {
+ oset = c->cpu_cpc_ctx->kc_set;
+
+ for (i = 0; i < oset->ks_nreqs; i++) {
+ if (strcmp(oset->ks_req[i].kr_event,
+ set->ks_req[reqno].kr_event) == 0) {
+ set->ks_req[reqno].kr_preset =
+ *(oset->ks_req[i].kr_data);
+ }
+ }
+ } else {
+ set->ks_req[reqno].kr_preset = UINT64_MAX - pp->dcpc_ovfval;
+ }
+
+ set->ks_nreqs++;
+}
+
+
+/*
+ * Create a fresh request set for the enablings represented in the
+ * 'dcpc_actv_reqs' array which contains the probes we want to be
+ * in the set. This can be called for several reasons:
+ *
+ * 1) We are on a single or multi overflow platform and we have no
+ * current events so we can just create the set and initialize it.
+ * 2) We are on a multi-overflow platform and we already have one or
+ * more existing events and we are adding a new enabling. Create a
+ * new set and copy old requests in and then add the new request.
+ * 3) We are on a multi-overflow platform and we have just removed an
+ * enabling but we still have enablings whch are valid. Create a new
+ * set and copy in still valid requests.
+ */
+static kcpc_set_t *
+dcpc_create_set(cpu_t *c)
+{
+ int i, reqno = 0;
+ int active_requests = 0;
+ kcpc_set_t *set;
+
+ /*
+ * First get a count of the number of currently active requests.
+ * Note that dcpc_actv_reqs[] should always reflect which requests
+ * we want to be in the set that is to be created. It is the
+ * responsibility of the caller of dcpc_create_set() to adjust that
+ * array accordingly beforehand.
+ */
+ for (i = 0; i < cpc_ncounters; i++) {
+ if (dcpc_actv_reqs[i] != NULL)
+ active_requests++;
+ }
+
+ set = kmem_zalloc(sizeof (kcpc_set_t), KM_SLEEP);
+
+ set->ks_req =
+ kmem_zalloc(sizeof (kcpc_request_t) * active_requests, KM_SLEEP);
+
+ set->ks_data =
+ kmem_zalloc(active_requests * sizeof (uint64_t), KM_SLEEP);
+
+ /*
+ * Look for valid entries in the active requests array and populate
+ * the request set for any entries found.
+ */
+ for (i = 0; i < cpc_ncounters; i++) {
+ if (dcpc_actv_reqs[i] != NULL) {
+ dcpc_populate_set(c, dcpc_actv_reqs[i], set, reqno);
+ reqno++;
+ }
+ }
+
+ return (set);
+}
+
+static int
+dcpc_program_cpu_event(cpu_t *c)
+{
+ int i, j, subcode;
+ kcpc_ctx_t *ctx, *octx;
+ kcpc_set_t *set;
+
+ set = dcpc_create_set(c);
+
+ set->ks_ctx = ctx = kcpc_ctx_alloc(KM_SLEEP);
+ ctx->kc_set = set;
+ ctx->kc_cpuid = c->cpu_id;
+
+ if (kcpc_assign_reqs(set, ctx) != 0)
+ goto err;
+
+ if (kcpc_configure_reqs(ctx, set, &subcode) != 0)
+ goto err;
+
+ for (i = 0; i < set->ks_nreqs; i++) {
+ for (j = 0; j < cpc_ncounters; j++) {
+ if (dcpc_actv_reqs[j] != NULL &&
+ strcmp(set->ks_req[i].kr_event,
+ dcpc_actv_reqs[j]->dcpc_event_name) == 0) {
+ dcpc_actv_reqs[j]->dcpc_picno =
+ set->ks_req[i].kr_picnum;
+ }
+ }
+ }
+
+ /*
+ * If we already have an active enabling then save the current cpc
+ * context away.
+ */
+ octx = c->cpu_cpc_ctx;
+
+ kcpc_cpu_program(c, ctx);
+
+ if (octx != NULL) {
+ kcpc_set_t *oset = octx->kc_set;
+ kmem_free(oset->ks_data, oset->ks_nreqs * sizeof (uint64_t));
+ kcpc_free_configs(oset);
+ kcpc_free_set(oset);
+ kcpc_ctx_free(octx);
+ }
+
+ return (0);
+
+err:
+ /*
+ * We failed to configure this request up so free things up and
+ * get out.
+ */
+ kcpc_free_configs(set);
+ kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
+ kcpc_free_set(set);
+ kcpc_ctx_free(ctx);
+
+ return (-1);
+}
+
+static void
+dcpc_disable_cpu(cpu_t *c)
+{
+ kcpc_ctx_t *ctx;
+ kcpc_set_t *set;
+
+ /*
+ * Leave this CPU alone if it's already offline.
+ */
+ if (c->cpu_flags & CPU_OFFLINE)
+ return;
+
+ /*
+ * Grab CPUs CPC context before kcpc_cpu_stop() stops counters and
+ * changes it.
+ */
+ ctx = c->cpu_cpc_ctx;
+
+ kcpc_cpu_stop(c, B_FALSE);
+
+ set = ctx->kc_set;
+
+ kcpc_free_configs(set);
+ kmem_free(set->ks_data, set->ks_nreqs * sizeof (uint64_t));
+ kcpc_free_set(set);
+ kcpc_ctx_free(ctx);
+}
+
+/*
+ * The dcpc_*_interrupts() routines are responsible for manipulating the
+ * per-CPU dcpc interrupt state byte. The purpose of the state byte is to
+ * synchronize processing of hardware overflow interrupts wth configuration
+ * changes made to the CPU performance counter subsystem by the dcpc provider.
+ *
+ * The dcpc provider claims ownership of the overflow interrupt mechanism
+ * by transitioning the state byte from DCPC_INTR_INACTIVE (indicating the
+ * dcpc provider is not in use) to DCPC_INTR_FREE (the dcpc provider owns the
+ * overflow mechanism and interrupts may be processed). Before modifying
+ * a CPUs configuration state the state byte is transitioned from
+ * DCPC_INTR_FREE to DCPC_INTR_CONFIG ("configuration in process" state).
+ * The hardware overflow handler, kcpc_hw_overflow_intr(), will only process
+ * an interrupt when a configuration is not in process (i.e. the state is
+ * marked as free). During interrupt processing the state is set to
+ * DCPC_INTR_PROCESSING by the overflow handler. When the last dcpc based
+ * enabling is removed, the state byte is set to DCPC_INTR_INACTIVE to indicate
+ * the dcpc provider is no longer interested in overflow interrupts.
+ */
+static void
+dcpc_block_interrupts(void)
+{
+ cpu_t *c = cpu_list;
+ uint8_t *state;
+
+ ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
+
+ do {
+ state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
+
+ while (atomic_cas_8(state, DCPC_INTR_FREE,
+ DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
+ continue;
+
+ } while ((c = c->cpu_next) != cpu_list);
+}
+
+/*
+ * Set all CPUs dcpc interrupt state to DCPC_INTR_FREE to indicate that
+ * overflow interrupts can be processed safely.
+ */
+static void
+dcpc_release_interrupts(void)
+{
+ cpu_t *c = cpu_list;
+
+ ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
+
+ do {
+ cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
+ membar_producer();
+ } while ((c = c->cpu_next) != cpu_list);
+}
+
+/*
+ * Transition all CPUs dcpc interrupt state from DCPC_INTR_INACTIVE to
+ * to DCPC_INTR_FREE. This indicates that the dcpc provider is now
+ * responsible for handling all overflow interrupt activity. Should only be
+ * called before enabling the first dcpc based probe.
+ */
+static void
+dcpc_claim_interrupts(void)
+{
+ cpu_t *c = cpu_list;
+
+ ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state == DCPC_INTR_INACTIVE);
+
+ do {
+ cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_FREE;
+ membar_producer();
+ } while ((c = c->cpu_next) != cpu_list);
+}
+
+/*
+ * Set all CPUs dcpc interrupt state to DCPC_INTR_INACTIVE to indicate that
+ * the dcpc provider is no longer processing overflow interrupts. Only called
+ * during removal of the last dcpc based enabling.
+ */
+static void
+dcpc_surrender_interrupts(void)
+{
+ cpu_t *c = cpu_list;
+
+ ASSERT(cpu_core[c->cpu_id].cpuc_dcpc_intr_state != DCPC_INTR_INACTIVE);
+
+ do {
+ cpu_core[c->cpu_id].cpuc_dcpc_intr_state = DCPC_INTR_INACTIVE;
+ membar_producer();
+ } while ((c = c->cpu_next) != cpu_list);
+}
+
+/*
+ * dcpc_program_event() can be called owing to a new enabling or if a multi
+ * overflow platform has disabled a request but needs to program the requests
+ * that are still valid.
+ *
+ * Every invocation of dcpc_program_event() will create a new kcpc_ctx_t
+ * and a new request set which contains the new enabling and any old enablings
+ * which are still valid (possible with multi-overflow platforms).
+ */
+static int
+dcpc_program_event(dcpc_probe_t *pp)
+{
+ cpu_t *c;
+ int ret = 0;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ kpreempt_disable();
+
+ dcpc_block_interrupts();
+
+ c = cpu_list;
+
+ do {
+ /*
+ * Skip CPUs that are currently offline.
+ */
+ if (c->cpu_flags & CPU_OFFLINE)
+ continue;
+
+ /*
+ * Stop counters but preserve existing DTrace CPC context
+ * if there is one.
+ *
+ * If we come here when the first event is programmed for a CPU,
+ * there should be no DTrace CPC context installed. In this
+ * case, kcpc_cpu_stop() will ensure that there is no other
+ * context on the CPU.
+ *
+ * If we add new enabling to the original one, the CPU should
+ * have the old DTrace CPC context which we need to keep around
+ * since dcpc_program_event() will add to it.
+ */
+ if (c->cpu_cpc_ctx != NULL)
+ kcpc_cpu_stop(c, B_TRUE);
+ } while ((c = c->cpu_next) != cpu_list);
+
+ dcpc_release_interrupts();
+
+ /*
+ * If this enabling is being removed (in the case of a multi event
+ * capable system with more than one active enabling), we can now
+ * update the active request array to reflect the enablings that need
+ * to be reprogrammed.
+ */
+ if (pp->dcpc_disabling == 1)
+ dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
+
+ do {
+ /*
+ * Skip CPUs that are currently offline.
+ */
+ if (c->cpu_flags & CPU_OFFLINE)
+ continue;
+
+ ret = dcpc_program_cpu_event(c);
+ } while ((c = c->cpu_next) != cpu_list && ret == 0);
+
+ /*
+ * If dcpc_program_cpu_event() fails then it is because we couldn't
+ * configure the requests in the set for the CPU and not because of
+ * an error programming the hardware. If we have a failure here then
+ * we assume no CPUs have been programmed in the above step as they
+ * are all configured identically.
+ */
+ if (ret != 0) {
+ pp->dcpc_enabled = 0;
+ kpreempt_enable();
+ return (-1);
+ }
+
+ if (pp->dcpc_disabling != 1)
+ pp->dcpc_enabled = 1;
+
+ kpreempt_enable();
+
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+dcpc_enable(void *arg, dtrace_id_t id, void *parg)
+{
+ dcpc_probe_t *pp = parg;
+ int i, found = 0;
+ cpu_t *c;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ /*
+ * Bail out if the counters are being used by a libcpc consumer.
+ */
+ rw_enter(&kcpc_cpuctx_lock, RW_READER);
+ if (kcpc_cpuctx > 0) {
+ rw_exit(&kcpc_cpuctx_lock);
+ return (-1);
+ }
+
+ dtrace_cpc_in_use++;
+ rw_exit(&kcpc_cpuctx_lock);
+
+ /*
+ * Locate this enabling in the first free entry of the active
+ * request array.
+ */
+ for (i = 0; i < cpc_ncounters; i++) {
+ if (dcpc_actv_reqs[i] == NULL) {
+ dcpc_actv_reqs[i] = pp;
+ pp->dcpc_actv_req_idx = i;
+ found = 1;
+ break;
+ }
+ }
+
+ /*
+ * If we couldn't find a slot for this probe then there is no
+ * room at the inn.
+ */
+ if (!found) {
+ dtrace_cpc_in_use--;
+ return (-1);
+ }
+
+ ASSERT(pp->dcpc_actv_req_idx >= 0);
+
+ /*
+ * DTrace is taking over CPC contexts, so stop collecting
+ * capacity/utilization data for all CPUs.
+ */
+ if (dtrace_cpc_in_use == 1)
+ cu_disable();
+
+ /*
+ * The following must hold true if we are to (attempt to) enable
+ * this request:
+ *
+ * 1) No enablings currently exist. We allow all platforms to
+ * proceed if this is true.
+ *
+ * OR
+ *
+ * 2) If the platform is multi overflow capable and there are
+ * less valid enablings than there are counters. There is no
+ * guarantee that a platform can accommodate as many events as
+ * it has counters for but we will at least try to program
+ * up to that many requests.
+ *
+ * The 'dcpc_enablings' variable is implictly protected by locking
+ * provided by the DTrace framework and the cpu management framework.
+ */
+ if (dcpc_enablings == 0 || (dcpc_mult_ovf_cap &&
+ dcpc_enablings < cpc_ncounters)) {
+ /*
+ * Before attempting to program the first enabling we need to
+ * invalidate any lwp-based contexts and lay claim to the
+ * overflow interrupt mechanism.
+ */
+ if (dcpc_enablings == 0) {
+ kcpc_invalidate_all();
+ dcpc_claim_interrupts();
+ }
+
+ if (dcpc_program_event(pp) == 0) {
+ dcpc_enablings++;
+ return (0);
+ }
+ }
+
+ /*
+ * If active enablings existed before we failed to enable this probe
+ * on a multi event capable platform then we need to restart counters
+ * as they will have been stopped in the attempted configuration. The
+ * context should now just contain the request prior to this failed
+ * enabling.
+ */
+ if (dcpc_enablings > 0 && dcpc_mult_ovf_cap) {
+ c = cpu_list;
+
+ ASSERT(dcpc_mult_ovf_cap == 1);
+ do {
+ /*
+ * Skip CPUs that are currently offline.
+ */
+ if (c->cpu_flags & CPU_OFFLINE)
+ continue;
+
+ kcpc_cpu_program(c, c->cpu_cpc_ctx);
+ } while ((c = c->cpu_next) != cpu_list);
+ }
+
+ /*
+ * Give up any claim to the overflow interrupt mechanism if no
+ * dcpc based enablings exist.
+ */
+ if (dcpc_enablings == 0)
+ dcpc_surrender_interrupts();
+
+ dtrace_cpc_in_use--;
+ dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
+ pp->dcpc_actv_req_idx = pp->dcpc_picno = -1;
+
+ /*
+ * If all probes are removed, enable capacity/utilization data
+ * collection for every CPU.
+ */
+ if (dtrace_cpc_in_use == 0)
+ cu_enable();
+
+ return (-1);
+}
+
+/*
+ * If only one enabling is active then remove the context and free
+ * everything up. If there are multiple enablings active then remove this
+ * one, its associated meta-data and re-program the hardware.
+ */
+/*ARGSUSED*/
+static void
+dcpc_disable(void *arg, dtrace_id_t id, void *parg)
+{
+ cpu_t *c;
+ dcpc_probe_t *pp = parg;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ kpreempt_disable();
+
+ /*
+ * This probe didn't actually make it as far as being fully enabled
+ * so we needn't do anything with it.
+ */
+ if (pp->dcpc_enabled == 0) {
+ /*
+ * If we actually allocated this request a slot in the
+ * request array but failed to enabled it then remove the
+ * entry in the array.
+ */
+ if (pp->dcpc_actv_req_idx >= 0) {
+ dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
+ pp->dcpc_actv_req_idx = pp->dcpc_picno =
+ pp->dcpc_disabling = -1;
+ }
+
+ kpreempt_enable();
+ return;
+ }
+
+ /*
+ * If this is the only enabling then stop all the counters and
+ * free up the meta-data.
+ */
+ if (dcpc_enablings == 1) {
+ ASSERT(dtrace_cpc_in_use == 1);
+
+ dcpc_block_interrupts();
+
+ c = cpu_list;
+
+ do {
+ dcpc_disable_cpu(c);
+ } while ((c = c->cpu_next) != cpu_list);
+
+ dcpc_actv_reqs[pp->dcpc_actv_req_idx] = NULL;
+ dcpc_surrender_interrupts();
+ } else {
+ /*
+ * This platform can support multiple overflow events and
+ * the enabling being disabled is not the last one. Remove this
+ * enabling and re-program the hardware with the new config.
+ */
+ ASSERT(dcpc_mult_ovf_cap);
+ ASSERT(dcpc_enablings > 1);
+
+ pp->dcpc_disabling = 1;
+ (void) dcpc_program_event(pp);
+ }
+
+ kpreempt_enable();
+
+ dcpc_enablings--;
+ dtrace_cpc_in_use--;
+ pp->dcpc_enabled = 0;
+ pp->dcpc_actv_req_idx = pp->dcpc_picno = pp->dcpc_disabling = -1;
+
+ /*
+ * If all probes are removed, enable capacity/utilization data
+ * collection for every CPU
+ */
+ if (dtrace_cpc_in_use == 0)
+ cu_enable();
+}
+
+/*ARGSUSED*/
+static int
+dcpc_cpu_setup(cpu_setup_t what, processorid_t cpu, void *arg)
+{
+ cpu_t *c;
+ uint8_t *state;
+
+ ASSERT(MUTEX_HELD(&cpu_lock));
+
+ switch (what) {
+ case CPU_OFF:
+ /*
+ * Offline CPUs are not allowed to take part so remove this
+ * CPU if we are actively tracing.
+ */
+ if (dtrace_cpc_in_use) {
+ c = cpu_get(cpu);
+ state = &cpu_core[c->cpu_id].cpuc_dcpc_intr_state;
+
+ /*
+ * Indicate that a configuration is in process in
+ * order to stop overflow interrupts being processed
+ * on this CPU while we disable it.
+ */
+ while (atomic_cas_8(state, DCPC_INTR_FREE,
+ DCPC_INTR_CONFIG) != DCPC_INTR_FREE)
+ continue;
+
+ dcpc_disable_cpu(c);
+
+ /*
+ * Reset this CPUs interrupt state as the configuration
+ * has ended.
+ */
+ cpu_core[c->cpu_id].cpuc_dcpc_intr_state =
+ DCPC_INTR_FREE;
+ membar_producer();
+ }
+ break;
+
+ case CPU_ON:
+ case CPU_SETUP:
+ /*
+ * This CPU is being initialized or brought online so program
+ * it with the current request set if we are actively tracing.
+ */
+ if (dtrace_cpc_in_use) {
+ c = cpu_get(cpu);
+ (void) dcpc_program_cpu_event(c);
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ return (0);
+}
+
+static dtrace_pattr_t dcpc_attr = {
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_CPU },
+{ DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
+};
+
+static dtrace_pops_t dcpc_pops = {
+ dcpc_provide,
+ NULL,
+ dcpc_enable,
+ dcpc_disable,
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+ dcpc_usermode,
+ dcpc_destroy
+};
+
+/*ARGSUSED*/
+static int
+dcpc_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
+{
+ return (0);
+}
+
+/*ARGSUSED*/
+static int
+dcpc_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
+{
+ int error;
+
+ switch (infocmd) {
+ case DDI_INFO_DEVT2DEVINFO:
+ *result = (void *)dcpc_devi;
+ error = DDI_SUCCESS;
+ break;
+ case DDI_INFO_DEVT2INSTANCE:
+ *result = (void *)0;
+ error = DDI_SUCCESS;
+ break;
+ default:
+ error = DDI_FAILURE;
+ }
+ return (error);
+}
+
+static int
+dcpc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
+{
+ switch (cmd) {
+ case DDI_DETACH:
+ break;
+ case DDI_SUSPEND:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (dtrace_unregister(dcpc_pid) != 0)
+ return (DDI_FAILURE);
+
+ ddi_remove_minor_node(devi, NULL);
+
+ mutex_enter(&cpu_lock);
+ unregister_cpu_setup_func(dcpc_cpu_setup, NULL);
+ mutex_exit(&cpu_lock);
+
+ kmem_free(dcpc_actv_reqs, cpc_ncounters * sizeof (dcpc_probe_t *));
+
+ kcpc_unregister_dcpc();
+
+ return (DDI_SUCCESS);
+}
+
+static int
+dcpc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
+{
+ uint_t caps;
+ char *attrs;
+
+ switch (cmd) {
+ case DDI_ATTACH:
+ break;
+ case DDI_RESUME:
+ return (DDI_SUCCESS);
+ default:
+ return (DDI_FAILURE);
+ }
+
+ if (kcpc_pcbe_loaded() == -1)
+ return (DDI_FAILURE);
+
+ caps = kcpc_pcbe_capabilities();
+
+ if (!(caps & CPC_CAP_OVERFLOW_INTERRUPT)) {
+ cmn_err(CE_NOTE, "!dcpc: Counter Overflow not supported"\
+ " on this processor");
+ return (DDI_FAILURE);
+ }
+
+ if (ddi_create_minor_node(devi, "dcpc", S_IFCHR, 0,
+ DDI_PSEUDO, NULL) == DDI_FAILURE ||
+ dtrace_register("cpc", &dcpc_attr, DTRACE_PRIV_KERNEL,
+ NULL, &dcpc_pops, NULL, &dcpc_pid) != 0) {
+ ddi_remove_minor_node(devi, NULL);
+ return (DDI_FAILURE);
+ }
+
+ mutex_enter(&cpu_lock);
+ register_cpu_setup_func(dcpc_cpu_setup, NULL);
+ mutex_exit(&cpu_lock);
+
+ dcpc_ovf_mask = (1 << cpc_ncounters) - 1;
+ ASSERT(dcpc_ovf_mask != 0);
+
+ if (caps & CPC_CAP_OVERFLOW_PRECISE)
+ dcpc_mult_ovf_cap = 1;
+
+ /*
+ * Determine which, if any, mask attribute the back-end can use.
+ */
+ attrs = kcpc_list_attrs();
+ if (strstr(attrs, "umask") != NULL)
+ dcpc_mask_type |= DCPC_UMASK;
+ else if (strstr(attrs, "emask") != NULL)
+ dcpc_mask_type |= DCPC_EMASK;
+
+ /*
+ * The dcpc_actv_reqs array is used to store the requests that
+ * we currently have programmed. The order of requests in this
+ * array is not necessarily the order that the event appears in
+ * the kcpc_request_t array. Once entered into a slot in the array
+ * the entry is not moved until it's removed.
+ */
+ dcpc_actv_reqs =
+ kmem_zalloc(cpc_ncounters * sizeof (dcpc_probe_t *), KM_SLEEP);
+
+ dcpc_min_overflow = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
+ DDI_PROP_DONTPASS, "dcpc-min-overflow", DCPC_MIN_OVF_DEFAULT);
+
+ kcpc_register_dcpc(dcpc_fire);
+
+ ddi_report_dev(devi);
+ dcpc_devi = devi;
+
+ return (DDI_SUCCESS);
+}
+
+static struct cb_ops dcpc_cb_ops = {
+ dcpc_open, /* open */
+ nodev, /* close */
+ nulldev, /* strategy */
+ nulldev, /* print */
+ nodev, /* dump */
+ nodev, /* read */
+ nodev, /* write */
+ nodev, /* ioctl */
+ nodev, /* devmap */
+ nodev, /* mmap */
+ nodev, /* segmap */
+ nochpoll, /* poll */
+ ddi_prop_op, /* cb_prop_op */
+ 0, /* streamtab */
+ D_NEW | D_MP /* Driver compatibility flag */
+};
+
+static struct dev_ops dcpc_ops = {
+ DEVO_REV, /* devo_rev, */
+ 0, /* refcnt */
+ dcpc_info, /* get_dev_info */
+ nulldev, /* identify */
+ nulldev, /* probe */
+ dcpc_attach, /* attach */
+ dcpc_detach, /* detach */
+ nodev, /* reset */
+ &dcpc_cb_ops, /* driver operations */
+ NULL, /* bus operations */
+ nodev, /* dev power */
+ ddi_quiesce_not_needed /* quiesce */
+};
+
+/*
+ * Module linkage information for the kernel.
+ */
+static struct modldrv modldrv = {
+ &mod_driverops, /* module type */
+ "DTrace CPC Module", /* name of module */
+ &dcpc_ops, /* driver ops */
+};
+
+static struct modlinkage modlinkage = {
+ MODREV_1,
+ (void *)&modldrv,
+ NULL
+};
+
+int
+_init(void)
+{
+ return (mod_install(&modlinkage));
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ return (mod_info(&modlinkage, modinfop));
+}
+
+int
+_fini(void)
+{
+ return (mod_remove(&modlinkage));
+}