1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/* $Id: asn1-ut-integer.cpp $ */
/** @file
* IPRT - ASN.1, INTEGER Type.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>
#include <iprt/bignum.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/formats/asn1.h>
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** Fixed on-byte constants for small numbers.
* Good for structure version values and such. */
static const uint8_t g_abSmall[] =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
};
/*
* ASN.1 INTEGER - Special Methods.
*/
/**
* Updates the native value we keep in RTASN1INTEGER::uValue.
*
* @param pThis The integer.
*/
static void rtAsn1Integer_UpdateNativeValue(PRTASN1INTEGER pThis)
{
uint32_t offLast = pThis->Asn1Core.cb - 1;
switch (pThis->Asn1Core.cb)
{
default: AssertBreak(pThis->Asn1Core.cb > 8); /* paranoia */ RT_FALL_THRU();
case 8: pThis->uValue.u |= (uint64_t)pThis->Asn1Core.uData.pu8[offLast - 7] << 56; RT_FALL_THRU();
case 7: pThis->uValue.u |= (uint64_t)pThis->Asn1Core.uData.pu8[offLast - 6] << 48; RT_FALL_THRU();
case 6: pThis->uValue.u |= (uint64_t)pThis->Asn1Core.uData.pu8[offLast - 5] << 40; RT_FALL_THRU();
case 5: pThis->uValue.u |= (uint64_t)pThis->Asn1Core.uData.pu8[offLast - 4] << 32; RT_FALL_THRU();
case 4: pThis->uValue.u |= (uint32_t)pThis->Asn1Core.uData.pu8[offLast - 3] << 24; RT_FALL_THRU();
case 3: pThis->uValue.u |= (uint32_t)pThis->Asn1Core.uData.pu8[offLast - 2] << 16; RT_FALL_THRU();
case 2: pThis->uValue.u |= (uint16_t)pThis->Asn1Core.uData.pu8[offLast - 1] << 8; RT_FALL_THRU();
case 1: pThis->uValue.u |= pThis->Asn1Core.uData.pu8[offLast];
}
}
RTDECL(int) RTAsn1Integer_InitU64(PRTASN1INTEGER pThis, uint64_t uValue, PCRTASN1ALLOCATORVTABLE pAllocator)
{
/*
* Initialize the core and the native value.
*/
RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_INTEGER,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
&g_RTAsn1Integer_Vtable,
RTASN1CORE_F_PRESENT | RTASN1CORE_F_PRIMITE_TAG_STRUCT);
pThis->uValue.u = uValue;
/*
* Use one of the constants if possible.
*/
if (uValue < RT_ELEMENTS(g_abSmall))
{
pThis->Asn1Core.cb = 1;
pThis->Asn1Core.uData.pv = (void *)&g_abSmall[0];
}
else
{
/*
* Need to turn uValue into a big endian number without any
* unnecessary leading zero bytes.
*/
/* Figure the size. */
uint32_t cb = 0;
if (uValue <= UINT32_MAX)
{
if (uValue <= UINT16_MAX)
{
if (uValue <= UINT8_MAX)
cb = 1;
else
cb = 2;
}
else
{
if (uValue <= UINT32_C(0xffffff))
cb = 3;
else
cb = 4;
}
}
else
{
if (uValue <= UINT64_C(0x0000FfffFfffFfff))
{
if (uValue <= UINT64_C(0x000000ffFfffFfff))
cb = 5;
else
cb = 6;
}
else
{
if (uValue <= UINT64_C(0x00ffFfffFfffFfff))
cb = 7;
else
cb = 8;
}
}
/* Allocate space. */
int rc = RTAsn1ContentAllocZ(&pThis->Asn1Core, cb, pAllocator);
if (RT_FAILURE(rc))
{
RT_ZERO(*pThis);
return rc;
}
/* Serialize the number in MSB order. */
uint8_t *pb = (uint8_t *)pThis->Asn1Core.uData.pu8;
while (cb-- > 0)
{
pb[cb] = (uint8_t)uValue;
uValue >>= 8;
}
Assert(uValue == 0);
}
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1Integer_InitDefault(PRTASN1INTEGER pThis, uint64_t uValue, PCRTASN1ALLOCATORVTABLE pAllocator)
{
int rc = RTAsn1Integer_InitU64(pThis, uValue, pAllocator);
if (RT_SUCCESS(rc))
{
pThis->Asn1Core.fFlags &= ~RTASN1CORE_F_PRESENT;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_DEFAULT;
}
return rc;
}
RTDECL(int32_t) RTAsn1Integer_UnsignedLastBit(PCRTASN1INTEGER pThis)
{
AssertReturn(pThis->Asn1Core.fFlags, -1);
uint8_t const *pb = pThis->Asn1Core.uData.pu8;
AssertReturn(pb, -1);
uint32_t cb = pThis->Asn1Core.cb;
AssertReturn(pThis->Asn1Core.cb < (uint32_t)INT32_MAX / 8, -1);
while (cb-- > 0)
{
uint8_t b = *pb++;
if (b)
{
int32_t iRet = cb * 8;
if (b & 0x80) iRet += 7;
else if (b & 0x40) iRet += 6;
else if (b & 0x20) iRet += 5;
else if (b & 0x10) iRet += 4;
else if (b & 0x08) iRet += 3;
else if (b & 0x04) iRet += 2;
else if (b & 0x02) iRet += 1;
else Assert(b == 0x01);
return iRet;
}
}
return -1;
}
RTDECL(int) RTAsn1Integer_UnsignedCompare(PCRTASN1INTEGER pLeft, PCRTASN1INTEGER pRight)
{
Assert(pLeft && (!RTAsn1Integer_IsPresent(pLeft) || pLeft->Asn1Core.pOps == &g_RTAsn1Integer_Vtable));
Assert(pRight && (!RTAsn1Integer_IsPresent(pRight) || pRight->Asn1Core.pOps == &g_RTAsn1Integer_Vtable));
int iDiff;
if (RTAsn1Integer_IsPresent(pLeft))
{
if (RTAsn1Integer_IsPresent(pRight))
{
if ( pLeft->Asn1Core.cb > 8
|| pRight->Asn1Core.cb > 8)
{
uint32_t iLeft = RTAsn1Integer_UnsignedLastBit(pLeft);
uint32_t iRight = RTAsn1Integer_UnsignedLastBit(pRight);
if (iLeft != iRight)
return iLeft < iRight ? -1 : 1;
if ((int32_t)iLeft < 0)
return 0; /* Both are all zeros. */
uint32_t i = iLeft / 8;
if (i > 8)
{
uint8_t const *pbLeft = &pLeft->Asn1Core.uData.pu8[pLeft->Asn1Core.cb - i - 1];
uint8_t const *pbRight = &pRight->Asn1Core.uData.pu8[pRight->Asn1Core.cb - i - 1];
for (;;)
{
if (*pbLeft != *pbRight)
return *pbLeft < *pbRight ? -1 : 1;
if (--i <= 8)
break;
pbLeft++;
pbRight++;
}
}
}
if (pLeft->uValue.u == pRight->uValue.u)
iDiff = 0;
else
iDiff = pLeft->uValue.u < pRight->uValue.u ? -1 : 1;
}
else
iDiff = -1;
}
else
iDiff = 0 - (int)RTAsn1Integer_IsPresent(pRight);
return iDiff;
}
RTDECL(int) RTAsn1Integer_UnsignedCompareWithU64(PCRTASN1INTEGER pThis, uint64_t u64Const)
{
int iDiff;
if (RTAsn1Integer_IsPresent(pThis))
{
if (pThis->Asn1Core.cb > 8)
{
int32_t iLast = RTAsn1Integer_UnsignedLastBit(pThis);
if (iLast >= 64)
return 1;
}
if (pThis->uValue.u == u64Const)
iDiff = 0;
else
iDiff = pThis->uValue.u < u64Const ? -1 : 1;
}
else
iDiff = 1;
return iDiff;
}
RTDECL(int) RTAsn1Integer_UnsignedCompareWithU32(PCRTASN1INTEGER pThis, uint32_t u32Const)
{
int iDiff;
if (RTAsn1Integer_IsPresent(pThis))
{
if (pThis->Asn1Core.cb > 8)
{
int32_t iLast = RTAsn1Integer_UnsignedLastBit(pThis);
if (iLast >= 32)
return 1;
}
if (pThis->uValue.u == u32Const)
iDiff = 0;
else
iDiff = pThis->uValue.u < u32Const ? -1 : 1;
}
else
iDiff = 1;
return iDiff;
}
RTDECL(int) RTAsn1Integer_ToBigNum(PCRTASN1INTEGER pThis, PRTBIGNUM pBigNum, uint32_t fBigNumInit)
{
AssertReturn(!(fBigNumInit & ~( RTBIGNUMINIT_F_SENSITIVE | RTBIGNUMINIT_F_UNSIGNED | RTBIGNUMINIT_F_SIGNED
| RTBIGNUMINIT_F_ENDIAN_LITTLE | RTBIGNUMINIT_F_ENDIAN_BIG)),
VERR_INVALID_PARAMETER);
AssertReturn(RTAsn1Integer_IsPresent(pThis), VERR_INVALID_PARAMETER);
if (!(fBigNumInit & (RTBIGNUMINIT_F_UNSIGNED | RTBIGNUMINIT_F_SIGNED)))
fBigNumInit |= RTBIGNUMINIT_F_SIGNED;
if (!(fBigNumInit & (RTBIGNUMINIT_F_ENDIAN_BIG | RTBIGNUMINIT_F_ENDIAN_LITTLE)))
fBigNumInit |= RTBIGNUMINIT_F_ENDIAN_BIG;
return RTBigNumInit(pBigNum, fBigNumInit, pThis->Asn1Core.uData.pv, pThis->Asn1Core.cb);
}
RTDECL(int) RTAsn1Integer_FromBigNum(PRTASN1INTEGER pThis, PCRTBIGNUM pBigNum, PCRTASN1ALLOCATORVTABLE pAllocator)
{
AssertPtr(pThis); AssertPtr(pBigNum); AssertPtr(pAllocator);
/* Be nice and auto init the object. */
if (!RTAsn1Integer_IsPresent(pThis))
RTAsn1Integer_Init(pThis, NULL);
uint32_t cb = RTBigNumByteWidth(pBigNum); Assert(cb > 0);
int rc = RTAsn1ContentReallocZ(&pThis->Asn1Core, cb, pAllocator);
if (RT_SUCCESS(rc))
{
Assert(cb == pThis->Asn1Core.cb);
rc = RTBigNumToBytesBigEndian(pBigNum, (void *)pThis->Asn1Core.uData.pv, cb);
if (RT_SUCCESS(rc))
rtAsn1Integer_UpdateNativeValue(pThis);
}
return rc;
}
RTDECL(int) RTAsn1Integer_ToString(PCRTASN1INTEGER pThis, char *pszBuf, size_t cbBuf, uint32_t fFlags, size_t *pcbActual)
{
AssertReturn(RTAsn1Integer_IsPresent(pThis), VERR_INVALID_PARAMETER);
AssertReturn(fFlags == 0, VERR_INVALID_FLAGS);
/*
* We only do hex conversions via this API.
* Currently we consider all numbers to be unsigned.
*/
/** @todo Signed ASN.1 INTEGER. */
int rc;
size_t cbActual;
if (pThis->Asn1Core.cb <= 8)
{
cbActual = 2 + pThis->Asn1Core.cb*2 + 1;
if (cbActual <= cbBuf)
{
ssize_t cchFormat = RTStrFormatU64(pszBuf, cbBuf, pThis->uValue.u, 16, (int)cbActual - 1 /*cchWidth*/, 0,
RTSTR_F_SPECIAL | RTSTR_F_ZEROPAD);
rc = VINF_SUCCESS;
AssertStmt(cchFormat == (ssize_t)cbActual - 1, rc = VERR_INTERNAL_ERROR_3);
}
else
rc = VERR_BUFFER_OVERFLOW;
}
else
{
cbActual = pThis->Asn1Core.cb * 3 - 1 /* save one separator */ + 1 /* terminator */;
if (cbActual <= cbBuf)
{
rc = RTStrPrintHexBytes(pszBuf, cbBuf, pThis->Asn1Core.uData.pv, pThis->Asn1Core.cb, RTSTRPRINTHEXBYTES_F_SEP_SPACE);
Assert(rc == VINF_SUCCESS);
}
else
rc = VERR_BUFFER_OVERFLOW;
}
if (pcbActual)
*pcbActual = cbActual;
return rc;
}
/*
* ASN.1 INTEGER - Standard Methods.
*/
RT_DECL_DATA_CONST(RTASN1COREVTABLE const) g_RTAsn1Integer_Vtable =
{
"RTAsn1Integer",
sizeof(RTASN1INTEGER),
ASN1_TAG_INTEGER,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
0,
(PFNRTASN1COREVTDTOR)RTAsn1Integer_Delete,
NULL,
(PFNRTASN1COREVTCLONE)RTAsn1Integer_Clone,
(PFNRTASN1COREVTCOMPARE)RTAsn1Integer_Compare,
(PFNRTASN1COREVTCHECKSANITY)RTAsn1Integer_CheckSanity,
NULL,
NULL
};
RTDECL(int) RTAsn1Integer_Init(PRTASN1INTEGER pThis, PCRTASN1ALLOCATORVTABLE pAllocator)
{
RT_NOREF_PV(pAllocator);
RTAsn1Core_InitEx(&pThis->Asn1Core,
ASN1_TAG_INTEGER,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
&g_RTAsn1Integer_Vtable,
RTASN1CORE_F_PRESENT | RTASN1CORE_F_PRIMITE_TAG_STRUCT);
pThis->uValue.u = 1;
pThis->Asn1Core.cb = 1;
pThis->Asn1Core.uData.pv = (void *)&g_abSmall[0];
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1Integer_Clone(PRTASN1INTEGER pThis, PCRTASN1INTEGER pSrc, PCRTASN1ALLOCATORVTABLE pAllocator)
{
AssertPtr(pSrc); AssertPtr(pThis); AssertPtr(pAllocator);
RT_ZERO(*pThis);
if (RTAsn1Integer_IsPresent(pSrc))
{
AssertReturn(pSrc->Asn1Core.pOps == &g_RTAsn1Integer_Vtable, VERR_INTERNAL_ERROR_3);
int rc;
if ( pSrc->Asn1Core.cb != 1
|| pSrc->uValue.u >= RT_ELEMENTS(g_abSmall))
{
/* Value is too large, copy it. */
rc = RTAsn1Core_CloneContent(&pThis->Asn1Core, &pSrc->Asn1Core, pAllocator);
if (RT_FAILURE(rc))
return rc;
}
else
{
/* Use one of the const values. */
rc = RTAsn1Core_CloneNoContent(&pThis->Asn1Core, &pSrc->Asn1Core);
if (RT_FAILURE(rc))
return rc;
Assert(g_abSmall[pSrc->uValue.u] == pSrc->uValue.u);
pThis->Asn1Core.uData.pv = (void *)&g_abSmall[pSrc->uValue.u];
}
pThis->uValue.u = pSrc->uValue.u;
}
return VINF_SUCCESS;
}
RTDECL(void) RTAsn1Integer_Delete(PRTASN1INTEGER pThis)
{
if ( pThis
&& RTAsn1Integer_IsPresent(pThis))
{
Assert(pThis->Asn1Core.pOps == &g_RTAsn1Integer_Vtable);
RTAsn1ContentFree(&pThis->Asn1Core);
RT_ZERO(*pThis);
}
}
RTDECL(int) RTAsn1Integer_Enum(PRTASN1INTEGER pThis, PFNRTASN1ENUMCALLBACK pfnCallback, uint32_t uDepth, void *pvUser)
{
RT_NOREF_PV(pThis); RT_NOREF_PV(pfnCallback); RT_NOREF_PV(uDepth); RT_NOREF_PV(pvUser);
Assert(pThis && (!RTAsn1Integer_IsPresent(pThis) || pThis->Asn1Core.pOps == &g_RTAsn1Integer_Vtable));
/* No children to enumerate. */
return VINF_SUCCESS;
}
RTDECL(int) RTAsn1Integer_Compare(PCRTASN1INTEGER pLeft, PCRTASN1INTEGER pRight)
{
return RTAsn1Integer_UnsignedCompare(pLeft, pRight);
}
RTDECL(int) RTAsn1Integer_CheckSanity(PCRTASN1INTEGER pThis, uint32_t fFlags, PRTERRINFO pErrInfo, const char *pszErrorTag)
{
RT_NOREF_PV(fFlags);
if (RT_UNLIKELY(!RTAsn1Integer_IsPresent(pThis)))
return RTErrInfoSetF(pErrInfo, VERR_ASN1_NOT_PRESENT, "%s: Missing (INTEGER).", pszErrorTag);
return VINF_SUCCESS;
}
/*
* Generate code for the associated collection types.
*/
#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-integer-template.h"
#include <iprt/asn1-generator-internal-header.h>
#include <iprt/asn1-generator-core.h>
#include <iprt/asn1-generator-init.h>
#include <iprt/asn1-generator-sanity.h>
|