1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
|
/* $Id: timer-r0drv-linux.c $ */
/** @file
* IPRT - Timers, Ring-0 Driver, Linux.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include "the-linux-kernel.h"
#include "internal/iprt.h"
#include <iprt/timer.h>
#include <iprt/time.h>
#include <iprt/mp.h>
#include <iprt/cpuset.h>
#include <iprt/spinlock.h>
#include <iprt/err.h>
#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include "internal/magics.h"
/** @def RTTIMER_LINUX_WITH_HRTIMER
* Whether to use high resolution timers. */
#if !defined(RTTIMER_LINUX_WITH_HRTIMER) \
&& defined(IPRT_LINUX_HAS_HRTIMER)
# define RTTIMER_LINUX_WITH_HRTIMER
#endif
#if RTLNX_VER_MAX(2,6,31)
# define mod_timer_pinned mod_timer
# define HRTIMER_MODE_ABS_PINNED HRTIMER_MODE_ABS
#endif
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* Timer state machine.
*
* This is used to try handle the issues with MP events and
* timers that runs on all CPUs. It's relatively nasty :-/
*/
typedef enum RTTIMERLNXSTATE
{
/** Stopped. */
RTTIMERLNXSTATE_STOPPED = 0,
/** Transient state; next ACTIVE. */
RTTIMERLNXSTATE_STARTING,
/** Transient state; next ACTIVE. (not really necessary) */
RTTIMERLNXSTATE_MP_STARTING,
/** Active. */
RTTIMERLNXSTATE_ACTIVE,
/** Active and in callback; next ACTIVE, STOPPED or CALLBACK_DESTROYING. */
RTTIMERLNXSTATE_CALLBACK,
/** Stopped while in the callback; next STOPPED. */
RTTIMERLNXSTATE_CB_STOPPING,
/** Restarted while in the callback; next ACTIVE, STOPPED, DESTROYING. */
RTTIMERLNXSTATE_CB_RESTARTING,
/** The callback shall destroy the timer; next STOPPED. */
RTTIMERLNXSTATE_CB_DESTROYING,
/** Transient state; next STOPPED. */
RTTIMERLNXSTATE_STOPPING,
/** Transient state; next STOPPED. */
RTTIMERLNXSTATE_MP_STOPPING,
/** The usual 32-bit hack. */
RTTIMERLNXSTATE_32BIT_HACK = 0x7fffffff
} RTTIMERLNXSTATE;
/**
* A Linux sub-timer.
*/
typedef struct RTTIMERLNXSUBTIMER
{
/** Timer specific data. */
union
{
#if defined(RTTIMER_LINUX_WITH_HRTIMER)
/** High resolution timer. */
struct
{
/** The linux timer structure. */
struct hrtimer LnxTimer;
} Hr;
#endif
/** Standard timer. */
struct
{
/** The linux timer structure. */
struct timer_list LnxTimer;
/** The start of the current run (ns).
* This is used to calculate when the timer ought to fire the next time. */
uint64_t u64NextTS;
/** When the timer was started. */
uint64_t nsStartTS;
/** The u64NextTS in jiffies. */
unsigned long ulNextJiffies;
/** Set when starting or changing the timer so that u64StartTs
* and u64NextTS gets reinitialized (eliminating some jitter). */
bool volatile fFirstAfterChg;
} Std;
} u;
/** The current tick number. */
uint64_t iTick;
/** Restart the single shot timer at this specific time.
* Used when a single shot timer is restarted from the callback. */
uint64_t volatile uNsRestartAt;
/** Pointer to the parent timer. */
PRTTIMER pParent;
/** The current sub-timer state. */
RTTIMERLNXSTATE volatile enmState;
} RTTIMERLNXSUBTIMER;
/** Pointer to a linux sub-timer. */
typedef RTTIMERLNXSUBTIMER *PRTTIMERLNXSUBTIMER;
/**
* The internal representation of an Linux timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Spinlock synchronizing the fSuspended and MP event handling.
* This is NIL_RTSPINLOCK if cCpus == 1. */
RTSPINLOCK hSpinlock;
/** Flag indicating that the timer is suspended. */
bool volatile fSuspended;
/** Whether the timer must run on one specific CPU or not. */
bool fSpecificCpu;
#ifdef CONFIG_SMP
/** Whether the timer must run on all CPUs or not. */
bool fAllCpus;
#endif /* else: All -> specific on non-SMP kernels */
/** Whether it is a high resolution timer or a standard one. */
bool fHighRes;
/** The id of the CPU it must run on if fSpecificCpu is set. */
RTCPUID idCpu;
/** The number of CPUs this timer should run on. */
RTCPUID cCpus;
/** Callback. */
PFNRTTIMER pfnTimer;
/** User argument. */
void *pvUser;
/** The timer interval. 0 if one-shot. */
uint64_t volatile u64NanoInterval;
/** This is set to the number of jiffies between ticks if the interval is
* an exact number of jiffies. (Standard timers only.) */
unsigned long volatile cJiffies;
/** The change interval spinlock for standard timers only. */
spinlock_t ChgIntLock;
/** Workqueue item for delayed destruction. */
RTR0LNXWORKQUEUEITEM DtorWorkqueueItem;
/** Sub-timers.
* Normally there is just one, but for RTTIMER_FLAGS_CPU_ALL this will contain
* an entry for all possible cpus. In that case the index will be the same as
* for the RTCpuSet. */
RTTIMERLNXSUBTIMER aSubTimers[1];
} RTTIMER;
/**
* A rtTimerLinuxStartOnCpu and rtTimerLinuxStartOnCpu argument package.
*/
typedef struct RTTIMERLINUXSTARTONCPUARGS
{
/** The current time (RTTimeSystemNanoTS). */
uint64_t u64Now;
/** When to start firing (delta). */
uint64_t u64First;
} RTTIMERLINUXSTARTONCPUARGS;
/** Pointer to a rtTimerLinuxStartOnCpu argument package. */
typedef RTTIMERLINUXSTARTONCPUARGS *PRTTIMERLINUXSTARTONCPUARGS;
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
#ifdef CONFIG_SMP
static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser);
#endif
#if 0
#define DEBUG_HACKING
#include <iprt/string.h>
#include <iprt/asm-amd64-x86.h>
static void myLogBackdoorPrintf(const char *pszFormat, ...)
{
char szTmp[256];
va_list args;
size_t cb;
cb = RTStrPrintf(szTmp, sizeof(szTmp) - 10, "%d: ", RTMpCpuId());
va_start(args, pszFormat);
cb += RTStrPrintfV(&szTmp[cb], sizeof(szTmp) - cb, pszFormat, args);
va_end(args);
ASMOutStrU8(0x504, (uint8_t *)&szTmp[0], cb);
}
# define RTAssertMsg1Weak(pszExpr, uLine, pszFile, pszFunction) \
myLogBackdoorPrintf("\n!!Guest Assertion failed!!\n%s(%d) %s\n%s\n", uLine, pszFile, pszFunction, (pszExpr))
# define RTAssertMsg2Weak myLogBackdoorPrintf
# define RTTIMERLNX_LOG(a) myLogBackdoorPrintf a
#else
# define RTTIMERLNX_LOG(a) do { } while (0)
#endif
/**
* Sets the state.
*/
DECLINLINE(void) rtTimerLnxSetState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState)
{
#ifdef DEBUG_HACKING
RTTIMERLNX_LOG(("set %d -> %d\n", *penmState, enmNewState));
#endif
ASMAtomicWriteU32((uint32_t volatile *)penmState, enmNewState);
}
/**
* Sets the state if it has a certain value.
*
* @return true if xchg was done.
* @return false if xchg wasn't done.
*/
#ifdef DEBUG_HACKING
#define rtTimerLnxCmpXchgState(penmState, enmNewState, enmCurState) rtTimerLnxCmpXchgStateDebug(penmState, enmNewState, enmCurState, __LINE__)
static bool rtTimerLnxCmpXchgStateDebug(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
RTTIMERLNXSTATE enmCurState, uint32_t uLine)
{
RTTIMERLNXSTATE enmOldState = enmCurState;
bool fRc = ASMAtomicCmpXchgExU32((uint32_t volatile *)penmState, enmNewState, enmCurState, (uint32_t *)&enmOldState);
RTTIMERLNX_LOG(("cxg %d -> %d - %d at %u\n", enmOldState, enmNewState, fRc, uLine));
return fRc;
}
#else
DECLINLINE(bool) rtTimerLnxCmpXchgState(RTTIMERLNXSTATE volatile *penmState, RTTIMERLNXSTATE enmNewState,
RTTIMERLNXSTATE enmCurState)
{
return ASMAtomicCmpXchgU32((uint32_t volatile *)penmState, enmNewState, enmCurState);
}
#endif
/**
* Gets the state.
*/
DECLINLINE(RTTIMERLNXSTATE) rtTimerLnxGetState(RTTIMERLNXSTATE volatile *penmState)
{
return (RTTIMERLNXSTATE)ASMAtomicUoReadU32((uint32_t volatile *)penmState);
}
#ifdef RTTIMER_LINUX_WITH_HRTIMER
/**
* Converts a nano second time stamp to ktime_t.
*
* ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
*
* @returns ktime_t.
* @param cNanoSecs Nanoseconds.
*/
DECLINLINE(ktime_t) rtTimerLnxNanoToKt(uint64_t cNanoSecs)
{
/* With some luck the compiler optimizes the division out of this... (Bet it doesn't.) */
return ktime_set(cNanoSecs / 1000000000, cNanoSecs % 1000000000);
}
/**
* Converts ktime_t to a nano second time stamp.
*
* ASSUMES RTTimeSystemNanoTS() is implemented using ktime_get_ts().
*
* @returns nano second time stamp.
* @param Kt ktime_t.
*/
DECLINLINE(uint64_t) rtTimerLnxKtToNano(ktime_t Kt)
{
return ktime_to_ns(Kt);
}
#endif /* RTTIMER_LINUX_WITH_HRTIMER */
/**
* Converts a nano second interval to jiffies.
*
* @returns Jiffies.
* @param cNanoSecs Nanoseconds.
*/
DECLINLINE(unsigned long) rtTimerLnxNanoToJiffies(uint64_t cNanoSecs)
{
/* this can be made even better... */
if (cNanoSecs > (uint64_t)TICK_NSEC * MAX_JIFFY_OFFSET)
return MAX_JIFFY_OFFSET;
# if ARCH_BITS == 32
if (RT_LIKELY(cNanoSecs <= UINT32_MAX))
return ((uint32_t)cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
# endif
return (cNanoSecs + (TICK_NSEC-1)) / TICK_NSEC;
}
/**
* Starts a sub-timer (RTTimerStart).
*
* @param pSubTimer The sub-timer to start.
* @param u64Now The current timestamp (RTTimeSystemNanoTS()).
* @param u64First The interval from u64Now to the first time the timer should fire.
* @param fPinned true = timer pinned to a specific CPU,
* false = timer can migrate between CPUs
* @param fHighRes Whether the user requested a high resolution timer or not.
* @param enmOldState The old timer state.
*/
static void rtTimerLnxStartSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, uint64_t u64Now, uint64_t u64First,
bool fPinned, bool fHighRes)
{
/*
* Calc when it should start firing.
*/
uint64_t u64NextTS = u64Now + u64First;
if (!fHighRes)
{
pSubTimer->u.Std.u64NextTS = u64NextTS;
pSubTimer->u.Std.nsStartTS = u64NextTS;
}
RTTIMERLNX_LOG(("startsubtimer %p\n", pSubTimer->pParent));
pSubTimer->iTick = 0;
#ifdef RTTIMER_LINUX_WITH_HRTIMER
if (fHighRes)
hrtimer_start(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(u64NextTS),
fPinned ? HRTIMER_MODE_ABS_PINNED : HRTIMER_MODE_ABS);
else
#endif
{
unsigned long cJiffies = !u64First ? 0 : rtTimerLnxNanoToJiffies(u64First);
pSubTimer->u.Std.ulNextJiffies = jiffies + cJiffies;
pSubTimer->u.Std.fFirstAfterChg = true;
#ifdef CONFIG_SMP
if (fPinned)
{
# if RTLNX_VER_MIN(4,8,0)
mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
# else
mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
# endif
}
else
#endif
mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
}
/* Be a bit careful here since we could be racing the callback. */
if (!rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_STARTING))
rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_MP_STARTING);
}
/**
* Stops a sub-timer (RTTimerStart and rtTimerLinuxMpEvent()).
*
* The caller has already changed the state, so we will not be in a callback
* situation wrt to the calling thread.
*
* @param pSubTimer The sub-timer.
* @param fHighRes Whether the user requested a high resolution timer or not.
*/
static void rtTimerLnxStopSubTimer(PRTTIMERLNXSUBTIMER pSubTimer, bool fHighRes)
{
RTTIMERLNX_LOG(("stopsubtimer %p %d\n", pSubTimer->pParent, fHighRes));
#ifdef RTTIMER_LINUX_WITH_HRTIMER
if (fHighRes)
{
/* There is no equivalent to del_timer in the hrtimer API,
hrtimer_cancel() == del_timer_sync(). Just like the WARN_ON in
del_timer_sync() asserts, waiting for a timer callback to complete
is deadlock prone, so don't do it. */
int rc = hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
if (rc < 0)
{
hrtimer_start(&pSubTimer->u.Hr.LnxTimer, ktime_set(KTIME_SEC_MAX, 0), HRTIMER_MODE_ABS);
hrtimer_try_to_cancel(&pSubTimer->u.Hr.LnxTimer);
}
}
else
#endif
del_timer(&pSubTimer->u.Std.LnxTimer);
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
}
/**
* Used by RTTimerDestroy and rtTimerLnxCallbackDestroy to do the actual work.
*
* @param pTimer The timer in question.
*/
static void rtTimerLnxDestroyIt(PRTTIMER pTimer)
{
RTSPINLOCK hSpinlock = pTimer->hSpinlock;
RTCPUID iCpu;
Assert(pTimer->fSuspended);
RTTIMERLNX_LOG(("destroyit %p\n", pTimer));
/*
* Remove the MP notifications first because it'll reduce the risk of
* us overtaking any MP event that might theoretically be racing us here.
*/
#ifdef CONFIG_SMP
if ( pTimer->cCpus > 1
&& hSpinlock != NIL_RTSPINLOCK)
{
int rc = RTMpNotificationDeregister(rtTimerLinuxMpEvent, pTimer);
AssertRC(rc);
}
#endif /* CONFIG_SMP */
/*
* Invalidate the handle.
*/
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
/*
* Make sure all timers have stopped executing since we're stopping them in
* an asynchronous manner up in rtTimerLnxStopSubTimer.
*/
iCpu = pTimer->cCpus;
while (iCpu-- > 0)
{
#ifdef RTTIMER_LINUX_WITH_HRTIMER
if (pTimer->fHighRes)
hrtimer_cancel(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer);
else
#endif
del_timer_sync(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
}
/*
* Finally, free the resources.
*/
RTMemFreeEx(pTimer, RT_UOFFSETOF_DYN(RTTIMER, aSubTimers[pTimer->cCpus]));
if (hSpinlock != NIL_RTSPINLOCK)
RTSpinlockDestroy(hSpinlock);
}
/**
* Workqueue callback (no DECLCALLBACK!) for deferred destruction.
*
* @param pWork Pointer to the DtorWorkqueueItem member of our timer
* structure.
*/
static void rtTimerLnxDestroyDeferred(RTR0LNXWORKQUEUEITEM *pWork)
{
PRTTIMER pTimer = RT_FROM_MEMBER(pWork, RTTIMER, DtorWorkqueueItem);
rtTimerLnxDestroyIt(pTimer);
}
/**
* Called when the timer was destroyed by the callback function.
*
* @param pTimer The timer.
* @param pSubTimer The sub-timer which we're handling, the state of this
* will be RTTIMERLNXSTATE_CALLBACK_DESTROYING.
*/
static void rtTimerLnxCallbackDestroy(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
{
/*
* If it's an omni timer, the last dude does the destroying.
*/
if (pTimer->cCpus > 1)
{
uint32_t iCpu = pTimer->cCpus;
RTSpinlockAcquire(pTimer->hSpinlock);
Assert(pSubTimer->enmState == RTTIMERLNXSTATE_CB_DESTROYING);
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED);
while (iCpu-- > 0)
if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
{
RTSpinlockRelease(pTimer->hSpinlock);
return;
}
RTSpinlockRelease(pTimer->hSpinlock);
}
/*
* Destroying a timer from the callback is unsafe since the callout code
* might be touching the timer structure upon return (hrtimer does!). So,
* we have to defer the actual destruction to the IRPT workqueue.
*/
rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
}
#ifdef CONFIG_SMP
/**
* Deal with a sub-timer that has migrated.
*
* @param pTimer The timer.
* @param pSubTimer The sub-timer.
*/
static void rtTimerLnxCallbackHandleMigration(PRTTIMER pTimer, PRTTIMERLNXSUBTIMER pSubTimer)
{
RTTIMERLNXSTATE enmState;
if (pTimer->cCpus > 1)
RTSpinlockAcquire(pTimer->hSpinlock);
do
{
enmState = rtTimerLnxGetState(&pSubTimer->enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_STOPPING:
case RTTIMERLNXSTATE_MP_STOPPING:
enmState = RTTIMERLNXSTATE_STOPPED;
RT_FALL_THRU();
case RTTIMERLNXSTATE_STOPPED:
break;
default:
AssertMsgFailed(("%d\n", enmState));
RT_FALL_THRU();
case RTTIMERLNXSTATE_STARTING:
case RTTIMERLNXSTATE_MP_STARTING:
case RTTIMERLNXSTATE_ACTIVE:
case RTTIMERLNXSTATE_CALLBACK:
case RTTIMERLNXSTATE_CB_STOPPING:
case RTTIMERLNXSTATE_CB_RESTARTING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, enmState))
enmState = RTTIMERLNXSTATE_STOPPED;
break;
case RTTIMERLNXSTATE_CB_DESTROYING:
{
if (pTimer->cCpus > 1)
RTSpinlockRelease(pTimer->hSpinlock);
rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
return;
}
}
} while (enmState != RTTIMERLNXSTATE_STOPPED);
if (pTimer->cCpus > 1)
RTSpinlockRelease(pTimer->hSpinlock);
}
#endif /* CONFIG_SMP */
/**
* The slow path of rtTimerLnxChangeToCallbackState.
*
* @returns true if changed successfully, false if not.
* @param pSubTimer The sub-timer.
*/
static bool rtTimerLnxChangeToCallbackStateSlow(PRTTIMERLNXSUBTIMER pSubTimer)
{
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_ACTIVE:
case RTTIMERLNXSTATE_STARTING:
case RTTIMERLNXSTATE_MP_STARTING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, enmState))
return true;
break;
case RTTIMERLNXSTATE_CALLBACK:
case RTTIMERLNXSTATE_CB_STOPPING:
case RTTIMERLNXSTATE_CB_RESTARTING:
case RTTIMERLNXSTATE_CB_DESTROYING:
AssertMsgFailed(("%d\n", enmState)); RT_FALL_THRU();
default:
return false;
}
ASMNopPause();
}
}
/**
* Tries to change the sub-timer state to 'callback'.
*
* @returns true if changed successfully, false if not.
* @param pSubTimer The sub-timer.
*/
DECLINLINE(bool) rtTimerLnxChangeToCallbackState(PRTTIMERLNXSUBTIMER pSubTimer)
{
if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CALLBACK, RTTIMERLNXSTATE_ACTIVE)))
return true;
return rtTimerLnxChangeToCallbackStateSlow(pSubTimer);
}
#ifdef RTTIMER_LINUX_WITH_HRTIMER
/**
* Timer callback function for high resolution timers.
*
* @returns HRTIMER_NORESTART or HRTIMER_RESTART depending on whether it's a
* one-shot or interval timer.
* @param pHrTimer Pointer to the sub-timer structure.
*/
static enum hrtimer_restart rtTimerLinuxHrCallback(struct hrtimer *pHrTimer)
{
PRTTIMERLNXSUBTIMER pSubTimer = RT_FROM_MEMBER(pHrTimer, RTTIMERLNXSUBTIMER, u.Hr.LnxTimer);
PRTTIMER pTimer = pSubTimer->pParent;
RTTIMERLNX_LOG(("hrcallback %p\n", pTimer));
if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
return HRTIMER_NORESTART;
#ifdef CONFIG_SMP
/*
* Check for unwanted migration.
*/
if (pTimer->fAllCpus || pTimer->fSpecificCpu)
{
RTCPUID idCpu = RTMpCpuId();
if (RT_UNLIKELY( pTimer->fAllCpus
? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
: pTimer->idCpu != idCpu))
{
rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
return HRTIMER_NORESTART;
}
}
#endif
if (pTimer->u64NanoInterval)
{
/*
* Periodic timer, run it and update the native timer afterwards so
* we can handle RTTimerStop and RTTimerChangeInterval from the
* callback as well as a racing control thread.
*/
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
hrtimer_add_expires_ns(&pSubTimer->u.Hr.LnxTimer, ASMAtomicReadU64(&pTimer->u64NanoInterval));
if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
return HRTIMER_RESTART;
}
else
{
/*
* One shot timer (no omni), stop it before dispatching it.
* Allow RTTimerStart as well as RTTimerDestroy to be called from
* the callback.
*/
ASMAtomicWriteBool(&pTimer->fSuspended, true);
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
return HRTIMER_NORESTART;
}
/*
* Some state change occurred while we were in the callback routine.
*/
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_CB_DESTROYING:
rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
return HRTIMER_NORESTART;
case RTTIMERLNXSTATE_CB_STOPPING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
return HRTIMER_NORESTART;
break;
case RTTIMERLNXSTATE_CB_RESTARTING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
{
pSubTimer->iTick = 0;
hrtimer_set_expires(&pSubTimer->u.Hr.LnxTimer, rtTimerLnxNanoToKt(pSubTimer->uNsRestartAt));
return HRTIMER_RESTART;
}
break;
default:
AssertMsgFailed(("%d\n", enmState));
return HRTIMER_NORESTART;
}
ASMNopPause();
}
}
#endif /* RTTIMER_LINUX_WITH_HRTIMER */
#if RTLNX_VER_MIN(4,15,0)
/**
* Timer callback function for standard timers.
*
* @param pLnxTimer Pointer to the Linux timer structure.
*/
static void rtTimerLinuxStdCallback(struct timer_list *pLnxTimer)
{
PRTTIMERLNXSUBTIMER pSubTimer = from_timer(pSubTimer, pLnxTimer, u.Std.LnxTimer);
#else
/**
* Timer callback function for standard timers.
*
* @param ulUser Address of the sub-timer structure.
*/
static void rtTimerLinuxStdCallback(unsigned long ulUser)
{
PRTTIMERLNXSUBTIMER pSubTimer = (PRTTIMERLNXSUBTIMER)ulUser;
#endif
PRTTIMER pTimer = pSubTimer->pParent;
RTTIMERLNX_LOG(("stdcallback %p\n", pTimer));
if (RT_UNLIKELY(!rtTimerLnxChangeToCallbackState(pSubTimer)))
return;
#ifdef CONFIG_SMP
/*
* Check for unwanted migration.
*/
if (pTimer->fAllCpus || pTimer->fSpecificCpu)
{
RTCPUID idCpu = RTMpCpuId();
if (RT_UNLIKELY( pTimer->fAllCpus
? (RTCPUID)(pSubTimer - &pTimer->aSubTimers[0]) != idCpu
: pTimer->idCpu != idCpu))
{
rtTimerLnxCallbackHandleMigration(pTimer, pSubTimer);
return;
}
}
#endif
if (pTimer->u64NanoInterval)
{
/*
* Interval timer, calculate the next timeout.
*
* The first time around, we'll re-adjust the u.Std.u64NextTS to
* try prevent some jittering if we were started at a bad time.
*/
const uint64_t iTick = ++pSubTimer->iTick;
unsigned long uCurJiffies = jiffies;
unsigned long ulNextJiffies;
uint64_t u64NanoInterval;
unsigned long cJiffies;
unsigned long flFlags;
spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
u64NanoInterval = pTimer->u64NanoInterval;
cJiffies = pTimer->cJiffies;
if (RT_UNLIKELY(pSubTimer->u.Std.fFirstAfterChg))
{
pSubTimer->u.Std.fFirstAfterChg = false;
pSubTimer->u.Std.u64NextTS = RTTimeSystemNanoTS();
pSubTimer->u.Std.nsStartTS = pSubTimer->u.Std.u64NextTS - u64NanoInterval * (iTick - 1);
pSubTimer->u.Std.ulNextJiffies = uCurJiffies = jiffies;
}
spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
pSubTimer->u.Std.u64NextTS += u64NanoInterval;
if (cJiffies)
{
ulNextJiffies = pSubTimer->u.Std.ulNextJiffies + cJiffies;
pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
if (time_after_eq(ulNextJiffies, uCurJiffies))
{ /* likely */ }
else
{
unsigned long cJiffiesBehind = uCurJiffies - ulNextJiffies;
ulNextJiffies = uCurJiffies + cJiffies / 2;
if (cJiffiesBehind >= HZ / 4) /* Conside if we're lagging too far behind. Screw the u64NextTS member. */
pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
/*else: Don't update u.Std.ulNextJiffies so we can continue catching up in the next tick. */
}
}
else
{
const uint64_t u64NanoTS = RTTimeSystemNanoTS();
const int64_t cNsBehind = u64NanoTS - pSubTimer->u.Std.u64NextTS;
if (cNsBehind <= 0)
ulNextJiffies = uCurJiffies + rtTimerLnxNanoToJiffies(pSubTimer->u.Std.u64NextTS - u64NanoTS);
else if (u64NanoInterval >= RT_NS_1SEC_64 * 2 / HZ)
{
ulNextJiffies = uCurJiffies + rtTimerLnxNanoToJiffies(u64NanoInterval / 2);
if (cNsBehind >= RT_NS_1SEC_64 / HZ / 4) /* Conside if we're lagging too far behind. */
pSubTimer->u.Std.u64NextTS = u64NanoTS + u64NanoInterval / 2;
}
else
{
ulNextJiffies = uCurJiffies + 1;
if (cNsBehind >= RT_NS_1SEC_64 / HZ / 4) /* Conside if we're lagging too far behind. */
pSubTimer->u.Std.u64NextTS = u64NanoTS + RT_NS_1SEC_64 / HZ;
}
pSubTimer->u.Std.ulNextJiffies = ulNextJiffies;
}
/*
* Run the timer and re-arm it unless the state changed .
* .
* We must re-arm it afterwards as we're not in a position to undo this .
* operation if for instance someone stopped or destroyed us while we .
* were in the callback. (Linux takes care of any races here.)
*/
pTimer->pfnTimer(pTimer, pTimer->pvUser, iTick);
if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CALLBACK)))
{
#ifdef CONFIG_SMP
if (pTimer->fSpecificCpu || pTimer->fAllCpus)
{
# if RTLNX_VER_MIN(4,8,0)
mod_timer(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
# else
mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
# endif
}
else
#endif
mod_timer(&pSubTimer->u.Std.LnxTimer, ulNextJiffies);
return;
}
}
else
{
/*
* One shot timer, stop it before dispatching it.
* Allow RTTimerStart as well as RTTimerDestroy to be called from
* the callback.
*/
ASMAtomicWriteBool(&pTimer->fSuspended, true);
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pSubTimer->iTick);
if (RT_LIKELY(rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CALLBACK)))
return;
}
/*
* Some state change occurred while we were in the callback routine.
*/
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pSubTimer->enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_CB_DESTROYING:
rtTimerLnxCallbackDestroy(pTimer, pSubTimer);
return;
case RTTIMERLNXSTATE_CB_STOPPING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_CB_STOPPING))
return;
break;
case RTTIMERLNXSTATE_CB_RESTARTING:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_ACTIVE, RTTIMERLNXSTATE_CB_RESTARTING))
{
uint64_t u64NanoTS;
uint64_t u64NextTS;
unsigned long flFlags;
spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
u64NextTS = pSubTimer->uNsRestartAt;
u64NanoTS = RTTimeSystemNanoTS();
pSubTimer->iTick = 0;
pSubTimer->u.Std.u64NextTS = u64NextTS;
pSubTimer->u.Std.fFirstAfterChg = true;
pSubTimer->u.Std.ulNextJiffies = u64NextTS > u64NanoTS
? jiffies + rtTimerLnxNanoToJiffies(u64NextTS - u64NanoTS)
: jiffies;
spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
#ifdef CONFIG_SMP
if (pTimer->fSpecificCpu || pTimer->fAllCpus)
{
# if RTLNX_VER_MIN(4,8,0)
mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
# else
mod_timer_pinned(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
# endif
}
else
#endif
mod_timer(&pSubTimer->u.Std.LnxTimer, pSubTimer->u.Std.ulNextJiffies);
return;
}
break;
default:
AssertMsgFailed(("%d\n", enmState));
return;
}
ASMNopPause();
}
}
#ifdef CONFIG_SMP
/**
* Per-cpu callback function (RTMpOnAll/RTMpOnSpecific).
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLnxStartAllOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
Assert(idCpu < pTimer->cCpus);
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[idCpu], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
}
/**
* Worker for RTTimerStart() that takes care of the ugly bits.
*
* @returns RTTimerStart() return value.
* @param pTimer The timer.
* @param pArgs The argument structure.
*/
static int rtTimerLnxOmniStart(PRTTIMER pTimer, PRTTIMERLINUXSTARTONCPUARGS pArgs)
{
RTCPUID iCpu;
RTCPUSET OnlineSet;
RTCPUSET OnlineSet2;
int rc2;
/*
* Prepare all the sub-timers for the startup and then flag the timer
* as a whole as non-suspended, make sure we get them all before
* clearing fSuspended as the MP handler will be waiting on this
* should something happen while we're looping.
*/
RTSpinlockAcquire(pTimer->hSpinlock);
/* Just make it a omni timer restriction that no stop/start races are allowed. */
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) != RTTIMERLNXSTATE_STOPPED)
{
RTSpinlockRelease(pTimer->hSpinlock);
return VERR_TIMER_BUSY;
}
do
{
RTMpGetOnlineSet(&OnlineSet);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
{
Assert(pTimer->aSubTimers[iCpu].enmState != RTTIMERLNXSTATE_MP_STOPPING);
rtTimerLnxSetState(&pTimer->aSubTimers[iCpu].enmState,
RTCpuSetIsMember(&OnlineSet, iCpu)
? RTTIMERLNXSTATE_STARTING
: RTTIMERLNXSTATE_STOPPED);
}
} while (!RTCpuSetIsEqual(&OnlineSet, RTMpGetOnlineSet(&OnlineSet2)));
ASMAtomicWriteBool(&pTimer->fSuspended, false);
RTSpinlockRelease(pTimer->hSpinlock);
/*
* Start them (can't find any exported function that allows me to
* do this without the cross calls).
*/
pArgs->u64Now = RTTimeSystemNanoTS();
rc2 = RTMpOnAll(rtTimerLnxStartAllOnCpu, pTimer, pArgs);
AssertRC(rc2); /* screw this if it fails. */
/*
* Reset the sub-timers who didn't start up (ALL CPUs case).
*/
RTSpinlockAcquire(pTimer->hSpinlock);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPED, RTTIMERLNXSTATE_STARTING))
{
/** @todo very odd case for a rainy day. Cpus that temporarily went offline while
* we were between calls needs to nudged as the MP handler will ignore events for
* them because of the STARTING state. This is an extremely unlikely case - not that
* that means anything in my experience... ;-) */
RTTIMERLNX_LOG(("what!? iCpu=%u -> didn't start\n", iCpu));
}
RTSpinlockRelease(pTimer->hSpinlock);
return VINF_SUCCESS;
}
/**
* Worker for RTTimerStop() that takes care of the ugly SMP bits.
*
* @returns true if there was any active callbacks, false if not.
* @param pTimer The timer (valid).
* @param fForDestroy Whether this is for RTTimerDestroy or not.
*/
static bool rtTimerLnxOmniStop(PRTTIMER pTimer, bool fForDestroy)
{
bool fActiveCallbacks = false;
RTCPUID iCpu;
RTTIMERLNXSTATE enmState;
/*
* Mark the timer as suspended and flag all timers as stopping, except
* for those being stopped by an MP event.
*/
RTSpinlockAcquire(pTimer->hSpinlock);
ASMAtomicWriteBool(&pTimer->fSuspended, true);
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
{
for (;;)
{
enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
if ( enmState == RTTIMERLNXSTATE_STOPPED
|| enmState == RTTIMERLNXSTATE_MP_STOPPING)
break;
if ( enmState == RTTIMERLNXSTATE_CALLBACK
|| enmState == RTTIMERLNXSTATE_CB_STOPPING
|| enmState == RTTIMERLNXSTATE_CB_RESTARTING)
{
Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState,
!fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
enmState))
{
fActiveCallbacks = true;
break;
}
}
else
{
Assert(enmState == RTTIMERLNXSTATE_ACTIVE);
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_STOPPING, enmState))
break;
}
ASMNopPause();
}
}
RTSpinlockRelease(pTimer->hSpinlock);
/*
* Do the actual stopping. Fortunately, this doesn't require any IPIs.
* Unfortunately it cannot be done synchronously.
*/
for (iCpu = 0; iCpu < pTimer->cCpus; iCpu++)
if (rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState) == RTTIMERLNXSTATE_STOPPING)
rtTimerLnxStopSubTimer(&pTimer->aSubTimers[iCpu], pTimer->fHighRes);
return fActiveCallbacks;
}
/**
* Per-cpu callback function (RTMpOnSpecific) used by rtTimerLinuxMpEvent()
* to start a sub-timer on a cpu that just have come online.
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLinuxMpStartOnCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
RTSPINLOCK hSpinlock;
Assert(idCpu < pTimer->cCpus);
/*
* We have to be kind of careful here as we might be racing RTTimerStop
* (and/or RTTimerDestroy, thus the paranoia.
*/
hSpinlock = pTimer->hSpinlock;
if ( hSpinlock != NIL_RTSPINLOCK
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
RTSpinlockAcquire(hSpinlock);
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
/* We're sane and the timer is not suspended yet. */
PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
rtTimerLnxStartSubTimer(pSubTimer, pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
}
RTSpinlockRelease(hSpinlock);
}
}
/**
* MP event notification callback.
*
* @param enmEvent The event.
* @param idCpu The cpu it applies to.
* @param pvUser The timer.
*/
static DECLCALLBACK(void) rtTimerLinuxMpEvent(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvUser)
{
PRTTIMER pTimer = (PRTTIMER)pvUser;
PRTTIMERLNXSUBTIMER pSubTimer = &pTimer->aSubTimers[idCpu];
RTSPINLOCK hSpinlock;
Assert(idCpu < pTimer->cCpus);
/*
* Some initial paranoia.
*/
if (pTimer->u32Magic != RTTIMER_MAGIC)
return;
hSpinlock = pTimer->hSpinlock;
if (hSpinlock == NIL_RTSPINLOCK)
return;
RTSpinlockAcquire(hSpinlock);
/* Is it active? */
if ( !ASMAtomicUoReadBool(&pTimer->fSuspended)
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
switch (enmEvent)
{
/*
* Try do it without leaving the spin lock, but if we have to, retake it
* when we're on the right cpu.
*/
case RTMPEVENT_ONLINE:
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STARTING, RTTIMERLNXSTATE_STOPPED))
{
RTTIMERLINUXSTARTONCPUARGS Args;
Args.u64Now = RTTimeSystemNanoTS();
Args.u64First = 0;
if (RTMpCpuId() == idCpu)
rtTimerLnxStartSubTimer(pSubTimer, Args.u64Now, Args.u64First, true /*fPinned*/, pTimer->fHighRes);
else
{
rtTimerLnxSetState(&pSubTimer->enmState, RTTIMERLNXSTATE_STOPPED); /* we'll recheck it. */
RTSpinlockRelease(hSpinlock);
RTMpOnSpecific(idCpu, rtTimerLinuxMpStartOnCpu, pTimer, &Args);
return; /* we've left the spinlock */
}
}
break;
/*
* The CPU is (going) offline, make sure the sub-timer is stopped.
*
* Linux will migrate it to a different CPU, but we don't want this. The
* timer function is checking for this.
*/
case RTMPEVENT_OFFLINE:
{
RTTIMERLNXSTATE enmState;
while ( (enmState = rtTimerLnxGetState(&pSubTimer->enmState)) == RTTIMERLNXSTATE_ACTIVE
|| enmState == RTTIMERLNXSTATE_CALLBACK
|| enmState == RTTIMERLNXSTATE_CB_RESTARTING)
{
if (enmState == RTTIMERLNXSTATE_ACTIVE)
{
if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_MP_STOPPING, RTTIMERLNXSTATE_ACTIVE))
{
RTSpinlockRelease(hSpinlock);
rtTimerLnxStopSubTimer(pSubTimer, pTimer->fHighRes);
return; /* we've left the spinlock */
}
}
else if (rtTimerLnxCmpXchgState(&pSubTimer->enmState, RTTIMERLNXSTATE_CB_STOPPING, enmState))
break;
/* State not stable, try again. */
ASMNopPause();
}
break;
}
}
}
RTSpinlockRelease(hSpinlock);
}
#endif /* CONFIG_SMP */
/**
* Callback function use by RTTimerStart via RTMpOnSpecific to start a timer
* running on a specific CPU.
*
* @param idCpu The current CPU.
* @param pvUser1 Pointer to the timer.
* @param pvUser2 Pointer to the argument structure.
*/
static DECLCALLBACK(void) rtTimerLnxStartOnSpecificCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
{
PRTTIMERLINUXSTARTONCPUARGS pArgs = (PRTTIMERLINUXSTARTONCPUARGS)pvUser2;
PRTTIMER pTimer = (PRTTIMER)pvUser1;
RT_NOREF_PV(idCpu);
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], pArgs->u64Now, pArgs->u64First, true /*fPinned*/, pTimer->fHighRes);
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
RTTIMERLINUXSTARTONCPUARGS Args;
int rc2;
IPRT_LINUX_SAVE_EFL_AC();
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_ACTIVE;
RTTIMERLNX_LOG(("start %p cCpus=%d\n", pTimer, pTimer->cCpus));
Args.u64First = u64First;
#ifdef CONFIG_SMP
/*
* Omni timer?
*/
if (pTimer->fAllCpus)
{
rc2 = rtTimerLnxOmniStart(pTimer, &Args);
IPRT_LINUX_RESTORE_EFL_AC();
return rc2;
}
#endif
/*
* Simple timer - Pretty straight forward if it wasn't for restarting.
*/
Args.u64Now = RTTimeSystemNanoTS();
ASMAtomicWriteU64(&pTimer->aSubTimers[0].uNsRestartAt, Args.u64Now + u64First);
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_STOPPED:
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STARTING, RTTIMERLNXSTATE_STOPPED))
{
ASMAtomicWriteBool(&pTimer->fSuspended, false);
if (!pTimer->fSpecificCpu)
rtTimerLnxStartSubTimer(&pTimer->aSubTimers[0], Args.u64Now, Args.u64First,
false /*fPinned*/, pTimer->fHighRes);
else
{
rc2 = RTMpOnSpecific(pTimer->idCpu, rtTimerLnxStartOnSpecificCpu, pTimer, &Args);
if (RT_FAILURE(rc2))
{
/* Suspend it, the cpu id is probably invalid or offline. */
ASMAtomicWriteBool(&pTimer->fSuspended, true);
rtTimerLnxSetState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPED);
return rc2;
}
}
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
break;
case RTTIMERLNXSTATE_CALLBACK:
case RTTIMERLNXSTATE_CB_STOPPING:
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_CB_RESTARTING, enmState))
{
ASMAtomicWriteBool(&pTimer->fSuspended, false);
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
break;
default:
AssertMsgFailed(("%d\n", enmState));
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_INTERNAL_ERROR_4;
}
ASMNopPause();
}
}
RT_EXPORT_SYMBOL(RTTimerStart);
/**
* Common worker for RTTimerStop and RTTimerDestroy.
*
* @returns true if there was any active callbacks, false if not.
* @param pTimer The timer to stop.
* @param fForDestroy Whether it's RTTimerDestroy calling or not.
*/
static bool rtTimerLnxStop(PRTTIMER pTimer, bool fForDestroy)
{
RTTIMERLNX_LOG(("lnxstop %p %d\n", pTimer, fForDestroy));
#ifdef CONFIG_SMP
/*
* Omni timer?
*/
if (pTimer->fAllCpus)
return rtTimerLnxOmniStop(pTimer, fForDestroy);
#endif
/*
* Simple timer.
*/
ASMAtomicWriteBool(&pTimer->fSuspended, true);
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[0].enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_ACTIVE:
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState, RTTIMERLNXSTATE_STOPPING, RTTIMERLNXSTATE_ACTIVE))
{
rtTimerLnxStopSubTimer(&pTimer->aSubTimers[0], pTimer->fHighRes);
return false;
}
break;
case RTTIMERLNXSTATE_CALLBACK:
case RTTIMERLNXSTATE_CB_RESTARTING:
case RTTIMERLNXSTATE_CB_STOPPING:
Assert(enmState != RTTIMERLNXSTATE_CB_STOPPING || fForDestroy);
if (rtTimerLnxCmpXchgState(&pTimer->aSubTimers[0].enmState,
!fForDestroy ? RTTIMERLNXSTATE_CB_STOPPING : RTTIMERLNXSTATE_CB_DESTROYING,
enmState))
return true;
break;
case RTTIMERLNXSTATE_STOPPED:
return VINF_SUCCESS;
case RTTIMERLNXSTATE_CB_DESTROYING:
AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
return true;
default:
case RTTIMERLNXSTATE_STARTING:
case RTTIMERLNXSTATE_MP_STARTING:
case RTTIMERLNXSTATE_STOPPING:
case RTTIMERLNXSTATE_MP_STOPPING:
AssertMsgFailed(("enmState=%d pTimer=%p\n", enmState, pTimer));
return false;
}
/* State not stable, try again. */
ASMNopPause();
}
}
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
/*
* Validate.
*/
IPRT_LINUX_SAVE_EFL_AC();
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
RTTIMERLNX_LOG(("stop %p\n", pTimer));
if (ASMAtomicUoReadBool(&pTimer->fSuspended))
return VERR_TIMER_SUSPENDED;
rtTimerLnxStop(pTimer, false /*fForDestroy*/);
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerStop);
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
unsigned long cJiffies;
unsigned long flFlags;
IPRT_LINUX_SAVE_EFL_AC();
/*
* Validate.
*/
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
AssertReturn(u64NanoInterval, VERR_INVALID_PARAMETER);
AssertReturn(u64NanoInterval < UINT64_MAX / 8, VERR_INVALID_PARAMETER);
AssertReturn(pTimer->u64NanoInterval, VERR_INVALID_STATE);
RTTIMERLNX_LOG(("change %p %llu\n", pTimer, u64NanoInterval));
#ifdef RTTIMER_LINUX_WITH_HRTIMER
/*
* For the high resolution timers it is easy since we don't care so much
* about when it is applied to the sub-timers.
*/
if (pTimer->fHighRes)
{
ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
#endif
/*
* Standard timers have a bit more complicated way of calculating
* their interval and such. So, forget omni timers for now.
*/
if (pTimer->cCpus > 1)
return VERR_NOT_SUPPORTED;
cJiffies = u64NanoInterval / (RT_NS_1SEC / HZ);
if (cJiffies * (RT_NS_1SEC / HZ) != u64NanoInterval)
cJiffies = 0;
spin_lock_irqsave(&pTimer->ChgIntLock, flFlags);
pTimer->aSubTimers[0].u.Std.fFirstAfterChg = true;
pTimer->cJiffies = cJiffies;
ASMAtomicWriteU64(&pTimer->u64NanoInterval, u64NanoInterval);
spin_unlock_irqrestore(&pTimer->ChgIntLock, flFlags);
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerChangeInterval);
RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
bool fCanDestroy;
IPRT_LINUX_SAVE_EFL_AC();
/*
* Validate. It's ok to pass NULL pointer.
*/
if (pTimer == /*NIL_RTTIMER*/ NULL)
return VINF_SUCCESS;
AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_HANDLE);
RTTIMERLNX_LOG(("destroy %p\n", pTimer));
/** @todo We should invalidate the magic here! */
/*
* Stop the timer if it's still active, then destroy it if we can.
*/
if (!ASMAtomicUoReadBool(&pTimer->fSuspended))
fCanDestroy = rtTimerLnxStop(pTimer, true /*fForDestroy*/);
else
{
uint32_t iCpu = pTimer->cCpus;
if (pTimer->cCpus > 1)
RTSpinlockAcquire(pTimer->hSpinlock);
fCanDestroy = true;
while (iCpu-- > 0)
{
for (;;)
{
RTTIMERLNXSTATE enmState = rtTimerLnxGetState(&pTimer->aSubTimers[iCpu].enmState);
switch (enmState)
{
case RTTIMERLNXSTATE_CALLBACK:
case RTTIMERLNXSTATE_CB_RESTARTING:
case RTTIMERLNXSTATE_CB_STOPPING:
if (!rtTimerLnxCmpXchgState(&pTimer->aSubTimers[iCpu].enmState, RTTIMERLNXSTATE_CB_DESTROYING, enmState))
continue;
fCanDestroy = false;
break;
case RTTIMERLNXSTATE_CB_DESTROYING:
AssertMsgFailed(("%d\n", enmState));
fCanDestroy = false;
break;
default:
break;
}
break;
}
}
if (pTimer->cCpus > 1)
RTSpinlockRelease(pTimer->hSpinlock);
}
if (fCanDestroy)
{
/* For paranoid reasons, defer actually destroying the semaphore when
in atomic or interrupt context. */
#if RTLNX_VER_MIN(2,5,32)
if (in_atomic() || in_interrupt())
#else
if (in_interrupt())
#endif
rtR0LnxWorkqueuePush(&pTimer->DtorWorkqueueItem, rtTimerLnxDestroyDeferred);
else
rtTimerLnxDestroyIt(pTimer);
}
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerDestroy);
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
PRTTIMER pTimer;
RTCPUID iCpu;
unsigned cCpus;
int rc;
IPRT_LINUX_SAVE_EFL_AC();
rtR0LnxWorkqueueFlush(); /* for 2.4 */
*ppTimer = NULL;
/*
* Validate flags.
*/
if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_INVALID_PARAMETER;
}
if ( (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
&& (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
&& !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_CPU_NOT_FOUND;
}
/*
* Allocate the timer handler.
*/
cCpus = 1;
#ifdef CONFIG_SMP
if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
{
cCpus = RTMpGetMaxCpuId() + 1;
Assert(cCpus <= RTCPUSET_MAX_CPUS); /* On linux we have a 1:1 relationship between cpuid and set index. */
AssertReturnStmt(u64NanoInterval, IPRT_LINUX_RESTORE_EFL_AC(), VERR_NOT_IMPLEMENTED); /* We don't implement single shot on all cpus, sorry. */
}
#endif
rc = RTMemAllocEx(RT_UOFFSETOF_DYN(RTTIMER, aSubTimers[cCpus]), 0,
RTMEMALLOCEX_FLAGS_ZEROED | RTMEMALLOCEX_FLAGS_ANY_CTX_FREE, (void **)&pTimer);
if (RT_FAILURE(rc))
{
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
/*
* Initialize it.
*/
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->hSpinlock = NIL_RTSPINLOCK;
pTimer->fSuspended = true;
pTimer->fHighRes = !!(fFlags & RTTIMER_FLAGS_HIGH_RES);
#ifdef CONFIG_SMP
pTimer->fSpecificCpu = (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC) && (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL;
pTimer->fAllCpus = (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL;
pTimer->idCpu = pTimer->fSpecificCpu
? RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)
: NIL_RTCPUID;
#else
pTimer->fSpecificCpu = !!(fFlags & RTTIMER_FLAGS_CPU_SPECIFIC);
pTimer->idCpu = RTMpCpuId();
#endif
pTimer->cCpus = cCpus;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->cJiffies = u64NanoInterval / (RT_NS_1SEC / HZ);
if (pTimer->cJiffies * (RT_NS_1SEC / HZ) != u64NanoInterval)
pTimer->cJiffies = 0;
spin_lock_init(&pTimer->ChgIntLock);
for (iCpu = 0; iCpu < cCpus; iCpu++)
{
#ifdef RTTIMER_LINUX_WITH_HRTIMER
if (pTimer->fHighRes)
{
hrtimer_init(&pTimer->aSubTimers[iCpu].u.Hr.LnxTimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
pTimer->aSubTimers[iCpu].u.Hr.LnxTimer.function = rtTimerLinuxHrCallback;
}
else
#endif
{
#if RTLNX_VER_MIN(4,15,0)
timer_setup(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer, rtTimerLinuxStdCallback, TIMER_PINNED);
#elif RTLNX_VER_MIN(4,8,0)
init_timer_pinned(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
#else
init_timer(&pTimer->aSubTimers[iCpu].u.Std.LnxTimer);
#endif
#if RTLNX_VER_MAX(4,15,0)
pTimer->aSubTimers[iCpu].u.Std.LnxTimer.data = (unsigned long)&pTimer->aSubTimers[iCpu];
pTimer->aSubTimers[iCpu].u.Std.LnxTimer.function = rtTimerLinuxStdCallback;
#endif
pTimer->aSubTimers[iCpu].u.Std.LnxTimer.expires = jiffies;
pTimer->aSubTimers[iCpu].u.Std.u64NextTS = 0;
}
pTimer->aSubTimers[iCpu].iTick = 0;
pTimer->aSubTimers[iCpu].pParent = pTimer;
pTimer->aSubTimers[iCpu].enmState = RTTIMERLNXSTATE_STOPPED;
}
#ifdef CONFIG_SMP
/*
* If this is running on ALL cpus, we'll have to register a callback
* for MP events (so timers can be started/stopped on cpus going
* online/offline). We also create the spinlock for synchronizing
* stop/start/mp-event.
*/
if (cCpus > 1)
{
int rc = RTSpinlockCreate(&pTimer->hSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTTimerLnx");
if (RT_SUCCESS(rc))
rc = RTMpNotificationRegister(rtTimerLinuxMpEvent, pTimer);
else
pTimer->hSpinlock = NIL_RTSPINLOCK;
if (RT_FAILURE(rc))
{
RTTimerDestroy(pTimer);
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
}
#endif /* CONFIG_SMP */
RTTIMERLNX_LOG(("create %p hires=%d fFlags=%#x cCpus=%u\n", pTimer, pTimer->fHighRes, fFlags, cCpus));
*ppTimer = pTimer;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerCreateEx);
RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
{
#if 0 /** @todo Not sure if this is what we want or not... Add new API for
* querying the resolution of the high res timers? */
struct timespec Ts;
int rc;
IPRT_LINUX_SAVE_EFL_AC();
rc = hrtimer_get_res(CLOCK_MONOTONIC, &Ts);
IPRT_LINUX_RESTORE_EFL_AC();
if (!rc)
{
Assert(!Ts.tv_sec);
return Ts.tv_nsec;
}
#endif
/* */
#if RTLNX_VER_MAX(4,9,0) || RTLNX_VER_MIN(4,13,0)
/* On 4.9, 4.10 and 4.12 we've observed tstRTR0Timer failures of the omni timer tests
where we get about half of the ticks we want. The failing test is using this value
as interval. So, this is a very very crude hack to try make omni timers work
correctly without actually knowing what's going wrong... */
return RT_NS_1SEC * 2 / HZ; /* ns */
#else
return RT_NS_1SEC / HZ; /* ns */
#endif
}
RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
RT_NOREF_PV(u32Request); RT_NOREF_PV(*pu32Granted);
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
RT_NOREF_PV(u32Granted);
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);
RTDECL(bool) RTTimerCanDoHighResolution(void)
{
#ifdef RTTIMER_LINUX_WITH_HRTIMER
return true;
#else
return false;
#endif
}
RT_EXPORT_SYMBOL(RTTimerCanDoHighResolution);
|