summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/solaris/timer-r0drv-solaris.c
blob: b415201dd1a5c3d40581719852189655304e9994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/* $Id: timer-r0drv-solaris.c $ */
/** @file
 * IPRT - Timer, Ring-0 Driver, Solaris.
 */

/*
 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/timer.h>

#include <iprt/asm.h>
#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
# include <iprt/asm-amd64-x86.h>
#endif
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/spinlock.h>
#include <iprt/time.h>
#include <iprt/thread.h>
#include "internal/magics.h"


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * The internal representation of a Solaris timer handle.
 */
typedef struct RTTIMER
{
    /** Magic.
     * This is RTTIMER_MAGIC, but changes to something else before the timer
     * is destroyed to indicate clearly that thread should exit. */
    uint32_t volatile       u32Magic;
    /** Reference counter. */
    uint32_t volatile       cRefs;
    /** Flag indicating that the timer is suspended (hCyclicId should be
     *  CYCLIC_NONE). */
    bool volatile           fSuspended;
    /** Flag indicating that the timer was suspended from the timer callback and
     * therefore the hCyclicId may still be valid. */
    bool volatile           fSuspendedFromTimer;
    /** Flag indicating that the timer interval was changed and that it requires
     * manual expiration time programming for each callout. */
    bool volatile           fIntervalChanged;
    /** Whether the timer must run on all CPUs or not. */
    uint8_t                 fAllCpus;
    /** Whether the timer must run on a specific CPU or not. */
    uint8_t                 fSpecificCpu;
    /** The CPU it must run on if fSpecificCpu is set. */
    uint32_t                iCpu;
    /** The nano second interval for repeating timers. */
    uint64_t volatile       cNsInterval;
    /** Cyclic timer Id.  This is CYCLIC_NONE if no active timer.
     * @remarks Please keep in mind that cyclic may call us back before the
     *          cyclic_add/cyclic_add_omni functions returns, so don't use this
     *          unguarded with cyclic_reprogram. */
    cyclic_id_t             hCyclicId;
    /** The user callback. */
    PFNRTTIMER              pfnTimer;
    /** The argument for the user callback. */
    void                   *pvUser;
    /** Union with timer type specific data. */
    union
    {
        /** Single timer (fAllCpus == false). */
        struct
        {
            /** Timer ticks. */
            uint64_t        u64Tick;
            /** The next tick when fIntervalChanged is true, otherwise 0. */
            uint64_t        nsNextTick;
            /** The (interrupt) thread currently active in the callback. */
            kthread_t * volatile pActiveThread;
        } Single;

        /** Omni timer (fAllCpus == true). */
        struct
        {
            /** Absolute timestamp of when the timer should fire first when starting up. */
            uint64_t        u64When;
            /** Array of per CPU data (variable size). */
            struct
            {
                /** Timer ticks (reinitialized when online'd). */
                uint64_t    u64Tick;
                /** The (interrupt) thread currently active in the callback. */
                kthread_t * volatile pActiveThread;
                /** The next tick when fIntervalChanged is true, otherwise 0. */
                uint64_t    nsNextTick;
            } aPerCpu[1];
        } Omni;
    } u;
} RTTIMER;


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
/** Validates that the timer is valid. */
#define RTTIMER_ASSERT_VALID_RET(pTimer) \
    do \
    { \
        AssertPtrReturn(pTimer, VERR_INVALID_HANDLE); \
        AssertMsgReturn((pTimer)->u32Magic == RTTIMER_MAGIC, ("pTimer=%p u32Magic=%x expected %x\n", (pTimer), (pTimer)->u32Magic, RTTIMER_MAGIC), \
            VERR_INVALID_HANDLE); \
    } while (0)


/*********************************************************************************************************************************
*   Internal Functions                                                                                                           *
*********************************************************************************************************************************/
static void rtTimerSolSingleCallbackWrapper(void *pvArg);
static void rtTimerSolStopIt(PRTTIMER pTimer);


/**
 * Retains a reference to the timer.
 *
 * @returns New reference counter value.
 * @param   pTimer              The timer.
 */
DECLINLINE(uint32_t) rtTimerSolRetain(PRTTIMER pTimer)
{
    return ASMAtomicIncU32(&pTimer->cRefs);
}


/**
 * Destroys the timer when the reference counter has reached zero.
 *
 * @returns 0 (new references counter value).
 * @param   pTimer              The timer.
 */
static uint32_t rtTimeSolReleaseCleanup(PRTTIMER pTimer)
{
    Assert(pTimer->hCyclicId == CYCLIC_NONE);
    ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
    RTMemFree(pTimer);
    return 0;
}


/**
 * Releases a reference to the timer.
 *
 * @returns New reference counter value.
 * @param   pTimer              The timer.
 */
DECLINLINE(uint32_t) rtTimerSolRelease(PRTTIMER pTimer)
{
    uint32_t cRefs = ASMAtomicDecU32(&pTimer->cRefs);
    if (!cRefs)
        return rtTimeSolReleaseCleanup(pTimer);
    return cRefs;
}


/**
 * Callback wrapper for single-CPU timers.
 *
 * @param    pvArg              Opaque pointer to the timer.
 *
 * @remarks This will be executed in interrupt context but only at the specified
 *          level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
 *          cyclic subsystem here, neither should pfnTimer().
 */
static void rtTimerSolSingleCallbackWrapper(void *pvArg)
{
    PRTTIMER pTimer = (PRTTIMER)pvArg;
    AssertPtrReturnVoid(pTimer);
    Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
    Assert(!pTimer->fAllCpus);

    /* Make sure one-shots do not fire another time. */
    Assert(   !pTimer->fSuspended
           || pTimer->cNsInterval != 0);

    if (!pTimer->fSuspendedFromTimer)
    {
        /* Make sure we are firing on the right CPU. */
        Assert(   !pTimer->fSpecificCpu
               || pTimer->iCpu == RTMpCpuId());

        /* For one-shot, we may allow the callback to restart them. */
        if (pTimer->cNsInterval == 0)
            pTimer->fSuspendedFromTimer = true;

        /*
         * Perform the callout.
         */
        pTimer->u.Single.pActiveThread = curthread;

        uint64_t u64Tick = ++pTimer->u.Single.u64Tick;
        pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);

        pTimer->u.Single.pActiveThread = NULL;

        if (RT_LIKELY(!pTimer->fSuspendedFromTimer))
        {
            if (   !pTimer->fIntervalChanged
                || RT_UNLIKELY(pTimer->hCyclicId == CYCLIC_NONE))
                return;

            /*
             * The interval was changed, we need to set the expiration time
             * ourselves before returning.  This comes at a slight cost,
             * which is why we don't do it all the time.
             */
            if (pTimer->u.Single.nsNextTick)
                pTimer->u.Single.nsNextTick += ASMAtomicUoReadU64(&pTimer->cNsInterval);
            else
                pTimer->u.Single.nsNextTick = RTTimeSystemNanoTS() + ASMAtomicUoReadU64(&pTimer->cNsInterval);
            cyclic_reprogram(pTimer->hCyclicId, pTimer->u.Single.nsNextTick);
            return;
        }

        /*
         * The timer has been suspended, set expiration time to infinitiy.
         */
    }
    if (RT_LIKELY(pTimer->hCyclicId != CYCLIC_NONE))
        cyclic_reprogram(pTimer->hCyclicId, CY_INFINITY);
}


/**
 * Callback wrapper for Omni-CPU timers.
 *
 * @param    pvArg              Opaque pointer to the timer.
 *
 * @remarks This will be executed in interrupt context but only at the specified
 *          level i.e. CY_LOCK_LEVEL in our case. We -CANNOT- call into the
 *          cyclic subsystem here, neither should pfnTimer().
 */
static void rtTimerSolOmniCallbackWrapper(void *pvArg)
{
    PRTTIMER pTimer = (PRTTIMER)pvArg;
    AssertPtrReturnVoid(pTimer);
    Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
    Assert(pTimer->fAllCpus);

    if (!pTimer->fSuspendedFromTimer)
    {
        /*
         * Perform the callout.
         */
        uint32_t const iCpu = CPU->cpu_id;

        pTimer->u.Omni.aPerCpu[iCpu].pActiveThread = curthread;
        uint64_t u64Tick = ++pTimer->u.Omni.aPerCpu[iCpu].u64Tick;

        pTimer->pfnTimer(pTimer, pTimer->pvUser, u64Tick);

        pTimer->u.Omni.aPerCpu[iCpu].pActiveThread = NULL;

        if (RT_LIKELY(!pTimer->fSuspendedFromTimer))
        {
            if (   !pTimer->fIntervalChanged
                || RT_UNLIKELY(pTimer->hCyclicId == CYCLIC_NONE))
                return;

            /*
             * The interval was changed, we need to set the expiration time
             * ourselves before returning.  This comes at a slight cost,
             * which is why we don't do it all the time.
             *
             * Note! The cyclic_reprogram call only affects the omni cyclic
             *       component for this CPU.
             */
            if (pTimer->u.Omni.aPerCpu[iCpu].nsNextTick)
                pTimer->u.Omni.aPerCpu[iCpu].nsNextTick += ASMAtomicUoReadU64(&pTimer->cNsInterval);
            else
                pTimer->u.Omni.aPerCpu[iCpu].nsNextTick = RTTimeSystemNanoTS() + ASMAtomicUoReadU64(&pTimer->cNsInterval);
            cyclic_reprogram(pTimer->hCyclicId, pTimer->u.Omni.aPerCpu[iCpu].nsNextTick);
            return;
        }

        /*
         * The timer has been suspended, set expiration time to infinitiy.
         */
    }
    if (RT_LIKELY(pTimer->hCyclicId != CYCLIC_NONE))
        cyclic_reprogram(pTimer->hCyclicId, CY_INFINITY);
}


/**
 * Omni-CPU cyclic online event. This is called before the omni cycle begins to
 * fire on the specified CPU.
 *
 * @param    pvArg              Opaque pointer to the timer.
 * @param    pCpu               Pointer to the CPU on which it will fire.
 * @param    pCyclicHandler     Pointer to a cyclic handler to add to the CPU
 *                              specified in @a pCpu.
 * @param    pCyclicTime        Pointer to the cyclic time and interval object.
 *
 * @remarks We -CANNOT- call back into the cyclic subsystem here, we can however
 *          block (sleep).
 */
static void rtTimerSolOmniCpuOnline(void *pvArg, cpu_t *pCpu, cyc_handler_t *pCyclicHandler, cyc_time_t *pCyclicTime)
{
    PRTTIMER pTimer = (PRTTIMER)pvArg;
    AssertPtrReturnVoid(pTimer);
    AssertPtrReturnVoid(pCpu);
    AssertPtrReturnVoid(pCyclicHandler);
    AssertPtrReturnVoid(pCyclicTime);
    uint32_t const iCpu = pCpu->cpu_id; /* Note! CPU is not necessarily the same as pCpu. */

    pTimer->u.Omni.aPerCpu[iCpu].u64Tick = 0;
    pTimer->u.Omni.aPerCpu[iCpu].nsNextTick = 0;

    pCyclicHandler->cyh_func  = (cyc_func_t)rtTimerSolOmniCallbackWrapper;
    pCyclicHandler->cyh_arg   = pTimer;
    pCyclicHandler->cyh_level = CY_LOCK_LEVEL;

    uint64_t u64Now = RTTimeSystemNanoTS();
    if (pTimer->u.Omni.u64When < u64Now)
        pCyclicTime->cyt_when = u64Now + pTimer->cNsInterval / 2;
    else
        pCyclicTime->cyt_when = pTimer->u.Omni.u64When;

    pCyclicTime->cyt_interval = pTimer->cNsInterval;
}


RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
    RT_ASSERT_PREEMPTIBLE();
    *ppTimer = NULL;

    /*
     * Validate flags.
     */
    if (!RTTIMER_FLAGS_ARE_VALID(fFlags))
        return VERR_INVALID_PARAMETER;

    if (    (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
        &&  (fFlags & RTTIMER_FLAGS_CPU_ALL) != RTTIMER_FLAGS_CPU_ALL
        &&  !RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(fFlags & RTTIMER_FLAGS_CPU_MASK)))
        return VERR_CPU_NOT_FOUND;

    /* One-shot omni timers are not supported by the cyclic system. */
    if (   (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL
        && u64NanoInterval == 0)
        return VERR_NOT_SUPPORTED;

    /*
     * Allocate and initialize the timer handle.  The omni variant has a
     * variable sized array of ticks counts, thus the size calculation.
     */
    PRTTIMER pTimer = (PRTTIMER)RTMemAllocZ(  (fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL
                                            ? RT_UOFFSETOF_DYN(RTTIMER, u.Omni.aPerCpu[RTMpGetCount()])
                                            : sizeof(RTTIMER));
    if (!pTimer)
        return VERR_NO_MEMORY;

    pTimer->u32Magic = RTTIMER_MAGIC;
    pTimer->cRefs = 1;
    pTimer->fSuspended = true;
    pTimer->fSuspendedFromTimer = false;
    pTimer->fIntervalChanged = false;
    if ((fFlags & RTTIMER_FLAGS_CPU_ALL) == RTTIMER_FLAGS_CPU_ALL)
    {
        pTimer->fAllCpus = true;
        pTimer->fSpecificCpu = false;
        pTimer->iCpu = UINT32_MAX;
    }
    else if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
    {
        pTimer->fAllCpus = false;
        pTimer->fSpecificCpu = true;
        pTimer->iCpu = fFlags & RTTIMER_FLAGS_CPU_MASK; /* ASSUMES: index == cpuid */
    }
    else
    {
        pTimer->fAllCpus = false;
        pTimer->fSpecificCpu = false;
        pTimer->iCpu = UINT32_MAX;
    }
    pTimer->cNsInterval = u64NanoInterval;
    pTimer->pfnTimer = pfnTimer;
    pTimer->pvUser = pvUser;
    pTimer->hCyclicId = CYCLIC_NONE;

    *ppTimer = pTimer;
    return VINF_SUCCESS;
}


/**
 * Checks if the calling thread is currently executing the timer proceduce for
 * the given timer.
 *
 * @returns true if it is, false if it isn't.
 * @param   pTimer              The timer in question.
 */
DECLINLINE(bool) rtTimerSolIsCallingFromTimerProc(PRTTIMER pTimer)
{
    kthread_t *pCurThread = curthread;
    AssertReturn(pCurThread, false); /* serious paranoia */

    if (!pTimer->fAllCpus)
        return pTimer->u.Single.pActiveThread == pCurThread;
    return pTimer->u.Omni.aPerCpu[CPU->cpu_id].pActiveThread == pCurThread;
}


RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
    if (pTimer == NULL)
        return VINF_SUCCESS;
    RTTIMER_ASSERT_VALID_RET(pTimer);
    RT_ASSERT_INTS_ON();

    /*
     * It is not possible to destroy a timer from it's callback function.
     * Cyclic makes that impossible (or at least extremely risky).
     */
    AssertReturn(!rtTimerSolIsCallingFromTimerProc(pTimer), VERR_INVALID_CONTEXT);

    /*
     * Invalidate the handle, make sure it's stopped and free the associated resources.
     */
    ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);

    if (   !pTimer->fSuspended
        || pTimer->hCyclicId != CYCLIC_NONE) /* 2nd check shouldn't happen */
        rtTimerSolStopIt(pTimer);

    rtTimerSolRelease(pTimer);
    return VINF_SUCCESS;
}


RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
    RTTIMER_ASSERT_VALID_RET(pTimer);
    RT_ASSERT_INTS_ON();

    /*
     * It's not possible to restart a one-shot time from it's callback function,
     * at least not at the moment.
     */
    AssertReturn(!rtTimerSolIsCallingFromTimerProc(pTimer), VERR_INVALID_CONTEXT);

    mutex_enter(&cpu_lock);

    /*
     * Make sure it's not active already.  If it was suspended from a timer
     * callback function, we need to do some cleanup work here before we can
     * restart the timer.
     */
    if (!pTimer->fSuspended)
    {
        if (!pTimer->fSuspendedFromTimer)
        {
            mutex_exit(&cpu_lock);
            return VERR_TIMER_ACTIVE;
        }
        cyclic_remove(pTimer->hCyclicId);
        pTimer->hCyclicId = CYCLIC_NONE;
    }

    pTimer->fSuspended = false;
    pTimer->fSuspendedFromTimer = false;
    pTimer->fIntervalChanged = false;
    if (pTimer->fAllCpus)
    {
        /*
         * Setup omni (all CPU) timer. The Omni-CPU online event will fire
         * and from there we setup periodic timers per CPU.
         */
        pTimer->u.Omni.u64When  = RTTimeSystemNanoTS() + (u64First ? u64First : pTimer->cNsInterval);

        cyc_omni_handler_t HandlerOmni;
        HandlerOmni.cyo_online  = rtTimerSolOmniCpuOnline;
        HandlerOmni.cyo_offline = NULL;
        HandlerOmni.cyo_arg     = pTimer;

        pTimer->hCyclicId = cyclic_add_omni(&HandlerOmni);
    }
    else
    {
        cyc_handler_t Handler;
        cyc_time_t    FireTime;

        /*
         * Setup a single CPU timer.   If a specific CPU was requested, it
         * must be online or the timer cannot start.
         */
        if (   pTimer->fSpecificCpu
            && !RTMpIsCpuOnline(pTimer->iCpu)) /* ASSUMES: index == cpuid */
        {
            pTimer->fSuspended = true;

            mutex_exit(&cpu_lock);
            return VERR_CPU_OFFLINE;
        }

        Handler.cyh_func  = (cyc_func_t)rtTimerSolSingleCallbackWrapper;
        Handler.cyh_arg   = pTimer;
        Handler.cyh_level = CY_LOCK_LEVEL;

        /*
         * Use a large interval (1 hour) so that we don't get a timer-callback between
         * cyclic_add() and cyclic_bind(). Program the correct interval once cyclic_bind() is done.
         * See @bugref{7691#c20}.
         */
        if (!pTimer->fSpecificCpu)
            FireTime.cyt_when = RTTimeSystemNanoTS() + u64First;
        else
            FireTime.cyt_when = RTTimeSystemNanoTS() + u64First + RT_NS_1HOUR;
        FireTime.cyt_interval = pTimer->cNsInterval != 0
                              ? pTimer->cNsInterval
                              : CY_INFINITY /* Special value, see cyclic_fire(). */;
        pTimer->u.Single.u64Tick = 0;
        pTimer->u.Single.nsNextTick = 0;

        pTimer->hCyclicId = cyclic_add(&Handler, &FireTime);
        if (pTimer->fSpecificCpu)
        {
            cyclic_bind(pTimer->hCyclicId, cpu[pTimer->iCpu], NULL /* cpupart */);
            cyclic_reprogram(pTimer->hCyclicId, RTTimeSystemNanoTS() + u64First);
        }
    }

    mutex_exit(&cpu_lock);
    return VINF_SUCCESS;
}


/**
 * Worker common for RTTimerStop and RTTimerDestroy.
 *
 * @param   pTimer      The timer to stop.
 */
static void rtTimerSolStopIt(PRTTIMER pTimer)
{
    mutex_enter(&cpu_lock);

    pTimer->fSuspended = true;
    if (pTimer->hCyclicId != CYCLIC_NONE)
    {
        cyclic_remove(pTimer->hCyclicId);
        pTimer->hCyclicId = CYCLIC_NONE;
    }
    pTimer->fSuspendedFromTimer = false;

    mutex_exit(&cpu_lock);
}


RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
    RTTIMER_ASSERT_VALID_RET(pTimer);
    RT_ASSERT_INTS_ON();

    if (pTimer->fSuspended)
        return VERR_TIMER_SUSPENDED;

    /* Trying the cpu_lock stuff and calling cyclic_remove may deadlock
       the system, so just mark the timer as suspened and deal with it in
       the callback wrapper function above. */
    if (rtTimerSolIsCallingFromTimerProc(pTimer))
        pTimer->fSuspendedFromTimer = true;
    else
        rtTimerSolStopIt(pTimer);

    return VINF_SUCCESS;
}


RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
    /*
     * Validate.
     */
    RTTIMER_ASSERT_VALID_RET(pTimer);
    AssertReturn(u64NanoInterval > 0, VERR_INVALID_PARAMETER);
    AssertReturn(u64NanoInterval < UINT64_MAX / 8, VERR_INVALID_PARAMETER);
    AssertReturn(pTimer->cNsInterval, VERR_INVALID_STATE);

    if (pTimer->fSuspended || pTimer->fSuspendedFromTimer)
        pTimer->cNsInterval = u64NanoInterval;
    else
    {
        ASMAtomicWriteU64(&pTimer->cNsInterval, u64NanoInterval);
        ASMAtomicWriteBool(&pTimer->fIntervalChanged, true);

        if (   !pTimer->fAllCpus
            && !pTimer->u.Single.nsNextTick
            && pTimer->hCyclicId != CYCLIC_NONE
            && rtTimerSolIsCallingFromTimerProc(pTimer))
            pTimer->u.Single.nsNextTick = RTTimeSystemNanoTS();
    }

    return VINF_SUCCESS;
}


RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
{
    return nsec_per_tick;
}


RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
    return VERR_NOT_SUPPORTED;
}


RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
    return VERR_NOT_SUPPORTED;
}


RTDECL(bool) RTTimerCanDoHighResolution(void)
{
    return true;
}