summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r3/posix/semevent-posix.cpp
blob: 96d01bac7b975b76a63d3ad6c5c7a2bf5c47ae3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/* $Id: semevent-posix.cpp $ */
/** @file
 * IPRT - Event Semaphore, POSIX.
 */

/*
 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
 *
 * This file is part of VirtualBox base platform packages, as
 * available from https://www.virtualbox.org.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation, in version 3 of the
 * License.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses>.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
 * in the VirtualBox distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 *
 * SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include <iprt/semaphore.h>
#include "internal/iprt.h"

#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/lockvalidator.h>
#include <iprt/time.h>

#include "internal/mem.h"
#include "internal/strict.h"

#include <errno.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/time.h>
#include <sched.h>

#include "semwait.h"


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/

/** Internal representation of the POSIX implementation of an Event semaphore.
 * The POSIX implementation uses a mutex and a condition variable to implement
 * the automatic reset event semaphore semantics.
 */
struct RTSEMEVENTINTERNAL
{
    /** pthread condition. */
    pthread_cond_t      Cond;
    /** pthread mutex which protects the condition and the event state. */
    pthread_mutex_t     Mutex;
    /** The state of the semaphore.
     * This is operated while owning mutex and using atomic updating. */
    volatile uint32_t   u32State;
    /** Number of waiters. */
    volatile uint32_t   cWaiters;
#ifdef RTSEMEVENT_STRICT
    /** Signallers. */
    RTLOCKVALRECSHRD    Signallers;
    /** Indicates that lock validation should be performed. */
    bool volatile       fEverHadSignallers;
#endif
    /** The creation flags. */
    uint32_t            fFlags;
    /** Set if we're using the monotonic clock. */
    bool                fMonotonicClock;
};

/** The values of the u32State variable in a RTSEMEVENTINTERNAL.
 * @{ */
/** The object isn't initialized. */
#define EVENT_STATE_UNINITIALIZED   0
/** The semaphore is signaled. */
#define EVENT_STATE_SIGNALED        0xff00ff00
/** The semaphore is not signaled. */
#define EVENT_STATE_NOT_SIGNALED    0x00ff00ff
/** @} */


RTDECL(int)  RTSemEventCreate(PRTSEMEVENT phEventSem)
{
    return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL);
}


RTDECL(int)  RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...)
{
    AssertReturn(!(fFlags & ~(RTSEMEVENT_FLAGS_NO_LOCK_VAL | RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)), VERR_INVALID_PARAMETER);
    Assert(!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK) || (fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL));

    /*
     * Allocate semaphore handle.
     */
    int rc;
    struct RTSEMEVENTINTERNAL *pThis;
    if (!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK))
        pThis = (struct RTSEMEVENTINTERNAL *)RTMemAlloc(sizeof(*pThis));
    else
        pThis = (struct RTSEMEVENTINTERNAL *)rtMemBaseAlloc(sizeof(*pThis));
    if (pThis)
    {
        /*
         * Create the condition variable.
         */
        pthread_condattr_t CondAttr;
        rc = pthread_condattr_init(&CondAttr);
        if (!rc)
        {
#if defined(CLOCK_MONOTONIC) && defined(IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK)
            /* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */
            rc = pthread_condattr_setclock(&CondAttr, CLOCK_MONOTONIC);
            pThis->fMonotonicClock = rc == 0;
#else
            pThis->fMonotonicClock = false;
#endif
            rc = pthread_cond_init(&pThis->Cond, &CondAttr);
            if (!rc)
            {
                /*
                 * Create the semaphore.
                 */
                rc = pthread_mutex_init(&pThis->Mutex, NULL);
                if (!rc)
                {
                    pthread_condattr_destroy(&CondAttr);

                    ASMAtomicWriteU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED);
                    ASMAtomicWriteU32(&pThis->cWaiters, 0);
                    pThis->fFlags = fFlags;
#ifdef RTSEMEVENT_STRICT
                    if (!pszNameFmt)
                    {
                        static uint32_t volatile s_iSemEventAnon = 0;
                        RTLockValidatorRecSharedInit(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis,
                                                     true /*fSignaller*/, !(fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL),
                                                     "RTSemEvent-%u", ASMAtomicIncU32(&s_iSemEventAnon) - 1);
                    }
                    else
                    {
                        va_list va;
                        va_start(va, pszNameFmt);
                        RTLockValidatorRecSharedInitV(&pThis->Signallers, hClass, RTLOCKVAL_SUB_CLASS_ANY, pThis,
                                                      true /*fSignaller*/, !(fFlags & RTSEMEVENT_FLAGS_NO_LOCK_VAL),
                                                      pszNameFmt, va);
                        va_end(va);
                    }
                    pThis->fEverHadSignallers = false;
#else
                    RT_NOREF_PV(hClass); RT_NOREF_PV(pszNameFmt);
#endif

                    *phEventSem = pThis;
                    return VINF_SUCCESS;
                }
                pthread_cond_destroy(&pThis->Cond);
            }
            pthread_condattr_destroy(&CondAttr);
        }

        rc = RTErrConvertFromErrno(rc);
        if (!(fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK))
            RTMemFree(pThis);
        else
            rtMemBaseFree(pThis);
    }
    else
        rc = VERR_NO_MEMORY;

    return rc;
}


RTDECL(int)  RTSemEventDestroy(RTSEMEVENT hEventSem)
{
    /*
     * Validate handle.
     */
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    if (pThis == NIL_RTSEMEVENT)
        return VINF_SUCCESS;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    uint32_t    u32 = pThis->u32State;
    AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE);

    /*
     * Abort all waiters forcing them to return failure.
     */
    int rc;
    for (int i = 30; i > 0; i--)
    {
        ASMAtomicWriteU32(&pThis->u32State, EVENT_STATE_UNINITIALIZED);
        rc = pthread_cond_destroy(&pThis->Cond);
        if (rc != EBUSY)
            break;
        pthread_cond_broadcast(&pThis->Cond);
        usleep(1000);
    }
    if (rc)
    {
        AssertMsgFailed(("Failed to destroy event sem %p, rc=%d.\n", pThis, rc));
        return RTErrConvertFromErrno(rc);
    }

    /*
     * Destroy the semaphore
     * If it's busy we'll wait a bit to give the threads a chance to be scheduled.
     */
    for (int i = 30; i > 0; i--)
    {
        rc = pthread_mutex_destroy(&pThis->Mutex);
        if (rc != EBUSY)
            break;
        usleep(1000);
    }
    if (rc)
    {
        AssertMsgFailed(("Failed to destroy event sem %p, rc=%d. (mutex)\n", pThis, rc));
        return RTErrConvertFromErrno(rc);
    }

    /*
     * Free the semaphore memory and be gone.
     */
#ifdef RTSEMEVENT_STRICT
    RTLockValidatorRecSharedDelete(&pThis->Signallers);
#endif
    if (!(pThis->fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK))
        RTMemFree(pThis);
    else
        rtMemBaseFree(pThis);
    return VINF_SUCCESS;
}


RTDECL(int)  RTSemEventSignal(RTSEMEVENT hEventSem)
{
    /*
     * Validate input.
     */
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    uint32_t    u32 = pThis->u32State;
    AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE);

#ifdef RTSEMEVENT_STRICT
    if (pThis->fEverHadSignallers)
    {
        int rc9 = RTLockValidatorRecSharedCheckSignaller(&pThis->Signallers, NIL_RTTHREAD);
        if (RT_FAILURE(rc9))
            return rc9;
    }
#endif

    /*
     * Lock the mutex semaphore.
     */
    int rc = pthread_mutex_lock(&pThis->Mutex);
    if (rc)
    {
        AssertMsgFailed(("Failed to lock event sem %p, rc=%d.\n", hEventSem, rc));
        return RTErrConvertFromErrno(rc);
    }

    /*
     * Check the state.
     */
    if (pThis->u32State == EVENT_STATE_NOT_SIGNALED)
    {
        ASMAtomicWriteU32(&pThis->u32State, EVENT_STATE_SIGNALED);
        rc = pthread_cond_signal(&pThis->Cond);
        AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d.\n", hEventSem, rc));
    }
    else if (pThis->u32State == EVENT_STATE_SIGNALED)
    {
        rc = pthread_cond_signal(&pThis->Cond); /* give'm another kick... */
        AssertMsg(!rc, ("Failed to signal event sem %p, rc=%d. (2)\n", hEventSem, rc));
    }
    else
        rc = VERR_SEM_DESTROYED;

    /*
     * Release the mutex and return.
     */
    int rc2 = pthread_mutex_unlock(&pThis->Mutex);
    AssertMsg(!rc2, ("Failed to unlock event sem %p, rc=%d.\n", hEventSem, rc));
    if (rc)
        return RTErrConvertFromErrno(rc);
    if (rc2)
        return RTErrConvertFromErrno(rc2);

    return VINF_SUCCESS;
}


/**
 * Handle polling (timeout already expired at the time of the call).
 *
 * @returns VINF_SUCCESS, VERR_TIMEOUT, VERR_SEM_DESTROYED.
 * @param   pThis               The semaphore.
 */
DECLINLINE(int) rtSemEventPosixWaitPoll(struct RTSEMEVENTINTERNAL *pThis)
{
    int rc = pthread_mutex_lock(&pThis->Mutex);
    AssertMsgReturn(!rc, ("Failed to lock event sem %p, rc=%d.\n", pThis, rc), RTErrConvertFromErrno(rc));

    uint32_t u32OldState;
    bool fSuccess = ASMAtomicCmpXchgExU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED, EVENT_STATE_SIGNALED, &u32OldState);

    rc = pthread_mutex_unlock(&pThis->Mutex);
    AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", pThis, rc)); NOREF(rc);

    return fSuccess
         ? VINF_SUCCESS
         : u32OldState != EVENT_STATE_UNINITIALIZED
         ? VERR_TIMEOUT
         : VERR_SEM_DESTROYED;
}


/**
 * Performs an indefinite wait on the event.
 */
static int rtSemEventPosixWaitIndefinite(struct RTSEMEVENTINTERNAL *pThis, uint32_t fFlags, PCRTLOCKVALSRCPOS pSrcPos)
{
    RT_NOREF_PV(pSrcPos);

    /* for fairness, yield before going to sleep. */
    if (    ASMAtomicIncU32(&pThis->cWaiters) > 1
        &&  pThis->u32State == EVENT_STATE_SIGNALED)
        sched_yield();

     /* take mutex */
    int rc = pthread_mutex_lock(&pThis->Mutex);
    if (rc)
    {
        ASMAtomicDecU32(&pThis->cWaiters);
        AssertMsgFailed(("Failed to lock event sem %p, rc=%d.\n", pThis, rc));
        return RTErrConvertFromErrno(rc);
    }

    for (;;)
    {
        /* check state. */
        if (pThis->u32State == EVENT_STATE_SIGNALED)
        {
            ASMAtomicWriteU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED);
            ASMAtomicDecU32(&pThis->cWaiters);
            rc = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", pThis, rc)); NOREF(rc);
            return VINF_SUCCESS;
        }
        if (pThis->u32State == EVENT_STATE_UNINITIALIZED)
        {
            rc = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc, ("Failed to unlock event sem %p, rc=%d.\n", pThis, rc)); NOREF(rc);
            return VERR_SEM_DESTROYED;
        }

        /* wait */
#ifdef RTSEMEVENT_STRICT
        RTTHREAD hThreadSelf = !(pThis->fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)
                             ? RTThreadSelfAutoAdopt()
                             : RTThreadSelf();
        if (pThis->fEverHadSignallers)
        {
            rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false,
                                                       RT_INDEFINITE_WAIT, RTTHREADSTATE_EVENT, true);
            if (RT_FAILURE(rc))
            {
                ASMAtomicDecU32(&pThis->cWaiters);
                pthread_mutex_unlock(&pThis->Mutex);
                return rc;
            }
        }
#else
        RTTHREAD hThreadSelf = RTThreadSelf();
#endif
        RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT, true);
        RT_NOREF_PV(fFlags); /** @todo interruptible wait is not implementable... */
        rc = pthread_cond_wait(&pThis->Cond, &pThis->Mutex);
        RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT);
        if (rc)
        {
            AssertMsgFailed(("Failed to wait on event sem %p, rc=%d.\n", pThis, rc));
            ASMAtomicDecU32(&pThis->cWaiters);
            int rc2 = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc2, ("Failed to unlock event sem %p, rc=%d.\n", pThis, rc2)); NOREF(rc2);
            return RTErrConvertFromErrno(rc);
        }
    }
}


/**
 * Performs an timed wait on the event.
 */
static int rtSemEventPosixWaitTimed(struct RTSEMEVENTINTERNAL *pThis, uint32_t fFlags, uint64_t uTimeout,
                                    PCRTLOCKVALSRCPOS pSrcPos)
{
    /*
     * Convert the timeout specification to absolute and relative deadlines,
     * divierting polling and infinite waits to the appropriate workers.
     */
    struct timespec AbsDeadline         = { 0, 0 };
    uint64_t const  cNsRelativeDeadline = rtSemPosixCalcDeadline(fFlags, uTimeout, pThis->fMonotonicClock, &AbsDeadline);
    if (cNsRelativeDeadline == 0)
        return rtSemEventPosixWaitPoll(pThis);
    if (cNsRelativeDeadline == UINT64_MAX)
        return rtSemEventPosixWaitIndefinite(pThis, fFlags, pSrcPos);

    /*
     * Now to the business of waiting...
     */

    /* for fairness, yield before going to sleep. */
    if (ASMAtomicIncU32(&pThis->cWaiters) > 1)
        sched_yield();

    /* take mutex */
    int rc = pthread_mutex_lock(&pThis->Mutex);
    if (rc)
    {
        ASMAtomicDecU32(&pThis->cWaiters);
        AssertMsg(rc == ETIMEDOUT, ("Failed to lock event sem %p, rc=%d.\n", pThis, rc));
        return RTErrConvertFromErrno(rc);
    }

    for (;;)
    {
        /* check state. */
        uint32_t const u32State = pThis->u32State;
        if (u32State != EVENT_STATE_NOT_SIGNALED)
        {
            if (u32State == EVENT_STATE_SIGNALED)
            {
                ASMAtomicWriteU32(&pThis->u32State, EVENT_STATE_NOT_SIGNALED);
                ASMAtomicDecU32(&pThis->cWaiters);
                rc = VINF_SUCCESS;
            }
            else
            {
                Assert(u32State == EVENT_STATE_UNINITIALIZED);
                rc = VERR_SEM_DESTROYED;
            }
            int rc2 = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc2, ("Failed to unlock event sem %p, rc2=%d.\n", pThis, rc2)); RT_NOREF(rc2);
            return rc;
        }

        /* wait */
#ifdef RTSEMEVENT_STRICT
        RTTHREAD hThreadSelf = !(pThis->fFlags & RTSEMEVENT_FLAGS_BOOTSTRAP_HACK)
                             ? RTThreadSelfAutoAdopt()
                             : RTThreadSelf();
        if (pThis->fEverHadSignallers)
        {
            rc = RTLockValidatorRecSharedCheckBlocking(&pThis->Signallers, hThreadSelf, pSrcPos, false,
                                                       (cNsRelativeDeadline + RT_NS_1MS - 1) / RT_NS_1MS,
                                                       RTTHREADSTATE_EVENT, true);
            if (RT_FAILURE(rc))
            {
                ASMAtomicDecU32(&pThis->cWaiters);
                pthread_mutex_unlock(&pThis->Mutex);
                return rc;
            }
        }
#else
        RTTHREAD hThreadSelf = RTThreadSelf();
#endif
        RTThreadBlocking(hThreadSelf, RTTHREADSTATE_EVENT, true);
        rc = pthread_cond_timedwait(&pThis->Cond, &pThis->Mutex, &AbsDeadline);
        RTThreadUnblocked(hThreadSelf, RTTHREADSTATE_EVENT);

        /* According to SuS this function shall not return EINTR, but linux man page might have said differently at some point... */
        if (   rc != 0
            && (   rc != EINTR
                || !(fFlags & RTSEMWAIT_FLAGS_NORESUME)))
        {
            AssertMsg(rc == ETIMEDOUT, ("Failed to wait on event sem %p, rc=%d.\n", pThis, rc));
            ASMAtomicDecU32(&pThis->cWaiters);
            int rc2 = pthread_mutex_unlock(&pThis->Mutex);
            AssertMsg(!rc2, ("Failed to unlock event sem %p, rc2=%d.\n", pThis, rc2)); NOREF(rc2);
            return RTErrConvertFromErrno(rc);
        }
    } /* for (;;) */
}


/**
 * Internal wait worker function.
 */
DECLINLINE(int) rtSemEventPosixWait(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout, PCRTLOCKVALSRCPOS pSrcPos)
{
    /*
     * Validate input.
     */
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    AssertPtrReturn(pThis, VERR_INVALID_HANDLE);
    uint32_t    u32 = pThis->u32State;
    AssertReturn(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED, VERR_INVALID_HANDLE);
    AssertReturn(RTSEMWAIT_FLAGS_ARE_VALID(fFlags), VERR_INVALID_PARAMETER);

    /*
     * Timed or indefinite wait?
     */
    if (fFlags & RTSEMWAIT_FLAGS_INDEFINITE)
        return rtSemEventPosixWaitIndefinite(pThis, fFlags, pSrcPos);
    return rtSemEventPosixWaitTimed(hEventSem, fFlags, uTimeout, pSrcPos);
}


RTDECL(int) RTSemEventWait(RTSEMEVENT hEventSem, RTMSINTERVAL cMillies)
{
    int rc;
#ifndef RTSEMEVENT_STRICT
    if (cMillies == RT_INDEFINITE_WAIT)
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0, NULL);
    else
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_RELATIVE | RTSEMWAIT_FLAGS_MILLISECS,
                                 cMillies, NULL);
#else
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
    if (cMillies == RT_INDEFINITE_WAIT)
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0, &SrcPos);
    else
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_RESUME | RTSEMWAIT_FLAGS_RELATIVE | RTSEMWAIT_FLAGS_MILLISECS,
                                 cMillies, &SrcPos);
#endif
    Assert(rc != VERR_INTERRUPTED);
    return rc;
}


RTDECL(int)  RTSemEventWaitNoResume(RTSEMEVENT hEventSem, RTMSINTERVAL cMillies)
{
    int rc;
#ifndef RTSEMEVENT_STRICT
    if (cMillies == RT_INDEFINITE_WAIT)
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0, NULL);
    else
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_RELATIVE | RTSEMWAIT_FLAGS_MILLISECS,
                                 cMillies, NULL);
#else
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
    if (cMillies == RT_INDEFINITE_WAIT)
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_INDEFINITE, 0, &SrcPos);
    else
        rc = rtSemEventPosixWait(hEventSem, RTSEMWAIT_FLAGS_NORESUME | RTSEMWAIT_FLAGS_RELATIVE | RTSEMWAIT_FLAGS_MILLISECS,
                                 cMillies, &SrcPos);
#endif
    Assert(rc != VERR_INTERRUPTED);
    return rc;
}


RTDECL(int)  RTSemEventWaitEx(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout)
{
#ifndef RTSEMEVENT_STRICT
    return rtSemEventPosixWait(hEventSem, fFlags, uTimeout, NULL);
#else
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_NORMAL_API();
    return rtSemEventPosixWait(hEventSem, fFlags, uTimeout, &SrcPos);
#endif
}


RTDECL(int)  RTSemEventWaitExDebug(RTSEMEVENT hEventSem, uint32_t fFlags, uint64_t uTimeout,
                                   RTHCUINTPTR uId, RT_SRC_POS_DECL)
{
    RTLOCKVALSRCPOS SrcPos = RTLOCKVALSRCPOS_INIT_DEBUG_API();
    return rtSemEventPosixWait(hEventSem, fFlags, uTimeout, &SrcPos);
}


RTDECL(uint32_t) RTSemEventGetResolution(void)
{
    /** @todo we have 1ns parameter resolution, but we need to check each host
     *        what the actual resolution might be once the parameter makes it to the
     *        kernel and is processed there. */
    return 1;
}


RTDECL(void) RTSemEventSetSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENT_STRICT
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    AssertPtrReturnVoid(pThis);
    uint32_t u32 = pThis->u32State;
    AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED);

    ASMAtomicWriteBool(&pThis->fEverHadSignallers, true);
    RTLockValidatorRecSharedResetOwner(&pThis->Signallers, hThread, NULL);
#else
    RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread);
#endif
}


RTDECL(void) RTSemEventAddSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENT_STRICT
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    AssertPtrReturnVoid(pThis);
    uint32_t u32 = pThis->u32State;
    AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED);

    ASMAtomicWriteBool(&pThis->fEverHadSignallers, true);
    RTLockValidatorRecSharedAddOwner(&pThis->Signallers, hThread, NULL);
#else
    RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread);
#endif
}


RTDECL(void) RTSemEventRemoveSignaller(RTSEMEVENT hEventSem, RTTHREAD hThread)
{
#ifdef RTSEMEVENT_STRICT
    struct RTSEMEVENTINTERNAL *pThis = hEventSem;
    AssertPtrReturnVoid(pThis);
    uint32_t u32 = pThis->u32State;
    AssertReturnVoid(u32 == EVENT_STATE_NOT_SIGNALED || u32 == EVENT_STATE_SIGNALED);

    RTLockValidatorRecSharedRemoveOwner(&pThis->Signallers, hThread);
#else
    RT_NOREF_PV(hEventSem); RT_NOREF_PV(hThread);
#endif
}