1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/* $Id: semwait.h $ */
/** @file
* IPRT - Common semaphore wait code.
*/
/*
* Copyright (C) 2021-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
#ifndef IPRT_INCLUDED_SRC_r3_posix_semwait_h
#define IPRT_INCLUDED_SRC_r3_posix_semwait_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif
/** @def IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
* Set if the platform implements pthread_condattr_setclock().
* Enables the use of the monotonic clock for waiting on condition variables. */
#ifndef IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
/* Linux detection */
# if defined(RT_OS_LINUX) && defined(__USE_XOPEN2K)
# include <features.h>
# if __GLIBC_PREREQ(2,6) /** @todo figure the exact version where this was added */
# define IPRT_HAVE_PTHREAD_CONDATTR_SETCLOCK
# endif
# endif
/** @todo check other platforms */
#endif
/**
* Converts a extended wait timeout specification to an absolute timespec and a
* relative nanosecond count.
*
* @note This does not check for RTSEMWAIT_FLAGS_INDEFINITE, caller should've
* done that already.
*
* @returns The relative wait in nanoseconds. 0 for a poll call, UINT64_MAX for
* an effectively indefinite wait.
* @param fFlags RTSEMWAIT_FLAGS_XXX.
* @param fMonotonicClock Whether the timeout is in monotonic (true) or real
* (false) time.
* @param uTimeout The timeout.
* @param pAbsDeadline Where to return the absolute deadline.
*/
DECLINLINE(uint64_t) rtSemPosixCalcDeadline(uint32_t fFlags, uint64_t uTimeout, bool fMonotonicClock,
struct timespec *pAbsDeadline)
{
Assert(!(fFlags & RTSEMWAIT_FLAGS_INDEFINITE));
/*
* Convert uTimeout to a relative value in nanoseconds.
*/
if (fFlags & RTSEMWAIT_FLAGS_MILLISECS)
{
if (uTimeout < UINT64_MAX / RT_NS_1MS)
uTimeout = uTimeout * RT_NS_1MS;
else
return UINT64_MAX;
}
else if (uTimeout == UINT64_MAX) /* unofficial way of indicating an indefinite wait */
return UINT64_MAX;
/*
* Make uTimeout relative and check for polling (zero timeout) calls.
*/
uint64_t uAbsTimeout = uTimeout;
if (fFlags & RTSEMWAIT_FLAGS_ABSOLUTE)
{
uint64_t const u64Now = RTTimeSystemNanoTS();
if (uTimeout > u64Now)
uTimeout -= u64Now;
else
return 0;
}
else if (uTimeout == 0)
return 0;
/*
* Calculate the deadline according to the clock we're using.
*/
if (!fMonotonicClock)
{
#if defined(RT_OS_DARWIN) || defined(RT_OS_HAIKU)
struct timeval tv = {0,0};
gettimeofday(&tv, NULL);
pAbsDeadline->tv_sec = tv.tv_sec;
pAbsDeadline->tv_nsec = tv.tv_usec * 1000;
#else
clock_gettime(CLOCK_REALTIME, pAbsDeadline);
#endif
struct timespec TsAdd;
TsAdd.tv_nsec = uTimeout % RT_NS_1SEC;
TsAdd.tv_sec = uTimeout / RT_NS_1SEC;
/* Check for 32-bit tv_sec overflows: */
if ( sizeof(pAbsDeadline->tv_sec) < sizeof(uint64_t)
&& ( uTimeout >= (uint64_t)RT_NS_1SEC * UINT32_MAX
|| (uint64_t)pAbsDeadline->tv_sec + pAbsDeadline->tv_sec >= UINT32_MAX) )
return UINT64_MAX;
pAbsDeadline->tv_sec += TsAdd.tv_sec;
pAbsDeadline->tv_nsec += TsAdd.tv_nsec;
if ((uint32_t)pAbsDeadline->tv_nsec >= RT_NS_1SEC)
{
pAbsDeadline->tv_nsec -= RT_NS_1SEC;
pAbsDeadline->tv_sec++;
}
}
else
{
/* ASSUMES RTTimeSystemNanoTS() == RTTimeNanoTS() == clock_gettime(CLOCK_MONOTONIC). */
if (fFlags & RTSEMWAIT_FLAGS_RELATIVE)
{
uint64_t const nsNow = RTTimeSystemNanoTS();
uAbsTimeout += nsNow;
if (uAbsTimeout < nsNow)
return UINT64_MAX;
}
/* Check for 32-bit tv_sec overflows: */
if ( sizeof(pAbsDeadline->tv_sec) < sizeof(uint64_t)
&& uAbsTimeout >= (uint64_t)RT_NS_1SEC * UINT32_MAX)
return UINT64_MAX;
pAbsDeadline->tv_nsec = uAbsTimeout % RT_NS_1SEC;
pAbsDeadline->tv_sec = uAbsTimeout / RT_NS_1SEC;
}
return uTimeout;
}
#endif /* !IPRT_INCLUDED_SRC_r3_posix_semwait_h */
|