1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
|
/* $Id: timer-posix.cpp $ */
/** @file
* IPRT - Timer, POSIX.
*/
/*
* Copyright (C) 2006-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/** Enables the use of POSIX RT timers. */
#ifndef RT_OS_SOLARIS /* Solaris 10 doesn't have SIGEV_THREAD */
# define IPRT_WITH_POSIX_TIMERS
#endif /* !RT_OS_SOLARIS */
/** @def RT_TIMER_SIGNAL
* The signal number that the timers use.
* We currently use SIGALRM for both setitimer and posix real time timers
* out of simplicity, but we might want change this later for the posix ones. */
#ifdef IPRT_WITH_POSIX_TIMERS
# define RT_TIMER_SIGNAL SIGALRM
#else
# define RT_TIMER_SIGNAL SIGALRM
#endif
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP RTLOGGROUP_TIMER
#include <iprt/timer.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/thread.h>
#include <iprt/log.h>
#include <iprt/asm.h>
#include <iprt/semaphore.h>
#include <iprt/string.h>
#include <iprt/once.h>
#include <iprt/err.h>
#include <iprt/initterm.h>
#include <iprt/critsect.h>
#include "internal/magics.h"
#include <unistd.h>
#include <sys/fcntl.h>
#include <sys/ioctl.h>
#ifdef RT_OS_LINUX
# include <linux/rtc.h>
#endif
#include <sys/time.h>
#include <signal.h>
#include <errno.h>
#include <pthread.h>
#if defined(RT_OS_DARWIN)
# define sigprocmask pthread_sigmask /* On xnu sigprocmask works on the process, not the calling thread as elsewhere. */
#endif
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
#ifdef IPRT_WITH_POSIX_TIMERS
/** Init the critsect on first call. */
static RTONCE g_TimerOnce = RTONCE_INITIALIZER;
/** Global critsect that serializes timer creation and destruction.
* This is lazily created on the first RTTimerCreateEx call and will not be
* freed up (I'm afraid). */
static RTCRITSECT g_TimerCritSect;
/**
* Global counter of RTTimer instances. The signal thread is
* started when it changes from 0 to 1. The signal thread
* terminates when it becomes 0 again.
*/
static uint32_t volatile g_cTimerInstances;
/** The signal handling thread. */
static RTTHREAD g_TimerThread;
#endif /* IPRT_WITH_POSIX_TIMERS */
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* The internal representation of a timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Flag indicating the timer is suspended. */
uint8_t volatile fSuspended;
/** Flag indicating that the timer has been destroyed. */
uint8_t volatile fDestroyed;
#ifndef IPRT_WITH_POSIX_TIMERS /** @todo We have to take the signals on a dedicated timer thread as
* we (might) have code assuming that signals doesn't screw around
* on existing threads. (It would be sufficient to have one thread
* per signal of course since the signal will be masked while it's
* running, however, it may just cause more complications than its
* worth - sigwait/sigwaitinfo work atomically anyway...)
* Also, must block the signal in the thread main procedure too. */
/** The timer thread. */
RTTHREAD Thread;
/** Event semaphore on which the thread is blocked. */
RTSEMEVENT Event;
#endif /* !IPRT_WITH_POSIX_TIMERS */
/** User argument. */
void *pvUser;
/** Callback. */
PFNRTTIMER pfnTimer;
/** The timer interval. 0 if one-shot. */
uint64_t u64NanoInterval;
#ifndef IPRT_WITH_POSIX_TIMERS
/** The first shot interval. 0 if ASAP. */
uint64_t volatile u64NanoFirst;
#endif /* !IPRT_WITH_POSIX_TIMERS */
/** The current timer tick. */
uint64_t volatile iTick;
#ifndef IPRT_WITH_POSIX_TIMERS
/** The error/status of the timer.
* Initially -1, set to 0 when the timer have been successfully started, and
* to errno on failure in starting the timer. */
int volatile iError;
#else /* IPRT_WITH_POSIX_TIMERS */
timer_t NativeTimer;
#endif /* IPRT_WITH_POSIX_TIMERS */
} RTTIMER;
#ifdef IPRT_WITH_POSIX_TIMERS
/**
* RTOnce callback that initializes the critical section.
*
* @returns RTCritSectInit return code.
* @param pvUser NULL, ignored.
*
*/
static DECLCALLBACK(int) rtTimerOnce(void *pvUser)
{
NOREF(pvUser);
return RTCritSectInit(&g_TimerCritSect);
}
#endif
/**
* Signal handler which ignore everything it gets.
*
* @param iSignal The signal number.
*/
static void rttimerSignalIgnore(int iSignal)
{
//AssertBreakpoint();
NOREF(iSignal);
}
/**
* RT_TIMER_SIGNAL wait thread.
*/
static DECLCALLBACK(int) rttimerThread(RTTHREAD hThreadSelf, void *pvArg)
{
NOREF(hThreadSelf); NOREF(pvArg);
#ifndef IPRT_WITH_POSIX_TIMERS
PRTTIMER pTimer = (PRTTIMER)pvArg;
RTTIMER Timer = *pTimer;
Assert(pTimer->u32Magic == RTTIMER_MAGIC);
#endif /* !IPRT_WITH_POSIX_TIMERS */
/*
* Install signal handler.
*/
struct sigaction SigAct;
memset(&SigAct, 0, sizeof(SigAct));
SigAct.sa_flags = SA_RESTART;
sigemptyset(&SigAct.sa_mask);
SigAct.sa_handler = rttimerSignalIgnore;
if (sigaction(RT_TIMER_SIGNAL, &SigAct, NULL))
{
SigAct.sa_flags &= ~SA_RESTART;
if (sigaction(RT_TIMER_SIGNAL, &SigAct, NULL))
AssertMsgFailed(("sigaction failed, errno=%d\n", errno));
}
/*
* Mask most signals except those which might be used by the pthread implementation (linux).
*/
sigset_t SigSet;
sigfillset(&SigSet);
sigdelset(&SigSet, SIGTERM);
sigdelset(&SigSet, SIGHUP);
sigdelset(&SigSet, SIGINT);
sigdelset(&SigSet, SIGABRT);
sigdelset(&SigSet, SIGKILL);
#ifdef SIGRTMIN
for (int iSig = SIGRTMIN; iSig < SIGRTMAX; iSig++)
sigdelset(&SigSet, iSig);
#endif
if (sigprocmask(SIG_SETMASK, &SigSet, NULL))
{
#ifdef IPRT_WITH_POSIX_TIMERS
int rc = RTErrConvertFromErrno(errno);
#else
int rc = pTimer->iError = RTErrConvertFromErrno(errno);
#endif
AssertMsgFailed(("sigprocmask -> errno=%d\n", errno));
return rc;
}
/*
* The work loop.
*/
RTThreadUserSignal(hThreadSelf);
#ifndef IPRT_WITH_POSIX_TIMERS
while ( !pTimer->fDestroyed
&& pTimer->u32Magic == RTTIMER_MAGIC)
{
/*
* Wait for a start or destroy event.
*/
if (pTimer->fSuspended)
{
int rc = RTSemEventWait(pTimer->Event, RT_INDEFINITE_WAIT);
if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED)
{
AssertRC(rc);
if (pTimer->fDestroyed)
continue;
RTThreadSleep(1000); /* Don't cause trouble! */
}
if ( pTimer->fSuspended
|| pTimer->fDestroyed)
continue;
}
/*
* Start the timer.
*
* For some SunOS (/SysV?) threading compatibility Linux will only
* deliver the RT_TIMER_SIGNAL to the thread calling setitimer(). Therefore
* we have to call it here.
*
* It turns out this might not always be the case, see RT_TIMER_SIGNAL killing
* processes on RH 2.4.21.
*/
struct itimerval TimerVal;
if (pTimer->u64NanoFirst)
{
uint64_t u64 = RT_MAX(1000, pTimer->u64NanoFirst);
TimerVal.it_value.tv_sec = u64 / 1000000000;
TimerVal.it_value.tv_usec = (u64 % 1000000000) / 1000;
}
else
{
TimerVal.it_value.tv_sec = 0;
TimerVal.it_value.tv_usec = 10;
}
if (pTimer->u64NanoInterval)
{
uint64_t u64 = RT_MAX(1000, pTimer->u64NanoInterval);
TimerVal.it_interval.tv_sec = u64 / 1000000000;
TimerVal.it_interval.tv_usec = (u64 % 1000000000) / 1000;
}
else
{
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 0;
}
if (setitimer(ITIMER_REAL, &TimerVal, NULL))
{
ASMAtomicXchgU8(&pTimer->fSuspended, true);
pTimer->iError = RTErrConvertFromErrno(errno);
RTThreadUserSignal(hThreadSelf);
continue; /* back to suspended mode. */
}
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
/*
* Timer Service Loop.
*/
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
do
{
siginfo_t SigInfo;
RT_ZERO(SigInfo);
#ifdef RT_OS_DARWIN
if (RT_LIKELY(sigwait(&SigSet, &SigInfo.si_signo) >= 0))
{
#else
if (RT_LIKELY(sigwaitinfo(&SigSet, &SigInfo) >= 0))
{
if (RT_LIKELY(SigInfo.si_signo == RT_TIMER_SIGNAL))
#endif
{
if (RT_UNLIKELY( pTimer->fSuspended
|| pTimer->fDestroyed
|| pTimer->u32Magic != RTTIMER_MAGIC))
break;
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pTimer->iTick);
/* auto suspend one-shot timers. */
if (RT_UNLIKELY(!pTimer->u64NanoInterval))
{
ASMAtomicWriteU8(&pTimer->fSuspended, true);
break;
}
}
}
else if (errno != EINTR)
AssertMsgFailed(("sigwaitinfo -> errno=%d\n", errno));
} while (RT_LIKELY( !pTimer->fSuspended
&& !pTimer->fDestroyed
&& pTimer->u32Magic == RTTIMER_MAGIC));
/*
* Disable the timer.
*/
struct itimerval TimerVal2 = {{0,0}, {0,0}};
if (setitimer(ITIMER_REAL, &TimerVal2, NULL))
AssertMsgFailed(("setitimer(ITIMER_REAL,&{0}, NULL) failed, errno=%d\n", errno));
/*
* ACK any pending suspend request.
*/
if (!pTimer->fDestroyed)
{
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
}
}
/*
* Exit.
*/
pTimer->iError = 0;
RTThreadUserSignal(hThreadSelf);
#else /* IPRT_WITH_POSIX_TIMERS */
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
while (g_cTimerInstances)
{
siginfo_t SigInfo;
RT_ZERO(SigInfo);
if (RT_LIKELY(sigwaitinfo(&SigSet, &SigInfo) >= 0))
{
LogFlow(("rttimerThread: signo=%d pTimer=%p\n", SigInfo.si_signo, SigInfo.si_value.sival_ptr));
if (RT_LIKELY( SigInfo.si_signo == RT_TIMER_SIGNAL
&& SigInfo.si_code == SI_TIMER)) /* The SI_TIMER check is *essential* because of the pthread_kill. */
{
PRTTIMER pTimer = (PRTTIMER)SigInfo.si_value.sival_ptr;
AssertPtr(pTimer);
if (RT_UNLIKELY( !RT_VALID_PTR(pTimer)
|| ASMAtomicUoReadU8(&pTimer->fSuspended)
|| ASMAtomicUoReadU8(&pTimer->fDestroyed)
|| pTimer->u32Magic != RTTIMER_MAGIC))
continue;
pTimer->pfnTimer(pTimer, pTimer->pvUser, ++pTimer->iTick);
/* auto suspend one-shot timers. */
if (RT_UNLIKELY(!pTimer->u64NanoInterval))
ASMAtomicWriteU8(&pTimer->fSuspended, true);
}
}
}
#endif /* IPRT_WITH_POSIX_TIMERS */
return VINF_SUCCESS;
}
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
/*
* We don't support the fancy MP features.
*/
if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
return VERR_NOT_SUPPORTED;
/*
* We need the signal masks to be set correctly, which they won't be in
* unobtrusive mode.
*/
if (RTR3InitIsUnobtrusive())
return VERR_NOT_SUPPORTED;
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Check if timer is busy.
*/
struct itimerval TimerVal;
if (getitimer(ITIMER_REAL, &TimerVal))
{
AssertMsgFailed(("getitimer() -> errno=%d\n", errno));
return VERR_NOT_IMPLEMENTED;
}
if ( TimerVal.it_value.tv_usec
|| TimerVal.it_value.tv_sec
|| TimerVal.it_interval.tv_usec
|| TimerVal.it_interval.tv_sec)
{
AssertMsgFailed(("A timer is running. System limit is one timer per process!\n"));
return VERR_TIMER_BUSY;
}
#endif /* !IPRT_WITH_POSIX_TIMERS */
/*
* Block RT_TIMER_SIGNAL from calling thread.
*/
sigset_t SigSet;
sigemptyset(&SigSet);
sigaddset(&SigSet, RT_TIMER_SIGNAL);
sigprocmask(SIG_BLOCK, &SigSet, NULL);
#ifndef IPRT_WITH_POSIX_TIMERS /** @todo combine more of the setitimer/timer_create code. setitimer could also use the global thread. */
/** @todo Move this RTC hack else where... */
static bool fDoneRTC;
if (!fDoneRTC)
{
fDoneRTC = true;
/* check resolution. */
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 1000;
TimerVal.it_value = TimerVal.it_interval;
if ( setitimer(ITIMER_REAL, &TimerVal, NULL)
|| getitimer(ITIMER_REAL, &TimerVal)
|| TimerVal.it_interval.tv_usec > 1000)
{
/*
* Try open /dev/rtc to set the irq rate to 1024 and
* turn periodic
*/
Log(("RTTimerCreate: interval={%ld,%ld} trying to adjust /dev/rtc!\n", TimerVal.it_interval.tv_sec, TimerVal.it_interval.tv_usec));
# ifdef RT_OS_LINUX
int fh = open("/dev/rtc", O_RDONLY);
if (fh >= 0)
{
if ( ioctl(fh, RTC_IRQP_SET, 1024) < 0
|| ioctl(fh, RTC_PIE_ON, 0) < 0)
Log(("RTTimerCreate: couldn't configure rtc! errno=%d\n", errno));
ioctl(fh, F_SETFL, O_ASYNC);
ioctl(fh, F_SETOWN, getpid());
/* not so sure if closing it is a good idea... */
//close(fh);
}
else
Log(("RTTimerCreate: couldn't configure rtc! open failed with errno=%d\n", errno));
# endif
}
/* disable it */
TimerVal.it_interval.tv_sec = 0;
TimerVal.it_interval.tv_usec = 0;
TimerVal.it_value = TimerVal.it_interval;
setitimer(ITIMER_REAL, &TimerVal, NULL);
}
/*
* Create a new timer.
*/
int rc;
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (pTimer)
{
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
pTimer->fDestroyed = false;
pTimer->Thread = NIL_RTTHREAD;
pTimer->Event = NIL_RTSEMEVENT;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->u64NanoFirst = 0;
pTimer->iTick = 0;
pTimer->iError = 0;
rc = RTSemEventCreate(&pTimer->Event);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
rc = RTThreadCreate(&pTimer->Thread, rttimerThread, pTimer, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer");
AssertRC(rc);
if (RT_SUCCESS(rc))
{
/*
* Wait for the timer thread to initialize it self.
* This might take a little while...
*/
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
if (RT_SUCCESS(rc))
{
rc = RTThreadUserReset(pTimer->Thread); AssertRC(rc);
rc = pTimer->iError;
AssertRC(rc);
if (RT_SUCCESS(rc))
{
RTThreadYield(); /* <-- Horrible hack to make tstTimer work. (linux 2.6.12) */
*ppTimer = pTimer;
return VINF_SUCCESS;
}
}
/* bail out */
ASMAtomicXchgU8(&pTimer->fDestroyed, true);
ASMAtomicXchgU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
RTThreadWait(pTimer->Thread, 45*1000, NULL);
}
RTSemEventDestroy(pTimer->Event);
pTimer->Event = NIL_RTSEMEVENT;
}
RTMemFree(pTimer);
}
else
rc = VERR_NO_MEMORY;
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Do the global init first.
*/
int rc = RTOnce(&g_TimerOnce, rtTimerOnce, NULL);
if (RT_FAILURE(rc))
return rc;
/*
* Create a new timer structure.
*/
LogFlow(("RTTimerCreateEx: u64NanoInterval=%llu fFlags=%lu\n", u64NanoInterval, fFlags));
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (pTimer)
{
/* Initialize timer structure. */
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
pTimer->fDestroyed = false;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->iTick = 0;
/*
* Create a timer that deliver RT_TIMER_SIGNAL upon timer expiration.
*/
struct sigevent SigEvt;
SigEvt.sigev_notify = SIGEV_SIGNAL;
SigEvt.sigev_signo = RT_TIMER_SIGNAL;
SigEvt.sigev_value.sival_ptr = pTimer; /* sigev_value gets copied to siginfo. */
int err = timer_create(CLOCK_REALTIME, &SigEvt, &pTimer->NativeTimer);
if (!err)
{
/*
* Increment the timer count, do this behind the critsect to avoid races.
*/
RTCritSectEnter(&g_TimerCritSect);
if (ASMAtomicIncU32(&g_cTimerInstances) != 1)
{
Assert(g_cTimerInstances > 1);
RTCritSectLeave(&g_TimerCritSect);
LogFlow(("RTTimerCreateEx: rc=%Rrc pTimer=%p (thread already running)\n", rc, pTimer));
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/*
* Create the signal handling thread. It will wait for the signal
* and execute the timer functions.
*/
rc = RTThreadCreate(&g_TimerThread, rttimerThread, NULL, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer");
if (RT_SUCCESS(rc))
{
rc = RTThreadUserWait(g_TimerThread, 45*1000); /* this better not fail... */
if (RT_SUCCESS(rc))
{
RTCritSectLeave(&g_TimerCritSect);
LogFlow(("RTTimerCreateEx: rc=%Rrc pTimer=%p (thread already running)\n", rc, pTimer));
*ppTimer = pTimer;
return VINF_SUCCESS;
}
/* darn, what do we do here? */
}
/* bail out */
ASMAtomicDecU32(&g_cTimerInstances);
Assert(!g_cTimerInstances);
RTCritSectLeave(&g_TimerCritSect);
timer_delete(pTimer->NativeTimer);
}
else
{
rc = RTErrConvertFromErrno(err);
Log(("RTTimerCreateEx: err=%d (%Rrc)\n", err, rc));
}
RTMemFree(pTimer);
}
else
rc = VERR_NO_MEMORY;
#endif /* IPRT_WITH_POSIX_TIMERS */
return rc;
}
RTR3DECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
LogFlow(("RTTimerDestroy: pTimer=%p\n", pTimer));
/*
* Validate input.
*/
/* NULL is ok. */
if (!pTimer)
return VINF_SUCCESS;
int rc = VINF_SUCCESS;
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
#ifdef IPRT_WITH_POSIX_TIMERS
AssertReturn(g_TimerThread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#else
AssertReturn(pTimer->Thread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#endif
/*
* Mark the semaphore as destroyed.
*/
ASMAtomicWriteU8(&pTimer->fDestroyed, true);
ASMAtomicWriteU32(&pTimer->u32Magic, ~RTTIMER_MAGIC);
#ifdef IPRT_WITH_POSIX_TIMERS
/*
* Suspend the timer if it's running.
*/
if (!pTimer->fSuspended)
{
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = 0;
TimerSpec.it_value.tv_nsec = 0;
TimerSpec.it_interval.tv_sec = 0;
TimerSpec.it_interval.tv_nsec = 0;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL); NOREF(err);
AssertMsg(!err, ("%d / %d\n", err, errno));
}
#endif
/*
* Poke the thread and wait for it to finish.
* This is only done for the last timer when using posix timers.
*/
#ifdef IPRT_WITH_POSIX_TIMERS
RTTHREAD Thread = NIL_RTTHREAD;
RTCritSectEnter(&g_TimerCritSect);
if (ASMAtomicDecU32(&g_cTimerInstances) == 0)
{
Thread = g_TimerThread;
g_TimerThread = NIL_RTTHREAD;
}
RTCritSectLeave(&g_TimerCritSect);
#else /* IPRT_WITH_POSIX_TIMERS */
RTTHREAD Thread = pTimer->Thread;
rc = RTSemEventSignal(pTimer->Event);
AssertRC(rc);
#endif /* IPRT_WITH_POSIX_TIMERS */
if (Thread != NIL_RTTHREAD)
{
/* Signal it so it gets out of the sigwait if it's stuck there... */
pthread_kill((pthread_t)RTThreadGetNative(Thread), RT_TIMER_SIGNAL);
/*
* Wait for the thread to complete.
*/
rc = RTThreadWait(Thread, 30 * 1000, NULL);
AssertRC(rc);
}
/*
* Free up the resources associated with the timer.
*/
#ifdef IPRT_WITH_POSIX_TIMERS
timer_delete(pTimer->NativeTimer);
#else
RTSemEventDestroy(pTimer->Event);
pTimer->Event = NIL_RTSEMEVENT;
#endif /* !IPRT_WITH_POSIX_TIMERS */
if (RT_SUCCESS(rc))
RTMemFree(pTimer);
return rc;
}
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
/*
* Validate input.
*/
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
#ifndef IPRT_WITH_POSIX_TIMERS
AssertReturn(pTimer->Thread != RTThreadSelf(), VERR_INTERNAL_ERROR);
#endif
/*
* Already running?
*/
if (!ASMAtomicXchgU8(&pTimer->fSuspended, false))
return VERR_TIMER_ACTIVE;
LogFlow(("RTTimerStart: pTimer=%p u64First=%llu u64NanoInterval=%llu\n", pTimer, u64First, pTimer->u64NanoInterval));
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Tell the thread to start servicing the timer.
* Wait for it to ACK the request to avoid reset races.
*/
RTThreadUserReset(pTimer->Thread);
ASMAtomicUoWriteU64(&pTimer->u64NanoFirst, u64First);
ASMAtomicUoWriteU64(&pTimer->iTick, 0);
ASMAtomicWriteU8(&pTimer->fSuspended, false);
int rc = RTSemEventSignal(pTimer->Event);
if (RT_SUCCESS(rc))
{
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
RTThreadUserReset(pTimer->Thread);
}
else
AssertRC(rc);
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Start the timer.
*/
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = u64First / 1000000000; /* nanosec => sec */
TimerSpec.it_value.tv_nsec = u64First ? u64First % 1000000000 : 10; /* 0 means disable, replace it with 10. */
TimerSpec.it_interval.tv_sec = pTimer->u64NanoInterval / 1000000000;
TimerSpec.it_interval.tv_nsec = pTimer->u64NanoInterval % 1000000000;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL);
int rc = err == 0 ? VINF_SUCCESS : RTErrConvertFromErrno(errno);
#endif /* IPRT_WITH_POSIX_TIMERS */
if (RT_FAILURE(rc))
ASMAtomicXchgU8(&pTimer->fSuspended, false);
return rc;
}
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
/*
* Validate input.
*/
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
/*
* Already running?
*/
if (ASMAtomicXchgU8(&pTimer->fSuspended, true))
return VERR_TIMER_SUSPENDED;
LogFlow(("RTTimerStop: pTimer=%p\n", pTimer));
#ifndef IPRT_WITH_POSIX_TIMERS
/*
* Tell the thread to stop servicing the timer.
*/
RTThreadUserReset(pTimer->Thread);
ASMAtomicXchgU8(&pTimer->fSuspended, true);
int rc = VINF_SUCCESS;
if (RTThreadSelf() != pTimer->Thread)
{
pthread_kill((pthread_t)RTThreadGetNative(pTimer->Thread), RT_TIMER_SIGNAL);
rc = RTThreadUserWait(pTimer->Thread, 45*1000);
AssertRC(rc);
RTThreadUserReset(pTimer->Thread);
}
#else /* IPRT_WITH_POSIX_TIMERS */
/*
* Stop the timer.
*/
struct itimerspec TimerSpec;
TimerSpec.it_value.tv_sec = 0;
TimerSpec.it_value.tv_nsec = 0;
TimerSpec.it_interval.tv_sec = 0;
TimerSpec.it_interval.tv_nsec = 0;
int err = timer_settime(pTimer->NativeTimer, 0, &TimerSpec, NULL);
int rc = err == 0 ? VINF_SUCCESS : RTErrConvertFromErrno(errno);
#endif /* IPRT_WITH_POSIX_TIMERS */
return rc;
}
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
AssertPtrReturn(pTimer, VERR_INVALID_POINTER);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, VERR_INVALID_MAGIC);
NOREF(u64NanoInterval);
return VERR_NOT_SUPPORTED;
}
|