1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/* $Id: cpu-numa.cpp $ */
/** @file
* numa - NUMA / memory benchmark.
*/
/*
* Copyright (C) 2011-2023 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/test.h>
#include <iprt/asm.h>
//#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
//# include <iprt/asm-amd64-x86.h>
//#endif
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/time.h>
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/** The number of threads to skip when testing. */
static uint32_t g_cThreadsToSkip = 1;
/**
* Gets the next online CPU.
*
* @returns Next CPU index or RTCPUSET_MAX_CPUS.
* @param iCurCpu The current CPU (index).
*/
static int getNextCpu(unsigned iCurCpu)
{
/* Skip to the next chip. */
iCurCpu = (iCurCpu / g_cThreadsToSkip) * g_cThreadsToSkip;
iCurCpu += g_cThreadsToSkip;
/* Skip offline cpus. */
while ( iCurCpu < RTCPUSET_MAX_CPUS
&& !RTMpIsCpuOnline(iCurCpu) )
iCurCpu++;
/* Make sure we're within bounds (in case of bad input). */
if (iCurCpu > RTCPUSET_MAX_CPUS)
iCurCpu = RTCPUSET_MAX_CPUS;
return iCurCpu;
}
static void doTest(RTTEST hTest)
{
NOREF(hTest);
uint32_t iAllocCpu = 0;
while (iAllocCpu < RTCPUSET_MAX_CPUS)
{
const uint32_t cbTestSet = _1M * 32;
const uint32_t cIterations = 384;
/*
* Change CPU and allocate a chunk of memory.
*/
RTTESTI_CHECK_RC_OK_RETV(RTThreadSetAffinityToCpu(RTMpCpuIdFromSetIndex(iAllocCpu)));
void *pvTest = RTMemPageAlloc(cbTestSet); /* may be leaked, who cares */
RTTESTI_CHECK_RETV(pvTest != NULL);
memset(pvTest, 0xef, cbTestSet);
/*
* Do the tests.
*/
uint32_t iAccessCpu = 0;
while (iAccessCpu < RTCPUSET_MAX_CPUS)
{
RTTESTI_CHECK_RC_OK_RETV(RTThreadSetAffinityToCpu(RTMpCpuIdFromSetIndex(iAccessCpu)));
/*
* The write test.
*/
RTTimeNanoTS(); RTThreadYield();
uint64_t u64StartTS = RTTimeNanoTS();
for (uint32_t i = 0; i < cIterations; i++)
{
ASMCompilerBarrier(); /* paranoia */
memset(pvTest, i, cbTestSet);
}
uint64_t const cNsElapsedWrite = RTTimeNanoTS() - u64StartTS;
uint64_t cMBPerSec = (uint64_t)( ((uint64_t)cIterations * cbTestSet) /* bytes */
/ ((long double)cNsElapsedWrite / RT_NS_1SEC_64) /* seconds */
/ _1M /* MB */ );
RTTestIValueF(cMBPerSec, RTTESTUNIT_MEGABYTES_PER_SEC, "cpu%02u-mem%02u-write", iAllocCpu, iAccessCpu);
/*
* The read test.
*/
memset(pvTest, 0, cbTestSet);
RTTimeNanoTS(); RTThreadYield();
u64StartTS = RTTimeNanoTS();
for (uint32_t i = 0; i < cIterations; i++)
{
#if 1
size_t u = 0;
size_t volatile *puCur = (size_t volatile *)pvTest;
size_t volatile *puEnd = puCur + cbTestSet / sizeof(size_t);
while (puCur != puEnd)
u += *puCur++;
#else
ASMCompilerBarrier(); /* paranoia */
void *pvFound = memchr(pvTest, (i & 127) + 1, cbTestSet);
RTTESTI_CHECK(pvFound == NULL);
#endif
}
uint64_t const cNsElapsedRead = RTTimeNanoTS() - u64StartTS;
cMBPerSec = (uint64_t)( ((uint64_t)cIterations * cbTestSet) /* bytes */
/ ((long double)cNsElapsedRead / RT_NS_1SEC_64) /* seconds */
/ _1M /* MB */ );
RTTestIValueF(cMBPerSec, RTTESTUNIT_MEGABYTES_PER_SEC, "cpu%02u-mem%02u-read", iAllocCpu, iAccessCpu);
/*
* The read/write test.
*/
RTTimeNanoTS(); RTThreadYield();
u64StartTS = RTTimeNanoTS();
for (uint32_t i = 0; i < cIterations; i++)
{
ASMCompilerBarrier(); /* paranoia */
memcpy(pvTest, (uint8_t *)pvTest + cbTestSet / 2, cbTestSet / 2);
}
uint64_t const cNsElapsedRW = RTTimeNanoTS() - u64StartTS;
cMBPerSec = (uint64_t)( ((uint64_t)cIterations * cbTestSet) /* bytes */
/ ((long double)cNsElapsedRW / RT_NS_1SEC_64) /* seconds */
/ _1M /* MB */ );
RTTestIValueF(cMBPerSec, RTTESTUNIT_MEGABYTES_PER_SEC, "cpu%02u-mem%02u-read-write", iAllocCpu, iAccessCpu);
/*
* Total time.
*/
RTTestIValueF(cNsElapsedRead + cNsElapsedWrite + cNsElapsedRW, RTTESTUNIT_NS,
"cpu%02u-mem%02u-time", iAllocCpu, iAccessCpu);
/* advance */
iAccessCpu = getNextCpu(iAccessCpu);
}
/*
* Clean up and advance to the next CPU.
*/
RTMemPageFree(pvTest, cbTestSet);
iAllocCpu = getNextCpu(iAllocCpu);
}
}
int main(int argc, char **argv)
{
RTTEST hTest;
RTEXITCODE rcExit = RTTestInitAndCreate("numa-1", &hTest);
if (rcExit != RTEXITCODE_SUCCESS)
return rcExit;
RTTestBanner(hTest);
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
/** @todo figure basic topology. */
#endif
if (argc == 2)
g_cThreadsToSkip = RTStrToUInt8(argv[1]);
doTest(hTest);
return RTTestSummaryAndDestroy(hTest);
}
|