summaryrefslogtreecommitdiffstats
path: root/libc-top-half/musl/src/math/exp.c
blob: b764d73cfe339c22579d28388b387ba22ba7eda0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 * Double-precision e^x function.
 *
 * Copyright (c) 2018, Arm Limited.
 * SPDX-License-Identifier: MIT
 */

#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "exp_data.h"

#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]

/* Handle cases that may overflow or underflow when computing the result that
   is scale*(1+TMP) without intermediate rounding.  The bit representation of
   scale is in SBITS, however it has a computed exponent that may have
   overflown into the sign bit so that needs to be adjusted before using it as
   a double.  (int32_t)KI is the k used in the argument reduction and exponent
   adjustment of scale, positive k here means the result may overflow and
   negative k means the result may underflow.  */
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
{
	double_t scale, y;

	if ((ki & 0x80000000) == 0) {
		/* k > 0, the exponent of scale might have overflowed by <= 460.  */
		sbits -= 1009ull << 52;
		scale = asdouble(sbits);
		y = 0x1p1009 * (scale + scale * tmp);
		return eval_as_double(y);
	}
	/* k < 0, need special care in the subnormal range.  */
	sbits += 1022ull << 52;
	scale = asdouble(sbits);
	y = scale + scale * tmp;
	if (y < 1.0) {
		/* Round y to the right precision before scaling it into the subnormal
		 range to avoid double rounding that can cause 0.5+E/2 ulp error where
		 E is the worst-case ulp error outside the subnormal range.  So this
		 is only useful if the goal is better than 1 ulp worst-case error.  */
		double_t hi, lo;
		lo = scale - y + scale * tmp;
		hi = 1.0 + y;
		lo = 1.0 - hi + y + lo;
		y = eval_as_double(hi + lo) - 1.0;
		/* Avoid -0.0 with downward rounding.  */
		if (WANT_ROUNDING && y == 0.0)
			y = 0.0;
		/* The underflow exception needs to be signaled explicitly.  */
		fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
	}
	y = 0x1p-1022 * y;
	return eval_as_double(y);
}

/* Top 12 bits of a double (sign and exponent bits).  */
static inline uint32_t top12(double x)
{
	return asuint64(x) >> 52;
}

double exp(double x)
{
	uint32_t abstop;
	uint64_t ki, idx, top, sbits;
	double_t kd, z, r, r2, scale, tail, tmp;

	abstop = top12(x) & 0x7ff;
	if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
		if (abstop - top12(0x1p-54) >= 0x80000000)
			/* Avoid spurious underflow for tiny x.  */
			/* Note: 0 is common input.  */
			return WANT_ROUNDING ? 1.0 + x : 1.0;
		if (abstop >= top12(1024.0)) {
			if (asuint64(x) == asuint64(-INFINITY))
				return 0.0;
			if (abstop >= top12(INFINITY))
				return 1.0 + x;
			if (asuint64(x) >> 63)
				return __math_uflow(0);
			else
				return __math_oflow(0);
		}
		/* Large x is special cased below.  */
		abstop = 0;
	}

	/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
	/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
	z = InvLn2N * x;
#if TOINT_INTRINSICS
	kd = roundtoint(z);
	ki = converttoint(z);
#elif EXP_USE_TOINT_NARROW
	/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
	kd = eval_as_double(z + Shift);
	ki = asuint64(kd) >> 16;
	kd = (double_t)(int32_t)ki;
#else
	/* z - kd is in [-1, 1] in non-nearest rounding modes.  */
	kd = eval_as_double(z + Shift);
	ki = asuint64(kd);
	kd -= Shift;
#endif
	r = x + kd * NegLn2hiN + kd * NegLn2loN;
	/* 2^(k/N) ~= scale * (1 + tail).  */
	idx = 2 * (ki % N);
	top = ki << (52 - EXP_TABLE_BITS);
	tail = asdouble(T[idx]);
	/* This is only a valid scale when -1023*N < k < 1024*N.  */
	sbits = T[idx + 1] + top;
	/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
	/* Evaluation is optimized assuming superscalar pipelined execution.  */
	r2 = r * r;
	/* Without fma the worst case error is 0.25/N ulp larger.  */
	/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
	tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
	if (predict_false(abstop == 0))
		return specialcase(tmp, sbits, ki);
	scale = asdouble(sbits);
	/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
	   is no spurious underflow here even without fma.  */
	return eval_as_double(scale + scale * tmp);
}