diff options
Diffstat (limited to 'epan/dissectors/packet-dof.c')
-rw-r--r-- | epan/dissectors/packet-dof.c | 12513 |
1 files changed, 12513 insertions, 0 deletions
diff --git a/epan/dissectors/packet-dof.c b/epan/dissectors/packet-dof.c new file mode 100644 index 00000000..d1075a2c --- /dev/null +++ b/epan/dissectors/packet-dof.c @@ -0,0 +1,12513 @@ +/* packet-dof.c + * Routines for Distributed Object Framework (DOF) Wireshark Support + * Copyright 2015 Bryant Eastham <bryant.eastham[AT]us.panasonic.com> + * See https://opendof.org for more information. + * + * Wireshark - Network traffic analyzer + * By Gerald Combs <gerald@wireshark.org> + * Copyright 1998 Gerald Combs + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +/* INTRODUCTION + * This very large dissector implements packet decoding for the entire + * protocol suite of the OpenDOF Project. The OpenDOF Project + * (https://opendof.org) is an open-source IoT platform with + * implementations in Java, C#, and C. The protocols are documented + * on the web site, and the IP ports referenced are registered with IANA. + * + * "DOF" stands for Distributed Object Framework. The protocols define + * a complete protocol stack that can sit on top of a variety of transports. + * The stack itself is called the DPS, or "DOF Protocol Stack". It + * is a layered stack including a Network, Presentation, and Application + * layer. The underlying transport can be anything, these dissectors + * hook in to UDP and TCP. To the Wireshark user, however, this is + * referred to as "dof" and not "dps". + * + * The following protocols are defined in the stack and implemented + * here: + * DNP - DOF Network Protocol (versions: 0, 1) + * DPP - DOF Presentation Protocol (version: 0, 2) [1 is reserved and not supported] + * DAP - DOF Application Protocols: + * DSP - DOF Session Protocol (versions: 0) + * OAP - Object Access Protocol (versions: 1) + * TEP - Ticket Exchange Protocol (versions: 128) + * TRP - Ticket Request Protocol (versions: 129) + * SGMP - Secure Group Management Protocol (versions: 130) + * DOFSEC - DOF Security Protocols: + * CCM - Chained mode + * TUN - A tunneling protocol for embedding DOF in other protocols. + */ + +/* VERSIONS AND NAMING + * There are several different ways in which "versions" are used + * throughout the dissector. First, each of the DNP and DPP layers + * has a defined 'version'. The DOF Application Protocols are also + * distinguished by versioning, but it is actually the registered + * application ID that is the version. This is complicated by + * the fact that many of the application IDs represent the same + * version of a protocol from a capability perspective (and + * a user perspective) with the difference being some attribute + * of the protocol - for example the security primitives used. + * + * Another means of versioning is by specification document. + * In this case the document is identified by a year and sequence, + * with specifications and PDUs using a name and sequence. + * Naming of fields and variables will use these identifiers + * as they are the easiest way to tie the code to the specifications. + * + * The specification documents are also the easiest way (although + * maybe not the clearest) to expose fields to the Wireshar user. + * A consistent naming is used, which is: + * + * (spec)-pdu-(seq)-(field) + * For example: dof-2009-1-pdu-1-value + * + * Variable naming includes a protocol name to provide clarity. + * + * This is not the clearest from a user perspective, but it + * has the benefit of tying directly to the specifications + * themselves and uniquely identifies each field. + * + * Routines that dissect are uniformly named by the PDU + * that they dissect using the PDU specification document + * and PDU name from that document as follows: + * + * dissect_(spec)_(name) + */ + +/* DISSECTOR DESIGN + * The original work on these dissectors began over ten years ago, but + * shared only within Panasonic. During the opening of the protocols in + * March of 2015 the decision was made to contribute the code to the Wireshark + * community. During this process the plugin approach was rejected and the + * entire set made into standard dissectors, and further to that all of the + * dissectors were merged into a single file. + * + * There are several types of supported dissectors that are part of the DPS family. + * At the lowest level are the transport dissectors. The responsibility + * of these dissectors is to determine the transport session information, pass + * DPS packets to the DPS dissector, and properly maintain the dof_api_data + * structure. + * + * The DPS dissector API comprises: + * 1. The structure (dof_api_data) that is passed in the data field to the DPS + * dissector. Transport plugins must understand this. + * 2. The dof_transport_session structure, which contains all transport + * information that is passed to the DPS dissector. + * 3. The name of the DPS dissector. + * + * The DPS dissector API extends to dissectors that are called by the DPS dissectors. + * + * Finally, there is the DPS Security Mode dissectors. These dissectors are passed + * additional security context information and it is their job to decrypt packets + * and pass them to higher-level dissectors. + * + * The DOF Protocol Stack is strictly layered with minimal (and defined) state + * exchanged between layers. This allows a fairly structured design, using + * dissector tables at each layer. The main DPS dissector receives packets + * from the transport hooks, and then dissects the packet layer by layer using + * the different dissector tables. Dissectors and the DNP, DPP, and DAP layers. + * + * In addition to the main protocol stack with its associated protocols there are + * additional common data elements that include extensibility. If an extension + * is found then it will be used to dissect, otherwise the base dissector will be + * used. + */ + +/* SESSIONS + * DOF defines sessions at many different levels, and state is always associated + * with a session. Much of the power (and complexity) of these dissectors relates + * to accurately tracking and maintaining context for each session, and displaying + * context-related decode information based on the session. This includes, for + * example, decoding encrypted data (including multicast group traffic) and + * showing full packet information even when the packet data uses aliases or + * other context specific data. + * + * Sessions are an extremely complex part of the dissectors because they occur at + * so many different levels, and that they are temporal in nature while wireshark + * is not. This means that all data structures that deal with sessions must deal + * with both the level and the time of the packet. + * + * The levels are: + * 1. Transport. These sessions are defined by the transport, and transport + * addresses. As in the transports, there is no transport information allowed + * at the dps level, but transport information is allowed to influence other + * decisions. Every dps packet must be part of a transport session. Transport + * sessions are usually managed as conversations in Wireshark. Each transport + * session is has an identifier that is defined by the DPS plugin the first + * time a packet in the transport session is passed to the plugin. + * 2. DPS. These sessions are defined by DPS, and are part of the DNP definition. + * These sessions are also assigned a unique DPS session identifier. + * + * 3. Security (Optional). Security sessions always exist inside of + * an DPS session. Security sessions are further divided into epochs, keys, etc. + * + * Temporal information is always associated with packet numbers, which always increase. + * This temporal information is used during the first pass to create sessions by + * determining that a new packet doesn't belong to a previous session. + * + * During the first pass the data structures are referenced from the transport + * session information up. The goal of the first pass is to create the most specific + * session information and associate each packet with the appropriate session. These + * sessions refer to more general session information. + * + * In order to make lookups easier, the most fine-grainded sessions are assigned + * unique identifiers. Secure sessions are always born unsecure (during security + * negotiation). These use the same session identifiers, but the state for the + * secure and unsecured times are separated. Once a session is secured it never + * transitions back to unsecured. + * + * MEMBERSHIP + * Each packet is sent by a member of the session. Session members have state related + * to the session. Packets are received by either a member of the session or the + * session itself (implying all members). This means that packet state can come + * from: + * 1. The sender. + * 2. The receiver (if directed to a receiver). + * 3. The session. + * The identity of a member is always a combination of transport and dps information. + * However, the state of the membership is in the context of the session, keyed by + * the sender. + * + * In order to make lookups easier, each unique sender in the system is + * assigned a unique identifier. + */ + +#include <config.h> + +#include <ctype.h> + +#include <wsutil/wsgcrypt.h> + +#include <epan/packet.h> +#include <epan/proto.h> +#include <epan/proto_data.h> +#include <epan/prefs.h> +#include <epan/conversation.h> +#include <epan/expert.h> +#include <epan/uat.h> +#include <wsutil/str_util.h> +#include <epan/to_str.h> +#include "packet-tcp.h" + +/* DEFINES, STRUCTURES, AND SUPPORT METHOD DECLARATIONS + * The following sections includes preprocessor definitions, structure definitions, + * and method declarations for all dissectors. + * The ordering is by DPS stack order, general first and then by protocols. + */ + +/** + * GENERAL SUPPORT STRUCTURES + * The following structures represent state that must be maintained for + * the dissectors to operate. They are not directly related to protocol + * information. + */ + +/** + * This structure represents a SID, or Sender ID, in the system. + * This is allocated as global memory, and must be freed. SIDs + * are Object IDs, and can be displayed in hex but preferrably + * using the OID output format. Even though the OID contains + * a length, we prefix this buffer with a length (which must + * be less than 255 by the definition of a SID. + * SIDs are not versioned, so they can be used universally in + * any protocol version. + */ +typedef guint8 *dof_2009_1_pdu_19_sid; + +/** + * This structure encapsulates an OPID, which is the combination of + * a source identifier (SID, and OID) and a packet number. This is a separate + * structure because some operations actually contain multiple opids, but need + * to be placed in the appropriate data structures based on SID lookup. This + * structure can be used as a key in different hash tables. + */ +typedef struct _dpp_opid +{ + guint op_sid_id; + dof_2009_1_pdu_19_sid op_sid; + guint op_cnt; +} dof_2009_1_pdu_20_opid; + +/** + * This structure contains all of the transport session information + * related to a particular session, but not related to the packet + * within that session. That information is separated to allow + * reuse of the structure. + */ +typedef struct _dof_transport_session +{ + /** + * TRANSPORT ID: This is a unique identifier for each transport, + * used to prevent aliasing of the SENDER ID value in the + * transport packet structure. It contains the protocol id + * assigned by Wireshark (unique per protocol). + */ + gint transport_id; + + /** + * For new sessions, this is left zero. The DPS dissector will + * set this value. + */ + guint32 transport_session_id; + + /** + * Timestamp of start of session. + */ + nstime_t session_start_ts; + + /** + * Whether negotiation is required on this session. + */ + gboolean negotiation_required; + + /** + * The frame number where negotiation was complete, or zero if not complete. + */ + guint32 negotiation_complete_at; + + /** + * The time when negotiation was complete, or zero if not complete. + */ + nstime_t negotiation_complete_at_ts; + + /** + * Type of transport session. + */ + gboolean is_streaming; /* Inverse is 'is_datagram'. */ + + /** + * Cardinality of transport session. + */ + gboolean is_2_node; /* Inverse is 'is_n_node'. */ +} dof_transport_session; + +typedef struct _dof_transport_packet +{ + /** + * Source of packet (if known, default is server). + */ + gboolean is_sent_by_client; /* Inverse is 'is_sent_by_server'. */ + + /** + * SENDER ID/RECEIVER ID: A unique value that identifies the unique + * transport sender/receiver address. This number is based on only + * the transport, and not session, information. + */ + guint sender_id; + guint receiver_id; +} dof_transport_packet; + +/** + * This structure maintains security state throughout an DPS session. + * It is managed by the key exchange protocol, and becomes effective + * at different dps packets in each communication direction. Decrypting + * a packet requires that this structure exists. + */ +typedef struct _dof_session_key_exchange_data +{ + /** + * The frame at which this becomes valid for initiator packets. + */ + guint32 i_valid; + + /** + * The frame at which this becomes valid for responder packets. + */ + guint32 r_valid; + + /** + * SECURITY MODE: The security mode for a secure session. Set + * by the key exchange dissector. + */ + guint32 security_mode; + + /** + * SECURITY MODE INITIALIZATION DATA: Determined by the key exchange + * protocol and passed here for the reference of the security mode. + */ + guint32 security_mode_data_length; + guint8 *security_mode_data; + + /** + * SECURITY MODE DATA: Created and managed by the security mode + * dissector. + */ + void *security_mode_key_data; + + /** + * SESSION KEY: Pointer to seasonal data that holds the encryption key. + */ + guint8 *session_key; + + /** + * The next security data in this session. + */ + struct _dof_session_key_exchange_data *next; +} dof_session_key_exchange_data; + +/** + * This structure contains security keys that should be tried with + * sessions that otherwise are not known. + */ +typedef struct _dof_session_key_data +{ + guint8 *session_key; +} dof_session_key_data; + +/** + * This structure contains security keys for groups. + */ +typedef struct _dof_group_data +{ + guint8 *domain; + guint8 domain_length; + guint8 *identity; + guint8 identity_length; + guint8 *kek; +} dof_group_data; + +/** + * This structure contains security keys for non-group identities. + */ +typedef struct _dof_identity_data +{ + guint8 *domain; + guint8 domain_length; + guint8 *identity; + guint8 identity_length; + guint8 *secret; +} dof_identity_data; + +/** + * This structure exists for global security state. It exposes the + * configuration data associated with DPS, and also is a common location + * that learned security information is stored. Each dof_packet_data will + * contain a pointer to this structure - there is only one for the entire + * DPS. + */ +typedef struct _dof_security_data +{ + /* Array of session_keys. */ + dof_session_key_data *session_key; + guint16 session_key_count; + + /* Array of group data. */ + dof_group_data *group_data; + guint16 group_data_count; + + /* Array of identity data. */ + dof_identity_data *identity_data; + guint16 identity_data_count; + + /* Global sessions. */ + /*TODO: Figure this out */ + /* dof_session_list* sessions; */ +} dof_security_data; + +/** + * This structure represents a key that is learned for a group and epoch. + */ +struct _dof_learned_group_data; +typedef struct _dof_learned_group_auth_data +{ + guint32 epoch; + guint8 *kek; + guint mode_length; + guint8 *mode; + guint16 security_mode; + struct _dof_learned_group_data *parent; + struct _dof_learned_group_auth_data *next; +} dof_learned_group_auth_data; + +/** + * This structure represents a group that is learned about. + */ +typedef struct _dof_learned_group_data +{ + guint8 domain_length; + guint8 *domain; + guint8 group_length; + guint8 *group; + guint32 ssid; + + dof_learned_group_auth_data *keys; + struct _dof_learned_group_data *next; +} dof_learned_group_data; + +/** + * This structure exists for each secure DPS session. This is kept in + * addition to the normal session + * Each packet that has state will contain a reference to one of these. + * + * Information in this structure is invariant for the duration of the + * session *or* is only used during the initial pass through the packets. + * Information that changes (for example, security parameters, keys, etc.) + * needs to be maintained separately, although this structure is the + * starting place for this information. + * + * This structure is initialized to zero. + */ +struct _dof_session_data; +typedef struct _dof_secure_session_data +{ + /** + * SSID: Zero is typically used for streaming sessions. + */ + guint32 ssid; + + /** + * DOMAIN LENGTH: The length of the security domain, greater than + * zero for secure sessions. Set by the key exchange dissector. + */ + guint8 domain_length; + + /** + * DOMAIN: The security domain itself, seasonal storage, non-null + * for secure sessions. Set by the key exchange dissector. + */ + guint8 *domain; + + /** + * SESSION SECURITY: This is a list of security data for this + * session, created by the key exchange protocol. + */ + dof_session_key_exchange_data *session_security_data; + dof_session_key_exchange_data *session_security_data_last; + + /** + * NEXT: This is the next secure session related to the parent + * unsecure session. Protocols can define new secure sessions and + * add them to this list. DPP then finds the correct secure session + * for a secure packet and caches it. + */ + struct _dof_secure_session_data *next; + struct _dof_session_data *parent; + guint32 original_session_id; + gboolean is_2_node; +} dof_secure_session_data; + +/** + * This structure exists for each DPS session. Secure sessions have an + * additional data structure that includes the secure session information. + * Each packet that has state will contain a reference to one of these. + * + * Information in this structure is invariant for the duration of the + * session *or* is only used during the initial pass through the packets. + * Information that changes (for example, security parameters, keys, etc.) + * needs to be maintained separately, although this structure is the + * starting place for this information. + * + * This structure is initialized to zero. + */ +typedef struct _dof_session_data +{ + /** + * SESSION ID: Set when the session is created, required. + */ + guint32 session_id; + + /** + * DPS ID: The type of DPS SENDER ID (in the packet data) to prevent + * aliasing. Since DPS senders identifiers relate to DNP, this is the + * DNP version number. + */ + guint8 dof_id; + + /** + * SECURE SESSIONS: When secure sessions are created from this + * unsecure session then they are added to this list. Each member + * of the list must be distinguished. + */ + dof_secure_session_data *secure_sessions; + + /** + * Protocol-specific data. + */ + GSList *data_list; +} dof_session_data; + +/* DOF Security Structures. */ +/* Return structures for different packets. */ + +typedef struct _dof_2008_16_security_3_1 +{ + tvbuff_t *identity; +} dof_2008_16_security_3_1; + +typedef struct _dof_2008_16_security_4 +{ + tvbuff_t *identity; + tvbuff_t *nonce; +} dof_2008_16_security_4; + +typedef struct _dof_2008_16_security_6_1 +{ + tvbuff_t *i_identity; + tvbuff_t *i_nonce; + guint16 security_mode; + guint32 security_mode_data_length; + guint8 *security_mode_data; +} dof_2008_16_security_6_1; + +typedef struct _dof_2008_16_security_6_2 +{ + tvbuff_t *r_identity; + tvbuff_t *r_nonce; +} dof_2008_16_security_6_2; + + +/** + * This structure defines the address for Wireshark transports. There is no + * DPS information associated here. + */ +typedef struct _ws_node +{ + address addr; + guint32 port; +} ws_node; + +typedef struct _dof_session_list +{ + dof_session_data *session; + struct _dof_session_list *next; +} dof_session_list; + +/** + * DOF PACKET DATA + * This structure exists for each DOF packet. There is ABSOLUTELY NO + * transport-specific information here, although there is a session + * number which may relate to transport information indirectly through + * a transport session. + * There will be one of these for each DOF packet, even if the corresponding + * Wireshark frame has multiple DOF packets encapsulated in it. The key + * to this structure is the operation identifier, and there is a hash + * lookup to go from an operation identifier to this structure. + */ +typedef struct _dof_packet_data +{ + /** + * NON-DPS FIELDS, USED FOR WIRESHARK COMMUNICATION/PROCESSING + * Protocol-specific data. + */ + wmem_list_t *data_list; + + /** + * The Wireshark frame. Note that a single frame can have multiple DPS packets. + */ + guint32 frame; + + /** + * The DPS frame/packet. This number is unique in the entire trace. + */ + guint32 dof_frame; + + /** + * Packet linked list for all dps packets. + */ + struct _dof_packet_data *next; + + /** + * DPS FIELDS + * Indicator that the packet has already been processed. Processed packets + * have all their fields set that can be determined. Further attempts to + * determine NULL fields are worthless. + */ + gboolean processed; + + /** + * SUMMARY: An operation summary, displayed in the Operation History. This is seasonal + * data, managed by the DPP dissector. + */ + const gchar *summary; + + /** + * SENDER ID/RECEIVER ID: An identifier for each unique sender/receiver according to DPS. + * This augments the transport SENDER ID/RECEIVER ID in determining each + * unique sender. + */ + gint sender_id; + gint receiver_id; + + /** + * DPP INFORMATION - CACHED INFORMATION + */ + gboolean is_command; /* Inverse is 'is_response'. */ + gboolean is_sent_by_initiator; + + /** + * SENDER SID ID/RECEIVER SID ID: An identifier for the sid associated with this packet's sender. + * Zero indicates that it has not been assigned. Assigned by the DPP + * dissector. + */ + guint sender_sid_id; + guint receiver_sid_id; + + /** + * SENDER SID/RECEIVER SID: The SID of the sender/receiver, or NULL if not known. + */ + dof_2009_1_pdu_19_sid sender_sid; + dof_2009_1_pdu_19_sid receiver_sid; + + /** + * Operation references. + */ + gboolean has_opid; + dof_2009_1_pdu_20_opid op; + gboolean has_referenced_opid; + dof_2009_1_pdu_20_opid ref_op; + + struct _dof_packet_data *opid_first; + struct _dof_packet_data *opid_next; + struct _dof_packet_data *opid_last; + struct _dof_packet_data *opid_first_response; + struct _dof_packet_data *opid_next_response; + struct _dof_packet_data *opid_last_response; + + /** + * SECURITY INFORMATION - CACHED + */ + const gchar *security_session_error; + dof_session_key_exchange_data *security_session; + void *security_packet; + guint8 *decrypted_buffer; + tvbuff_t *decrypted_tvb; + guint16 decrypted_offset; + gchar *decrypted_buffer_error; + + + /** + * OPERATION DATA: Generic data, seasonal, owned by the application protocol dissector + * for this packet. + */ + void *opid_data; +} dof_packet_data; + + +/** + * This structure represents globals that are passed to all dissectors. + */ +typedef struct _dof_globals +{ + guint32 next_transport_session; + guint32 next_session; + dof_packet_data *dof_packet_head; + dof_packet_data *dof_packet_tail; + dof_security_data *global_security; + dof_learned_group_data *learned_group_data; + gboolean decrypt_all_packets; + gboolean track_operations; + guint track_operations_window; +} dof_globals; + +/** + * This structure contains all information that is passed between + * transport dissectors/plugins and the DPS dissector. It is allocated + * by the transport plugin, and its fields are set as described here. + */ +typedef struct _dof_api_data +{ + /** + * TRANSPORT SESSION: Set by the transport dissector, required. + */ + dof_transport_session *transport_session; + + /** + * TRANSPORT PACKET: Set by the transport dissector, required. + */ + dof_transport_packet *transport_packet; + + /** + * DPS SESSION: Set by the DPS dissector. + */ + dof_session_data *session; + + /** + * DPS DATA: Set by the DPS dissector. + */ + dof_packet_data *packet; + + /** + * DPS SECURE SESSION: Set by the DPP dissector. + */ + dof_secure_session_data *secure_session; +} dof_api_data; + +/** + * This set of types defines the Security Mode dissector API. + * This structure identifies the context of the dissection, + * allowing a single structure to know what part of the packet + * of sequence of packets it is working with. + * + * Structure for Security Mode of Operation dissectors. + */ +typedef enum _dof_secmode_context +{ + INITIALIZE, + HEADER, + TRAILER +} dof_secmode_context; + +/* Seasonal, initialized to zero. */ +typedef struct _dof_secmode_api_data +{ + /** + * API VERSION: Set by the DPS dissector, required. + * MUST BE THE FIRST FIELD. + */ + guint8 version; + + /** + * CONTEXT: Set the DPS dissector, required. + */ + dof_secmode_context context; + + /** + * SECURITY MODE OFFSET: The packet offset from the DPP header of the security mode. + */ + guint security_mode_offset; + + /** + * API DATA: Set by the DPS dissector, required. + */ + dof_api_data *dof_api; + + /** + * SECURE SESSION DATA: Controlled by the caller, either associated + * with the current packet (HEADER mode) or not (other modes). + * Used to access session information. + */ + dof_secure_session_data *secure_session; + + /** + * KEY EXCHANGE: Controlled by the caller, represents the key exchange + * for INITIALIZE mode. + */ + dof_session_key_exchange_data *session_key_data; +} dof_secmode_api_data; + +/* These should be the only non-static declarations in the file. */ +void proto_register_dof(void); +void proto_reg_handoff_dof(void); + +/* Dissector routines. */ +static int dissect_2008_1_dsp_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree); +static int dissect_2008_16_security_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_3_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_3_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_5(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_6_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_6_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_6_3(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_7(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_8(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_9(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_10(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_11(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_12(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2008_16_security_13(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2009_11_type_4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data); +static int dissect_2009_11_type_5(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree); + +static const gchar* dof_oid_create_standard_string(guint32 bufferSize, const guint8 *pOIDBuffer); +static const gchar* dof_iid_create_standard_string(guint32 bufferSize, const guint8 *pIIDBuffer); +static guint8 dof_oid_create_internal(const char *oid, guint32 *size, guint8 *buffer); +static void dof_oid_new_standard_string(const char *data, guint32 *rsize, guint8 **oid); +static gint read_c4(tvbuff_t *tvb, gint offset, guint32 *v, gint *len); +static void validate_c4(packet_info *pinfo, proto_item *pi, guint32, gint len); +static gint read_c3(tvbuff_t *tvb, gint offset, guint32 *v, gint *len); +static void validate_c3(packet_info *pinfo, proto_item *pi, guint32, gint len); +static gint read_c2(tvbuff_t *tvb, gint offset, guint16 *v, gint *len); +static void validate_c2(packet_info *pinfo, proto_item *pi, guint16, gint len); + +static gint dof_dissect_pdu(dissector_t dissector, tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *result); +static gint dof_dissect_pdu_as_field(dissector_t disector, tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int item, int ett, void *result); + +#if 0 /* TODO not used yet */ +static void dof_session_add_proto_data(dof_session_data *session, int proto, void *proto_data); +static void* dof_session_get_proto_data(dof_session_data *session, int proto); +static void dof_session_delete_proto_data(dof_session_data *session, int proto); +#endif + +static void dof_packet_add_proto_data(dof_packet_data *packet, int proto, void *proto_data); +static void* dof_packet_get_proto_data(dof_packet_data *packet, int proto); + +/* DOF PROTOCOL STACK */ +#define DOF_PROTOCOL_STACK "DOF Protocol Stack" + +/** + * PORTS + * The following ports are registered with IANA and used to hook transport + * dissectors into the lower-level Wireshark transport dissectors. + * + * Related to these ports is the usage of conversations for DOF. The goal of + * using Wireshark conversations is to guarantee that DPS data is available for + * any DPS packet. However, there is no assumption that Wireshark conversations + * map in any way to DOF sessions. + * + * One exception to this use is in discovery of DOF servers. The DOF_MCAST_NEG_SEC_UDP_PORT + * is watched for all traffic. A "wildcard" conversation is then created for the + * source address, and the DPS dissector is associated with that port. In this + * way, servers on non-standard ports will automatically be decoded using DPS. + */ +#define DOF_NEG_SEC_UDP_PORT_RANGE "3567,5567" /* P2P + Multicast */ +#define DOF_P2P_NEG_SEC_TCP_PORT 3567 +/* Reserved UDP port 3568*/ +#define DOF_TUN_SEC_TCP_PORT 3568 +#define DOF_P2P_SEC_TCP_PORT 5567 +/* Reserved UDP port 8567*/ +#define DOF_TUN_NON_SEC_TCP_PORT 8567 + +/* This is needed to register multicast sessions with the UDP handler. */ +static dissector_handle_t dof_udp_handle; + +static int proto_2008_1_dof = -1; +static int proto_2008_1_dof_tcp = -1; +static int proto_2008_1_dof_udp = -1; + +static int hf_2008_1_dof_session = -1; +static int hf_2008_1_dof_is_2_node = -1; +static int hf_2008_1_dof_is_streaming = -1; +static int hf_2008_1_dof_is_from_client = -1; +static int hf_2008_1_dof_frame = -1; +static int hf_2008_1_dof_session_transport = -1; + +static int ett_2008_1_dof = -1; + +/* DOF Tunnel Protocol */ + +/* UDP Registrations */ +#define TUNNEL_PROTOCOL_STACK "DOF Tunnel Protocol Stack" +#define TUNNEL_APPLICATION_PROTOCOL "DOF Tunnel Protocol" + +static dissector_table_t dof_tun_app_dissectors; + +/***** TUNNEL *****/ +static int proto_2012_1_tunnel = -1; + +static int ett_2012_1_tunnel = -1; + +static int hf_2012_1_tunnel_1_version = -1; +static int hf_2012_1_tunnel_1_length = -1; + +/* DOF NETWORK PROTOCOL */ +#define DNP_MAX_VERSION 1 +#define DOF_NETWORK_PROTOCOL "DOF Network Protocol" + +static dissector_table_t dnp_dissectors; +static dissector_table_t dnp_framing_dissectors; + +static int proto_2008_1_dnp = -1; + +static int hf_2008_1_dnp_1_version = -1; +static int hf_2008_1_dnp_1_flag = -1; + +static int ett_2008_1_dnp = -1; +static int ett_2008_1_dnp_header = -1; + +/* DNP V0 */ +static int proto_2008_1_dnp_0 = -1; + +static int hf_2008_1_dnp_0_1_1_padding = -1; +static int hf_2008_1_dnp_0_1_1_version = -1; + +/* DNP V1 */ +#define DNP_V1_DEFAULT_FLAGS (0) +static int proto_2009_9_dnp_1 = -1; + +static int hf_2009_9_dnp_1_flags = -1; +static int hf_2009_9_dnp_1_flag_length = -1; +static int hf_2009_9_dnp_1_length = -1; +static int hf_2009_9_dnp_1_flag_srcport = -1; +static int hf_2009_9_dnp_1_srcport = -1; +static int hf_2009_9_dnp_1_flag_dstport = -1; +static int hf_2009_9_dnp_1_dstport = -1; + +static int ett_2009_9_dnp_1_flags = -1; + +static int * const bitmask_2009_9_dnp_1_flags[] = { + &hf_2009_9_dnp_1_flag_length, + &hf_2009_9_dnp_1_flag_srcport, + &hf_2009_9_dnp_1_flag_dstport, + NULL +}; + +/* DOF PRESENTATION PROTOCOL */ +#define DOF_PRESENTATION_PROTOCOL "DOF Presentation Protocol" + +static dissector_table_t dof_dpp_dissectors; + +static int proto_2008_1_dpp = -1; + +static int hf_2008_1_dpp_sid_num = -1; +static int hf_2008_1_dpp_rid_num = -1; +static int hf_2008_1_dpp_sid_str = -1; +static int hf_2008_1_dpp_rid_str = -1; +static int hf_2008_1_dpp_first_command = -1; +static int hf_2008_1_dpp_last_command = -1; +static int hf_2008_1_dpp_first_response = -1; +static int hf_2008_1_dpp_last_response = -1; +static int hf_2008_1_dpp_related_frame = -1; +static int hf_2008_1_dpp_1_version = -1; +static int hf_2008_1_dpp_1_flag = -1; + +static int ett_2008_1_dpp = -1; +static int ett_2008_1_dpp_1_header = -1; + +/* DPP V0 */ +static int proto_2008_1_dpp_0 = -1; + +static int hf_2008_1_dpp_0_1_1_version = -1; + +/* DPP V1 - RESERVED, NOT SUPPORTED */ + +/* DPP V2 */ +#define DPP_V2_DEFAULT_FLAGS (0) +#define DPP_V2_SEC_FLAG_E (0x80) +#define DPP_V2_SEC_FLAG_D (0x08) +#define DPP_V2_SEC_FLAG_P (0x04) +#define DPP_V2_SEC_FLAG_A (0x02) +#define DPP_V2_SEC_FLAG_S (0x01) + +static int proto_2009_12_dpp = -1; +static int proto_2009_12_dpp_common = -1; + +/* TODO: The complete on final and final flags are not covered. */ +static int hf_2009_12_dpp_2_1_flags = -1; +static int hf_2009_12_dpp_2_1_flag_security = -1; +static int hf_2009_12_dpp_2_1_flag_opid = -1; +static int hf_2009_12_dpp_2_1_flag_seq = -1; +static int hf_2009_12_dpp_2_1_flag_retry = -1; +static int hf_2009_12_dpp_2_1_flag_cmdrsp = -1; +static int hf_2009_12_dpp_2_3_sec_flags = -1; +static int hf_2009_12_dpp_2_3_sec_flag_secure = -1; +static int hf_2009_12_dpp_2_3_sec_flag_rdid = -1; +static int hf_2009_12_dpp_2_3_sec_flag_partition = -1; +static int hf_2009_12_dpp_2_3_sec_flag_ssid = -1; +static int hf_2009_12_dpp_2_3_sec_flag_as = -1; +static int hf_2009_12_dpp_2_3_sec_ssid = -1; +static int hf_2009_12_dpp_2_3_sec_rdid = -1; +static int hf_2009_12_dpp_2_3_sec_remote_partition = -1; +static int hf_2009_12_dpp_2_3_sec_partition = -1; +static int hf_2009_12_dpp_2_1_opcnt = -1; +static int hf_2009_12_dpp_2_1_seq = -1; +static int hf_2009_12_dpp_2_1_retry = -1; +static int hf_2009_12_dpp_2_1_delay = -1; +static int hf_2009_12_dpp_2_14_opcode = -1; + +static int ett_2009_12_dpp_2_1_flags = -1; +static int ett_2009_12_dpp_2_3_security = -1; +static int ett_2009_12_dpp_2_3_sec_flags = -1; +static int ett_2009_12_dpp_2_3_sec_remote_partition = -1; +static int ett_2009_12_dpp_2_3_sec_partition = -1; +static int ett_2009_12_dpp_2_opid = -1; +static int ett_2009_12_dpp_2_opid_history = -1; + +static int ett_2009_12_dpp_common = -1; + +static const value_string strings_2009_12_dpp_opid_types[] = { + { 0, "Not Present" }, + { 1, "SID [Sender]" }, + { 2, "SID [Receiver]" }, + { 3, "SID [Explicit]" }, + { 0, NULL } +}; + +#define OP_2009_12_RESPONSE_FLAG (0x80) +#define OP_2009_12_NODE_DOWN_CMD (0) +#define OP_2009_12_NODE_DOWN_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_NODE_DOWN_CMD) +#define OP_2009_12_SOURCE_LOST_CMD (1) +#define OP_2009_12_SOURCE_LOST_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_SOURCE_LOST_CMD) +#define OP_2009_12_RENAME_CMD (2) +#define OP_2009_12_RENAME_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_RENAME_CMD) +#define OP_2009_12_PING_CMD (3) +#define OP_2009_12_PING_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_PING_CMD) +#define OP_2009_12_CANCEL_ALL_CMD (4) +#define OP_2009_12_CANCEL_ALL_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_CANCEL_ALL_CMD) +#define OP_2009_12_HEARTBEAT_CMD (5) +#define OP_2009_12_HEARTBEAT_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_HEARTBEAT_CMD) +#define OP_2009_12_QUERY_CMD (6) +#define OP_2009_12_QUERY_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_QUERY_CMD) +#define OP_2009_12_SOURCE_FOUND_CMD (8) +#define OP_2009_12_SOURCE_FOUND_RSP (OP_2009_12_RESPONSE_FLAG|OP_2009_12_SOURCE_FOUND_CMD) + +static const value_string strings_2009_12_dpp_common_opcodes[] = { + { OP_2009_12_NODE_DOWN_CMD, "DPP Node Down" }, + { OP_2009_12_NODE_DOWN_RSP, "DPP Node Down Response (Illegal)" }, + { OP_2009_12_SOURCE_LOST_CMD, "DPP Source Lost" }, + { OP_2009_12_SOURCE_LOST_RSP, "DPP Source Lost Response (Illegal)" }, + { OP_2009_12_SOURCE_FOUND_CMD, "DPP Source Found" }, + { OP_2009_12_SOURCE_FOUND_RSP, "DPP Source Found Response (Illegal)" }, + { OP_2009_12_RENAME_CMD, "DPP Rename" }, + { OP_2009_12_RENAME_RSP, "DPP Rename Response (Illegal)" }, + { OP_2009_12_PING_CMD, "DPP Ping" }, + { OP_2009_12_PING_RSP, "DPP Ping Response" }, + { OP_2009_12_HEARTBEAT_CMD, "DPP Heartbeat" }, + { OP_2009_12_HEARTBEAT_RSP, "DPP Heartbeat Response (Illegal)" }, + { OP_2009_12_QUERY_CMD, "DPP Query" }, + { OP_2009_12_QUERY_RSP, "DPP Query Response" }, + { OP_2009_12_CANCEL_ALL_CMD, "DPP Cancel All" }, + { OP_2009_12_CANCEL_ALL_RSP, "DPP Cancel All Response (Illegal)" }, + { 0, NULL } +}; + +/* DOF APPLICATION PROTOCOL */ +#define DOF_APPLICATION_PROTOCOL "DOF Application Protocol" + +static dissector_table_t app_dissectors; + +static int proto_2008_1_app = -1; + +static int hf_2008_1_app_version = -1; + +/* DAP V0 (DSP - DOF SESSION PROTOCOL) */ +/* Note that DSP is *always* appid 0 and so it violates the standard naming rule. */ +static dissector_table_t dsp_option_dissectors; + +static int hf_2008_1_dsp_12_opcode = -1; +static int hf_2008_1_dsp_attribute_code = -1; +static int hf_2008_1_dsp_attribute_data = -1; +static int hf_2008_1_dsp_value_length = -1; +static int hf_2008_1_dsp_value_data = -1; + +static const value_string strings_2008_1_dsp_attribute_codes[] = { + { 0, "TEP Family" }, + { 1, "OAP Family" }, + { 2, "CCM Family" }, + { 3, "TRP Family" }, + { 255, "General" }, + { 0, NULL } +}; + +#define DOF_PROTOCOL_DSP 0 +#define DSP_OAP_FAMILY 0x010000 + +static int proto_2008_1_dsp = -1; + +#define OP_2008_1_RSP (0x80) +#define OP_2008_1_QUERY_CMD 0 +#define OP_2008_1_QUERY_RSP (OP_2008_1_RSP|OP_2008_1_QUERY_CMD) +#define OP_2008_1_CONFIG_REQ 1 +#define OP_2008_1_CONFIG_ACK (OP_2008_1_RSP|2) +#define OP_2008_1_CONFIG_NAK (OP_2008_1_RSP|3) +#define OP_2008_1_CONFIG_REJ (OP_2008_1_RSP|4) +#define OP_2008_1_TERMINATE_CMD 5 +#define OP_2008_1_TERMINATE_RSP (OP_2008_1_RSP|OP_2008_1_TERMINATE_CMD) +#define OP_2008_1_OPEN_CMD 6 +#define OP_2008_1_OPEN_RSP (OP_2008_1_RSP|OP_2008_1_OPEN_CMD) +#define OP_2008_1_OPEN_SECURE_RSP (OP_2008_1_RSP|7) + +static const value_string strings_2008_1_dsp_opcodes[] = { + { OP_2008_1_QUERY_CMD, "DSP Query" }, + { OP_2008_1_QUERY_RSP, "DSP Query Response" }, + { OP_2008_1_CONFIG_REQ, "DSP Request" }, + { OP_2008_1_CONFIG_ACK, "DSP ACK Response" }, + { OP_2008_1_CONFIG_NAK, "DSP NAK Response" }, + { OP_2008_1_CONFIG_REJ, "DSP REJ Response" }, + { OP_2008_1_TERMINATE_CMD, "DSP Terminate/Close Request" }, + { OP_2008_1_TERMINATE_RSP, "DSP Terminate/Close Response" }, + { OP_2008_1_OPEN_CMD, "DSP Open" }, + { OP_2008_1_OPEN_RSP, "DSP Open Response" }, + { OP_2008_1_OPEN_SECURE_RSP, "DSP Open Secure Response" }, + { 0, NULL } +}; + +#define DSP_AVP_AUTHENTICATION 0 +#define DSP_AVP_APPLICATION 1 + +#if 0 /* not used yet */ +static const value_string strings_2008_1_dsp_attributes[] = { + { DSP_AVP_AUTHENTICATION, "Authentication Protocol" }, + { DSP_AVP_APPLICATION, "Application Protocol" }, + { 0, NULL } +}; + +static const value_string strings_2008_1_dsp_values[] = { + { 1, "DOF Object Access Protocol (version 1)" }, + { 3, "DOF Ticket Exchange Protocol (version 1)" }, + { 0, NULL } +}; +#endif + +static int ett_2008_1_dsp_12 = -1; +static int ett_2008_1_dsp_12_options = -1; +static int ett_2008_1_dsp_12_option = -1; + +/* DAP V1 (OAP - OBJECT ACCESS PROTOCOL V1) */ +/* This is the defined protocol id for OAP. */ +#define DOF_PROTOCOL_OAP_1 1 +/* There are two "protocols", one hooks into DSP and the other to DOF. */ +static int proto_oap_1 = -1; +static int proto_oap_1_dsp = -1; + +/* OAP DSP protocol items. */ +static int hf_oap_1_dsp_option = -1; + +/* OAP protocol items. */ +static int hf_oap_1_opcode = -1; + +static int hf_oap_1_alias_size = -1; +static int hf_oap_1_flags = -1; +static int hf_oap_1_exception_internal_flag = -1; +static int hf_oap_1_exception_final_flag = -1; +static int hf_oap_1_exception_provider_flag = -1; +static int hf_oap_1_cmdcontrol = -1; +static int hf_oap_1_cmdcontrol_cache_flag = -1; +static int hf_oap_1_cmdcontrol_verbosity_flag = -1; +static int hf_oap_1_cmdcontrol_noexecute_flag = -1; +static int hf_oap_1_cmdcontrol_ack_flag = -1; +static int hf_oap_1_cmdcontrol_delay_flag = -1; +static int hf_oap_1_cmdcontrol_heuristic_flag = -1; +static int hf_oap_1_cmdcontrol_heuristic = -1; +static int hf_oap_1_cmdcontrol_cache = -1; +static int hf_oap_1_cmdcontrol_ackcnt = -1; +static int hf_oap_1_cmdcontrol_ack = -1; + +#if 0 /* not used yet */ +static int hf_oap_1_opinfo_start_frame = -1; +static int hf_oap_1_opinfo_end_frame = -1; +static int hf_oap_1_opinfo_timeout = -1; +#endif + +static int hf_oap_1_providerid = -1; +static int ett_oap_1_1_providerid = -1; + +static int hf_oap_1_objectid = -1; +static int ett_oap_1_objectid = -1; + +static int hf_oap_1_interfaceid = -1; +static int hf_oap_1_itemid = -1; + +#if 0 /* not used yet */ +static int hf_oap_1_distance = -1; +#endif + +static int hf_oap_1_alias = -1; +static int hf_oap_1_alias_frame = -1; + +static int hf_oap_1_subscription_delta = -1; +static int hf_oap_1_update_sequence = -1; +static int hf_oap_1_value_list = -1; + +static int ett_oap_1_dsp = -1; +static int ett_oap_1_dsp_options = -1; + +static int ett_oap_1 = -1; +static int ett_oap_1_opinfo = -1; +static int ett_oap_1_cmdcontrol = -1; +static int ett_oap_1_cmdcontrol_flags = -1; +static int ett_oap_1_cmdcontrol_ack = -1; +static int ett_oap_1_alias = -1; + +static int * const bitmask_oap_1_cmdcontrol_flags[] = { + &hf_oap_1_cmdcontrol_cache_flag, + &hf_oap_1_cmdcontrol_verbosity_flag, + &hf_oap_1_cmdcontrol_noexecute_flag, + &hf_oap_1_cmdcontrol_ack_flag, + &hf_oap_1_cmdcontrol_delay_flag, + &hf_oap_1_cmdcontrol_heuristic_flag, + NULL +}; + +static expert_field ei_oap_no_session = EI_INIT; + +static GHashTable *oap_1_alias_to_binding = NULL; + +#define OAP_1_RESPONSE (0x80) +#define OAP_1_CMD_ACTIVATE 28 +#define OAP_1_RSP_ACTIVATE (OAP_1_CMD_ACTIVATE|OAP_1_RESPONSE) +#define OAP_1_CMD_ADVERTISE 5 +#define OAP_1_RSP_ADVERTISE (OAP_1_CMD_ADVERTISE|OAP_1_RESPONSE) +#define OAP_1_CMD_CHANGE 2 +#define OAP_1_RSP_CHANGE (OAP_1_CMD_CHANGE|OAP_1_RESPONSE) +#define OAP_1_CMD_CONNECT 4 +#define OAP_1_RSP_CONNECT (OAP_1_CMD_CONNECT|OAP_1_RESPONSE) +#define OAP_1_CMD_DEFINE 6 +#define OAP_1_RSP_DEFINE (OAP_1_CMD_DEFINE|OAP_1_RESPONSE) +#define OAP_1_CMD_EXCEPTION 9 +#define OAP_1_RSP_EXCEPTION (OAP_1_CMD_EXCEPTION|OAP_1_RESPONSE) +#define OAP_1_CMD_FULL_CONNECT 3 +#define OAP_1_RSP_FULL_CONNECT (OAP_1_CMD_FULL_CONNECT|OAP_1_RESPONSE) +#define OAP_1_CMD_GET 10 +#define OAP_1_RSP_GET (OAP_1_CMD_GET|OAP_1_RESPONSE) +#define OAP_1_CMD_INVOKE 12 +#define OAP_1_RSP_INVOKE (OAP_1_CMD_INVOKE|OAP_1_RESPONSE) +#define OAP_1_CMD_OPEN 14 +#define OAP_1_RSP_OPEN (OAP_1_CMD_OPEN|OAP_1_RESPONSE) +#define OAP_1_CMD_PROVIDE 16 +#define OAP_1_RSP_PROVIDE (OAP_1_CMD_PROVIDE|OAP_1_RESPONSE) +#define OAP_1_CMD_REGISTER 25 +#define OAP_1_RSP_REGISTER (OAP_1_CMD_REGISTER|OAP_1_RESPONSE) +#define OAP_1_CMD_SET 20 +#define OAP_1_RSP_SET (OAP_1_CMD_SET|OAP_1_RESPONSE) +#define OAP_1_CMD_SIGNAL 22 +#define OAP_1_RSP_SIGNAL (OAP_1_CMD_SIGNAL|OAP_1_RESPONSE) +#define OAP_1_CMD_SUBSCRIBE 24 +#define OAP_1_RSP_SUBSCRIBE (OAP_1_CMD_SUBSCRIBE|OAP_1_RESPONSE) +#define OAP_1_CMD_WATCH 30 +#define OAP_1_RSP_WATCH (OAP_1_CMD_WATCH|OAP_1_RESPONSE) + +static const value_string oap_opcode_strings[] = { + { OAP_1_CMD_ACTIVATE, "OAP Activate" }, + { OAP_1_RSP_ACTIVATE, "OAP Activate Response (Illegal)" }, + { OAP_1_CMD_ADVERTISE, "OAP Advertise" }, + { OAP_1_RSP_ADVERTISE, "OAP Advertise Response (Illegal)" }, + { OAP_1_CMD_CHANGE, "OAP Change" }, + { OAP_1_RSP_CHANGE, "OAP Change Response (Illegal)" }, + { OAP_1_CMD_CONNECT, "OAP Connect" }, + { OAP_1_RSP_CONNECT, "OAP Connect Response (Illegal)" }, + { OAP_1_CMD_DEFINE, "OAP Define" }, + { OAP_1_RSP_DEFINE, "OAP Define Response" }, + { OAP_1_CMD_EXCEPTION, "OAP Exception (Illegal)" }, + { OAP_1_RSP_EXCEPTION, "OAP Exception Response" }, + { OAP_1_CMD_FULL_CONNECT, "OAP Full Connect" }, + { OAP_1_RSP_FULL_CONNECT, "OAP Full Connect Response (Illegal)" }, + { OAP_1_CMD_GET, "OAP Get" }, + { OAP_1_RSP_GET, "OAP Get Response" }, + { OAP_1_CMD_INVOKE, "OAP Invoke" }, + { OAP_1_RSP_INVOKE, "OAP Invoke Response" }, + { OAP_1_CMD_OPEN, "OAP Open" }, + { OAP_1_RSP_OPEN, "OAP Open Response" }, + { OAP_1_CMD_PROVIDE, "OAP Provide" }, + { OAP_1_RSP_PROVIDE, "OAP Provide Response (Illegal)" }, + { OAP_1_CMD_REGISTER, "OAP Register" }, + { OAP_1_RSP_REGISTER, "OAP Register Response" }, + { OAP_1_CMD_SET, "OAP Set" }, + { OAP_1_RSP_SET, "OAP Set Response" }, + { OAP_1_CMD_SIGNAL, "OAP Signal" }, + { OAP_1_RSP_SIGNAL, "OAP Signal Response (Illegal)" }, + { OAP_1_CMD_SUBSCRIBE, "OAP Subscribe" }, + { OAP_1_RSP_SUBSCRIBE, "OAP Subscribe Response" }, + { OAP_1_CMD_WATCH, "OAP Watch" }, + { OAP_1_RSP_WATCH, "OAP Watch Response (Illegal)" }, + + { 0, NULL } +}; + +typedef struct _alias_key +{ + guint32 session; + guint32 sender; + guint32 alias; +} oap_1_alias_key; + +static guint oap_1_alias_hash_func(gconstpointer ptr) +{ + const oap_1_alias_key *key = (const oap_1_alias_key *)ptr; + return g_int_hash(&key->session) + g_int_hash(&key->sender) + g_int_hash(&key->alias); +} + +static int oap_1_alias_equal_func(gconstpointer ptr1, gconstpointer ptr2) +{ + const oap_1_alias_key *key1 = (const oap_1_alias_key *)ptr1; + const oap_1_alias_key *key2 = (const oap_1_alias_key *)ptr2; + + if (key1->session != key2->session) + return 0; + + if (key1->sender != key2->sender) + return 0; + + if (key1->alias != key2->alias) + return 0; + + return 1; +} + +typedef struct +{ + guint8 *oid; + guint16 oid_length; + guint8 *iid; + guint16 iid_length; + guint32 frame; +} oap_1_binding; + +typedef struct oap_1_binding_list +{ + oap_1_binding *binding; + struct oap_1_binding_list *next; +} oap_1_binding_list; + +typedef struct +{ + oap_1_binding *resolved_alias; +} oap_1_packet_data; + +static oap_1_binding* oap_1_resolve_alias(oap_1_alias_key *key); + +static int oap_1_tree_add_alias(dof_api_data *api_data, oap_1_packet_data *oap_packet _U_, dof_packet_data *packet, proto_tree *tree, tvbuff_t *tvb, gint offset, guint8 alias_length, guint8 resolve) +{ + dof_session_data *session = api_data->session; + proto_item *ti; + proto_tree *options_tree; + + if (alias_length == 0) + /* TODO: Output error. */ + return offset; + + if (session == NULL) + /* TODO: Output error. */ + return offset; + + ti = proto_tree_add_item(tree, hf_oap_1_alias, tvb, offset, alias_length, ENC_BIG_ENDIAN); + + if (resolve) + { + oap_1_binding *binding = NULL; + oap_1_alias_key key; + int i; + guint32 alias; + + alias = 0; + for (i = 0; i < alias_length; i++) + alias = (alias << 8) | tvb_get_guint8(tvb, offset + i); + + key.session = session->session_id; + key.sender = packet->sender_id; + key.alias = alias; + binding = oap_1_resolve_alias(&key); + + if (binding) + { + options_tree = proto_item_add_subtree(ti, ett_oap_1_alias); + + /* Decode the Interface */ + ti = proto_tree_add_bytes_format_value(tree, hf_oap_1_interfaceid, tvb, 0, 0, binding->iid, "%s", dof_iid_create_standard_string(binding->iid_length, binding->iid)); + proto_item_set_generated(ti); + + /* Decode the Object ID */ + ti = proto_tree_add_bytes_format_value(tree, hf_oap_1_objectid, tvb, 0, 0, binding->oid, "%s", dof_oid_create_standard_string(binding->oid_length, binding->oid)); + proto_item_set_generated(ti); + + proto_tree_add_uint_format(options_tree, hf_oap_1_alias_frame, + tvb, 0, 0, binding->frame, + "This alias is defined in frame %u", + binding->frame); + } + } + + return offset + alias_length; +} + +static int oap_1_tree_add_interface(proto_tree *tree, tvbuff_t *tvb, int offset) +{ + guint8 registry; + guint8 len; + + registry = tvb_get_guint8(tvb, offset); + len = registry & 0x03; + if (len == 0) + len = 16; + else + len = 1 << (len - 1); + + proto_tree_add_item(tree, hf_oap_1_interfaceid, tvb, offset, 1 + len, ENC_NA); + return offset + 1 + len; +} + +static int oap_1_tree_add_binding(proto_tree *tree, packet_info *pinfo, tvbuff_t *tvb, int offset) +{ + guint8 len; + /* guint8 cl; */ + + len = tvb_get_guint8(tvb, offset); + len = len & 0x03; + if (len == 0) + len = 16; + else + len = 1 << (len - 1); + + proto_tree_add_item(tree, hf_oap_1_interfaceid, tvb, offset, 1 + len, ENC_NA); + offset += 1 + len; + +#if 0 /* this seems to be dead code - check! */ + cl = tvb_get_guint8(tvb, offset); + if (cl & 0x80) + len = tvb_get_guint8(tvb, offset + 2); + else + len = tvb_get_guint8(tvb, offset + 1); +#endif + + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, tree, + offset, hf_oap_1_objectid, ett_oap_1_objectid, NULL); + return offset; +} + +static int oap_1_tree_add_cmdcontrol(packet_info *pinfo, proto_tree *tree, tvbuff_t *tvb, int offset) +{ + proto_item *ti; + proto_tree *opinfo_tree; + guint8 flags; + + flags = tvb_get_guint8(tvb, offset); + + ti = proto_tree_add_bitmask(tree, tvb, offset, hf_oap_1_cmdcontrol, ett_oap_1_cmdcontrol_flags, bitmask_oap_1_cmdcontrol_flags, ENC_NA); + opinfo_tree = proto_item_add_subtree(ti, ett_oap_1_cmdcontrol); + + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_cache_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_verbosity_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_noexecute_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_ack_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_delay_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_heuristic_flag, tvb, offset, 1, ENC_NA); + + offset += 1; + + if (flags & 0x01) + { + /* Heuristic */ + gint heur_len; + guint16 heur; + proto_item *pi; + + read_c2(tvb, offset, &heur, &heur_len); + pi = proto_tree_add_uint_format(opinfo_tree, hf_oap_1_cmdcontrol_heuristic, tvb, offset, heur_len, heur, "Heuristic Value: %hu", heur); + validate_c2(pinfo, pi, heur, heur_len); + offset += heur_len; + } + + if (flags & 0x04) + { + /* Ack List */ + guint8 ackcnt; + guint8 i; + + ackcnt = tvb_get_guint8(tvb, offset); + proto_tree_add_item(opinfo_tree, hf_oap_1_cmdcontrol_ackcnt, tvb, offset, 1, ENC_NA); + offset += 1; + + for (i = 0; i < ackcnt; i++) + { + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, opinfo_tree, + offset, hf_oap_1_cmdcontrol_ack, ett_oap_1_cmdcontrol_ack, NULL); + } + } + + if (flags & 0x40) + { + /* Cache Delay */ + gint cache_len; + guint16 cache; + proto_item *pi; + + read_c2(tvb, offset, &cache, &cache_len); + pi = proto_tree_add_uint_format(opinfo_tree, hf_oap_1_cmdcontrol_cache, tvb, offset, cache_len, cache, "Cache Delay: %hu", cache); + validate_c2(pinfo, pi, cache, cache_len); + offset += cache_len; + } + + return offset; +} + +/** + * Define an alias. This routine is called for each Provide operation that includes an alias assignment. + * It is also called for retries of Provide operations. + * The alias is defined for the duration of the Provide. This means that if the operation is cancelled + * then the alias should no longer be valid. + * The alias is associated with an oap_session, an dof_node, and the alias itself. Aliases + * may be reused as long as the previous use has expired, and so the list is stored in reverse + * order. + * + * NOTE: The alias is passed as a structure pointer, and must be reallocated if it is stored in + * the hash. + */ +static void oap_1_define_alias(dof_api_data *api_data, guint32 alias, oap_1_binding *binding) +{ + /* The definer of an alias is the sender, in the session. */ + dof_session_data *session = api_data->session; + dof_packet_data *packet = (dof_packet_data *)api_data->packet; + guint32 session_id; + guint32 sender_id; + oap_1_alias_key key; + + if (!session) + return; + + session_id = session->session_id; + sender_id = packet->sender_id; + + if (!binding) + return; + + key.session = session_id; + key.sender = sender_id; + key.alias = alias; + + /* If there isn't an entry for the alias, then we need to create one. + * The first entry will be the binding we are defining. + */ + if (!g_hash_table_lookup(oap_1_alias_to_binding, &key)) + { + oap_1_alias_key *alias_ptr = wmem_new0(wmem_file_scope(), oap_1_alias_key); + memcpy(alias_ptr, &key, sizeof(oap_1_alias_key)); + g_hash_table_insert(oap_1_alias_to_binding, alias_ptr, binding); + } +} + +/** + * Given an oap_alias, resolve it to an oap_1_binding. This assumes that the destination of the + * packet is the one that defined the alias. + */ +static oap_1_binding* oap_1_resolve_alias(oap_1_alias_key *key) +{ + /* The first lookup is inside the session based on defining node. */ + return (oap_1_binding *)g_hash_table_lookup(oap_1_alias_to_binding, key); +} + +/* DAP V128 (TEP - TICKET EXCHANGE PROTOCOL V1) */ +#define DOF_PROTOCOL_TEP 128 +#define DSP_TEP_FAMILY 0x000000 +static int proto_tep = -1; +static int proto_tep_dsp = -1; + +static int hf_dsp_option = -1; + +static int ett_tep_operation = -1; +static int hf_tep_operation = -1; +static int hf_tep_operation_type = -1; +static int hf_tep_opcode = -1; +static int hf_tep_k = -1; +static int hf_tep_c = -1; +static int hf_tep_reject_code = -1; +static int hf_tep_reject_data = -1; + +static const true_false_string tep_optype_vals = { "DPP Response", "DPP Command" }; + +/* TEP.2.1 */ +static int ett_tep_2_1_domain = -1; +static int hf_tep_2_1_domain = -1; +static int ett_tep_2_1_initiator_block = -1; +static int hf_tep_2_1_initiator_block = -1; +static int hf_tep_2_1_ticket_confirmation = -1; + +/* TEP.2.2 */ +static int ett_tep_2_2_initiator_ticket = -1; +static int hf_tep_2_2_initiator_ticket = -1; +static int hf_tep_2_2_ticket_confirmation = -1; +static int ett_tep_2_2_responder_initialization = -1; +static int hf_tep_2_2_responder_initialization = -1; +static int ett_tep_2_2_responder_block = -1; +static int hf_tep_2_2_responder_block = -1; +static int ett_tep_2_2_authenticator_initialization = -1; +static int hf_tep_2_2_authenticator_initialization = -1; + +/* TEP.2.2.1 */ +static int hf_tep_2_2_1_state_identifier = -1; +static int ett_tep_2_2_1_initial_state = -1; +static int hf_tep_2_2_1_initial_state = -1; + +static int hf_tep_session_key = -1; + +static int ett_tep_dsp = -1; +static int ett_tep_dsp_options = -1; +static int ett_tep = -1; + +#if 0 /* not used yet */ +static const value_string tep_filter_existing[] = { + { 1, "Include Existing Matches" }, + { 0, "Exclude Existing Matches" }, + { 0, NULL } +}; +#endif + +#define TEP_OPCODE_RSP (0x80) +#define TEP_OPCODE_C (0x20) +#define TEP_OPCODE_K (0x10) +#define TEP_PDU_REJECT (TEP_OPCODE_RSP|0) +#define TEP_PDU_REQUEST (1) +#define TEP_PDU_END_SESSION (5) +#define TEP_PDU_SESSION_ENDING (6) + +#define TEP_PDU_REQUEST_KEY (TEP_OPCODE_K|TEP_PDU_REQUEST) +#define TEP_PDU_CONFIRM (TEP_OPCODE_C|TEP_PDU_REQUEST) +#define TEP_PDU_ACCEPT (TEP_OPCODE_RSP|TEP_PDU_REQUEST) +#define TEP_PDU_CONFIRM_ACK (TEP_OPCODE_RSP|TEP_OPCODE_C|TEP_PDU_REQUEST) + +static const value_string tep_opcode_strings[] = { + { TEP_PDU_REJECT, "TEP Reject" }, + { TEP_PDU_REQUEST, "TEP Request" }, + { TEP_PDU_END_SESSION, "TEP End Session" }, + { TEP_PDU_SESSION_ENDING, "TEP Session Ending" }, + + { TEP_PDU_REQUEST_KEY, "TEP Rekey" }, + { TEP_PDU_CONFIRM, "TEP Confirm" }, + { TEP_PDU_ACCEPT, "TEP Accept" }, + { TEP_PDU_CONFIRM_ACK, "TEP Confirm Ack" }, + + { 0, NULL } +}; + +#if 0 /* not use yet */ +static const value_string tep_error_strings[] = { + { 1, "Parse Error" }, + { 2, "Access Denied" }, + { 3, "Duration Not Supported" }, + { 4, "Authentication Failed" }, + { 0, NULL } +}; +#endif + +/* Initialized to zero. */ +typedef struct tep_rekey_data +{ + /* Stored from the K bit of the Request PDU. */ + gboolean is_rekey; + + /* Stored from the key request for non-secure rekeys. Otherwise 0 and NULL. */ + guint8 domain_length; + guint8 *domain; + + /* Stored from the identity of the Request PDU. Seasonal. */ + guint8 *i_identity; + guint8 i_identity_length; + + /* Stored from the nonce of the Request PDU. Seasonal. */ + guint8 *i_nonce; + guint8 i_nonce_length; + + /* Stored from the identity of the Request response PDU. Seasonal. */ + guint8 *r_identity; + guint8 r_identity_length; + + /* Stored from the nonce of the Request response PDU. Seasonal. */ + guint8 *r_nonce; + guint8 r_nonce_length; + + guint16 security_mode; + guint32 security_mode_data_length; + guint8 *security_mode_data; + + /* Security session data for this rekey, if is_rekey is TRUE. */ + dof_session_key_exchange_data *key_data; +} tep_rekey_data; + +/* DAP V129 (TRP - TICKET REQUEST PROTOCOL V2) */ +#define DOF_PROTOCOL_TRP 129 +#define DSP_TRP_FAMILY 0x030000 +typedef struct _trp_packet_data +{ + guint8 *domain; + guint8 domain_length; + guint8 *identity; + guint8 identity_length; + guint8 *group; + guint8 group_length; + guint8 *block_I; + guint16 block_I_length; + guint8 *secret; + gboolean kek_known; +} trp_packet_data; + + +static int proto_trp = -1; +static int proto_trp_dsp = -1; + +static int hf_trp_dsp_option = -1; + +static int hf_trp_opcode = -1; +static int hf_domain = -1; +static int hf_identity_resolution = -1; +static int hf_initiator_request = -1; +static int hf_responder_request = -1; +static int hf_initiator_ticket = -1; +static int hf_responder_ticket = -1; +static int hf_authentication_block = -1; +static int hf_group_identifier = -1; +static int hf_node_identifier = -1; +static int hf_thb = -1; +static int hf_tmin = -1; +static int hf_tmax = -1; +static int hf_trp_epoch = -1; +static int hf_sidg = -1; +static int hf_security_scope = -1; +static int hf_security_mode = -1; +static int hf_ssid = -1; +#if 0 /* not used yet */ +static int hf_initiator_pg = -1; +#endif +static int hf_initiator_validation = -1; +static int hf_responder_pg = -1; +static int hf_responder_validation = -1; + +static int hf_trp_errorcode = -1; +static int hf_trp_duration = -1; +#if 0 /* not used yet */ +static int hf_trp_rnonce = -1; +static int hf_trp_pnonce = -1; +static int hf_trp_reqid = -1; +static int hf_trp_provid = -1; +static int hf_trp_perm_count = -1; +static int hf_trp_perm_type = -1; +static int hf_trp_perm_rcache = -1; +static int hf_trp_perm_rsrp = -1; +static int hf_trp_perm_rsrp_a = -1; +static int hf_trp_perm_rsrp_u = -1; +static int hf_trp_perm_rflags = -1; +static int hf_trp_perm_pcache = -1; +static int hf_trp_perm_psrp = -1; +static int hf_trp_perm_psrp_a = -1; +static int hf_trp_perm_psrp_u = -1; +static int hf_trp_perm_psrp_b = -1; +static int hf_trp_perm_psrp_s = -1; +static int hf_trp_perm_pflags = -1; +static int hf_trp_confirmation = -1; +static int hf_trp_perm_pke = -1; +static int hf_trp_perm_pka = -1; +#endif + +static int ett_trp_dsp = -1; +static int ett_trp = -1; +static int ett_domain = -1; +static int ett_identity_resolution = -1; +static int ett_initiator_request = -1; +static int ett_initiator_ticket = -1; +static int ett_responder_request = -1; +static int ett_responder_ticket = -1; +static int ett_authentication_block = -1; +static int ett_group_identifier = -1; +static int ett_node_identifier = -1; +static int ett_sidg = -1; +static int ett_security_scope = -1; +static int ett_security_mode = -1; +static int ett_initiator_pg = -1; +static int ett_initiator_validation = -1; +static int ett_responder_pg = -1; +static int ett_responder_validation = -1; + + +static int ett_trp_permset = -1; +static int ett_srp_flags = -1; +static int ett_trp_ticket = -1; + +static expert_field ei_trp_initiator_id_known = EI_INIT; +static expert_field ei_trp_kek_discovered = EI_INIT; + +#define TRP_RESPONSE (0x80) + +#define TRP_RSP_REJECT (TRP_RESPONSE|0) +#define TRP_CMD_REQUEST_KEK (1) +#define TRP_RSP_REQUEST_KEK (TRP_RESPONSE|TRP_CMD_REQUEST_KEK) +#define TRP_CMD_REQUEST_RANDOM (2) +#define TRP_RSP_REQUEST_RANDOM (TRP_RESPONSE|TRP_CMD_REQUEST_RANDOM) +#define TRP_CMD_REQUEST_SESSION (3) +#define TRP_RSP_REQUEST_SESSION (TRP_RESPONSE|TRP_CMD_REQUEST_SESSION) +#define TRP_CMD_REQUEST_SECURITY_SCOPES (4) +#define TRP_RSP_REQUEST_SECURITY_SCOPES (TRP_RESPONSE|TRP_CMD_REQUEST_SECURITY_SCOPES) +#define TRP_CMD_RESOLVE_CREDENTIAL (6) +#define TRP_RSP_RESOLVE_CREDENTIAL (TRP_RESPONSE|TRP_CMD_RESOLVE_CREDENTIAL) +#define TRP_CMD_REQUEST_LOCAL_DOMAIN (7) +#define TRP_RSP_REQUEST_LOCAL_DOMAIN (TRP_RESPONSE|TRP_CMD_REQUEST_LOCAL_DOMAIN) +#define TRP_CMD_REQUEST_REMOTE_DOMAIN (8) +#define TRP_RSP_REQUEST_REMOTE_DOMAIN (TRP_RESPONSE|TRP_CMD_REQUEST_REMOTE_DOMAIN) +#define TRP_RSP_REQUEST_DISCOVERED_REMOTE_DOMAIN (TRP_RESPONSE|0x0A) +#define TRP_CMD_VALIDATE_CREDENTIAL (9) +#define TRP_RSP_VALIDATE_CREDENTIAL (TRP_RESPONSE|TRP_CMD_VALIDATE_CREDENTIAL) + +static const value_string trp_opcode_strings[] = { + { TRP_RSP_REJECT, "Reject" }, + + { TRP_CMD_REQUEST_KEK, "TRP Request KEK" }, + { TRP_RSP_REQUEST_KEK, "TRP Request KEK Response" }, + + { TRP_CMD_REQUEST_RANDOM, "TRP Request Random" }, + { TRP_RSP_REQUEST_RANDOM, "TRP Request Random Response" }, + + { TRP_CMD_REQUEST_SESSION, "TRP Request Session" }, + { TRP_RSP_REQUEST_SESSION, "TRP Request Session Response" }, + + { TRP_CMD_REQUEST_SECURITY_SCOPES, "TRP Request Security Scopes" }, + { TRP_RSP_REQUEST_SECURITY_SCOPES, "TRP Request Security Scopes Response" }, + + { TRP_CMD_RESOLVE_CREDENTIAL, "TRP Resolve Credential" }, + { TRP_RSP_RESOLVE_CREDENTIAL, "TRP Resolve Credential Response" }, + + { TRP_CMD_REQUEST_LOCAL_DOMAIN, "TRP Request Local Domain" }, + { TRP_RSP_REQUEST_LOCAL_DOMAIN, "TRP Request Local Domain Response" }, + + { TRP_CMD_REQUEST_REMOTE_DOMAIN, "TRP Request Remote Domain" }, + { TRP_RSP_REQUEST_REMOTE_DOMAIN, "TRP Request Remote Domain Response" }, + { TRP_RSP_REQUEST_DISCOVERED_REMOTE_DOMAIN, "TRP Request Discovered Remote Domain Response" }, + + { TRP_CMD_VALIDATE_CREDENTIAL, "TRP Validate Credential" }, + { TRP_RSP_VALIDATE_CREDENTIAL, "TRP Validate Credential Response" }, + + { 0, NULL } +}; + +static const value_string trp_error_strings[] = { + { 1, "Parse Error" }, + { 2, "Access Denied" }, + { 3, "Unknown Initiator" }, + { 4, "Unknown Responder" }, + { 5, "Unknown Domain" }, + { 6, "High Load" }, + { 7, "Bad Mode" }, + { 8, "Incompatible Security Identifiers" }, + { 127, "Internal Error" }, + + { 0, NULL } +}; + +/* DAP V130 (SGMP - SECURE GROUP MANAGEMENT PROTOCOL V1) */ +#define DOF_PROTOCOL_SGMP 130 +typedef struct _sgmp_packet_data +{ + guint8 domain_length; + guint8 *domain; + + guint8 group_length; + guint8 *group; + + guint16 epoch; + guint8 *kek; + + guint I_length; + guint8 *I; + guint A_length; + guint8 *A; + + dof_session_data *request_session; +} sgmp_packet_data; + +static int proto_sgmp = -1; + +static int hf_opcode = -1; +static int hf_sgmp_domain = -1; +static int hf_sgmp_epoch = -1; +static int hf_initiator_block = -1; +static int hf_sgmp_security_scope = -1; +static int hf_initial_state = -1; +static int hf_latest_version = -1; +static int hf_desire = -1; +static int hf_ticket = -1; +static int hf_sgmp_tmin = -1; +static int hf_tie_breaker = -1; +static int hf_delay = -1; +static int hf_key = -1; + +static int ett_sgmp = -1; +static int ett_sgmp_domain = -1; +static int ett_initiator_block = -1; +static int ett_sgmp_security_scope = -1; +static int ett_initial_state = -1; +static int ett_ticket = -1; + +#define SGMP_RESPONSE (0x80) +#define SGMP_CMD_HEARTBEAT (0) +#define SGMP_RSP_HEARTBEAT (SGMP_CMD_HEARTBEAT|SGMP_RESPONSE) +#define SGMP_CMD_EPOCH_CHANGED (1) +#define SGMP_RSP_EPOCH_CHANGED (SGMP_CMD_EPOCH_CHANGED|SGMP_RESPONSE) +#define SGMP_CMD_REKEY (2) +#define SGMP_RSP_REKEY (SGMP_CMD_REKEY|SGMP_RESPONSE) +#define SGMP_CMD_REQUEST_GROUP (3) +#define SGMP_RSP_REQUEST_GROUP (SGMP_CMD_REQUEST_GROUP|SGMP_RESPONSE) +#define SGMP_CMD_REKEY_EPOCH (5) +#define SGMP_RSP_REKEY_EPOCH (SGMP_CMD_REKEY_EPOCH|SGMP_RESPONSE) +#define SGMP_CMD_REKEY_MERGE (7) +#define SGMP_RSP_REKEY_MERGE (SGMP_CMD_REKEY_MERGE|SGMP_RESPONSE) + +static const value_string sgmp_opcode_strings[] = { + { SGMP_CMD_HEARTBEAT, "SGMP Heartbeat" }, + { SGMP_RSP_HEARTBEAT, "SGMP Heartbeat Response (Illegal)" }, + { SGMP_CMD_EPOCH_CHANGED, "SGMP Epoch Changed" }, + { SGMP_RSP_EPOCH_CHANGED, "SGMP Epoch Changed Response (Illegal)" }, + { SGMP_CMD_REKEY, "SGMP Rekey" }, + { SGMP_RSP_REKEY, "SGMP Rekey Response (Illegal)" }, + { SGMP_CMD_REQUEST_GROUP, "SGMP Request Group" }, + { SGMP_RSP_REQUEST_GROUP, "SGMP Request Group Response" }, + { SGMP_CMD_REKEY_EPOCH, "SGMP Rekey Epoch" }, + { SGMP_RSP_REKEY_EPOCH, "SGMP Rekey Epoch Response (Illegal)" }, + { SGMP_CMD_REKEY_MERGE, "SGMP Rekey Merge" }, + { SGMP_RSP_REKEY_MERGE, "SGMP Rekey Merge Response (Illegal)" }, + + { 0, NULL } +}; + + +#if 0 /* TODO not used yet */ +static bool sgmp_validate_session_key(sgmp_packet_data *cmd_data, guint8 *confirmation, guint8 *kek, guint8 *key) +{ + gcry_mac_hd_t hmac; + gcry_error_t result; + + result = gcry_mac_open(&hmac, GCRY_MAC_HMAC_SHA256, 0, NULL); + if (result != 0) + return FALSE; + + gcry_mac_setkey(hmac, kek, 32); + gcry_mac_write(hmac, cmd_data->I, cmd_data->I_length); + gcry_mac_write(hmac, cmd_data->A, cmd_data->A_length); + gcry_mac_write(hmac, key, 32); + result = gcry_mac_verify(hmac, confirmation, sizeof(confirmation)); + return result == 0; +} +#endif + +/* DOF SECURITY PROTOCOL */ +#define DOF_SECURITY_PROTOCOL "DOF Security Protocol" +static dissector_table_t dof_sec_dissectors; +#define AS_ASSIGNED_SSID 0x40000000 + +/* DOFSEC Vxxxx (CCM - COUNTER WITH CBC-MAC PROTOCOL V1) */ +#define DOF_PROTOCOL_CCM 24577 +#define DSP_CCM_FAMILY 0x020000 + +static int proto_ccm_app = -1; +static int proto_ccm = -1; +static int proto_ccm_dsp = -1; + +static int hf_ccm_dsp_option = -1; +static int hf_ccm_dsp_strength_count = -1; +static int hf_ccm_dsp_strength = -1; +static int hf_ccm_dsp_e_flag = -1; +static int hf_ccm_dsp_m_flag = -1; +static int hf_ccm_dsp_tmax = -1; +static int hf_ccm_dsp_tmin = -1; + +static const value_string ccm_strengths[] = { + { 1, "256-bit" }, + { 2, "192-bit" }, + { 3, "128-bit" }, + { 0, NULL } +}; +static int hf_ccm_opcode = -1; + +static int hf_epp_v1_ccm_flags = -1; +static int hf_epp_v1_ccm_flags_manager = -1; +static int hf_epp_v1_ccm_flags_period = -1; +static int hf_epp_v1_ccm_flags_target = -1; +static int hf_epp_v1_ccm_flags_next_nid = -1; +static int hf_epp_v1_ccm_flags_packet = -1; +static int hf_epp_v1_ccm_tnid = -1; +static int hf_epp_v1_ccm_nnid = -1; +static int hf_epp_v1_ccm_nid = -1; +static int hf_epp_v1_ccm_slot = -1; +static int hf_epp_v1_ccm_pn = -1; + +static int ett_header = -1; +static int ett_epp_v1_ccm_flags = -1; + +static int ett_ccm_dsp_option = -1; +static int ett_ccm_dsp = -1; +static int ett_ccm = -1; + +static expert_field ei_decode_failure = EI_INIT; + +typedef struct _ccm_session_data +{ + guint protocol_id; + gcry_cipher_hd_t cipher_data; + GHashTable *cipher_data_table; + /* Starts at 1, incrementing for each new key. */ + guint32 period; + /* Mapping from wire period to absolute periods. */ + guint8 periods[8]; + guint8 cipher; + gboolean encrypted; + guint8 mac_len; + guint32 client_datagram_number; + guint32 server_datagram_number; +} ccm_session_data; + +typedef struct _ccm_packet_data +{ + guint32 nid; + guint32 dn; + guint32 period; +} ccm_packet_data; + +#define CCM_PDU_PROBE (0) + +static const value_string ccm_opcode_strings[] = { + { CCM_PDU_PROBE, "Probe" }, + { 0, NULL } +}; + +/* DOF OBJECT IDENTIFIER (OID) */ +#define DOF_OBJECT_IDENTIFIER "DOF Object Identifier" + +static dissector_handle_t dof_oid_handle; + +static int oid_proto = -1; + +static int hf_oid_class = -1; +static int hf_oid_header = -1; +static int hf_oid_attribute = -1; +static int hf_oid_length = -1; +static int hf_oid_data = -1; +static int hf_oid_all_attribute_data = -1; +static int hf_oid_attribute_header = -1; +static int hf_oid_attribute_attribute = -1; +static int hf_oid_attribute_id = -1; +static int hf_oid_attribute_length = -1; +static int hf_oid_attribute_data = -1; +static int hf_oid_attribute_oid = -1; + +static int ett_oid = -1; +static int ett_oid_header = -1; +static int ett_oid_attribute = -1; +static int ett_oid_attribute_header = -1; +static int ett_oid_attribute_oid = -1; + +/** + * EXPERT INFOS + * Expert infos are related to either a PDU type or a specification, and so + * they are listed separately. + */ +#if 0 +static expert_field ei_undecoded = EI_INIT; +#endif +static expert_field ei_malformed = EI_INIT; +static expert_field ei_implicit_no_op = EI_INIT; +static expert_field ei_c2_c3_c4_format = EI_INIT; +static expert_field ei_type_4_header_zero = EI_INIT; +static expert_field ei_dof_10_flags_zero = EI_INIT; +#if 0 +static expert_field ei_dof_13_length_specified = EI_INIT; +#endif + +static expert_field ei_dpp2_dof_10_flags_zero = EI_INIT; +static expert_field ei_dpp_default_flags = EI_INIT; +static expert_field ei_dpp_explicit_sender_sid_included = EI_INIT; +static expert_field ei_dpp_explicit_receiver_sid_included = EI_INIT; +static expert_field ei_dpp_no_security_context = EI_INIT; +static expert_field ei_dof_6_timeout = EI_INIT; + +static expert_field ei_security_3_1_invalid_stage = EI_INIT; +static expert_field ei_security_4_invalid_bit = EI_INIT; +static expert_field ei_security_13_out_of_range = EI_INIT; + +/** + * SOURCE IDENTIFIER (SID) SUPPORT + * Source identifiers are used as part of operation tracking in the + * DOF Protocol Stack. They are version independent, and associated with + * a node in the DOF mesh network. Each session is associated with a SID. + * + * DPP Manages the SID information, since it is DPP that learns about SIDs. + * SIDs are complicated because the can be 'unknown' for periods, and then + * learned later. The requirement here is that all SIDs that can be known + * are known by the second pass of the dissector (pinfo->visited != 0). + * + * There are two hash tables to map to an actual SID. The first goes + * from sender information to SID ID. During the first pass multiple SID ID + * may actually refer to the same SID, and so the system must be able to "patch" + * these values as actual SIDs are learned. The second hash table goes from SID ID + * to actual SID. This lookup is only known after a real SID has been learned. + * + * The hash tables are used in order to look up full SID information when only + * partial information is known, and must support looking up in both directions + * based on what is known from a particular PDU. + */ +static GHashTable *node_key_to_sid_id = NULL; +static GHashTable *sid_buffer_to_sid_id = NULL; +static GHashTable *sid_id_to_sid_buffer = NULL; + +typedef struct _node_key_to_sid_id_key +{ + gint transport_id; + gint transport_node_id; + gint dof_id; + gint dof_node_id; + gint dof_session_id; +} node_key_to_sid_id_key; + +static guint sender_key_hash_fn(gconstpointer key) +{ + const node_key_to_sid_id_key *sid_key_ptr = (const node_key_to_sid_id_key *)key; + guint result = 0; + + result += g_int_hash(&(sid_key_ptr->transport_id)); + result += g_int_hash(&(sid_key_ptr->transport_node_id)); + result += g_int_hash(&(sid_key_ptr->dof_id)); + result += g_int_hash(&(sid_key_ptr->dof_node_id)); + result += g_int_hash(&(sid_key_ptr->dof_session_id)); + + return result; +} + +static guint sid_buffer_hash_fn(gconstpointer key) +{ + /* The sid buffer is a length byte followed by data. */ + guint hash = 5381; + const guint8 *str = (const guint8 *)key; + guint16 i; + + for (i = 0; i <= str[0]; i++) + hash = ((hash << 5) + hash) + str[i]; /* hash * 33 + c */ + + return hash; +} + +static gboolean sender_key_equal_fn(gconstpointer key1, gconstpointer key2) +{ + const node_key_to_sid_id_key *sid_key_ptr1 = (const node_key_to_sid_id_key *)key1; + const node_key_to_sid_id_key *sid_key_ptr2 = (const node_key_to_sid_id_key *)key2; + + if (sid_key_ptr1->transport_id != sid_key_ptr2->transport_id) + return FALSE; + + if (sid_key_ptr1->transport_node_id != sid_key_ptr2->transport_node_id) + return FALSE; + + if (sid_key_ptr1->dof_id != sid_key_ptr2->dof_id) + return FALSE; + + if (sid_key_ptr1->dof_node_id != sid_key_ptr2->dof_node_id) + return FALSE; + + if (sid_key_ptr1->dof_session_id != sid_key_ptr2->dof_session_id) + return FALSE; + + return TRUE; +} + +static gboolean sid_buffer_equal_fn(gconstpointer key1, gconstpointer key2) +{ + const guint8 *sb1 = (const guint8 *)key1; + const guint8 *sb2 = (const guint8 *)key2; + + if (sb1[0] != sb2[0]) + return FALSE; + + return memcmp(sb1 + 1, sb2 + 1, sb1[0]) == 0; +} + +static guint dpp_next_sid_id = 1; + +/** + * This routine is called for each reset (file load, capture) and is responsible + * for allocating the SID support hash tables. Previous information is freed + * if needed. + */ +static void dpp_reset_sid_support(void) +{ + dpp_next_sid_id = 1; + + if (node_key_to_sid_id != NULL) + { + g_hash_table_destroy(node_key_to_sid_id); + node_key_to_sid_id = NULL; + } + + if (sid_buffer_to_sid_id != NULL) + { + g_hash_table_destroy(sid_buffer_to_sid_id); + sid_buffer_to_sid_id = NULL; + } + + if (sid_id_to_sid_buffer != NULL) + { + g_hash_table_destroy(sid_id_to_sid_buffer); + sid_id_to_sid_buffer = NULL; + } + + /* The value is not allocated, so does not need to be freed. */ + node_key_to_sid_id = g_hash_table_new_full(sender_key_hash_fn, sender_key_equal_fn, g_free, NULL); + sid_buffer_to_sid_id = g_hash_table_new_full(sid_buffer_hash_fn, sid_buffer_equal_fn, g_free, NULL); + sid_id_to_sid_buffer = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, NULL); +} + +/** + * OPERATION IDENTIFIER SUPPORT + * Operation identifiers are an extension of a SID, and represent each separate + * operation in the DOF. They are identified by a SID and an operation count. + * Like SIDs, they are indepenent of version (at least in meaning, the formatting + * may change). + * + * The hash is used to look up common operation information each time an operation + * is seen in any packet. + */ +static GHashTable *dpp_opid_to_packet_data = NULL; + +static guint dpp_opid_hash_fn(gconstpointer opid) +{ + const dof_2009_1_pdu_20_opid *ptr = (const dof_2009_1_pdu_20_opid *)opid; + return g_int_hash(&ptr->op_sid_id) + g_int_hash(&ptr->op_cnt); +} + +static gboolean dpp_opid_equal_fn(gconstpointer opid1, gconstpointer opid2) +{ + const dof_2009_1_pdu_20_opid *ptr1 = (const dof_2009_1_pdu_20_opid *)opid1; + const dof_2009_1_pdu_20_opid *ptr2 = (const dof_2009_1_pdu_20_opid *)opid2; + if (ptr1->op_cnt != ptr2->op_cnt) + return FALSE; + if (ptr1->op_sid_id != ptr2->op_sid_id) + return FALSE; + + return TRUE; +} + +static void dpp_reset_opid_support(void) +{ + if (dpp_opid_to_packet_data != NULL) + { + /* Clear it out. Note that this calls the destroy functions for each element. */ + g_hash_table_destroy(dpp_opid_to_packet_data); + dpp_opid_to_packet_data = NULL; + } + + dpp_opid_to_packet_data = g_hash_table_new_full(dpp_opid_hash_fn, dpp_opid_equal_fn, NULL, NULL); +} + +/** + * NON-SECURE SESSION LOOKUP SUPPORT + */ +static GHashTable *dof_ns_session_lookup = NULL; + +/** + * NON-SECURE DPS SESSION + * This is defined by the transport session and the DNP port information. + */ +typedef struct _dof_ns_session_key +{ + guint transport_session_id; + guint client; + guint server; + gboolean is_secure; +} dof_ns_session_key; + +static dof_session_data* dof_ns_session_retrieve(guint transport_session_id, guint client, guint server) +{ + dof_ns_session_key lookup_key; + dof_session_data *value; + + /* Build a (non-allocated) key to do the lookup. */ + lookup_key.transport_session_id = transport_session_id; + lookup_key.client = client; + lookup_key.server = server; + + value = (dof_session_data *)g_hash_table_lookup(dof_ns_session_lookup, &lookup_key); + if (value) + { + /* We found a match. */ + return value; + } + + return NULL; +} + +static void dof_ns_session_define(guint transport_session_id, guint client, guint server, dof_session_data *session_data) +{ + dof_ns_session_key *key; + + /* No match, need to add a key. */ + key = g_new0(dof_ns_session_key, 1); + key->transport_session_id = transport_session_id; + key->client = client; + key->server = server; + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(dof_ns_session_lookup, key, session_data); +} + +/* COMMON PDU DISSECTORS */ + +/* Security.1 */ +static int hf_security_1_permission_type = -1; +static int hf_security_1_length = -1; +static int hf_security_1_data = -1; + +static const value_string dof_2008_16_permission_type[] = { + { 1, "Binding" }, + { 3, "IAM" }, + { 5, "ACTAS" }, + { 128, "Requestor" }, + { 130, "Provider" }, + { 131, "Define" }, + { 133, "Tunnel Domain" }, + { 0, NULL } +}; + +/* Security.2 */ +static int hf_security_2_count = -1; +static int ett_security_2_permission = -1; +static int hf_security_2_permission = -1; + +/* Security.3.1 */ +static int hf_security_3_1_credential_type = -1; +static int hf_security_3_1_stage = -1; +static int ett_security_3_1_security_node_identifier = -1; +static int hf_security_3_1_security_node_identifier = -1; + +/* Security.3.2 */ +static int hf_security_3_2_credential_type = -1; +static int hf_security_3_2_stage = -1; +static int hf_security_3_2_length = -1; +static int hf_security_3_2_public_data = -1; + +/* Security.4 */ +static int hf_security_4_l = -1; +static int hf_security_4_f = -1; +static int hf_security_4_ln = -1; +static int ett_security_4_identity = -1; +static int hf_security_4_identity = -1; +static int hf_security_4_nonce = -1; +static int ett_security_4_permission_set = -1; +static int hf_security_4_permission_set = -1; + +/* Security.5 */ +static int hf_security_5_mac = -1; +static int hf_security_5_key = -1; + +/* Security.6.1 */ +static int hf_security_6_1_desired_duration = -1; +static int ett_security_6_1_desired_security_mode = -1; +static int hf_security_6_1_desired_security_mode = -1; +static int ett_security_6_1_initiator_request = -1; +static int hf_security_6_1_initiator_request = -1; + +/* Security.6.2 */ +static int ett_security_6_2_responder_request = -1; +static int hf_security_6_2_responder_request = -1; + +/* Security.6.3 */ +static int hf_security_6_3_granted_duration = -1; +static int ett_security_6_3_session_security_scope = -1; +static int hf_security_6_3_session_security_scope = -1; +static int ett_security_6_3_initiator_validation = -1; +static int hf_security_6_3_initiator_validation = -1; +static int ett_security_6_3_responder_validation = -1; +static int hf_security_6_3_responder_validation = -1; + +/* Security.9 */ +static int hf_security_9_length = -1; +static int hf_security_9_initial_state = -1; + +/* Security.10 */ +static int hf_security_10_count = -1; +static int hf_security_10_permission_group_identifier = -1; + +/* Security.11 */ +static int hf_security_11_count = -1; +static int ett_security_11_permission_security_scope = -1; +static int hf_security_11_permission_security_scope = -1; + +/* Security.12 */ +static int hf_security_12_m = -1; + +static const value_string dof_2008_16_security_12_m[] = { + { 0, "Reference" }, + { 1, "Relative" }, + { 2, "Absolute" }, + { 3, "Continued" }, + { 0, NULL } +}; + +static int hf_security_12_count = -1; +static int hf_security_12_permission_group_identifier = -1; + +static bool +dof_sessions_destroy_cb(wmem_allocator_t *allocator _U_, wmem_cb_event_t event _U_, void *user_data) +{ + ccm_session_data *ccm_data = (ccm_session_data*) user_data; + gcry_cipher_close(ccm_data->cipher_data); + if (ccm_data->cipher_data_table) { + g_hash_table_destroy(ccm_data->cipher_data_table); + } + /* unregister this callback */ + return FALSE; +} + +static void dof_cipher_data_destroy (gpointer data) +{ + gcry_cipher_hd_t cipher_data = (gcry_cipher_hd_t) data; + gcry_cipher_close(cipher_data); +} + +static int dissect_2008_1_dsp_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) +{ + proto_item *parent = proto_tree_get_parent(tree); + guint8 attribute_code = tvb_get_guint8(tvb, 0); + guint16 attribute_data = tvb_get_ntohs(tvb, 1); + guint8 option_length = tvb_get_guint8(tvb, 3); + + /* Add the generic representation of the fields. */ + proto_tree_add_item(tree, hf_2008_1_dsp_attribute_code, tvb, 0, 1, ENC_NA); + proto_tree_add_item(tree, hf_2008_1_dsp_attribute_data, tvb, 1, 2, ENC_BIG_ENDIAN); + proto_tree_add_item(tree, hf_2008_1_dsp_value_length, tvb, 3, 1, ENC_NA); + + /* Append description to the parent. */ + proto_item_append_text(parent, " (Code=%s/Data=0x%04x)", val_to_str(attribute_code, strings_2008_1_dsp_attribute_codes, "%u"), attribute_data); + + if (option_length) + { + proto_tree_add_item(tree, hf_2008_1_dsp_value_data, tvb, 4, option_length, ENC_NA); + + /* call the next dissector */ + tvb_set_reported_length(tvb, option_length + 4); + dissector_try_uint(dsp_option_dissectors, (attribute_code << 16) | attribute_data, tvb, pinfo, tree); + } + return option_length + 4; +} + +/** + * Security.1: Permission. This is the base type for + * permissions, and supports extension. + */ +static int dissect_2008_16_security_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + gboolean has_length; + guint16 length; + + /* Permission Type */ + { + gint start = offset; + guint16 value; + gint val_len; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &val_len); + has_length = (gboolean)(value % 2); + pi = proto_tree_add_uint(tree, hf_security_1_permission_type, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, val_len); + } + + if (!has_length) + return offset; + + /* Length */ + { + gint start = offset; + guint16 value; + gint value_len; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &value_len); + length = value; + pi = proto_tree_add_uint(tree, hf_security_1_length, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, value_len); + } + + /* Data */ + proto_tree_add_item(tree, hf_security_1_data, tvb, offset, length, ENC_NA); + offset += length; + + return offset; +} + +/** + * Security.2: Permission Request. + */ +static int dissect_2008_16_security_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint16 count; + + /* Count */ + { + gint start = offset; + guint16 value; + gint length; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &length); + count = value; + pi = proto_tree_add_uint(tree, hf_security_2_count, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, length); + } + + while (count--) + { + proto_item *ti = proto_tree_add_item(tree, hf_security_2_permission, tvb, offset, -1, ENC_NA); + proto_tree *subtree = proto_item_add_subtree(ti, ett_security_2_permission); + tvbuff_t *next_tvb = tvb_new_subset_remaining(tvb, offset); + gint len = dissect_2008_16_security_1(next_tvb, pinfo, subtree, NULL); + proto_item_set_len(ti, len); + offset += len; + } + + return offset; +} + +/** + * Security.3.1: Base Credential Format. + * Returns: dof_2008_16_security_3_1 + */ +static int dissect_2008_16_security_3_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + gint offset = 0; + guint8 stage; + proto_item *ti; + dof_2008_16_security_3_1 *return_data = (dof_2008_16_security_3_1 *)data; + + /* Credential Type */ + { + gint start = offset; + guint16 value; + gint length; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &length); + pi = proto_tree_add_uint(tree, hf_security_3_1_credential_type, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, length); + } + + /* Stage */ + stage = tvb_get_guint8(tvb, offset); + ti = proto_tree_add_item(tree, hf_security_3_1_stage, tvb, offset, 1, ENC_NA); + offset += 1; + + if (stage != 0) + expert_add_info(pinfo, ti, &ei_security_3_1_invalid_stage); + + /* Security Node Identifier */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_tree *subtree; + ti = proto_tree_add_item(tree, hf_security_3_1_security_node_identifier, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_3_1_security_node_identifier); + block_length = dissect_2008_16_security_8(start, pinfo, subtree, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + tvb_set_reported_length(start, block_length); + if (return_data) + return_data->identity = start; + } + + return offset; +} + +/** + * Security.3.2: Identity Resolution. + */ +int dissect_2008_16_security_3_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint16 length; + + /* Credential Type */ + { + gint start = offset; + guint16 value; + gint val_len; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &val_len); + pi = proto_tree_add_uint(tree, hf_security_3_2_credential_type, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, val_len); + } + + /* Stage */ + proto_tree_add_item(tree, hf_security_3_2_stage, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Length */ + { + gint start = offset; + guint16 value; + gint value_len; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &value_len); + length = value; + pi = proto_tree_add_uint(tree, hf_security_3_2_length, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, value_len); + } + + /* Public Data */ + proto_tree_add_item(tree, hf_security_3_2_public_data, tvb, offset, length, ENC_NA); + offset += length; + + return offset; +} + +/** + * Security.4: Key Request. Returns: dof_2008_16_security_4 + */ +static int dissect_2008_16_security_4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + gint offset = 0; + guint8 flag; + dof_2008_16_security_4 *return_data = (dof_2008_16_security_4 *)data; + + flag = tvb_get_guint8(tvb, offset); + if (flag & 0x30) + expert_add_info(pinfo, tree, &ei_security_4_invalid_bit); + + proto_tree_add_item(tree, hf_security_4_l, tvb, offset, 1, ENC_NA); + proto_tree_add_item(tree, hf_security_4_f, tvb, offset, 1, ENC_NA); + proto_tree_add_item(tree, hf_security_4_ln, tvb, offset, 1, ENC_NA); + offset += 1; + + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + dof_2008_16_security_3_1 return_3_1; + + ti = proto_tree_add_item(tree, hf_security_4_identity, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_4_identity); + + block_length = dissect_2008_16_security_3_1(start, pinfo, subtree, &return_3_1); + proto_item_set_len(ti, block_length); + offset += block_length; + if (return_data) + { + return_data->identity = return_3_1.identity; + } + } + + { + tvbuff_t *start = tvb_new_subset_length(tvb, offset, (flag & 0x0F) + 1); + if (return_data) + return_data->nonce = start; + + proto_tree_add_item(tree, hf_security_4_nonce, start, 0, (flag & 0x0F) + 1, ENC_NA); + offset += (flag & 0x0F) + 1; + } + + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_4_permission_set, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_4_permission_set); + block_length = dissect_2008_16_security_2(start, pinfo, subtree, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + } + + return offset; +} + +/** + * Security.5: Key Grant. + */ +static int dissect_2008_16_security_5(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + + proto_tree_add_item(tree, hf_security_5_mac, tvb, offset, 32, ENC_NA); + offset += 32; + + proto_tree_add_item(tree, hf_security_5_key, tvb, offset, 32, ENC_NA); + offset += 32; + + return offset; +} + +/** + * Security.6.1: Session Initator Block. + * Returns dof_2008_16_security_6_1 + */ +static int dissect_2008_16_security_6_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + gint offset = 0; + + /* Allocate the return structure. */ + dof_2008_16_security_6_1 *return_data = (dof_2008_16_security_6_1 *)data; + + /* Desired Duration */ + proto_tree_add_item(tree, hf_security_6_1_desired_duration, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Desired Security Mode */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_1_desired_security_mode, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_1_desired_security_mode); + + block_length = dissect_2008_16_security_13(start, pinfo, subtree, NULL); + offset += block_length; + tvb_set_reported_length(start, block_length); + proto_item_set_len(ti, block_length); + + if (return_data) + { + return_data->security_mode = tvb_get_ntohs(start, 1); + return_data->security_mode_data_length = block_length - 4; + return_data->security_mode_data = (guint8 *)tvb_memdup(wmem_file_scope(), start, 4, block_length - 4); + } + } + + /* Initiator Request */ + { + int block_length; + dof_2008_16_security_4 output; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_1_initiator_request, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_1_initiator_request); + + block_length = dissect_2008_16_security_4(start, pinfo, subtree, &output); + proto_item_set_len(ti, block_length); + offset += block_length; + if (return_data) + { + return_data->i_identity = output.identity; + return_data->i_nonce = output.nonce; + } + } + + return offset; +} + +/** + * Security.6.2: Session Responder Block. + * Returns dof_2008_16_security_6_2 + */ +static int dissect_2008_16_security_6_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + gint offset = 0; + dof_2008_16_security_6_2 *return_data = (dof_2008_16_security_6_2 *)data; + + /* Responder Request */ + { + int block_length; + dof_2008_16_security_4 output; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_2_responder_request, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_2_responder_request); + + block_length = dissect_2008_16_security_4(start, pinfo, subtree, &output); + proto_item_set_len(ti, block_length); + offset += block_length; + if (return_data) + { + return_data->r_identity = output.identity; + return_data->r_nonce = output.nonce; + } + } + + return offset; +} + +/** + * Security.6.3: Authentication Response Block. + */ +static int dissect_2008_16_security_6_3(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + + /* Granted Duration */ + proto_tree_add_item(tree, hf_security_6_3_granted_duration, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Session Security Scope */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_3_session_security_scope, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_3_session_security_scope); + block_length = dissect_2008_16_security_10(start, pinfo, subtree, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + } + + /* Initiator Validation */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_3_initiator_validation, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_3_initiator_validation); + block_length = dissect_2008_16_security_11(start, pinfo, subtree, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + } + + /* Responder Validation */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_item *ti; + proto_tree *subtree; + + ti = proto_tree_add_item(tree, hf_security_6_3_responder_validation, tvb, offset, 0, ENC_NA); + subtree = proto_item_add_subtree(ti, ett_security_6_3_responder_validation); + block_length = dissect_2008_16_security_11(start, pinfo, subtree, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + } + + return offset; +} + +/** + * Security.7: Security Domain. + */ +static int dissect_2008_16_security_7(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + /* Parse the base type. */ + gint block_length; + + block_length = dissect_2009_11_type_4(tvb, pinfo, tree, NULL); + + return block_length; +} + +/** + * Security.8: Security Node Identifier. + */ +static int dissect_2008_16_security_8(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + /* Parse the base type. */ + gint block_length; + + block_length = dissect_2009_11_type_4(tvb, pinfo, tree, NULL); + + return block_length; +} + +/** + * Security.9: Security Mode of Operation Initialization. + * If the packet info has knowledge of the active security mode + * of operation then this datagram can be further decoded. + */ +static int dissect_2008_16_security_9(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint16 length; + + /* Length */ + { + gint start = offset; + guint16 value; + gint value_len; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &value_len); + length = value; + pi = proto_tree_add_uint(tree, hf_security_9_length, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, value_len); + } + + if (length > 0) + { + proto_tree_add_item(tree, hf_security_9_initial_state, tvb, offset, length, ENC_NA); + offset += length; + } + + return offset; +} + +/** + * Security.10: Security Scope. + */ +static int dissect_2008_16_security_10(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint16 count; + + /* Count */ + { + gint start = offset; + guint16 value; + gint length; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &length); + count = value; + pi = proto_tree_add_uint(tree, hf_security_10_count, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, length); + } + + while (count--) + { + const char *def = ""; + + gint start = offset; + guint32 value; + gint length; + proto_item *pi; + + offset = read_c4(tvb, offset, &value, &length); + + switch (value) + { + case 0x3FFFFFFF: + def = " (all scopes)"; + break; + case 0x3FFFFFFE: + def = " (doesn't mask)"; + break; + case 0x3FFFFFFD: + def = " (session scope)"; + break; + } + + pi = proto_tree_add_uint_format_value(tree, hf_security_10_permission_group_identifier, tvb, start, offset - start, value, "%u%s", value, def); + validate_c4(pinfo, pi, value, length); + } + + return offset; +} + +/** + * Security.11: Permission Validation. + */ +static int dissect_2008_16_security_11(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint16 count; + + /* Count */ + { + gint start = offset; + guint16 value; + gint length; + proto_item *pi; + offset = read_c2(tvb, offset, &value, &length); + count = value; + pi = proto_tree_add_uint(tree, hf_security_11_count, tvb, start, offset - start, value); + validate_c2(pinfo, pi, value, length); + } + + while (count--) + { + proto_item *ti = proto_tree_add_item(tree, hf_security_11_permission_security_scope, tvb, offset, -1, ENC_NA); + proto_tree *subtree = proto_item_add_subtree(ti, ett_security_11_permission_security_scope); + tvbuff_t *next_tvb = tvb_new_subset_remaining(tvb, offset); + gint len; + len = dissect_2008_16_security_12(next_tvb, pinfo, subtree, NULL); + proto_item_set_len(ti, len); + offset += len; + } + + return offset; +} + +/** + * Security.12: Permission Security Scope. + */ +static int dissect_2008_16_security_12(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint8 m = tvb_get_guint8(tvb, offset) >> 6; + guint16 count = tvb_get_guint8(tvb, offset) & 0x3F; + proto_item *pi; + + proto_tree_add_item(tree, hf_security_12_m, tvb, offset, 1, ENC_NA); + proto_tree_add_item(tree, hf_security_12_count, tvb, offset, 1, ENC_NA); + offset += 1; + + if (m == 0) + return offset; + + while (count--) + { + const char *def = ""; + + gint start = offset; + guint32 value; + gint length; + offset = read_c4(tvb, offset, &value, &length); + + switch (value) + { + case 0x3FFFFFFF: + def = " (all scopes)"; + break; + case 0x3FFFFFFE: + def = " (doesn't mask)"; + break; + case 0x3FFFFFFD: + def = " (session scope)"; + break; + } + + pi = proto_tree_add_uint_format_value(tree, hf_security_12_permission_group_identifier, tvb, start, offset - start, value, "%u%s", value, def); + validate_c4(pinfo, pi, value, length); + } + + return offset; +} + +/** + * Security.13: Security Mode of Operation Negotiation. + */ +static int dissect_2008_16_security_13(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + /* Parse the base type. */ + gint block_length; + guint16 attribute_data; + + /* TODO: Skipping this first byte means that no other encryption modes can be supported. */ + attribute_data = tvb_get_ntohs(tvb, 1); + if (attribute_data < 0x6000 || attribute_data >= 0x7000) + expert_add_info(pinfo, tree, &ei_security_13_out_of_range); + + block_length = dissect_2008_1_dsp_1(tvb, pinfo, tree); + + return block_length; +} + +/** + * Dissects a buffer that is pointing at an OID. + * Adds a subtree with detailed information about the fields of + * the OID, + * returns the length of the OID, + * and appends text to the tree (really a tree item) that is + * passed in that gives a more accurate description of the OID. + * Note that the tree already shows the bytes of the OID, so if + * no additional information can be displayed then it should not + * be. + * + * If 'tree' is NULL then just return the length. + */ +static gint dissect_2009_11_type_4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + proto_item *ti; + gint start_offset = 0; + gint offset = 0; + guint32 oid_class; + gint oid_class_len; + guint8 oid_len_byte; + proto_tree *oid_tree = tree; + proto_tree *header_tree; + + if (tree) + { + ti = proto_tree_get_parent(tree); + proto_item_set_text(ti, "Object ID: %s", dof_oid_create_standard_string(tvb_reported_length(tvb), tvb_get_ptr(tvb, 0, tvb_reported_length(tvb)))); + } + + offset = read_c4(tvb, offset, &oid_class, &oid_class_len); + ti = proto_tree_add_uint_format(oid_tree, hf_oid_class, tvb, start_offset, offset - start_offset, oid_class, "Class: %u", oid_class); + validate_c4(pinfo, ti, oid_class, oid_class_len); + + oid_len_byte = tvb_get_guint8(tvb, offset); + ti = proto_tree_add_uint_format(oid_tree, hf_oid_header, tvb, + offset, 1, oid_len_byte, "Header: 0x%02x (%sLength=%d)", oid_len_byte, oid_len_byte & 0x80 ? "Attribute, " : "", oid_len_byte & 0x3F); + + header_tree = proto_item_add_subtree(ti, ett_oid_header); + proto_tree_add_item(header_tree, hf_oid_attribute, tvb, offset, 1, ENC_NA); + proto_tree_add_item(header_tree, hf_oid_length, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Validate the flag byte */ + if (oid_len_byte & 0x40) + { + /* Type.4 Malformed (bit mandated zero). */ + expert_add_info(pinfo, ti, &ei_type_4_header_zero); + } + + if ((oid_len_byte & 0x3F) > 0) + { + /* Add the raw data. */ + proto_tree_add_item(oid_tree, hf_oid_data, tvb, offset, oid_len_byte & 0x3F, ENC_NA); + offset += oid_len_byte & 0x3F; + } + + /* Check for attributes */ + if (oid_len_byte & 0x80) + { + /* Read attributes, adding them to oid_tree. */ + guint8 flag; + + do + { + tvbuff_t *packet = tvb_new_subset_remaining(tvb, offset); + proto_tree *attribute_tree; + gint attribute_length; + + ti = proto_tree_add_item(tree, hf_oid_all_attribute_data, tvb, offset, -1, ENC_NA); + attribute_tree = proto_item_add_subtree(ti, ett_oid_attribute); + flag = tvb_get_guint8(tvb, offset); + attribute_length = dissect_2009_11_type_5(packet, pinfo, attribute_tree); + proto_item_set_len(ti, (const gint)attribute_length); + offset += attribute_length; + } + while (flag & 0x80); + } + + if (tree) + { + ti = proto_tree_get_parent(tree); + proto_item_set_len(ti, offset - start_offset); + } + + /* TODO: Add the description. */ + /* proto_item_append_text( oid_tree, ": %s", "TODO" ); */ + return offset; +} + +/** + * Dissects a buffer that is pointing at an attribute. + * Adds a subtree with detailed information about the fields of + * the attribute, + * returns the new offset, + * and appends text to the tree (really a tree item) that is + * passed in that gives a more accurate description of the + * attribute. + * Note that the tree already shows the bytes of the OID, so if + * no additional information can be displayed then it should not + * be. + * + * If 'tree' is NULL then just return the length. + */ +static int dissect_2009_11_type_5(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) +{ + proto_item *ti; + gint offset = 0; + guint8 attribute_id_byte; + guint8 attribute_length_byte; + proto_tree *oid_tree = tree; + proto_tree *header_tree; + + attribute_id_byte = tvb_get_guint8(tvb, offset); + ti = proto_tree_add_uint_format(oid_tree, hf_oid_attribute_header, tvb, + offset, 1, attribute_id_byte, "Header: 0x%02x (%sLength=%d)", attribute_id_byte, attribute_id_byte & 0x80 ? "Attribute, " : "", attribute_id_byte & 0x3F); + + header_tree = proto_item_add_subtree(ti, ett_oid_attribute_header); + proto_tree_add_item(header_tree, hf_oid_attribute_attribute, tvb, offset, 1, ENC_NA); + proto_tree_add_item(header_tree, hf_oid_attribute_id, tvb, offset, 1, ENC_NA); + offset += 1; + + attribute_length_byte = tvb_get_guint8(tvb, offset); + proto_tree_add_item(oid_tree, hf_oid_attribute_length, tvb, offset, 1, ENC_NA); + offset += 1; + + switch (attribute_id_byte & 0x7F) + { + case 1: + /* TODO: Check length */ + proto_tree_add_item(oid_tree, hf_oid_attribute_data, tvb, offset, attribute_length_byte, ENC_NA); + offset += attribute_length_byte; + break; + + case 0: + case 2: + { + tvbuff_t *packet = tvb_new_subset_length(tvb, offset, attribute_length_byte); + proto_tree *attribute_tree; + + ti = proto_tree_add_item(tree, hf_oid_attribute_oid, tvb, offset, -1, ENC_NA); + attribute_tree = proto_item_add_subtree(ti, ett_oid_attribute_oid); + offset += dissect_2009_11_type_4(packet, pinfo, attribute_tree, NULL); + } + break; + + default: + proto_tree_add_item(oid_tree, hf_oid_attribute_data, tvb, offset, attribute_length_byte, ENC_NA); + offset += attribute_length_byte; + } + + return offset; +} + + +/* Transport Session ID */ +static dof_globals globals; + +/* Static Methods. */ + +static dof_packet_data* create_packet_data(packet_info *pinfo); +static int dof_dissect_dnp_length(tvbuff_t *tvb, packet_info *pinfo, guint8 version, gint *offset); +#define VALIDHEX(c) ( ((c) >= '0' && (c) <= '9') || ((c) >= 'A' && (c) <= 'F') || ((c) >= 'a' && (c) <= 'f') ) + + +/* Configuration structures. These tables allow for security + * mode templates, security keys, and secrets to be configured. + */ + +static gboolean decrypt_all_packets = FALSE; +static gboolean track_operations = FALSE; +static guint track_operations_window = 5; +static guint32 next_dof_frame = 1; + +/* Structure for security mode of operation templates. */ +typedef struct _secmode_field_t { + gchar *domain; + gchar *identity; + gchar *kek; +} secmode_field_t; + +static secmode_field_t *secmode_list = NULL; +static guint num_secmode_list = 0; + +/* Structure for security keys. */ +typedef struct _seckey_field_t { + gchar *key; +} seckey_field_t; + +/* Structure for secrets (for identities) */ +typedef struct _identsecret_field_t { + gchar *domain; + gchar *identity; + gchar *secret; +} identsecret_field_t; + +typedef struct _tcp_ignore_data +{ + guint32 sequence; + gboolean ignore; + struct _tcp_ignore_data *next; +} tcp_ignore_data; + +typedef struct _tcp_dof_packet_ref +{ + /* A single TCP frame can contain multiple packets. We must + * be able to keep track of them all. + */ + dof_api_data api_data; + + guint16 start_offset; + dof_transport_packet transport_packet; + struct _tcp_dof_packet_ref *next; +} tcp_dof_packet_ref; + +/** + * This structure exists for TCP packets and allows matching Wireshark frames to + * DPS packets. + */ +typedef struct _tcp_packet_data +{ + /* Packets are ignored based on the starting TCP SEQ (sequence of first byte). */ + tcp_ignore_data *from_client_ignore_list; + tcp_ignore_data *from_server_ignore_list; + + /* DPS packet structures contained within a TCP frame. */ + tcp_dof_packet_ref *dof_packets; +} tcp_packet_data; + +/** + * This structure exists for UDP sessions and allows for advanced stream handling + * and matching Wireshark frames to DPS packets. + */ +typedef struct _udp_session_data +{ + /* This must be the first structure, as a pointer to this type is stored in each DPS packet. */ + dof_transport_session common; + + /* For the associated TCP conversation, this tracks the client and server + * addresses. + */ + ws_node server; +} udp_session_data; + +/* This structure exists for TCP sessions and allows for advanced stream handling + * and matching Wireshark frames to DPS packets. + */ +typedef struct _tcp_session_data +{ + /* This must be the first structure, as a pointer to this type is stored in each DPS packet. */ + dof_transport_session common; + + /* This flag is used to determine that an entire TCP session is NOT OpenDOF. + * Because of TCP/IP negotation in the DPS it is easy to confuse arbitrary + * protocols as OpenDOF. Once it is determined that it is not then this + * flag can be set, which will turn off all the OpenDOF dissectors. + */ + gboolean not_dps; + + /* For the associated TCP conversation, this tracks the client and server + * addresses. + */ + ws_node client, server; + + /* TCP sequence numbers, used to detect retransmissions. These are only valid + * during the first pass through the packets. + */ + guint32 from_client_seq; + guint32 from_server_seq; + +} tcp_session_data; + +static dof_security_data global_security; + +static guint8 count_hex_bytes(gchar *str); + +/* Global DPS data structures for security keys. */ +static seckey_field_t *seckey_list = NULL; +static guint num_seckey_list = 0; + +/* Global DPS data structures for identity secrets. */ +static identsecret_field_t *identsecret_list = NULL; +static guint num_identsecret_list = 0; + + +/* Callbacks for Configuration security templates. */ +UAT_CSTRING_CB_DEF(secmode_list, domain, secmode_field_t) +UAT_CSTRING_CB_DEF(secmode_list, identity, secmode_field_t) +UAT_CSTRING_CB_DEF(secmode_list, kek, secmode_field_t) + +static void secmode_list_post_update_cb(void) +{ +} + +static bool secmode_list_update_cb(void *r, char **err) +{ + secmode_field_t *rec = (secmode_field_t *)r; + guint32 size; + + *err = NULL; + + size = (guint32)strlen(rec->domain); + if (!VALIDHEX(rec->domain[0]) && !dof_oid_create_internal(rec->domain, &size, NULL)) + { + *err = g_strdup("Invalid domain [must be valid OID]."); + return FALSE; + } + else if (!count_hex_bytes(rec->domain)) + { + *err = g_strdup("Invalid domain [must be valid OID]."); + return FALSE; + } + + size = (guint32)strlen(rec->identity); + if (!VALIDHEX(rec->identity[0]) && !dof_oid_create_internal(rec->identity, &size, NULL)) + { + *err = g_strdup("Invalid identity [must be valid OID]."); + return FALSE; + } + else if (!count_hex_bytes(rec->identity)) + { + *err = g_strdup("Invalid identity [must be valid OID]."); + return FALSE; + } + + if (count_hex_bytes(rec->kek) != 32) + { + *err = g_strdup("Invalid KEK [must be 32 byte key]."); + return FALSE; + } + return TRUE; +} + +static void* secmode_list_copy_cb(void *n, const void *o, size_t siz _U_) +{ + secmode_field_t *new_rec = (secmode_field_t *)n; + const secmode_field_t *old_rec = (const secmode_field_t *)o; + + new_rec->domain = g_strdup(old_rec->domain); + new_rec->identity = g_strdup(old_rec->identity); + new_rec->kek = g_strdup(old_rec->kek); + + return new_rec; +} + +static void secmode_list_free_cb(void *r) +{ + secmode_field_t *rec = (secmode_field_t *)r; + + g_free(rec->domain); + g_free(rec->identity); + g_free(rec->kek); +} + + +/* Callbacks for security keys. */ +UAT_CSTRING_CB_DEF(seckey_list, key, seckey_field_t) + +static void seckey_list_post_update_cb(void) +{ +} + +static bool seckey_list_update_cb(void *r, char **err) +{ + seckey_field_t *rec = (seckey_field_t *)r; + + *err = NULL; + if (count_hex_bytes(rec->key) != 32) + { + *err = g_strdup("Invalid secret [must be 32 bytes]."); + return FALSE; + } + return TRUE; +} + +static void* seckey_list_copy_cb(void *n, const void *o, size_t siz _U_) +{ + seckey_field_t *new_rec = (seckey_field_t *)n; + const seckey_field_t *old_rec = (const seckey_field_t *)o; + + new_rec->key = g_strdup(old_rec->key); + + return new_rec; +} + +static void seckey_list_free_cb(void *r) +{ + seckey_field_t *rec = (seckey_field_t *)r; + + g_free(rec->key); +} + + +/* Callbacks for identity secrets. */ +UAT_CSTRING_CB_DEF(identsecret_list, domain, identsecret_field_t) +UAT_CSTRING_CB_DEF(identsecret_list, identity, identsecret_field_t) +UAT_CSTRING_CB_DEF(identsecret_list, secret, identsecret_field_t) + +static void identsecret_list_post_update_cb(void) +{ +} + +static bool identsecret_list_update_cb(void *r, char **err) +{ + identsecret_field_t *rec = (identsecret_field_t *)r; + guint32 size; + + *err = NULL; + + size = (guint32)strlen(rec->domain); + if (!VALIDHEX(rec->domain[0])) + { + if (dof_oid_create_internal(rec->domain, &size, NULL)) + { + *err = g_strdup("Invalid domain [must be valid OID]."); + return FALSE; + } + } + else if (!count_hex_bytes(rec->domain)) + { + *err = g_strdup("Invalid domain [must be valid OID]."); + return FALSE; + } + + size = (guint32)strlen(rec->identity); + if (!VALIDHEX(rec->identity[0])) + { + if (dof_oid_create_internal(rec->identity, &size, NULL)) + { + *err = g_strdup("Invalid identity [must be valid OID]."); + return FALSE; + } + } + else if (!count_hex_bytes(rec->identity)) + { + *err = g_strdup("Invalid identity [must be valid OID]."); + return FALSE; + } + + if (count_hex_bytes(rec->secret) != 32) + { + *err = g_strdup("Invalid secret [must be 32 byte key]."); + return FALSE; + } + return TRUE; +} + +static void* identsecret_list_copy_cb(void *n, const void *o, size_t siz _U_) +{ + identsecret_field_t *new_rec = (identsecret_field_t *)n; + const identsecret_field_t *old_rec = (const identsecret_field_t *)o; + + new_rec->domain = g_strdup(old_rec->domain); + new_rec->identity = g_strdup(old_rec->identity); + new_rec->secret = g_strdup(old_rec->secret); + + return new_rec; +} + +static void identsecret_list_free_cb(void *r) +{ + identsecret_field_t *rec = (identsecret_field_t *)r; + + g_free(rec->domain); + g_free(rec->identity); + g_free(rec->secret); +} + +static void init_addr_port_tables(void); + +/* The IP transport protocols need to assign SENDER ID based on the + * transport address. This requires a hash lookup from address/port to ID. + */ + +static GHashTable *addr_port_to_id = NULL; + +typedef struct _addr_port_key +{ + address addr; + guint16 port; +} addr_port_key; + +static guint addr_port_key_hash_fn(gconstpointer key) +{ + const addr_port_key *addr_key = (const addr_port_key *)key; + guint result = 0; + guint port_as_int = addr_key->port; + guint type_as_int = addr_key->addr.type; + + result += g_int_hash(&port_as_int); + result += g_int_hash(&type_as_int); + + { + guint hash = 5381; + const guint8 *str = (const guint8 *)addr_key->addr.data; + guint8 i; + + for (i = 0; i < addr_key->addr.len; i++) + hash = ((hash << 5) + hash) + str[i]; /* hash * 33 + c */ + + result += hash; + } + + return result; +} + +static gboolean addr_port_key_equal_fn(gconstpointer key1, gconstpointer key2) +{ + const addr_port_key *addr_key_ptr1 = (const addr_port_key *)key1; + const addr_port_key *addr_key_ptr2 = (const addr_port_key *)key2; + + if (addr_key_ptr1->port != addr_key_ptr2->port) + return FALSE; + + return addresses_equal(&addr_key_ptr1->addr, &addr_key_ptr2->addr); +} + +static void addr_port_key_free_fn(gpointer key) +{ + addr_port_key *addr_port = (addr_port_key *)key; + g_free(addr_port->addr.priv); + g_free(addr_port); +} + +static void init_addr_port_tables(void) +{ + /* This routine is called each time the system is reset (file load, capture) + * and so it should take care of freeing any of our persistent stuff. + */ + if (addr_port_to_id != NULL) + { + /* Clear it out. Note that this calls the destroy functions for each element. */ + g_hash_table_destroy(addr_port_to_id); + addr_port_to_id = NULL; + } + + /* The value is not allocated, so does not need to be freed. */ + addr_port_to_id = g_hash_table_new_full(addr_port_key_hash_fn, addr_port_key_equal_fn, addr_port_key_free_fn, NULL); +} + +static guint next_addr_port_id = 1; + +#define EP_COPY_ADDRESS(to, from) { \ + guint8 *EP_COPY_ADDRESS_data; \ + (to)->type = (from)->type; \ + (to)->len = (from)->len; \ + EP_COPY_ADDRESS_data = (guint8*) wmem_alloc(wmem_packet_scope(),(from)->len); \ + memcpy(EP_COPY_ADDRESS_data, (from)->data, (from)->len); \ + (to)->priv = EP_COPY_ADDRESS_data; \ + (to)->data = (to)->priv; \ + } + +/* Return the transport ID, a unique number for each transport sender. + */ +static guint assign_addr_port_id(address *addr, guint16 port) +{ + addr_port_key lookup_key; + addr_port_key *key; + guint value; + + /* ensure the address contains actual data */ + if (addr->type == AT_NONE) + return 0; + + /* Build a (non-allocated) key to do the lookup. */ + + EP_COPY_ADDRESS(&lookup_key.addr, addr); + lookup_key.port = port; + + value = GPOINTER_TO_UINT(g_hash_table_lookup(addr_port_to_id, &lookup_key)); + if (value) + { + /* We found a match. */ + return value; + } + + /* No match, need to add a key. */ + key = g_new0(addr_port_key, 1); + copy_address(&key->addr, addr); + key->port = port; + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(addr_port_to_id, key, GUINT_TO_POINTER(next_addr_port_id)); + return next_addr_port_id++; +} + +/* Wireshark Configuration Dialog Routines*/ + +static bool identsecret_chk_cb(void *r _U_, const char *p _U_, unsigned len _U_, const void *u1 _U_, const void *u2 _U_, char **err _U_) +{ +#if 0 + gchar** protos; + gchar* line = ep_strndup(p, len); + guint num_protos, i; + + g_strstrip(line); + ascii_strdown_inplace(line); + + protos = ep_strsplit(line, ":", 0); + + for (num_protos = 0; protos[num_protos]; num_protos++) + g_strstrip(protos[num_protos]); + + if (!num_protos) + { + *err = g_strdup("No protocols given"); + return FALSE; + } + + for (i = 0; i < num_protos; i++) + { + if (!find_dissector(protos[i])) + { + *err = g_strdup("Could not find dissector for: '%s'", protos[i]); + return FALSE; + } + } +#endif + return TRUE; +} + +/* Utility Methods */ + +static guint8 count_hex_bytes(gchar *str) +{ + guint8 total = 0; + + while (str != NULL && *str != '\0' && *str != '#') + { + if (!g_ascii_isxdigit(*str)) + { + str += 1; + continue; + } + + if (!g_ascii_isxdigit(str[1])) + return 0; + + total += 1; + str += 2; + } + + return total; +} + +static void parse_hex_string(gchar *str, guint8 **ptr, guint8 *len) +{ + guint8 j = 0; + *len = count_hex_bytes(str); + *ptr = (guint8 *)g_malloc0(*len); + + while (j < *len) + { + int high, low; + + if (!g_ascii_isxdigit(*str)) + { + str += 1; + continue; + } + + high = ws_xton(str[0]); + low = ws_xton(str[1]); + (*ptr)[j++] = (high << 4) | low; + str += 2; + } +} + +/* OID and IID Parsing */ + +static const guint8 OALString_HexChar[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; + +#define IS_PRINTABLE(c) ( ((guint8)c) >= 32U && ((guint8)c) < 127U ) +#define IS_ESCAPED(c) ( (c) == '(' || (c) == ')' || (c) == '[' || (c) == ']' || (c) == '{' || (c) == '}' || (c) == '\\' || (c) == '|' ) +#define DOFOBJECTID_MAX_CLASS_SIZE (4) +#define MAX_OID_DATA_SIZE (63) +#define OID_DATA_LEN_MASK (MAX_OID_DATA_SIZE) + +#define ObjectID_DataToStringLength( data, dataSize ) ObjectID_DataToString( (data), (dataSize), NULL ) +#define OALString_HexDigitToChar(c) (OALString_HexChar[(c)]) +#define DOFObjectIDAttribute_IsValid( attribute ) ((attribute).id < DOFOBJECTIDATTRIBUTE_INVALID) +#define DOFOBJECTID_HEADER_SIZE (offsetof( DOFObjectID_t, oid )) +#define DOFObjectIDAttribute_GetValueSize( attribute ) ((attribute).dataSize) +#define DOFObjectIDAttribute_GetValue( attribute ) ((attribute).data) +#define DOFObjectIDAttribute_GetType( attribute ) ((DOFObjectIDAttributeType)(attribute).id) + +typedef enum DOFObjectIDAttributeID_t +{ + /** + * Provider attribute. This attribute identifies an object as being + * provided by a specific service provider. The associated data must + * be an object identifier. + */ + DOFOBJECTIDATTRIBUTE_PROVIDER = 0, + + /** + * Session attribute. This attribute associates the object with the + * specified session. The associated data must be exactly 16 bytes long. + */ + DOFOBJECTIDATTRIBUTE_SESSION = 1, + + /** + * Group attribute. This attribute is normally used in association + * with the BROADCAST object identifier. It defines a target that is + * a multicast group in the DOF network (as opposed to the transport). + * The associated data must be an object identifier. + */ + DOFOBJECTIDATTRIBUTE_GROUP = 2, + + /** + * Invalid, used to signal that an error has occurred. + */ + DOFOBJECTIDATTRIBUTE_INVALID = 128 +} DOFObjectIDAttributeType; +typedef guint32 DOFObjectIDClass; + +typedef struct DOFObjectID_t +{ + guint32 refCount; + guint16 len; /* Actual length of oid's wire representation. Max is 32707: 4 + 1 + 63 + (127 * 257). */ + guint8 oid[1]; /* Extends beyond end of this defined structure, so oid MUST be last structure member! */ +} DOFObjectID_t; + +typedef DOFObjectID_t *DOFObjectID; + +typedef guint8 DOFObjectIDAttributeDataSize; + +typedef struct DOFObjectIDAttribute_t +{ + guint8 id; /**< Attribute Identifier. Intentionally defined as uint8 for size, but holds all valid values for DOFObjectIDAttributeType. **/ + DOFObjectIDAttributeDataSize dataSize; /**< Size of the attribute data. **/ + const guint8 *data; /**< Attribute data. **/ +} DOFObjectIDAttribute; + +/** +* Read variable-length value from buffer. +* +* @param maxSize [in] Maximum size of value to be read +* @param bufLength [in,out] Input: size of buffer, output: size of value in buffer +* @param buffer [in] Actual buffer +* @return Uncompressed value if buffer size is valid (or 0 on error) +*/ +static guint32 OALMarshal_UncompressValue(guint8 maxSize, guint32 *bufLength, const guint8 *buffer) +{ + guint32 value = 0; + guint8 used = 0; + guint8 size = maxSize; + guint8 mask; + + switch (buffer[0] >> 6) + { + case 0x02: + /* Two Bytes */ + if (maxSize > 2) + mask = 0x3F; + else + mask = 0x7F; + size = 2; + break; + + case 0x03: + /* Three/Four Bytes */ + if (maxSize > 2) + mask = 0x3F; + else + mask = 0x7F; + break; + + default: + /* One Byte */ + size = 1; + mask = 0x7F; + break; + } + + /* Sanity check */ + if (size > *bufLength) + return 0; + + value = buffer[used++] & mask; + while (used < size) + value = (value << 8) | buffer[used++]; + + *bufLength = used; + return (value); +} + +static guint32 DOFObjectID_GetClassSize(DOFObjectID self) +{ + guint32 size = self->len; + + (void)OALMarshal_UncompressValue(DOFOBJECTID_MAX_CLASS_SIZE, &size, self->oid); + + return size; +} + +static guint32 DOFObjectID_GetDataSize(const DOFObjectID self) +{ + return ((*((const guint8 *)self->oid + DOFObjectID_GetClassSize(self))) & OID_DATA_LEN_MASK); +} + +static guint32 ObjectID_DataToString(const guint8 *data, guint32 dataSize, char *pBuf) +{ + guint32 len = 0, i, nonprintable, escaped; + + /* Determine if the data is printable... */ + for (i = 0, nonprintable = 0, escaped = 0; i < dataSize; i++) + { + if (!IS_PRINTABLE(data[i])) + nonprintable++; + else if (IS_ESCAPED(data[i])) + escaped++; + } + if (nonprintable == 0) + { + /* Printable, so copy as a string, escaping where necessary. */ + if (pBuf) + { + for (i = 0; i < dataSize; i++) + { + if (IS_ESCAPED(data[i])) + { + pBuf[len++] = '\\'; + pBuf[len++] = data[i]; + } + else + pBuf[len++] = data[i]; + } + } + else + { + len = dataSize + escaped; /* Count escaped characters twice. */ + } + } + else + { + /* Non-printable, so format as hex string. */ + if (pBuf) + { + pBuf[len++] = '{'; + for (i = 0; i < dataSize; i++) + { + pBuf[len++] = OALString_HexDigitToChar((data[i] >> 4) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((data[i]) & 0x0F); + } + pBuf[len++] = '}'; + } + else + { + len = dataSize * 2 + 2; + } + } + return len; +} + +static const guint8* DOFObjectID_GetData(const DOFObjectID self) +{ + if (DOFObjectID_GetDataSize(self) > 0) + return (const guint8 *)self->oid + DOFObjectID_GetClassSize(self) + 1; /* 1: length of length byte. */ + + return NULL; +} + +static guint32 DOFObjectID_GetIDClass(const DOFObjectID self) +{ + guint32 size = 4; + + return OALMarshal_UncompressValue(DOFOBJECTID_MAX_CLASS_SIZE, &size, self->oid); +} + +static gboolean DOFObjectID_HasAttributes(const DOFObjectID self) +{ + if (!self) + return FALSE; + + /* bit 7: next attribute flag. */ + return (gboolean)(((*(const guint8 *)((const guint8 *)(self->oid) + DOFObjectID_GetClassSize(self))) & 0x80) != 0); +} + +static guint8 DOFObjectID_GetBaseSize(const DOFObjectID oid) +{ + return DOFObjectID_GetClassSize(oid) + 1 + DOFObjectID_GetDataSize(oid); +} + +static guint8 DOFObjectID_GetAttributeCount(const DOFObjectID self) +{ + guint8 retVal = 0; + + /* Note: No OID can duplicate an attribute ID. Legal attribute IDs can be from 0-126. So max count fits in uint8. */ + if (self && DOFObjectID_HasAttributes(self)) + { + const guint8 *pNextAttribute = (const guint8 *)self->oid + DOFObjectID_GetBaseSize(self); + + ++retVal; + while (*pNextAttribute & 0x80) /* bit 7: next attribute present flag. */ + { + ++retVal; + pNextAttribute += (2 + *((const guint8 *)pNextAttribute + 1)); /* 2: attribute marshalling overhead. */ + } + } + + return retVal; +} + +static DOFObjectIDAttribute DOFObjectID_GetAttributeAtIndex(const DOFObjectID self, guint8 attribute_index) +{ + DOFObjectIDAttribute retAttributeDescriptor = { DOFOBJECTIDATTRIBUTE_INVALID, 0, NULL }; + + /* Note: No OID can duplicate an attribute ID. Legal attribute IDs can be from 0-127. So max index fits in uint8. */ + if (self && attribute_index < DOFOBJECTIDATTRIBUTE_INVALID) + { + if (DOFObjectID_HasAttributes(self)) + { + guint8 count = 0; + const guint8 *pNextAttribute = (const guint8 *)self->oid + DOFObjectID_GetBaseSize(self); + + while (1) /* Parse through the N Attributes. */ + { + if (attribute_index == count++) + { + retAttributeDescriptor.id = *pNextAttribute & 0x7F; + retAttributeDescriptor.dataSize = (DOFObjectIDAttributeDataSize) * ((const guint8 *)pNextAttribute + 1); + retAttributeDescriptor.data = (const guint8 *)pNextAttribute + 2; /* 2: attr marshalling overhead. */ + break; /* Success. */ + } + if (!(*pNextAttribute & 0x80)) + break; /* Fail: no more Attributes */ + pNextAttribute += (2 + *((const guint8 *)pNextAttribute + 1)); + } + } + } + + return retAttributeDescriptor; +} + +static void DOFObjectID_Destroy(DOFObjectID self _U_) +{ + /* Ephemeral memory doesn't need to be freed. */ +} + +static void DOFObjectID_InitStruct(DOFObjectID newObjID, guint32 dataLen) +{ + newObjID->refCount = 1; + newObjID->len = dataLen; +} + +static DOFObjectID DOFObjectID_Create_Unmarshal(guint32 *length, const guint8 *buffer) +{ + guint32 len = *length; + + /* Legal OID described at buffer must have at least 2 bytes. */ + if (buffer && len >= 2) + { + guint32 classSize = len; + guint32 classv = OALMarshal_UncompressValue(DOFOBJECTID_MAX_CLASS_SIZE, &classSize, buffer); + + /* Legal OID described at buffer must have its class representation be correctly compressed. */ + if (1) + { + guint32 computedSize; + + /* Above call won't return 3 because DOFOBJECTID_MAX_CLASS_SIZE (4) was passed in. */ + computedSize = classSize + 1; /* 1: length of length byte. */ + /* Legal OID described at buffer must have enough bytes to describe its OID class. */ + if (len >= computedSize) + { + guint8 lenByte = buffer[classSize]; + + /* Legal OID described at buffer must have its length byte bit 6 be 0. */ + if (!(lenByte & 0x40)) + { + gboolean hasAttr; + guint8 dataLen = lenByte & OID_DATA_LEN_MASK; + + /* Legal broadcast OID described at buffer must have no base data, though it can have attribute(s)*/ + if ((classv == 0) && (dataLen > 0)) + goto notvalid; + computedSize += dataLen; + hasAttr = lenByte & 0x80; /* Valid OID base; check attributes. */ + while (hasAttr) + { + /* Legal OID described at buffer must have enough bytes to hold each new found attribute. */ + if (len >= computedSize + 2) /* 2: attribute marshalling overhead. */ + { + hasAttr = buffer[computedSize] & 0x80; /* bit 7: next attribute present flag. */ + computedSize += (2 + buffer[computedSize + 1]); + } + else + goto notvalid; + } + /* Legal OID described at buffer must have enough buffer bytes, final check. */ + if (len >= computedSize) + { + DOFObjectID newObjID = (DOFObjectID)wmem_alloc0(wmem_packet_scope(), DOFOBJECTID_HEADER_SIZE + computedSize + 1); + /* Adds space for null-terminator, just in case. */ + + *length = computedSize; + if (newObjID) + { + DOFObjectID_InitStruct(newObjID, computedSize); + memcpy(newObjID->oid, buffer, computedSize); + newObjID->oid[computedSize] = 0; + return newObjID; /* Success. */ + } + /* buffer describes valid OID, but due to alloc failure we cannot return the newly created OID*/ + goto allocErrorOut; + } + } + } + } + } +notvalid: + /* buffer does not describe a valid OID, but do not log a message. The caller may have called us to find out if the + buffer does or does not obey the rules of a valid OID. He learns that by our NULL return. */ +allocErrorOut : + *length = 0; + + return NULL; +} + +static DOFObjectID DOFObjectID_Create_Bytes(guint32 bufferSize, const guint8 *pOIDBuffer) +{ + guint32 len = bufferSize; + DOFObjectID rval = DOFObjectID_Create_Unmarshal(&len, pOIDBuffer); + + if (rval) + { + if (len != bufferSize) + { + DOFObjectID_Destroy(rval); + rval = NULL; + } + } + return rval; +} + +static guint32 ObjectID_ToStringLength(const DOFObjectID oid) +{ + guint32 len = 0; + + /* Note: All these string functions can be exercised with objectid_test.c, which outputs the string to console. */ + len = 7 /* [{xx}: and trailing ] */ + ObjectID_DataToStringLength(DOFObjectID_GetData(oid), + DOFObjectID_GetDataSize(oid)); + if (DOFObjectID_GetIDClass(oid) & 0xFF000000) + len += 6; /* Six more hex digits. */ + else if (DOFObjectID_GetIDClass(oid) & 0xFF0000) + len += 4; /* Four more hex digits. */ + else if (DOFObjectID_GetIDClass(oid) & 0xFF00) + len += 2; /* Two more hex digits. */ + /* Handle Attributes, if any. */ + if (DOFObjectID_HasAttributes(oid)) + { + guint8 i; /* Max attribute count is under uint8. */ + guint8 attributeCount = DOFObjectID_GetAttributeCount(oid); + + len += 2; /* surrounding ( ) */ + for (i = 0; i < attributeCount; i++) + { + DOFObjectID embedOID; + DOFObjectIDAttribute avpDescriptor = DOFObjectID_GetAttributeAtIndex(oid, i); + + if (!DOFObjectIDAttribute_IsValid(avpDescriptor)) + break; /* Done with Attributes. If here, some error took place. */ + + if (i) + len++; + len += 5; /* {xx}: */ + /* Handle embedded Object IDs. */ + embedOID = DOFObjectID_Create_Bytes(DOFObjectIDAttribute_GetValueSize(avpDescriptor), + DOFObjectIDAttribute_GetValue(avpDescriptor)); + if (embedOID) + { + len += ObjectID_ToStringLength(embedOID); /* Recurse to compute string rep length of found OID. */ + DOFObjectID_Destroy(embedOID); + } + else + { + /* Hex Data. */ + len += ObjectID_DataToStringLength(DOFObjectIDAttribute_GetValue(avpDescriptor), + DOFObjectIDAttribute_GetValueSize(avpDescriptor)); + } + } /* end for(). */ + } + + return len; +} + +static guint32 InterfaceID_ToString(const guint8 *iid, char *pBuf) +{ + guint32 len = 0; + guint iid_len = iid[0] & 0x03; + guint i; + + if (iid_len == 3) + iid_len = 4; + + pBuf[len++] = '['; + pBuf[len++] = '{'; + + pBuf[len++] = OALString_HexDigitToChar((iid[0] >> 6) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((iid[0] >> 2) & 0x0F); + + pBuf[len++] = '}'; + pBuf[len++] = ':'; + pBuf[len++] = '{'; + + /* Data */ + for (i = 0; i < iid_len; i++) + { + pBuf[len++] = OALString_HexDigitToChar((iid[i + 1] >> 4) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar(iid[i + 1] & 0x0F); + } + + pBuf[len++] = '}'; + pBuf[len++] = ']'; + + return len; +} + +static guint32 ObjectID_ToString(const DOFObjectID oid, char *pBuf) +{ + DOFObjectIDClass oidClass; + guint32 len = 0; + + pBuf[len++] = '['; + pBuf[len++] = '{'; + /* Class */ + oidClass = DOFObjectID_GetIDClass(oid); + if (oidClass & 0xFF000000) + { + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 28) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 24) & 0x0F); + } + if (oidClass & 0xFFFF0000) + { + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 20) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 16) & 0x0F); + } + if (oidClass & 0xFFFFFF00) + { + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 12) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 8) & 0x0F); + } + pBuf[len++] = OALString_HexDigitToChar((oidClass >> 4) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((oidClass) & 0x0F); + pBuf[len++] = '}'; + pBuf[len++] = ':'; + /* Data */ + len += ObjectID_DataToString(DOFObjectID_GetData(oid), DOFObjectID_GetDataSize(oid), &pBuf[len]); + /* Handle Attributes, if any. */ + if (DOFObjectID_HasAttributes(oid)) + { + guint8 i; + guint8 attributeCount = DOFObjectID_GetAttributeCount(oid); + + pBuf[len++] = '('; + for (i = 0; i < attributeCount; i++) + { + DOFObjectID embedOID; + DOFObjectIDAttribute avpDescriptor = DOFObjectID_GetAttributeAtIndex(oid, i); + + if (!DOFObjectIDAttribute_IsValid(avpDescriptor)) + break; /* Done with Attributes. If here, some error took place. */ + + if (i) + pBuf[len++] = '|'; + pBuf[len++] = '{'; + pBuf[len++] = OALString_HexDigitToChar((DOFObjectIDAttribute_GetType(avpDescriptor) >> 4) & 0x0F); + pBuf[len++] = OALString_HexDigitToChar((DOFObjectIDAttribute_GetType(avpDescriptor)) & 0x0F); + pBuf[len++] = '}'; + pBuf[len++] = ':'; + + /* Handle embedded Object IDs. */ + embedOID = DOFObjectID_Create_Bytes(DOFObjectIDAttribute_GetValueSize(avpDescriptor), + DOFObjectIDAttribute_GetValue(avpDescriptor)); + if (embedOID) + { + len += ObjectID_ToString(embedOID, &pBuf[len]); /* Recurse to output string rep of found OID. */ + DOFObjectID_Destroy(embedOID); + } + else + { + /* Hex Data. */ + len += ObjectID_DataToString(DOFObjectIDAttribute_GetValue(avpDescriptor), + DOFObjectIDAttribute_GetValueSize(avpDescriptor), &pBuf[len]); + } + } /* end for(). */ + pBuf[len++] = ')'; + } + pBuf[len++] = ']'; + + return len; +} + +static const gchar* dof_iid_create_standard_string(guint32 bufferSize, const guint8 *pIIDBuffer) +{ + gchar *pRetval; + guint len = 9 + (bufferSize - 1) * 2; /* Alias is always [{AA}:{01234567}] */ + + pRetval = (gchar *)wmem_alloc(wmem_packet_scope(), len + 1); + if (pRetval) + { + InterfaceID_ToString(pIIDBuffer, pRetval); + pRetval[len] = 0; + } + + return pRetval; +} + +static const gchar* dof_oid_create_standard_string(guint32 bufferSize, const guint8 *pOIDBuffer) +{ + DOFObjectID oid; + gchar *pRetval; + guint32 len = bufferSize; + + oid = DOFObjectID_Create_Unmarshal(&len, pOIDBuffer); + if (!oid) + return "Illegal OID"; + + len = ObjectID_ToStringLength(oid); + /* Use PCRMem_Alloc() and not DOFMem_Alloc() because app caller will be freeing memory with PCRMem_Destroy(). */ + pRetval = (gchar *)wmem_alloc(wmem_packet_scope(), len + 1); + if (pRetval) + { + ObjectID_ToString(oid, pRetval); + pRetval[len] = 0; + } + + return pRetval; +} + +struct parseCtx +{ + const char *oid; + guint8 *buffer; + guint32 buffLen; + guint32 oidLen; + guint32 currOidPos; + guint32 currBufferPos; +}parseCtx; + +/* Operations on OID string */ +#define PARSECTX_PEEK_CHAR_OID(ctx) ( (ctx)->oid[(ctx)->currOidPos] ) +#define PARSECTX_PEEK_NEXT_CHAR_OID(ctx) ( (ctx)->oid[(ctx)->currOidPos+1] ) +#define PARSECTX_READ_CHAR_OID(ctx) ( (ctx)->oid[(ctx)->currOidPos++] ) +#define PARSECTX_GET_CURRENT_POS_OID(ctx) ( (ctx)->oid+(ctx)->currOidPos ) +#define PARSECTX_STEP_OID(ctx, count)((ctx)->currOidPos+=(count)) + +/* Operations on DOFObjectID buffer */ +#define PARSECTX_GET_CURRENT_POS_BUF(ctx)( ((ctx)->buffer)? (ctx)->buffer+(ctx)->currBufferPos: NULL ) +#define PARSECTX_STEP_BUF(ctx, count)( (ctx)->currBufferPos+=(count)) +#define PARSECTX_WRITE_AT_POS_BUF(ctx, pos, value) do{ if((ctx)->buffer) *(pos) = (value); } while(0) +#define PARSECTX_OR_AT_POS_BUF(ctx, pos, value) do{ if((ctx)->buffer) *(pos) |= (value); } while(0) +#define PARSECTX_WRITE_BUF(ctx, value)( ((ctx)->buffer)? (ctx)->buffer[(ctx)->currBufferPos++] = (value): (ctx)->currBufferPos++ ) +#define PARSECTX_CHECK_LEN(ctx, len) (((ctx)->buffer)? (((ctx)->currBufferPos+len <= (ctx)->buffLen)? 0: 1): 0) + +/* Operation to read from OID straight to buffer */ +#define PARSECTX_WRITE_BUF_FROM_OID(ctx) (((ctx)->buffer)? (ctx)->buffer[(ctx)->currBufferPos++] = (ctx)->oid[(ctx)->currOidPos]: ((ctx)->currBufferPos++),((ctx)->currOidPos++)) + +#define IS_DIGIT(c) (((c) >= '0' && (c) <= '9')) +#define DIGIT2VALUE(c) (c-48) + +#define HEX2VALUE(c) ( (IS_DIGIT(c))? DIGIT2VALUE(c) : ((c) >= 'A' && (c) <= 'F')? (c-55): (c-87) ) +#define VALIDHEXSEP(c) ( (c) == ' ' || (c) == ':' || (c) == '-' ) +#define VALIDHEX(c) ( ((c) >= '0' && (c) <= '9') || ((c) >= 'A' && (c) <= 'F') || ((c) >= 'a' && (c) <= 'f') ) +#define VALIDHEXBYTE(s) ( VALIDHEX((s)[0]) && VALIDHEX((s)[1]) ) +#define VALIDNUMBER(c) ((c) >= '0' && (c) <= '9') + +#define VALIDASCIICHAR(c) (((guint8)c) >= 32 && ((guint8)c) <= 126 ) + +#define IS_ESCAPED(c) ( (c) == '(' || (c) == ')' || (c) == '[' || (c) == ']' || (c) == '{' || (c) == '}' || (c) == '\\' || (c) == '|' ) + +static guint8 parseFormatOID(struct parseCtx *ctx); + +static guint8 parseHexField(struct parseCtx *ctx) +{ + /* Hex fields start with { and end with } can contain space, dash and colon*/ + if (PARSECTX_READ_CHAR_OID(ctx) == '{' && PARSECTX_PEEK_CHAR_OID(ctx) != '}') + { + while (PARSECTX_PEEK_CHAR_OID(ctx) != '}') + { + if (VALIDHEXBYTE(PARSECTX_GET_CURRENT_POS_OID(ctx))) + { + if (PARSECTX_CHECK_LEN(ctx, 1) == 0) + { + PARSECTX_WRITE_BUF(ctx, HEX2VALUE(PARSECTX_PEEK_CHAR_OID(ctx)) << 4 | HEX2VALUE(PARSECTX_PEEK_NEXT_CHAR_OID(ctx))); + PARSECTX_STEP_OID(ctx, 2); + + if (VALIDHEXSEP(PARSECTX_PEEK_CHAR_OID(ctx))) + { + if (PARSECTX_PEEK_NEXT_CHAR_OID(ctx) == '}') + { + /* no seperator after byte block */ + return 1; + } + PARSECTX_STEP_OID(ctx, 1); + } + } + else + { + return 1; + } + } + else + { + return 1; + } + } + PARSECTX_STEP_OID(ctx, 1); + return 0; + } + return 1; +} + +static guint8 parseStringField(struct parseCtx *ctx) +{ + /* Copy into buffer until end or */ + while (ctx->currOidPos < (ctx->oidLen - 1)) + { + char curr = PARSECTX_PEEK_CHAR_OID(ctx); + if (curr == ']' || curr == '(') + { + break; /* End of string field */ + } + else if (curr == '\\') + { + /* Handle escaped char */ + PARSECTX_STEP_OID(ctx, 1); + if (!IS_ESCAPED(PARSECTX_PEEK_CHAR_OID(ctx)) || PARSECTX_CHECK_LEN(ctx, 1) != 0) + return 1; + PARSECTX_WRITE_BUF_FROM_OID(ctx); + } + else + { + if (VALIDASCIICHAR(curr) && PARSECTX_CHECK_LEN(ctx, 1) == 0) + PARSECTX_WRITE_BUF_FROM_OID(ctx); + else + return 1; + } + } + return 0; +} + +static guint8 OALMarshal_GetCompressedValueSize(guint8 maxSize, guint32 value) +{ + guint8 lenbytes = (1 + (value > 0x7F) + (value > 0x3FFF)); + if (lenbytes > 2) + return (maxSize); + return (lenbytes); +} + +static guint32 OALMarshal_CompressValue(guint8 maxSize, guint32 value, guint32 bufLength, guint8 *buffer) +{ + guint8 lenSize = OALMarshal_GetCompressedValueSize(maxSize, value); + + if (bufLength < lenSize) + return 0; + switch (lenSize) + { + case 4: + *(buffer++) = (guint8)((value >> 24) & 0x3F) | 0xC0; + *(buffer++) = (guint8)((value >> 16) & 0xFF); + *(buffer++) = (guint8)((value >> 8) & 0xFF); + *(buffer++) = (guint8)(value & 0xFF); + break; + + case 3: + *(buffer++) = (guint8)((value >> 16) & 0x3F) | 0xC0; + *(buffer++) = (guint8)((value >> 8) & 0xFF); + *(buffer++) = (guint8)(value & 0xFF); + break; + + case 2: + if (maxSize == 2) + { + *(buffer++) = (guint8)((value >> 8) & 0x7F) | 0x80; + } + else + { + *(buffer++) = (guint8)((value >> 8) & 0x3F) | 0x80; + } + *(buffer++) = (guint8)(value & 0xFF); + break; + + case 1: + *(buffer++) = (guint8)(value & 0x7F); + break; + + default: + /* Invalid computed size! */ + break; + } + return (lenSize); +} + +static guint8 parseOIDClass(struct parseCtx *ctx) +{ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '{' && PARSECTX_PEEK_NEXT_CHAR_OID(ctx) != '}') + { + /* Hex */ + guint8 classSize = 0; + guint32 oidClass = 0; + PARSECTX_STEP_OID(ctx, 1); + while (PARSECTX_PEEK_CHAR_OID(ctx) != '}') + { + if (VALIDHEXBYTE(PARSECTX_GET_CURRENT_POS_OID(ctx))) + { + oidClass <<= 8; + oidClass += (HEX2VALUE(PARSECTX_PEEK_CHAR_OID(ctx)) << 4 | HEX2VALUE(PARSECTX_PEEK_NEXT_CHAR_OID(ctx))); + PARSECTX_STEP_OID(ctx, 2); + + if (VALIDHEXSEP(PARSECTX_PEEK_CHAR_OID(ctx))) + { + if (PARSECTX_PEEK_NEXT_CHAR_OID(ctx) == '}') + { + /* no seperator after byte block */ + return 1; + } + PARSECTX_STEP_OID(ctx, 1); + } + } + else + { + return 1; + } + } + PARSECTX_STEP_OID(ctx, 1); + + classSize = OALMarshal_GetCompressedValueSize(4, oidClass); + if (PARSECTX_CHECK_LEN(ctx, classSize) == 0) + { + if (PARSECTX_GET_CURRENT_POS_BUF(ctx)) + classSize = OALMarshal_CompressValue(4, oidClass, classSize, PARSECTX_GET_CURRENT_POS_BUF(ctx)); + + PARSECTX_STEP_BUF(ctx, classSize); + } + + return 0; + } + else + { + /* Number */ + guint8 classSize = 0; + guint32 oidClass = 0; + while (IS_DIGIT(PARSECTX_PEEK_CHAR_OID(ctx))) + { + oidClass *= 10; + oidClass += DIGIT2VALUE(PARSECTX_PEEK_CHAR_OID(ctx)); + PARSECTX_STEP_OID(ctx, 1); + } + + classSize = OALMarshal_GetCompressedValueSize(4, oidClass); + if (PARSECTX_CHECK_LEN(ctx, classSize) == 0) + { + if (PARSECTX_GET_CURRENT_POS_BUF(ctx)) + classSize = OALMarshal_CompressValue(4, oidClass, classSize, PARSECTX_GET_CURRENT_POS_BUF(ctx)); + + PARSECTX_STEP_BUF(ctx, classSize); + } + + return 0; + } +} + +static guint8 parseAttributeID(struct parseCtx *ctx) +{ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '{') + { + return parseHexField(ctx); + } + else + { + guint8 avpid = 0; + while (IS_DIGIT(PARSECTX_PEEK_CHAR_OID(ctx))) + { + avpid *= 10; + avpid += DIGIT2VALUE(PARSECTX_PEEK_CHAR_OID(ctx)); + PARSECTX_STEP_OID(ctx, 1); + } + + if (PARSECTX_CHECK_LEN(ctx, 1) == 0) + { + PARSECTX_WRITE_BUF(ctx, avpid); + return 0; + } + } + return 1; +} + +static guint8 parseAttributeData(struct parseCtx *ctx) +{ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '[') + { + return parseFormatOID(ctx); + } + else if (PARSECTX_PEEK_CHAR_OID(ctx) == '{') + { + return parseHexField(ctx); + } + else + { + return parseStringField(ctx); + } +} + +static guint8 parseAttribute(struct parseCtx *ctx) +{ + if (parseAttributeID(ctx) == 0) + { + /* seperated by ':' */ + if (PARSECTX_READ_CHAR_OID(ctx) == ':' && PARSECTX_CHECK_LEN(ctx, 1) == 0) + { + guint8 *length = PARSECTX_GET_CURRENT_POS_BUF(ctx); + if (length == NULL) + return 0; + + PARSECTX_STEP_BUF(ctx, 1); + + if (parseAttributeData(ctx) == 0) + { + PARSECTX_WRITE_AT_POS_BUF(ctx, length, (guint8)(PARSECTX_GET_CURRENT_POS_BUF(ctx) - (length + 1))); + return 0; + } + } + } + return 1; +} + +static guint8 parseAttributes(struct parseCtx *ctx) +{ + /* AVPs surrounded by '(' ')' but needs at least an avp */ + if (PARSECTX_READ_CHAR_OID(ctx) == '(' && PARSECTX_PEEK_CHAR_OID(ctx) != ')') + { + while (PARSECTX_PEEK_CHAR_OID(ctx) != ')') + { + guint8 *avpID = PARSECTX_GET_CURRENT_POS_BUF(ctx); + if (avpID == NULL) + return 0; + + if (parseAttribute(ctx) != 0) + return 1; + + /* multiple seperated by '|' */ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '|' && PARSECTX_PEEK_NEXT_CHAR_OID(ctx) != ')') + { + PARSECTX_OR_AT_POS_BUF(ctx, avpID, 0x80); /* set that there is a next attribute */ + PARSECTX_STEP_OID(ctx, 1); + } + } + PARSECTX_STEP_OID(ctx, 1); + return 0; + } + return 1; +} + +static guint8 parseFormatOID(struct parseCtx *ctx) +{ + /* oid must start with '[' */ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '[') + { + PARSECTX_STEP_OID(ctx, 1); + /* Get class id */ + if (parseOIDClass(ctx) == 0) + { + /* seperated by ':' */ + if (PARSECTX_READ_CHAR_OID(ctx) == ':' && PARSECTX_CHECK_LEN(ctx, 1) == 0) + { + guint8 *length = PARSECTX_GET_CURRENT_POS_BUF(ctx); + PARSECTX_STEP_BUF(ctx, 1); + + /* Get data */ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '{') + { + /* hex data */ + if (parseHexField(ctx) != 0) + return 1; + } + else + { + /* string data */ + if (parseStringField(ctx) != 0) + return 1; + } + + /* Write length */ + if (length == NULL) + return 0; + PARSECTX_WRITE_AT_POS_BUF(ctx, length, (guint8)(PARSECTX_GET_CURRENT_POS_BUF(ctx) - (length + 1))); + + /* Check if attributes exist */ + if (PARSECTX_PEEK_CHAR_OID(ctx) == '(') + { + PARSECTX_OR_AT_POS_BUF(ctx, length, 0x80); /* set that there are attributes */ + if (parseAttributes(ctx) != 0) + return 1; + } + + /* Ends with ] */ + if (PARSECTX_READ_CHAR_OID(ctx) == ']') + { + return 0; + } + } + } + } + return 1; +} + +static guint8 dof_oid_create_internal(const char *oid, guint32 *size, guint8 *buffer) +{ + struct parseCtx ctx; + + ctx.oid = oid; + ctx.buffer = buffer; + ctx.currOidPos = 0; + ctx.currBufferPos = 0; + + if (oid) + { + if (size) + { + ctx.buffLen = (*size); + ctx.oidLen = (guint32)strlen(oid); + if (PARSECTX_PEEK_CHAR_OID(&ctx) == '[') + { + /* Format OID */ + if (parseFormatOID(&ctx) == 0) + { + (*size) = ctx.currBufferPos; + return 0; + } + } + else if (PARSECTX_PEEK_CHAR_OID(&ctx) == '{') + { + /* HEX OID */ + if (parseHexField(&ctx) == 0) + { + (*size) = ctx.currBufferPos; + return 0; + } + } + (*size) = 0; + } + } + return 1; +} + +static void dof_oid_new_standard_string(const char *data, guint32 *rsize, guint8 **oid) +{ + if (data) + { + guint8 err; + guint32 size = 0; + + /* Call parseInternal to find out how big the buffer needs to be. */ + err = dof_oid_create_internal(data, &size, NULL); + + if (err == 0) + { + /* Create the DOFObjectID using the size that was just computed. */ + *oid = (guint8 *)g_malloc(size + 1); /* Adds space for null-terminator, just in case. */ + + if (*oid) + { + /* Now that the size is computed and the DOFObjectID is created, call parseInternal again to fill the oid buffer. */ + err = dof_oid_create_internal(data, &size, *oid); + + if (err == 0) + { + *rsize = size; + return; + } + + g_free(*oid); + } + } + } + + *rsize = 0; + *oid = NULL; +} + +/* Binary Parsing Support */ + +/** + * Read a compressed 32-bit quantity (PDU Type.3). + * Since the value is variable length, the new offset is + * returned. The value can also be returned, along with the size, although + * NULL is allowed for those parameters. + */ +static gint read_c4(tvbuff_t *tvb, gint offset, guint32 *v, gint *L) +{ + guint32 val = 0; + guint8 len = 0; + guint8 b = tvb_get_guint8(tvb, offset++); + int i; + + if ((b & 0x80) == 0) + { + len = 1; + b = b & 0x7F; + } + else if ((b & 0x40) == 0) + { + len = 2; + b = b & 0x3F; + } + else + { + len = 4; + b = b & 0x3F; + } + + val = b; + for (i = 1; i < len; i++) + val = (val << 8) | tvb_get_guint8(tvb, offset++); + + if (L) + *L = len; + if (v) + *v = val; + return offset; +} + +/** + * Validate PDU Type.3 + * Validaes the encoding. + * Add Expert Info if format invalid + * This also validates Spec Type.3.1. + */ +static void validate_c4(packet_info *pinfo, proto_item *pi, guint32 val, gint len) +{ + if (len > 1 && val < 0x80) + { + /* SPEC Type.3.1 Violation. */ + expert_add_info_format(pinfo, pi, &ei_c2_c3_c4_format, "DOF Violation: Type.3.1: Compressed 32-bit Compression Mandatory."); + } + + if (len > 2 && val < 0x4000) + { + /* SPEC Type.3.1 Violation. */ + expert_add_info_format(pinfo, pi, &ei_c2_c3_c4_format, "DOF Violation: Type.3.1: Compressed 32-bit Compression Mandatory."); + } +} + +/** + * Reads a compressed 24-bit quantity (PDU Type.2). + * Since the value is variable length, the new offset is + * returned. + * The value can also be returned, along with the size, although + * NULL is allowed for those parameters. + */ +static gint read_c3(tvbuff_t *tvb, gint offset, guint32 *v, gint *L) +{ + guint32 val = 0; + guint8 len = 0; + guint8 b = tvb_get_guint8(tvb, offset++); + int i; + + if ((b & 0x80) == 0) + { + len = 1; + b = b & 0x7F; + } + else if ((b & 0x40) == 0) + { + len = 2; + b = b & 0x3F; + } + else + { + len = 3; + b = b & 0x3F; + } + + val = b; + for (i = 1; i < len; i++) + val = (val << 8) | tvb_get_guint8(tvb, offset++); + + if (L) + *L = len; + if (v) + *v = val; + return offset; +} + +/** + * Validate PDU Type.2 + * Validaes the encoding. + * Adds Expert Info if format invalid + * This also validates Spec Type.2.1. + */ +static void validate_c3(packet_info *pinfo, proto_item *pi, guint32 val, gint len) +{ + if (len > 1 && val < 0x80) + { + /* SPEC Type.2.1 Violation. */ + expert_add_info_format(pinfo, pi, &ei_c2_c3_c4_format, "DOF Violation: Type.2.1: Compressed 24-bit Compression Mandatory." ); + } + + if (len > 2 && val < 0x4000) + { + /* SPEC Type.2.1 Violation. */ + expert_add_info_format(pinfo, pi, &ei_c2_c3_c4_format, "DOF Violation: Type.2.1: Compressed 24-bit Compression Mandatory."); + } +} + +/** + * Reads a compressed 16-bit quantity (PDU Type.1). + * Since the value is variable length, the new offset is + * returned. The value can also be returned, along with the size, although + * NULL is allowed for those parameters. + */ +static gint read_c2(tvbuff_t *tvb, gint offset, guint16 *v, gint *L) +{ + guint16 val = 0; + guint8 b = tvb_get_guint8(tvb, offset++); + if (b & 0x80) + { + b = b & 0x7F; + val = (b << 8) | tvb_get_guint8(tvb, offset++); + if (L) + *L = 2; + } + else + { + val = b; + if (L) + *L = 1; + } + + if (v) + *v = val; + return offset; +} + +/** + * Validates PDU Type.1 + * Validaes the encoding. + * Adds Expert Info if format invalid + * This also validates Spec Type.1.1. + */ +static void validate_c2(packet_info *pinfo, proto_item *pi, guint16 val, gint len) +{ + if (len > 1 && val < 0x80) + { + /* SPEC Type.1.1 Violation. */ + expert_add_info_format(pinfo, pi, &ei_c2_c3_c4_format, "DOF Violation: Type.1.1: Compressed 16-bit Compression Mandatory." ); + } +} + +/** + * Given a packet data, and assuming that all of the prerequisite information is known, + * assign a SID ID to the packet if not already assigned. + * A SID ID is the *possibility* of a unique SID, but until the SID is learned the + * association is not made. Further, multiple SID ID may end up referring to the + * same SID, in which case the assignment must be repaired. + */ +static void assign_sid_id(dof_api_data *api_data) +{ + node_key_to_sid_id_key lookup_key; + node_key_to_sid_id_key *key; + dof_session_data *session; + dof_packet_data *packet; + guint value; + + /* Validate input. These represent dissector misuse, not decoding problems. */ + /* TODO: Diagnostic/programmer message. */ + if (!api_data || !api_data->packet || !api_data->session) + return; + + session = api_data->session; + packet = (dof_packet_data *)api_data->packet; + + + /* Check if the sender_sid_id is already assigned, if so we are done. */ + if (!packet->sender_sid_id) + { + /* Build a (non-allocated) key to do the lookup. */ + lookup_key.transport_id = api_data->transport_session->transport_id; + lookup_key.transport_node_id = api_data->transport_packet->sender_id; + lookup_key.dof_id = session->dof_id; + lookup_key.dof_node_id = packet->sender_id; + lookup_key.dof_session_id = session->session_id; + + value = GPOINTER_TO_UINT(g_hash_table_lookup(node_key_to_sid_id, &lookup_key)); + if (value) + { + gpointer sid_id_key = GUINT_TO_POINTER(value); + gpointer sid_buffer; + + /* We found a match. */ + packet->sender_sid_id = value; + + /* If we know the SID, we must get it now. */ + sid_buffer = g_hash_table_lookup(sid_id_to_sid_buffer, sid_id_key); + if (sid_buffer) + { + /* We found a match. */ + packet->sender_sid = (dof_2009_1_pdu_19_sid)sid_buffer; + } + } + else + { + /* No match, need to add a key. */ + key = g_new0(node_key_to_sid_id_key, 1); + memcpy(key, &lookup_key, sizeof(node_key_to_sid_id_key)); + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(node_key_to_sid_id, key, GUINT_TO_POINTER(dpp_next_sid_id)); + packet->sender_sid_id = dpp_next_sid_id++; + } + } + + /* Check if the receiver_sid_id is already assigned, if so we are done. */ + if (!packet->receiver_sid_id) + { + /* Build a (non-allocated) key to do the lookup. */ + lookup_key.transport_id = api_data->transport_session->transport_id; + lookup_key.transport_node_id = api_data->transport_packet->receiver_id; + lookup_key.dof_id = session->dof_id; + lookup_key.dof_node_id = packet->receiver_id; + lookup_key.dof_session_id = session->session_id; + + value = GPOINTER_TO_UINT(g_hash_table_lookup(node_key_to_sid_id, &lookup_key)); + if (value) + { + gpointer sid_id_key = GUINT_TO_POINTER(value); + gpointer sid_buffer; + + /* We found a match. */ + packet->receiver_sid_id = value; + + /* If we know the SID, we must get it now. */ + sid_buffer = g_hash_table_lookup(sid_id_to_sid_buffer, sid_id_key); + if (sid_buffer) + { + /* We found a match. */ + packet->receiver_sid = (dof_2009_1_pdu_19_sid)sid_buffer; + } + } + else + { + /* No match, need to add a key. */ + key = g_new0(node_key_to_sid_id_key, 1); + memcpy(key, &lookup_key, sizeof(node_key_to_sid_id_key)); + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(node_key_to_sid_id, key, GUINT_TO_POINTER(dpp_next_sid_id)); + packet->receiver_sid_id = dpp_next_sid_id++; + } + } + +} + +/** + * Declare that the sender of the packet is known to have a SID + * that is identified by the specified buffer. There are a few + * cases here: + * 1. The sid of the sender is already assigned. This is a NOP. + * 2. The sid has never been seen. This associates the SID with the sender SID ID. + * 3. The sid has been seen, and matches the SID ID of the sender. This just sets the sid field. + * 4. The sid has been seen, but with a different SID ID than ours. Patch up all the packets. + */ +static void learn_sender_sid(dof_api_data *api_data, guint8 length, const guint8 *sid) +{ + dof_packet_data *packet; + guint8 lookup_key[256]; + guint8 *key; + gpointer value; + + /* Validate input. */ + if (!api_data) + { + /* TODO: Print error. */ + return; + } + + if (!api_data->packet) + { + /* TODO: Print error. */ + return; + } + + packet = (dof_packet_data *)api_data->packet; + if (!packet->sender_sid_id) + return; + + /* Check for sender SID already known. */ + if (packet->sender_sid) + return; + + /* Check for SID already known (has assigned SID ID) */ + /* Build a (non-allocated) key to do the lookup. */ + lookup_key[0] = length; + memcpy(lookup_key + 1, sid, length); + + if (g_hash_table_lookup_extended(sid_buffer_to_sid_id, &lookup_key, (gpointer *)&key, &value)) + { + guint sid_id = GPOINTER_TO_UINT(value); + + /* We found a match. */ + if (packet->sender_sid_id == sid_id) + { + /* It matches our SID ID. Set the sid field. */ + packet->sender_sid = key; + return; + } + else + { + /* There is a mis-match between SID and SID ID. We have to go through + * all the packets that have SID ID (ours) and update them to SID ID (sid). + */ + guint sid_id_correct = sid_id; + guint sid_id_incorrect = packet->sender_sid_id; + dof_packet_data *ptr = globals.dof_packet_head; + + while (ptr) + { + if (ptr->sender_sid_id == sid_id_incorrect) + ptr->sender_sid_id = sid_id_correct; + + if (ptr->receiver_sid_id == sid_id_incorrect) + ptr->receiver_sid_id = sid_id_correct; + + if (ptr->op.op_sid_id == sid_id_incorrect) + ptr->op.op_sid_id = sid_id_correct; + + if (ptr->ref_op.op_sid_id == sid_id_incorrect) + ptr->ref_op.op_sid_id = sid_id_correct; + + ptr = ptr->next; + } + } + + return; + } + + /* The SID has never been seen. Associate with the SID ID. */ + key = (dof_2009_1_pdu_19_sid)g_malloc0(length + 1); + memcpy(key, lookup_key, length + 1); + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(sid_buffer_to_sid_id, key, GUINT_TO_POINTER(packet->sender_sid_id)); + g_hash_table_insert(sid_id_to_sid_buffer, GUINT_TO_POINTER(packet->sender_sid_id), key); + + /* NOTE: We are storing a reference to the SID in the packet data. This memory + * will be freed by the dissector init routine when the SID hash table is destroyed. + * Nothing else should free this SID. + */ + packet->sender_sid = (dof_2009_1_pdu_19_sid)key; + + /* We have learned the "correct" sid and sid_id, so we can set the sid of + * any packets that have this sid_id (saves hash lookups in the future). + */ + { + dof_packet_data *ptr = globals.dof_packet_head; + + while (ptr) + { + if (ptr->sender_sid_id == packet->sender_sid_id) + ptr->sender_sid = key; + + if (ptr->receiver_sid_id == packet->sender_sid_id) + ptr->receiver_sid = key; + + ptr = ptr->next; + } + } +} + +/** + * Learn a SID from an explict operation. This only defines sids and sid ids. + */ +static void learn_operation_sid(dof_2009_1_pdu_20_opid *opid, guint8 length, const guint8 *sid) +{ + guint8 lookup_key[256]; + guint8 *key; + gpointer value; + + /* Check for sender SID already known. */ + if (opid->op_sid) + return; + + /* Check for SID already known (has assigned SID ID) */ + /* Build a (non-allocated) key to do the lookup. */ + lookup_key[0] = length; + memcpy(lookup_key + 1, sid, length); + + if (g_hash_table_lookup_extended(sid_buffer_to_sid_id, &lookup_key, (gpointer *)&key, &value)) + { + guint sid_id = GPOINTER_TO_UINT(value); + + opid->op_sid_id = sid_id; + opid->op_sid = key; + return; + } + + /* The SID has never been seen. Associate with the SID ID. */ + key = (dof_2009_1_pdu_19_sid)g_malloc0(length + 1); + memcpy(key, lookup_key, length + 1); + + /* Assign the op_sid_id. */ + opid->op_sid_id = dpp_next_sid_id++; + + /* Note, this is not multithread safe, but Wireshark isn't multithreaded. */ + g_hash_table_insert(sid_buffer_to_sid_id, key, GUINT_TO_POINTER(opid->op_sid_id)); + g_hash_table_insert(sid_id_to_sid_buffer, GUINT_TO_POINTER(opid->op_sid_id), key); + + /* NOTE: We are storing a reference to the SID in the packet data. This memory + * will be freed by the dissector init routine when the SID hash table is destroyed. + * Nothing else should free this SID. + */ + opid->op_sid = (dof_2009_1_pdu_19_sid)key; +} + +static void generateMac(gcry_cipher_hd_t cipher_state, guint8 *nonce, const guint8 *epp, gint a_len, guint8 *data, gint len, guint8 *mac, gint mac_len) +{ + guint16 i; + guint16 cnt; + + /* a_len = 1, t = mac_len, q = 4: (t-2)/2 : (q-1) -> 4B */ + mac[0] = 0x43 | (((mac_len - 2) / 2) << 3); + memcpy(mac + 1, nonce, 11); + memset(mac + 12, 0, 4); + mac[14] = len >> 8; + mac[15] = len & 0xFF; + + gcry_cipher_encrypt(cipher_state, mac, 16, NULL, 0); + + mac[0] ^= (a_len >> 8); + mac[1] ^= (a_len); + i = 2; + + for (cnt = 0; cnt < a_len; cnt++, i++) + { + if (i % 16 == 0) + gcry_cipher_encrypt(cipher_state, mac, 16, NULL, 0); + + mac[i % 16] ^= epp[cnt]; + } + + i = 0; + for (cnt = 0; cnt < len; cnt++, i++) + { + if (i % 16 == 0) + gcry_cipher_encrypt(cipher_state, mac, 16, NULL, 0); + + mac[i % 16] ^= data[cnt]; + } + + gcry_cipher_encrypt(cipher_state, mac, 16, NULL, 0); +} + +static int decrypt(ccm_session_data *session, ccm_packet_data *pdata, guint8 *nonce, const guint8 *epp, gint a_len, guint8 *data, gint len) +{ + unsigned short i; + + unsigned char ctr[16]; + unsigned char encrypted_ctr[16]; + unsigned char mac[16]; + unsigned char computed_mac[16]; + unsigned int skip; + guint8 *ekey; + + if (data == NULL || len == 0) + return 0; + + /* Check the mac length. */ + if (session->mac_len < 4 || session->mac_len > 16) + return 0; + + if (pdata->period == 0) + ekey = (guint8 *)session->cipher_data; + else + ekey = (guint8 *)g_hash_table_lookup(session->cipher_data_table, GUINT_TO_POINTER(pdata->period)); + + if (!ekey) + return 0; + + /* Determine how many blocks are skipped. */ +#if 0 /* seems to be dead code... check this! */ + skip = a_len + 2; + skip /= 16; + if ((a_len + 2) % 16) + skip += 1; +#endif + skip = 0; + + /* This is hard-coded for q=4. This can only change with a protocol revision. + Note the value is stored as (q-1). */ + ctr[0] = 0x03; + memcpy(ctr + 1, nonce, 11); + ctr[12] = 0; + ctr[13] = 0; + ctr[14] = 0; + ctr[15] = skip; /* Preincremented below. */ + + + for (i = 0; i < len - session->mac_len; i++) + { + if (i % 16 == 0) + { + if (ctr[15] == 255) + ctr[14] += 1; + ctr[15] += 1; + memcpy(encrypted_ctr, ctr, 16); + gcry_cipher_encrypt(session->cipher_data, encrypted_ctr, 16, NULL, 0); + } + + data[i] ^= encrypted_ctr[i % 16]; + } + + memcpy(mac, data + i, session->mac_len); + + ctr[12] = 0; + ctr[13] = 0; + ctr[14] = 0; + ctr[15] = 0; + memcpy(encrypted_ctr, ctr, 16); + gcry_cipher_encrypt(session->cipher_data, encrypted_ctr, 16, NULL, 0); + + for (i = 0; i < session->mac_len; i++) + mac[i] ^= encrypted_ctr[i]; + + /* Now we have to generate the MAC... */ + generateMac(session->cipher_data, nonce, epp, a_len, data, (gint)(len - session->mac_len), computed_mac, session->mac_len); + if (!memcmp(mac, computed_mac, session->mac_len)) + return 1; + + /* Failure */ + return 0; +} + +/* Master Protocol Layer Handlers */ + +/** + * This dissector is handed a DPP packet of any version. It is responsible for decoding + * the common header fields and then passing off to the specific DPP dissector + */ +static int dissect_app_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the APP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint16 app; + gint app_len; + + read_c2(tvb, 0, &app, &app_len); + + col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "APP(%u)", app); + + /* call the next dissector */ + if (dissector_try_uint_new(app_dissectors, app, tvb, pinfo, tree, TRUE, data)) + { + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + + return tvb_reported_length(tvb); + } + else + { + proto_tree_add_protocol_format(tree, proto_2008_1_app, tvb, 0, app_len, + DOF_APPLICATION_PROTOCOL ", Version: %u", app); + } + } + + return 0; +} + +/** + * This dissector is handed a DPP packet of any version. It is responsible for decoding + * the common header fields and then passing off to the specific DPP dissector + */ +static int dof_dissect_dpp_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + guint offset = 0; + + DISSECTOR_ASSERT(api_data != NULL); + + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the DPP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 header = tvb_get_guint8(tvb, offset); + guint8 dpp_version = header & 0x7F; + guint8 dpp_flags_included = header & 0x80; + proto_item *hi; + proto_tree * dpp_root,*dpp_tree; + + col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "DPPv%u", dpp_version); + + + hi = proto_tree_add_protocol_format(tree, proto_2008_1_dpp, tvb, offset, 0, + DOF_PRESENTATION_PROTOCOL " Version %u, Flags: %s", dpp_version, dpp_flags_included ? "Included" : "Default"); + + dpp_root = proto_item_add_subtree(hi, ett_2008_1_dpp); + + dpp_tree = proto_tree_add_subtree(dpp_root, tvb, offset, 1, ett_2008_1_dpp_1_header, NULL, "Header"); + + + /* Version and Flag bit */ + proto_tree_add_item(dpp_tree, hf_2008_1_dpp_1_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(dpp_tree, hf_2008_1_dpp_1_version, tvb, offset, 1, ENC_NA); + offset += 1; + + /* This may, in some cases, be the end of the packet. This is only valid in some + * situations, which are checked here. + */ + if (offset == tvb_reported_length(tvb)) + { + /* TODO: Complete this logic. */ + + proto_item_set_len(hi, offset); + + if (!api_data) + return offset; + + if (api_data->transport_session->is_streaming) + { + col_append_fstr(pinfo->cinfo, COL_INFO, "DNP/DPP Negotiation"); + + if (pinfo->fd->visited && + api_data->transport_session->negotiation_required && + ((api_data->transport_session->negotiation_complete_at == 0) || (api_data->transport_session->negotiation_complete_at_ts.secs - api_data->transport_session->session_start_ts.secs > 10))) + { + /* This is the second pass, so we can check for timeouts. */ + expert_add_info(pinfo, hi, &ei_dof_6_timeout); + } + + return offset; + } + } + + /* call the next dissector */ + if (dissector_try_uint_new(dof_dpp_dissectors, dpp_version, tvb, pinfo, dpp_root, FALSE, data)) + { + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + + return tvb_reported_length(tvb); + } + } + + return 0; +} + +/** + * This dissector is handed a DNP packet of any version. It is responsible for decoding + * the common header fields and then passing off to the specific DNP dissector + */ +static int dof_dissect_dnp_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, dof_api_data *api_data, gint offset) +{ + guint8 header = tvb_get_guint8(tvb, offset); + guint8 dnp_version = header & 0x7F; + guint8 dnp_flags_included = header & 0x80; + proto_item *main_ti; + proto_tree * dnp_root,*dnp_tree; + + col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "DNPv%u", dnp_version); + + main_ti = proto_tree_add_protocol_format(tree, proto_2008_1_dnp, tvb, offset, 0, + DOF_NETWORK_PROTOCOL " Version %u, Flags: %s", dnp_version, dnp_flags_included ? "Included" : "Default"); + + dnp_root = proto_item_add_subtree(main_ti, ett_2008_1_dnp); + + dnp_tree = proto_tree_add_subtree(dnp_root, tvb, offset, 1, ett_2008_1_dnp_header, NULL, "Header"); + + /* Version and Flag bit */ + proto_tree_add_item(dnp_tree, hf_2008_1_dnp_1_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(dnp_tree, hf_2008_1_dnp_1_version, tvb, offset, 1, ENC_NA); + + /* call the next dissector */ + if (dissector_try_uint_new(dnp_dissectors, dnp_version, tvb, pinfo, dnp_root, FALSE, api_data)) + { + /* Since the transport may have additional packets in this frame, protect our work. */ + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + } + else + { + proto_item_set_end(main_ti, tvb, 1); + + /* During negotiation, we can move past DNP even if it is not known. */ + if (((header & 0x80) == 0) && api_data->transport_session->negotiation_required && ((pinfo->fd->num < api_data->transport_session->negotiation_complete_at) || (api_data->transport_session->negotiation_complete_at == 0))) + { + offset += dof_dissect_dpp_common(tvb_new_subset_remaining(tvb, offset + 1), pinfo, tree, api_data); + } + } + + if (dnp_flags_included && !api_data->transport_session->negotiation_complete_at) + { + api_data->transport_session->negotiation_complete_at = pinfo->fd->num; + api_data->transport_session->negotiation_complete_at_ts = pinfo->abs_ts; + } + + return offset; +} + +/** + * This dissector is called for each DPS packet. It assumes that the first layer is + * DNP, but it does not know anything about versioning. Further, it only worries + * about decoding DNP (DNP will decode DPP, and so on). + * + * This routine is given the DPS packet for the first packet, but doesn't know anything + * about DPS sessions. It may understand transport sessions, but these are surprisingly + * worthless for DPS. + */ +static int dissect_dof_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + proto_tree *dof_root; + dof_packet_data *packet; + + DISSECTOR_ASSERT(api_data != NULL); + DISSECTOR_ASSERT(api_data->transport_session != NULL); + DISSECTOR_ASSERT(api_data->transport_packet != NULL); + + packet = (dof_packet_data *)api_data->packet; + + /* Create the packet if it doesn't exist. */ + if (packet == NULL) + { + api_data->packet = packet = create_packet_data(pinfo); + DISSECTOR_ASSERT(packet != NULL); + + /* TODO: This is not correct for reversed sessions. */ + packet->is_sent_by_initiator = api_data->transport_packet->is_sent_by_client; + } + + /* Assign the transport sequence if it does not exist. */ + if (api_data->transport_session->transport_session_id == 0) + api_data->transport_session->transport_session_id = globals.next_transport_session++; + + /* Compute the DPS information. This is a master holder for general information. */ + { + proto_item *ti; + + ti = proto_tree_add_protocol_format(tree, proto_2008_1_dof, tvb, 0, tvb_reported_length(tvb), DOF_PROTOCOL_STACK); + dof_root = proto_item_add_subtree(ti, ett_2008_1_dof); + + /* Add the general packet information. */ + { + ti = proto_tree_add_uint(dof_root, hf_2008_1_dof_session_transport, tvb, 0, 0, api_data->transport_session->transport_session_id); + proto_item_set_generated(ti); + + ti = proto_tree_add_boolean(dof_root, hf_2008_1_dof_is_2_node, tvb, 0, 0, api_data->transport_session->is_2_node); + proto_item_set_generated(ti); + + ti = proto_tree_add_boolean(dof_root, hf_2008_1_dof_is_streaming, tvb, 0, 0, api_data->transport_session->is_streaming); + proto_item_set_generated(ti); + + if (api_data->session) + { + ti = proto_tree_add_uint(dof_root, hf_2008_1_dof_session, tvb, 0, 0, api_data->session->session_id); + proto_item_set_generated(ti); + } + + if (api_data->secure_session) + { + ti = proto_tree_add_uint_format(dof_root, hf_2008_1_dof_session, tvb, 0, 0, api_data->secure_session->original_session_id, "DPS Session (Non-secure): %d", api_data->secure_session->original_session_id); + proto_item_set_generated(ti); + } + + ti = proto_tree_add_uint(dof_root, hf_2008_1_dof_frame, tvb, 0, 0, packet->dof_frame); + proto_item_set_generated(ti); + + ti = proto_tree_add_boolean(dof_root, hf_2008_1_dof_is_from_client, tvb, 0, 0, api_data->transport_packet->is_sent_by_client); + proto_item_set_generated(ti); + } + } + + dof_dissect_dnp_common(tvb, pinfo, tree, api_data, 0); + + packet->processed = TRUE; + return tvb_reported_length(tvb); +} + +/** + * This dissector is called for each DPS packet. It assumes that the first layer is + * ENP, but it does not know anything about versioning. Further, it only worries + * about decoding ENP (ENP will decode EPP, and so on). + * + * This routine is given the DPS packet for the first packet, but doesn't know anything + * about DPS sessions. It may understand transport sessions, but these are surprisingly + * worthless for DPS. + */ +static int dissect_tunnel_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + /* The packet data is the private_data, and must exist. */ + tcp_dof_packet_ref *ref = (tcp_dof_packet_ref *)data; + gint offset = 0; + + offset = 0; + + /* Compute the APP control information. This is the version and the length bytes. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 version = tvb_get_guint8(tvb, offset); + guint8 opcode; + proto_item *ti; + proto_tree *app_root; + + col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "TUNv%u", version); + + ti = proto_tree_add_protocol_format(tree, proto_2012_1_tunnel, tvb, offset, 0, + "DOF Tunnel Protocol, Version: %u", version); + + app_root = proto_item_add_subtree(ti, ett_2012_1_tunnel); + proto_tree_add_item(app_root, hf_2012_1_tunnel_1_version, tvb, offset, 1, ENC_NA); + proto_tree_add_item(app_root, hf_2012_1_tunnel_1_length, tvb, offset + 1, 2, ENC_BIG_ENDIAN); + + opcode = tvb_get_guint8(tvb, offset + 3); + if (opcode == 3) + { + tvbuff_t *next_tvb = tvb_new_subset_remaining(tvb, offset + 5); + + dissect_dof_common(next_tvb, pinfo, tree, &ref->api_data); + } + } + + return tvb_captured_length(tvb); +} + +static int dissect_tun_app_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the APP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint16 app; + gint app_len; + + + app = tvb_get_guint8(tvb, 0); + app_len = 1; + + col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "APP(%u)", app); + + /* call the next dissector */ + if (dissector_try_uint(dof_tun_app_dissectors, app, tvb, pinfo, tree)) + { + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + + return tvb_captured_length(tvb); + } + else + { + proto_tree_add_protocol_format(tree, proto_2012_1_tunnel, tvb, 0, app_len, + DOF_APPLICATION_PROTOCOL ", Version: %u", app); + } + } + + return 0; +} + +/* Packet and Session Data Creation */ + +static udp_session_data* create_udp_session_data(packet_info *pinfo, conversation_t *conversation _U_) +{ + udp_session_data *packet = wmem_new0(wmem_file_scope(), udp_session_data); + + /* TODO: Determine if this is valid or not. */ + /* WMEM_COPY_ADDRESS( wmem_file_scope(), &packet->server.address, &conversation->key_ptr->addr1 ); + packet->server.port = conversation->key_ptr->port1; */ + copy_address_wmem(wmem_file_scope(), &packet->server.addr, &pinfo->dst); + packet->server.port = pinfo->destport; + + packet->common.transport_id = proto_2008_1_dof_udp; + + { + const guint8 *addr = (const guint8 *)packet->server.addr.data; + if ((packet->server.addr.type == AT_IPv4) && (addr != NULL) && (addr[0] != 224)) + packet->common.is_2_node = TRUE; + else + packet->common.is_2_node = FALSE; + } + + packet->common.is_streaming = FALSE; + packet->common.session_start_ts = pinfo->abs_ts; + packet->common.negotiation_required = FALSE; + packet->common.negotiation_complete_at = 0; + + return packet; +} + +static tcp_session_data* create_tcp_session_data(packet_info *pinfo, conversation_t *conversation) +{ + tcp_session_data *packet = wmem_new0(wmem_file_scope(), tcp_session_data); + + copy_address_wmem(wmem_file_scope(), &packet->client.addr, conversation_key_addr1(conversation->key_ptr)); + packet->client.port = conversation_key_port1(conversation->key_ptr); + copy_address_wmem(wmem_file_scope(), &packet->server.addr, conversation_key_addr2(conversation->key_ptr)); + packet->server.port = conversation_key_port2(conversation->key_ptr); + + packet->not_dps = FALSE; + + packet->common.transport_id = proto_2008_1_dof_tcp; + packet->common.is_2_node = TRUE; + packet->common.is_streaming = TRUE; + packet->common.session_start_ts = pinfo->abs_ts; + packet->common.negotiation_required = TRUE; + packet->common.negotiation_complete_at = 0; + + return packet; +} + +static dof_packet_data* create_packet_data(packet_info *pinfo) +{ + /* Create the packet data. */ + dof_packet_data *packet = wmem_new0(wmem_file_scope(), dof_packet_data); + + packet->data_list = wmem_list_new(wmem_file_scope()); + packet->frame = pinfo->fd->num; + packet->dof_frame = next_dof_frame++; + + /* Add the packet into the list of packets. */ + if (!globals.dof_packet_head) + { + globals.dof_packet_head = packet; + globals.dof_packet_tail = packet; + } + else + { + globals.dof_packet_tail->next = packet; + globals.dof_packet_tail = packet; + } + + return packet; +} + +/* Dissectors for Transports (UDP/TCP) */ + +/** + * Dissect a UDP packet. The parent protocol is UDP. No assumptions about DPS + * data structures are made on input, but before calling common they must + * be set up. + * This dissector is registered with the UDP protocol on the standard DPS port. + * It will be used for anything that involves that port (source or destination). + */ +static int dissect_dof_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + dof_api_data *api_data = (dof_api_data *)p_get_proto_data(wmem_file_scope(), pinfo, proto_2008_1_dof_udp, 0); + if (api_data == NULL) + { + conversation_t *conversation; + udp_session_data *transport_session; + dof_transport_packet *transport_packet; + /* gboolean mcast = FALSE; */ + + /* { + guint8* addr = (guint8*) pinfo->dst.data; + if ( (pinfo->dst.type == AT_IPv4) && (addr != NULL) && (addr[0] != 224) ) + mcast = TRUE; + } */ + + /* Register the source address as being DPS for the sender UDP port. */ + conversation = find_conversation(pinfo->fd->num, &pinfo->src, &pinfo->dst, conversation_pt_to_conversation_type(pinfo->ptype), pinfo->srcport, pinfo->destport, NO_ADDR_B | NO_PORT_B); + if (!conversation) + { + conversation = conversation_new(pinfo->fd->num, &pinfo->src, &pinfo->dst, conversation_pt_to_conversation_type(pinfo->ptype), pinfo->srcport, pinfo->destport, NO_ADDR2 | NO_PORT2); + conversation_set_dissector(conversation, dof_udp_handle); + } + + /* Find or create the conversation for this transport session. For UDP, the transport session is determined entirely by the + * server port. This assumes that the first packet seen is from a client to the server. + */ + conversation = find_conversation(pinfo->fd->num, &pinfo->dst, &pinfo->src, CONVERSATION_UDP, pinfo->destport, pinfo->srcport, NO_ADDR_B | NO_PORT_B); + if (conversation) + { + /* TODO: Determine if this is valid or not. */ + /*if ( conversation->key_ptr->port1 != pinfo->destport || ! addresses_equal( &conversation->key_ptr->addr1, &pinfo->dst ) ) + conversation = NULL; */ + } + + if (!conversation) + conversation = conversation_new(pinfo->fd->num, &pinfo->dst, &pinfo->src, CONVERSATION_UDP, pinfo->destport, pinfo->srcport, NO_ADDR2 | NO_PORT2 | CONVERSATION_TEMPLATE); + + transport_session = (udp_session_data *)conversation_get_proto_data(conversation, proto_2008_1_dof_udp); + if (transport_session == NULL) + { + transport_session = create_udp_session_data(pinfo, conversation); + conversation_add_proto_data(conversation, proto_2008_1_dof_udp, transport_session); + } + + /* UDP has no framing or retransmission issues, so the dof_api_data is stored directly on the frame. */ + api_data = wmem_new0(wmem_file_scope(), dof_api_data); + if (api_data == NULL) + return 0; + + transport_packet = wmem_new0(wmem_file_scope(), dof_transport_packet); + if (transport_packet == NULL) + return 0; + + transport_packet->is_sent_by_client = TRUE; + if (addresses_equal(&transport_session->server.addr, &pinfo->src) && (transport_session->server.port == pinfo->srcport)) + transport_packet->is_sent_by_client = FALSE; + + transport_packet->sender_id = assign_addr_port_id(&pinfo->src, pinfo->srcport); + transport_packet->receiver_id = assign_addr_port_id(&pinfo->dst, pinfo->destport); + + api_data->transport_session = &transport_session->common; + api_data->transport_packet = transport_packet; + p_add_proto_data(wmem_file_scope(), pinfo, proto_2008_1_dof_udp, 0, api_data); + } + + return dissect_dof_common(tvb, pinfo, tree, api_data); +} + +/** + * Determine if the current offset has already been processed. + * This is specific to the TCP dissector. + */ +static gboolean is_retransmission(packet_info *pinfo, tcp_session_data *session, tcp_packet_data *packet, struct tcpinfo *tcpinfo) +{ + /* TODO: Determine why we get big numbers sometimes... */ + /* if ( tcpinfo->seq != 0 && tcpinfo->seq < 1000000) */ + { + tcp_ignore_data *id; + guint32 sequence = tcpinfo->seq; + + if (addresses_equal(&pinfo->src, &session->client.addr) && (pinfo->srcport == session->client.port)) + { + id = packet->from_client_ignore_list; + } + else + { + id = packet->from_server_ignore_list; + } + + while (id != NULL && id->sequence != sequence) + { + id = id->next; + } + + if (id == NULL) + return FALSE; + + return id->ignore; + } + + return FALSE; +} + +/** + * We have found and processed packets starting at offset, so + * don't allow the same (or previous) packets. + * This only applies to TCP dissector conversations. + */ +static void remember_offset(packet_info *pinfo, tcp_session_data *session, tcp_packet_data *packet, struct tcpinfo *tcpinfo) +{ + gboolean ignore = FALSE; + + /* TODO: Determine why we get big numbers sometimes... */ + /* if ( tcpinfo->seq != 0 && tcpinfo->seq < 1000000) */ + { + tcp_ignore_data **last; + tcp_ignore_data *id; + guint32 sequence; + guint32 *seqptr = NULL; + + if (addresses_equal(&pinfo->src, &session->client.addr) && (pinfo->srcport == session->client.port)) + { + last = &(packet->from_client_ignore_list); + id = packet->from_client_ignore_list; + sequence = tcpinfo->seq; + seqptr = &session->from_client_seq; + + if (LE_SEQ(tcpinfo->seq, session->from_client_seq)) + ignore = TRUE; + } + else + { + last = &(packet->from_server_ignore_list); + id = packet->from_server_ignore_list; + sequence = tcpinfo->seq; + seqptr = &session->from_server_seq; + + if (LE_SEQ(tcpinfo->seq, session->from_server_seq)) + ignore = TRUE; + } + + while (id != NULL && id->sequence != tcpinfo->seq) + { + last = &(id->next); + id = id->next; + } + + *seqptr = sequence; + if (id == NULL) + { + *last = wmem_new0(wmem_file_scope(), tcp_ignore_data); + id = *last; + id->ignore = ignore; + id->sequence = tcpinfo->seq; + } + } +} + +/** + * This dissector is registered with TCP using the standard port. It uses registered + * protocols to determine framing, and those dissectors will call into the base + * DPS dissector for each packet. + */ +static int dissect_dof_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + conversation_t *conversation; + tcp_session_data *session; + tcp_packet_data *packet; + struct tcpinfo *tcpinfo = (struct tcpinfo *)data; + guint8 header; + + /* Get the TCP conversation. TCP creates a new conversation for each TCP connection,12 + * so we can "mirror" that by attaching our own data to that conversation. If our + * data cannot be found, then it is a new connection (to us). + */ + conversation = find_conversation_pinfo(pinfo, 0); + { + /* This should be impossible - the TCP dissector requires this conversation. + * Bail... + */ + DISSECTOR_ASSERT(conversation != NULL); + } + + + /* This requires explanation. TCP will call this dissector, and we know + * that the first byte (offset 0 of this tvb) is the first byte of an + * DPS packet. The TCP dissector ensures this. + * + * We do *not* know that this is the only packet, and + * so the dissector that we call below must handle framing. All of + * this state must be stored, and so we store it in a transport + * data structure. DPS packet data is created later and associated + * differently. + * + * Further, this routine MAY be called MULTIPLE times for the SAME + * frame with DIFFERENT sequence numbers. This makes handling + * retransmissions very difficult - we must track each call to this + * routine with its associated offset and ignore flag. However, due + * to the way that Wireshark handles asking for more data we cannot + * mark an offset as "duplicate" until after it has been processed. + */ + + /* TCP packet data is only associated with TCP frames that hold DPS packets. */ + session = (tcp_session_data *)conversation_get_proto_data(conversation, proto_2008_1_dof_tcp); + if (session == NULL) + { + session = create_tcp_session_data(pinfo, conversation); + conversation_add_proto_data(conversation, proto_2008_1_dof_tcp, session); + } + + if (session->not_dps) + return 0; + + packet = (tcp_packet_data *)p_get_proto_data(wmem_file_scope(), pinfo, proto_2008_1_dof_tcp, 0); + if (packet == NULL) + { + packet = wmem_new0(wmem_file_scope(), tcp_packet_data); + p_add_proto_data(wmem_file_scope(), pinfo, proto_2008_1_dof_tcp, 0, packet); + } + + if (is_retransmission(pinfo, session, packet, tcpinfo)) + return 0; + + /* Loop, checking all the packets in this frame and communicating with the TCP + * desegmenter. The framing dissector entry is used to determine the size + * of the current frame. + */ + { + /* Note that we must handle fragmentation on TCP... */ + gint offset = 0; + + while (offset < (gint)tvb_reported_length(tvb)) + { + gint available = tvb_ensure_captured_length_remaining(tvb, offset); + int packet_length; + + header = tvb_get_guint8(tvb, offset); + + /* If we are negotiating, then we do not need the framing dissector + * as we know the packet length is two. Note that for the first byte + * of a TCP session there are only two cases, both handled here. An error + * of not understanding the first byte will trigger that this is not + * a DPS session. + */ + if (((header & 0x80) == 0) && session->common.negotiation_required && ((pinfo->fd->num < session->common.negotiation_complete_at) || (session->common.negotiation_complete_at == 0))) + { + packet_length = 2; + if (header > DNP_MAX_VERSION) + { + session->not_dps = TRUE; + return 0; + } + } + else + { + packet_length = dof_dissect_dnp_length(tvb, pinfo, header & 0x7F, &offset); + if (packet_length < 0) + { + session->not_dps = TRUE; + return offset; + } + } + + if (packet_length == 0) + { + pinfo->desegment_offset = offset; + pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT; + return offset + available; + } + + if (available < packet_length) + { + pinfo->desegment_offset = offset; + pinfo->desegment_len = packet_length - available; + return offset + available; + } + + remember_offset(pinfo, session, packet, tcpinfo); + if (is_retransmission(pinfo, session, packet, tcpinfo)) + return 0; + + /* We have a packet. We have to store the dof_packet_data in a list, as there may be + * multiple DPS packets in a single Wireshark frame. + */ + { + tvbuff_t *next_tvb = tvb_new_subset_length(tvb, offset, packet_length); + tcp_dof_packet_ref *ref; + gint raw_offset = tvb_raw_offset(tvb) + offset; + gboolean ref_is_new = FALSE; + + /* Get the packet data. This is a list in increasing sequence order. */ + if (packet->dof_packets == NULL) + { + ref_is_new = TRUE; + ref = wmem_new0(wmem_file_scope(), tcp_dof_packet_ref); + ref->transport_packet.sender_id = assign_addr_port_id(&pinfo->src, pinfo->srcport); + ref->transport_packet.receiver_id = assign_addr_port_id(&pinfo->dst, pinfo->destport); + packet->dof_packets = ref; + ref->start_offset = raw_offset; + } + else + ref = packet->dof_packets; + + /* Find the entry for our offset. */ + while (ref->start_offset != raw_offset) + { + if (ref->next) + { + ref = ref->next; + continue; + } + + { + tcp_dof_packet_ref *last = ref; + + /* This is the default state, NULL and 0. */ + ref_is_new = TRUE; + ref = wmem_new0(wmem_file_scope(), tcp_dof_packet_ref); + ref->transport_packet.sender_id = last->transport_packet.sender_id; + ref->transport_packet.receiver_id = last->transport_packet.receiver_id; + ref->start_offset = raw_offset; + last->next = ref; + } + } + + if (ref_is_new) + { + dof_transport_packet *tp = &(ref->transport_packet); + + tp->is_sent_by_client = FALSE; + if (addresses_equal(&session->client.addr, &pinfo->src) && + (session->client.port == pinfo->srcport)) + tp->is_sent_by_client = TRUE; + + ref->api_data.transport_session = (dof_transport_session *)&(session->common); + ref->api_data.transport_packet = tp; + } + + + dissect_dof_common(next_tvb, pinfo, tree, &ref->api_data); + } + + offset += packet_length; + } + + return offset; + } +} + +#if 0 /* TODO not used yet */ +/** + * This dissector is registered with the UDP protocol on the standard DPS port. + * It will be used for anything that involves that port (source or destination). + */ +#if 0 +static int dissect_tunnel_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + conversation_t *conversation; + dof_packet_data *packet; + + /* Initialize the default transport session structure. */ + if (!udp_transport_session) + udp_transport_session = se_alloc0(sizeof(*udp_transport_session)); + + conversation = find_or_create_conversation(pinfo); + + /* Add the packet data. */ + packet = p_get_proto_data(wmem_file_scope(), proto_2012_1_tunnel, 0); + if (!packet) + { + packet = wmem_alloc0(wmem_file_scope(), sizeof(dof_packet_data)); + packet->frame = pinfo->fd->num; + packet->next = NULL; + packet->start_offset = 0; + packet->session_counter = &session_counter; + packet->transport_session = udp_transport_session; + p_add_proto_data(wmem_file_scope(), proto_2012_1_tunnel, 0, packet); + } + + pinfo->private_data = packet; + return dissect_tunnel_common(tvb, pinfo, tree); +#else +static int dissect_tunnel_udp(tvbuff_t *tvb _U_, packet_info *pinfo _U_, proto_tree *tree _U_, void *data _U_) +{ +#endif + return 0; +} +#endif + + +/** + * This dissector is registered with TCP using the standard port. It uses registered + * protocols to determine framing, and those dissectors will call into the base + * DPS dissector for each packet. + */ +static int dissect_tunnel_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + conversation_t *conversation; + tcp_session_data *session; + tcp_packet_data *packet; + struct tcpinfo *tcpinfo = (struct tcpinfo *)data; + + /* Get the TCP conversation. TCP creates a new conversation for each TCP connection, + * so we can "mirror" that by attaching our own data to that conversation. If our + * data cannot be found, then it is a new connection (to us). + */ + conversation = find_conversation_pinfo(pinfo, 0); + { + /* This should be impossible - the TCP dissector requires this conversation. + * Bail... + */ + DISSECTOR_ASSERT(conversation != NULL); + } + + + /* This requires explanation. TCP will call this dissector, and we know + * that the first byte (offset 0 of this tvb) is the first byte of an + * DPS packet. The TCP dissector ensures this. + * + * We do *not* know that this is the only packet, and + * so the dissector that we call below must handle framing. All of + * this state must be stored, and so we store it in a transport + * data structure. DPS packet data is created later and associated + * differently. + * + * Further, this routine MAY be called MULTIPLE times for the SAME + * frame with DIFFERENT sequence numbers. This makes handling + * retransmissions very difficult - we must track each call to this + * routine with its associated offset and ignore flag. However, due + * to the way that Wireshark handles asking for more data we cannot + * mark an offset as "duplicate" until after it has been processed. + */ + + /* TCP packet data is only associated with TCP frames that hold DPS packets. */ + session = (tcp_session_data *)conversation_get_proto_data(conversation, proto_2012_1_tunnel); + if (session == NULL) + { + session = create_tcp_session_data(pinfo, conversation); + conversation_add_proto_data(conversation, proto_2012_1_tunnel, session); + } + + packet = (tcp_packet_data *)p_get_proto_data(wmem_file_scope(), pinfo, proto_2012_1_tunnel, 0); + if (packet == NULL) + { + packet = wmem_new0(wmem_file_scope(), tcp_packet_data); + p_add_proto_data(wmem_file_scope(), pinfo, proto_2012_1_tunnel, 0, packet); + } + + if (is_retransmission(pinfo, session, packet, tcpinfo)) + return 0; + + /* Loop, checking all the packets in this TCP frame. + */ + { + /* Note that we must handle fragmentation on TCP... */ + gint offset = 0; + + while (offset < (gint)tvb_reported_length(tvb)) + { + gint available = tvb_reported_length_remaining(tvb, offset); + int packet_length; + int header_length; + int i; + + if (available < 3) + { + pinfo->desegment_offset = offset; + pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT; + return offset + available; + } + + packet_length = 0; + header_length = 3; + + for (i = 0; i < 2; i++) + packet_length = packet_length * 256 + tvb_get_guint8(tvb, offset + 1 + i); + + packet_length += header_length; + + if (available < packet_length) + { + pinfo->desegment_offset = offset; + pinfo->desegment_len = packet_length - available; + return offset + available; + } + + /* We have a packet. We have to store the dof_packet_data in a list, as there may be + * multiple DPS packets in a single Wireshark frame. + */ + { + tvbuff_t *next_tvb = tvb_new_subset_length(tvb, offset, packet_length); + tcp_dof_packet_ref *ref; + gint raw_offset = tvb_raw_offset(tvb) + offset; + gboolean ref_is_new = FALSE; + + /* Get the packet data. This is a list in increasing sequence order. */ + if (packet->dof_packets == NULL) + { + ref_is_new = TRUE; + ref = wmem_new0(wmem_file_scope(), tcp_dof_packet_ref); + ref->transport_packet.sender_id = assign_addr_port_id(&pinfo->src, pinfo->srcport); + ref->transport_packet.receiver_id = assign_addr_port_id(&pinfo->dst, pinfo->destport); + packet->dof_packets = ref; + ref->start_offset = raw_offset; + } + else + ref = packet->dof_packets; + + /* Find the entry for our offset. */ + while (ref->start_offset != raw_offset) + { + if (ref->next) + { + ref = ref->next; + continue; + } + + { + tcp_dof_packet_ref *last = ref; + + /* This is the default state, NULL and 0. */ + ref_is_new = TRUE; + ref = wmem_new0(wmem_file_scope(), tcp_dof_packet_ref); + ref->transport_packet.sender_id = last->transport_packet.sender_id; + ref->transport_packet.receiver_id = last->transport_packet.receiver_id; + ref->start_offset = raw_offset; + last->next = ref; + } + } + + if (ref_is_new) + { + dof_transport_packet *tp = &(ref->transport_packet); + + tp->is_sent_by_client = FALSE; + if (addresses_equal(&session->client.addr, &pinfo->src) && + (session->client.port == pinfo->srcport)) + tp->is_sent_by_client = TRUE; + + ref->api_data.transport_session = (dof_transport_session *)&(session->common); + ref->api_data.transport_packet = tp; + } + + /* Manage the private data, restoring the existing value. Call the common dissector. */ + { + dissect_tunnel_common(next_tvb, pinfo, tree, ref); + } + } + + offset += packet_length; + } + + return tvb_captured_length(tvb); + } +} + +/* Dissectors */ + +static int dissect_dnp_0(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + guint offset = 0; + + guint8 dnp_flags_included = 0; + + offset = 0; + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the DNP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 header = tvb_get_guint8(tvb, offset); + + dnp_flags_included = (header & 0x80) != 0; + + offset += 1; + + { + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DNPv0 "); + + if (dnp_flags_included) + { + /* TODO: Protocol violation. */ + } + + if (tvb_reported_length(tvb) == offset) + col_set_str(pinfo->cinfo, COL_INFO, "Query"); + else + { + guint8 first = tvb_get_guint8(tvb, offset); + if (first == 0) + { + /* Query with padding. */ + col_set_str(pinfo->cinfo, COL_INFO, "Query"); + proto_tree_add_item(tree, hf_2008_1_dnp_0_1_1_padding, tvb, offset, -1, ENC_NA); + } + else + { + /* Response. */ + col_set_str(pinfo->cinfo, COL_INFO, "Query Response"); + while (first) + { + proto_tree_add_item(tree, hf_2008_1_dnp_0_1_1_version, tvb, offset, 1, ENC_NA); + offset += 1; + if (offset == tvb_reported_length(tvb)) + break; + + first = tvb_get_guint8(tvb, offset); + } + + if (offset < tvb_reported_length(tvb)) + proto_tree_add_item(tree, hf_2008_1_dnp_0_1_1_padding, tvb, offset, -1, ENC_NA); + } + } + } + } + + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + return tvb_reported_length(tvb); +} + +/** + * Determine the length of the packet in tvb, starting at an offset that is passed as a + * pointer in private_data. + * Return 0 if the length cannot be determined because there is not enough data in + * the buffer, otherwise return the length of the packet. + */ +static int determine_packet_length_1(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree _U_, void *data) +{ + /* Note that we must handle fragmentation on TCP... */ + gint offset = *((gint *)data); + + { + gint available = tvb_ensure_captured_length_remaining(tvb, offset); + guint8 header, flags; + guint8 size; + guint8 i; + gint data_len, header_len; + + if (available < 2) + return 0; + + header = tvb_get_guint8(tvb, offset); + data_len = 0; + + if ((header & 0x80) == 0) + { + /* The length is fixed in this case... */ + data_len = 0; + header_len = 2; + size = 0; + } + else + { + flags = tvb_get_guint8(tvb, offset + 1); + size = flags & 0x03; + header_len = 2 + size; + } + + if (available < header_len) + return 0; + + for (i = 0; i < size; i++) + data_len = data_len * 256 + tvb_get_guint8(tvb, offset + 2 + i); + + return header_len + data_len; + } +} + +static int dissect_dnp_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + gint offset = 0; + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet; + + gint8 dnp_version = -1; + guint8 dnp_flags_included = 0; + guint8 dnp_length_length = 0; + guint32 dnp_flags = 0; + + guint length = 0; + guint encapsulated_length = 0; + + int i; + + proto_tree *dnp_tree = tree; + + if (!api_data) + { + /* TODO: Print error */ + return 0; + } + + if (!api_data->packet) + { + /* TODO: Print error */ + return 0; + } + + packet = api_data->packet; + + offset = 0; + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the DNP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 header = tvb_get_guint8(tvb, offset); + guint32 dnp_src_port = 0; + guint32 dnp_dst_port = 0; + + dnp_version = header & 0x7F; + dnp_flags_included = (header & 0x80) != 0; + + + offset += 1; + + { + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DNPv1 "); + + if (dnp_flags_included) + { + /* Including flags always terminates negotiation. */ + /* packet->negotiated = TRUE; */ + + dnp_flags = tvb_get_guint8(tvb, offset); + if ((dnp_flags & 0xF0) != 0) + expert_add_info(pinfo, NULL, &ei_dof_10_flags_zero); + + proto_tree_add_bitmask(dnp_tree, tvb, offset, hf_2009_9_dnp_1_flags, ett_2009_9_dnp_1_flags, bitmask_2009_9_dnp_1_flags, ENC_BIG_ENDIAN); + + offset += 1; + } + else + dnp_flags = DNP_V1_DEFAULT_FLAGS; + + /* Determine the size of the length field. */ + dnp_length_length = dnp_flags & 0x03; + if (dnp_length_length) + proto_tree_add_item(dnp_tree, hf_2009_9_dnp_1_length, tvb, offset, dnp_length_length, ENC_BIG_ENDIAN); + + /* Read the length. */ + length = 0; + for (i = 0; i < dnp_length_length; i++) + length = (length << 8) | tvb_get_guint8(tvb, offset + i); + + /* Validate the length. */ +#if 0 + if ( (length == 0) && packet->negotiated && session && ! session->connectionless ) + { + expert_add_info( pinfo, NULL, &ei_dof_13_length_specified ); + } +#endif + + offset += dnp_length_length; + + /* If there isn't a length specified then use the packet size. */ + if (dnp_length_length == 0) + length = tvb_reported_length(tvb) - offset; + + encapsulated_length = length; + + /* Read the srcport */ + if (dnp_flags & 0x04) + { + gint s_offset = offset; + proto_item *item; + gint dnp_src_port_len; + + offset = read_c3(tvb, offset, &dnp_src_port, &dnp_src_port_len); + item = proto_tree_add_uint_format(dnp_tree, hf_2009_9_dnp_1_srcport, tvb, s_offset, offset - s_offset, dnp_src_port, "Source Address: %u", dnp_src_port); + validate_c3(pinfo, item, dnp_src_port, dnp_src_port_len); + encapsulated_length -= (offset - s_offset); + } + else + { + proto_item *item = proto_tree_add_uint_format(dnp_tree, hf_2009_9_dnp_1_srcport, tvb, 0, 0, 0, "Source Address: %u", 0); + proto_item_set_generated(item); + } + + /* Read the dstport */ + if (dnp_flags & 0x08) + { + gint s_offset = offset; + gint dnp_dst_port_len; + proto_item *item; + + offset = read_c3(tvb, offset, &dnp_dst_port, &dnp_dst_port_len); + item = proto_tree_add_uint_format(dnp_tree, hf_2009_9_dnp_1_dstport, tvb, s_offset, offset - s_offset, dnp_dst_port, "Destination Address: %u", dnp_dst_port); + validate_c3(pinfo, item, dnp_dst_port, dnp_dst_port_len); + encapsulated_length -= (offset - s_offset); + } + else + { + proto_item *item = proto_tree_add_uint_format(dnp_tree, hf_2009_9_dnp_1_dstport, tvb, 0, 0, 0, "Destination Address: %u", 0); + proto_item_set_generated(item); + } + } + + proto_item_set_end(tree, tvb, offset); + + /* Given the transport session and the DPS port information, determine the DPS session. */ + if (api_data->session == NULL) + { + guint32 client; + guint32 server; + + if (api_data->transport_packet->is_sent_by_client) + { + client = dnp_src_port; + server = dnp_dst_port; + } + else + { + client = dnp_dst_port; + server = dnp_src_port; + } + + api_data->session = dof_ns_session_retrieve(api_data->transport_session->transport_session_id, client, server); + if (api_data->session == NULL) + { + dof_session_data *sdata = wmem_new0(wmem_file_scope(), dof_session_data); + dof_ns_session_define(api_data->transport_session->transport_session_id, client, server, sdata); + sdata->session_id = globals.next_session++; + sdata->dof_id = dnp_version; + api_data->session = sdata; + } + } + + packet->sender_id = dnp_src_port; + packet->receiver_id = dnp_dst_port; + + /* Assuming there is more, it must be DPP. */ + + /* We have a packet. */ + { + tvbuff_t *next_tvb = tvb_new_subset_length_caplen(tvb, offset, encapsulated_length, tvb_reported_length(tvb) - offset); + offset += dof_dissect_dpp_common(next_tvb, pinfo, proto_item_get_parent(tree), data); + } + } + + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + return offset; +} + +static int dissect_dpp_0(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + guint offset = 0; + + guint8 dpp_flags_included = 0; + + offset = 0; + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the DPP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 header = tvb_get_guint8(tvb, offset); + + dpp_flags_included = (header & 0x80) != 0; + + offset += 1; + + { + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DPPv0 "); + + if (dpp_flags_included) + { + /* TODO: Protocol violation. */ + } + + if (tvb_reported_length(tvb) == offset) + col_set_str(pinfo->cinfo, COL_INFO, "Query"); + else + { + guint8 first = tvb_get_guint8(tvb, offset); + /* Response. */ + col_set_str(pinfo->cinfo, COL_INFO, "Query Response"); + while (first) + { + proto_tree_add_item(tree, hf_2008_1_dpp_0_1_1_version, tvb, offset, 1, ENC_NA); + offset += 1; + if (offset == tvb_reported_length(tvb)) + break; + + first = tvb_get_guint8(tvb, offset); + } + } + } + } + + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + return tvb_reported_length(tvb); +} + +static int dissect_dpp_v2_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + gint offset = 0; + guint8 opcode; + guint16 app; + gint app_len; + proto_item *ti; + proto_tree *dpps_tree; + proto_tree *opid_tree; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DPPs "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_2009_12_dpp_common, tvb, offset, -1, ENC_NA); + dpps_tree = proto_item_add_subtree(ti, ett_2009_12_dpp_common); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(dpps_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + + + /* Retrieve the opcode. */ + opcode = tvb_get_guint8(tvb, offset); + if (!packet_data->is_command) + opcode |= OP_2009_12_RESPONSE_FLAG; + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(opcode, strings_2009_12_dpp_common_opcodes, "Unknown Opcode (%d)")); + + /* Opcode */ + proto_tree_add_uint_format(dpps_tree, hf_2009_12_dpp_2_14_opcode, tvb, offset, 1, opcode & 0x3F, "Opcode: %s (%u)", val_to_str(opcode, strings_2009_12_dpp_common_opcodes, "Unknown Opcode (%d)"), opcode & 0x3F); + offset += 1; + + switch (opcode) + { + case OP_2009_12_SOURCE_LOST_CMD: + case OP_2009_12_SOURCE_FOUND_CMD: + case OP_2009_12_RENAME_CMD: + packet_data->has_referenced_opid = TRUE; + + /* FALL THROUGH */ + + case OP_2009_12_CANCEL_ALL_CMD: + case OP_2009_12_NODE_DOWN_CMD: + case OP_2009_12_QUERY_RSP: + /* SID */ + { + proto_tree *oid_tree; + gint opid_len; + tvbuff_t *next_tvb; + + if (packet_data->has_referenced_opid) + { + opid_tree = proto_tree_add_subtree(dpps_tree, tvb, offset, 0, ett_2009_12_dpp_2_opid, NULL, "Operation Identifier"); + } + else + { + opid_tree = dpps_tree; + } + + oid_tree = proto_tree_add_subtree(opid_tree, tvb, offset, 0, ett_2009_12_dpp_2_opid, NULL, "Source Identifier"); + + next_tvb = tvb_new_subset_length(tvb, offset, tvb_reported_length(tvb) - offset); + opid_len = call_dissector_only(dof_oid_handle, next_tvb, pinfo, oid_tree, NULL); + + learn_sender_sid(api_data, opid_len, tvb_get_ptr(next_tvb, 0, opid_len)); + if (packet_data->has_referenced_opid) + learn_operation_sid(&packet_data->ref_op, opid_len, tvb_get_ptr(next_tvb, 0, opid_len)); + + offset += opid_len; + } + + if (packet_data->has_referenced_opid) + { + guint32 opcnt; + gint opcnt_len; + proto_item *pi; + + read_c4(tvb, offset, &opcnt, &opcnt_len); + pi = proto_tree_add_uint_format(opid_tree, hf_2009_12_dpp_2_1_opcnt, tvb, offset, opcnt_len, opcnt, "Operation Count: %u", opcnt); + validate_c4(pinfo, pi, opcnt, opcnt_len); + offset += opcnt_len; + + packet_data->ref_op.op_cnt = opcnt; + } + + break; + } + return offset; +} + +static int dissect_dpp_2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + + proto_item *ti = NULL; + proto_item *tf = NULL; + proto_item *opid = NULL; + + gint opid_start = -1; + guint8 dpp_flags_included = 0; + guint32 dpp_flags = 0; + guint8 dpp_opid_keytype = 0; + + proto_tree *dpp_flags_tree; + proto_tree *opid_tree = NULL; + + + gint offset = 0; + + proto_tree *dpp_tree = tree; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* We should have everything required for determining the SID ID. */ + assign_sid_id(api_data); + + offset = 0; + col_clear(pinfo->cinfo, COL_INFO); + + /* Compute the DPP control information. This is the version and the flags byte. + * The flags byte is either present, or is based on the version (and can be defaulted). + */ + { + guint8 header = tvb_get_guint8(tvb, offset); + dpp_flags_included = (header & 0x80) != 0; + offset += 1; + + { + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DPPv2 "); + + ti = proto_tree_add_uint_format(tree, hf_2008_1_dpp_sid_num, tvb, + 0, 0, packet_data->sender_sid_id, "SID ID: %d", packet_data->sender_sid_id); + proto_item_set_generated(ti); + + if (packet_data->sender_sid) + { + const gchar *SID = dof_oid_create_standard_string(packet_data->sender_sid[0], packet_data->sender_sid + 1); + ti = proto_tree_add_bytes_format_value(tree, hf_2008_1_dpp_sid_str, tvb, 0, 0, packet_data->sender_sid, "%s", SID); + proto_item_set_generated(ti); + } + + ti = proto_tree_add_uint_format(tree, hf_2008_1_dpp_rid_num, tvb, + 0, 0, packet_data->receiver_sid_id, "RID ID: %d", packet_data->receiver_sid_id); + proto_item_set_generated(ti); + + if (packet_data->receiver_sid) + { + const gchar *SID = dof_oid_create_standard_string(packet_data->receiver_sid[0], packet_data->receiver_sid + 1); + ti = proto_tree_add_bytes_format_value(tree, hf_2008_1_dpp_rid_str, tvb, 0, 0, packet_data->receiver_sid, "%s", SID); + proto_item_set_generated(ti); + } + + if (dpp_flags_included) + { + dpp_flags = tvb_get_guint8(tvb, offset); + if (((dpp_flags & 0x10) != 0) && ((dpp_flags & 0x0F) != 0)) + expert_add_info(pinfo, NULL, &ei_dpp2_dof_10_flags_zero); + if (((dpp_flags & 0x10) == 0) && ((dpp_flags & 0x09) != 0)) + expert_add_info(pinfo, NULL, &ei_dpp2_dof_10_flags_zero); + + tf = proto_tree_add_uint_format(dpp_tree, hf_2009_12_dpp_2_1_flags, tvb, + offset, 1, dpp_flags, "Flags: 0x%02x", dpp_flags); + + dpp_flags_tree = proto_item_add_subtree(tf, ett_2009_12_dpp_2_1_flags); + + if (dpp_flags == DPP_V2_DEFAULT_FLAGS) + expert_add_info(pinfo, dpp_flags_tree, &ei_dpp_default_flags); + + proto_tree_add_item(dpp_flags_tree, hf_2009_12_dpp_2_1_flag_security, tvb, offset, 1, ENC_NA); + proto_tree_add_item(dpp_flags_tree, hf_2009_12_dpp_2_1_flag_opid, tvb, offset, 1, ENC_NA); + proto_tree_add_item(dpp_flags_tree, hf_2009_12_dpp_2_1_flag_cmdrsp, tvb, offset, 1, ENC_NA); + if ((dpp_flags & 0x10) == 0) + { + proto_tree_add_item(dpp_flags_tree, hf_2009_12_dpp_2_1_flag_seq, tvb, offset, 1, ENC_NA); + proto_tree_add_item(dpp_flags_tree, hf_2009_12_dpp_2_1_flag_retry, tvb, offset, 1, ENC_NA); + } + + offset += 1; + } + else + dpp_flags = DPP_V2_DEFAULT_FLAGS; + + packet_data->is_command = (dpp_flags & 0x10) == 0; + + /* We are allowed to be complete here if still negotiating. */ + /*if ( ! packet->negotiated && (offset == tvb_reported_length(tvb)) ) + { + col_set_str( pinfo->cinfo, COL_INFO, "DPS Negotiation" ); + return 1; + }*/ + + dpp_opid_keytype = (dpp_flags & 0x60) >> 5; + switch (dpp_opid_keytype) + { + case 0: /* No OPID */ + packet_data->has_opid = FALSE; + break; + + case 1: /* Implied sender. */ + packet_data->has_opid = TRUE; + packet_data->op.op_sid_id = packet_data->sender_sid_id; + packet_data->op.op_sid = packet_data->sender_sid; + break; + + case 2: /* Implied receiver. */ + packet_data->has_opid = TRUE; + packet_data->op.op_sid_id = packet_data->receiver_sid_id; + packet_data->op.op_sid = packet_data->receiver_sid; + break; + + case 3: /* Explicit. */ + packet_data->has_opid = TRUE; + break; + } + + if (dpp_opid_keytype != 0) + { + opid_start = offset; + opid_tree = proto_tree_add_subtree(dpp_tree, tvb, offset, 0, ett_2009_12_dpp_2_opid, NULL, "Operation Identifier"); + } + + switch (dpp_opid_keytype) + { + case 0: /* We have no opid. */ + break; + + case 3: /* Explicit. */ + { + proto_tree *oid_tree; + tvbuff_t *next_tvb; + gint opid_len; + + oid_tree = proto_tree_add_subtree(opid_tree, tvb, offset, 0, ett_2009_12_dpp_2_opid, NULL, "Source Identifier"); + + next_tvb = tvb_new_subset_length(tvb, offset, tvb_reported_length(tvb) - offset); + opid_len = call_dissector_only(dof_oid_handle, next_tvb, pinfo, oid_tree, NULL); + proto_item_set_len(oid_tree, opid_len); + + learn_operation_sid(&packet_data->op, opid_len, tvb_get_ptr(next_tvb, 0, opid_len)); + + /* Warn if Explicit SID could be optimized. */ + if (packet_data->op.op_sid_id == packet_data->sender_sid_id) + expert_add_info(pinfo, ti, &ei_dpp_explicit_sender_sid_included); + if (packet_data->op.op_sid_id == packet_data->receiver_sid_id) + expert_add_info(pinfo, ti, &ei_dpp_explicit_receiver_sid_included); + + offset += opid_len; + } + + /* FALL THROUGH */ + + case 1: /* Implied sender. */ + case 2: /* Implied receiver. */ + { + guint32 opcnt; + gint opcnt_len; + proto_item *pi; + + /* Display the SID if known. */ + if ((dpp_opid_keytype != 3) && packet_data->op.op_sid) + { + proto_tree *oid_tree; + + tvbuff_t *next_tvb = tvb_new_child_real_data(tvb, packet_data->op.op_sid + 1, packet_data->op.op_sid[0], packet_data->op.op_sid[0]); + oid_tree = proto_tree_add_subtree(opid_tree, tvb, 0, 0, ett_2009_12_dpp_2_opid, NULL, "Source Identifier"); + + call_dissector_only(dof_oid_handle, next_tvb, pinfo, oid_tree, NULL); + + proto_item_set_generated(ti); + } + + read_c4(tvb, offset, &opcnt, &opcnt_len); + pi = proto_tree_add_uint_format(opid_tree, hf_2009_12_dpp_2_1_opcnt, tvb, offset, opcnt_len, opcnt, "Operation Count: %u", opcnt); + validate_c4(pinfo, pi, opcnt, opcnt_len); + offset += opcnt_len; + + proto_item_set_len(opid, offset - opid_start); + + packet_data->op.op_cnt = opcnt; + + /* At this point we have a packet with an operation identifier. We need to + * update the master list of operation identifiers, and do any checking that + * we can in order to validate things. + */ + if (packet_data->has_opid && !packet_data->opid_first) + { + dof_packet_data *first = (dof_packet_data *)g_hash_table_lookup(dpp_opid_to_packet_data, (gconstpointer) & packet_data->op); + if (first == NULL) + { + /* First reference to this operation. */ + g_hash_table_insert(dpp_opid_to_packet_data, (gpointer) & packet_data->op, (gpointer)packet_data); + packet_data->opid_first = packet_data; + packet_data->opid_last = packet_data; + + /* The first opid must be a command. */ + } + else + { + /* Operation exists, time to patch things in. */ + packet_data->opid_first = first; + first->opid_last->opid_next = packet_data; + first->opid_last = packet_data; + + if (!packet_data->is_command) + { + if (!first->opid_first_response) + { + first->opid_first_response = packet_data; + first->opid_last_response = packet_data; + } + else + { + first->opid_last_response->opid_next_response = packet_data; + first->opid_last_response = packet_data; + } + } + } + } + + + /* Add all the reference information to the tree. */ + if (globals.track_operations && tree) + { + proto_tree *ophistory_tree = proto_tree_add_subtree(tree, tvb, 0, 0, ett_2009_12_dpp_2_opid_history, NULL, "Operation History"); + + dof_packet_data *ptr = packet_data->opid_first; + + if (ptr) + proto_tree_add_uint_format(ophistory_tree, hf_2008_1_dpp_first_command, + tvb, 0, 0, ptr->frame, + "First Operation: %u", + ptr->frame); + + if (ptr->opid_last && ptr->opid_last != ptr) + proto_tree_add_uint_format(ophistory_tree, hf_2008_1_dpp_last_command, + tvb, 0, 0, ptr->opid_last->frame, + "Last Operation: %u", + ptr->opid_last->frame); + + if (ptr->opid_first_response) + proto_tree_add_uint_format(ophistory_tree, hf_2008_1_dpp_first_response, + tvb, 0, 0, ptr->opid_first_response->frame, + "First Response: %u", + ptr->opid_first_response->frame); + + if (ptr->opid_last_response && ptr->opid_last_response != ptr->opid_first_response) + proto_tree_add_uint_format(ophistory_tree, hf_2008_1_dpp_last_response, + tvb, 0, 0, ptr->opid_last_response->frame, + "Last Response: %u", + ptr->opid_last_response->frame); + + /* Determine the window start, then output the number of packets. Output the number of skipped packets before + * and after. + */ + { + dof_packet_data *start = packet_data->opid_first; + guint diff = 0; + while (ptr) + { + if (ptr == packet_data) + break; + + ptr = ptr->opid_next; + diff += 1; + + if (diff > globals.track_operations_window) + { + start = start->opid_next; + diff -= 1; + } + } + + ptr = start; + diff = 0; + + while (ptr) + { + const char *THIS = ""; + + if (ptr == packet_data) + { + THIS = "this "; + diff = globals.track_operations_window + 1; + } + + /* (DPS Frame) [ws WS Frame]: (SID)->(RID): (THIS) (SUMMARY) */ + proto_tree_add_uint_format(ophistory_tree, hf_2008_1_dpp_related_frame, + tvb, 0, 0, ptr->frame, + "%u[ws %u]: %u->%u: %s%s", + ptr->dof_frame, ptr->frame, + ptr->sender_sid_id, ptr->receiver_sid_id, + THIS, + ptr->summary ? ptr->summary : ""); + + ptr = ptr->opid_next; + if (diff && !--diff) + break; + } + } + } + } + break; + } + + proto_item_set_len(opid_tree, offset - opid_start); + + { + if ((dpp_flags & 0x10) == 0) + { + guint8 dpp_seq = 0; + guint8 dpp_retry = 0; + guint16 dpp_delay = 0; + + /* Extract SEQ */ + if (dpp_flags & 0x04) + { + dpp_seq = tvb_get_guint8(tvb, offset); + proto_tree_add_uint_format(dpp_tree, hf_2009_12_dpp_2_1_seq, tvb, offset, 1, dpp_seq, "Sequence: %u", dpp_seq); + offset += 1; + } + + /* Extract Retry */ + if (dpp_flags & 0x02) + { + dpp_retry = tvb_get_guint8(tvb, offset); + proto_tree_add_uint_format(dpp_tree, hf_2009_12_dpp_2_1_retry, tvb, offset, 1, dpp_retry, "Retry: %u", dpp_retry); + offset += 1; + } + + /* Extract Delay */ + { + dpp_delay = tvb_get_guint8(tvb, offset); + if (dpp_delay > 128) + dpp_delay = 128 + ((dpp_delay - 128) * 32); + + proto_tree_add_uint_format(dpp_tree, hf_2009_12_dpp_2_1_delay, tvb, offset, 1, dpp_delay, "Delay: %u seconds", dpp_delay); + offset += 1; + } + + packet_data->summary = wmem_strdup_printf(wmem_file_scope(), "command seq %u, retry %u, delay %u", dpp_seq, dpp_retry, dpp_delay); + } + else + packet_data->summary = "response"; + } + + /* Extract session information. */ + if (dpp_flags & 0x80) + { + guint32 sec_offset = offset; + guint8 sh_flags; + guint32 ssid; + proto_tree *security_tree; + proto_tree *sec_flags_tree; + proto_item *item; + + security_tree = proto_tree_add_subtree(dpp_tree, tvb, offset, -1, ett_2009_12_dpp_2_3_security, NULL, "Security Header"); + + sh_flags = tvb_get_guint8(tvb, offset); + item = proto_tree_add_uint_format(security_tree, hf_2009_12_dpp_2_3_sec_flags, tvb, + offset, 1, sh_flags, "Flags: 0x%02x", sh_flags); + + sec_flags_tree = proto_item_add_subtree(item, ett_2009_12_dpp_2_3_sec_flags); + proto_tree_add_item(sec_flags_tree, hf_2009_12_dpp_2_3_sec_flag_secure, tvb, offset, 1, ENC_NA); + proto_tree_add_item(sec_flags_tree, hf_2009_12_dpp_2_3_sec_flag_rdid, tvb, offset, 1, ENC_NA); + proto_tree_add_item(sec_flags_tree, hf_2009_12_dpp_2_3_sec_flag_partition, tvb, offset, 1, ENC_NA); + proto_tree_add_item(sec_flags_tree, hf_2009_12_dpp_2_3_sec_flag_as, tvb, offset, 1, ENC_NA); + proto_tree_add_item(sec_flags_tree, hf_2009_12_dpp_2_3_sec_flag_ssid, tvb, offset, 1, ENC_NA); + offset += 1; + + ssid = 0; + if (sh_flags & DPP_V2_SEC_FLAG_S) + { + gint s_offset = offset; + gint ssid_len; + proto_item *pi; + offset = read_c4(tvb, offset, &ssid, &ssid_len); + pi = proto_tree_add_uint_format(security_tree, hf_2009_12_dpp_2_3_sec_ssid, tvb, s_offset, offset - s_offset, ssid, "Security State Identifier: %u (0x%x)", ssid, ssid); + validate_c4(pinfo, pi, ssid, ssid_len); + } + + /* At this point we know the transport information, DNP port information, and the + * SSID. This means that we can isolate the session that this communication belongs + * to. Note that all uses of an SSID are scoped by the transport. + */ + if (sh_flags & DPP_V2_SEC_FLAG_A) + ssid |= AS_ASSIGNED_SSID; + + if (api_data->session && !api_data->secure_session) + { + dof_secure_session_data *search = api_data->session->secure_sessions; + while (search) + { + if (ssid == search->ssid) + break; + + search = search->next; + } + + if (search) + { + api_data->session = search->parent; + api_data->secure_session = search; + } + } + + if (sh_flags & DPP_V2_SEC_FLAG_D) + { + gint s_offset = offset; + guint32 rdid; + gint rdid_len; + proto_item *pi; + offset = read_c4(tvb, offset, &rdid, &rdid_len); + pi = proto_tree_add_uint_format(security_tree, hf_2009_12_dpp_2_3_sec_rdid, tvb, s_offset, offset - s_offset, rdid, "Remote Domain Identifier: %u (0x%x)", rdid, rdid); + validate_c4(pinfo, pi, rdid, rdid_len); + + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_10, tvb, pinfo, security_tree, + offset, hf_2009_12_dpp_2_3_sec_remote_partition, ett_2009_12_dpp_2_3_sec_remote_partition, NULL); + } + + if (sh_flags & DPP_V2_SEC_FLAG_P) + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_10, tvb, pinfo, security_tree, + offset, hf_2009_12_dpp_2_3_sec_partition, ett_2009_12_dpp_2_3_sec_partition, NULL); + } + + if (sh_flags & DPP_V2_SEC_FLAG_E) + { + /* If we get here without success, then we can only bail. */ + if (packet_data->security_session_error) + { + col_set_str(pinfo->cinfo, COL_INFO, packet_data->security_session_error); + proto_item_set_end(tree, tvb, offset); + expert_add_info(pinfo, security_tree, &ei_dpp_no_security_context); + { + tvbuff_t *data_tvb = tvb_new_subset_remaining(tvb, offset); + call_data_dissector(data_tvb, pinfo, tree); + } + proto_item_set_len(security_tree, offset - sec_offset); + return offset; + } + + if (!api_data->secure_session) + { + packet_data->security_session_error = "[Encrypted - No Session Available]"; + proto_item_set_len(security_tree, offset - sec_offset); + return offset; + } + + /* Security has not failed, and we have a security session. */ + { + dissector_table_t sec_header = find_dissector_table("dof.secmode"); + /* TODO: CCM is hardcoded. We should try all of the sessions, which could mean multiple security modes. */ + dissector_handle_t dp = dissector_get_uint_handle(sec_header, 0x6001); /* packet_data->security_session->security_mode); */ + if (dp) + { + dof_secmode_api_data sdata; + + sdata.context = HEADER; + sdata.security_mode_offset = offset; + sdata.dof_api = api_data; + sdata.secure_session = api_data->secure_session; + sdata.session_key_data = NULL; + + offset += call_dissector_only(dp, tvb, pinfo, security_tree, &sdata); + + if (!packet_data->decrypted_buffer) + { + proto_item_set_end(tree, tvb, offset); + proto_item_set_len(security_tree, offset - sec_offset); + return offset; + } + } + } + } + proto_item_set_len(security_tree, offset - sec_offset); + } + + /* The end of the packet must be called in the original tvb or chaos ensues... */ + proto_item_set_end(tree, tvb, offset); + } + + + if (packet_data->decrypted_tvb) + { + tvb = packet_data->decrypted_tvb; + offset = packet_data->decrypted_offset; + } + + /* Assuming there is more, it must be DPP. */ + /* We have a packet. We must handle the special case of this being *our* application + * protocol (0x7FFF). If it is, then *we* are the dissector... + */ + { + guint16 app; + tvbuff_t *next_tvb = tvb_new_subset_length(tvb, offset, tvb_reported_length(tvb) - offset); + + read_c2(tvb, offset, &app, NULL); + if (app == 0x7FFF) + { + offset += dissect_dpp_v2_common(next_tvb, pinfo, proto_item_get_parent(tree), data); + } + else + { + offset += dissect_app_common(next_tvb, pinfo, proto_item_get_parent(tree), data); + } + } + } + + col_set_fence(pinfo->cinfo, COL_PROTOCOL); + col_set_fence(pinfo->cinfo, COL_INFO); + return offset; +} + +static int dissect_options(tvbuff_t *tvb, gint offset, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + while (offset < (gint)tvb_captured_length(tvb)) + { + proto_tree *subtree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_2008_1_dsp_12_option, NULL, "Option"); + tvbuff_t *next_tvb = tvb_new_subset_remaining(tvb, offset); + gint len = dissect_2008_1_dsp_1(next_tvb, pinfo, subtree); + proto_item_set_len(proto_tree_get_parent(subtree), len); + offset += len; + } + + return offset; +} + +static int dissect_dsp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + guint offset = 0; + guint8 opcode; + guint16 app; + gint app_len; + proto_item *ti; + proto_tree *dsp_tree; + proto_tree *options_tree; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DSPv2 "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_2008_1_dsp, tvb, offset, -1, ENC_NA); + dsp_tree = proto_item_add_subtree(ti, ett_2008_1_dsp_12); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(dsp_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + +#if 0 + if (!packet->is_streaming) + { + col_set_str(pinfo->cinfo, COL_PROTOCOL, "DSPv2 "); + + if (tvb_captured_length(tvb) == offset) + col_set_str(pinfo->cinfo, COL_INFO, "Query"); + else + { + col_set_str(pinfo->cinfo, COL_INFO, "Query Response"); + while (offset < tvb_captured_length(tvb)) + { + guint16 app; + gint start = offset; + offset = read_c2(tvb, offset, &app, NULL); + proto_tree_add_uint(dsp_tree, hf_2008_1_app_version, tvb, start, offset - start, app); + } + } + + return offset; + } +#endif + + if (offset == tvb_captured_length(tvb)) + { + col_append_str(pinfo->cinfo, COL_INFO, "DSP [nop]"); + expert_add_info(pinfo, dsp_tree, &ei_implicit_no_op); + + return offset; + } + + /* Determine the ESP opcode. */ + opcode = tvb_get_guint8(tvb, offset); + + if (!packet_data->is_command) + opcode |= OP_2008_1_RSP; + + proto_tree_add_uint_format(dsp_tree, hf_2008_1_dsp_12_opcode, tvb, offset, 1, opcode, "Opcode: %s (%u)", val_to_str(opcode, strings_2008_1_dsp_opcodes, "Unknown Opcode (%d)"), opcode & 0x7F); + offset += 1; + col_append_sep_str(pinfo->cinfo, COL_INFO, "/", val_to_str(opcode, strings_2008_1_dsp_opcodes, "Unknown Opcode (%d)")); + + switch (opcode) + { + case OP_2008_1_OPEN_CMD: /* 2008.1 DSP.14.1 */ + break; + + case OP_2008_1_OPEN_RSP: /* 2008.1 DSP.14.2 */ + case OP_2008_1_OPEN_SECURE_RSP: /* 2008.1 DSP.14.3 */ + { + while (offset < tvb_captured_length(tvb)) + { + guint16 ap; + gint length; + proto_item *pi; + gint start = offset; + offset = read_c2(tvb, offset, &ap, &length); + pi = proto_tree_add_uint(dsp_tree, hf_2008_1_app_version, tvb, start, offset - start, ap); + validate_c2(pinfo, pi, ap, length); + } + } + break; + + case OP_2008_1_QUERY_CMD: + break; + + case OP_2008_1_QUERY_RSP: + break; + + case OP_2008_1_CONFIG_ACK: + break; + + case OP_2008_1_CONFIG_REQ: + /* This will start a session if not existing... */ + /* FALL THROUGH */ + + case OP_2008_1_CONFIG_NAK: + { + gint length = tvb_captured_length(tvb) - offset; + + options_tree = proto_tree_add_subtree_format(dsp_tree, tvb, offset, length, ett_2008_1_dsp_12_options, NULL, + "DSP Options: (%d byte%s)", length, plurality(length, "", "s")); + offset = dissect_options(tvb, offset, pinfo, options_tree, NULL); + } + break; + + case OP_2008_1_CONFIG_REJ: + /* TODO: Handle reject. */ + break; + + case OP_2008_1_TERMINATE_CMD: + case OP_2008_1_TERMINATE_RSP: + /* Nothing */ + break; + } + + return offset; +} + +static int dissect_ccm_dsp(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) +{ + /* We are handed a buffer that starts with an option and our protocol id. Any options follow that. */ + gint offset = 0; + proto_item *parent = proto_tree_get_parent(tree); + guint8 len, strength_count, i; + proto_item *ti; + proto_tree *ccm_tree; + + /* Append description to the parent. */ + proto_item_append_text(parent, " (CCM)"); + + /* Compute the version and flags, masking off other bits. */ + offset += 3; /* Skip the type and protocol. */ + len = tvb_get_guint8(tvb, offset++); + + ti = proto_tree_add_item(tree, hf_ccm_dsp_option, tvb, offset, len, ENC_NA); + ccm_tree = proto_item_add_subtree(ti, ett_ccm_dsp_option); + + strength_count = tvb_get_guint8(tvb, offset); + proto_tree_add_item(ccm_tree, hf_ccm_dsp_strength_count, tvb, offset++, 1, ENC_NA); + + for (i = 0; i < strength_count; i++) + proto_tree_add_item(ccm_tree, hf_ccm_dsp_strength, tvb, offset++, 1, ENC_NA); + + proto_tree_add_item(ccm_tree, hf_ccm_dsp_e_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_tree, hf_ccm_dsp_m_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_tree, hf_ccm_dsp_tmax, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_tree, hf_ccm_dsp_tmin, tvb, offset, 1, ENC_NA); + + offset += 1; + return offset; +} + +/** + * This is the main entry point for the CCM dissector. It is always called from an DPS + * dissector, and is always passed the dof_secmode_data structure. + */ +static int dissect_ccm(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_secmode_api_data *secmode_api_data; + dof_session_key_exchange_data *key_data; + + secmode_api_data = (dof_secmode_api_data *)data; + if (secmode_api_data == NULL) + { + return 0; + } + + key_data = secmode_api_data->session_key_data; + + /* Based on the context of the request, handle the work. */ + switch (secmode_api_data->context) + { + case INITIALIZE: + /* Parse off the initialization fields, and if necessary create the security mode state + * that is being initialized. This is passed the DPS data, DPS session data, and Key Exchange Data. + */ + { + ccm_session_data *ccm_data = (ccm_session_data *)key_data->security_mode_key_data; + gint offset = 0; + guint8 header; + guint16 length; + + if (!ccm_data) + { + /* We need to parse the initialization data. */ + ccm_data = wmem_new0(wmem_file_scope(), ccm_session_data); + if (!ccm_data) + return 0; + wmem_register_callback(wmem_file_scope(), dof_sessions_destroy_cb, ccm_data); + + key_data->security_mode_key_data = ccm_data; + + if (!key_data->security_mode_data || key_data->security_mode_data_length < 3) + return 0; + + /* TODO: Not sure that these are all right. */ + ccm_data->protocol_id = DOF_PROTOCOL_CCM; + ccm_data->cipher = key_data->security_mode_data[1]; + ccm_data->encrypted = key_data->security_mode_data[key_data->security_mode_data_length - 1] & 0x80; + ccm_data->mac_len = (key_data->security_mode_data[key_data->security_mode_data_length - 1] & 0x07) * 2 + 2; + ccm_data->client_datagram_number = 0; + ccm_data->server_datagram_number = 0; + + switch (ccm_data->protocol_id) + { + case DOF_PROTOCOL_CCM: + if (gcry_cipher_open(&ccm_data->cipher_data, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, 0)) { + return 0; + } + break; + + default: + return 0; + } + } + + if (secmode_api_data->dof_api->transport_session->is_2_node) + { + switch (ccm_data->protocol_id) + { + case DOF_PROTOCOL_CCM: + if (gcry_cipher_setkey(ccm_data->cipher_data, key_data->session_key, 32)) { + gcry_cipher_close(ccm_data->cipher_data); + ccm_data->cipher_data = NULL; + return 0; + } + break; + + default: + return 0; + } + + /* This mode has a fixed size, so we can return here without parsing further. */ + return 2; + } + + offset = read_c2(tvb, offset, &length, NULL); + /* TODO validate C2 */ + header = tvb_get_guint8(tvb, offset); + offset += 1; + + /* Determine the period, and store the key. */ + { + guint8 period = (header & 0x70) >> 4; + if (ccm_data->cipher_data_table == NULL) + { + gcry_cipher_hd_t ekey; + if (gcry_cipher_open(&ekey, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, 0)) { + return 0; + } + + ccm_data->cipher_data_table = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, dof_cipher_data_destroy); + ccm_data->period = 1; + ccm_data->periods[period] = ccm_data->period; + + switch (ccm_data->protocol_id) + { + case DOF_PROTOCOL_CCM: + if (gcry_cipher_setkey(ekey, key_data->session_key, 32)) { + gcry_cipher_close(ekey); + return 0; + } + break; + + default: + gcry_cipher_close(ekey); + return 0; + } + + g_hash_table_insert(ccm_data->cipher_data_table, GUINT_TO_POINTER(ccm_data->period), ekey); + } + else + { + guint32 lookup = ccm_data->periods[period]; + + if (!lookup) + { + gcry_cipher_hd_t ekey; + if (gcry_cipher_open(&ekey, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, 0)) { + return 0; + } + switch (ccm_data->protocol_id) + { + case DOF_PROTOCOL_CCM: + if (gcry_cipher_setkey(ekey, key_data->session_key, 32)) { + gcry_cipher_close(ekey); + return 0; + } + break; + + default: + gcry_cipher_close(ekey); + return 0; + } + + ccm_data->period += 1; + ccm_data->periods[period] = ccm_data->period; + g_hash_table_insert(ccm_data->cipher_data_table, GUINT_TO_POINTER(ccm_data->period), ekey); + } + else + { + guint8 *in_table = (guint8 *)g_hash_table_lookup(ccm_data->cipher_data_table, GUINT_TO_POINTER(lookup)); + if (memcmp(key_data->session_key, in_table, 32) != 0) + { + gcry_cipher_hd_t ekey; + if (gcry_cipher_open(&ekey, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, 0)) { + return 0; + } + switch (ccm_data->protocol_id) + { + case DOF_PROTOCOL_CCM: + if (gcry_cipher_setkey(ekey, key_data->session_key, 32)) { + gcry_cipher_close(ekey); + return 0; + } + break; + + default: + gcry_cipher_close(ekey); + return 0; + } + + ccm_data->period += 1; + ccm_data->periods[period] = ccm_data->period; + g_hash_table_insert(ccm_data->cipher_data_table, GUINT_TO_POINTER(ccm_data->period), ekey); + } + } + } + } + + return offset + length - 1; + } + + case HEADER: + { + ccm_session_data *session; + dof_transport_session *transport_session = (dof_transport_session *)secmode_api_data->dof_api->transport_session; + dof_secure_session_data *secure_session = secmode_api_data->secure_session; + dof_session_key_exchange_data *security_data = NULL; + dof_packet_data *dof_packet = secmode_api_data->dof_api->packet; + guint8 ccm_flags; + guint32 nid; + guint16 slot = 0; + guint32 pn = 0; + gboolean pn_present = FALSE; + guint32 tnid; + guint32 nnid; + proto_tree *ccm_flags_tree; + proto_tree *header_tree; + proto_item * item,*header; + ccm_packet_data *pdata; + gint offset = 0; + + if (!dof_packet->security_session) + { + if (transport_session->is_streaming) + { + /* Find the first security data that is applicable - they are in order of packet sequence. */ + security_data = secure_session->session_security_data; + while (security_data) + { + if (dof_packet->is_sent_by_initiator && (dof_packet->dof_frame > security_data->i_valid)) + break; + + if (!dof_packet->is_sent_by_initiator && (dof_packet->dof_frame > security_data->r_valid)) + break; + + security_data = security_data->next; + } + + if (security_data) + dof_packet->security_session = security_data; + else + { + dof_packet->security_session_error = "[Encrypted - No Session Available]"; + return offset; + } + } + else + { + dof_packet->security_session = secure_session->session_security_data; + security_data = dof_packet->security_session; + } + } + else + { + security_data = dof_packet->security_session; + } + + if (!security_data || !security_data->session_key || !security_data->security_mode_key_data) + { + dof_packet->security_session_error = "[Encrypted - No Session Available]"; + return offset; + } + + session = (ccm_session_data *)security_data->security_mode_key_data; + offset = secmode_api_data->security_mode_offset; + + /* Add a master header for this protocol. */ + header = proto_tree_add_protocol_format(tree, proto_ccm, tvb, offset, 0, + "CCM Security Mode, Version: 1"); + header_tree = proto_item_add_subtree(header, ett_header); + tree = header_tree; + + ccm_flags = tvb_get_guint8(tvb, offset); + item = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_flags, tvb, + offset, 1, ccm_flags, "Flags: 0x%02x", ccm_flags); + + ccm_flags_tree = proto_item_add_subtree(item, ett_epp_v1_ccm_flags); + proto_tree_add_item(ccm_flags_tree, hf_epp_v1_ccm_flags_manager, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_flags_tree, hf_epp_v1_ccm_flags_period, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_flags_tree, hf_epp_v1_ccm_flags_target, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_flags_tree, hf_epp_v1_ccm_flags_next_nid, tvb, offset, 1, ENC_NA); + proto_tree_add_item(ccm_flags_tree, hf_epp_v1_ccm_flags_packet, tvb, offset, 1, ENC_NA); + offset += 1; + + if (ccm_flags & 0x01) + pn_present = TRUE; + + pdata = (ccm_packet_data *)dof_packet->security_packet; + if (!pdata) + { + pdata = wmem_new0(wmem_file_scope(), ccm_packet_data); + if (pdata) + { + dof_packet->security_packet = pdata; + + if (transport_session->is_2_node) + { + if (dof_packet->is_sent_by_initiator) + { + pdata->nid = 0; + if (pn_present == FALSE) + pdata->dn = ++session->client_datagram_number; + else + pdata->dn = pn; + } + else + { + pdata->nid = 1; + if (pn_present == 0) + pdata->dn = ++session->server_datagram_number; + else + pdata->dn = pn; + } + } + else + { + guint8 packet_period = (ccm_flags & 0x70) >> 4; + pdata->period = session->periods[packet_period]; + } + } + } + + if (!pdata) + return offset - secmode_api_data->security_mode_offset; + + if (!secure_session->is_2_node) + { + gint nid_len; + proto_item *pi; + read_c4(tvb, offset, &nid, &nid_len); + /* TODO: Do this right, as offset from BNID. */ + nid /= 2; + pdata->nid = nid; + pi = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_nid, tvb, offset, nid_len, nid, "Node ID: %u", nid); + validate_c4(pinfo, pi, nid, nid_len); + offset += nid_len; + } + else + { + item = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_nid, tvb, 0, 0, pdata->nid, "Node ID: %u", pdata->nid); + proto_item_set_generated(item); + } + + if (!secure_session->is_2_node) + { + gint slot_len; + proto_item *pi; + read_c2(tvb, offset, &slot, &slot_len); + pi = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_slot, tvb, offset, slot_len, slot, "Slot: %hu", slot); + validate_c2(pinfo, pi, slot, slot_len); + offset += slot_len; + } + else + { + item = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_slot, tvb, 0, 0, 0, "Slot: %u", 0); + proto_item_set_generated(item); + } + + if (ccm_flags & 0x01) + { + gint pn_len; + proto_item *pi; + read_c4(tvb, offset, &pn, &pn_len); + pi = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_pn, tvb, offset, pn_len, pn, "Packet Number: %u", pn); + validate_c4(pinfo, pi, pn, pn_len); + pdata->dn = pn; + offset += pn_len; + } + else + { + item = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_pn, tvb, 0, 0, pdata->dn, "Packet Number: %u", pdata->dn); + proto_item_set_generated(item); + } + + if (ccm_flags & 0x08) + { + gint tnid_len; + proto_item *pi; + read_c4(tvb, offset, &tnid, &tnid_len); + pi = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_tnid, tvb, offset, tnid_len, tnid, "Target Node ID: %u", tnid); + validate_c4(pinfo, pi, tnid, tnid_len); + offset += tnid_len; + } + + if (ccm_flags & 0x02) + { + gint nnid_len; + proto_item *pi; + read_c4(tvb, offset, &nnid, &nnid_len); + pi = proto_tree_add_uint_format(tree, hf_epp_v1_ccm_nnid, tvb, offset, nnid_len, nnid, "Next Node ID: %u", nnid); + validate_c4(pinfo, pi, nnid, nnid_len); + offset += nnid_len; + } + + proto_item_set_len(header, offset - secmode_api_data->security_mode_offset); + + if (dof_packet->decrypted_buffer_error) + { + col_set_str(pinfo->cinfo, COL_INFO, dof_packet->decrypted_buffer_error); + expert_add_info(pinfo, tree, &ei_decode_failure); + return offset - secmode_api_data->security_mode_offset; + } + + /* We have reached the encryption boundary. At this point the rest of the packet + * is encrypted, and we may or may not be able to decrypt it. + * + * If we can decrypt it (which for now means that it uses a Session Key of [0] + * the we switch to decoding the decrypted PDU. Otherwise we create an entry + * for the encrypted bytes and move on... + */ + + { + gint e_len = tvb_captured_length(tvb) - offset; + const guint8 *epp_buf = tvb_get_ptr(tvb, 0, -1); + guint a_len = offset; + guint8 *buf = (guint8 *)tvb_memdup(pinfo->pool, tvb, offset, e_len); + tvbuff_t *app; + + /* The default nonce is a function of whether or not this is the server + * or the client and the packet count. The packet count either comes from + * the PDU or is a function of the previous value (of the sending node). + */ + guint8 nonce[11]; + + nonce[0] = (pdata->nid) >> 24; + nonce[1] = (pdata->nid) >> 16; + nonce[2] = (pdata->nid) >> 8; + nonce[3] = (guint8)(pdata->nid); + nonce[4] = slot >> 8; + nonce[5] = (guint8)slot; + nonce[7] = (pdata->dn) >> 24; + nonce[8] = (pdata->dn) >> 16; + nonce[9] = (pdata->dn) >> 8; + nonce[10] = (guint8)(pdata->dn); + + /* Now the hard part. We need to determine the current packet number. + * This is a function of the sending node, the previous state and the + * current PDU. + */ + + app = NULL; + + proto_item_set_end(tree, tvb, offset); + if (!session->encrypted) + { + /* There is still a MAC involved, and even though we don't need a new + * buffer we need to adjust the length of the existing buffer. + */ + app = tvb_new_subset_length(tvb, offset, e_len - session->mac_len); + dof_packet->decrypted_tvb = app; + dof_packet->decrypted_offset = 0; + } + else + { + if (dof_packet->decrypted_buffer) + { + /* No need to decrypt, but still need to create buffer. */ + app = tvb_new_real_data((const guint8 *)dof_packet->decrypted_buffer, e_len - session->mac_len, e_len - session->mac_len); + tvb_set_child_real_data_tvbuff(tvb, app); + add_new_data_source(pinfo, app, "Decrypted DOF"); + dof_packet->decrypted_tvb = app; + dof_packet->decrypted_offset = 0; + } + else + { + if (decrypt(session, pdata, nonce, epp_buf, a_len, buf, e_len)) + { + /* store decrypted buffer in file scope for reuse in next pass */ + guint8 *cache = (guint8 *)wmem_alloc0(wmem_file_scope(), e_len - session->mac_len); + memcpy(cache, buf, e_len - session->mac_len); + app = tvb_new_real_data(cache, e_len - session->mac_len, e_len - session->mac_len); + tvb_set_child_real_data_tvbuff(tvb, app); + add_new_data_source(pinfo, app, "Decrypted DOF"); + dof_packet->decrypted_buffer = cache; + dof_packet->decrypted_offset = 0; + dof_packet->decrypted_tvb = app; + } + else + { + /* Failure to decrypt or validate the MAC. + * The packet is secure, so there is nothing we can do! + */ + dof_packet->decrypted_buffer_error = "[Encrypted packet - decryption failure]"; + } + } + } + } + + return offset - secmode_api_data->security_mode_offset; + } + break; + + case TRAILER: + /* TODO check this case */ + break; + + } + + return 0; +} + +static int dissect_ccm_app(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) +{ + gint offset = 0; + guint8 opcode = 0; + guint16 app; + gint app_len; + + proto_item *ti; + proto_tree *ccm_tree; + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "CCM "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_ccm_app, tvb, offset, -1, ENC_NA); + ccm_tree = proto_item_add_subtree(ti, ett_ccm); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(ccm_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + + /* Retrieve the opcode. */ + opcode = tvb_get_guint8(tvb, offset); + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(opcode, ccm_opcode_strings, "Unknown Opcode (%d)")); + + if (tree) + { + /* Opcode */ + proto_tree_add_item(ccm_tree, hf_ccm_opcode, tvb, offset, 1, ENC_NA); +#if 0 /* this needs completion */ + offset += 1; + + switch (opcode) + { + case CCM_PDU_PROBE: + { + } + break; + + } +#endif + } + + return 1; +} + +#if 0 /* TODO not used yet */ +static int dissect_ccm_validate(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet; + ccm_session_data *session; + gint offset; + guint8 ccm_flags; + guint32 nid; + guint16 slot; + guint32 pn; + guint32 tnid; + + if (api_data == NULL) + { + fprintf(stderr, "api_data is NULL."); + return 0; + } + + packet = api_data->packet; + if (packet == NULL) + { + fprintf(stderr, "api_data->packet is NULL."); + return 0; + } + + if (!packet->security_session) + { + fprintf(stderr, "packet->security_session is NULL"); + return 0; + } + + if (packet->security_session->security_mode != DOF_PROTOCOL_CCM) + { + fprintf(stderr, "packet->security_session->security_mode != DOF_PROTOCOL_CCM"); + return 0; + } + + session = (ccm_session_data *)packet->security_session->security_mode_key_data; + + /* The buffer we have been passed includes the entire EPP frame. The packet + * structure gives us the offset to our header. + */ + offset = 0; + + ccm_flags = tvb_get_guint8(tvb, offset); + offset += 1; + + /* TODO validate the C2 and C4 fields below? */ + if (ccm_flags & 0x04) + offset = read_c4(tvb, offset, &nid, NULL); + + if (ccm_flags & 0x02) + offset = read_c2(tvb, offset, &slot, NULL); + + if (ccm_flags & 0x01) + offset = read_c4(tvb, offset, &pn, NULL); + + if (ccm_flags & 0x08) + offset = read_c4(tvb, offset, &tnid, NULL); + + + /* We have reached the encryption boundary. At this point the rest of the packet + * is encrypted, and we may or may not be able to decrypt it. + * + * If we can decrypt it (which for now means that it uses a Session Key of [0] + * the we switch to decoding the decrypted PDU. Otherwise we create an entry + * for the encrypted bytes and move on... + */ + + { + gint e_len = tvb_captured_length(tvb) - offset; + const guint8 *epp_buf = tvb_get_ptr(tvb, 0, -1); + guint a_len = offset - 0; + guint16 e_off; + guint8 *buf = (guint8 *)g_malloc(e_len); + + /* The default nonce is a function of whether or not this is the server + * or the client and the packet count. The packet count either comes from + * the PDU or is a function of the previous value (of the sending node). + */ + guint8 nonce[] = { 0x00, 0x00, 0x00, 0x01, + 0x00, 0x00, + 0x00, + 0x00, 0x00, 0x00, 0x00 }; + + nonce[0] = nid >> 24; + nonce[1] = nid >> 16; + nonce[2] = nid >> 8; + nonce[3] = (guint8)nid; + nonce[4] = slot >> 8; + nonce[5] = (guint8)slot; + nonce[7] = pn >> 24; + nonce[8] = pn >> 16; + nonce[9] = pn >> 8; + nonce[10] = (guint8)pn; + + /* Now the hard part. We need to determine the current packet number. + * This is a function of the sending node, the previous state and the + * current PDU. + */ + for (e_off = 0; e_off < e_len; e_off++) + buf[e_off] = tvb_get_guint8(tvb, offset + e_off); + + /* TODO: This is hardcoded for a 4-byte MAC */ + + proto_item_set_end(tree, tvb, offset); + if (decrypt(session, (ccm_packet_data *)packet->security_packet, nonce, epp_buf, a_len, buf, e_len)) + { + g_free(buf); + return 1; + } + else + { + /* Failure to decrypt or validate the MAC. + * The packet is secure, so there is nothing we can do! + */ + g_free(buf); + return 1; + } + } +} +#endif + +static int dissect_oap_dsp(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) +{ + /* We are handed a buffer that starts with our protocol id. Any options follow that. */ + gint offset = 0; + + /* We don't care except for the treeview. */ + if (!tree) + return 0; + + /* Compute the version and flags, masking off other bits. */ + offset += 4; /* Skip the type and protocol. */ + + proto_tree_add_item(tree, hf_oap_1_dsp_option, tvb, 0, -1, ENC_NA); + return offset; +} + +static int dissect_oap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + + gint offset = 0; + guint8 opcode = 0; + guint8 flags = 0; + guint16 item_id = 0; + guint16 app; + guint app_len; + + oap_1_packet_data *oap_packet = NULL; + + proto_item *ti; + proto_tree *oap_tree; + + if (api_data == NULL) + { + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + return 0; + } + + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "OAPv1 "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_oap_1, tvb, offset, -1, ENC_NA); + oap_tree = proto_item_add_subtree(ti, ett_oap_1); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(oap_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + + if (app_len == tvb_captured_length(tvb)) + { + col_append_str(pinfo->cinfo, COL_INFO, "OAP [nop]"); + expert_add_info(pinfo, oap_tree, &ei_implicit_no_op); + + return app_len; + } + + oap_packet = (oap_1_packet_data *)dof_packet_get_proto_data(packet_data, proto_oap_1); + if (!oap_packet) + { + oap_packet = wmem_new0(wmem_file_scope(), oap_1_packet_data); + dof_packet_add_proto_data(packet_data, proto_oap_1, oap_packet); + } + + /* Compute the version and flags, masking off other bits. */ + opcode = tvb_get_guint8(tvb, offset) & 0x1F; + if (!packet_data->is_command) + opcode |= OAP_1_RESPONSE; + + flags = tvb_get_guint8(tvb, offset) & 0xE0; + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(opcode, oap_opcode_strings, "Unknown Opcode (%d)")); + + + /* Opcode */ + { + guint8 mask = 0x10; + char str[20]; + guint8 no_of_bits = 5; + guint8 i; + guint8 bit = 3; + (void) g_strlcpy(str, "...", 20); + + /* read the bits for the int */ + for (i = 0; i < no_of_bits; i++) + { + if (bit && (!(bit % 4))) + (void) g_strlcat(str, " ", 20); + + bit++; + + if (opcode & mask) + (void) g_strlcat(str, "1", 20); + else + (void) g_strlcat(str, "0", 20); + + mask = mask >> 1; + } + + proto_tree_add_uint_format(oap_tree, hf_oap_1_opcode, tvb, offset, 1, opcode & 0x1F, "%s = Opcode: %s (%u)", str, val_to_str(opcode, oap_opcode_strings, "Unknown Opcode (%d)"), opcode & 0x1F); + } + + + /* Flags, based on opcode. + * Each opcode needs to define the flags, however, the fall into major categories... + */ + switch (opcode) + { + /* Both alias and a flag that equals command control. */ + case OAP_1_CMD_ACTIVATE: + case OAP_1_CMD_CONNECT: + case OAP_1_CMD_FULL_CONNECT: + case OAP_1_CMD_GET: + case OAP_1_CMD_INVOKE: + case OAP_1_CMD_REGISTER: + case OAP_1_CMD_SET: + case OAP_1_CMD_SUBSCRIBE: + case OAP_1_CMD_WATCH: + proto_tree_add_item(oap_tree, hf_oap_1_alias_size, tvb, offset, 1, ENC_NA); + proto_tree_add_item(oap_tree, hf_oap_1_flags, tvb, offset, 1, ENC_NA); + if (flags & 0x20) + { + offset += 1; + offset = oap_1_tree_add_cmdcontrol(pinfo, oap_tree, tvb, offset); + } + else + offset += 1; + + break; + + /* No alias, but flags for command control. */ + case OAP_1_CMD_ADVERTISE: + /* TODO: Expert info on top two bits.*/ + proto_tree_add_item(oap_tree, hf_oap_1_flags, tvb, offset, 1, ENC_NA); + if (flags & 0x20) + { + offset = oap_1_tree_add_cmdcontrol(pinfo, oap_tree, tvb, ENC_BIG_ENDIAN); + } + else + offset += 1; + + break; + + /* No alias, but flag for provider. */ + case OAP_1_RSP_GET: + case OAP_1_RSP_INVOKE: + case OAP_1_RSP_REGISTER: + case OAP_1_RSP_SET: + case OAP_1_RSP_SUBSCRIBE: + /* TODO: Expert info on top two bits.*/ + proto_tree_add_item(oap_tree, hf_oap_1_flags, tvb, offset, 1, ENC_NA); + if (flags & 0x20) + { + offset += 1; + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, oap_tree, + offset, hf_oap_1_providerid, ett_oap_1_1_providerid, NULL); + } + else + offset += 1; + if ((opcode == OAP_1_RSP_GET) || (opcode == OAP_1_RSP_INVOKE)) + { + proto_tree_add_item(oap_tree, hf_oap_1_value_list, tvb, offset, -1, ENC_NA); + offset += tvb_reported_length_remaining(tvb, offset); + } + + break; + + /* Alias, but no flags. */ + case OAP_1_CMD_CHANGE: + case OAP_1_CMD_OPEN: + case OAP_1_CMD_PROVIDE: + case OAP_1_CMD_SIGNAL: + proto_tree_add_item(oap_tree, hf_oap_1_alias_size, tvb, offset, 1, ENC_NA); + offset += 1; + break; + + /* Special flags. */ + case OAP_1_RSP_EXCEPTION: + proto_tree_add_item(oap_tree, hf_oap_1_exception_internal_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(oap_tree, hf_oap_1_exception_final_flag, tvb, offset, 1, ENC_NA); + proto_tree_add_item(oap_tree, hf_oap_1_exception_provider_flag, tvb, offset, 1, ENC_NA); + offset += 1; + break; + + /* No flags. */ + case OAP_1_CMD_DEFINE: + case OAP_1_RSP_DEFINE: + case OAP_1_RSP_OPEN: + /* TODO: Non-zero not allowed.*/ + offset += 1; + break; + + default: + /* TODO: Illegal opcode.*/ + return offset; + } + + /* Parse off arguments based on opcodes. */ + switch (opcode) + { + case OAP_1_CMD_SUBSCRIBE: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + /* The item identifier comes first, but it is compressed. */ + { + gint item_id_len; + proto_item *pi; + + read_c2(tvb, offset, &item_id, &item_id_len); + pi = proto_tree_add_uint_format(oap_tree, hf_oap_1_itemid, tvb, offset, item_id_len, item_id, "Item ID: %u", item_id); + validate_c2(pinfo, pi, item_id, item_id_len); + offset += item_id_len; + } + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + + /* Read the miniumum delta. */ + { + gint delta_len; + guint16 delta; + proto_item *pi; + + read_c2(tvb, offset, &delta, &delta_len); + pi = proto_tree_add_uint_format(oap_tree, hf_oap_1_subscription_delta, tvb, offset, delta_len, delta, "Minimum Delta: %u", delta); + validate_c2(pinfo, pi, delta, delta_len); + offset += delta_len; + } + } + break; + + case OAP_1_CMD_REGISTER: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + /* The item identifier comes first, but it is compressed. */ + { + gint item_id_len; + proto_item *pi; + + read_c2(tvb, offset, &item_id, &item_id_len); + pi = proto_tree_add_uint_format(oap_tree, hf_oap_1_itemid, tvb, offset, item_id_len, item_id, "Item ID: %u", item_id); + validate_c2(pinfo, pi, item_id, item_id_len); + offset += item_id_len; + } + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + } + break; + + case OAP_1_RSP_REGISTER: + { + if (flags & 0x20) + { + /* offset = add_oid( tvb, offset, NULL, oap_tree ); */ + } + + /* Sequence is next. */ + proto_tree_add_item(oap_tree, hf_oap_1_update_sequence, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + break; + + case OAP_1_CMD_WATCH: + case OAP_1_CMD_ACTIVATE: + case OAP_1_CMD_CONNECT: + case OAP_1_CMD_FULL_CONNECT: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + } + break; + + case OAP_1_CMD_ADVERTISE: + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + break; + + case OAP_1_CMD_GET: + case OAP_1_CMD_INVOKE: + case OAP_1_CMD_SET: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + /* The item identifier comes first, but it is compressed. */ + { + gint item_id_len; + proto_item *pi; + + read_c2(tvb, offset, &item_id, &item_id_len); + pi = proto_tree_add_uint_format(oap_tree, hf_oap_1_itemid, tvb, offset, item_id_len, item_id, "Item ID: %u", item_id); + validate_c2(pinfo, pi, item_id, item_id_len); + offset += item_id_len; + } + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + + if ((opcode == OAP_1_CMD_SET) || (opcode == OAP_1_CMD_INVOKE)) + { + proto_tree_add_item(oap_tree, hf_oap_1_value_list, tvb, offset, -1, ENC_NA); + offset += tvb_reported_length_remaining(tvb, offset); + } + } + break; + + case OAP_1_CMD_OPEN: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + + offset = oap_1_tree_add_interface(oap_tree, tvb, offset); + + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, oap_tree, + offset, hf_oap_1_objectid, ett_oap_1_objectid, NULL); + } + break; + + case OAP_1_CMD_PROVIDE: + { + guint8 alias_length = flags >> 6; + gint alias_offset; + gint iid_offset; + gint oid_offset; + + if (alias_length == 3) + alias_length = 4; + + alias_offset = offset; + if (alias_length == 0) + { + expert_add_info_format(pinfo, ti, &ei_malformed, "alias_length == 0"); + return offset; + } + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_length, FALSE); + + iid_offset = offset; + offset = oap_1_tree_add_interface(oap_tree, tvb, offset); + + oid_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, oap_tree, + offset, hf_oap_1_objectid, ett_oap_1_objectid, NULL); + + if (alias_length && !packet_data->processed) + { + guint32 alias; + oap_1_binding *binding = wmem_new0(wmem_file_scope(), oap_1_binding); + int i; + + alias = 0; + for (i = 0; i < alias_length; i++) + alias = (alias << 8) | tvb_get_guint8(tvb, alias_offset + i); + + binding->iid_length = oid_offset - iid_offset; + binding->iid = (guint8 *)wmem_alloc0(wmem_file_scope(), binding->iid_length); + tvb_memcpy(tvb, binding->iid, iid_offset, binding->iid_length); + + binding->oid_length = offset - oid_offset; + binding->oid = (guint8 *)wmem_alloc0(wmem_file_scope(), binding->oid_length); + tvb_memcpy(tvb, binding->oid, oid_offset, binding->oid_length); + + binding->frame = pinfo->fd->num; + oap_1_define_alias(api_data, alias, binding); + } + } + break; + + case OAP_1_CMD_CHANGE: + case OAP_1_CMD_SIGNAL: + { + guint8 alias_len = (flags & 0xC0) >> 6; + if (alias_len == 3) + alias_len = 4; + + /* The item identifier comes first, but it is compressed. */ + { + gint item_id_len; + proto_item *pi; + + read_c2(tvb, offset, &item_id, &item_id_len); + pi = proto_tree_add_uint_format(oap_tree, hf_oap_1_itemid, tvb, offset, item_id_len, item_id, "Item ID: %u", item_id); + validate_c2(pinfo, pi, item_id, item_id_len); + offset += item_id_len; + } + + if (alias_len > 0) + { + if (api_data->session == NULL) + { + expert_add_info(pinfo, ti, &ei_oap_no_session); + return offset; + } + offset = oap_1_tree_add_alias(api_data, oap_packet, packet_data, oap_tree, tvb, offset, alias_len, TRUE); + } + else + offset = oap_1_tree_add_binding(oap_tree, pinfo, tvb, offset); + + /* Sequence is next. */ + proto_tree_add_item(oap_tree, hf_oap_1_update_sequence, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + + proto_tree_add_item(oap_tree, hf_oap_1_value_list, tvb, offset, -1, ENC_NA); + offset += tvb_reported_length_remaining(tvb, offset); + } + break; + + case OAP_1_RSP_EXCEPTION: + { + if (flags & 0x20) + { + /* offset = add_oid( tvb, offset, NULL, oap_tree );*/ + } + + /* The response code, compressed. */ + { + gint rsp_len; + guint16 rsp; + + /* TODO: Validate*/ + read_c2(tvb, offset, &rsp, &rsp_len); + /* TODO: Add to tree with error codes. */ + offset += rsp_len; + } + proto_tree_add_item(oap_tree, hf_oap_1_value_list, tvb, offset, -1, ENC_NA); + offset += tvb_reported_length_remaining(tvb, offset); + } + break; + + default: + /* TODO: Bad opcode!*/ + break; + } + + return offset; +} + +static int dissect_sgmp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + guint offset = 0; + guint8 opcode; + guint16 app; + gint app_len; + proto_item *ti; + proto_tree *sgmp_tree; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "SGMPv1 "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_sgmp, tvb, offset, -1, ENC_NA); + sgmp_tree = proto_item_add_subtree(ti, ett_sgmp); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(sgmp_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + + if (offset == tvb_captured_length(tvb)) + { + col_append_str(pinfo->cinfo, COL_INFO, "SGMP [nop]"); + expert_add_info(pinfo, sgmp_tree, &ei_implicit_no_op); + + return offset; + } + + + /* Retrieve the opcode. */ + opcode = tvb_get_guint8(tvb, offset); + if (!packet_data->is_command) + opcode |= SGMP_RESPONSE; + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(opcode, sgmp_opcode_strings, "Unknown Opcode (%d)")); + + /* Opcode */ + proto_tree_add_item(sgmp_tree, hf_opcode, tvb, offset, 1, ENC_NA); + offset += 1; + + switch (opcode) + { + case SGMP_CMD_EPOCH_CHANGED: + { + /* TMIN - 2 bytes */ + { + proto_tree_add_item(sgmp_tree, hf_sgmp_tmin, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + + /* EPOCH - 2 bytes */ + { + proto_tree_add_item(sgmp_tree, hf_sgmp_epoch, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + } + break; + + case SGMP_CMD_HEARTBEAT: + { + gint start_offset; + + /* Latest SGMP Version - Type.1 */ + { + guint16 version; + gint length; + proto_item *pi; + + start_offset = offset; + offset = read_c2(tvb, offset, &version, &length); + pi = proto_tree_add_uint(sgmp_tree, hf_latest_version, tvb, start_offset, offset - start_offset, version); + validate_c2(pinfo, pi, version, length); + } + + /* Desire - 1 byte */ + { + proto_tree_add_item(sgmp_tree, hf_desire, tvb, offset, 1, ENC_NA); + offset += 1; + } + + /* Tie Breaker - 4 bytes */ + { + proto_tree_add_item(sgmp_tree, hf_tie_breaker, tvb, offset, 4, ENC_BIG_ENDIAN); + offset += 4; + } + } + break; + + case SGMP_CMD_REKEY: + case SGMP_CMD_REKEY_EPOCH: + case SGMP_CMD_REKEY_MERGE: + { +#if 0 /*TODO check this */ + gint start_offset; + tvbuff_t *initial_state; +#endif + guint8 key[32]; + + /* Delay - one byte */ + if (opcode != SGMP_CMD_REKEY_MERGE) + { + proto_tree_add_item(sgmp_tree, hf_delay, tvb, offset, 1, ENC_NA); + offset += 1; + } + + /* Initial State - Security.9 (not REKEY_MERGE) */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_9, tvb, pinfo, sgmp_tree, + offset, hf_initial_state, ett_initial_state, NULL); +#if 0 /*TODO check this */ + initial_state = tvb_new_subset_length(tvb, start_offset, offset - start_offset); +#endif + } + + /* Epoch - 2 bytes (only REKEY_EPOCH) */ + if (opcode == SGMP_CMD_REKEY_EPOCH) + { + proto_tree_add_item(sgmp_tree, hf_sgmp_epoch, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + + /* Kgm - 32 bytes */ + { + proto_tree_add_item(sgmp_tree, hf_key, tvb, offset, 32, ENC_NA); + tvb_memcpy(tvb, key, offset, 32); + offset += 32; + } + + /* Handle the initialization block. */ + if (!packet_data->processed && api_data->session) + { + /*dof_session_data* session = (dof_session_data*)api_data->session;*/ + + /* Look up the field-dissector table, and determine if it is registered. */ + dissector_table_t field_dissector = find_dissector_table("dof.secmode"); + if (field_dissector != NULL) + { +#if 0 + dissector_handle_t field_handle = dissector_get_port_handle(field_dissector, packet_data->security_mode); + if (field_handle != NULL) + { + void *saved_private = pinfo->private_data; + dof_secmode_api_data setup_data; + gint block_length; + + setup_data.version = DOF_API_VERSION; + setup_data.context = INITIALIZE; + setup_data.dof_api = api_data; + setup_data.secure_session = rekey_data->security_session; + /* TODO FIX THIS setup_data.session_key = session_key; */ + pinfo->private_data = &setup_data; + block_length = call_dissector_only(field_handle, NULL, pinfo, NULL); + pinfo->private_data = saved_private; + } +#endif + } + } + } + break; + + case SGMP_CMD_REQUEST_GROUP: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + guint I_offset = offset; + sgmp_packet_data *sgmp_data = NULL; + guint16 epoch; + + /* START OF I BLOCK */ + /* Domain - Security.7 */ + { + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, sgmp_tree, + offset, hf_sgmp_domain, ett_sgmp_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + } + + /* Epoch - 2 bytes */ + { + epoch = tvb_get_ntohs(tvb, offset); + proto_tree_add_item(sgmp_tree, hf_sgmp_epoch, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + + /* Initiator Block - SGMP.6.3 */ + { + /* SGMP Key Request - Security.4 */ + { + dof_2008_16_security_4 response; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_4, tvb, pinfo, sgmp_tree, + offset, hf_initiator_block, ett_initiator_block, &response); + if (!packet_data->processed) + { + tvbuff_t *identity = response.identity; + guint8 identity_length = tvb_reported_length(identity); + guint8 *identity_buf = (guint8 *)wmem_alloc0(wmem_file_scope(), identity_length); + + /* Get the buffer. */ + tvb_memcpy(identity, identity_buf, 0, identity_length); + + { + sgmp_data = wmem_new0(wmem_file_scope(), sgmp_packet_data); + dof_packet_add_proto_data(packet_data, proto_sgmp, sgmp_data); + + sgmp_data->domain_length = domain_length; + sgmp_data->domain = (guint8 *)wmem_alloc0(wmem_file_scope(), domain_length); + memcpy(sgmp_data->domain, domain_buf, domain_length); + + sgmp_data->group_length = identity_length; + sgmp_data->group = (guint8 *)wmem_alloc0(wmem_file_scope(), identity_length); + memcpy(sgmp_data->group, identity_buf, identity_length); + + sgmp_data->epoch = epoch; + sgmp_data->request_session = api_data->session; + } + } + } + } + + /* Security Scope - Security.10 */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_10, tvb, pinfo, sgmp_tree, + offset, hf_sgmp_security_scope, ett_sgmp_security_scope, NULL); + } + + /* END OF I BLOCK */ + if (sgmp_data && !sgmp_data->I) + { + sgmp_data->I_length = offset - I_offset; + sgmp_data->I = (guint8 *)wmem_alloc0(wmem_file_scope(), sgmp_data->I_length); + tvb_memcpy(tvb, sgmp_data->I, I_offset, sgmp_data->I_length); + } + } + break; + + case SGMP_RSP_REQUEST_GROUP: + { + gint start_offset; +#if 0 /*TODO check this */ + guint A_offset; + tvbuff_t *initial_state; + guint A_end; +#endif + + /* START OF A BLOCK */ + /* Initial State - SGMP.6.2.1 */ + { + /* A_offset = offset;*/ + + /* Initial State - Security.9 */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_9, tvb, pinfo, sgmp_tree, + offset, hf_initial_state, ett_initial_state, NULL); +#if 0 /*TODO check this */ + initial_state = tvb_new_subset_length(tvb, start_offset, offset - start_offset); +#endif + } + + /* Latest SGMP Version - Type.1 */ + { + guint16 version; + gint length; + proto_item *pi; + + start_offset = offset; + offset = read_c2(tvb, offset, &version, &length); + pi = proto_tree_add_uint(sgmp_tree, hf_latest_version, tvb, start_offset, offset - start_offset, version); + validate_c2(pinfo, pi, version, length); + } + + /* Desire - 1 byte */ + { + proto_tree_add_item(sgmp_tree, hf_desire, tvb, offset, 1, ENC_NA); + offset += 1; + } + } + + /* END OF A BLOCK */ + /* A block data handled in first part of the next block. */ +#if 0 /*TODO check this */ + A_end = offset; +#endif + + /* Ticket - Security.5 */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, sgmp_tree, + offset, hf_ticket, ett_ticket, NULL); + } + + /* Try to match up the information learned here with any groups that exist. + * Note that we do not know the SSID, and so we can only match based on the + * domain and group identifier. We will learn the SSID based on a successful + * match to a secure session. + */ + if (packet_data->opid_first && !api_data->secure_session) + { +#if 0 + sgmp_packet_data* cmd_data = (sgmp_packet_data*)dof_packet_get_proto_data(packet_data->opid_first, proto_sgmp); + extern struct BlockCipher BlockCipher_AES_256; + struct BlockCipher* cipher = &BlockCipher_AES_256; + guint8* ekey = (guint8*)ep_alloc(cipher->keyStateSize); + + if (cmd_data && !cmd_data->A) + { + cmd_data->A_length = A_end - A_offset; + cmd_data->A = (guint8*)wmem_alloc0(wmem_file_scope(), cmd_data->A_length); + tvb_memcpy(tvb, cmd_data->A, A_offset, cmd_data->A_length); + } + + /* Search through the appropriate keks to find a match. */ + { + dof_learned_group_data* group = globals.learned_group_data; + struct list; + struct list + { dof_learned_group_data *group; + struct list *next; }; + struct list *to_try = NULL; + guint8 confirmation[32]; + guint8* discovered_kek = NULL; + dof_learned_group_auth_data *auth = NULL; + + tvb_memcpy(tvb, confirmation, start_offset, 32); + + while (group) + { + if ((cmd_data->domain_length == group->domain_length) && + (memcmp(cmd_data->domain, group->domain, group->domain_length) == 0) && + (cmd_data->group_length == group->group_length) && + (memcmp(cmd_data->group, group->group, group->group_length) == 0)) + { + struct list *n = (struct list *) ep_alloc0(sizeof(struct list)); + n->group = group; + n->next = to_try; + to_try = n; + } + + group = group->next; + } + + /* At this point we may be able to learn the session key. */ + while (to_try && !discovered_kek) + { + group = to_try->group; + + auth = group->keys; + + while (auth && !discovered_kek) + { + guint8 mac[32]; + guint8 key[32]; + int j; + + /* It only makes sense to check matching epochs. */ + if (auth->epoch == cmd_data->epoch) + { + tvb_memcpy(tvb, mac, start_offset, 32); + tvb_memcpy(tvb, key, start_offset + 32, 32); + + if (cipher != NULL) + { + cipher->GenerateKeyState(ekey, auth->kek); + cipher->Encrypt(ekey, mac); + cipher->Encrypt(ekey, mac + 16); + } + + for (j = 0; j < 32; j++) + key[j] ^= mac[j]; + + if (sgmp_validate_session_key(cmd_data, confirmation, auth->kek, key)) + { + discovered_kek = (guint8*)se_alloc0(32); + memcpy(discovered_kek, key, 32); + break; + } + } + + auth = auth->next; + } + + to_try = to_try->next; + } + + /* Determine if there is already a secure session for this information. If there is, then + * EPP will find it to decode any packets. If there is not, then we must create a secure + * session and initialize it so that future packets can be decoded. + * NOTE: None of the actual decoding is done here, because this packet is not encrypted + * in the session that it defines. + * NOTE: SGMP secure sessions are always attached to the DPS session, which is always + * associated with the transport session (server address). + */ + if (discovered_kek) + { + dissector_table_t field_dissector; + dissector_handle_t field_handle; + dof_session_key_exchange_data *key_exchange = NULL; + + dof_secure_session_data *dof_secure_session = cmd_data->request_session->secure_sessions; + while (dof_secure_session) + { + if ((dof_secure_session->ssid == group->ssid) && + (dof_secure_session->domain_length == group->domain_length) && + (memcmp(dof_secure_session->domain, group->domain, group->domain_length) == 0)) + break; + + dof_secure_session = dof_secure_session->next; + } + + if (!dof_secure_session) + { + dof_session_data *dof_session = wmem_alloc0(wmem_file_scope(), sizeof(dof_session_data)); + dof_session->session_id = globals.next_session++; + dof_session->dof_id = api_data->session->dof_id; + + dof_secure_session = wmem_alloc0(wmem_file_scope(), sizeof(dof_secure_session_data)); + dof_secure_session->ssid = group->ssid; + dof_secure_session->domain_length = group->domain_length; + dof_secure_session->domain = group->domain; + dof_secure_session->original_session_id = cmd_data->request_session->session_id; + dof_secure_session->parent = dof_session; + dof_secure_session->is_2_node = FALSE; + dof_secure_session->next = cmd_data->request_session->secure_sessions; + cmd_data->request_session->secure_sessions = dof_secure_session; + } + + /* This packet represents a new key exchange, and so a new key exchange data + * structure needs to be created. + */ + { + key_exchange = wmem_alloc0(wmem_file_scope(), sizeof(dof_session_key_exchange_data)); + if (!key_exchange) + return offset; + + key_exchange->i_valid = packet_data->opid_first->dof_frame; + key_exchange->r_valid = packet_data->dof_frame; + key_exchange->security_mode = auth->security_mode; + key_exchange->security_mode_data = auth->mode; + key_exchange->security_mode_data_length = auth->mode_length; + key_exchange->session_key = discovered_kek; + + /* Insert the new key information at the front of the list. */ + if (!dof_secure_session->session_security_data_last) + dof_secure_session->session_security_data = key_exchange; + else + dof_secure_session->session_security_data_last->next = key_exchange; + + dof_secure_session->session_security_data_last = key_exchange; + } + + /* Look up the field-dissector table, and determine if it is registered. */ + field_dissector = find_dissector_table("dps.secmode"); + if (field_dissector != NULL) + { + field_handle = dissector_get_uint_handle(field_dissector, auth->security_mode); + if (field_handle != NULL) + { + dof_secmode_api_data setup_data; + gint block_length; + tvbuff_t *ntvb = tvb_new_subset_remaining(tvb, A_offset); + + setup_data.context = INITIALIZE; + setup_data.security_mode_offset = 0; + setup_data.dof_api = api_data; + setup_data.secure_session = dof_secure_session; + setup_data.session_key_data = key_exchange; + block_length = call_dissector_only(field_handle, ntvb, pinfo, tree, &setup_data); + } + } + } + } +#endif + } + } + break; + + default: + break; + } + + return offset; +} + +static gboolean validate_session_key(tep_rekey_data *rekey, guint S_length, guint8 *S, guint8 *confirmation, guint8 *key) +{ + guint8 pad[16]; + gcry_mac_hd_t hmac; + gcry_error_t result; + + memset(pad, 0, sizeof(pad)); + result = gcry_mac_open(&hmac, GCRY_MAC_HMAC_SHA256, 0, NULL); + if (result != 0) + return FALSE; + + gcry_mac_setkey(hmac, key, 32); + gcry_mac_write(hmac, pad, 16 - rekey->i_nonce_length); + gcry_mac_write(hmac, rekey->i_nonce, rekey->i_nonce_length); + gcry_mac_write(hmac, pad, 16 - rekey->r_nonce_length); + gcry_mac_write(hmac, rekey->r_nonce, rekey->r_nonce_length); + gcry_mac_write(hmac, S, S_length); + gcry_mac_write(hmac, rekey->r_identity, rekey->r_identity_length); + result = gcry_mac_verify(hmac, confirmation, 32); + return result == 0; +} + +static int dissect_tep_dsp(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) +{ + /* We are handed a buffer that starts with our protocol id. Any options follow that. */ + gint offset = 0; + + /* We don't care except for the treeview. */ + if (!tree) + return 0; + + /* Compute the version and flags, masking off other bits. */ + offset += 4; /* Skip the type and protocol. */ + + proto_tree_add_item(tree, hf_dsp_option, tvb, 0, -1, ENC_NA); + return offset; +} + +static int dissect_2008_4_tep_2_2_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint32 *ssid, void *data) +{ + gint offset = 0; + proto_item *ti; + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* State Identifier - Only if Unsecured */ + if (packet_data->decrypted_buffer == NULL) + { + proto_item *pi; + gint ssid_len; + gint start = offset; + offset = read_c4(tvb, offset, ssid, &ssid_len); + pi = proto_tree_add_uint(tree, hf_tep_2_2_1_state_identifier, tvb, start, offset - start, *ssid); + validate_c4(pinfo, pi, *ssid, ssid_len); + } + + /* Initial State */ + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + ti = proto_tree_add_item(tree, hf_tep_2_2_1_initial_state, tvb, offset, 0, ENC_NA); + ti = proto_item_add_subtree(ti, ett_tep_2_2_1_initial_state); + block_length = dof_dissect_pdu(dissect_2008_16_security_9, start, pinfo, ti, NULL); + proto_item_set_len(ti, block_length); + offset += block_length; + } + + return offset; +} + +/** + * This is the main entry point for the CCM dissector. + * TEP operations create security periods. + * They can also create sessions when used with "None" sessions. + * In any case, these PDUs need to pass information between + * them. + * They also must maintain state for each rekey request, some of + * which modify the session key, some of which create new + * sessions, and others that determine new session information + * like permission sets. + * + * In order to store information appropriately, the following structures are + * used: + * 1. api_data (dof_api_data*) source for all other state. + * 2. packet (dof_packet_data*) dps packet information. + * 3. rekey_data (tep_rekey_data*) tep information for rekey/accept/confirm. + */ +static int dissect_tep(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet; + tep_rekey_data *rekey_data; + + guint offset = 0; + guint8 operation; + guint16 app; + gint app_len; + proto_item *ti; + proto_tree *tep_tree, *operation_tree; + + if (api_data == NULL) + { + /* TODO: Output error. */ + return 0; + } + + packet = api_data->packet; + if (packet == NULL) + { + /* TODO: Output error. */ + return 0; + } + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "TEPv1 "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_tep, tvb, offset, -1, ENC_NA); + tep_tree = proto_item_add_subtree(ti, ett_tep); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(tep_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo,ti, app, app_len); + + /* Check for empty packet. */ + if (offset == tvb_captured_length(tvb)) + { + col_append_str(pinfo->cinfo, COL_INFO, "TEP [nop]"); + expert_add_info(pinfo, tep_tree, &ei_implicit_no_op); + + return offset; + } + + /* Retrieve the opcode. */ + operation = tvb_get_guint8(tvb, offset); + if (!packet->is_command) + operation |= TEP_OPCODE_RSP; + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(operation, tep_opcode_strings, "Unknown Opcode (%d)")); + + ti = proto_tree_add_uint_format(tep_tree, hf_tep_operation, tvb, offset, 1, operation, "Operation: %s (%u)", val_to_str(operation, tep_opcode_strings, "Unknown Opcode (%d)"), operation); + + operation_tree = proto_item_add_subtree(ti, ett_tep_operation); + ti = proto_tree_add_boolean(operation_tree, hf_tep_operation_type, tvb, offset, 0, operation); + proto_item_set_generated(ti); + + /* The flags are reserved except for OPCODE=1 & COMMAND */ + if ((operation & 0x8F) == 0x01) + { + proto_tree_add_item(operation_tree, hf_tep_c, tvb, offset, 1, ENC_NA); + proto_tree_add_item(operation_tree, hf_tep_k, tvb, offset, 1, ENC_NA); + } + + proto_tree_add_item(operation_tree, hf_tep_opcode, tvb, offset, 1, ENC_NA); + offset += 1; + + switch (operation) + { + case TEP_PDU_REQUEST_KEY: + /* The K bit must be set, so there is a domain ONLY IF NOT SECURED. */ + + /* Remember the current request. */ + rekey_data = (tep_rekey_data *)packet->opid_data; + if (!rekey_data) + { + packet->opid_data = rekey_data = wmem_new0(wmem_file_scope(), tep_rekey_data); + } + + rekey_data->key_data = wmem_new0(wmem_file_scope(), dof_session_key_exchange_data); + rekey_data->is_rekey = TRUE; + + /* The K bit must be set, so there is a domain ONLY IF NOT SECURED. */ + if (packet->decrypted_buffer == NULL) + { + gint start_offset = offset; + + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, tep_tree, + offset, hf_tep_2_1_domain, ett_tep_2_1_domain, NULL); + + if (!rekey_data->domain) + { + rekey_data->domain_length = offset - start_offset; + rekey_data->domain = (guint8 *)wmem_alloc0(wmem_file_scope(), rekey_data->domain_length); + + /* Get the buffer. */ + tvb_memcpy(tvb, rekey_data->domain, start_offset, rekey_data->domain_length); + } + } + else + { + /* The domain is not present, but this is a secure packet and so the domain can be obtained + * through the session. + */ + if (!rekey_data->domain) + { + rekey_data->domain_length = api_data->secure_session->domain_length; + rekey_data->domain = api_data->secure_session->domain; + } + } + + /* FALL THROUGH */ + + case TEP_PDU_REQUEST: + + /* Remember the current request. */ + rekey_data = (tep_rekey_data *)packet->opid_data; + if (!rekey_data) + { + if (api_data->secure_session == NULL) + { + /* TODO: Output error. */ + return 0; + } + packet->opid_data = rekey_data = wmem_new0(wmem_file_scope(), tep_rekey_data); + rekey_data->domain_length = api_data->secure_session->domain_length; + rekey_data->domain = api_data->secure_session->domain; + } + + /* The C bit must be clear, so there is an Initiator Block. */ + { + dof_2008_16_security_6_1 response; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_1, tvb, pinfo, tep_tree, + offset, hf_tep_2_1_initiator_block, ett_tep_2_1_initiator_block, &response); + if (!packet->processed) + { + tvbuff_t *inonce = response.i_nonce; + tvbuff_t *iidentity = response.i_identity; + + rekey_data->i_nonce_length = tvb_reported_length(inonce); + rekey_data->i_nonce = (guint8 *)wmem_alloc0(wmem_file_scope(), rekey_data->i_nonce_length); + tvb_memcpy(inonce, rekey_data->i_nonce, 0, rekey_data->i_nonce_length); + + rekey_data->i_identity_length = tvb_reported_length(iidentity); + rekey_data->i_identity = (guint8 *)wmem_alloc0(wmem_file_scope(), rekey_data->i_identity_length); + tvb_memcpy(iidentity, rekey_data->i_identity, 0, rekey_data->i_identity_length); + + rekey_data->security_mode = response.security_mode; + rekey_data->security_mode_data_length = response.security_mode_data_length; + rekey_data->security_mode_data = response.security_mode_data; + } + } + break; + + case TEP_PDU_ACCEPT: + { + guint32 ssid = 0; + guint8 *S = NULL; + guint8 S_length = 0; + guint8 confirmation[32]; + typedef struct identity_key + { + guint8 *session_key; + struct identity_key *next; + } identity_key; + identity_key *identity_key_list = NULL; + dof_secure_session_data *dof_secure_session = NULL; + + if (!packet->opid_first) + { + /* TODO: Print error */ + return 0; + } + + rekey_data = (tep_rekey_data *)packet->opid_first->opid_data; + if (!rekey_data) + return tvb_captured_length(tvb); + + /* Initiator Ticket */ + { + gint start_offset; + guint8 ticket[64]; + + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, tep_tree, + offset, hf_tep_2_2_initiator_ticket, ett_tep_2_2_initiator_ticket, NULL); + + if (!packet->processed && rekey_data) + { + int i; + + /* Produce a (possibly empty) list of potential keys based on our + * initiator secrets based on identity. These will be validated + * later on. + */ + for (i = 0; i < globals.global_security->identity_data_count; i++) + { + dof_identity_data *identity = globals.global_security->identity_data + i; + gcry_cipher_hd_t rijndael_handle; + int j; + + if (identity->domain_length != rekey_data->domain_length) + continue; + if (memcmp(identity->domain, rekey_data->domain, identity->domain_length) != 0) + continue; + if (identity->identity_length != rekey_data->i_identity_length) + continue; + if (memcmp(identity->identity, rekey_data->i_identity, identity->identity_length) != 0) + continue; + + tvb_memcpy(tvb, ticket, start_offset, 64); + + if (!gcry_cipher_open(&rijndael_handle, GCRY_CIPHER_AES, GCRY_CIPHER_MODE_ECB, 0)) { + if (!gcry_cipher_setkey(rijndael_handle, identity->secret, 32)) { + gcry_cipher_encrypt(rijndael_handle, ticket, 16, NULL, 0); + gcry_cipher_encrypt(rijndael_handle, ticket + 16, 16, NULL, 0); + } + gcry_cipher_close(rijndael_handle); + } + + for (j = 0; j < 32; j++) + ticket[j + 32] = ticket[j + 32] ^ ticket[j]; + + /* Add the key to the list - ep memory. */ + { + identity_key *key = (identity_key *)wmem_alloc0(wmem_file_scope(), sizeof(*key)); + key->session_key = (guint8 *)wmem_alloc0(wmem_file_scope(), 32); + memcpy(key->session_key, ticket + 32, 32); + key->next = identity_key_list; + identity_key_list = key; + } + } + } + } + + /* Ticket Confirmation */ + { + if (!packet->processed) + tvb_memcpy(tvb, confirmation, offset, sizeof(confirmation)); + proto_tree_add_item(tep_tree, hf_tep_2_2_ticket_confirmation, tvb, offset, 32, ENC_NA); + offset += 32; + } + + /* Add a field to show the session key that has been learned. */ + if (rekey_data->key_data && rekey_data->key_data->session_key && tep_tree) + { + ti = proto_tree_add_bytes_with_length(tree, hf_tep_session_key, tvb, 0, 0, rekey_data->key_data->session_key, 32); + proto_item_set_generated(ti); + } + + /* Responder Initialization - present based on whether the command was a rekey */ + { + + if (rekey_data && rekey_data->is_rekey) + { + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + ti = proto_tree_add_item(tep_tree, hf_tep_2_2_responder_initialization, tvb, offset, 0, ENC_NA); + ti = proto_item_add_subtree(ti, ett_tep_2_2_responder_initialization); + block_length = dissect_2008_4_tep_2_2_1(start, pinfo, ti, &ssid, data); + proto_item_set_len(ti, block_length); + offset += block_length; + + if (!packet->processed) + { + S_length = block_length; + S = (guint8 *)wmem_alloc0(wmem_file_scope(), S_length); + tvb_memcpy(start, S, 0, S_length); + } + + /* TEP can create new sessions when not used inside an existing secure + * session. Each session can use an SSID, present in TEP.2.2.1. + * Note that in this case there may be no existing session, and so + * we need to "backpedal" and create one. + */ + if (packet->decrypted_buffer == NULL && !packet->processed) + { +#if 0 + if (api_data->session) + tep_session = (tep_session_data*)dof_session_get_proto_data((dof_session_data*)api_data->session, proto_tep); + if (!tep_session && api_data->session) + { + tep_session = (tep_session_data*)se_alloc0(sizeof(*tep_session)); + dof_session_add_proto_data((dof_session_data*)api_data->session, proto_tep, tep_session); + } + + tep_session->pending_rekey = cmd; + tep_session->pending_confirm = packet; +#endif + } + } + } + + /* Responder Block */ + { + dof_2008_16_security_6_2 response; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_2, tvb, pinfo, tep_tree, + offset, hf_tep_2_2_responder_block, ett_tep_2_2_responder_block, &response); + if (!packet->processed) + { + tvbuff_t *rnonce = response.r_nonce; + tvbuff_t *ridentity = response.r_identity; + + rekey_data->r_nonce_length = tvb_reported_length(rnonce); + rekey_data->r_nonce = (guint8 *)wmem_alloc0(wmem_file_scope(), rekey_data->r_nonce_length); + tvb_memcpy(rnonce, rekey_data->r_nonce, 0, rekey_data->r_nonce_length); + + rekey_data->r_identity_length = tvb_reported_length(ridentity); + rekey_data->r_identity = (guint8 *)wmem_alloc0(wmem_file_scope(), rekey_data->r_identity_length); + tvb_memcpy(ridentity, rekey_data->r_identity, 0, rekey_data->r_identity_length); + } + } + + /* Authentication Initialization */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_3, tvb, pinfo, tep_tree, + offset, hf_tep_2_2_authenticator_initialization, ett_tep_2_2_authenticator_initialization, NULL); + } + + + /* The request was accepted, and so a new secure session exists. We define the session, + * add it to the list of secure sessions for the unsecure session, and EPP will do the + * rest. + */ + if (packet->decrypted_buffer == NULL) + { + /* This triggers the creation of the corresponding secure DPS session if it is not already + * created. This allows information to be stored in that session even though no packets + * have used it yet. There is a problem, however, because at this point we do not know + * the SSID that (may) be associated with this session. + */ + { + dof_session_data *dof_session = api_data->session; + + dof_secure_session = dof_session->secure_sessions; + while (dof_secure_session != NULL) + { + /* Determine matching session. The session list already is scoped by transport and DPS + * session, so the only thing remaining is the domain and secure session ID. + */ + if ((dof_secure_session->ssid == ssid) && + (dof_secure_session->domain_length == rekey_data->domain_length) && + (memcmp(dof_secure_session->domain, rekey_data->domain, rekey_data->domain_length) == 0)) + break; + + dof_secure_session = dof_secure_session->next; + } + + if (!dof_secure_session) + { + dof_session = wmem_new0(wmem_file_scope(), dof_session_data); + dof_session->session_id = globals.next_session++; + dof_session->dof_id = api_data->session->dof_id; + + dof_secure_session = wmem_new0(wmem_file_scope(), dof_secure_session_data); + dof_secure_session->ssid = ssid; + dof_secure_session->domain_length = rekey_data->domain_length; + dof_secure_session->domain = rekey_data->domain; + dof_secure_session->original_session_id = api_data->session->session_id; + dof_secure_session->parent = dof_session; + dof_secure_session->is_2_node = TRUE; + dof_secure_session->next = api_data->session->secure_sessions; + api_data->session->secure_sessions = dof_secure_session; + + if (!dof_secure_session->session_security_data_last) + dof_secure_session->session_security_data = rekey_data->key_data; + else + dof_secure_session->session_security_data_last->next = rekey_data->key_data; + + dof_secure_session->session_security_data_last = rekey_data->key_data; + } + } + } + + /* This PDU indicates the beginning of security for the responder. The next PDU + * sent will be encrypted with these settings. This means that we must determine + * the security settings and set them in the session. + */ + if (!packet->processed && rekey_data->is_rekey) + { + int i; + guint8 *session_key = NULL; + + /* We have everything that we need. Determine the session secret if we can. */ + + /* Check any keys determined above by initiator identity. */ + while (session_key == NULL && identity_key_list) + { + if (validate_session_key(rekey_data, S_length, S, confirmation, identity_key_list->session_key)) + { + session_key = (guint8 *)wmem_alloc0(wmem_file_scope(), 32); + memcpy(session_key, identity_key_list->session_key, 32); + } + + identity_key_list = identity_key_list->next; + } + + /* For each key in the global configuration, see if we can validate the confirmation. */ + for (i = 0; session_key == NULL && i < globals.global_security->session_key_count; i++) + { + if (validate_session_key(rekey_data, S_length, S, confirmation, globals.global_security->session_key[i].session_key)) + session_key = globals.global_security->session_key[i].session_key; + } + + + /* Whether or not this can be decrypted, the security mode infomation + * should be kept with the session. + */ + { + rekey_data->key_data->r_valid = packet->dof_frame; + rekey_data->key_data->i_valid = G_MAXUINT32; + rekey_data->key_data->session_key = session_key; + rekey_data->key_data->security_mode = rekey_data->security_mode; + rekey_data->key_data->security_mode_data_length = rekey_data->security_mode_data_length; + rekey_data->key_data->security_mode_data = rekey_data->security_mode_data; + + if (session_key && dof_secure_session) + { + /* Look up the field-dissector table, and determine if it is registered. */ + dissector_table_t field_dissector = find_dissector_table("dof.secmode"); + if (field_dissector != NULL) + { + dissector_handle_t field_handle = dissector_get_uint_handle(field_dissector, rekey_data->key_data->security_mode); + if (field_handle != NULL) + { + dof_secmode_api_data setup_data; + + setup_data.context = INITIALIZE; + setup_data.security_mode_offset = 0; + setup_data.dof_api = api_data; + setup_data.secure_session = dof_secure_session; + setup_data.session_key_data = rekey_data->key_data; + + call_dissector_only(field_handle, NULL, pinfo, NULL, &setup_data); + } + } + } + } + } + } + break; + + case TEP_PDU_CONFIRM: + { + /* C is set, K is clear. */ + /* Ticket Confirmation */ + proto_tree_add_item(tep_tree, hf_tep_2_1_ticket_confirmation, tvb, offset, 32, ENC_NA); + offset += 32; + + if (!packet->processed && api_data->session && packet->opid_first && packet->opid_first->opid_data) + { + dof_session_key_exchange_data *sk_data; + + rekey_data = (tep_rekey_data *)packet->opid_first->opid_data; + sk_data = rekey_data->key_data; + + /* TODO: Error if not found or if already set. */ + if (sk_data) + sk_data->i_valid = packet->dof_frame; + } + } + break; + + case TEP_PDU_END_SESSION: + case TEP_PDU_SESSION_ENDING: + break; + + case TEP_PDU_REJECT: + { + /* Error Code */ + proto_tree_add_item(tep_tree, hf_tep_reject_code, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Error Description */ + if (tvb_captured_length(tvb) > offset) + proto_tree_add_item(tep_tree, hf_tep_reject_data, tvb, offset, -1, ENC_NA); + } + break; + + default: + break; + } + return offset; +} + +static int dissect_trp_dsp(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) +{ + /* We are handed a buffer that starts with our protocol id. Any options follow that. */ + gint offset = 0; + + /* We don't care except for the treeview. */ + if (!tree) + return 0; + + /* Compute the version and flags, masking off other bits. */ + offset += 4; /* Skip the type and protocol. */ + + proto_tree_add_item(tree, hf_trp_dsp_option, tvb, 0, -1, ENC_NA); + return offset; +} + +static int dissect_trp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) +{ + dof_api_data *api_data = (dof_api_data *)data; + dof_packet_data *packet_data; + guint offset = 0; + guint8 opcode; + guint16 app; + gint app_len; + proto_item *ti; + proto_tree *trp_tree; + trp_packet_data *trp_data; + + /* Make entries in Protocol column and Info column on summary display */ + col_set_str(pinfo->cinfo, COL_PROTOCOL, "TRP "); + + /* Create the protocol tree. */ + offset = 0; + ti = proto_tree_add_item(tree, proto_trp, tvb, offset, -1, ENC_NA); + trp_tree = proto_item_add_subtree(ti, ett_trp); + + /* Add the APPID. */ + offset = read_c2(tvb, offset, &app, &app_len); + ti = proto_tree_add_uint(trp_tree, hf_2008_1_app_version, tvb, 0, app_len, app); + validate_c2(pinfo, ti, app, app_len); + + if (api_data == NULL) + { + expert_add_info_format(pinfo, ti, &ei_malformed, "api_data == NULL"); + return offset; + } + + packet_data = api_data->packet; + if (packet_data == NULL) + { + expert_add_info_format(pinfo, ti, &ei_malformed, "api_data == NULL"); + return offset; + } + + trp_data = (trp_packet_data *)dof_packet_get_proto_data(packet_data, proto_trp); + + if (offset == tvb_captured_length(tvb)) + { + col_append_str(pinfo->cinfo, COL_INFO, "TRP [nop]"); + expert_add_info(pinfo, trp_tree, &ei_implicit_no_op); + + return offset; + } + + /* Retrieve the opcode. */ + opcode = tvb_get_guint8(tvb, offset); + if (!packet_data->is_command) + opcode |= TRP_RESPONSE; + + col_append_fstr(pinfo->cinfo, COL_INFO, "%s ", val_to_str(opcode, trp_opcode_strings, "Unknown Opcode (%d)")); + + /* Opcode */ + ti = proto_tree_add_uint_format(trp_tree, hf_trp_opcode, tvb, offset, 1, opcode & 0x7F, "Opcode: %s (%u)", val_to_str(opcode, trp_opcode_strings, "Unknown Opcode (%d)"), opcode & 0x7F); + offset += 1; + + switch (opcode) + { + case TRP_RSP_REJECT: + { + /* Error Code */ + proto_tree_add_item(trp_tree, hf_trp_errorcode, tvb, offset, 1, ENC_NA); + offset += 1; + } + break; + + case TRP_CMD_REQUEST_KEK: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + + if (trp_data && trp_data->identity_length) + { + expert_add_info(pinfo, ti, &ei_trp_initiator_id_known); + } + + /* Domain - Security.7 */ + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, offset, hf_domain, ett_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_file_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + + /* Initiator Block - TRP.4.1.1 */ + { + dof_2008_16_security_4 response; + trp_packet_data *trp_pkt_data = NULL; + + start_offset = offset; + + /* Initiator Key Request - Security.4 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_4, tvb, pinfo, trp_tree, + offset, hf_initiator_request, ett_initiator_request, &response); + if (!packet_data->processed) + { + tvbuff_t *identity = response.identity; + guint8 identity_length = tvb_reported_length(identity); + guint8 *identity_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), identity_length); + int i; + + /* Get the buffer. */ + tvb_memcpy(identity, identity_buf, 0, identity_length); + + /* Check to see if there is a matching identity. */ + for (i = 0; i < globals.global_security->identity_data_count; i++) + { + dof_identity_data *gidentity = globals.global_security->identity_data + i; + + if (domain_length != gidentity->domain_length || + memcmp(domain_buf, gidentity->domain, domain_length) != 0) + continue; + + if (identity_length == gidentity->identity_length && + memcmp(identity_buf, gidentity->identity, identity_length) == 0) + { + trp_pkt_data = wmem_new0(wmem_file_scope(), trp_packet_data); + dof_packet_add_proto_data(packet_data, proto_trp, trp_pkt_data); + + trp_pkt_data->domain_length = domain_length; + trp_pkt_data->domain = (guint8 *)wmem_alloc0(wmem_file_scope(), domain_length); + memcpy(trp_pkt_data->domain, domain_buf, domain_length); + + trp_pkt_data->identity_length = identity_length; + trp_pkt_data->identity = (guint8 *)wmem_alloc0(wmem_file_scope(), identity_length); + memcpy(trp_pkt_data->identity, identity_buf, identity_length); + + trp_pkt_data->secret = gidentity->secret; + } + } + } + + /* Group Identifier - Security.8 */ + { + gint gid_start = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_8, tvb, pinfo, trp_tree, + offset, hf_group_identifier, ett_group_identifier, NULL); + + if (trp_pkt_data) + { + trp_pkt_data->group_length = offset - gid_start; + trp_pkt_data->group = (guint8 *)wmem_alloc0(wmem_file_scope(), trp_pkt_data->group_length); + tvb_memcpy(tvb, trp_pkt_data->group, gid_start, trp_pkt_data->group_length); + } + } + + if (trp_pkt_data) + { + /* We need to store the entire block_I for later use. */ + trp_pkt_data->block_I_length = offset - start_offset; + trp_pkt_data->block_I = (guint8 *)wmem_alloc0(wmem_file_scope(), trp_pkt_data->block_I_length); + tvb_memcpy(tvb, trp_pkt_data->block_I, start_offset, trp_pkt_data->block_I_length); + } + } + } + break; + + case TRP_RSP_REQUEST_KEK: + { + gint start_offset; + guint32 ssid; + guint8 *mode; + guint8 mode_length; + guint8 *block_A; + guint8 block_A_length; + + if (trp_data && trp_data->kek_known) + { + expert_add_info(pinfo, ti, &ei_trp_kek_discovered); + } + + /* Initiator Ticket - Security.5 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, trp_tree, + offset, hf_initiator_ticket, ett_initiator_ticket, NULL); + + /* Initialization Block - TRP.4.2.1 */ + /* A BLOCK */ + { + start_offset = offset; + + /* THB */ + { + proto_tree_add_item(trp_tree, hf_thb, tvb, offset, 1, ENC_NA); + offset += 1; + } + + /* TMIN */ + { + proto_tree_add_item(trp_tree, hf_tmin, tvb, offset, 1, ENC_NA); + offset += 1; + } + + /* TMAX */ + { + proto_tree_add_item(trp_tree, hf_tmax, tvb, offset, 1, ENC_NA); + offset += 1; + } + + /* Epoch */ + { + proto_tree_add_item(trp_tree, hf_trp_epoch, tvb, offset, 2, ENC_BIG_ENDIAN); + offset += 2; + } + + /* SIDg - Type.4 */ + { + offset = dof_dissect_pdu_as_field(dissect_2009_11_type_4, tvb, pinfo, trp_tree, + offset, hf_sidg, ett_sidg, NULL); + } + + /* Initiator Node Security Scope - Security.10 */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_10, tvb, pinfo, trp_tree, + offset, hf_security_scope, ett_security_scope, NULL); + } + + /* Security Mode - Security.13 */ + { + gint mode_start = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_13, tvb, pinfo, trp_tree, + offset, hf_security_mode, ett_security_mode, NULL); + if (!packet_data->processed) + { + mode_length = offset - mode_start; + mode = (guint8 *)wmem_alloc0(wmem_packet_scope(), mode_length); + tvb_memcpy(tvb, mode, mode_start, mode_length); + } + } + + /* State Identifier - Type.3 */ + { + gint s_offset = offset; + gint ssid_len; + proto_item *pi; + offset = read_c4(tvb, offset, &ssid, &ssid_len); + ssid |= AS_ASSIGNED_SSID; /* TRP SSID are *always* assigned by the AS. */ + pi = proto_tree_add_uint_format(trp_tree, hf_ssid, tvb, s_offset, offset - s_offset, ssid, "SSID: %u", ssid); + validate_c4(pinfo, pi, ssid, ssid_len); + } + + /* PG - Security.2 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_2, tvb, pinfo, trp_tree, + offset, hf_responder_pg, ett_responder_pg, NULL); + + /* Group Validation - Security.11 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_11, tvb, pinfo, trp_tree, + offset, hf_responder_validation, ett_responder_validation, NULL); + + /* Initiator Validation - Security.11 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_11, tvb, pinfo, trp_tree, + offset, hf_initiator_validation, ett_initiator_validation, NULL); + + block_A_length = offset - start_offset; + block_A = (guint8 *)wmem_alloc0(wmem_packet_scope(), block_A_length); + tvb_memcpy(tvb, block_A, start_offset, block_A_length); + } + + /* Determine the KEK, if possible. This requires that either the initiator node's secret + * is known or that the group has been configured. In either case this requires knowledge + * from the matching command, including the domain, identity, and group information. + */ + if (packet_data->opid_first && !packet_data->processed) + { +#if 0 + trp_packet_data* cmd_data = (trp_packet_data*)dof_packet_get_proto_data(packet_data->opid_first, proto_trp); + guint8 mac[32]; + extern struct BlockCipher BlockCipher_AES_256; + struct BlockCipher* cipher = &BlockCipher_AES_256; + guint8* ekey = (guint8*)ep_alloc(cipher->keyStateSize); + + int i; + + if (cmd_data) + { + guint8 kek[32]; + + tvb_memcpy(tvb, mac, mac_offset, 32); + tvb_memcpy(tvb, kek, mac_offset + 32, 32); + + if (cipher != NULL) + { + cipher->GenerateKeyState(ekey, cmd_data->secret); + cipher->Encrypt(ekey, mac); + cipher->Encrypt(ekey, mac + 16); + } + + for (i = 0; i < 32; i++) + kek[i] ^= mac[i]; + + { + OALSecureHMACContext ctx; + OALSecureHMACDigest digest; + + OALSecureHMAC_Start(&ctx, cmd_data->secret); + OALSecureHMAC_Digest(&ctx, cmd_data->domain_length, cmd_data->domain); + OALSecureHMAC_Digest(&ctx, cmd_data->block_I_length, cmd_data->block_I); + OALSecureHMAC_Digest(&ctx, block_A_length, block_A); + OALSecureHMAC_Digest(&ctx, 32, kek); + OALSecureHMAC_Finish(&ctx, digest); + + tvb_memcpy(tvb, mac, mac_offset, 32); + if (memcmp(mac, digest, 32) == 0) + { + dof_learned_group_data* group = globals.learned_group_data; + dof_learned_group_auth_data *auth = NULL; + + /* The KEK has been discovered, flag this for output on the PDU. */ + if (!trp_data) + { + trp_data = wmem_alloc0(wmem_file_scope(), sizeof(trp_packet_data)); + dof_packet_add_proto_data(packet_data, proto_trp, trp_data); + } + + trp_data->kek_known = TRUE; + + while (group) + { + if ((cmd_data->domain_length == group->domain_length) && + (memcmp(cmd_data->domain, group->domain, group->domain_length) == 0) && + (cmd_data->group_length == group->group_length) && + (memcmp(cmd_data->group, group->group, group->group_length) == 0) && + (ssid == group->ssid)) + break; + + group = group->next; + } + + if (group == NULL) + { + group = wmem_alloc0(wmem_file_scope, sizeof(dof_learned_group_data)); + group->domain_length = cmd_data->domain_length; + group->domain = cmd_data->domain; + group->group_length = cmd_data->group_length; + group->group = cmd_data->group; + group->ssid = ssid; + group->next = globals.learned_group_data; + globals.learned_group_data = group; + } + + auth = group->keys; + + while (auth) + { + if (epoch == auth->epoch) + break; + + auth = auth->next; + } + + if (auth == NULL) + { + auth = wmem_alloc0(wmem_file_scope(), sizeof(dof_learned_group_auth_data)); + auth->epoch = epoch; + auth->next = group->keys; + group->keys = auth; + + auth->kek = (guint8*)wmem_alloc0(wmem_file_scope(), 32); + memcpy(auth->kek, kek, 32); + + auth->mode_length = mode_length; + auth->mode = (guint8*)wmem_alloc0(wmem_file_scope(), mode_length); + memcpy(auth->mode, mode, mode_length); + + auth->security_mode = (mode[1] * 256) | mode[2]; + auth->parent = group; + } + } + } + } +#endif + } + } + break; + + case TRP_CMD_REQUEST_RANDOM: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + + if (trp_data && trp_data->identity_length) + { + expert_add_info(pinfo, ti, &ei_trp_initiator_id_known); + } + + /* Domain - Security.7 */ + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, + offset, hf_domain, ett_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + + /* Initiator Block - TRP.6.1.1 */ + { + dof_2008_16_security_4 response; + trp_packet_data *trp_pkt_data = NULL; + + start_offset = offset; + + /* Initiator Key Request - Security.4 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_4, tvb, pinfo, trp_tree, + offset, hf_initiator_request, ett_initiator_request, &response); + if (!packet_data->processed) + { + tvbuff_t *identity = response.identity; + guint8 identity_length = tvb_reported_length(identity); + guint8 *identity_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), identity_length); + int i; + + /* Get the buffer. */ + tvb_memcpy(identity, identity_buf, 0, identity_length); + + /* Check to see if there is a matching identity. */ + for (i = 0; i < globals.global_security->identity_data_count; i++) + { + dof_identity_data *gidentity = globals.global_security->identity_data + i; + + if (domain_length != gidentity->domain_length || + memcmp(domain_buf, gidentity->domain, domain_length) != 0) + continue; + + if (identity_length == gidentity->identity_length && + memcmp(identity_buf, gidentity->identity, identity_length) == 0) + { + trp_pkt_data = wmem_new0(wmem_file_scope(), trp_packet_data); + dof_packet_add_proto_data(packet_data, proto_trp, trp_pkt_data); + + trp_pkt_data->domain_length = domain_length; + trp_pkt_data->domain = (guint8 *)wmem_alloc0(wmem_file_scope(), domain_length); + memcpy(trp_pkt_data->domain, domain_buf, domain_length); + + trp_pkt_data->identity_length = identity_length; + trp_pkt_data->identity = (guint8 *)wmem_alloc0(wmem_file_scope(), identity_length); + memcpy(trp_pkt_data->identity, identity_buf, identity_length); + + trp_pkt_data->secret = gidentity->secret; + } + } + } + + if (trp_pkt_data) + { + /* We need to store the entire block_I for later use. */ + trp_pkt_data->block_I_length = offset - start_offset; + trp_pkt_data->block_I = (guint8 *)wmem_alloc0(wmem_file_scope(), trp_pkt_data->block_I_length); + tvb_memcpy(tvb, trp_pkt_data->block_I, start_offset, trp_pkt_data->block_I_length); + } + } + } + break; + + case TRP_RSP_REQUEST_RANDOM: + { + /* Initiator Ticket - Security.5 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, trp_tree, + offset, hf_initiator_ticket, ett_initiator_ticket, NULL); + } + break; + + case TRP_CMD_REQUEST_SECURITY_SCOPES: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + + if (trp_data && trp_data->identity_length) + { + expert_add_info(pinfo, ti, &ei_trp_initiator_id_known); + } + + /* Domain - Security.7 */ + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, + offset, hf_domain, ett_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + + /* Initiator Block - TRP.5.1.1 */ + { + dof_2008_16_security_4 response; + trp_packet_data *trp_pk_data = NULL; + + start_offset = offset; + + /* Initiator Duration Request */ + proto_tree_add_item(trp_tree, hf_trp_duration, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Initiator Key Request - Security.4 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_4, tvb, pinfo, trp_tree, + offset, hf_initiator_request, ett_initiator_request, &response); + if (!packet_data->processed) + { + tvbuff_t *identity = response.identity; + guint8 identity_length = tvb_reported_length(identity); + guint8 *identity_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), identity_length); + int i; + + /* Get the buffer. */ + tvb_memcpy(identity, identity_buf, 0, identity_length); + + /* Check to see if there is a matching identity. */ + for (i = 0; i < globals.global_security->identity_data_count; i++) + { + dof_identity_data *gidentity = globals.global_security->identity_data + i; + + if (domain_length != gidentity->domain_length || + memcmp(domain_buf, gidentity->domain, domain_length) != 0) + continue; + + if (identity_length == gidentity->identity_length && + memcmp(identity_buf, gidentity->identity, identity_length) == 0) + { + trp_pk_data = wmem_new0(wmem_file_scope(), trp_packet_data); + dof_packet_add_proto_data(packet_data, proto_trp, trp_pk_data); + + trp_pk_data->domain_length = domain_length; + trp_pk_data->domain = (guint8 *)wmem_alloc0(wmem_file_scope(), domain_length); + memcpy(trp_pk_data->domain, domain_buf, domain_length); + + trp_pk_data->identity_length = identity_length; + trp_pk_data->identity = (guint8 *)wmem_alloc0(wmem_file_scope(), identity_length); + memcpy(trp_pk_data->identity, identity_buf, identity_length); + + trp_pk_data->secret = gidentity->secret; + } + } + } + + /* Node - Security.8 */ + { + gint gid_start = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_8, tvb, pinfo, trp_tree, + offset, hf_node_identifier, ett_node_identifier, NULL); + + if (trp_pk_data) + { + trp_pk_data->group_length = offset - gid_start; + trp_pk_data->group = (guint8 *)wmem_alloc0(wmem_file_scope(), trp_pk_data->group_length); + tvb_memcpy(tvb, trp_pk_data->group, gid_start, trp_pk_data->group_length); + } + } + + if (trp_pk_data) + { + /* We need to store the entire block_I for later use. */ + trp_pk_data->block_I_length = offset - start_offset; + trp_pk_data->block_I = (guint8 *)wmem_alloc0(wmem_file_scope(), trp_pk_data->block_I_length); + tvb_memcpy(tvb, trp_pk_data->block_I, start_offset, trp_pk_data->block_I_length); + } + } + } + break; + + case TRP_RSP_REQUEST_SECURITY_SCOPES: + { + gint start_offset; + guint8 *block_A; + guint8 block_A_length; + + /* Initiator Ticket - Security.5 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, trp_tree, + offset, hf_initiator_ticket, ett_initiator_ticket, NULL); + + /* Initialization Block - TRP.5.2.1 */ + /* A BLOCK */ + { + start_offset = offset; + + /* Initiator Duration Request */ + proto_tree_add_item(trp_tree, hf_trp_duration, tvb, offset, 1, ENC_NA); + offset += 1; + + /* Initiator Node Security Scope - Security.10 */ + { + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_10, tvb, pinfo, trp_tree, + offset, hf_security_scope, ett_security_scope, NULL); + } + + /* Validation - Security.11 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_11, tvb, pinfo, trp_tree, + offset, hf_initiator_validation, ett_initiator_validation, NULL); + + block_A_length = offset - start_offset; + block_A = (guint8 *)wmem_alloc0(wmem_packet_scope(), block_A_length); + tvb_memcpy(tvb, block_A, start_offset, block_A_length); + } + } + break; + + case TRP_CMD_RESOLVE_CREDENTIAL: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + + /* Domain - Security.7 */ + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, + offset, hf_domain, ett_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + + /* Identity Resolution - Security.3.2 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_3_2, tvb, pinfo, trp_tree, + offset, hf_identity_resolution, ett_identity_resolution, NULL); + } + break; + + case TRP_RSP_RESOLVE_CREDENTIAL: + { + /* Identity Resolution - Security.3.2 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_3_2, tvb, pinfo, trp_tree, + offset, hf_identity_resolution, ett_identity_resolution, NULL); + } + break; + + case TRP_CMD_REQUEST_SESSION: + { + guint8 *domain_buf = NULL; + guint8 domain_length = 0; + gint start_offset; + + if (trp_data && trp_data->identity_length) + { + expert_add_info(pinfo, ti, &ei_trp_initiator_id_known); + } + + /* Domain - Security.7 */ + start_offset = offset; + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, + offset, hf_domain, ett_domain, NULL); + if (!packet_data->processed) + { + domain_length = offset - start_offset; + domain_buf = (guint8 *)wmem_alloc0(wmem_packet_scope(), domain_length); + tvb_memcpy(tvb, domain_buf, start_offset, domain_length); + } + + /* Responder Block - Security.6.2 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_2, tvb, pinfo, trp_tree, + offset, hf_responder_request, ett_responder_request, NULL); + + /* Initiator Block - Security.6.1 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_1, tvb, pinfo, trp_tree, + offset, hf_initiator_request, ett_initiator_request, NULL); + } + break; + + case TRP_RSP_REQUEST_SESSION: + { + gint start_offset; + guint8 *block_A; + guint8 block_A_length; + + /* Responder Ticket - Security.5 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, trp_tree, + offset, hf_responder_ticket, ett_responder_ticket, NULL); + + /* Initiator Ticket - Security.5 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_5, tvb, pinfo, trp_tree, + offset, hf_initiator_ticket, ett_initiator_ticket, NULL); + + + /* Initialization Block - Security.6.3 */ + /* A BLOCK */ + { + start_offset = offset; + + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_6_3, tvb, pinfo, trp_tree, + offset, hf_authentication_block, ett_authentication_block, NULL); + + block_A_length = offset - start_offset; + block_A = (guint8 *)wmem_alloc0(wmem_packet_scope(), block_A_length); + tvb_memcpy(tvb, block_A, start_offset, block_A_length); + } + } + break; + + case TRP_CMD_VALIDATE_CREDENTIAL: + { + tvbuff_t *data_tvb; + + /* Domain - Security.7 */ + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_7, tvb, pinfo, trp_tree, + offset, hf_domain, ett_domain, NULL); + + offset = dof_dissect_pdu_as_field(dissect_2008_16_security_3_1, tvb, pinfo, trp_tree, + offset, hf_identity_resolution, ett_identity_resolution, NULL); + data_tvb = tvb_new_subset_remaining(tvb, offset); + call_data_dissector(data_tvb, pinfo, trp_tree); + } + break; + + case TRP_RSP_VALIDATE_CREDENTIAL: + { + tvbuff_t *data_tvb = tvb_new_subset_remaining(tvb, offset); + call_data_dissector(data_tvb, pinfo, trp_tree); + } + break; + } + + return offset; +} + +/* Initialize Core Tunnel Functionality */ +static void dof_tun_register(void) +{ + static hf_register_info hf[] = + { + { &hf_2012_1_tunnel_1_version, + { "Version", "dof.2012_1.tunnel_1.version", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } + }, + { &hf_2012_1_tunnel_1_length, + { "Length", "dof.2012_1.tunnel_1.length", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } + }, + }; + + static gint *ett[] = { + &ett_2012_1_tunnel, + }; + + proto_2012_1_tunnel = proto_register_protocol(TUNNEL_PROTOCOL_STACK, "DTPS", "dtps"); + proto_register_field_array(proto_2012_1_tunnel, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + + register_dissector_with_description("dof.tunnel", TUNNEL_PROTOCOL_STACK, dissect_tunnel_common, proto_2012_1_tunnel); + dof_tun_app_dissectors = register_dissector_table("dof.tunnel.app", "DOF Tunnel Version", proto_2012_1_tunnel, FT_UINT8, BASE_DEC); +} + +static void dof_tun_reset(void) +{ +} + +static void dof_tun_cleanup(void) +{ +} + +/* The registration hand-off routine */ +static void dof_tun_handoff(void) +{ + static dissector_handle_t tcp_handle; + + register_dissector_with_description("dof.app", TUNNEL_APPLICATION_PROTOCOL, dissect_tun_app_common, proto_2008_1_app); + + tcp_handle = create_dissector_handle(dissect_tunnel_tcp, proto_2012_1_tunnel); + + dissector_add_uint_with_preference("tcp.port", DOF_TUN_NON_SEC_TCP_PORT, tcp_handle); +} + +/* Main DOF Registration Support */ + +static void dof_reset(void) +{ + globals.next_session = 1; + globals.next_transport_session = 1; + globals.dof_packet_head = globals.dof_packet_tail = NULL; + globals.global_security = &global_security; + globals.learned_group_data = NULL; + globals.decrypt_all_packets = decrypt_all_packets; + globals.track_operations = track_operations; + globals.track_operations_window = track_operations_window; + + init_addr_port_tables(); + + /* Reset the packet counter. */ + next_dof_frame = 1; + + /* Load the template values for different groups. */ + { + secmode_field_t *list = secmode_list; + guint i; + + global_security.group_data = g_new0(dof_group_data, num_secmode_list); + global_security.group_data_count = num_secmode_list; + for (i = 0; i < num_secmode_list; i++) + { + guint8 kek_len; + dof_group_data *group_data = global_security.group_data + i; + parse_hex_string(list[i].domain, &(group_data->domain), &(group_data->domain_length)); + parse_hex_string(list[i].identity, &(group_data->identity), &(group_data->identity_length)); + parse_hex_string(list[i].kek, &(group_data->kek), &kek_len); + } + } + + /* Load the template values for different secrets. */ + { + seckey_field_t *list = seckey_list; + guint i; + + /* Clear existing. */ + for (i = 0; i < global_security.session_key_count; i++) + { + dof_session_key_data *session_data = &global_security.session_key[i]; + g_free(session_data->session_key); + } + + g_free(global_security.session_key); + global_security.session_key = NULL; + global_security.session_key_count = 0; + + global_security.session_key = g_new0(dof_session_key_data, num_seckey_list); + global_security.session_key_count = num_seckey_list; + for (i = 0; i < num_seckey_list; i++) + { + guint8 key_len; + dof_session_key_data *session_data = global_security.session_key + i; + parse_hex_string(list[i].key, &(session_data->session_key), &key_len); + } + } + + /* Load the template values for different identities. */ + { + identsecret_field_t *list = identsecret_list; + guint i; + + /* Clear existing. */ + for (i = 0; i < global_security.identity_data_count; i++) + { + dof_identity_data *identity_data = &global_security.identity_data[i]; + g_free(identity_data->domain); + g_free(identity_data->identity); + g_free(identity_data->secret); + } + + g_free(global_security.identity_data); + global_security.identity_data = NULL; + global_security.identity_data_count = 0; + + global_security.identity_data = g_new0(dof_identity_data, num_identsecret_list); + global_security.identity_data_count = num_identsecret_list; + for (i = 0; i < num_identsecret_list; i++) + { + guint8 key_len; + guint32 size; + + dof_identity_data *identity_data = global_security.identity_data + i; + if (VALIDHEX(list[i].domain[0])) + { + parse_hex_string(list[i].domain, &(identity_data->domain), &(identity_data->domain_length)); + } + else + { + size = (guint32)strlen(list[i].domain); + dof_oid_new_standard_string(list[i].domain, &size, &(identity_data->domain)); + identity_data->domain_length = size; + } + + if (VALIDHEX(list[i].identity[0])) + { + parse_hex_string(list[i].identity, &(identity_data->identity), &(identity_data->identity_length)); + } + else + { + size = (guint32)strlen(list[i].identity); + dof_oid_new_standard_string(list[i].identity, &size, &(identity_data->identity)); + identity_data->identity_length = size; + } + + parse_hex_string(list[i].secret, &(identity_data->secret), &key_len); + } + } +} + +static void dof_cleanup(void) +{ + guint i; + + /* Clear existing. */ + for (i = 0; i < global_security.group_data_count; i++) + { + dof_group_data *group_data = &global_security.group_data[i]; + g_free(group_data->domain); + g_free(group_data->identity); + g_free(group_data->kek); + } + + g_free(global_security.group_data); + global_security.group_data = NULL; + global_security.group_data_count = 0; + +} + +/** + * Initialize Core DPS Functionality + */ +static void dof_register(void) +{ + static hf_register_info hf[] = + { + { &hf_security_1_permission_type, + { "Permission Type", "dof.2008.16.security.1.desired-duration", FT_UINT16, BASE_DEC, VALS(dof_2008_16_permission_type), 0, NULL, HFILL } }, + + { &hf_security_1_length, + { "Length", "dof.2008.16.security.1.length", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_1_data, + { "Data", "dof.2008.16.security.1.data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.2 */ + { &hf_security_2_count, + { "Count", "dof.2008.16.security.2.count", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_2_permission, + { "Permission", "dof.2008.16.security.2.permission", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.3.1 */ + { &hf_security_3_1_credential_type, + { "Credential Type", "dof.2008.16.security.3.1.credential_type", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_3_1_stage, + { "Stage", "dof.2008.16.security.3.1.stage", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_3_1_security_node_identifier, + { "Security Node Identifier", "dof.2008.16.security.3.1.security_node_identifier", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security 3.2 */ + { &hf_security_3_2_credential_type, + { "Credential Type", "dof.2008.16.security.3.2.credential_type", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_3_2_stage, + { "Stage", "dof.2008.16.security.3.2.stage", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_3_2_length, + { "Length", "dof.2008.16.security.3.2.length", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_3_2_public_data, + { "Public Data", "dof.2008.16.security.3.2.public_data", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.4 */ + { &hf_security_4_l, + { "L", "dof.2008.16.security.4.l", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } }, + + { &hf_security_4_f, + { "F", "dof.2008.16.security.4.f", FT_UINT8, BASE_DEC, NULL, 0x40, NULL, HFILL } }, + + { &hf_security_4_ln, + { "Ln", "dof.2008.16.security.4.ln", FT_UINT8, BASE_DEC, NULL, 0x0F, NULL, HFILL } }, + + { &hf_security_4_identity, + { "Identity", "dof.2008.16.security.4.identity", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_4_nonce, + { "Nonce", "dof.2008.16.security.4.nonce", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_4_permission_set, + { "Permission Set", "dof.2008.16.security.4.permission_set", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.5 */ + { &hf_security_5_mac, + { "MAC", "dof.2008.16.security.5.mac", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_5_key, + { "KEY", "dof.2008.16.security.5.key", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.6.1 */ + { &hf_security_6_1_desired_duration, + { "Desired Duration", "dof.2008.16.security.6.1.desired_duration", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_6_1_desired_security_mode, + { "Desired Security Mode", "dof.2008.16.security.6.1.desired_security_mode", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_6_1_initiator_request, + { "Initiator Request", "dof.2008.16.security.6.1.initiator_request", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.6.2 */ + { &hf_security_6_2_responder_request, + { "Responder Request", "dof.2008.16.security.6.2.responder_request", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.6.3 */ + { &hf_security_6_3_granted_duration, + { "Granted Duration", "dof.2008.16.security.6.3.granted_duration", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_6_3_session_security_scope, + { "Session Security Scope", "dof.2008.16.security.6.3.session_security_scope", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_6_3_initiator_validation, + { "Initiator Validation", "dof.2008.16.security.6.3.initiator_validation", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_security_6_3_responder_validation, + { "Responder Validation", "dof.2008.16.security.6.3.responder_validation", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.9 */ + { &hf_security_9_length, + { "Length", "dof.2008.16.security.9.length", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_9_initial_state, + { "Initial State", "dof.2008.16.security.9.initial_state", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.10 */ + { &hf_security_10_count, + { "Count", "dof.2008.16.security.10.count", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_security_10_permission_group_identifier, + { "Permission Group Identifier", "dof.2008.16.security.10.permission_group_identifier", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + /* Security.11 */ + { &hf_security_11_count, + { "Count", "dof.2008.16.security.11.count", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } }, + + { &hf_security_11_permission_security_scope, + { "Permission Security Scope", "dof.2008.16.security.11.permission_security_scope", FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL } }, + + /* Security.12 */ + { &hf_security_12_m, + { "M", "dof.2008.16.security.12.m", FT_UINT8, BASE_DEC, VALS(dof_2008_16_security_12_m), 0xC0, NULL, HFILL } }, + + { &hf_security_12_count, + { "Count", "dof.2008.16.security.12.count", FT_UINT8, BASE_DEC, NULL, 0x3F, NULL, HFILL } }, + + { &hf_security_12_permission_group_identifier, + { "Permission Group Identifier", "dof.2008.16.security.12.permission_group_identifier", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_2008_1_dof_session_transport, + { "Transport Session", "dof.transport_session", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } + }, + { &hf_2008_1_dof_session, + { "DPS Session", "dof.session", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } + }, + { &hf_2008_1_dof_frame, + { "DPS Frame", "dof.frame", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } + }, + { &hf_2008_1_dof_is_2_node, + { "DPS Is 2 Node", "dof.is_2_node", FT_BOOLEAN, BASE_DEC, NULL, 0x00, NULL, HFILL } + }, + { &hf_2008_1_dof_is_streaming, + { "DPS Is Streaming", "dof.is_streaming", FT_BOOLEAN, BASE_DEC, NULL, 0x00, NULL, HFILL } + }, + { &hf_2008_1_dof_is_from_client, + { "DPS Is From Client", "dof.is_from_client", FT_BOOLEAN, BASE_DEC, NULL, 0x00, NULL, HFILL } + } + }; + + static gint *ett[] = { + /* Security.2 */ + &ett_security_2_permission, + &ett_security_3_1_security_node_identifier, + + /* Security.11 */ + &ett_security_11_permission_security_scope, + + &ett_security_6_1_desired_security_mode, + &ett_security_6_1_initiator_request, + + &ett_security_6_2_responder_request, + &ett_security_6_3_session_security_scope, + &ett_security_6_3_initiator_validation, + &ett_security_6_3_responder_validation, + + &ett_security_4_identity, + &ett_security_4_permission_set, + + &ett_2008_1_dof, + }; + + static ei_register_info ei[] = + { +#if 0 + { &ei_undecoded, { "dof.undecoded", PI_UNDECODED, PI_WARN, "DOF: Some protocol octets were not decoded", EXPFILL } }, +#endif + { &ei_malformed, { "dof.malformed", PI_MALFORMED, PI_ERROR, "Malformed:", EXPFILL } }, + { &ei_implicit_no_op, { "dof.implicit_no_op", PI_PROTOCOL, PI_COMMENT, "Implicit No-op", EXPFILL } }, + { &ei_c2_c3_c4_format, { "dof.c2_c3_c4_format", PI_MALFORMED, PI_WARN, "DOF: Cx IE format", EXPFILL } }, + { &ei_security_3_1_invalid_stage, { "dof.security.3.1.invalid_stage", PI_MALFORMED, PI_ERROR, "DPS: Security.3.1: Stage invalid.", EXPFILL } }, + { &ei_security_4_invalid_bit, { "dof.security.4.invalid_bit", PI_MALFORMED, PI_WARN, "DPS: Security.4: Reserved bit set.", EXPFILL } }, + { &ei_security_13_out_of_range, { "dof.security.13.out_of_range", PI_MALFORMED, PI_ERROR, "DPS: Security.13: Attribute Data out of range.", EXPFILL } }, + }; + + /* Security mode of operation templates. */ + static uat_field_t secmode_uat_fields[] = { + UAT_FLD_CSTRING(secmode_list, domain, "Domain", "The domain, coded as hex digits of PDU Security.7."), + UAT_FLD_CSTRING(secmode_list, identity, "Group ID", "The group identifier, coded as hex digits of PDU Security.8."), + UAT_FLD_CSTRING(secmode_list, kek, "KEK", "The KEK, coded as hex digits representing the KEK (256-bit)."), + UAT_END_FIELDS + }; + + /* Security keys. */ + static uat_field_t seckey_uat_fields[] = { + UAT_FLD_CSTRING(seckey_list, key, "Session Key", "The session key to try to use, coded as hex digits representing the key (256-bit)."), + UAT_END_FIELDS + }; + + /* Identity secrets. */ + static uat_field_t identsecret_uat_fields[] = { + UAT_FLD_CSTRING(identsecret_list, domain, "Domain", "The domain, coded as hex digits of PDU Security.7."), + UAT_FLD_CSTRING(identsecret_list, identity, "Identity", "The group identifier, coded as hex digits of PDU Security.8."), + UAT_FLD_CSTRING_OTHER(identsecret_list, secret, "Secret", identsecret_chk_cb, "The resolved secret for a given identity, coded as hex digits representing the secret (256-bit)."), + UAT_END_FIELDS + }; + + module_t *dof_module; + uat_t *secmode_uat; + uat_t *seckey_uat; + uat_t *identsecret_uat; + expert_module_t *expert_security; + + dsp_option_dissectors = register_dissector_table("dof.dsp.options", "DSP Protocol Options", proto_2008_1_dsp, FT_UINT32, BASE_DEC); + dof_sec_dissectors = register_dissector_table("dof.secmode", "DOF Security Mode of Operation", proto_2008_1_dof, FT_UINT16, BASE_DEC); + register_dissector_table("dof.2008.1", "DOF Common PDU", proto_2008_1_dof, FT_STRING, BASE_DEC); + + proto_2008_1_dof = proto_register_protocol(DOF_PROTOCOL_STACK, "DOF", "dof"); + + proto_2008_1_dof_tcp = proto_register_protocol(DOF_PROTOCOL_STACK" TCP", "DOF-TCP", "dof-tcp"); + proto_2008_1_dof_udp = proto_register_protocol(DOF_PROTOCOL_STACK" UDP", "DOF-UDP", "dof-udp"); + + proto_register_field_array(proto_2008_1_dof, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + + expert_security = expert_register_protocol(proto_2008_1_dof); + expert_register_field_array(expert_security, ei, array_length(ei)); + + dof_module = prefs_register_protocol(proto_2008_1_dof, dof_reset); + secmode_uat = uat_new("DPS Security Mode Templates", + sizeof(secmode_field_t), + "custom_dof_secmode_list", + TRUE, + &secmode_list, + &num_secmode_list, + (UAT_AFFECTS_DISSECTION | UAT_AFFECTS_FIELDS), + NULL, + secmode_list_copy_cb, + secmode_list_update_cb, + secmode_list_free_cb, + secmode_list_post_update_cb, + NULL, + secmode_uat_fields + ); + + seckey_uat = uat_new("DPS Session Keys", + sizeof(seckey_field_t), + "custom_dof_seckey_list", + TRUE, + &seckey_list, + &num_seckey_list, + (UAT_AFFECTS_DISSECTION | UAT_AFFECTS_FIELDS), + NULL, + seckey_list_copy_cb, + seckey_list_update_cb, + seckey_list_free_cb, + seckey_list_post_update_cb, + NULL, + seckey_uat_fields + ); + + identsecret_uat = uat_new("DPS Identity Secrets", + sizeof(identsecret_field_t), + "custom_dof_identsecret_list", + TRUE, + &identsecret_list, + &num_identsecret_list, + (UAT_AFFECTS_DISSECTION | UAT_AFFECTS_FIELDS), + NULL, + identsecret_list_copy_cb, + identsecret_list_update_cb, + identsecret_list_free_cb, + identsecret_list_post_update_cb, + NULL, + identsecret_uat_fields + ); + + prefs_register_bool_preference(dof_module, "custom_dof_decrypt_all", + "Attempt to decrypt all packets", + "Specifies that decryption should be attempted on all packets, even if the session initialization wasn't captured.", + &decrypt_all_packets); + + prefs_register_bool_preference(dof_module, "custom_dof_track_operations", + "Track DPS operations", + "Specifies that operations should be tracked across multiple packets, providing summary lists. This takes time and memory.", + &track_operations); + + prefs_register_uint_preference(dof_module, "custom_dof_track_operations_window", + "Track DPS window", + "Limits the number of operations shown before and after the current operations", + 10, &track_operations_window); + + prefs_register_static_text_preference(dof_module, "name4567", "The following are tables not preferences.", "These tables are not controlled by OK, Apply, and Cancel of this dialog."); + + prefs_register_uat_preference(dof_module, "custom_dof_secmode_list", "DPS Security Mode Templates", + "A table of security modes and initialization data that will be tried if no security mode is found.", + secmode_uat); + + prefs_register_uat_preference(dof_module, "custom_dof_seckey_list", "DPS Session Keys", + "A table of session keys to attempt if none is known.", + seckey_uat); + + prefs_register_uat_preference(dof_module, "custom_dof_identsecret_list", "DPS Identity Secrets", + "A table of secrets for different identities.", + identsecret_uat); +} + +static void dof_handoff(void) +{ + static dissector_handle_t tcp_handle; + + dof_oid_handle = register_dissector_with_description("dof.oid", DOF_OBJECT_IDENTIFIER, dissect_2009_11_type_4, oid_proto); + + tcp_handle = create_dissector_handle(dissect_dof_tcp, proto_2008_1_dof); + dof_udp_handle = create_dissector_handle(dissect_dof_udp, proto_2008_1_dof); + + dissector_add_uint_with_preference("tcp.port", DOF_P2P_NEG_SEC_TCP_PORT, tcp_handle); + dissector_add_uint_range_with_preference("udp.port", DOF_NEG_SEC_UDP_PORT_RANGE, dof_udp_handle); +} + +/* OID Registration Support */ + +static void oid_reset(void) +{ +} + +static void oid_cleanup(void) +{ +} + +/* Initialize OID */ +static void oid_register(void) +{ + static hf_register_info hf[] = { + { &hf_oid_class, + { "Class", "dof.oid.class", FT_UINT32, BASE_DEC, NULL, 0, "DPS Object Identifier Class", HFILL } + }, + { &hf_oid_header, + { "Header", "dof.oid.header", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + { &hf_oid_attribute, + { "Attribute", "dof.oid.attribute", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } + }, + { &hf_oid_length, + { "Length", "dof.oid.length", FT_UINT8, BASE_DEC, NULL, 0x3F, NULL, HFILL } + }, + { &hf_oid_data, + { "Data", "dof.oid.data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } + }, + { &hf_oid_all_attribute_data, + { "Attribute Data", "dof.oid.attribute-data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } + }, + { &hf_oid_attribute_header, + { "Header", "dof.attribute.header", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + { &hf_oid_attribute_attribute, + { "Attribute", "dof.attribute.attribute", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } + }, + { &hf_oid_attribute_id, + { "ID", "dof.attribute.id", FT_UINT8, BASE_DEC, NULL, 0x7F, NULL, HFILL } + }, + { &hf_oid_attribute_length, + { "Length", "dof.attribute.length", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } + }, + { &hf_oid_attribute_data, + { "Data", "dof.attribute.data", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } + }, + { &hf_oid_attribute_oid, + { "OID", "dof.attribute.oid", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } + }, + }; + + static gint *ett[] = { + &ett_oid, + &ett_oid_header, + &ett_oid_attribute, + &ett_oid_attribute_header, + &ett_oid_attribute_oid, + }; + + static ei_register_info ei[] = + { + { &ei_type_4_header_zero, { "dof.oid.header_zero", PI_MALFORMED, PI_ERROR, "DOF Violation: Type.4: Header bit mandated 0.", EXPFILL } }, + }; + + if (oid_proto == -1) + { + expert_module_t *expert_oid; + + oid_proto = proto_register_protocol(DOF_OBJECT_IDENTIFIER, "DPS.OID", "dof.oid"); + proto_register_field_array(oid_proto, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + expert_oid = expert_register_protocol(oid_proto); + expert_register_field_array(expert_oid, ei, array_length(ei)); + } +} + +static void oid_handoff(void) +{ +} + +/* DNP Registration Support */ + +static guint dof_ns_session_key_hash_fn(gconstpointer key) +{ + const dof_ns_session_key *session_key = (const dof_ns_session_key *)key; + guint result = 0; + + result += g_int_hash(&session_key->transport_session_id); + result += g_int_hash(&session_key->client); + result += g_int_hash(&session_key->server); + + return result; +} + +static gboolean dof_ns_session_key_equal_fn(gconstpointer key1, gconstpointer key2) +{ + const dof_ns_session_key *session_key_ptr1 = (const dof_ns_session_key *)key1; + const dof_ns_session_key *session_key_ptr2 = (const dof_ns_session_key *)key2; + + if (session_key_ptr1->transport_session_id != session_key_ptr2->transport_session_id) + return FALSE; + + if (session_key_ptr1->client != session_key_ptr2->client) + return FALSE; + + if (session_key_ptr1->server != session_key_ptr2->server) + return FALSE; + + return TRUE; +} + +static void dof_dnp_reset(void) +{ + dof_ns_session_lookup = g_hash_table_new_full(dof_ns_session_key_hash_fn, dof_ns_session_key_equal_fn, g_free, NULL); +} + +static void dof_dnp_cleanup(void) +{ + g_hash_table_destroy(dof_ns_session_lookup); + dof_ns_session_lookup = NULL; +} + +static void dof_register_dnp_0(void) +{ + static hf_register_info hf[] = + { + { &hf_2008_1_dnp_0_1_1_padding, + { "Padding", "dof.dnp.v0.padding", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } + }, + { &hf_2008_1_dnp_0_1_1_version, + { "Version", "dof.dnp.v0.version", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + }; + + if (proto_2008_1_dnp_0 == -1) + { + proto_2008_1_dnp_0 = proto_register_protocol(DOF_NETWORK_PROTOCOL " V0", "DPS.DNP.V0", "dof.dnp.v0"); + + proto_register_field_array(proto_2008_1_dnp_0, hf, array_length(hf)); + } +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_dnp_0(void) +{ + dissector_handle_t dnp_handle; + dnp_handle = create_dissector_handle(dissect_dnp_0, proto_2008_1_dnp_0); + + dissector_add_uint("dof.dnp", 0, dnp_handle); +} + +static void dof_register_dnp_1(void) +{ + expert_module_t *expert_dnp; + + static hf_register_info hf[] = + { + { &hf_2009_9_dnp_1_flags, + { "Flags", "dof.2009_9.dnp_1.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + { &hf_2009_9_dnp_1_flag_length, + { "Length Size", "dof.2009_9.dnp_1.flags.lengthsize", FT_UINT8, BASE_DEC, NULL, 0x03, NULL, HFILL } + }, + { &hf_2009_9_dnp_1_flag_srcport, + { "Source Port", "dof.2009_9.dnp_1.flags.srcport", FT_UINT8, BASE_DEC, NULL, 0x04, NULL, HFILL } + }, + { &hf_2009_9_dnp_1_flag_dstport, + { "Destination Port", "dof.2009_9.dnp_1.flags.dstport", FT_UINT8, BASE_DEC, NULL, 0x08, NULL, HFILL } + }, + + { &hf_2009_9_dnp_1_length, + { "Length", "dof.2009_9.dnp_1.length", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } + }, + { &hf_2009_9_dnp_1_srcport, + { "Source Port", "dof.2009_9.dnp_1.srcport", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } + }, + { &hf_2009_9_dnp_1_dstport, + { "Destination Port", "dof.2009_9.dnp_1.dstport", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } + }, + }; + + static gint *ett[] = + { + &ett_2009_9_dnp_1_flags, + }; + + static ei_register_info ei[] = + { + { &ei_dof_10_flags_zero, { "dof.dnp.v1.flags_zero", PI_UNDECODED, PI_ERROR, "DPS-10: Reserved flag bits must be zero.", EXPFILL } }, +#if 0 + { &ei_dof_13_length_specified, { "dof.dnp.v1.length_specified", PI_UNDECODED, PI_ERROR, "DPS-13: Length must be specified on a connection.", EXPFILL } }, +#endif + }; + + if (proto_2009_9_dnp_1 == -1) + { + proto_2009_9_dnp_1 = proto_register_protocol(DOF_NETWORK_PROTOCOL " V1", "DOF.DNP.V1", "dof.dnp.v1"); + + proto_register_field_array(proto_2009_9_dnp_1, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + + expert_dnp = expert_register_protocol(proto_2009_9_dnp_1); + expert_register_field_array(expert_dnp, ei, array_length(ei)); + } +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_dnp_1(void) +{ + dissector_handle_t dnp_handle, dnp_frame_handle; + dnp_handle = create_dissector_handle(dissect_dnp_1, proto_2009_9_dnp_1); + dnp_frame_handle = create_dissector_handle(determine_packet_length_1, proto_2009_9_dnp_1); + + dissector_add_uint("dof.dnp", 1, dnp_handle); + dissector_add_uint("dof.dnp.frame", 1, dnp_frame_handle); +} + +static void dof_dnp_handoff(void) +{ + dof_reg_handoff_dnp_0(); + dof_reg_handoff_dnp_1(); +} + +/** + * Initialize Core DNP Functionality + */ +static void dof_dnp_register(void) +{ + static hf_register_info hf[] = + { + { &hf_2008_1_dnp_1_flag, + { "Flag", "dof.2008_1.dnp_1.flag", FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x80, NULL, HFILL } + }, + { &hf_2008_1_dnp_1_version, + { "Version", "dof.2008_1.dnp_1.version", FT_UINT8, BASE_DEC, NULL, 0x7F, NULL, HFILL } + }, + }; + + static gint *ett[] = + { + &ett_2008_1_dnp, + &ett_2008_1_dnp_header, + }; + + proto_2008_1_dnp = proto_register_protocol(DOF_NETWORK_PROTOCOL, "DPS.DNP", "dof.dnp"); + + proto_register_field_array(proto_2008_1_dnp, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + dnp_dissectors = register_dissector_table("dof.dnp", "DOF DNP Version", proto_2008_1_dnp, FT_UINT8, BASE_DEC); + dnp_framing_dissectors = register_dissector_table("dof.dnp.frame", "DOF DNP Framing", proto_2008_1_dnp, FT_UINT8, BASE_DEC); + + dof_register_dnp_0(); + dof_register_dnp_1(); +} + +/* DPP Registration Support */ + +/** + * This routine is called each time the system is reset (file load, capture) + * and so it should take care of freeing any of our persistent stuff. + */ +static void dof_dpp_reset(void) +{ + dpp_reset_opid_support(); + dpp_reset_sid_support(); +} + +static void dof_dpp_cleanup(void) +{ +} + +static void dof_register_dpp_0(void) +{ + static hf_register_info hf[] = + { + { &hf_2008_1_dpp_0_1_1_version, + { "Version", "dof.dpp.v0.version", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + }; + + if (proto_2008_1_dpp_0 == -1) + { + proto_2008_1_dpp_0 = proto_register_protocol(DOF_PRESENTATION_PROTOCOL " V0", "DPS.DPP.V0", "dof.dpp.v0"); + + proto_register_field_array(proto_2008_1_dpp_0, hf, array_length(hf)); + } +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_dpp_0(void) +{ + dissector_handle_t dpp_handle; + dpp_handle = create_dissector_handle(dissect_dpp_0, proto_2008_1_dpp_0); + + dissector_add_uint("dof.dpp", 0, dpp_handle); +} + +static void dof_register_dpp_2(void) +{ + expert_module_t *expert_dpp; + + static hf_register_info hf[] = + { + { &hf_2009_12_dpp_2_1_flags, + { "Flags", "dof.dpp.v2.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + { &hf_2009_12_dpp_2_1_flag_security, + { "Secure", "dof.dpp.v2.flags.security", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL } + }, + { &hf_2009_12_dpp_2_1_flag_opid, + { "Operation ID Type", "dof.dpp.v2.flags.opidtype", FT_UINT8, BASE_DEC, VALS(strings_2009_12_dpp_opid_types), 0x60, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_flag_cmdrsp, + { "Command/Response", "dof.dpp.v2.flags.cmdrsp", FT_BOOLEAN, 8, TFS(&tfs_response_command), 0x10, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_flag_seq, + { "Sequence", "dof.dpp.v2.flags.sequence", FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x04, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_flag_retry, + { "Retry", "dof.dpp.v2.flags.retry", FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x02, NULL, HFILL } }, + + { &hf_2009_12_dpp_2_3_sec_flags, + { "Flags", "dof.dpp.v2.security.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_flag_secure, + { "Security Mode Header", "dof.dpp.v2.security.flags.securitymodeheader", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_flag_rdid, + { "Remote Domain ID", "dof.dpp.v2.security.flags.rdid", FT_UINT8, BASE_DEC, NULL, 0x08, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_flag_partition, + { "Partition Present", "dof.dpp.v2.security.flags.partition", FT_UINT8, BASE_DEC, NULL, 0x04, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_flag_ssid, + { "SSID Present", "dof.dpp.v2.security.flags.ssid", FT_UINT8, BASE_DEC, NULL, 0x01, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_flag_as, + { "AS Present", "dof.dpp.v2.security.flags.as", FT_UINT8, BASE_DEC, NULL, 0x02, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_ssid, + { "Security State Identifier", "dof.dpp.v2.security.ssid", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_rdid, + { "Remote Domain Identifier", "dof.dpp.v2.security.rdid", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_remote_partition, + { "Remote Security Scope", "dof.dpp.v2.security.remote-scope", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_3_sec_partition, + { "Security Scope", "dof.dpp.v2.security.scope", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_2009_12_dpp_2_1_opcnt, + { "Operation Count", "dof.dpp.v2.opcnt", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_seq, + { "Sequence", "dof.dpp.v2.sequence", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_retry, + { "Retry", "dof.dpp.v2.retry", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_2009_12_dpp_2_1_delay, + { "Delay", "dof.dpp.v2.delay", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + }; + + static hf_register_info shf[] = + { + { &hf_2009_12_dpp_2_14_opcode, + { "Opcode", "dof.dpp.v2s.opcode", FT_UINT8, BASE_DEC, VALS(strings_2009_12_dpp_common_opcodes), 0x0, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_2009_12_dpp_2_1_flags, + &ett_2009_12_dpp_2_opid, + &ett_2009_12_dpp_2_opid_history, + &ett_2009_12_dpp_2_3_security, + &ett_2009_12_dpp_2_3_sec_flags, + &ett_2009_12_dpp_2_3_sec_remote_partition, + &ett_2009_12_dpp_2_3_sec_partition, + }; + + static ei_register_info ei[] = + { + { &ei_dpp2_dof_10_flags_zero, { "dof.dpp.v2.flags_zero", PI_UNDECODED, PI_ERROR, "DPS-10: Reserved flag bits must be zero.", EXPFILL } }, + { &ei_dpp_default_flags, { "dof.dpp.v2.flags_included", PI_COMMENTS_GROUP, PI_NOTE, "Default flag value is included explicitly.", EXPFILL } }, + { &ei_dpp_explicit_sender_sid_included, { "dof.dpp.v2.sender_sid_included", PI_PROTOCOL, PI_NOTE, "Explicit SID could be optimized, same as sender.", EXPFILL } }, + { &ei_dpp_explicit_receiver_sid_included, { "dof.dpp.v2.receiver_sid_included", PI_PROTOCOL, PI_NOTE, "Explicit SID could be optimized, same as receiver.", EXPFILL } }, + { &ei_dpp_no_security_context, { "dof.dpp.v2.no_context", PI_UNDECODED, PI_WARN, "No security context to enable packet decryption.", EXPFILL } }, + }; + + static gint *sett[] = + { + &ett_2009_12_dpp_common, + }; + + if (proto_2009_12_dpp == -1) + { + proto_2009_12_dpp = proto_register_protocol(DOF_PRESENTATION_PROTOCOL " V2", "DPS.DPP.V2", "dof.dpp.v2"); + proto_register_field_array(proto_2009_12_dpp, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + } + + if (proto_2009_12_dpp_common == -1) + { + proto_2009_12_dpp_common = proto_register_protocol(DOF_PRESENTATION_PROTOCOL " V2 Support", "DPS.DPP.V2S", "dof.dpp.v2s"); + + proto_register_field_array(proto_2009_12_dpp, shf, array_length(shf)); + proto_register_subtree_array(sett, array_length(sett)); + + expert_dpp = expert_register_protocol(proto_2009_12_dpp); + expert_register_field_array(expert_dpp, ei, array_length(ei)); + } +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_dpp_2(void) +{ + dissector_handle_t dpp_handle; + dpp_handle = create_dissector_handle(dissect_dpp_2, proto_2009_12_dpp); + dissector_add_uint("dof.dpp", 2, dpp_handle); +} + +/** + * Initialize Core DPP Functionality + */ +static void dof_dpp_register(void) +{ + static hf_register_info hf[] = + { + { &hf_2008_1_dpp_sid_num, + { "SID ID", "dof.dpp.v2.sid-id", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } + }, + { &hf_2008_1_dpp_sid_str, + { "SID", "dof.dpp.v2.sid", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } + }, + { &hf_2008_1_dpp_rid_num, + { "RID ID", "dof.dpp.v2.rid-id", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } + }, + { &hf_2008_1_dpp_rid_str, + { "RID", "dof.dpp.v2.rid", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } + }, + { &hf_2008_1_dpp_first_command, + { "First Operation", "dof.dpp.v2.first-operation", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2008_1_dpp_last_command, + { "Last Operation", "dof.dpp.v2.last-operation", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2008_1_dpp_first_response, + { "First Response", "dof.dpp.v2.first-response", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2008_1_dpp_last_response, + { "Last Response", "dof.dpp.v2.last-response", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2008_1_dpp_related_frame, + { "Related Frame", "dof.dpp.v2.related-frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_2008_1_dpp_1_flag, + { "Flags", "dof.dpp.flag", FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x80, NULL, HFILL } + }, + { &hf_2008_1_dpp_1_version, + { "Version", "dof.dpp.version", FT_UINT8, BASE_DEC, NULL, 0x7F, NULL, HFILL } + }, + }; + + static gint *ett[] = + { + &ett_2008_1_dpp, + &ett_2008_1_dpp_1_header, + }; + + static ei_register_info ei[] = + { + { &ei_dof_6_timeout, { "dof.dpp.timeout", PI_PROTOCOL, PI_ERROR, "DOF Violation: DPS.6: Negotiation not complete within 10 seconds.", EXPFILL } }, + }; + + if (proto_2008_1_dpp == -1) + { + expert_module_t *expert_dpp; + + proto_2008_1_dpp = proto_register_protocol(DOF_PRESENTATION_PROTOCOL, "DPS.DPP", "dof.dpp"); + + proto_register_field_array(proto_2008_1_dpp, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); + dof_dpp_dissectors = register_dissector_table("dof.dpp", "DOF DPP Version", proto_2008_1_dpp, FT_UINT8, BASE_DEC); + + expert_dpp = expert_register_protocol(proto_2008_1_dpp); + expert_register_field_array(expert_dpp, ei, array_length(ei)); + } + + dof_register_dpp_0(); + dof_register_dpp_2(); +} + +static void dof_dpp_handoff(void) +{ + dof_reg_handoff_dpp_0(); + dof_reg_handoff_dpp_2(); +} + +/* General Application Registration Support */ + +static void app_reset(void) +{ +} + +static void app_cleanup(void) +{ +} + +/** + * Initialize Core DPP Functionality + */ +static void app_register(void) +{ + if (proto_2008_1_app == -1) + { + proto_2008_1_app = proto_register_protocol(DOF_APPLICATION_PROTOCOL, "DPS.APP", "dof.app"); + app_dissectors = register_dissector_table("dof.app", "DOF APP Version", proto_2008_1_app, FT_UINT16, BASE_DEC); + } +} + +static void app_handoff(void) +{ +} + +/* DSP Registration Support */ + +static void dof_dsp_reset(void) +{ +} + +static void dof_dsp_cleanup(void) +{ +} + +static void dof_register_dsp_0(void) +{ + static hf_register_info hf[] = + { + { &hf_2008_1_app_version, + { "APPID", "dof.app.v0.appid", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL } + }, + + { &hf_2008_1_dsp_12_opcode, + { "Opcode", "dof.dsp.opcode", FT_UINT8, BASE_DEC, VALS(strings_2008_1_dsp_opcodes), 0x0, NULL, HFILL } }, + + { &hf_2008_1_dsp_attribute_code, + { "Attribute Code", "dof.dsp.avp.attribute-code", FT_UINT8, BASE_DEC, VALS(strings_2008_1_dsp_attribute_codes), 0x00, NULL, HFILL } }, + + { &hf_2008_1_dsp_attribute_data, + { "Attribute Data", "dof.dsp.avp.attribute-data", FT_UINT16, BASE_HEX, NULL, 0x00, NULL, HFILL } }, + + { &hf_2008_1_dsp_value_length, + { "Value Length", "dof.dsp.avp.value-length", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_2008_1_dsp_value_data, + { "Value Data", "dof.dsp.avp.value-data", FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_2008_1_dsp_12, + &ett_2008_1_dsp_12_options, + &ett_2008_1_dsp_12_option, + }; + + proto_2008_1_dsp = proto_register_protocol("DOF Session Protocol", "DOF.ESP", "dof.esp"); + + proto_register_field_array(proto_2008_1_dsp, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_dsp_0(void) +{ + dissector_handle_t dsp_handle = create_dissector_handle(dissect_dsp, proto_2008_1_dsp); + dissector_add_uint("dof.app", 0, dsp_handle); +} + +static void dof_dsp_register(void) +{ + dof_register_dsp_0(); +} + +static void dof_dsp_handoff(void) +{ + dof_reg_handoff_dsp_0(); +} + +/* CCM Registration Support */ + +static void dof_ccm_reset(void) +{ +} + +static void dof_ccm_cleanup(void) +{ +} + +static void dof_register_ccm_24577(void) +{ + expert_module_t *expert_ccm; + + static hf_register_info hfdsp[] = + { + { &hf_ccm_dsp_option, + { "CCM Security Mode", "dof.ccm.dsp_opt", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + { &hf_ccm_dsp_strength_count, + { "CCM Strength Count", "dof.ccm.strength-count", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + { &hf_ccm_dsp_strength, + { "CCM Strength", "dof.ccm.strength", FT_UINT8, BASE_DEC, VALS(ccm_strengths), 0x0, NULL, HFILL } }, + { &hf_ccm_dsp_e_flag, + { "CCM Minimum Encrypt", "dof.ccm.encrypt.min", FT_BOOLEAN, 8, TFS(&tfs_encrypt_do_not_encrypt), 0x80, NULL, HFILL } }, + { &hf_ccm_dsp_m_flag, + { "CCM Maximum Encrypt", "dof.ccm.encrypt.max", FT_BOOLEAN, 8, TFS(&tfs_encrypt_do_not_encrypt), 0x40, NULL, HFILL } }, + { &hf_ccm_dsp_tmax, + { "CCM Maximum MAC", "dof.ccm.mac.max", FT_UINT8, BASE_DEC, NULL, 0x38, NULL, HFILL } }, + { &hf_ccm_dsp_tmin, + { "CCM Minimum MAC", "dof.ccm.mac.min", FT_UINT8, BASE_DEC, NULL, 0x07, NULL, HFILL } }, + }; + + static hf_register_info hf[] = + { + { &hf_ccm_opcode, + { "Opcode", "dof.ccm.opcode", FT_UINT8, BASE_DEC, VALS(ccm_opcode_strings), 0x0, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_ccm_dsp_option, + &ett_ccm_dsp, + &ett_ccm, + }; + + static hf_register_info hfheader[] = + { + { &hf_epp_v1_ccm_flags, + { "Flags", "dof.epp.v1.ccm.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, + { &hf_epp_v1_ccm_flags_manager, + { "Manager", "dof.epp.v1.ccm.flags.manager", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } }, + { &hf_epp_v1_ccm_flags_period, + { "Period", "dof.epp.v1.ccm.flags.period", FT_UINT8, BASE_DEC, NULL, 0x70, NULL, HFILL } }, + { &hf_epp_v1_ccm_flags_target, + { "Target", "dof.epp.v1.ccm.flags.target", FT_UINT8, BASE_DEC, NULL, 0x08, NULL, HFILL } }, + { &hf_epp_v1_ccm_flags_next_nid, + { "Next Node Identifier", "dof.epp.v1.ccm.flags.next-nid", FT_UINT8, BASE_DEC, NULL, 0x02, NULL, HFILL } }, + { &hf_epp_v1_ccm_flags_packet, + { "Packet", "dof.epp.v1.ccm.flags.packet", FT_UINT8, BASE_DEC, NULL, 0x01, NULL, HFILL } }, + { &hf_epp_v1_ccm_nid, + { "Node ID", "dof.epp.v1.ccm.nodeid", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + { &hf_epp_v1_ccm_slot, + { "Slot", "dof.epp.v1.ccm.slot", FT_UINT16, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + { &hf_epp_v1_ccm_pn, + { "Packet", "dof.epp.v1.ccm.packet", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + { &hf_epp_v1_ccm_tnid, + { "Target Node ID", "dof.epp.v1.ccm.target", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + { &hf_epp_v1_ccm_nnid, + { "Next Node ID", "dof.epp.v1.ccm.nnid", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + }; + + static gint *ettheader[] = + { + &ett_epp_v1_ccm_flags, + &ett_header, + }; + + static ei_register_info ei[] = + { + { &ei_decode_failure, { "dof.ccm.decode_failure", PI_UNDECODED, PI_WARN, "Failure to decrypt packet.", EXPFILL } }, + }; + + /* No Configuration options to register? */ + + proto_ccm_app = proto_register_protocol("DOF CCM Security Mode App", "DOF.CCM.APP", "dof.ccm.app"); + proto_ccm = proto_register_protocol("DOF CCM Security Mode of Operation", "DOF.CCM", "dof.ccm"); + proto_ccm_dsp = proto_register_protocol("DOF CCM Security Mode DSP Options", "DOF.CCM.DSP", "dof.ccm.dsp"); + + proto_register_field_array(proto_ccm_app, hf, array_length(hf)); + proto_register_field_array(proto_ccm_dsp, hfdsp, array_length(hfdsp)); + proto_register_subtree_array(ett, array_length(ett)); + + proto_register_field_array(proto_ccm, hfheader, array_length(hfheader)); + proto_register_subtree_array(ettheader, array_length(ettheader)); + + expert_ccm = expert_register_protocol(proto_ccm); + expert_register_field_array(expert_ccm, ei, array_length(ei)); +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_ccm_24577(void) +{ + static dissector_handle_t ccm_app_handle; + static dissector_handle_t dsp_handle; + static dissector_handle_t ccm_handle; + + ccm_app_handle = create_dissector_handle(dissect_ccm_app, proto_ccm_app); + dsp_handle = create_dissector_handle(dissect_ccm_dsp, proto_ccm_dsp); + ccm_handle = create_dissector_handle(dissect_ccm, proto_ccm); + + dissector_add_uint("dof.app", DOF_PROTOCOL_CCM, ccm_app_handle); + dissector_add_uint("dof.dsp.options", DSP_CCM_FAMILY | DOF_PROTOCOL_CCM, dsp_handle); + dissector_add_uint("dof.secmode", DOF_PROTOCOL_CCM, ccm_handle); +} + +static void dof_ccm_register(void) +{ + dof_register_ccm_24577(); +} + +static void dof_ccm_handoff(void) +{ + dof_reg_handoff_ccm_24577(); +} + +/* OAP Registration Support */ + +static void dof_oap_reset(void) +{ + /* The value is not allocated, so does not need to be freed. */ + oap_1_alias_to_binding = g_hash_table_new_full(oap_1_alias_hash_func, oap_1_alias_equal_func, NULL, NULL); +} + +static void dof_oap_cleanup(void) +{ + g_hash_table_destroy(oap_1_alias_to_binding); + oap_1_alias_to_binding = NULL; +} + +static void dof_register_oap_1(void) +{ + expert_module_t *expert_oap; + + static hf_register_info hfdsp[] = + { + { &hf_oap_1_dsp_option, + { "Object Access Protocol", "dof.oap.dsp_opt", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + }; + + static hf_register_info hf[] = + { + { &hf_oap_1_opcode, + { "Opcode", "dof.oap.opcode", FT_UINT8, BASE_DEC, VALS(oap_opcode_strings), 0x1F, NULL, HFILL } }, + + { &hf_oap_1_alias_size, + { "Alias Length", "dof.oap.aliaslen", FT_UINT8, BASE_DEC, NULL, 0xC0, NULL, HFILL } }, + + { &hf_oap_1_flags, + { "Flags", "dof.oap.flags", FT_UINT8, BASE_DEC, NULL, 0x20, NULL, HFILL } }, + + { &hf_oap_1_exception_internal_flag, + { "Internal Exception", "dof.oap.exception.internal", FT_UINT8, BASE_DEC, NULL, 0x80, NULL, HFILL } }, + + { &hf_oap_1_exception_final_flag, + { "Final Exception", "dof.oap.exception.final", FT_UINT8, BASE_DEC, NULL, 0x40, NULL, HFILL } }, + + { &hf_oap_1_exception_provider_flag, + { "Exception Provider", "dof.oap.exception.provider", FT_UINT8, BASE_DEC, NULL, 0x20, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol, + { "Command Control", "dof.oap.cmdcontrol", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_cache_flag, + { "Cache Delay Flag", "dof.oap.cmdcontrol.flag.cache", FT_UINT8, BASE_HEX, NULL, 0x40, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_cache, + { "Cache Delay", "dof.oap.cmdcontrol.cache", FT_UINT8, BASE_HEX, NULL, 0x00, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_verbosity_flag, + { "Verbosity Flag", "dof.oap.cmdcontrol.flag.verbosity", FT_UINT8, BASE_HEX, NULL, 0x30, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_noexecute_flag, + { "No Execute Flag", "dof.oap.cmdcontrol.flag.noexecute", FT_UINT8, BASE_HEX, NULL, 0x08, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_ack_flag, + { "Ack List Flag", "dof.oap.cmdcontrol.flag.ack", FT_UINT8, BASE_HEX, NULL, 0x04, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_ackcnt, + { "Ack List Count", "dof.oap.cmdcontrol.ackcnt", FT_UINT8, BASE_HEX, NULL, 0x00, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_ack, + { "Ack", "dof.oap.cmdcontrol.ack", FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_delay_flag, + { "Execution Delay Flag", "dof.oap.cmdcontrol.flag.delay", FT_UINT8, BASE_HEX, NULL, 0x02, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_heuristic_flag, + { "Heuristic Flag", "dof.oap.cmdcontrol.flag.heuristic", FT_UINT8, BASE_HEX, NULL, 0x01, NULL, HFILL } }, + + { &hf_oap_1_cmdcontrol_heuristic, + { "Heuristic", "dof.oap.cmdcontrol.heuristic", FT_UINT8, BASE_HEX, NULL, 0x00, NULL, HFILL } }, + + { &hf_oap_1_providerid, + { "Provider ID", "dof.oap.provider-id", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_objectid, + { "Object ID", "dof.oap.object-id", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_interfaceid, + { "Interface ID", "dof.oap.interface-id", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_itemid, + { "Item ID", "dof.oap.item-id", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + +#if 0 /* not used yet */ + { &hf_oap_1_distance, + { "Distance", "dof.oap.distance", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, +#endif + + { &hf_oap_1_alias, + { "Alias", "dof.oap.alias", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_alias_frame, + { "Alias Frame", "dof.oap.alias-frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + +#if 0 /* not used yet */ + { &hf_oap_1_opinfo_start_frame, + { "Command Frame", "dof.oap.command-frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_opinfo_end_frame, + { "Response Frame", "dof.oap.response-frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_opinfo_timeout, + { "Operation Timeout", "dof.oap.opid.timeout", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0, NULL, HFILL } }, +#endif + + { &hf_oap_1_subscription_delta, + { "Minimum Delta", "dof.oap.subscription.min-delta", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_update_sequence, + { "Sequence", "dof.oap.sequence", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + + { &hf_oap_1_value_list, + { "OAP Value List", "dof.oap.value_list", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_oap_1_dsp, + &ett_oap_1_dsp_options, + &ett_oap_1, + &ett_oap_1_opinfo, + &ett_oap_1_cmdcontrol, + &ett_oap_1_cmdcontrol_flags, + &ett_oap_1_cmdcontrol_ack, + &ett_oap_1_alias, + &ett_oap_1_objectid, + &ett_oap_1_1_providerid, + }; + + static ei_register_info ei[] = + { + { &ei_oap_no_session, { "dof.oap.no_session", PI_PROTOCOL, PI_ERROR, "Session not found", EXPFILL } }, + }; + + proto_oap_1 = proto_register_protocol("DOF Object Access Protocol", "DOF.OAP", "dof.oap"); + proto_oap_1_dsp = proto_register_protocol("DOF Object Access Protocol DSP Options", "DOF.OAP.DSP", "dof.oap.dsp"); + + proto_register_field_array(proto_oap_1, hf, array_length(hf)); + proto_register_field_array(proto_oap_1_dsp, hfdsp, array_length(hfdsp)); + proto_register_subtree_array(ett, array_length(ett)); + + expert_oap = expert_register_protocol(proto_oap_1); + expert_register_field_array(expert_oap, ei, array_length(ei)); +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_oap_1(void) +{ + dissector_handle_t oap_handle = create_dissector_handle(dissect_oap, proto_oap_1); + dissector_handle_t dsp_handle = create_dissector_handle(dissect_oap_dsp, proto_oap_1_dsp); + + dissector_add_uint("dof.app", DOF_PROTOCOL_OAP_1, oap_handle); + dissector_add_uint("dof.dsp.options", DSP_OAP_FAMILY | DOF_PROTOCOL_OAP_1, dsp_handle); +} + +static void dof_oap_register(void) +{ + dof_register_oap_1(); +} + +static void dof_oap_handoff(void) +{ + dof_reg_handoff_oap_1(); +} + +/* SGMP Registration Support */ + +static void dof_register_sgmp_130(void); +static void dof_reg_handoff_sgmp_130(void); + +static void dof_sgmp_reset(void) +{ +} + +static void dof_sgmp_cleanup(void) +{ +} + +static void dof_register_sgmp_130(void) +{ + static hf_register_info hf[] = + { + { &hf_opcode, + { "Opcode", "dof.sgmp.v1.opcode", FT_UINT8, BASE_DEC, VALS(sgmp_opcode_strings), 0x0, NULL, HFILL } }, + + { &hf_sgmp_domain, + { "Domain", "dof.sgmp.v1.domain", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_sgmp_epoch, + { "Epoch", "dof.sgmp.v1.epoch", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_initiator_block, + { "Initiator Block", "dof.sgmp.v1.initiator-block", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_sgmp_security_scope, + { "Security Scope", "dof.sgmp.v1.security-scope", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_initial_state, + { "Initial State", "dof.sgmp.v1.initial-state", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_latest_version, + { "Latest SGMP Version", "dof.sgmp.v1.latest-sgmp-version", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_desire, + { "Desire", "dof.sgmp.v1.desire", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_ticket, + { "Ticket", "dof.sgmp.v1.ticket", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + + { &hf_sgmp_tmin, + { "TMIN", "dof.sgmp.v1.tmin", FT_UINT16, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_tie_breaker, + { "Tie Breaker", "dof.sgmp.v1.tie-breaker", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_delay, + { "Delay", "dof.sgmp.v1.delay", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } }, + + { &hf_key, + { "Key", "dof.sgmp.v1.key", FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_sgmp, + &ett_sgmp_domain, + &ett_initiator_block, + &ett_sgmp_security_scope, + &ett_initial_state, + &ett_ticket, + }; + + proto_sgmp = proto_register_protocol("DOF Secure Group Management Protocol", "DOF.SGMP", "dof.sgmp"); + + proto_register_field_array(proto_sgmp, hf, array_length(hf)); + proto_register_subtree_array(ett, array_length(ett)); +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_sgmp_130(void) +{ + dissector_handle_t sgmp_handle = create_dissector_handle(dissect_sgmp, proto_sgmp); + + dissector_add_uint("dof.app", DOF_PROTOCOL_SGMP, sgmp_handle); +} + +static void dof_sgmp_register(void) +{ + dof_register_sgmp_130(); +} + +static void dof_sgmp_handoff(void) +{ + dof_reg_handoff_sgmp_130(); +} + +/* TEP Registration Support */ + +static void dof_tep_reset(void) +{ +} + +static void dof_tep_cleanup(void) +{ +} + +static void dof_register_tep_128(void) +{ + static hf_register_info hfdsp[] = + { + { &hf_dsp_option, + { "Ticket Exchange Protocol Version 1", "dof.tep1.dsp_opt", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + }; + + static hf_register_info hf[] = + { + { &hf_tep_operation, + { "Operation", "dof.tep1.operation", FT_UINT8, BASE_DEC, VALS(tep_opcode_strings), 0x00, NULL, HFILL } }, + + { &hf_tep_operation_type, + { "Operation Type", "dof.tep1.operation_type", FT_BOOLEAN, 8, TFS(&tep_optype_vals), TEP_OPCODE_RSP, NULL, HFILL } }, + + { &hf_tep_opcode, + { "Opcode", "dof.tep1.opcode", FT_UINT8, BASE_DEC, VALS(tep_opcode_strings), 0x0F, NULL, HFILL } }, + + { &hf_tep_k, + { "K", "dof.tep1.k", FT_UINT8, BASE_DEC, NULL, 0x10, NULL, HFILL } }, + + { &hf_tep_c, + { "C", "dof.tep1.c", FT_UINT8, BASE_DEC, NULL, 0x20, NULL, HFILL } }, + + { &hf_tep_reject_code, + { "Code", "dof.tep1.reject.code", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_reject_data, + { "Data", "dof.tep1.reject.data", FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + /* TEP.2.1 */ + { &hf_tep_2_1_domain, + { "Domain", "dof.2008.4.tep1.2.1.domain", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_tep_2_1_initiator_block, + { "Initiator Block", "dof.2008.4.tep1.2.1.initiator_block", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_1_ticket_confirmation, + { "Ticket Confirmation", "dof.2008.4.tep1.2.1.ticket_confirmation", FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + /* TEP.2.2 */ + { &hf_tep_2_2_initiator_ticket, + { "Initiator Ticket", "dof.2008.4.tep1.2.2.initiator_ticket", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_2_ticket_confirmation, + { "Ticket Confirmation", "dof.2008.4.tep1.2.2.ticket_confirmation", FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_2_responder_initialization, + { "Responder Initialization", "dof.2008.4.tep1.2.2.responder_initialization", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_2_responder_block, + { "Responder Block", "dof.2008.4.tep1.2.2.responder_block", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_2_authenticator_initialization, + { "Authenticator Initialization", "dof.2008.4.tep1.2.2.authenticator_initialization", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + /* TEP.2.2.1 */ + { &hf_tep_2_2_1_state_identifier, + { "State Identifier", "dof.2008.4.tep1.2.2.1.state_identifier", FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_2_2_1_initial_state, + { "Initial State", "dof.2008.4.tep1.2.2.1.initial_state", FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL } }, + + { &hf_tep_session_key, + { "Session Key", "dof.session_key", FT_BYTES, SEP_COLON, NULL, 0x00, NULL, HFILL } }, + }; + + static gint *ett[] = + { + &ett_tep_dsp, + &ett_tep_dsp_options, + &ett_tep, + &ett_tep_operation, + + &ett_tep_2_1_domain, + &ett_tep_2_1_initiator_block, + + &ett_tep_2_2_initiator_ticket, + &ett_tep_2_2_responder_initialization, + &ett_tep_2_2_responder_block, + &ett_tep_2_2_authenticator_initialization, + + &ett_tep_2_2_1_initial_state, + }; + + /* module_t *tep_module;*/ + + /* No Configuration options to register? */ + + proto_tep = proto_register_protocol("DOF Ticket Exchange Protocol Version 1", "DOF.TEP1", "dof.tep1"); + + proto_tep_dsp = proto_register_protocol("DOF Ticket Exchange Protocol DSP Options", "DOF.TEP1.DSP", "dof.tep1.dsp"); + + proto_register_field_array(proto_tep, hf, array_length(hf)); + proto_register_field_array(proto_tep_dsp, hfdsp, array_length(hfdsp)); + proto_register_subtree_array(ett, array_length(ett)); + + /* tep_module = prefs_register_protocol( proto_tep, NULL );*/ +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_tep_128(void) +{ + dissector_handle_t tep_handle = create_dissector_handle(dissect_tep, proto_tep); + dissector_handle_t dsp_handle = create_dissector_handle(dissect_tep_dsp, proto_tep_dsp); + + dissector_add_uint("dof.app", DOF_PROTOCOL_TEP, tep_handle); + dissector_add_uint("dof.dsp.options", DSP_TEP_FAMILY | DOF_PROTOCOL_TEP, dsp_handle); +} + +static void dof_tep_register(void) +{ + dof_register_tep_128(); +} + +static void dof_tep_handoff(void) +{ + dof_reg_handoff_tep_128(); +} + +/* TRP Registration Support */ + +static void dof_trp_reset(void) +{ +} + +static void dof_trp_cleanup(void) +{ +} + +static void dof_register_trp_129(void) +{ + expert_module_t *expert_trp; + + static hf_register_info hfdsp[] = + { + { &hf_trp_dsp_option, + { "Ticket Request Protocol", "dof.trp.dsp_opt", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + }; + + static hf_register_info hf[] = + { + { &hf_trp_opcode, + { "Opcode", "dof.trp.opcode", FT_UINT8, BASE_DEC, VALS(trp_opcode_strings), 0x0, NULL, HFILL } }, + + { &hf_domain, + { "Domain", "dof.trp.domain", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_identity_resolution, + { "Identity Resolution", "dof.trp.identity_resolution", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_initiator_request, + { "Initiator Request", "dof.trp.initiator_request", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_responder_request, + { "Responder Request", "dof.trp.responder_request", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_initiator_ticket, + { "Initiator Ticket", "dof.trp.initiator_ticket", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_responder_ticket, + { "Responder Ticket", "dof.trp.responder_ticket", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_authentication_block, + { "Authentication Block", "dof.trp.authentication_block", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_group_identifier, + { "Group Identifier", "dof.trp.group_identifier", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_node_identifier, + { "Node Identifier", "dof.trp.node_identifier", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_thb, + { "Thb", "dof.trp.thb", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_tmin, + { "Tmin", "dof.trp.tmin", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_tmax, + { "Tmax", "dof.trp.tmax", FT_UINT8, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_trp_epoch, + { "Epoch", "dof.trp.epoch", FT_UINT16, BASE_DEC, NULL, 0x00, NULL, HFILL } }, + + { &hf_sidg, + { "SIDg", "dof.trp.sid_g", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_security_scope, + { "Security Scope", "dof.trp.security_scope", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_security_mode, + { "Security Mode", "dof.trp.security_mode", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_ssid, + { "SSID", "dof.trp.ssid", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + +#if 0 /* not used yet */ + { &hf_initiator_pg, + { "Initiator Permissions", "dof.trp.initiator_pg", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, +#endif + + { &hf_initiator_validation, + { "Initiator Validation", "dof.trp.initiator_validation", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_responder_pg, + { "Responder Permissions", "dof.trp.responder_pg", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_responder_validation, + { "Responder Validation", "dof.trp.responder_validation", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_errorcode, + { "Error Code", "dof.trp.errorcode", FT_UINT8, BASE_DEC, VALS(trp_error_strings), 0x0, NULL, HFILL } }, + + { &hf_trp_duration, + { "Duration", "dof.trp.duration", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + +#if 0 /* not used yet */ + { &hf_trp_rnonce, + { "Requestor Nonce", "dof.trp.rnonce", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_pnonce, + { "Provider Nonce", "dof.trp.pnonce", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_reqid, + { "Requestor ID", "dof.trp.reqid", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_provid, + { "Provider ID", "dof.trp.provid", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_count, + { "Permission Count", "dof.trp.perm.count", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_type, + { "Permission Type", "dof.trp.perm.type", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_rflags, + { "Requestor SRP Flags", "dof.trp.rflags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_rcache, + { "Requestor SRP Cache", "dof.trp.rcache", FT_BOOLEAN, 8, NULL, 0x2, NULL, HFILL } }, + + { &hf_trp_perm_rsrp, + { "Requestor SRP", "dof.trp.rsrp", FT_BOOLEAN, 8, NULL, 0x1, NULL, HFILL } }, + + { &hf_trp_perm_rsrp_a, + { "Requestor SRP A", "dof.trp.rsrp.a", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_rsrp_u, + { "Requestor SRP u", "dof.trp.rsrp.u", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_pflags, + { "Provider SRP Flags", "dof.trp.pflags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_pcache, + { "Provider SRP Cache", "dof.trp.pcache", FT_BOOLEAN, 8, NULL, 0x2, NULL, HFILL } }, + + { &hf_trp_perm_psrp, + { "Provider SRP", "dof.trp.psrp", FT_BOOLEAN, 8, NULL, 0x1, NULL, HFILL } }, + + { &hf_trp_perm_psrp_a, + { "Provider SRP A", "dof.trp.psrp.a", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_psrp_u, + { "Provider SRP u", "dof.trp.psrp.u", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_psrp_b, + { "Provider SRP B", "dof.trp.psrp.b", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_psrp_s, + { "Provider SRP S", "dof.trp.psrp.s", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_confirmation, + { "Confirmation", "dof.trp.confirmation", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_pke, + { "Provider Key Expression", "dof.trp.pke", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, + + { &hf_trp_perm_pka, + { "Provider Key Authenticator", "dof.trp.pka", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, +#endif + }; + + static gint *ett[] = + { + &ett_trp_dsp, + &ett_trp, + &ett_domain, + &ett_identity_resolution, + &ett_initiator_request, + &ett_initiator_ticket, + &ett_responder_request, + &ett_responder_ticket, + &ett_authentication_block, + &ett_group_identifier, + &ett_node_identifier, + &ett_sidg, + &ett_security_scope, + &ett_security_mode, + &ett_initiator_pg, + &ett_initiator_validation, + &ett_responder_pg, + &ett_responder_validation, + &ett_trp_permset, + &ett_srp_flags, + &ett_trp_ticket, + }; + + static ei_register_info ei[] = + { + { &ei_trp_initiator_id_known, { "dof.trp.initiator_id_known", PI_PROTOCOL, PI_COMMENT, "Initiator identity known", EXPFILL } }, + { &ei_trp_kek_discovered, { "dof.trp.kek_discovered", PI_PROTOCOL, PI_COMMENT, "KEK discovered", EXPFILL } }, + }; + + /* No Configuration options to register? */ + + proto_trp = proto_register_protocol("DOF Ticket Request Protocol", "DOF.TRP", "dof.trp"); + + proto_trp_dsp = proto_register_protocol("DOF Ticket Request Protocol DSP Options", "DOF.TRP.DSP", "dof.trp.dsp"); + + proto_register_field_array(proto_trp, hf, array_length(hf)); + proto_register_field_array(proto_trp_dsp, hfdsp, array_length(hfdsp)); + proto_register_subtree_array(ett, array_length(ett)); + expert_trp = expert_register_protocol(proto_trp); + expert_register_field_array(expert_trp, ei, array_length(ei)); +} + +/** + * The registration hand-off routine + */ +static void dof_reg_handoff_trp_129(void) +{ + dissector_handle_t trp_handle = create_dissector_handle(dissect_trp, proto_trp); + dissector_handle_t dsp_handle = create_dissector_handle(dissect_trp_dsp, proto_trp_dsp); + + dissector_add_uint("dof.app", DOF_PROTOCOL_TRP, trp_handle); + dissector_add_uint("dof.dsp.options", DSP_TRP_FAMILY | DOF_PROTOCOL_TRP, dsp_handle); +} + +static void dof_trp_register(void) +{ + dof_register_trp_129(); +} + +static void dof_trp_handoff(void) +{ + dof_reg_handoff_trp_129(); +} + +/* Wireshark Dissector Registration Proper */ + +/** + * This is called only during reset (file load, reload, etc.). + */ +static void dof_reset_routine(void) +{ + dof_tun_reset(); + dof_reset(); + oid_reset(); + dof_dnp_reset(); + dof_dpp_reset(); + app_reset(); + dof_dsp_reset(); + dof_ccm_reset(); + dof_oap_reset(); + dof_sgmp_reset(); + dof_tep_reset(); + dof_trp_reset(); +} + +static void dof_cleanup_routine(void) +{ + dof_tun_cleanup(); + dof_cleanup(); + oid_cleanup(); + dof_dnp_cleanup(); + dof_dpp_cleanup(); + app_cleanup(); + dof_dsp_cleanup(); + dof_ccm_cleanup(); + dof_oap_cleanup(); + dof_sgmp_cleanup(); + dof_tep_cleanup(); + dof_trp_cleanup(); +} + +static void +dof_shutdown_routine(void) +{ + guint i; + + for (i = 0; i < global_security.identity_data_count; i++) { + g_free(global_security.identity_data[i].identity); + g_free(global_security.identity_data[i].domain); + g_free(global_security.identity_data[i].secret); + } + g_free(global_security.identity_data); + + for (i = 0; i < global_security.group_data_count; i++) { + g_free(global_security.group_data[i].domain); + g_free(global_security.group_data[i].identity); + g_free(global_security.group_data[i].kek); + } + + if (addr_port_to_id) + g_hash_table_destroy(addr_port_to_id); + if (dpp_opid_to_packet_data) + g_hash_table_destroy(dpp_opid_to_packet_data); + if (node_key_to_sid_id) + g_hash_table_destroy(node_key_to_sid_id); + if (sid_buffer_to_sid_id) + g_hash_table_destroy(sid_buffer_to_sid_id); + if (sid_id_to_sid_buffer) + g_hash_table_destroy(sid_id_to_sid_buffer); +} + +/** + * This is the first entry point into the dissector, called on program launch. + */ +void proto_register_dof(void) +{ + dof_tun_register(); + dof_register(); + oid_register(); + dof_dnp_register(); + dof_dpp_register(); + app_register(); + dof_dsp_register(); + dof_ccm_register(); + dof_oap_register(); + dof_sgmp_register(); + dof_tep_register(); + dof_trp_register(); + + register_init_routine(&dof_reset_routine); + register_cleanup_routine(&dof_cleanup_routine); + register_shutdown_routine(&dof_shutdown_routine); +} + +/** + * This routine is called after initialization and whenever the preferences are changed. + */ +void proto_reg_handoff_dof(void) +{ + dof_tun_handoff(); + dof_handoff(); + oid_handoff(); + dof_dnp_handoff(); + dof_dpp_handoff(); + app_handoff(); + dof_dsp_handoff(); + dof_ccm_handoff(); + dof_oap_handoff(); + dof_sgmp_handoff(); + dof_tep_handoff(); + dof_trp_handoff(); +} + +/** + * Protocol-specific data attached to a conversation_t structure - protocol + * index and opaque pointer. + */ +typedef struct _dof_proto_data { + int proto; + void *proto_data; +} dof_proto_data; + +static gint p_compare(gconstpointer a, gconstpointer b) +{ + const dof_proto_data *ap = (const dof_proto_data *)a; + const dof_proto_data *bp = (const dof_proto_data *)b; + + if (ap->proto > bp->proto) + return 1; + else if (ap->proto == bp->proto) + return 0; + else + return -1; +} + +#if 0 /* TODO not used yet */ +static void dof_session_add_proto_data(dof_session_data *session, int proto, void *proto_data) +{ + dof_proto_data *p1 = wmem_new0(wmem_packet_scope(), dof_proto_data); + + p1->proto = proto; + p1->proto_data = proto_data; + + /* Add it to the list of items for this conversation. */ + + session->data_list = g_slist_insert_sorted(session->data_list, (gpointer *)p1, p_compare); +} + +static void *dof_session_get_proto_data(dof_session_data *session, int proto) +{ + dof_proto_data temp, *p1; + GSList *item; + + temp.proto = proto; + temp.proto_data = NULL; + + item = g_slist_find_custom(session->data_list, (gpointer *)&temp, + p_compare); + + if (item != NULL) + { + p1 = (dof_proto_data *)item->data; + return p1->proto_data; + } + + return NULL; +} + +static void dof_session_delete_proto_data(dof_session_data *session, int proto) +{ + dof_proto_data temp; + GSList *item; + + temp.proto = proto; + temp.proto_data = NULL; + + item = g_slist_find_custom(session->data_list, (gpointer *)&temp, + p_compare); + + while (item) + { + session->data_list = g_slist_remove(session->data_list, item->data); + item = item->next; + } +} +#endif + +static void dof_packet_add_proto_data(dof_packet_data *packet, int proto, void *proto_data) +{ + dof_proto_data *p1 = wmem_new0(wmem_file_scope(), dof_proto_data); + + p1->proto = proto; + p1->proto_data = proto_data; + + /* Add it to the list of items for this conversation. */ + + wmem_list_insert_sorted(packet->data_list, (gpointer *)p1, p_compare); +} + +static void *dof_packet_get_proto_data(dof_packet_data *packet, int proto) +{ + dof_proto_data temp, *p1; + wmem_list_frame_t *item; + + temp.proto = proto; + temp.proto_data = NULL; + + item = wmem_list_find_custom(packet->data_list, (gpointer *)&temp, + p_compare); + + if (item != NULL) + { + p1 = (dof_proto_data *)wmem_list_frame_data(item); + return p1->proto_data; + } + + return NULL; +} + +static gint dof_dissect_pdu_as_field(dissector_t dissector, tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int item, int ett, void *result) +{ + int block_length; + tvbuff_t *start = tvb_new_subset_remaining(tvb, offset); + proto_tree *my_tree; + proto_item *ti = proto_tree_add_item(tree, item, tvb, offset, -1, ENC_NA); + my_tree = proto_item_add_subtree(ti, ett); + block_length = dof_dissect_pdu(dissector, start, pinfo, my_tree, result); + return offset + block_length; +} + +static gint dof_dissect_pdu(dissector_t dissector, tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *result) +{ + gint len = dissector(tvb, pinfo, tree, result); + proto_item_set_len(proto_tree_get_parent(tree), len); + + return len; +} + +static int dof_dissect_dnp_length(tvbuff_t *tvb, packet_info *pinfo, guint8 version, gint *offset) +{ + dissector_handle_t dp; + + dp = dissector_get_uint_handle(dnp_framing_dissectors, version); + if (!dp) + return -1; + + return call_dissector_only(dp, tvb, pinfo, NULL, offset); +} + +/* + * Editor modelines - https://www.wireshark.org/tools/modelines.html + * + * Local variables: + * c-basic-offset: 4 + * tab-width: 8 + * indent-tabs-mode: nil + * End: + * + * vi: set shiftwidth=4 tabstop=8 expandtab: + * :indentSize=4:tabSize=8:noTabs=true: + */ |