1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
/* packet-chdlc.c
* Routines for Cisco HDLC packet disassembly
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <wsutil/pint.h>
#include <epan/etypes.h>
#include <epan/prefs.h>
#include <epan/chdlctypes.h>
#include <epan/nlpid.h>
#include <epan/addr_resolv.h>
#include "packet-chdlc.h"
#include "packet-ppp.h"
#include "packet-ip.h"
#include "packet-juniper.h"
#include "packet-l2tp.h"
#include <epan/expert.h>
/*
* See section 4.3.1 of RFC 1547, and
*
* http://www.nethelp.no/net/cisco-hdlc.txt
*/
void proto_register_chdlc(void);
void proto_reg_handoff_chdlc(void);
void proto_register_slarp(void);
void proto_reg_handoff_slarp(void);
static int proto_chdlc;
static int hf_chdlc_addr;
static int hf_chdlc_control;
static int hf_chdlc_proto;
static int hf_chdlc_clns_padding;
static int ett_chdlc;
static int proto_slarp;
static int hf_slarp_ptype;
static int hf_slarp_address;
static int hf_slarp_netmask;
static int hf_slarp_mysequence;
static int hf_slarp_yoursequence;
static int hf_slarp_reliability;
static expert_field ei_slarp_reliability;
static int ett_slarp;
/*
* Protocol types for the Cisco HDLC format.
*
* As per the above, according to RFC 1547, these are "standard 16 bit
* Ethernet protocol type code[s]", but 0x8035 is Reverse ARP, and
* that is (at least according to the Linux ISDN code) not the
* same as Cisco SLARP.
*
* In addition, 0x2000 is apparently the Cisco Discovery Protocol, but
* on Ethernet those are encapsulated inside SNAP with an OUI of
* OUI_CISCO, not OUI_ENCAP_ETHER.
*
* We thus have a separate dissector table for Cisco HDLC types.
* We could perhaps have that table hold only type values that
* wouldn't be in the Ethernet dissector table, and check that
* table first and the Ethernet dissector table if that fails.
*/
#define CISCO_SLARP 0x8035 /* Cisco SLARP protocol */
static dissector_table_t subdissector_table;
static dissector_handle_t chdlc_handle;
static capture_dissector_handle_t ip_cap_handle;
static const value_string chdlc_address_vals[] = {
{CHDLC_ADDR_UNICAST, "Unicast"},
{CHDLC_ADDR_MULTICAST, "Multicast"},
{0, NULL}
};
const value_string chdlc_vals[] = {
{0x2000, "Cisco Discovery Protocol"},
{ETHERTYPE_IP, "IP"},
{ETHERTYPE_IPv6, "IPv6"},
{CISCO_SLARP, "SLARP"},
{ETHERTYPE_DEC_LB, "DEC LanBridge"},
{CHDLCTYPE_BPDU, "Spanning Tree BPDU"},
{ETHERTYPE_ATALK, "Appletalk"},
{ETHERTYPE_AARP, "AARP"},
{ETHERTYPE_IPX, "Netware IPX/SPX"},
{ETHERTYPE_ETHBRIDGE, "Transparent Ethernet bridging" },
{CHDLCTYPE_OSI, "OSI" },
{ETHERTYPE_MPLS, "MPLS unicast"},
{ETHERTYPE_MPLS_MULTI, "MPLS multicast"},
{0, NULL}
};
static bool
capture_chdlc( const unsigned char *pd, int offset, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header) {
if (!BYTES_ARE_IN_FRAME(offset, len, 4))
return false;
switch (pntoh16(&pd[offset + 2])) {
case ETHERTYPE_IP:
return call_capture_dissector(ip_cap_handle, pd, offset + 4, len, cpinfo, pseudo_header);
}
return false;
}
void
chdlctype(dissector_handle_t sub_dissector, uint16_t chdlc_type,
tvbuff_t *tvb, int offset_after_chdlctype,
packet_info *pinfo, proto_tree *tree, proto_tree *fh_tree,
int chdlctype_id)
{
tvbuff_t *next_tvb;
int padbyte;
proto_tree_add_uint(fh_tree, chdlctype_id, tvb,
offset_after_chdlctype - 2, 2, chdlc_type);
padbyte = tvb_get_uint8(tvb, offset_after_chdlctype);
if (chdlc_type == CHDLCTYPE_OSI &&
!( padbyte == NLPID_ISO8473_CLNP || /* older Juniper SW does not send a padbyte */
padbyte == NLPID_ISO9542_ESIS ||
padbyte == NLPID_ISO10589_ISIS)) {
/* There is a Padding Byte for CLNS protocols over Cisco HDLC */
proto_tree_add_item(fh_tree, hf_chdlc_clns_padding, tvb, offset_after_chdlctype, 1, ENC_BIG_ENDIAN);
next_tvb = tvb_new_subset_remaining(tvb, offset_after_chdlctype + 1);
} else {
next_tvb = tvb_new_subset_remaining(tvb, offset_after_chdlctype);
}
/* dissect with the handle; if there's no handle, it's just data */
if (sub_dissector != NULL) {
call_dissector(sub_dissector, next_tvb, pinfo, tree);
} else {
col_add_fstr(pinfo->cinfo, COL_PROTOCOL, "0x%04x", chdlc_type);
call_data_dissector(next_tvb, pinfo, tree);
}
}
static int chdlc_fcs_decode; /* 0 = No FCS, 1 = 16 bit FCS, 2 = 32 bit FCS */
static int
dissect_chdlc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_item *ti;
proto_tree *fh_tree = NULL;
uint16_t proto;
dissector_handle_t sub_dissector;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "CHDLC");
col_clear(pinfo->cinfo, COL_INFO);
switch (pinfo->p2p_dir) {
case P2P_DIR_SENT:
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "DTE");
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "DCE");
break;
case P2P_DIR_RECV:
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "DCE");
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "DTE");
break;
default:
col_set_str(pinfo->cinfo, COL_RES_DL_SRC, "N/A");
col_set_str(pinfo->cinfo, COL_RES_DL_DST, "N/A");
break;
}
proto = tvb_get_ntohs(tvb, 2);
if (tree) {
ti = proto_tree_add_item(tree, proto_chdlc, tvb, 0, 4, ENC_NA);
fh_tree = proto_item_add_subtree(ti, ett_chdlc);
proto_tree_add_item(fh_tree, hf_chdlc_addr, tvb, 0, 1, ENC_NA);
proto_tree_add_item(fh_tree, hf_chdlc_control, tvb, 1, 1, ENC_NA);
}
decode_fcs(tvb, pinfo, fh_tree, chdlc_fcs_decode, 2);
sub_dissector = dissector_get_uint_handle(subdissector_table, proto);
chdlctype(sub_dissector, proto, tvb, 4, pinfo, tree, fh_tree, hf_chdlc_proto);
return tvb_captured_length(tvb);
}
void
proto_register_chdlc(void)
{
static hf_register_info hf[] = {
{ &hf_chdlc_addr,
{ "Address", "chdlc.address", FT_UINT8, BASE_HEX,
VALS(chdlc_address_vals), 0x0, NULL, HFILL }},
{ &hf_chdlc_control,
{ "Control", "chdlc.control", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_chdlc_proto,
{ "Protocol", "chdlc.protocol", FT_UINT16, BASE_HEX,
VALS(chdlc_vals), 0x0, NULL, HFILL }},
{ &hf_chdlc_clns_padding,
{ "CLNS Padding", "chdlc.clns_padding", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
};
static int *ett[] = {
&ett_chdlc,
};
module_t *chdlc_module;
proto_chdlc = proto_register_protocol("Cisco HDLC", "CHDLC", "chdlc");
proto_register_field_array(proto_chdlc, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
/* subdissector code */
subdissector_table = register_dissector_table("chdlc.protocol",
"Cisco HDLC protocol", proto_chdlc,
FT_UINT16, BASE_HEX);
chdlc_handle = register_dissector("chdlc", dissect_chdlc, proto_chdlc);
/* Register the preferences for the chdlc protocol */
chdlc_module = prefs_register_protocol(proto_chdlc, NULL);
prefs_register_enum_preference(chdlc_module,
"fcs_type",
"CHDLC Frame Checksum Type",
"The type of CHDLC frame checksum (none, 16-bit, 32-bit)",
&chdlc_fcs_decode,
fcs_options, ENC_BIG_ENDIAN);
register_capture_dissector("chdlc", capture_chdlc, proto_chdlc);
}
void
proto_reg_handoff_chdlc(void)
{
capture_dissector_handle_t chdlc_cap_handle;
dissector_add_uint("wtap_encap", WTAP_ENCAP_CHDLC, chdlc_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_CHDLC_WITH_PHDR, chdlc_handle);
dissector_add_uint("juniper.proto", JUNIPER_PROTO_CHDLC, chdlc_handle);
dissector_add_uint("l2tp.pw_type", L2TPv3_PW_CHDLC, chdlc_handle);
chdlc_cap_handle = find_capture_dissector("chdlc");
capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_CHDLC, chdlc_cap_handle);
ip_cap_handle = find_capture_dissector("ip");
}
#define SLARP_REQUEST 0
#define SLARP_REPLY 1
#define SLARP_LINECHECK 2
static const value_string slarp_ptype_vals[] = {
{SLARP_REQUEST, "Request"},
{SLARP_REPLY, "Reply"},
{SLARP_LINECHECK, "Line keepalive"},
{0, NULL}
};
static int
dissect_slarp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_item *ti;
proto_tree *slarp_tree;
uint32_t code;
uint32_t addr;
uint32_t mysequence;
uint32_t yoursequence;
proto_item* reliability_item;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SLARP");
col_clear(pinfo->cinfo, COL_INFO);
code = tvb_get_ntohl(tvb, 0);
ti = proto_tree_add_item(tree, proto_slarp, tvb, 0, 14, ENC_NA);
slarp_tree = proto_item_add_subtree(ti, ett_slarp);
switch (code) {
case SLARP_REQUEST:
case SLARP_REPLY:
addr = tvb_get_ipv4(tvb, 4);
col_add_fstr(pinfo->cinfo, COL_INFO, "%s, from %s, mask %s",
val_to_str(code, slarp_ptype_vals, "Unknown (%d)"),
get_hostname(addr), tvb_ip_to_str(pinfo->pool, tvb, 8));
if (tree) {
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
proto_tree_add_item(slarp_tree, hf_slarp_address, tvb, 4, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(slarp_tree, hf_slarp_netmask, tvb, 8, 4, ENC_BIG_ENDIAN);
}
break;
case SLARP_LINECHECK:
mysequence = tvb_get_ntohl(tvb, 4);
yoursequence = tvb_get_ntohl(tvb, 8);
col_add_fstr(pinfo->cinfo, COL_INFO,
"%s, outgoing sequence %u, returned sequence %u",
val_to_str(code, slarp_ptype_vals, "Unknown (%d)"),
mysequence, yoursequence);
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
proto_tree_add_uint(slarp_tree, hf_slarp_mysequence, tvb, 4, 4,
mysequence);
proto_tree_add_uint(slarp_tree, hf_slarp_yoursequence, tvb, 8, 4,
yoursequence);
reliability_item = proto_tree_add_item(slarp_tree, hf_slarp_reliability, tvb,
12, 2, ENC_BIG_ENDIAN);
if (tvb_get_ntohs(tvb, 12) != 0xFFFF) {
expert_add_info(pinfo, reliability_item, &ei_slarp_reliability);
}
break;
default:
col_add_fstr(pinfo->cinfo, COL_INFO, "Unknown packet type 0x%08X", code);
proto_tree_add_uint(slarp_tree, hf_slarp_ptype, tvb, 0, 4, code);
call_data_dissector(tvb_new_subset_remaining(tvb, 4), pinfo, slarp_tree);
break;
}
return tvb_captured_length(tvb);
}
void
proto_register_slarp(void)
{
expert_module_t* expert_slarp;
static hf_register_info hf[] = {
{ &hf_slarp_ptype,
{ "Packet type", "slarp.ptype", FT_UINT32, BASE_DEC,
VALS(slarp_ptype_vals), 0x0, NULL, HFILL }},
{ &hf_slarp_address,
{ "Address", "slarp.address", FT_IPv4, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
/* XXX - need an FT_ for netmasks, which is like FT_IPV4 but doesn't
get translated to a host name. */
{ &hf_slarp_netmask,
{ "Netmask", "slarp.netmask", FT_IPv4, BASE_NETMASK,
NULL, 0x0, NULL, HFILL }},
{ &hf_slarp_mysequence,
{ "Outgoing sequence number", "slarp.mysequence", FT_UINT32, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_slarp_yoursequence,
{ "Returned sequence number", "slarp.yoursequence", FT_UINT32, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_slarp_reliability,
{ "Reliability", "slarp.reliability", FT_UINT16, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
};
static int *ett[] = {
&ett_slarp,
};
static ei_register_info ei[] = {
{ &ei_slarp_reliability, { "slarp.reliability.invalid", PI_MALFORMED, PI_ERROR,
"Reliability must be 0xFFFF", EXPFILL }}
};
proto_slarp = proto_register_protocol("Cisco SLARP", "SLARP", "slarp");
register_dissector("slarp", dissect_slarp, proto_slarp);
proto_register_field_array(proto_slarp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_slarp = expert_register_protocol(proto_slarp);
expert_register_field_array(expert_slarp, ei, array_length(ei));
}
void
proto_reg_handoff_slarp(void)
{
dissector_add_uint("chdlc.protocol", CISCO_SLARP, find_dissector("slarp"));
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/
|