summaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-ppi.c
blob: 157803773c6a850125a1ee2483e2181e1ac633a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
/*
 * packet-ppi.c
 * Routines for PPI Packet Header dissection
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 2007 Gerald Combs
 *
 * Copyright (c) 2006 CACE Technologies, Davis (California)
 * All rights reserved.
 *
 * SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
 *
 *
 * Dustin Johnson - Dustin@Dustinj.us, Dustin.Johnson@cacetech.com
 *     May 7, 2008 - Added 'Aggregation Extension' and '802.3 Extension'
 */


#include "config.h"

#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <epan/exceptions.h>
#include <epan/ptvcursor.h>
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/reassemble.h>
#include <wsutil/802_11-utils.h>
#include <wsutil/pint.h>
#include <wsutil/str_util.h>

/*
 * Per-Packet Information (PPI) header.
 * See the PPI Packet Header documentation at
 *
 *     https://wayback.archive.org/web/20120525190041/https://www.cacetech.com/documents/PPI%20Header%20format%201.0.10.pdf
 *
 * for details.
 */

/*
 * PPI headers have the following format:
 *
 * ,---------------------------------------------------------.
 * | PPH | PFH 1 | Field data 1 | PFH 2 | Field data 2 | ... |
 * `---------------------------------------------------------'
 *
 * The PPH struct has the following format:
 *
 * typedef struct ppi_packetheader {
 *     uint8_t pph_version;     // Version.  Currently 0
 *     uint8_t pph_flags;       // Flags.
 *     uint16_t pph_len; // Length of entire message, including this header and TLV payload.
 *     uint32_t pph_dlt; // libpcap Data Link Type of the captured packet data.
 * } ppi_packetheader_t;
 *
 * The PFH struct has the following format:
 *
 * typedef struct ppi_fieldheader {
 *     uint16_t pfh_type;        // Type
 *     uint16_t pfh_datalen;     // Length of data
 * } ppi_fieldheader_t;
 *
 * Anyone looking to add their own PPI dissector would probably do well to imitate the GPS
 * ones separation into a distinct file.  Here is a step by step guide:
 * 1) add the number you received to the enum ppi_field_type declaration.
 * 2) Add a value string for your number into vs_ppi_field_type
 * 3) declare a dissector handle by the ppi_gps_handle, and initialize it inside proto_reg_handoff
 * 4) add  case inside dissect_ppi to call your new handle.
 * 5) Write your parser, and get it loaded.
 * Following these steps will result in less churn inside the ppi proper parser, and avoid namespace issues.
 */


#define PPI_PADDED (1 << 0)

#define PPI_V0_HEADER_LEN 8
#define PPI_80211_COMMON_LEN 20
#define PPI_80211N_MAC_LEN 12
#define PPI_80211N_MAC_PHY_OFF 9
#define PPI_80211N_MAC_PHY_LEN 48
#define PPI_AGGREGATION_EXTENSION_LEN 4
#define PPI_8023_EXTENSION_LEN 8

#define PPI_FLAG_ALIGN 0x01
#define IS_PPI_FLAG_ALIGN(x) ((x) & PPI_FLAG_ALIGN)

#define DOT11_FLAG_HAVE_FCS     0x0001
#define DOT11_FLAG_TSF_TIMER_MS 0x0002
#define DOT11_FLAG_FCS_INVALID  0x0004
#define DOT11_FLAG_PHY_ERROR    0x0008

#define DOT11N_FLAG_GREENFIELD      0x00000001
#define DOT11N_FLAG_HT40            0x00000002
#define DOT11N_FLAG_SHORT_GI        0x00000004
#define DOT11N_FLAG_DUPLICATE_RX    0x00000008
#define DOT11N_FLAG_IS_AGGREGATE    0x00000010
#define DOT11N_FLAG_MORE_AGGREGATES 0x00000020
#define DOT11N_FLAG_AGG_CRC_ERROR   0x00000040

#define DOT11N_IS_AGGREGATE(flags)      (flags & DOT11N_FLAG_IS_AGGREGATE)
#define DOT11N_MORE_AGGREGATES(flags)   ( \
    (flags & DOT11N_FLAG_MORE_AGGREGATES) && \
    !(flags & DOT11N_FLAG_AGG_CRC_ERROR))
#define AGGREGATE_MAX 65535
#define AMPDU_MAX 16383

/* XXX - Start - Copied from packet-radiotap.c */
/* Channel flags. */
#define IEEE80211_CHAN_TURBO    0x0010  /* Turbo channel */
#define IEEE80211_CHAN_CCK      0x0020  /* CCK channel */
#define IEEE80211_CHAN_OFDM     0x0040  /* OFDM channel */
#define IEEE80211_CHAN_2GHZ     0x0080  /* 2 GHz spectrum channel. */
#define IEEE80211_CHAN_5GHZ     0x0100  /* 5 GHz spectrum channel */
#define IEEE80211_CHAN_PASSIVE  0x0200  /* Only passive scan allowed */
#define IEEE80211_CHAN_DYN      0x0400  /* Dynamic CCK-OFDM channel */
#define IEEE80211_CHAN_GFSK     0x0800  /* GFSK channel (FHSS PHY) */

#define	IEEE80211_CHAN_ALL \
	(IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_GFSK | \
         IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN)
#define	IEEE80211_CHAN_ALLTURBO \
	(IEEE80211_CHAN_ALL | IEEE80211_CHAN_TURBO)

/*
 * Useful combinations of channel characteristics.
 */
#define IEEE80211_CHAN_FHSS \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_GFSK)
#define	IEEE80211_CHAN_DSSS \
	(IEEE80211_CHAN_2GHZ)
#define IEEE80211_CHAN_A \
        (IEEE80211_CHAN_5GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_B \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_CCK)
#define IEEE80211_CHAN_PUREG \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_OFDM)
#define IEEE80211_CHAN_G \
        (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_DYN)
#define	IEEE80211_CHAN_108A \
	(IEEE80211_CHAN_A | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_108G \
        (IEEE80211_CHAN_G | IEEE80211_CHAN_TURBO)
#define IEEE80211_CHAN_108PUREG \
        (IEEE80211_CHAN_PUREG | IEEE80211_CHAN_TURBO)
/* XXX - End - Copied from packet-radiotap.c */

void proto_register_ppi(void);
void proto_reg_handoff_ppi(void);

typedef enum {
    /* 0 - 29999: Public types */
    PPI_80211_COMMON          =  2,
    PPI_80211N_MAC            =  3,
    PPI_80211N_MAC_PHY        =  4,
    PPI_SPECTRUM_MAP          =  5,
    PPI_PROCESS_INFO          =  6,
    PPI_CAPTURE_INFO          =  7,
    PPI_AGGREGATION_EXTENSION =  8,
    PPI_8023_EXTENSION        =  9,
    /* 11 - 29999: RESERVED */

    /* 30000 - 65535: Private types */
    INTEL_CORP_PRIVATE           = 30000,
    MOHAMED_THAGA_PRIVATE        = 30001,
    PPI_GPS_INFO                 = 30002, /* 30002 - 30005 described in PPI-GEOLOCATION specification */
    PPI_VECTOR_INFO              = 30003, /* currently available in draft from. jellch@harris.com */
    PPI_SENSOR_INFO              = 30004,
    PPI_ANTENNA_INFO             = 30005,
    FNET_PRIVATE                 = 0xC017,
    CACE_PRIVATE                 = 0xCACE
    /* All others RESERVED.  Contact the WinPcap team for an assignment */
} ppi_field_type;

/* Protocol */
static int proto_ppi;

/* Packet header */
static int hf_ppi_head_version;
static int hf_ppi_head_flags;
static int hf_ppi_head_flag_alignment;
static int hf_ppi_head_flag_reserved;
static int hf_ppi_head_len;
static int hf_ppi_head_dlt;

/* Field header */
static int hf_ppi_field_type;
static int hf_ppi_field_len;

/* 802.11 Common */
static int hf_80211_common_tsft;
static int hf_80211_common_flags;
static int hf_80211_common_flags_fcs;
static int hf_80211_common_flags_tsft;
static int hf_80211_common_flags_fcs_valid;
static int hf_80211_common_flags_phy_err;
static int hf_80211_common_rate;
static int hf_80211_common_chan_freq;
static int hf_80211_common_chan_flags;

static int hf_80211_common_chan_flags_turbo;
static int hf_80211_common_chan_flags_cck;
static int hf_80211_common_chan_flags_ofdm;
static int hf_80211_common_chan_flags_2ghz;
static int hf_80211_common_chan_flags_5ghz;
static int hf_80211_common_chan_flags_passive;
static int hf_80211_common_chan_flags_dynamic;
static int hf_80211_common_chan_flags_gfsk;

static int hf_80211_common_fhss_hopset;
static int hf_80211_common_fhss_pattern;
static int hf_80211_common_dbm_antsignal;
static int hf_80211_common_dbm_antnoise;

/* 802.11n MAC */
static int hf_80211n_mac_flags;
static int hf_80211n_mac_flags_greenfield;
static int hf_80211n_mac_flags_ht20_40;
static int hf_80211n_mac_flags_rx_guard_interval;
static int hf_80211n_mac_flags_duplicate_rx;
static int hf_80211n_mac_flags_more_aggregates;
static int hf_80211n_mac_flags_aggregate;
static int hf_80211n_mac_flags_delimiter_crc_after;
static int hf_80211n_mac_ampdu_id;
static int hf_80211n_mac_num_delimiters;
static int hf_80211n_mac_reserved;

/* 802.11n MAC+PHY */
static int hf_80211n_mac_phy_mcs;
static int hf_80211n_mac_phy_num_streams;
static int hf_80211n_mac_phy_rssi_combined;
static int hf_80211n_mac_phy_rssi_ant0_ctl;
static int hf_80211n_mac_phy_rssi_ant1_ctl;
static int hf_80211n_mac_phy_rssi_ant2_ctl;
static int hf_80211n_mac_phy_rssi_ant3_ctl;
static int hf_80211n_mac_phy_rssi_ant0_ext;
static int hf_80211n_mac_phy_rssi_ant1_ext;
static int hf_80211n_mac_phy_rssi_ant2_ext;
static int hf_80211n_mac_phy_rssi_ant3_ext;
static int hf_80211n_mac_phy_ext_chan_freq;
static int hf_80211n_mac_phy_ext_chan_flags;
static int hf_80211n_mac_phy_ext_chan_flags_turbo;
static int hf_80211n_mac_phy_ext_chan_flags_cck;
static int hf_80211n_mac_phy_ext_chan_flags_ofdm;
static int hf_80211n_mac_phy_ext_chan_flags_2ghz;
static int hf_80211n_mac_phy_ext_chan_flags_5ghz;
static int hf_80211n_mac_phy_ext_chan_flags_passive;
static int hf_80211n_mac_phy_ext_chan_flags_dynamic;
static int hf_80211n_mac_phy_ext_chan_flags_gfsk;
static int hf_80211n_mac_phy_dbm_ant0signal;
static int hf_80211n_mac_phy_dbm_ant0noise;
static int hf_80211n_mac_phy_dbm_ant1signal;
static int hf_80211n_mac_phy_dbm_ant1noise;
static int hf_80211n_mac_phy_dbm_ant2signal;
static int hf_80211n_mac_phy_dbm_ant2noise;
static int hf_80211n_mac_phy_dbm_ant3signal;
static int hf_80211n_mac_phy_dbm_ant3noise;
static int hf_80211n_mac_phy_evm0;
static int hf_80211n_mac_phy_evm1;
static int hf_80211n_mac_phy_evm2;
static int hf_80211n_mac_phy_evm3;

/* 802.11n-Extensions A-MPDU fragments */
static int hf_ampdu_reassembled_in;
/* static int hf_ampdu_segments; */
static int hf_ampdu_segment;
static int hf_ampdu_count;

/* Spectrum-Map */
static int hf_spectrum_map;

/* Process-Info */
static int hf_process_info;

/* Capture-Info */
static int hf_capture_info;

/* Aggregation Extension */
static int hf_aggregation_extension_interface_id;

/* 802.3 Extension */
static int hf_8023_extension_flags;
static int hf_8023_extension_flags_fcs_present;
static int hf_8023_extension_errors;
static int hf_8023_extension_errors_fcs;
static int hf_8023_extension_errors_sequence;
static int hf_8023_extension_errors_symbol;
static int hf_8023_extension_errors_data;

/* Generated from convert_proto_tree_add_text.pl */
static int hf_ppi_antenna;
static int hf_ppi_harris;
static int hf_ppi_reserved;
static int hf_ppi_vector;
static int hf_ppi_fnet;
static int hf_ppi_gps;

static int ett_ppi_pph;
static int ett_ppi_flags;
static int ett_dot11_common;
static int ett_dot11_common_flags;
static int ett_dot11_common_channel_flags;
static int ett_dot11n_mac;
static int ett_dot11n_mac_flags;
static int ett_dot11n_mac_phy;
static int ett_dot11n_mac_phy_ext_channel_flags;
static int ett_ampdu_segments;
static int ett_ampdu;
static int ett_ampdu_segment;
static int ett_aggregation_extension;
static int ett_8023_extension;
static int ett_8023_extension_flags;
static int ett_8023_extension_errors;

/* Generated from convert_proto_tree_add_text.pl */
static expert_field ei_ppi_invalid_length;

static dissector_handle_t ppi_handle;

static dissector_handle_t ieee80211_radio_handle;
static dissector_handle_t pcap_pktdata_handle;
static dissector_handle_t ppi_gps_handle, ppi_vector_handle, ppi_sensor_handle, ppi_antenna_handle;
static dissector_handle_t ppi_fnet_handle;

static const true_false_string tfs_ppi_head_flag_alignment = { "32-bit aligned", "Not aligned" };
static const true_false_string tfs_tsft_ms = { "milliseconds", "microseconds" };
static const true_false_string tfs_ht20_40 = { "HT40", "HT20" };
static const true_false_string tfs_phy_error = { "PHY error", "No errors"};

static const value_string vs_ppi_field_type[] = {
    {PPI_80211_COMMON,          "802.11-Common"},
    {PPI_80211N_MAC,            "802.11n MAC Extensions"},
    {PPI_80211N_MAC_PHY,        "802.11n MAC+PHY Extensions"},
    {PPI_SPECTRUM_MAP,          "Spectrum-Map"},
    {PPI_PROCESS_INFO,          "Process-Info"},
    {PPI_CAPTURE_INFO,          "Capture-Info"},
    {PPI_AGGREGATION_EXTENSION, "Aggregation Extension"},
    {PPI_8023_EXTENSION,        "802.3 Extension"},

    {INTEL_CORP_PRIVATE,        "Intel Corporation (private)"},
    {MOHAMED_THAGA_PRIVATE,     "Mohamed Thaga (private)"},
    {PPI_GPS_INFO,              "GPS Tagging"},
    {PPI_VECTOR_INFO,           "Vector Tagging"},
    {PPI_SENSOR_INFO,           "Sensor tagging"},
    {PPI_ANTENNA_INFO,          "Antenna Tagging"},
    {FNET_PRIVATE,              "FlukeNetworks (private)"},
    {CACE_PRIVATE,              "CACE Technologies (private)"},
    {0, NULL}
};

/* Table for A-MPDU reassembly */
static reassembly_table ampdu_reassembly_table;

/* Reassemble A-MPDUs? */
static bool ppi_ampdu_reassemble = true;


static bool
capture_ppi(const unsigned char *pd, int offset _U_, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_)
{
    uint32_t dlt;
    unsigned ppi_len;

    ppi_len = pletoh16(pd+2);
    if(ppi_len < PPI_V0_HEADER_LEN || !BYTES_ARE_IN_FRAME(0, len, ppi_len))
        return false;

    dlt = pletoh32(pd+4);

    return try_capture_dissector("ppi", dlt, pd, ppi_len, len, cpinfo, pseudo_header);
}

static void
ptvcursor_add_invalid_check(ptvcursor_t *csr, int hf, int len, uint64_t invalid_val) {
    proto_item *ti;
    uint64_t    val = invalid_val;

    switch (len) {
        case 8:
            val = tvb_get_letoh64(ptvcursor_tvbuff(csr),
                ptvcursor_current_offset(csr));
            break;
        case 4:
            val = tvb_get_letohl(ptvcursor_tvbuff(csr),
                ptvcursor_current_offset(csr));
            break;
        case 2:
            val = tvb_get_letohs(ptvcursor_tvbuff(csr),
                ptvcursor_current_offset(csr));
            break;
        case 1:
            val = tvb_get_uint8(ptvcursor_tvbuff(csr),
                ptvcursor_current_offset(csr));
            break;
        default:
            DISSECTOR_ASSERT_NOT_REACHED();
    }

    ti = ptvcursor_add(csr, hf, len, ENC_LITTLE_ENDIAN);
    if (val == invalid_val)
        proto_item_append_text(ti, " [invalid]");
}

static void
add_ppi_field_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int *offset)
{
    ptvcursor_t *csr;

    csr = ptvcursor_new(pinfo->pool, tree, tvb, *offset);
    ptvcursor_add(csr, hf_ppi_field_type, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_ppi_field_len, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_free(csr);
    *offset=ptvcursor_current_offset(csr);
}

/* XXX - The main dissection function in the 802.11 dissector has the same name. */
static void
dissect_80211_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len, struct ieee_802_11_phdr *phdr)
{
    proto_tree  *ftree;
    proto_item  *ti;
    ptvcursor_t *csr;
    uint64_t     tsft_raw;
    unsigned     rate_raw;
    unsigned     rate_kbps;
    uint32_t     common_flags;
    uint16_t     common_frequency;
    uint16_t     chan_flags;
    int8_t       dbm_value;
    char        *chan_str;

    ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11_common, NULL, "802.11-Common");
    add_ppi_field_header(tvb, pinfo, ftree, &offset);
    data_len -= 4; /* Subtract field header length */

    if (data_len != PPI_80211_COMMON_LEN) {
        proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
        return;
    }

    common_flags = tvb_get_letohs(tvb, offset + 8);
    if (common_flags & DOT11_FLAG_HAVE_FCS)
        phdr->fcs_len = 4;
    else
        phdr->fcs_len = 0;

    csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);

    tsft_raw = tvb_get_letoh64(tvb, offset);
    if (tsft_raw != 0) {
        phdr->has_tsf_timestamp = true;
        if (common_flags & DOT11_FLAG_TSF_TIMER_MS)
            phdr->tsf_timestamp = tsft_raw * 1000;
        else
            phdr->tsf_timestamp = tsft_raw;
    }

    ptvcursor_add_invalid_check(csr, hf_80211_common_tsft, 8, 0);

    ptvcursor_add_with_subtree(csr, hf_80211_common_flags, 2, ENC_LITTLE_ENDIAN,
                               ett_dot11_common_flags);
    ptvcursor_add_no_advance(csr, hf_80211_common_flags_fcs, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_flags_tsft, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_flags_fcs_valid, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_80211_common_flags_phy_err, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_pop_subtree(csr);

    rate_raw = tvb_get_letohs(tvb, ptvcursor_current_offset(csr));
    if (rate_raw != 0) {
        phdr->has_data_rate = true;
        phdr->data_rate = rate_raw;
    }
    rate_kbps = rate_raw * 500;
    ti = proto_tree_add_uint_format(ftree, hf_80211_common_rate, tvb,
                                    ptvcursor_current_offset(csr), 2, rate_kbps, "Rate: %.1f Mbps",
                                    rate_kbps / 1000.0);
    if (rate_kbps == 0)
        proto_item_append_text(ti, " [invalid]");
    col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%.1f Mbps", rate_kbps / 1000.0);
    ptvcursor_advance(csr, 2);

    common_frequency = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
    if (common_frequency != 0) {
        int calc_channel;

        phdr->has_frequency = true;
        phdr->frequency = common_frequency;
        calc_channel = ieee80211_mhz_to_chan(common_frequency);
        if (calc_channel != -1) {
            phdr->has_channel = true;
            phdr->channel = calc_channel;
        }
    }
    chan_str = ieee80211_mhz_to_str(common_frequency);
    proto_tree_add_uint_format_value(ptvcursor_tree(csr), hf_80211_common_chan_freq, ptvcursor_tvbuff(csr),
                               ptvcursor_current_offset(csr), 2, common_frequency, "%s", chan_str);
    col_add_str(pinfo->cinfo, COL_FREQ_CHAN, chan_str);
    g_free(chan_str);
    ptvcursor_advance(csr, 2);

    memset(&phdr->phy_info, 0, sizeof(phdr->phy_info));
    chan_flags = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
    switch (chan_flags & IEEE80211_CHAN_ALLTURBO) {

    case IEEE80211_CHAN_FHSS:
        phdr->phy = PHDR_802_11_PHY_11_FHSS;
        break;

    case IEEE80211_CHAN_DSSS:
        phdr->phy = PHDR_802_11_PHY_11_DSSS;
        break;

    case IEEE80211_CHAN_A:
        phdr->phy = PHDR_802_11_PHY_11A;
        phdr->phy_info.info_11a.has_turbo_type = true;
        phdr->phy_info.info_11a.turbo_type = PHDR_802_11A_TURBO_TYPE_NORMAL;
        break;

    case IEEE80211_CHAN_B:
        phdr->phy = PHDR_802_11_PHY_11B;
        break;

    case IEEE80211_CHAN_PUREG:
        phdr->phy = PHDR_802_11_PHY_11G;
        phdr->phy_info.info_11g.has_mode = true;
        phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_NORMAL;
        break;

    case IEEE80211_CHAN_G:
        phdr->phy = PHDR_802_11_PHY_11G;
        phdr->phy_info.info_11g.has_mode = true;
        phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_NORMAL;
        break;

    case IEEE80211_CHAN_108A:
        phdr->phy = PHDR_802_11_PHY_11A;
        phdr->phy_info.info_11a.has_turbo_type = true;
        /* We assume non-STURBO is dynamic turbo */
        phdr->phy_info.info_11a.turbo_type = PHDR_802_11A_TURBO_TYPE_DYNAMIC_TURBO;
        break;

    case IEEE80211_CHAN_108PUREG:
        phdr->phy = PHDR_802_11_PHY_11G;
        phdr->phy_info.info_11g.has_mode = true;
        phdr->phy_info.info_11g.mode = PHDR_802_11G_MODE_SUPER_G;
        break;
    }
    ptvcursor_add_with_subtree(csr, hf_80211_common_chan_flags, 2, ENC_LITTLE_ENDIAN,
                               ett_dot11_common_channel_flags);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_turbo, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_cck, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_ofdm, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_2ghz, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_5ghz, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_passive, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211_common_chan_flags_dynamic, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_80211_common_chan_flags_gfsk, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_pop_subtree(csr);


    if (phdr->phy == PHDR_802_11_PHY_11_FHSS) {
        phdr->phy_info.info_11_fhss.has_hop_set = true;
        phdr->phy_info.info_11_fhss.hop_set = tvb_get_uint8(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
    }
    ptvcursor_add(csr, hf_80211_common_fhss_hopset, 1, ENC_LITTLE_ENDIAN);
    if (phdr->phy == PHDR_802_11_PHY_11_FHSS) {
        phdr->phy_info.info_11_fhss.has_hop_pattern = true;
        phdr->phy_info.info_11_fhss.hop_pattern = tvb_get_uint8(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
    }
    ptvcursor_add(csr, hf_80211_common_fhss_pattern, 1, ENC_LITTLE_ENDIAN);

    dbm_value = tvb_get_int8(tvb, ptvcursor_current_offset(csr));
    if (dbm_value != -128 && dbm_value != 0) {
        /*
         * XXX - the spec says -128 is invalid, presumably meaning "use
         * -128 if you don't have the signal strength", but some captures
         * have 0 for noise, presumably meaning it's incorrectly being
         * used for "don't have it", so we check for it as well.
         */
        col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", dbm_value);
        phdr->has_signal_dbm = true;
        phdr->signal_dbm = dbm_value;
    }
    ptvcursor_add_invalid_check(csr, hf_80211_common_dbm_antsignal, 1, 0x80); /* -128 */

    dbm_value = tvb_get_int8(tvb, ptvcursor_current_offset(csr));
    if (dbm_value != -128 && dbm_value != 0) {
        /*
         * XXX - the spec says -128 is invalid, presumably meaning "use
         * -128 if you don't have the noise level", but some captures
         * have 0, presumably meaning it's incorrectly being used for
         * "don't have it", so we check for it as well.
         */
        phdr->has_noise_dbm = true;
        phdr->noise_dbm = dbm_value;
    }
    ptvcursor_add_invalid_check(csr, hf_80211_common_dbm_antnoise, 1, 0x80);

    ptvcursor_free(csr);
}

static void
dissect_80211n_mac(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len, bool add_subtree, uint32_t *n_mac_flags, uint32_t *ampdu_id, struct ieee_802_11_phdr *phdr)
{
    proto_tree  *ftree       = tree;
    ptvcursor_t *csr;
    uint32_t     flags;

    phdr->phy = PHDR_802_11_PHY_11N;

    if (add_subtree) {
        ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11n_mac, NULL, "802.11n MAC");
        add_ppi_field_header(tvb, pinfo, ftree, &offset);
        data_len -= 4; /* Subtract field header length */
    }

    if (data_len != PPI_80211N_MAC_LEN) {
        proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
        return;
    }

    csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);

    flags = tvb_get_letohl(tvb, ptvcursor_current_offset(csr));
    *n_mac_flags = flags;
    phdr->phy_info.info_11n.has_bandwidth = true;
    phdr->phy_info.info_11n.has_short_gi = true;
    phdr->phy_info.info_11n.has_greenfield = true;
    phdr->phy_info.info_11n.bandwidth = ((flags & DOT11N_FLAG_HT40) != 0);
    phdr->phy_info.info_11n.short_gi = ((flags & DOT11N_FLAG_SHORT_GI) != 0);
    phdr->phy_info.info_11n.greenfield = ((flags & DOT11N_FLAG_GREENFIELD) != 0);
    if (DOT11N_IS_AGGREGATE(flags)) {
        phdr->has_aggregate_info = 1;
        phdr->aggregate_flags = 0;
        if (!(flags & DOT11N_FLAG_MORE_AGGREGATES))
            phdr->aggregate_flags |= PHDR_802_11_LAST_PART_OF_A_MPDU;
        if (flags & DOT11N_FLAG_AGG_CRC_ERROR)
            phdr->aggregate_flags |= PHDR_802_11_A_MPDU_DELIM_CRC_ERROR;
    }
    ptvcursor_add_with_subtree(csr, hf_80211n_mac_flags, 4, ENC_LITTLE_ENDIAN,
                               ett_dot11n_mac_flags);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_greenfield, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_ht20_40, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_rx_guard_interval, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_duplicate_rx, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_aggregate, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_flags_more_aggregates, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_80211n_mac_flags_delimiter_crc_after, 4, ENC_LITTLE_ENDIAN); /* Last */
    ptvcursor_pop_subtree(csr);

    if (DOT11N_IS_AGGREGATE(flags)) {
        *ampdu_id = tvb_get_letohl(tvb, ptvcursor_current_offset(csr));
        phdr->aggregate_id = *ampdu_id;
    }
    ptvcursor_add(csr, hf_80211n_mac_ampdu_id, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_80211n_mac_num_delimiters, 1, ENC_LITTLE_ENDIAN);

    if (add_subtree) {
        ptvcursor_add(csr, hf_80211n_mac_reserved, 3, ENC_LITTLE_ENDIAN);
    }

    ptvcursor_free(csr);
}

static void
dissect_80211n_mac_phy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len, uint32_t *n_mac_flags, uint32_t *ampdu_id, struct ieee_802_11_phdr *phdr)
{
    proto_tree  *ftree;
    proto_item  *ti;
    ptvcursor_t *csr;
    uint8_t      mcs;
    uint8_t      ness;
    uint16_t     ext_frequency;
    char        *chan_str;

    ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_dot11n_mac_phy, NULL, "802.11n MAC+PHY");
    add_ppi_field_header(tvb, pinfo, ftree, &offset);
    data_len -= 4; /* Subtract field header length */

    if (data_len != PPI_80211N_MAC_PHY_LEN) {
        proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
        return;
    }

    dissect_80211n_mac(tvb, pinfo, ftree, offset, PPI_80211N_MAC_LEN,
                       false, n_mac_flags, ampdu_id, phdr);
    offset += PPI_80211N_MAC_PHY_OFF;

    csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);

    mcs = tvb_get_uint8(tvb, ptvcursor_current_offset(csr));
    if (mcs != 255) {
        phdr->phy_info.info_11n.has_mcs_index = true;
        phdr->phy_info.info_11n.mcs_index = mcs;
    }
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_mcs, 1, 255);

    ness = tvb_get_uint8(tvb, ptvcursor_current_offset(csr));
    phdr->phy_info.info_11n.has_ness = true;
    phdr->phy_info.info_11n.ness = ness;
    ti = ptvcursor_add(csr, hf_80211n_mac_phy_num_streams, 1, ENC_LITTLE_ENDIAN);
    if (tvb_get_uint8(tvb, ptvcursor_current_offset(csr) - 1) == 0)
        proto_item_append_text(ti, " (unknown)");
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_combined, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant0_ctl, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant1_ctl, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant2_ctl, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant3_ctl, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant0_ext, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant1_ext, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant2_ext, 1, 255);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_rssi_ant3_ext, 1, 255);

    ext_frequency = tvb_get_letohs(ptvcursor_tvbuff(csr), ptvcursor_current_offset(csr));
    chan_str = ieee80211_mhz_to_str(ext_frequency);
    proto_tree_add_uint_format(ptvcursor_tree(csr), hf_80211n_mac_phy_ext_chan_freq, ptvcursor_tvbuff(csr),
                               ptvcursor_current_offset(csr), 2, ext_frequency, "Ext. Channel frequency: %s", chan_str);
    g_free(chan_str);
    ptvcursor_advance(csr, 2);

    ptvcursor_add_with_subtree(csr, hf_80211n_mac_phy_ext_chan_flags, 2, ENC_LITTLE_ENDIAN,
                               ett_dot11n_mac_phy_ext_channel_flags);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_turbo, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_cck, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_ofdm, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_2ghz, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_5ghz, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_passive, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_80211n_mac_phy_ext_chan_flags_dynamic, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_80211n_mac_phy_ext_chan_flags_gfsk, 2, ENC_LITTLE_ENDIAN);
    ptvcursor_pop_subtree(csr);

    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant0signal, 1, 0x80); /* -128 */
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant0noise, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant1signal, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant1noise, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant2signal, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant2noise, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant3signal, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_dbm_ant3noise, 1, 0x80);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm0, 4, 0);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm1, 4, 0);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm2, 4, 0);
    ptvcursor_add_invalid_check(csr, hf_80211n_mac_phy_evm3, 4, 0);

    ptvcursor_free(csr);
}

static void
dissect_aggregation_extension(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len)
{
    proto_tree *ftree;
    ptvcursor_t *csr;

    ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_aggregation_extension, NULL, "Aggregation Extension");
    add_ppi_field_header(tvb, pinfo, ftree, &offset);
    data_len -= 4; /* Subtract field header length */

    if (data_len != PPI_AGGREGATION_EXTENSION_LEN) {
        proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
        return;
    }

    csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);

    ptvcursor_add(csr, hf_aggregation_extension_interface_id, 4, ENC_LITTLE_ENDIAN); /* Last */
    ptvcursor_free(csr);
}

static void
dissect_8023_extension(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int offset, int data_len)
{
    proto_tree  *ftree;
    ptvcursor_t *csr;

    ftree = proto_tree_add_subtree(tree, tvb, offset, data_len, ett_8023_extension, NULL, "802.3 Extension");
    add_ppi_field_header(tvb, pinfo, ftree, &offset);
    data_len -= 4; /* Subtract field header length */

    if (data_len != PPI_8023_EXTENSION_LEN) {
        proto_tree_add_expert_format(ftree, pinfo, &ei_ppi_invalid_length, tvb, offset, data_len, "Invalid length: %u", data_len);
        return;
    }

    csr = ptvcursor_new(pinfo->pool, ftree, tvb, offset);

    ptvcursor_add_with_subtree(csr, hf_8023_extension_flags, 4, ENC_LITTLE_ENDIAN, ett_8023_extension_flags);
    ptvcursor_add(csr, hf_8023_extension_flags_fcs_present, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_pop_subtree(csr);

    ptvcursor_add_with_subtree(csr, hf_8023_extension_errors, 4, ENC_LITTLE_ENDIAN, ett_8023_extension_errors);
    ptvcursor_add_no_advance(csr, hf_8023_extension_errors_fcs, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_8023_extension_errors_sequence, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add_no_advance(csr, hf_8023_extension_errors_symbol, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_add(csr, hf_8023_extension_errors_data, 4, ENC_LITTLE_ENDIAN);
    ptvcursor_pop_subtree(csr);

    ptvcursor_free(csr);
}


#define PADDING4(x) ((((x + 3) >> 2) << 2) - x)
#define ADD_BASIC_TAG(hf_tag) \
    if (tree)   \
        proto_tree_add_item(ppi_tree, hf_tag, tvb, offset, data_len, ENC_NA)

static int
dissect_ppi(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
    proto_tree    *ppi_tree    = NULL, *ppi_flags_tree = NULL, *seg_tree = NULL, *ampdu_tree = NULL;
    proto_tree    *agg_tree    = NULL;
    proto_item    *ti          = NULL;
    tvbuff_t      *next_tvb;
    int            offset      = 0;
    unsigned       version, flags;
    int            tot_len, data_len;
    unsigned       data_type;
    uint32_t       dlt;
    uint32_t       n_ext_flags = 0;
    uint32_t       ampdu_id    = 0;
    fragment_head *fd_head     = NULL;
    fragment_item *ft_fdh      = NULL;
    int            mpdu_count  = 0;
    char          *mpdu_str;
    bool           first_mpdu  = true;
    unsigned       last_frame  = 0;
    int len_remain, /*pad_len = 0,*/ ampdu_len = 0;
    struct ieee_802_11_phdr phdr;

    col_set_str(pinfo->cinfo, COL_PROTOCOL, "PPI");
    col_clear(pinfo->cinfo, COL_INFO);

    version = tvb_get_uint8(tvb, offset);
    flags = tvb_get_uint8(tvb, offset + 1);

    tot_len = tvb_get_letohs(tvb, offset+2);
    dlt = tvb_get_letohl(tvb, offset+4);

    col_add_fstr(pinfo->cinfo, COL_INFO, "PPI version %u, %u bytes",
                 version, tot_len);

    /* Dissect the packet */
    if (tree) {
        ti = proto_tree_add_protocol_format(tree, proto_ppi,
                                            tvb, 0, tot_len, "PPI version %u, %u bytes", version, tot_len);
        ppi_tree = proto_item_add_subtree(ti, ett_ppi_pph);
        proto_tree_add_item(ppi_tree, hf_ppi_head_version,
                            tvb, offset, 1, ENC_LITTLE_ENDIAN);

        ti = proto_tree_add_item(ppi_tree, hf_ppi_head_flags,
                                 tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
        ppi_flags_tree = proto_item_add_subtree(ti, ett_ppi_flags);
        proto_tree_add_item(ppi_flags_tree, hf_ppi_head_flag_alignment,
                            tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
        proto_tree_add_item(ppi_flags_tree, hf_ppi_head_flag_reserved,
                            tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);

        proto_tree_add_item(ppi_tree, hf_ppi_head_len,
                                 tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
        proto_tree_add_item(ppi_tree, hf_ppi_head_dlt,
                                 tvb, offset + 4, 4, ENC_LITTLE_ENDIAN);
    }

    tot_len -= PPI_V0_HEADER_LEN;
    offset += 8;

    /* We don't have any 802.11 metadata yet. */
    memset(&phdr, 0, sizeof(phdr));
    phdr.fcs_len = -1;
    phdr.decrypted = false;
    phdr.datapad = false;
    phdr.phy = PHDR_802_11_PHY_UNKNOWN;

    while (tot_len > 0) {
        data_type = tvb_get_letohs(tvb, offset);
        data_len = tvb_get_letohs(tvb, offset + 2) + 4;
        tot_len -= data_len;

        switch (data_type) {

        case PPI_80211_COMMON:
            dissect_80211_common(tvb, pinfo, ppi_tree, offset, data_len, &phdr);
            break;

        case PPI_80211N_MAC:
            dissect_80211n_mac(tvb, pinfo, ppi_tree, offset, data_len,
                true, &n_ext_flags, &ampdu_id, &phdr);
            break;

        case PPI_80211N_MAC_PHY:
            dissect_80211n_mac_phy(tvb, pinfo, ppi_tree, offset,
                data_len, &n_ext_flags, &ampdu_id, &phdr);
            break;

        case PPI_SPECTRUM_MAP:
            ADD_BASIC_TAG(hf_spectrum_map);
            break;

        case PPI_PROCESS_INFO:
            ADD_BASIC_TAG(hf_process_info);
            break;

        case PPI_CAPTURE_INFO:
            ADD_BASIC_TAG(hf_capture_info);
            break;

        case PPI_AGGREGATION_EXTENSION:
            dissect_aggregation_extension(tvb, pinfo, ppi_tree, offset, data_len);
            break;

        case PPI_8023_EXTENSION:
            dissect_8023_extension(tvb, pinfo, ppi_tree, offset, data_len);
            break;

        case PPI_GPS_INFO:
            if (ppi_gps_handle == NULL)
            {
                proto_tree_add_item(ppi_tree, hf_ppi_gps, tvb, offset, data_len, ENC_NA);
            }
            else /* we found a suitable dissector */
            {
                /* skip over the ppi_fieldheader, and pass it off to the dedicated GPS dissector */
                next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
                call_dissector(ppi_gps_handle, next_tvb, pinfo, ppi_tree);
            }
            break;

        case PPI_VECTOR_INFO:
            if (ppi_vector_handle == NULL)
            {
                proto_tree_add_item(ppi_tree, hf_ppi_vector, tvb, offset, data_len, ENC_NA);
            }
            else /* we found a suitable dissector */
            {
                /* skip over the ppi_fieldheader, and pass it off to the dedicated VECTOR dissector */
                next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
                call_dissector(ppi_vector_handle, next_tvb, pinfo, ppi_tree);
            }
            break;

        case PPI_SENSOR_INFO:
            if (ppi_sensor_handle == NULL)
            {
                proto_tree_add_item(ppi_tree, hf_ppi_harris, tvb, offset, data_len, ENC_NA);
            }
            else /* we found a suitable dissector */
            {
                /* skip over the ppi_fieldheader, and pass it off to the dedicated SENSOR dissector */
                next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
                call_dissector(ppi_sensor_handle, next_tvb, pinfo, ppi_tree);
            }
            break;

        case PPI_ANTENNA_INFO:
            if (ppi_antenna_handle == NULL)
            {
                proto_tree_add_item(ppi_tree, hf_ppi_antenna, tvb, offset, data_len, ENC_NA);
            }
            else /* we found a suitable dissector */
            {
                /* skip over the ppi_fieldheader, and pass it off to the dedicated ANTENNA dissector */
                next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
                call_dissector(ppi_antenna_handle, next_tvb, pinfo, ppi_tree);
            }
            break;

        case FNET_PRIVATE:
            if (ppi_fnet_handle == NULL)
            {
                proto_tree_add_item(ppi_tree, hf_ppi_fnet, tvb, offset, data_len, ENC_NA);
            }
            else /* we found a suitable dissector */
            {
                /* skip over the ppi_fieldheader, and pass it off to the dedicated FNET dissector */
                next_tvb = tvb_new_subset_length_caplen(tvb, offset + 4, data_len - 4 , -1);
                call_dissector(ppi_fnet_handle, next_tvb, pinfo, ppi_tree);
            }
            break;

        default:
            proto_tree_add_item(ppi_tree, hf_ppi_reserved, tvb, offset, data_len, ENC_NA);
        }

        offset += data_len;
        if (IS_PPI_FLAG_ALIGN(flags)){
            offset += PADDING4(offset);
        }
    }

    /*
     * The Channel-Flags field is described as "Radiotap-formatted
     * channel flags".  The comment in the radiotap.org page about
     * the suggested xchannel field says:
     *
     *  As used, this field conflates channel properties (which
     *  need not be stored per packet but are more or less fixed)
     *  with packet properties (like the modulation).
     *
     * The radiotap channel field, in practice, seems to be used,
     * in some cases, to indicate channel properties (from which
     * the packet modulation cannot be inferred) and, in other
     * cases, to indicate the packet's modulation.
     *
     * The same applies to the Channel-Flags field.  There is a capture
     * in which the Channel-Flags field indicates that the channel is
     * an OFDM-only channel with a center frequency of 2422 MHz, and
     * the data rate field indicates a 2 Mb/s rate, which means you can't
     * rely on the CCK/OFDM/dynamic CCK/OFDM bits in the channel field
     * to indicate anything.
     *
     * That makes the Channel-Flags field unusable either for determining
     * the channel type or for determining the packet modulation,
     * as it cannot be determined how it's being used.
     *
     * Fortunately, there are other ways to determine the packet
     * modulation:
     *
     *  if there's an FHSS flag, the packet was transmitted
     *  using the 802.11 legacy FHSS modulation;
     *
     *  otherwise:
     *
     *    if there's an 802.11n MAC Extension header or an 802.11n
     *    MAC+PHY Extension header, the packet was transmitted using
     *    one of the 11n HT PHY's specified modulations;
     *
     *    otherwise:
     *
     *      if the data rate is 1 Mb/s or 2 Mb/s, the packet was
     *      transmitted using the 802.11 legacy DSSS modulation
     *      (we ignore the IR PHY - was it ever implemented?);
     *
     *      if the data rate is 5 Mb/s or 11 Mb/s, the packet
     *      was transmitted using the 802.11b DSSS/CCK modulation
     *      (or the now-obsolete DSSS/PBCC modulation; *if* we can
     *      rely on the channel/xchannel field's "CCK channel" and
     *      "Dynamic CCK-OFDM channel" flags, the absence of either
     *      flag would presumably indicate DSSS/PBCC);
     *
     *      if the data rate is 22 Mb/s or 33 Mb/s, the packet was
     *      transmitted using the 802.11b DSSS/PBCC modulation (as
     *      those speeds aren't supported by DSSS/CCK);
     *
     *      if the data rate is one of the OFDM rates for the 11a
     *      OFDM PHY and the OFDM part of the 11g ERP PHY, the
     *      packet was transmitted with the 11g/11a OFDM modulation.
     *
     * We've already handled the 11n headers, and may have attempted
     * to use the Channel-Flags field to guess the modulation.  That
     * guess might get the wrong answer for 11g "Dynamic CCK-OFDM"
     * channels.
     *
     * If we have the data rate, we use it to:
     *
     *  fix up the 11g channels;
     *
     *  determine the modulation if we haven't been able to
     *  determine it any other way.
     */
    if (phdr.has_data_rate) {
        if (phdr.phy == PHDR_802_11_PHY_UNKNOWN) {
            /*
             * We don't know they PHY, but we do have the
             * data rate; try to guess it based on the
             * data rate and channel/center frequency.
             */
            if (RATE_IS_DSSS(phdr.data_rate)) {
                /* 11b */
                phdr.phy = PHDR_802_11_PHY_11B;
            } else if (RATE_IS_OFDM(phdr.data_rate)) {
                /* 11a or 11g, depending on the band. */
                if (phdr.has_frequency) {
                    if (FREQ_IS_BG(phdr.frequency)) {
                        /* 11g */
                        phdr.phy = PHDR_802_11_PHY_11G;
                    } else {
                        /* 11a */
                        phdr.phy = PHDR_802_11_PHY_11A;
                    }
                }
            }
        } else if (phdr.phy == PHDR_802_11_PHY_11G) {
            if (RATE_IS_DSSS(phdr.data_rate)) {
                /* DSSS, so 11b. */
                phdr.phy = PHDR_802_11_PHY_11B;
            }
        }
    }

    /*
     * There is no indication, for HR/DSSS (11b/11g), whether
     * the packet had a long or short preamble.
     */
    if (phdr.phy == PHDR_802_11_PHY_11B)
        phdr.phy_info.info_11b.has_short_preamble = false;

    if (ppi_ampdu_reassemble && DOT11N_IS_AGGREGATE(n_ext_flags)) {
        len_remain = tvb_captured_length_remaining(tvb, offset);
#if 0 /* XXX: pad_len never actually used ?? */
        if (DOT11N_MORE_AGGREGATES(n_ext_flags)) {
            pad_len = PADDING4(len_remain);
        }
#endif
        pinfo->fragmented = true;

        /* Make sure we aren't going to go past AGGREGATE_MAX
         * and caclulate our full A-MPDU length */
        fd_head = fragment_get(&ampdu_reassembly_table, pinfo, ampdu_id, NULL);
        if (fd_head) {
            for (ft_fdh = fd_head->next; ft_fdh; ft_fdh = ft_fdh->next) {
                ampdu_len += ft_fdh->len + PADDING4(ft_fdh->len) + 4;
            }
        }
        if (ampdu_len > AGGREGATE_MAX) {
            proto_tree_add_expert_format(ppi_tree, pinfo, &ei_ppi_invalid_length, tvb, offset, -1, "Aggregate length greater than maximum (%u)", AGGREGATE_MAX);
            return offset;
        }

        /*
         * Note that we never actually reassemble our A-MPDUs.  Doing
         * so would require prepending each MPDU with an A-MPDU delimiter
         * and appending it with padding, only to hand it off to some
         * routine which would un-do the work we just did.  We're using
         * the reassembly code to track MPDU sizes and frame numbers.
         */
        /*??fd_head = */fragment_add_seq_next(&ampdu_reassembly_table,
            tvb, offset, pinfo, ampdu_id, NULL, len_remain, true);
        pinfo->fragmented = true;

        /* Do reassembly? */
        fd_head = fragment_get(&ampdu_reassembly_table, pinfo, ampdu_id, NULL);

        /* Show our fragments */
        if (fd_head && tree) {
            ft_fdh = fd_head->next;
            /* List our fragments */
            seg_tree = proto_tree_add_subtree_format(ppi_tree, tvb, offset, -1,
                    ett_ampdu_segments, &ti, "A-MPDU (%u bytes w/hdrs):", ampdu_len);
            proto_item_set_generated(ti);

            while (ft_fdh) {
                if (ft_fdh->tvb_data && ft_fdh->len) {
                    last_frame = ft_fdh->frame;
                    if (!first_mpdu)
                        proto_item_append_text(ti, ",");
                    first_mpdu = false;
                    proto_item_append_text(ti, " #%u(%u)",
                        ft_fdh->frame, ft_fdh->len);
                    proto_tree_add_uint_format(seg_tree, hf_ampdu_segment,
                        tvb, 0, 0, last_frame,
                        "Frame: %u (%u byte%s)",
                        last_frame,
                        ft_fdh->len,
                        plurality(ft_fdh->len, "", "s"));
                }
                ft_fdh = ft_fdh->next;
            }
            if (last_frame && last_frame != pinfo->num)
                proto_tree_add_uint(seg_tree, hf_ampdu_reassembled_in,
                    tvb, 0, 0, last_frame);
        }

        if (fd_head && !DOT11N_MORE_AGGREGATES(n_ext_flags)) {
            if (tree) {
                ti = proto_tree_add_protocol_format(tree,
                    proto_get_id_by_filter_name("wlan_aggregate"),
                    tvb, 0, tot_len, "IEEE 802.11 Aggregate MPDU");
                agg_tree = proto_item_add_subtree(ti, ett_ampdu);
            }

            for (ft_fdh = fd_head->next; ft_fdh; ft_fdh = ft_fdh->next) {
                if (ft_fdh->tvb_data && ft_fdh->len) {
                    mpdu_count++;
                    mpdu_str = wmem_strdup_printf(pinfo->pool, "MPDU #%d", mpdu_count);

                    next_tvb = tvb_new_chain(tvb, ft_fdh->tvb_data);
                    add_new_data_source(pinfo, next_tvb, mpdu_str);

                    ampdu_tree = proto_tree_add_subtree(agg_tree, next_tvb, 0, -1, ett_ampdu_segment, NULL, mpdu_str);
                    call_dissector_with_data(ieee80211_radio_handle, next_tvb, pinfo, ampdu_tree, &phdr);
                }
            }
            proto_tree_add_uint(seg_tree, hf_ampdu_count, tvb, 0, 0, mpdu_count);
            pinfo->fragmented=false;
        } else {
            next_tvb = tvb_new_subset_remaining(tvb, offset);
            col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.11n");
            col_set_str(pinfo->cinfo, COL_INFO, "Unreassembled A-MPDU data");
            call_data_dissector(next_tvb, pinfo, tree);
        }
        return tvb_captured_length(tvb);
    }

    next_tvb = tvb_new_subset_remaining(tvb, offset);
    /*
     * Handle LINKTYPE_IEEE802_11, which is 105, specially; call the
     * "802.11 with radio information" dissector, and pass it a pointer
     * to the struct ieee_802_11_phdr we've constructed from the PPI data,
     * so that it can display that information.
     *
     * Handle everything else with the pcap_pktdata dissector, letting
     * it do whatever needs to be done about pseudo-headers.
     */
    if (dlt == 105) {
        /* LINKTYPE_IEEE802_11 */
        call_dissector_with_data(ieee80211_radio_handle, next_tvb, pinfo, tree, &phdr);
    } else {
        /* Everything else. */
        call_dissector_with_data(pcap_pktdata_handle, next_tvb, pinfo, tree, &dlt);
    }
    return tvb_captured_length(tvb);
}

/* Establish our beachhead */

void
proto_register_ppi(void)
{
    static hf_register_info hf[] = {
    { &hf_ppi_head_version,
      { "Version", "ppi.version",
        FT_UINT8, BASE_DEC, NULL, 0x0,
        "PPI header format version", HFILL } },
    { &hf_ppi_head_flags,
      { "Flags", "ppi.flags",
        FT_UINT8, BASE_HEX, NULL, 0x0,
        "PPI header flags", HFILL } },
    { &hf_ppi_head_flag_alignment,
      { "Alignment", "ppi.flags.alignment",
        FT_BOOLEAN, 8, TFS(&tfs_ppi_head_flag_alignment), 0x01,
        "PPI header flags - 32bit Alignment", HFILL } },
    { &hf_ppi_head_flag_reserved,
      { "Reserved", "ppi.flags.reserved",
        FT_UINT8, BASE_HEX, NULL, 0xFE,
        "PPI header flags - Reserved Flags", HFILL } },
    { &hf_ppi_head_len,
       { "Header length", "ppi.length",
         FT_UINT16, BASE_DEC, NULL, 0x0,
         "Length of header including payload", HFILL } },
    { &hf_ppi_head_dlt,
       { "DLT", "ppi.dlt",
         FT_UINT32, BASE_DEC, NULL, 0x0, "libpcap Data Link Type (DLT) of the payload", HFILL } },

    { &hf_ppi_field_type,
       { "Field type", "ppi.field_type",
         FT_UINT16, BASE_DEC, VALS(vs_ppi_field_type), 0x0, "PPI data field type", HFILL } },
    { &hf_ppi_field_len,
       { "Field length", "ppi.field_len",
         FT_UINT16, BASE_DEC, NULL, 0x0, "PPI data field length", HFILL } },

    { &hf_80211_common_tsft,
       { "TSFT", "ppi.80211-common.tsft",
         FT_UINT64, BASE_DEC, NULL, 0x0, "PPI 802.11-Common Timing Synchronization Function Timer (TSFT)", HFILL } },
    { &hf_80211_common_flags,
       { "Flags", "ppi.80211-common.flags",
         FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Flags", HFILL } },
    { &hf_80211_common_flags_fcs,
       { "FCS present flag", "ppi.80211-common.flags.fcs",
         FT_BOOLEAN, 16, TFS(&tfs_present_absent), DOT11_FLAG_HAVE_FCS, "PPI 802.11-Common Frame Check Sequence (FCS) Present Flag", HFILL } },
    { &hf_80211_common_flags_tsft,
       { "TSFT flag", "ppi.80211-common.flags.tsft",
         FT_BOOLEAN, 16, TFS(&tfs_tsft_ms), DOT11_FLAG_TSF_TIMER_MS, "PPI 802.11-Common Timing Synchronization Function Timer (TSFT) msec/usec flag", HFILL } },
    { &hf_80211_common_flags_fcs_valid,
       { "FCS validity", "ppi.80211-common.flags.fcs-invalid",
         FT_BOOLEAN, 16, TFS(&tfs_invalid_valid), DOT11_FLAG_FCS_INVALID, "PPI 802.11-Common Frame Check Sequence (FCS) Validity flag", HFILL } },
    { &hf_80211_common_flags_phy_err,
       { "PHY error flag", "ppi.80211-common.flags.phy-err",
         FT_BOOLEAN, 16, TFS(&tfs_phy_error), DOT11_FLAG_PHY_ERROR, "PPI 802.11-Common Physical level (PHY) Error", HFILL } },
    { &hf_80211_common_rate,
       { "Data rate", "ppi.80211-common.rate",
         FT_UINT16, BASE_DEC, NULL, 0x0, "PPI 802.11-Common Data Rate (x 500 Kbps)", HFILL } },
    { &hf_80211_common_chan_freq,
       { "Channel frequency", "ppi.80211-common.chan.freq",
         FT_UINT16, BASE_DEC, NULL, 0x0,
        "PPI 802.11-Common Channel Frequency", HFILL } },
    { &hf_80211_common_chan_flags,
       { "Channel flags", "ppi.80211-common.chan.flags",
         FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Channel Flags", HFILL } },

    { &hf_80211_common_chan_flags_turbo,
       { "Turbo", "ppi.80211-common.chan.flags.turbo",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_TURBO, "PPI 802.11-Common Channel Flags Turbo", HFILL } },
    { &hf_80211_common_chan_flags_cck,
       { "Complementary Code Keying (CCK)", "ppi.80211-common.chan.flags.cck",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_CCK, "PPI 802.11-Common Channel Flags Complementary Code Keying (CCK) Modulation", HFILL } },
    { &hf_80211_common_chan_flags_ofdm,
       { "Orthogonal Frequency-Division Multiplexing (OFDM)", "ppi.80211-common.chan.flags.ofdm",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_OFDM, "PPI 802.11-Common Channel Flags Orthogonal Frequency-Division Multiplexing (OFDM)", HFILL } },
    { &hf_80211_common_chan_flags_2ghz,
       { "2 GHz spectrum", "ppi.80211-common.chan.flags.2ghz",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_2GHZ, "PPI 802.11-Common Channel Flags 2 GHz spectrum", HFILL } },
    { &hf_80211_common_chan_flags_5ghz,
       { "5 GHz spectrum", "ppi.80211-common.chan.flags.5ghz",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_5GHZ, "PPI 802.11-Common Channel Flags 5 GHz spectrum", HFILL } },
    { &hf_80211_common_chan_flags_passive,
       { "Passive", "ppi.80211-common.chan.flags.passive",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_PASSIVE, "PPI 802.11-Common Channel Flags Passive", HFILL } },
    { &hf_80211_common_chan_flags_dynamic,
       { "Dynamic CCK-OFDM", "ppi.80211-common.chan.flags.dynamic",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_DYN, "PPI 802.11-Common Channel Flags Dynamic CCK-OFDM Channel", HFILL } },
    { &hf_80211_common_chan_flags_gfsk,
       { "Gaussian Frequency Shift Keying (GFSK)", "ppi.80211-common.chan.flags.gfsk",
         FT_BOOLEAN, 16, NULL, IEEE80211_CHAN_GFSK, "PPI 802.11-Common Channel Flags Gaussian Frequency Shift Keying (GFSK) Modulation", HFILL } },

    { &hf_80211_common_fhss_hopset,
       { "FHSS hopset", "ppi.80211-common.fhss.hopset",
         FT_UINT8, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Frequency-Hopping Spread Spectrum (FHSS) Hopset", HFILL } },
    { &hf_80211_common_fhss_pattern,
       { "FHSS pattern", "ppi.80211-common.fhss.pattern",
         FT_UINT8, BASE_HEX, NULL, 0x0, "PPI 802.11-Common Frequency-Hopping Spread Spectrum (FHSS) Pattern", HFILL } },
    { &hf_80211_common_dbm_antsignal,
       { "dBm antenna signal", "ppi.80211-common.dbm.antsignal",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11-Common dBm Antenna Signal", HFILL } },
    { &hf_80211_common_dbm_antnoise,
       { "dBm antenna noise", "ppi.80211-common.dbm.antnoise",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11-Common dBm Antenna Noise", HFILL } },

    /* 802.11n MAC */
    { &hf_80211n_mac_flags,
       { "MAC flags", "ppi.80211n-mac.flags",
         FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC flags", HFILL } },
    { &hf_80211n_mac_flags_greenfield,
       { "Greenfield flag", "ppi.80211n-mac.flags.greenfield",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_GREENFIELD, "PPI 802.11n MAC Greenfield Flag", HFILL } },
    { &hf_80211n_mac_flags_ht20_40,
       { "HT20/HT40 flag", "ppi.80211n-mac.flags.ht20_40",
         FT_BOOLEAN, 32, TFS(&tfs_ht20_40), DOT11N_FLAG_HT40, "PPI 802.11n MAC HT20/HT40 Flag", HFILL } },
    { &hf_80211n_mac_flags_rx_guard_interval,
       { "RX Short Guard Interval (SGI) flag", "ppi.80211n-mac.flags.rx.short_guard_interval",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_SHORT_GI, "PPI 802.11n MAC RX Short Guard Interval (SGI) Flag", HFILL } },
    { &hf_80211n_mac_flags_duplicate_rx,
       { "Duplicate RX flag", "ppi.80211n-mac.flags.rx.duplicate",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_DUPLICATE_RX, "PPI 802.11n MAC Duplicate RX Flag", HFILL } },
    { &hf_80211n_mac_flags_aggregate,
       { "Aggregate flag", "ppi.80211n-mac.flags.agg",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_IS_AGGREGATE, "PPI 802.11 MAC Aggregate Flag", HFILL } },
    { &hf_80211n_mac_flags_more_aggregates,
       { "More aggregates flag", "ppi.80211n-mac.flags.more_agg",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_MORE_AGGREGATES, "PPI 802.11n MAC More Aggregates Flag", HFILL } },
    { &hf_80211n_mac_flags_delimiter_crc_after,
       { "A-MPDU Delimiter CRC error after this frame flag", "ppi.80211n-mac.flags.delim_crc_error_after",
         FT_BOOLEAN, 32, NULL, DOT11N_FLAG_AGG_CRC_ERROR, "PPI 802.11n MAC A-MPDU Delimiter CRC Error After This Frame Flag", HFILL } },
    { &hf_80211n_mac_ampdu_id,
       { "AMPDU-ID", "ppi.80211n-mac.ampdu_id",
         FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC AMPDU-ID", HFILL } },
    { &hf_80211n_mac_num_delimiters,
       { "Num-Delimiters", "ppi.80211n-mac.num_delimiters",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC number of zero-length pad delimiters", HFILL } },
    { &hf_80211n_mac_reserved,
       { "Reserved", "ppi.80211n-mac.reserved",
         FT_UINT24, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC Reserved", HFILL } },


    /* 802.11n MAC+PHY */
    { &hf_80211n_mac_phy_mcs,
       { "MCS", "ppi.80211n-mac-phy.mcs",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Modulation Coding Scheme (MCS)", HFILL } },
    { &hf_80211n_mac_phy_num_streams,
       { "Number of spatial streams", "ppi.80211n-mac-phy.num_streams",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY number of spatial streams", HFILL } },
    { &hf_80211n_mac_phy_rssi_combined,
       { "RSSI combined", "ppi.80211n-mac-phy.rssi.combined",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Received Signal Strength Indication (RSSI) Combined", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant0_ctl,
       { "Antenna 0 control RSSI", "ppi.80211n-mac-phy.rssi.ant0ctl",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 0 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant1_ctl,
       { "Antenna 1 control RSSI", "ppi.80211n-mac-phy.rssi.ant1ctl",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 1 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant2_ctl,
       { "Antenna 2 control RSSI", "ppi.80211n-mac-phy.rssi.ant2ctl",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 2 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant3_ctl,
       { "Antenna 3 control RSSI", "ppi.80211n-mac-phy.rssi.ant3ctl",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 3 Control Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant0_ext,
       { "Antenna 0 extension RSSI", "ppi.80211n-mac-phy.rssi.ant0ext",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 0 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant1_ext,
       { "Antenna 1 extension RSSI", "ppi.80211n-mac-phy.rssi.ant1ext",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 1 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant2_ext,
       { "Antenna 2 extension RSSI", "ppi.80211n-mac-phy.rssi.ant2ext",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 2 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_rssi_ant3_ext,
       { "Antenna 3 extension RSSI", "ppi.80211n-mac-phy.rssi.ant3ext",
         FT_UINT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Antenna 3 Extension Channel Received Signal Strength Indication (RSSI)", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_freq,
       { "Extended channel frequency", "ppi.80211-mac-phy.ext-chan.freq",
         FT_UINT16, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Extended Channel Frequency", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags,
       { "Channel flags", "ppi.80211-mac-phy.ext-chan.flags",
         FT_UINT16, BASE_HEX, NULL, 0x0, "PPI 802.11n MAC+PHY Channel Flags", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_turbo,
       { "Turbo", "ppi.80211-mac-phy.ext-chan.flags.turbo",
         FT_BOOLEAN, 16, NULL, 0x0010, "PPI 802.11n MAC+PHY Channel Flags Turbo", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_cck,
       { "Complementary Code Keying (CCK)", "ppi.80211-mac-phy.ext-chan.flags.cck",
         FT_BOOLEAN, 16, NULL, 0x0020, "PPI 802.11n MAC+PHY Channel Flags Complementary Code Keying (CCK) Modulation", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_ofdm,
       { "Orthogonal Frequency-Division Multiplexing (OFDM)", "ppi.80211-mac-phy.ext-chan.flags.ofdm",
         FT_BOOLEAN, 16, NULL, 0x0040, "PPI 802.11n MAC+PHY Channel Flags Orthogonal Frequency-Division Multiplexing (OFDM)", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_2ghz,
       { "2 GHz spectrum", "ppi.80211-mac-phy.ext-chan.flags.2ghz",
         FT_BOOLEAN, 16, NULL, 0x0080, "PPI 802.11n MAC+PHY Channel Flags 2 GHz spectrum", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_5ghz,
       { "5 GHz spectrum", "ppi.80211-mac-phy.ext-chan.flags.5ghz",
         FT_BOOLEAN, 16, NULL, 0x0100, "PPI 802.11n MAC+PHY Channel Flags 5 GHz spectrum", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_passive,
       { "Passive", "ppi.80211-mac-phy.ext-chan.flags.passive",
         FT_BOOLEAN, 16, NULL, 0x0200, "PPI 802.11n MAC+PHY Channel Flags Passive", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_dynamic,
       { "Dynamic CCK-OFDM", "ppi.80211-mac-phy.ext-chan.flags.dynamic",
         FT_BOOLEAN, 16, NULL, 0x0400, "PPI 802.11n MAC+PHY Channel Flags Dynamic CCK-OFDM Channel", HFILL } },
    { &hf_80211n_mac_phy_ext_chan_flags_gfsk,
       { "Gaussian Frequency Shift Keying (GFSK)", "ppi.80211-mac-phy.ext-chan.flags.gfsk",
         FT_BOOLEAN, 16, NULL, 0x0800, "PPI 802.11n MAC+PHY Channel Flags Gaussian Frequency Shift Keying (GFSK) Modulation", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant0signal,
       { "dBm antenna 0 signal", "ppi.80211n-mac-phy.dbmant0.signal",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 0 Signal", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant0noise,
       { "dBm antenna 0 noise", "ppi.80211n-mac-phy.dbmant0.noise",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 0 Noise", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant1signal,
       { "dBm antenna 1 signal", "ppi.80211n-mac-phy.dbmant1.signal",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 1 Signal", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant1noise,
       { "dBm antenna 1 noise", "ppi.80211n-mac-phy.dbmant1.noise",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 1 Noise", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant2signal,
       { "dBm antenna 2 signal", "ppi.80211n-mac-phy.dbmant2.signal",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 2 Signal", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant2noise,
       { "dBm antenna 2 noise", "ppi.80211n-mac-phy.dbmant2.noise",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 2 Noise", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant3signal,
       { "dBm antenna 3 signal", "ppi.80211n-mac-phy.dbmant3.signal",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 3 Signal", HFILL } },
    { &hf_80211n_mac_phy_dbm_ant3noise,
       { "dBm antenna 3 noise", "ppi.80211n-mac-phy.dbmant3.noise",
         FT_INT8, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY dBm Antenna 3 Noise", HFILL } },
    { &hf_80211n_mac_phy_evm0,
       { "EVM-0", "ppi.80211n-mac-phy.evm0",
         FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 0", HFILL } },
    { &hf_80211n_mac_phy_evm1,
       { "EVM-1", "ppi.80211n-mac-phy.evm1",
         FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 1", HFILL } },
    { &hf_80211n_mac_phy_evm2,
       { "EVM-2", "ppi.80211n-mac-phy.evm2",
         FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 2", HFILL } },
    { &hf_80211n_mac_phy_evm3,
       { "EVM-3", "ppi.80211n-mac-phy.evm3",
         FT_UINT32, BASE_DEC, NULL, 0x0, "PPI 802.11n MAC+PHY Error Vector Magnitude (EVM) for chain 3", HFILL } },

    { &hf_ampdu_segment,
        { "A-MPDU", "ppi.80211n-mac.ampdu",
            FT_FRAMENUM, BASE_NONE, NULL, 0x0, "802.11n Aggregated MAC Protocol Data Unit (A-MPDU)", HFILL }},
#if 0
    { &hf_ampdu_segments,
        { "Reassembled A-MPDU", "ppi.80211n-mac.ampdu.reassembled",
            FT_NONE, BASE_NONE, NULL, 0x0, "Reassembled Aggregated MAC Protocol Data Unit (A-MPDU)", HFILL }},
#endif
    { &hf_ampdu_reassembled_in,
        { "Reassembled A-MPDU in frame", "ppi.80211n-mac.ampdu.reassembled_in",
            FT_FRAMENUM, BASE_NONE, NULL, 0x0,
            "The A-MPDU that doesn't end in this segment is reassembled in this frame",
            HFILL }},
    { &hf_ampdu_count,
        { "MPDU count", "ppi.80211n-mac.ampdu.count",
            FT_UINT16, BASE_DEC, NULL, 0x0, "The number of aggregated MAC Protocol Data Units (MPDUs)", HFILL }},

    { &hf_spectrum_map,
       { "Radio spectrum map", "ppi.spectrum-map",
            FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Radio spectrum map", HFILL } },
    { &hf_process_info,
       { "Process information", "ppi.proc-info",
            FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Process information", HFILL } },
    { &hf_capture_info,
       { "Capture information", "ppi.cap-info",
            FT_BYTES, BASE_NONE, NULL, 0x0, "PPI Capture information", HFILL } },

    /* Aggregation Extension */
    { &hf_aggregation_extension_interface_id,
       { "Interface ID", "ppi.aggregation_extension.interface_id",
            FT_UINT32, BASE_DEC, NULL, 0x0, "Zero-based index of the physical interface the packet was captured from", HFILL } },

    /* 802.3 Extension */
    { &hf_8023_extension_flags,
       { "Flags", "ppi.8023_extension.flags",
            FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.3 Extension Flags", HFILL } },
    { &hf_8023_extension_flags_fcs_present,
       { "FCS Present Flag", "ppi.8023_extension.flags.fcs_present",
            FT_BOOLEAN, 32, NULL, 0x00000001, "FCS (4 bytes) is present at the end of the packet", HFILL } },
    { &hf_8023_extension_errors,
       { "Errors", "ppi.8023_extension.errors",
            FT_UINT32, BASE_HEX, NULL, 0x0, "PPI 802.3 Extension Errors", HFILL } },
    { &hf_8023_extension_errors_fcs,
       { "FCS Error", "ppi.8023_extension.errors.fcs",
            FT_BOOLEAN, 32, NULL, 0x00000001,
            "PPI 802.3 Extension FCS Error", HFILL } },
    { &hf_8023_extension_errors_sequence,
       { "Sequence Error", "ppi.8023_extension.errors.sequence",
            FT_BOOLEAN, 32, NULL, 0x00000002,
            "PPI 802.3 Extension Sequence Error", HFILL } },
    { &hf_8023_extension_errors_symbol,
       { "Symbol Error", "ppi.8023_extension.errors.symbol",
            FT_BOOLEAN, 32, NULL, 0x00000004,
            "PPI 802.3 Extension Symbol Error", HFILL } },
    { &hf_8023_extension_errors_data,
       { "Data Error", "ppi.8023_extension.errors.data",
            FT_BOOLEAN, 32, NULL, 0x00000008,
            "PPI 802.3 Extension Data Error", HFILL } },

      /* Generated from convert_proto_tree_add_text.pl */
      { &hf_ppi_gps, { "GPS", "ppi.gps", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
      { &hf_ppi_vector, { "VECTOR", "ppi.vector", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
      { &hf_ppi_harris, { "HARRIS", "ppi.harris", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
      { &hf_ppi_antenna, { "ANTENNA", "ppi.antenna", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
      { &hf_ppi_fnet, { "FNET", "ppi.fnet", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
      { &hf_ppi_reserved, { "Reserved", "ppi.reserved", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
    };

    static int *ett[] = {
        &ett_ppi_pph,
        &ett_ppi_flags,
        &ett_dot11_common,
        &ett_dot11_common_flags,
        &ett_dot11_common_channel_flags,
        &ett_dot11n_mac,
        &ett_dot11n_mac_flags,
        &ett_dot11n_mac_phy,
        &ett_dot11n_mac_phy_ext_channel_flags,
        &ett_ampdu_segments,
        &ett_ampdu,
        &ett_ampdu_segment,
        &ett_aggregation_extension,
        &ett_8023_extension,
        &ett_8023_extension_flags,
        &ett_8023_extension_errors
    };

    static ei_register_info ei[] = {
        { &ei_ppi_invalid_length, { "ppi.invalid_length", PI_MALFORMED, PI_ERROR, "Invalid length", EXPFILL }},
    };

    module_t *ppi_module;
    expert_module_t* expert_ppi;

    proto_ppi = proto_register_protocol("PPI Packet Header", "PPI", "ppi");
    proto_register_field_array(proto_ppi, hf, array_length(hf));
    proto_register_subtree_array(ett, array_length(ett));
    expert_ppi = expert_register_protocol(proto_ppi);
    expert_register_field_array(expert_ppi, ei, array_length(ei));

    ppi_handle = register_dissector("ppi", dissect_ppi, proto_ppi);
    register_capture_dissector_table("ppi", "PPI");

    reassembly_table_register(&ampdu_reassembly_table,
                          &addresses_reassembly_table_functions);

    /* Configuration options */
    ppi_module = prefs_register_protocol(proto_ppi, NULL);
    prefs_register_bool_preference(ppi_module, "reassemble",
                                   "Reassemble fragmented 802.11 A-MPDUs",
                                   "Whether fragmented 802.11 aggregated MPDUs should be reassembled",
                                   &ppi_ampdu_reassemble);
}

void
proto_reg_handoff_ppi(void)
{
    capture_dissector_handle_t ppi_cap_handle;

    ieee80211_radio_handle = find_dissector_add_dependency("wlan_radio", proto_ppi);
    pcap_pktdata_handle = find_dissector_add_dependency("pcap_pktdata", proto_ppi);
    ppi_gps_handle = find_dissector_add_dependency("ppi_gps", proto_ppi);
    ppi_vector_handle = find_dissector_add_dependency("ppi_vector", proto_ppi);
    ppi_sensor_handle = find_dissector_add_dependency("ppi_sensor", proto_ppi);
    ppi_antenna_handle = find_dissector_add_dependency("ppi_antenna", proto_ppi);
    ppi_fnet_handle = find_dissector_add_dependency("ppi_fnet", proto_ppi);

    dissector_add_uint("wtap_encap", WTAP_ENCAP_PPI, ppi_handle);
    ppi_cap_handle = create_capture_dissector_handle(capture_ppi, proto_ppi);
    capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_PPI, ppi_cap_handle);
}

/*
 * Editor modelines
 *
 * Local Variables:
 * c-basic-offset: 4
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * ex: set shiftwidth=4 tabstop=8 expandtab:
 * :indentSize=4:tabSize=8:noTabs=true:
 */