1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
/* packet-xip.c
* Routines for XIP dissection
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
* The eXpressive Internet Protocol (XIP) is the network layer protocol for
* the eXpressive Internet Architecture (XIA), a future Internet architecture
* project. The addresses in XIP are directed acyclic graphs, so some of the
* code in this file verifies the correctness of the DAGs and displays them
* in human-readable form.
*
* More information about XIA can be found here:
* https://www.cs.cmu.edu/~xia/
*
* And here:
* https://github.com/AltraMayor/XIA-for-Linux/wiki
*
* More information about the format of the DAG can be found here:
* https://github.com/AltraMayor/XIA-for-Linux/wiki/Human-readable-XIP-address-format
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/expert.h>
void proto_register_xip(void);
void proto_reg_handoff_xip(void);
/* Next dissector handles. */
static dissector_handle_t xip_serval_handle;
static int proto_xip;
static int hf_xip_version;
static int hf_xip_next_hdr;
static int hf_xip_payload_len;
static int hf_xip_hop_limit;
static int hf_xip_num_dst;
static int hf_xip_num_src;
static int hf_xip_last_node;
static int hf_xip_dst_dag;
static int hf_xip_dst_dag_entry;
static int hf_xip_src_dag;
static int hf_xip_src_dag_entry;
static int ett_xip_tree;
static int ett_xip_ddag;
static int ett_xip_sdag;
static expert_field ei_xip_invalid_len;
static expert_field ei_xip_next_header;
static expert_field ei_xip_bad_num_dst;
static expert_field ei_xip_bad_num_src;
static dissector_handle_t xip_handle;
/* XIA principals. */
#define XIDTYPE_NAT 0x00
#define XIDTYPE_AD 0x10
#define XIDTYPE_HID 0x11
#define XIDTYPE_CID 0x12
#define XIDTYPE_SID 0x13
#define XIDTYPE_UNI4ID 0x14
#define XIDTYPE_I4ID 0x15
#define XIDTYPE_U4ID 0x16
#define XIDTYPE_XDP 0x17
#define XIDTYPE_SRVCID 0x18
#define XIDTYPE_FLOWID 0x19
#define XIDTYPE_ZF 0x20
/* Principal string values. */
static const value_string xidtype_vals[] = {
{ XIDTYPE_AD, "ad" },
{ XIDTYPE_HID, "hid" },
{ XIDTYPE_CID, "cid" },
{ XIDTYPE_SID, "sid" },
{ XIDTYPE_UNI4ID, "uni4id" },
{ XIDTYPE_I4ID, "i4id" },
{ XIDTYPE_U4ID, "u4id" },
{ XIDTYPE_XDP, "xdp" },
{ XIDTYPE_SRVCID, "serval" },
{ XIDTYPE_FLOWID, "flowid" },
{ XIDTYPE_ZF, "zf" },
{ 0, NULL }
};
enum xia_addr_error {
/* There's a non-XIDTYPE_NAT node after an XIDTYPE_NAT node. */
XIAEADDR_NAT_MISPLACED = 1,
/* Edge-selected bit is only valid in packets. */
XIAEADDR_CHOSEN_EDGE,
/* There's a non-empty edge after an Empty Edge.
* This error can also occur if an empty edge is selected. */
XIAEADDR_EE_MISPLACED,
/* An edge of a node is out of range. */
XIAEADDR_EDGE_OUT_RANGE,
/* The nodes are not in topological order. Notice that being in
* topological guarantees that the graph is acyclic, and has a simple,
* cheap test. */
XIAEADDR_NOT_TOPOLOGICAL,
/* No single component. */
XIAEADDR_MULTI_COMPONENTS,
/* Entry node is not present. */
XIAEADDR_NO_ENTRY
};
/* Maximum number of nodes in a DAG. */
#define XIA_NODES_MAX 9
/* Number of outgoing edges for each node. */
#define XIA_OUTDEGREE_MAX 4
/* Sizes of an XIA node and its components. */
#define XIA_TYPE_SIZE 4
#define XIA_XID_SIZE 20
#define XIA_EDGES_SIZE 4
#define XIA_NODE_SIZE (XIA_TYPE_SIZE + XIA_XID_SIZE + XIA_EDGES_SIZE)
/* Split XID up into 4 byte chunks. */
#define XIA_XID_CHUNK_SIZE 4
typedef uint32_t xid_type_t;
struct xia_xid {
/* XID type. */
xid_type_t xid_type;
/* XID, represented as 4 byte ints. */
uint32_t xid_id[XIA_XID_SIZE / XIA_XID_CHUNK_SIZE];
};
struct xia_row {
struct xia_xid s_xid;
/* Outgoing edges. */
union {
uint8_t a[XIA_OUTDEGREE_MAX];
uint32_t i;
} s_edge;
};
struct xia_addr {
struct xia_row s_row[XIA_NODES_MAX];
};
/* XIA_MAX_STRADDR_SIZE - The maximum size of an XIA address as a string
* in bytes. It's the recommended size to call xia_ntop with. It includes space
* for an invalid sign (i.e. '!'), the type and name of a nodes in
* hexadecimal, the out-edges, the two separators (i.e. '-') per node,
* the edge-chosen sign (i.e. '>') for each selected edge,
* the node separators (i.e. ':' or ":\n"), a string terminator (i.e. '\0'),
* and an extra '\n' at the end the caller may want to add.
*/
#define MAX_PPAL_NAME_SIZE 32
#define XIA_MAX_STRID_SIZE (XIA_XID_SIZE * 2 + 1)
#define XIA_MAX_STRXID_SIZE (MAX_PPAL_NAME_SIZE + XIA_MAX_STRID_SIZE)
#define XIA_MAX_STRADDR_SIZE (1 + XIA_NODES_MAX * \
(XIA_MAX_STRXID_SIZE + XIA_OUTDEGREE_MAX * 2 + 2) + 1)
/*
* Validating addresses
*/
#define XIA_CHOSEN_EDGE 0x80
#define XIA_EMPTY_EDGE 0x7f
#define XIA_ENTRY_NODE_INDEX 0x7e
#define XIA_EMPTY_EDGES (XIA_EMPTY_EDGE << 24 | XIA_EMPTY_EDGE << 16 |\
XIA_EMPTY_EDGE << 8 | XIA_EMPTY_EDGE)
#define XIA_CHOSEN_EDGES (XIA_CHOSEN_EDGE << 24 | XIA_CHOSEN_EDGE << 16 |\
XIA_CHOSEN_EDGE << 8 | XIA_CHOSEN_EDGE)
static inline int
is_edge_chosen(uint8_t e)
{
return e & XIA_CHOSEN_EDGE;
}
static inline int
is_any_edge_chosen(const struct xia_row *row)
{
return row->s_edge.i & XIA_CHOSEN_EDGES;
}
static inline int
is_empty_edge(uint8_t e)
{
return (e & XIA_EMPTY_EDGE) == XIA_EMPTY_EDGE;
}
static inline int
xia_is_nat(xid_type_t ty)
{
return ty == XIDTYPE_NAT;
}
static int
xia_are_edges_valid(const struct xia_row *row,
uint8_t node, uint8_t num_node, uint32_t *pvisited)
{
const uint8_t *edge;
uint32_t all_edges, bits;
int i;
if (is_any_edge_chosen(row)) {
/* Since at least an edge of last_node has already
* been chosen, the address is corrupted.
*/
return -XIAEADDR_CHOSEN_EDGE;
}
edge = row->s_edge.a;
all_edges = g_ntohl(row->s_edge.i);
bits = 0xffffffff;
for (i = 0; i < XIA_OUTDEGREE_MAX; i++, edge++) {
uint8_t e;
e = *edge;
if (e == XIA_EMPTY_EDGE) {
if ((all_edges & bits) !=
(XIA_EMPTY_EDGES & bits))
return -XIAEADDR_EE_MISPLACED;
else
break;
} else if (e >= num_node) {
return -XIAEADDR_EDGE_OUT_RANGE;
} else if (node < (num_node - 1) && e <= node) {
/* Notice that if (node == XIA_ENTRY_NODE_INDEX)
* it still works fine because XIA_ENTRY_NODE_INDEX
* is greater than (num_node - 1).
*/
return -XIAEADDR_NOT_TOPOLOGICAL;
}
bits >>= 8;
*pvisited |= 1 << e;
}
return 0;
}
static int
xia_test_addr(const struct xia_addr *addr)
{
int i, n;
int saw_nat = 0;
uint32_t visited = 0;
/* Test that XIDTYPE_NAT is present only on last rows. */
n = XIA_NODES_MAX;
for (i = 0; i < XIA_NODES_MAX; i++) {
xid_type_t ty;
ty = addr->s_row[i].s_xid.xid_type;
if (saw_nat) {
if (!xia_is_nat(ty))
return -XIAEADDR_NAT_MISPLACED;
} else if (xia_is_nat(ty)) {
n = i;
saw_nat = 1;
}
}
/* n = number of nodes from here. */
/* Test edges are well formed. */
for (i = 0; i < n; i++) {
int rc;
rc = xia_are_edges_valid(&addr->s_row[i], i, n, &visited);
if (rc)
return rc;
}
if (n >= 1) {
/* Test entry point is present. Notice that it's just a
* friendlier error since it's also XIAEADDR_MULTI_COMPONENTS.
*/
uint32_t all_edges;
all_edges = addr->s_row[n - 1].s_edge.i;
if (all_edges == XIA_EMPTY_EDGES)
return -XIAEADDR_NO_ENTRY;
if (visited != ((1U << n) - 1))
return -XIAEADDR_MULTI_COMPONENTS;
}
return n;
}
/*
* Printing addresses out
*/
#define INDEX_BASE 36
static inline char
edge_to_char(uint8_t e)
{
const char *ch_edge = "0123456789abcdefghijklmnopqrstuvwxyz";
e &= ~XIA_CHOSEN_EDGE;
if (e < INDEX_BASE)
return ch_edge[e];
else if (is_empty_edge(e))
return '*';
else
return '+';
}
static void
add_edges_to_buf(int valid, wmem_strbuf_t *buf, const uint8_t *edges)
{
int i;
wmem_strbuf_append_c(buf, '-');
for (i = 0; i < XIA_OUTDEGREE_MAX; i++) {
if (valid && edges[i] == XIA_EMPTY_EDGE)
return;
if (is_edge_chosen(edges[i]))
wmem_strbuf_append_c(buf, '>');
wmem_strbuf_append_c(buf, edge_to_char(edges[i]));
}
}
static void
add_type_to_buf(xid_type_t ty, wmem_strbuf_t *buf)
{
const char *xid_name;
size_t buflen = wmem_strbuf_get_len(buf);
if (XIA_MAX_STRADDR_SIZE - buflen - 1 < MAX_PPAL_NAME_SIZE)
return;
xid_name = try_val_to_str(ty, xidtype_vals);
if (xid_name)
wmem_strbuf_append_printf(buf, "%s-", xid_name);
else
wmem_strbuf_append_printf(buf, "0x%x-", ty);
}
static inline void
add_id_to_buf(const struct xia_xid *src, wmem_strbuf_t *buf)
{
wmem_strbuf_append_printf(buf, "%08x%08x%08x%08x%08x",
src->xid_id[0],
src->xid_id[1],
src->xid_id[2],
src->xid_id[3],
src->xid_id[4]);
}
/* xia_ntop - convert an XIA address to a string.
* @src can be ill-formed, but xia_ntop won't report an error and will return
* a string that approximates that ill-formed address.
*/
static int
xia_ntop(const struct xia_addr *src, wmem_strbuf_t *buf)
{
int valid, i;
valid = xia_test_addr(src) >= 1;
if (!valid)
wmem_strbuf_append_c(buf, '!');
for (i = 0; i < XIA_NODES_MAX; i++) {
const struct xia_row *row = &src->s_row[i];
if (xia_is_nat(row->s_xid.xid_type))
break;
if (i > 0)
wmem_strbuf_append(buf, ":\n");
/* Add the type, ID, and edges for this node. */
add_type_to_buf(row->s_xid.xid_type, buf);
add_id_to_buf(&row->s_xid, buf);
add_edges_to_buf(valid, buf, row->s_edge.a);
}
return 0;
}
/*
* Dissection
*/
#define XIPH_MIN_LEN 36
#define ETHERTYPE_XIP 0xC0DE
#define XIA_NEXT_HEADER_DATA 0
/* Offsets of XIP fields in bytes. */
#define XIPH_VERS 0
#define XIPH_NXTH 1
#define XIPH_PLEN 2
#define XIPH_HOPL 4
#define XIPH_NDST 5
#define XIPH_NSRC 6
#define XIPH_LSTN 7
#define XIPH_DSTD 8
static void
construct_dag(tvbuff_t *tvb, packet_info *pinfo, proto_tree *xip_tree,
const int ett, const int hf, const int hf_entry,
const uint8_t num_nodes, int offset)
{
proto_tree *dag_tree;
proto_item *ti;
struct xia_addr dag;
wmem_strbuf_t *buf;
const char *dag_str;
unsigned i, j;
int dag_offset = offset;
ti = proto_tree_add_item(xip_tree, hf, tvb, offset,
num_nodes * XIA_NODE_SIZE, ENC_BIG_ENDIAN);
buf = wmem_strbuf_new_sized(pinfo->pool, XIA_MAX_STRADDR_SIZE);
dag_tree = proto_item_add_subtree(ti, ett);
memset(&dag, 0, sizeof(dag));
for (i = 0; i < num_nodes; i++) {
struct xia_row *row = &dag.s_row[i];
row->s_xid.xid_type = tvb_get_ntohl(tvb, offset);
offset += XIA_TYPE_SIZE;
/* Process the ID 32 bits at a time. */
for (j = 0; j < XIA_XID_SIZE / XIA_XID_CHUNK_SIZE; j++) {
row->s_xid.xid_id[j] = tvb_get_ntohl(tvb, offset);
offset += XIA_XID_CHUNK_SIZE;
}
/* Need to process the edges byte-by-byte,
* so keep the bytes in network order.
*/
tvb_memcpy(tvb, row->s_edge.a, offset, XIA_EDGES_SIZE);
offset += XIA_EDGES_SIZE;
}
xia_ntop(&dag, buf);
dag_str = wmem_strbuf_get_str(buf);
proto_tree_add_string_format(dag_tree, hf_entry, tvb, dag_offset,
XIA_NODE_SIZE * num_nodes, dag_str, "%s", dag_str);
}
static int
dissect_xip_sink_node(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
int offset, uint8_t sink_node)
{
tvbuff_t *next_tvb;
switch (sink_node) {
/* Serval XID types. */
case XIDTYPE_FLOWID:
case XIDTYPE_SRVCID:
next_tvb = tvb_new_subset_remaining(tvb, offset);
return call_dissector(xip_serval_handle, next_tvb, pinfo, tree);
/* No special sink processing. */
default:
return 0;
}
}
static int
dissect_xip_next_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_item *next_ti, int offset)
{
tvbuff_t *next_tvb;
uint8_t next_header = tvb_get_uint8(tvb, XIPH_NXTH);
switch (next_header) {
case XIA_NEXT_HEADER_DATA:
next_tvb = tvb_new_subset_remaining(tvb, offset);
return call_data_dissector(next_tvb, pinfo, tree);
default:
expert_add_info_format(pinfo, next_ti, &ei_xip_next_header,
"Unrecognized next header type: 0x%02x", next_header);
return 0;
}
}
static void
display_xip(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *xip_tree = NULL;
proto_item *ti = NULL;
proto_item *payload_ti = NULL;
proto_item *next_ti = NULL;
proto_item *num_ti = NULL;
int offset;
uint16_t xiph_len, payload_len;
uint8_t num_dst_nodes, num_src_nodes, last_node;
num_dst_nodes = tvb_get_uint8(tvb, XIPH_NDST);
num_src_nodes = tvb_get_uint8(tvb, XIPH_NSRC);
xiph_len = 8 + (XIA_NODE_SIZE * num_dst_nodes) +
(XIA_NODE_SIZE * num_src_nodes);
/* Construct protocol tree. */
ti = proto_tree_add_item(tree, proto_xip, tvb, 0, xiph_len, ENC_NA);
xip_tree = proto_item_add_subtree(ti, ett_xip_tree);
/* Add XIP version. */
proto_tree_add_item(xip_tree, hf_xip_version, tvb,
XIPH_VERS, 1, ENC_BIG_ENDIAN);
/* Add XIP next header. */
next_ti = proto_tree_add_item(xip_tree, hf_xip_next_hdr, tvb,
XIPH_NXTH, 1, ENC_BIG_ENDIAN);
/* Add XIP payload length. */
payload_len = tvb_get_ntohs(tvb, XIPH_PLEN);
payload_ti = proto_tree_add_uint_format(xip_tree, hf_xip_payload_len,
tvb, XIPH_PLEN, 2, payload_len, "Payload Length: %u bytes",
payload_len);
if (tvb_captured_length_remaining(tvb, xiph_len) != payload_len)
expert_add_info_format(pinfo, payload_ti, &ei_xip_invalid_len,
"Payload length field (%d bytes) does not match actual payload length (%d bytes)",
payload_len, tvb_captured_length_remaining(tvb, xiph_len));
/* Add XIP hop limit. */
proto_tree_add_item(xip_tree, hf_xip_hop_limit, tvb,
XIPH_HOPL, 1, ENC_BIG_ENDIAN);
/* Add XIP number of destination DAG nodes. */
num_ti = proto_tree_add_item(xip_tree, hf_xip_num_dst, tvb,
XIPH_NDST, 1, ENC_BIG_ENDIAN);
if (num_dst_nodes > XIA_NODES_MAX) {
expert_add_info_format(pinfo, num_ti, &ei_xip_bad_num_dst,
"The number of destination DAG nodes (%d) must be less than XIA_NODES_MAX (%d)",
num_dst_nodes, XIA_NODES_MAX);
num_dst_nodes = XIA_NODES_MAX;
}
/* Add XIP number of source DAG nodes. */
num_ti = proto_tree_add_item(xip_tree, hf_xip_num_src, tvb,
XIPH_NSRC, 1, ENC_BIG_ENDIAN);
if (num_src_nodes > XIA_NODES_MAX) {
expert_add_info_format(pinfo, num_ti, &ei_xip_bad_num_src,
"The number of source DAG nodes (%d) must be less than XIA_NODES_MAX (%d)",
num_src_nodes, XIA_NODES_MAX);
num_src_nodes = XIA_NODES_MAX;
}
/* Add XIP last node. */
last_node = tvb_get_uint8(tvb, XIPH_LSTN);
proto_tree_add_uint_format_value(xip_tree, hf_xip_last_node, tvb,
XIPH_LSTN, 1, last_node, "%d%s", last_node,
last_node == XIA_ENTRY_NODE_INDEX ? " (entry node)" : "");
/* Construct Destination DAG subtree. */
if (num_dst_nodes > 0)
construct_dag(tvb, pinfo, xip_tree, ett_xip_ddag,
hf_xip_dst_dag, hf_xip_dst_dag_entry,
num_dst_nodes, XIPH_DSTD);
/* Construct Source DAG subtree. */
if (num_src_nodes > 0)
construct_dag(tvb, pinfo, xip_tree, ett_xip_sdag,
hf_xip_src_dag, hf_xip_src_dag_entry,
num_src_nodes,
XIPH_DSTD + num_dst_nodes * XIA_NODE_SIZE);
/* First byte after XIP header. */
offset = XIPH_DSTD + XIA_NODE_SIZE * (num_dst_nodes + num_src_nodes);
/* Dissect other headers according to the sink node, if needed. */
offset += dissect_xip_sink_node(tvb, pinfo, tree, offset,
tvb_get_ntohl(tvb, XIPH_DSTD +
(num_dst_nodes - 1) * XIA_NODE_SIZE));
dissect_xip_next_header(tvb, pinfo, tree, next_ti, offset);
}
static int
dissect_xip(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
void *data _U_)
{
/* Not large enough to be valid XIP packet. */
if (tvb_reported_length(tvb) < XIPH_MIN_LEN)
return 0;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "XIP");
col_set_str(pinfo->cinfo, COL_INFO, "XIP Packet");
display_xip(tvb, pinfo, tree);
return tvb_captured_length(tvb);
}
void
proto_register_xip(void)
{
static hf_register_info hf[] = {
/* XIP Header. */
{ &hf_xip_version,
{ "Version", "xip.version", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_next_hdr,
{ "Next Header", "xip.next_hdr", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_payload_len,
{ "Payload Length", "xip.payload_len", FT_UINT16,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_hop_limit,
{ "Hop Limit", "xip.hop_limit", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_num_dst,
{ "Number of Destination Nodes", "xip.num_dst", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_num_src,
{ "Number of Source Nodes", "xip.num_src", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_last_node,
{ "Last Node", "xip.last_node", FT_UINT8,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_dst_dag,
{ "Destination DAG", "xip.dst_dag", FT_NONE,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_dst_dag_entry,
{ "Destination DAG Entry", "xip.dst_dag_entry", FT_STRING,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_src_dag,
{ "Source DAG", "xip.src_dag", FT_NONE,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_xip_src_dag_entry,
{ "Source DAG Entry", "xip.src_dag_entry", FT_STRING,
BASE_NONE, NULL, 0x0, NULL, HFILL }}
};
static int *ett[] = {
&ett_xip_tree,
&ett_xip_ddag,
&ett_xip_sdag
};
static ei_register_info ei[] = {
{ &ei_xip_invalid_len,
{ "xip.invalid.len", PI_MALFORMED, PI_ERROR,
"Invalid length", EXPFILL }},
{ &ei_xip_next_header,
{ "xip.next.header", PI_MALFORMED, PI_ERROR,
"Invalid next header", EXPFILL }},
{ &ei_xip_bad_num_dst,
{ "xip.bad_num_dst", PI_MALFORMED, PI_ERROR,
"Invalid number of destination DAG nodes", EXPFILL }},
{ &ei_xip_bad_num_src,
{ "xip.bad_num_src", PI_MALFORMED, PI_ERROR,
"Invalid number of source DAG nodes", EXPFILL }}
};
expert_module_t* expert_xip;
proto_xip = proto_register_protocol("eXpressive Internet Protocol", "XIP", "xip");
xip_handle = register_dissector("xip", dissect_xip, proto_xip);
proto_register_field_array(proto_xip, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_xip = expert_register_protocol(proto_xip);
expert_register_field_array(expert_xip, ei, array_length(ei));
}
void
proto_reg_handoff_xip(void)
{
dissector_add_uint("ethertype", ETHERTYPE_XIP, xip_handle);
xip_serval_handle = find_dissector_add_dependency("xipserval", proto_xip);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/
|