summaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-zbee-security.c
blob: f41d19baf5402b82253f9b7dbc3ea08de04ee824 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
/* packet-zbee-security.c
 * Dissector helper routines for encrypted ZigBee frames.
 * By Owen Kirby <osk@exegin.com>; portions by Fred Fierling <fff@exegin.com>
 * Copyright 2009 Exegin Technologies Limited
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

/*  Include Files */
#include "config.h"


#include <epan/packet.h>
#include <epan/exceptions.h>

#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/uat.h>
#include <epan/proto_data.h>

/* We require libgcrpyt in order to decrypt ZigBee packets. Without it the best
 * we can do is parse the security header and give up.
 */
#include <wsutil/wsgcrypt.h>
#include <wsutil/pint.h>

#include "packet-ieee802154.h"
#include "packet-zbee.h"
#include "packet-zbee-nwk.h"
#include "packet-zbee-aps.h"    /* for ZBEE_APS_CMD_KEY_LENGTH */
#include "packet-zbee-security.h"

/* Helper Functions */
static void        zbee_sec_key_hash(guint8 *, guint8, guint8 *);
static void        zbee_sec_make_nonce (zbee_security_packet *, guint8 *);
static gboolean    zbee_sec_decrypt_payload(zbee_security_packet *, const gchar *, const gchar, guint8 *,
        guint, guint, guint8 *);
static gboolean    zbee_security_parse_key(const gchar *, guint8 *, gboolean);

/* Field pointers. */
static int hf_zbee_sec_field = -1;
static int hf_zbee_sec_level = -1;
static int hf_zbee_sec_key_id = -1;
static int hf_zbee_sec_nonce = -1;
static int hf_zbee_sec_counter = -1;
static int hf_zbee_sec_src64 = -1;
static int hf_zbee_sec_key_seqno = -1;
static int hf_zbee_sec_mic = -1;
static int hf_zbee_sec_key = -1;
static int hf_zbee_sec_key_origin = -1;
static int hf_zbee_sec_decryption_key = -1;

/* Subtree pointers. */
static gint ett_zbee_sec = -1;
static gint ett_zbee_sec_control = -1;

static expert_field ei_zbee_sec_encrypted_payload = EI_INIT;
static expert_field ei_zbee_sec_encrypted_payload_sliced = EI_INIT;
static expert_field ei_zbee_sec_extended_source_unknown = EI_INIT;

static const value_string zbee_sec_key_names[] = {
    { ZBEE_SEC_KEY_LINK,        "Link Key" },
    { ZBEE_SEC_KEY_NWK,         "Network Key" },
    { ZBEE_SEC_KEY_TRANSPORT,   "Key-Transport Key" },
    { ZBEE_SEC_KEY_LOAD,        "Key-Load Key" },
    { 0, NULL }
};

#if 0
/* These aren't really used anymore, as ZigBee no longer includes them in the
 * security control field. If we were to display them all we would ever see is
 * security level 0.
 */
static const value_string zbee_sec_level_names[] = {
    { ZBEE_SEC_NONE,        "None" },
    { ZBEE_SEC_MIC32,       "No Encryption, 32-bit MIC" },
    { ZBEE_SEC_MIC64,       "No Encryption, 64-bit MIC" },
    { ZBEE_SEC_MIC128,      "No Encryption, 128-bit MIC" },
    { ZBEE_SEC_ENC,         "Encryption, No MIC" },
    { ZBEE_SEC_ENC_MIC32,   "Encryption, 32-bit MIC" },
    { ZBEE_SEC_ENC_MIC64,   "Encryption, 64-bit MIC" },
    { ZBEE_SEC_ENC_MIC128,  "Encryption, 128-bit MIC" },
    { 0, NULL }
};
#endif

/* The ZigBee security level, in enum_val_t for the security preferences. */
static const enum_val_t zbee_sec_level_enums[] = {
    { "None",       "No Security",                                      ZBEE_SEC_NONE },
    { "MIC32",      "No Encryption, 32-bit Integrity Protection",       ZBEE_SEC_MIC32 },
    { "MIC64",      "No Encryption, 64-bit Integrity Protection",       ZBEE_SEC_MIC64 },
    { "MIC128",     "No Encryption, 128-bit Integrity Protection",      ZBEE_SEC_MIC128 },
    { "ENC",        "AES-128 Encryption, No Integrity Protection",      ZBEE_SEC_ENC },
    { "ENC-MIC32",  "AES-128 Encryption, 32-bit Integrity Protection",  ZBEE_SEC_ENC_MIC32 },
    { "ENC-MIC64",  "AES-128 Encryption, 64-bit Integrity Protection",  ZBEE_SEC_ENC_MIC64 },
    { "ENC-MIC128", "AES-128 Encryption, 128-bit Integrity Protection", ZBEE_SEC_ENC_MIC128 },
    { NULL, NULL, 0 }
};

static gint         gPREF_zbee_sec_level = ZBEE_SEC_ENC_MIC32;
static uat_t       *zbee_sec_key_table_uat;

static const value_string byte_order_vals[] = {
    { 0, "Normal"},
    { 1, "Reverse"},
    { 0, NULL }
};

/* UAT Key Entry */
typedef struct _uat_key_record_t {
    gchar    *string;
    guint8    byte_order;
    gchar    *label;
} uat_key_record_t;

UAT_CSTRING_CB_DEF(uat_key_records, string, uat_key_record_t)
UAT_VS_DEF(uat_key_records, byte_order, uat_key_record_t, guint8, 0, "Normal")
UAT_CSTRING_CB_DEF(uat_key_records, label, uat_key_record_t)

static GSList           *zbee_pc_keyring = NULL;
static uat_key_record_t *uat_key_records = NULL;
static guint             num_uat_key_records = 0;

static void* uat_key_record_copy_cb(void* n, const void* o, size_t siz _U_) {
    uat_key_record_t* new_key = (uat_key_record_t *)n;
    const uat_key_record_t* old_key = (const uat_key_record_t *)o;

    new_key->string     = g_strdup(old_key->string);
    new_key->label      = g_strdup(old_key->label);
    new_key->byte_order = old_key->byte_order;

    return new_key;
}

static bool uat_key_record_update_cb(void* r, char** err) {
    uat_key_record_t* rec = (uat_key_record_t *)r;
    guint8 key[ZBEE_SEC_CONST_KEYSIZE];

    if (rec->string == NULL) {
        *err = g_strdup("Key can't be blank");
        return FALSE;
    } else {
        g_strstrip(rec->string);

        if (rec->string[0] != 0) {
            *err = NULL;
            if ( !zbee_security_parse_key(rec->string, key, rec->byte_order) ) {
                *err = ws_strdup_printf("Expecting %d hexadecimal bytes or\n"
                        "a %d character double-quoted string", ZBEE_SEC_CONST_KEYSIZE, ZBEE_SEC_CONST_KEYSIZE);
                return FALSE;
            }
        } else {
            *err = g_strdup("Key can't be blank");
            return FALSE;
        }
    }
    return TRUE;
}

static void uat_key_record_free_cb(void*r) {
    uat_key_record_t* key = (uat_key_record_t *)r;

    g_free(key->string);
    g_free(key->label);
}

static void zbee_free_key_record(gpointer ptr)
{
    key_record_t *k = (key_record_t *)ptr;

    g_free(k->label);
    g_free(k);
}

static void uat_key_record_post_update(void) {
    guint           i;
    key_record_t    key_record;
    guint8          key[ZBEE_SEC_CONST_KEYSIZE];

    /* empty the key ring */
    if (zbee_pc_keyring) {
       g_slist_free_full(zbee_pc_keyring, zbee_free_key_record);
       zbee_pc_keyring = NULL;
    }

    /* Load the pre-configured slist from the UAT. */
    for (i=0; (uat_key_records) && (i<num_uat_key_records) ; i++) {
        if (zbee_security_parse_key(uat_key_records[i].string, key, uat_key_records[i].byte_order)) {
            key_record.frame_num = ZBEE_SEC_PC_KEY; /* means it's a user PC key */
            key_record.label = g_strdup(uat_key_records[i].label);
            memcpy(key_record.key, key, ZBEE_SEC_CONST_KEYSIZE);
            zbee_pc_keyring = g_slist_prepend(zbee_pc_keyring, g_memdup2(&key_record, sizeof(key_record_t)));
        }
    }
}

/*
 * Enable this macro to use libgcrypt's CBC_MAC mode for the authentication
 * phase. Unfortunately, this is broken, and I don't know why. However, using
 * the messier EBC mode (to emulate CCM*) still works fine.
 */
#if 0
#define ZBEE_SEC_USE_GCRYPT_CBC_MAC
#endif
/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_security_register
 *  DESCRIPTION
 *      Called by proto_register_zbee_nwk() to initialize the security
 *      dissectors.
 *  PARAMETERS
 *      module_t    zbee_prefs   - Prefs module to load preferences under.
 *  RETURNS
 *      none
 *---------------------------------------------------------------
 */
void zbee_security_register(module_t *zbee_prefs, int proto)
{
    static hf_register_info hf[] = {
        { &hf_zbee_sec_field,
          { "Security Control Field",   "zbee.sec.field", FT_UINT8, BASE_HEX, NULL,
            0x0, NULL, HFILL }},

        { &hf_zbee_sec_level,
          { "Security Level",          "zbee.sec.sec_level", FT_UINT8, BASE_HEX, NULL,
            ZBEE_SEC_CONTROL_LEVEL, NULL, HFILL }},

        { &hf_zbee_sec_key_id,
          { "Key Id",                    "zbee.sec.key_id", FT_UINT8, BASE_HEX, VALS(zbee_sec_key_names),
            ZBEE_SEC_CONTROL_KEY, NULL, HFILL }},

        { &hf_zbee_sec_nonce,
          { "Extended Nonce",         "zbee.sec.ext_nonce", FT_BOOLEAN, 8, NULL, ZBEE_SEC_CONTROL_NONCE,
            NULL, HFILL }},

        { &hf_zbee_sec_counter,
          { "Frame Counter",          "zbee.sec.counter", FT_UINT32, BASE_DEC, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_src64,
          { "Extended Source",                 "zbee.sec.src64", FT_EUI64, BASE_NONE, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_key_seqno,
          { "Key Sequence Number",    "zbee.sec.key_seqno", FT_UINT8, BASE_DEC, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_mic,
          { "Message Integrity Code", "zbee.sec.mic", FT_BYTES, BASE_NONE, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_key,
          { "Key", "zbee.sec.key", FT_BYTES, BASE_NONE, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_key_origin,
          { "Key Origin", "zbee.sec.key.origin", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
            NULL, HFILL }},

        { &hf_zbee_sec_decryption_key,
          { "Key Label", "zbee.sec.decryption_key", FT_STRING, BASE_NONE, NULL, 0x0,
            NULL, HFILL }}
    };

    static gint *ett[] = {
        &ett_zbee_sec,
        &ett_zbee_sec_control
    };

    static ei_register_info ei[] = {
        { &ei_zbee_sec_encrypted_payload, { "zbee_sec.encrypted_payload", PI_UNDECODED, PI_WARN, "Encrypted Payload", EXPFILL }},
        { &ei_zbee_sec_encrypted_payload_sliced, { "zbee_sec.encrypted_payload_sliced", PI_UNDECODED, PI_WARN, "Encrypted payload, cut short when capturing - can't decrypt", EXPFILL }},
        { &ei_zbee_sec_extended_source_unknown, { "zbee_sec.extended_source_unknown", PI_PROTOCOL, PI_NOTE, "Extended Source: Unknown", EXPFILL }},
    };

    expert_module_t* expert_zbee_sec;

    static uat_field_t key_uat_fields[] = {
        UAT_FLD_CSTRING(uat_key_records, string, "Key",
                        "A 16-byte key in hexadecimal with optional dash-,\n"
                        "colon-, or space-separator characters, or a\n"
                        "a 16-character string in double-quotes."),
        UAT_FLD_VS(uat_key_records, byte_order, "Byte Order", byte_order_vals,
                        "Byte order of key."),
        UAT_FLD_CSTRING(uat_key_records, label, "Label", "User label for key."),
        UAT_END_FIELDS
    };

    /* If no prefs module was supplied, register our own. */
    if (zbee_prefs == NULL) {
        zbee_prefs = prefs_register_protocol(proto, NULL);
    }

    /*  Register preferences */
    prefs_register_enum_preference(zbee_prefs, "seclevel", "Security Level",
                 "Specifies the security level to use in the\n"
                 "decryption process. This value is ignored\n"
                 "for ZigBee 2004 and unsecured networks.",
                 &gPREF_zbee_sec_level, zbee_sec_level_enums, FALSE);

    zbee_sec_key_table_uat = uat_new("Pre-configured Keys",
                               sizeof(uat_key_record_t),
                               "zigbee_pc_keys",
                               TRUE,
                               &uat_key_records,
                               &num_uat_key_records,
                               UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
                               NULL,  /* TODO: ptr to help manual? */
                               uat_key_record_copy_cb,
                               uat_key_record_update_cb,
                               uat_key_record_free_cb,
                               uat_key_record_post_update,
                               NULL,
                               key_uat_fields );

    prefs_register_uat_preference(zbee_prefs,
                                  "key_table",
                                  "Pre-configured Keys",
                                  "Pre-configured link or network keys.",
                                  zbee_sec_key_table_uat);

    proto_register_field_array(proto, hf, array_length(hf));
    proto_register_subtree_array(ett, array_length(ett));
    expert_zbee_sec = expert_register_protocol(proto);
    expert_register_field_array(expert_zbee_sec, ei, array_length(ei));

} /* zbee_security_register */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_security_parse_key
 *  DESCRIPTION
 *      Parses a key string from left to right into a buffer with
 *      increasing (normal byte order) or decreasing (reverse byte
 *      order) address.
 *  PARAMETERS
 *      const gchar    *key_str - pointer to the string
 *      guint8         *key_buf - destination buffer in memory
 *      gboolean        big_end - fill key_buf with incrementing address
 *  RETURNS
 *      gboolean
 *---------------------------------------------------------------
 */
static gboolean
zbee_security_parse_key(const gchar *key_str, guint8 *key_buf, gboolean byte_order)
{
    int             i, j;
    gchar           temp;
    gboolean        string_mode = FALSE;

    /* Clear the key. */
    memset(key_buf, 0, ZBEE_SEC_CONST_KEYSIZE);
    if (key_str == NULL) {
        return FALSE;
    }

    /*
     * Attempt to parse the key string. The key string must
     * be at least 16 pairs of hexidecimal digits with the
     * following optional separators: ':', '-', " ", or 16
     * alphanumeric characters after a double-quote.
     */
    if ( (temp = *key_str++) == '"') {
        string_mode = TRUE;
        temp = *key_str++;
    }

    j = byte_order?ZBEE_SEC_CONST_KEYSIZE-1:0;
    for (i=ZBEE_SEC_CONST_KEYSIZE-1; i>=0; i--) {
        if ( string_mode ) {
            if ( g_ascii_isprint(temp) ) {
                key_buf[j] = temp;
                temp = *key_str++;
            } else {
                return FALSE;
            }
        }
        else {
            /* If this character is a separator, skip it. */
            if ( (temp == ':') || (temp == '-') || (temp == ' ') ) temp = *(key_str++);

            /* Process a nibble. */
            if ( g_ascii_isxdigit (temp) ) key_buf[j] = g_ascii_xdigit_value(temp)<<4;
            else return FALSE;

            /* Get the next nibble. */
            temp = *(key_str++);

            /* Process another nibble. */
            if ( g_ascii_isxdigit (temp) ) key_buf[j] |= g_ascii_xdigit_value(temp);
            else return FALSE;

            /* Get the next nibble. */
            temp = *(key_str++);
        }

        /* Move key_buf pointer */
        if ( byte_order ) {
            j--;
        } else {
            j++;
        }

    } /* for */

    /* If we get this far, then the key was good. */
    return TRUE;
} /* zbee_security_parse_key */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      dissect_zbee_secure
 *  DESCRIPTION
 *      Dissects and decrypts secured ZigBee frames.
 *
 *      Will return a valid tvbuff only if security processing was
 *      successful. If processing fails, then this function will
 *      handle internally and return NULL.
 *  PARAMETERS
 *      tvbuff_t    *tvb    - pointer to buffer containing raw packet.
 *      packet_info *pinfo  - pointer to packet information fields
 *      proto_tree  *tree   - pointer to data tree Wireshark uses to display packet.
 *      guint       offset  - pointer to the start of the auxiliary security header.
 *      guint64     src64   - extended source address, or 0 if unknown.
 *  RETURNS
 *      tvbuff_t *
 *---------------------------------------------------------------
 */
tvbuff_t *
dissect_zbee_secure(tvbuff_t *tvb, packet_info *pinfo, proto_tree* tree, guint offset)
{
    proto_tree     *sec_tree;

    zbee_security_packet    packet;
    guint           mic_len;
    gint            payload_len;
    tvbuff_t       *payload_tvb;

    proto_item         *ti;
    proto_item         *key_item;
    guint8             *enc_buffer;
    guint8             *dec_buffer;
    gboolean            decrypted;
    GSList            **nwk_keyring;
    GSList             *GSList_i;
    key_record_t       *key_rec = NULL;
    zbee_nwk_hints_t   *nwk_hints;
    ieee802154_hints_t *ieee_hints;
    ieee802154_map_rec *map_rec = NULL;

    static int * const sec_flags[] = {
        &hf_zbee_sec_level,
        &hf_zbee_sec_key_id,
        &hf_zbee_sec_nonce,
        NULL
    };

    /* Init */
    memset(&packet, 0, sizeof(zbee_security_packet));

    /* Get pointers to any useful frame data from lower layers */
    nwk_hints = (zbee_nwk_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo,
        proto_get_id_by_filter_name(ZBEE_PROTOABBREV_NWK), 0);
    ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo,
        proto_get_id_by_filter_name(IEEE802154_PROTOABBREV_WPAN), 0);

    /* Create a subtree for the security information. */
    sec_tree = proto_tree_add_subtree(tree, tvb, offset, -1, ett_zbee_sec, NULL, "ZigBee Security Header");

    /*  Get and display the Security control field */
    packet.control  = tvb_get_guint8(tvb, offset);

    /* Patch the security level. */
    packet.control &= ~ZBEE_SEC_CONTROL_LEVEL;
    packet.control |= (ZBEE_SEC_CONTROL_LEVEL & gPREF_zbee_sec_level);

    /*
     * Eww, I think I just threw up a little...  ZigBee requires this field
     * to be patched before computing the MIC, but we don't have write-access
     * to the tvbuff. So we need to allocate a copy of the whole thing just
     * so we can fix these 3 bits. Memory allocated by tvb_memdup(pinfo->pool,...)
     * is automatically freed before the next packet is processed.
     */
    enc_buffer = (guint8 *)tvb_memdup(pinfo->pool, tvb, 0, tvb_captured_length(tvb));
    /*
     * Override the const qualifiers and patch the security level field, we
     * know it is safe to overide the const qualifiers because we just
     * allocated this memory via tvb_memdup(pinfo->pool,...).
     */
    enc_buffer[offset] = packet.control;
    packet.level    = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_LEVEL);
    packet.key_id   = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_KEY);
    packet.nonce    = zbee_get_bit_field(packet.control, ZBEE_SEC_CONTROL_NONCE);

    proto_tree_add_bitmask(sec_tree, tvb, offset, hf_zbee_sec_field, ett_zbee_sec_control, sec_flags, ENC_NA);
    offset += 1;

    /* Get and display the frame counter field. */
    packet.counter = tvb_get_letohl(tvb, offset);
    proto_tree_add_uint(sec_tree, hf_zbee_sec_counter, tvb, offset, 4, packet.counter);
    offset += 4;

    if (packet.nonce) {
        /* Get and display the source address of the device that secured this payload. */
        packet.src64 = tvb_get_letoh64(tvb, offset);
        proto_tree_add_item(sec_tree, hf_zbee_sec_src64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
#if 1
        if (!pinfo->fd->visited) {
            switch ( packet.key_id ) {
                case ZBEE_SEC_KEY_LINK:
                if (nwk_hints && ieee_hints) {
                    /* Map this long address with the nwk layer short address. */
                    nwk_hints->map_rec = ieee802154_addr_update(&zbee_nwk_map, nwk_hints->src,
                            ieee_hints->src_pan, packet.src64, pinfo->current_proto, pinfo->num);
                }
                break;

                case ZBEE_SEC_KEY_NWK:
                if (ieee_hints) {
                    /* Map this long address with the ieee short address. */
                    ieee_hints->map_rec = ieee802154_addr_update(&zbee_nwk_map, ieee_hints->src16,
                        ieee_hints->src_pan, packet.src64, pinfo->current_proto, pinfo->num);
                    if (nwk_hints && !nwk_hints->map_rec) {
                        /* Map this long address with the nwk layer short address. */
                        nwk_hints->map_rec = ieee802154_addr_update(&zbee_nwk_map, nwk_hints->src,
                                ieee_hints->src_pan, packet.src64, pinfo->current_proto, pinfo->num);
                    }
                }
                break;

                /* We ignore the extended source addresses used to encrypt payloads with these
                 * types of keys, because they can emerge from APS tunnels created by nodes whose
                 * short address is not recorded in the packet. */
                case ZBEE_SEC_KEY_TRANSPORT:
                case ZBEE_SEC_KEY_LOAD:
                break;
            }
        }
#endif
        offset += 8;
    }
    else {
        /* Look for a source address in hints */
        switch ( packet.key_id ) {
            case ZBEE_SEC_KEY_NWK:
                /* use the ieee extended source address for NWK decryption */
                if ( ieee_hints && (map_rec = ieee_hints->map_rec) )
                    packet.src64 = map_rec->addr64;
                else
                    proto_tree_add_expert(sec_tree, pinfo, &ei_zbee_sec_extended_source_unknown, tvb, 0, 0);
                break;

            default:
                /* use the nwk extended source address for APS decryption */
                if ( nwk_hints && (map_rec = nwk_hints->map_rec) )
                {
                    switch (nwk_hints->relay_type)
                    {
                        case ZBEE_APS_RELAY_DOWNSTREAM:
                        {
                            ieee802154_short_addr   addr16;
                            /* In case of downstream Relay must use long address
                             * of ZC. Seek for it in the address translation
                             * table. */
                            addr16.addr = 0;
                            addr16.pan = ieee_hints->src_pan;
                            map_rec = (ieee802154_map_rec *) g_hash_table_lookup(zbee_nwk_map.short_table, &addr16);
                            if (map_rec)
                            {
                                packet.src64 = map_rec->addr64;
                            }
                        }
                        break;
                        case ZBEE_APS_RELAY_UPSTREAM:
                            /* In case of downstream Relay must use long address of Joiner from the Relay message */
                            packet.src64 = nwk_hints->joiner_addr64;
                            break;
                        default:
                            packet.src64 = map_rec->addr64;
                            break;
                    }
                }
                else
                    proto_tree_add_expert(sec_tree, pinfo, &ei_zbee_sec_extended_source_unknown, tvb, 0, 0);
                break;
        }
    }

    if (packet.key_id == ZBEE_SEC_KEY_NWK) {
        /* Get and display the key sequence number. */
        packet.key_seqno = tvb_get_guint8(tvb, offset);
        proto_tree_add_uint(sec_tree, hf_zbee_sec_key_seqno, tvb, offset, 1, packet.key_seqno);
        offset += 1;
    }

    /* Determine the length of the MIC. */
    switch (packet.level) {
        case ZBEE_SEC_ENC:
        case ZBEE_SEC_NONE:
        default:
            mic_len=0;
            break;

        case ZBEE_SEC_ENC_MIC32:
        case ZBEE_SEC_MIC32:
            mic_len=4;
            break;

        case ZBEE_SEC_ENC_MIC64:
        case ZBEE_SEC_MIC64:
            mic_len=8;
            break;

        case ZBEE_SEC_ENC_MIC128:
        case ZBEE_SEC_MIC128:
            mic_len=16;
            break;
    } /* switch */

    /* Get and display the MIC. */
    if (mic_len) {
        /* Display the MIC. */
        proto_tree_add_item(sec_tree, hf_zbee_sec_mic, tvb, (gint)(tvb_captured_length(tvb)-mic_len),
                mic_len, ENC_NA);
    }

    payload_len = tvb_reported_length_remaining(tvb, offset+mic_len);

    /* Check for null payload. */
    if (payload_len == 0)
        return NULL;

    /**********************************************
     *  Perform Security Operations on the Frame  *
     **********************************************
     */
    if ((packet.level == ZBEE_SEC_NONE) ||
        (packet.level == ZBEE_SEC_MIC32) ||
        (packet.level == ZBEE_SEC_MIC64) ||
        (packet.level == ZBEE_SEC_MIC128)) {

        /* Payload is only integrity protected. Just return the sub-tvbuff. */
        return tvb_new_subset_length(tvb, offset, payload_len);
    }

    /* Have we captured all the payload? */
    if (tvb_captured_length_remaining(tvb, offset+mic_len) < payload_len) {
        /*
         * No - don't try to decrypt it.
         *
         * XXX - it looks as if the decryption code is assuming we have the
         * MIC, which won't be the case if the packet was cut short.  Is
         * that in fact that case, or can we still make this work with a
         * partially-captured packet?
         */
        /* Add expert info. */
        expert_add_info(pinfo, sec_tree, &ei_zbee_sec_encrypted_payload_sliced);
        /* Create a buffer for the undecrypted payload. */
        payload_tvb = tvb_new_subset_length(tvb, offset, payload_len);
        /* Dump the payload to the data dissector. */
        call_data_dissector(payload_tvb, pinfo, tree);
        /* Couldn't decrypt, so return NULL. */
        return NULL;
    }

    /* Allocate memory to decrypt the payload into. */
    dec_buffer = (guint8 *)wmem_alloc(pinfo->pool, payload_len);

    decrypted = FALSE;
    if ( packet.src64 ) {
        if (pinfo->fd->visited) {
            if ( nwk_hints ) {
                /* Use previously found key */
                switch ( packet.key_id ) {
                    case ZBEE_SEC_KEY_NWK:
                        if ( (key_rec = nwk_hints->nwk) ) {
                            decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
                                payload_len, mic_len, nwk_hints->nwk->key);
                        }
                        break;

                    default:
                        if ( (key_rec = nwk_hints->link) ) {
                            decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
                                payload_len, mic_len, nwk_hints->link->key);
                        }
                        break;
                }
            }
        } /* ( !pinfo->fd->visited ) */
        else {
            /* We only search for sniffed keys in the first pass,
             * to save time, and because decrypting with keys
             * transported in future packets is cheating */

            /* Lookup NWK and link key in hash for this pan. */
            /* This overkill approach is a placeholder for a hash that looks up
             * a key ring for a link key associated with a pair of devices.
             */
            if ( nwk_hints ) {
                nwk_keyring = (GSList **)g_hash_table_lookup(zbee_table_nwk_keyring, &nwk_hints->src_pan);

                if ( nwk_keyring ) {
                    GSList_i = *nwk_keyring;
                    while ( GSList_i && !decrypted ) {
                        decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
                                payload_len, mic_len, ((key_record_t *)(GSList_i->data))->key);

                        if (decrypted) {
                            /* save pointer to the successful key record */
                            switch (packet.key_id) {
                                case ZBEE_SEC_KEY_NWK:
                                    key_rec = nwk_hints->nwk = (key_record_t *)(GSList_i->data);
                                    break;

                                default:
                                    key_rec = nwk_hints->link = (key_record_t *)(GSList_i->data);
                                    break;
                            }
                        } else {
                            GSList_i = g_slist_next(GSList_i);
                        }
                    }
                }

                /* Loop through user's password table for preconfigured keys, our last resort */
                GSList_i = zbee_pc_keyring;
                while ( GSList_i && !decrypted ) {
                    decrypted = zbee_sec_decrypt_payload( &packet, enc_buffer, offset, dec_buffer,
                            payload_len, mic_len, ((key_record_t *)(GSList_i->data))->key);

                    if (decrypted) {
                        /* save pointer to the successful key record */
                        switch (packet.key_id) {
                            case ZBEE_SEC_KEY_NWK:
                                key_rec = nwk_hints->nwk = (key_record_t *)(GSList_i->data);
                                break;

                            default:
                                key_rec = nwk_hints->link = (key_record_t *)(GSList_i->data);
                                break;
                        }
                    } else {
                        GSList_i = g_slist_next(GSList_i);
                    }
                }
            }
        } /* ( ! pinfo->fd->visited ) */
    } /* ( packet.src64 ) */

    if ( decrypted ) {
        if ( tree && key_rec ) {
            key_item = proto_tree_add_bytes(sec_tree, hf_zbee_sec_key, tvb, 0, ZBEE_SEC_CONST_KEYSIZE, key_rec->key);
            proto_item_set_generated(key_item);

            if ( key_rec->frame_num == ZBEE_SEC_PC_KEY ) {
                ti = proto_tree_add_string(sec_tree, hf_zbee_sec_decryption_key, tvb, 0, 0, key_rec->label);
            } else {
                ti = proto_tree_add_uint(sec_tree, hf_zbee_sec_key_origin, tvb, 0, 0,
                        key_rec->frame_num);
            }
            proto_item_set_generated(ti);
        }

        /* Found a key that worked, setup the new tvbuff_t and return */
        payload_tvb = tvb_new_child_real_data(tvb, dec_buffer, payload_len, payload_len);
        add_new_data_source(pinfo, payload_tvb, "Decrypted ZigBee Payload");

        /* Done! */
        return payload_tvb;
    }

    /* Add expert info. */
    expert_add_info(pinfo, sec_tree, &ei_zbee_sec_encrypted_payload);
    /* Create a buffer for the undecrypted payload. */
    payload_tvb = tvb_new_subset_length(tvb, offset, payload_len);
    /* Dump the payload to the data dissector. */
    call_data_dissector(payload_tvb, pinfo, tree);
    /* Couldn't decrypt, so return NULL. */
    return NULL;
} /* dissect_zbee_secure */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_sec_decrypt_payload
 *  DESCRIPTION
 *      Creates a nonce and decrypts a secured payload.
 *  PARAMETERS
 *      gchar                *nonce  - Nonce Buffer.
 *      zbee_security_packet *packet - Security information.
 *  RETURNS
 *      void
 *---------------------------------------------------------------
 */
static gboolean
zbee_sec_decrypt_payload(zbee_security_packet *packet, const gchar *enc_buffer, const gchar offset, guint8 *dec_buffer,
        guint payload_len, guint mic_len, guint8 *key)
{
    guint8  nonce[ZBEE_SEC_CONST_NONCE_LEN];
    guint8  buffer[ZBEE_SEC_CONST_BLOCKSIZE+1];
    guint8 *key_buffer = buffer;

    switch (packet->key_id) {
        case ZBEE_SEC_KEY_NWK:
            /* Decrypt with the PAN's current network key */
        case ZBEE_SEC_KEY_LINK:
            /* Decrypt with the unhashed link key assigned by the trust center to this
             * source/destination pair */
            key_buffer = key;
            break;

        case ZBEE_SEC_KEY_TRANSPORT:
            /* Decrypt with a Key-Transport key, a hashed link key that protects network
             * keys sent from the trust center */
            zbee_sec_key_hash(key, 0x00, buffer);
            key_buffer = buffer;
            break;

        case ZBEE_SEC_KEY_LOAD:
            /* Decrypt with a Key-Load key, a hashed link key that protects link keys
             * sent from the trust center. */
            zbee_sec_key_hash(key, 0x02, buffer);
            key_buffer = buffer;
            break;

        default:
            break;
    } /* switch */

    /* Perform Decryption. */
    zbee_sec_make_nonce(packet, nonce);

    if ( zbee_sec_ccm_decrypt(key_buffer,   /* key */
                        nonce,              /* Nonce */
                        enc_buffer,         /* a, length l(a) */
                        enc_buffer+offset,  /* c, length l(c) = l(m) + M */
                        dec_buffer,         /* m, length l(m) */
                        offset,             /* l(a) */
                        payload_len,        /* l(m) */
                        mic_len) ) {        /* M */
        return TRUE;
    }
    else return FALSE;
}

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_sec_make_nonce
 *  DESCRIPTION
 *      Fills in the ZigBee security nonce from the provided security
 *      packet structure.
 *  PARAMETERS
 *      zbee_security_packet *packet - Security information.
 *      gchar           *nonce  - Nonce Buffer.
 *  RETURNS
 *      void
 *---------------------------------------------------------------
 */
static void
zbee_sec_make_nonce(zbee_security_packet *packet, guint8 *nonce)
{
    /* First 8 bytes are the extended source address (little endian). */
    phtole64(nonce, packet->src64);
    nonce += 8;
    /* Next 4 bytes are the frame counter (little endian). */
    phtole32(nonce, packet->counter);
    nonce += 4;
    /* Next byte is the security control field. */
    *(nonce) = packet->control;
} /* zbee_sec_make_nonce */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_sec_ccm_decrypt
 *  DESCRIPTION
 *      Performs the Reverse CCM* Transformation (specified in
 *      section A.3 of ZigBee Specification (053474r17).
 *
 *      The length of parameter c (l(c)) is derived from the length
 *      of the payload and length of the MIC tag. Input buffer a
 *      will NOT be modified.
 *
 *      When l_m is 0, then there is no payload to encrypt (ie: the
 *      payload is in plaintext), and this function will perform
 *      MIC verification only. When l_m is 0, m may be NULL.
 *  PARAMETERS
 *      gchar   *key    - ZigBee Security Key (must be ZBEE_SEC_CONST_KEYSIZE) in length.
 *      gchar   *nonce  - ZigBee CCM* Nonce (must be ZBEE_SEC_CONST_NONCE_LEN) in length.
 *      gchar   *a      - CCM* Parameter a (must be l(a) in length). Additional data covered
 *                          by the authentication process.
 *      gchar   *c      - CCM* Parameter c (must be l(c) = l(m) + M in length). Encrypted
 *                          payload + encrypted authentication tag U.
 *      gchar   *m      - CCM* Output (must be l(m) in length). Decrypted Payload.
 *      guint   l_a     - l(a), length of CCM* parameter a.
 *      guint   l_m     - l(m), length of expected payload.
 *      guint   M       - M, length of CCM* authentication tag.
 *  RETURNS
 *      gboolean        - TRUE if successful.
 *---------------------------------------------------------------
 */
gboolean
zbee_sec_ccm_decrypt(const gchar    *key,   /* Input */
                    const gchar     *nonce, /* Input */
                    const gchar     *a,     /* Input */
                    const gchar     *c,     /* Input */
                    gchar           *m,     /* Output */
                    guint           l_a,    /* sizeof(a) */
                    guint           l_m,    /* sizeof(m) */
                    guint           M)      /* sizeof(c) - sizeof(m) = sizeof(MIC) */
{
    guint8              cipher_in[ZBEE_SEC_CONST_BLOCKSIZE];
    guint8              cipher_out[ZBEE_SEC_CONST_BLOCKSIZE];
    guint8              decrypted_mic[ZBEE_SEC_CONST_BLOCKSIZE];
    guint               i, j;
    /* Cipher Instance. */
    gcry_cipher_hd_t    cipher_hd;

    /* Sanity-Check. */
    if (M > ZBEE_SEC_CONST_BLOCKSIZE) return FALSE;
    /*
     * The CCM* counter is L bytes in length, ensure that the payload
     * isn't long enough to overflow it.
     */
    if ((1 + (l_a/ZBEE_SEC_CONST_BLOCKSIZE)) > (1<<(ZBEE_SEC_CONST_L*8))) return FALSE;

    /******************************************************
     * Step 1: Encryption/Decryption Transformation
     ******************************************************
     */
    /* Create the CCM* counter block A0 */
    memset(cipher_in, 0, ZBEE_SEC_CONST_BLOCKSIZE);
    cipher_in[0] = ZBEE_SEC_CCM_FLAG_L;
    memcpy(cipher_in + 1, nonce, ZBEE_SEC_CONST_NONCE_LEN);
    /*
     * The encryption/decryption process of CCM* works in CTR mode. Open a CTR
     * mode cipher for this phase. NOTE: The 'counter' part of the CCM* counter
     * block is the last two bytes, and is big-endian.
     */
    if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0)) {
        return FALSE;
    }
    /* Set the Key. */
    if (gcry_cipher_setkey(cipher_hd, key, ZBEE_SEC_CONST_KEYSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /* Set the counter. */
    if (gcry_cipher_setctr(cipher_hd, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /*
     * Copy the MIC into the stack buffer. We need to feed the cipher a full
     * block when decrypting the MIC (so that the payload starts on the second
     * block). However, the MIC may be less than a full block so use a fixed
     * size buffer to store the MIC, letting the CTR cipher overstep the MIC
     * if need be.
     */
    memset(decrypted_mic, 0, ZBEE_SEC_CONST_BLOCKSIZE);
    memcpy(decrypted_mic, c + l_m, M);
    /* Encrypt/Decrypt the MIC in-place. */
    if (gcry_cipher_encrypt(cipher_hd, decrypted_mic, ZBEE_SEC_CONST_BLOCKSIZE, decrypted_mic, ZBEE_SEC_CONST_BLOCKSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /* Encrypt/Decrypt the payload. */
    if (gcry_cipher_encrypt(cipher_hd, m, l_m, c, l_m)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /* Done with the CTR Cipher. */
    gcry_cipher_close(cipher_hd);

    /******************************************************
     * Step 3: Authentication Transformation
     ******************************************************
     */
    if (M == 0) {
        /* There is no authentication tag. We're done! */
        return TRUE;
    }
    /*
     * The authentication process in CCM* operates in CBC-MAC mode, but
     * unfortunately, the input to the CBC-MAC process needs some substantial
     * transformation and padding before we can feed it into the CBC-MAC
     * algorithm. Instead we will operate in ECB mode and perform the
     * transformation and padding on the fly.
     *
     * I also think that libgcrypt requires the input to be memory-aligned
     * when using CBC-MAC mode, in which case can't just feed it with data
     * from the packet buffer. All things considered it's just a lot easier
     * to use ECB mode and do CBC-MAC manually.
     */
    /* Re-open the cipher in ECB mode. */
    if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_ECB, 0)) {
        return FALSE;
    }
    /* Re-load the key. */
    if (gcry_cipher_setkey(cipher_hd, key, ZBEE_SEC_CONST_KEYSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /* Generate the first cipher block B0. */
    cipher_in[0] = ZBEE_SEC_CCM_FLAG_M(M) |
                    ZBEE_SEC_CCM_FLAG_ADATA(l_a) |
                    ZBEE_SEC_CCM_FLAG_L;
    memcpy(cipher_in+sizeof(gchar), nonce, ZBEE_SEC_CONST_NONCE_LEN);
    for (i=0;i<ZBEE_SEC_CONST_L; i++) {
        cipher_in[(ZBEE_SEC_CONST_BLOCKSIZE-1)-i] = (l_m >> (8*i)) & 0xff;
    } /* for */
    /* Generate the first cipher block, X1 = E(Key, 0^128 XOR B0). */
    if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /*
     * We avoid mallocing() big chunks of memory by recycling small stack
     * buffers for the encryption process. Throughout this process, j is always
     * pointed to the position within the current buffer.
     */
    j = 0;
    /* AuthData = L(a) || a || Padding || m || Padding
     * Where L(a) =
     *      - an empty string if l(a) == 0.
     *      - 2-octet encoding of l(a) if 0 < l(a) < (2^16 - 2^8)
     *      - 0xff || 0xfe || 4-octet encoding of l(a) if (2^16 - 2^8) <= l(a) < 2^32
     *      - 0xff || 0xff || 8-octet encoding of l(a)
     * But for ZigBee, the largest packet size we should ever see is 2^7, so we
     * are only really concerned with the first two cases.
     *
     * To generate the MIC tag CCM* operates similar to CBC-MAC mode. Each block
     * of AuthData is XOR'd with the last block of cipher output to produce the
     * next block of cipher output. Padding sections have the minimum non-negative
     * length such that the padding ends on a block boundary. Padded bytes are 0.
     */
    if (l_a > 0) {
        /* Process L(a) into the cipher block. */
        cipher_in[j] = cipher_out[j] ^ ((l_a >> 8) & 0xff);
        j++;
        cipher_in[j] = cipher_out[j] ^ ((l_a >> 0) & 0xff);
        j++;
        /* Process a into the cipher block. */
        for (i=0;i<l_a;i++,j++) {
            if (j>=ZBEE_SEC_CONST_BLOCKSIZE) {
                /* Generate the next cipher block. */
                if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in,
                            ZBEE_SEC_CONST_BLOCKSIZE)) {
                    gcry_cipher_close(cipher_hd);
                    return FALSE;
                }
                /* Reset j to point back to the start of the new cipher block. */
                j = 0;
            }
            /* Cipher in = cipher_out ^ a */
            cipher_in[j] = cipher_out[j] ^ a[i];
        } /* for */
        /* Process padding into the cipher block. */
        for (;j<ZBEE_SEC_CONST_BLOCKSIZE;j++)
            cipher_in[j] = cipher_out[j];
    }
    /* Process m into the cipher block. */
    for (i=0; i<l_m; i++, j++) {
        if (j>=ZBEE_SEC_CONST_BLOCKSIZE) {
            /* Generate the next cipher block. */
            if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in,
                       ZBEE_SEC_CONST_BLOCKSIZE)) {
                gcry_cipher_close(cipher_hd);
                return FALSE;
            }
            /* Reset j to point back to the start of the new cipher block. */
            j = 0;
        }
        /* Cipher in = cipher out ^ m */
        cipher_in[j] = cipher_out[j] ^ m[i];
    } /* for */
    /* Padding. */
    for (;j<ZBEE_SEC_CONST_BLOCKSIZE;j++)
        cipher_in[j] = cipher_out[j];
    /* Generate the last cipher block, which will be the MIC tag. */
    if (gcry_cipher_encrypt(cipher_hd, cipher_out, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE)) {
        gcry_cipher_close(cipher_hd);
        return FALSE;
    }
    /* Done with the Cipher. */
    gcry_cipher_close(cipher_hd);

    /* Compare the MIC's */
    return (memcmp(cipher_out, decrypted_mic, M) == 0);
} /* zbee_ccm_decrypt */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_sec_hash
 *  DESCRIPTION
 *      ZigBee Cryptographic Hash Function, described in ZigBee
 *      specification sections B.1.3 and B.6.
 *
 *      This is a Matyas-Meyer-Oseas hash function using the AES-128
 *      cipher. We use the ECB mode of libgcrypt to get a raw block
 *      cipher.
 *
 *      Input may be any length, and the output must be exactly 1-block in length.
 *
 *      Implements the function:
 *          Hash(text) = Hash[t];
 *          Hash[0] = 0^(blocksize).
 *          Hash[i] = E(Hash[i-1], M[i]) XOR M[j];
 *          M[i] = i'th block of text, with some padding and flags concatenated.
 *  PARAMETERS
 *      guint8 *    input       - Hash Input (any length).
 *      guint8      input_len   - Hash Input Length.
 *      guint8 *    output      - Hash Output (exactly one block in length).
 *  RETURNS
 *      void
 *---------------------------------------------------------------
 */
static void
zbee_sec_hash(guint8 *input, guint input_len, guint8 *output)
{
    guint8              cipher_in[ZBEE_SEC_CONST_BLOCKSIZE];
    guint               i, j;
    /* Cipher Instance. */
    gcry_cipher_hd_t    cipher_hd;

    /* Clear the first hash block (Hash0). */
    memset(output, 0, ZBEE_SEC_CONST_BLOCKSIZE);
    /* Create the cipher instance in ECB mode. */
    if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_ECB, 0)) {
        return; /* Failed. */
    }
    /* Create the subsequent hash blocks using the formula: Hash[i] = E(Hash[i-1], M[i]) XOR M[i]
     *
     * because we can't guarantee that M will be exactly a multiple of the
     * block size, we will need to copy it into local buffers and pad it.
     *
     * Note that we check for the next cipher block at the end of the loop
     * rather than the start. This is so that if the input happens to end
     * on a block boundary, the next cipher block will be generated for the
     * start of the padding to be placed into.
     */
    i = 0;
    j = 0;
    while (i<input_len) {
        /* Copy data into the cipher input. */
        cipher_in[j++] = input[i++];
        /* Check if this cipher block is done. */
        if (j >= ZBEE_SEC_CONST_BLOCKSIZE) {
            /* We have reached the end of this block. Process it with the
             * cipher, note that the Key input to the cipher is actually
             * the previous hash block, which we are keeping in output.
             */
            (void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
            (void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
            /* Now we have to XOR the input into the hash block. */
            for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
            /* Reset j to start again at the beginning at the next block. */
            j = 0;
        }
    } /* for */
    /* Need to append the bit '1', followed by '0' padding long enough to end
     * the hash input on a block boundary. However, because 'n' is 16, and 'l'
     * will be a multiple of 8, the padding will be >= 7-bits, and we can just
     * append the byte 0x80.
     */
    cipher_in[j++] = 0x80;
    /* Pad with '0' until the current block is exactly 'n' bits from the
     * end.
     */
    while (j!=(ZBEE_SEC_CONST_BLOCKSIZE-2)) {
        if (j >= ZBEE_SEC_CONST_BLOCKSIZE) {
            /* We have reached the end of this block. Process it with the
             * cipher, note that the Key input to the cipher is actually
             * the previous hash block, which we are keeping in output.
             */
            (void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
            (void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
            /* Now we have to XOR the input into the hash block. */
            for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
            /* Reset j to start again at the beginning at the next block. */
            j = 0;
        }
        /* Pad the input with 0. */
        cipher_in[j++] = 0x00;
    } /* while */
    /* Add the 'n'-bit representation of 'l' to the end of the block. */
    cipher_in[j++] = ((input_len * 8) >> 8) & 0xff;
    cipher_in[j] = ((input_len * 8) >> 0) & 0xff;
    /* Process the last cipher block. */
    (void)gcry_cipher_setkey(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE);
    (void)gcry_cipher_encrypt(cipher_hd, output, ZBEE_SEC_CONST_BLOCKSIZE, cipher_in, ZBEE_SEC_CONST_BLOCKSIZE);
    /* XOR the last input block back into the cipher output to get the hash. */
    for (j=0;j<ZBEE_SEC_CONST_BLOCKSIZE;j++) output[j] ^= cipher_in[j];
    /* Cleanup the cipher. */
    gcry_cipher_close(cipher_hd);
    /* Done */
} /* zbee_sec_hash */

/*FUNCTION:------------------------------------------------------
 *  NAME
 *      zbee_sec_key_hash
 *  DESCRIPTION
 *      ZigBee Keyed Hash Function. Described in ZigBee specification
 *      section B.1.4, and in FIPS Publication 198. Strictly speaking
 *      there is nothing about the Keyed Hash Function which restricts
 *      it to only a single byte input, but that's all ZigBee ever uses.
 *
 *      This function implements the hash function:
 *          Hash(Key, text) = H((Key XOR opad) || H((Key XOR ipad) || text));
 *          ipad = 0x36 repeated.
 *          opad = 0x5c repeated.
 *          H() = ZigBee Cryptographic Hash (B.1.3 and B.6).
 *  PARAMETERS
 *      guint8  *key      - ZigBee Security Key (must be ZBEE_SEC_CONST_KEYSIZE) in length.
 *      guint8  input     - ZigBee CCM* Nonce (must be ZBEE_SEC_CONST_NONCE_LEN) in length.
 *      guint8  *hash_out - buffer into which the key-hashed output is placed
 *  RETURNS
 *      void
 *---------------------------------------------------------------
 */
static void
zbee_sec_key_hash(guint8 *key, guint8 input, guint8 *hash_out)
{
    guint8              hash_in[2*ZBEE_SEC_CONST_BLOCKSIZE];
    int                 i;
    static const guint8 ipad = 0x36;
    static const guint8 opad = 0x5c;

    /* Copy the key into hash_in and XOR with opad to form: (Key XOR opad) */
    for (i=0; i<ZBEE_SEC_CONST_KEYSIZE; i++) hash_in[i] = key[i] ^ opad;
    /* Copy the Key into hash_out and XOR with ipad to form: (Key XOR ipad) */
    for (i=0; i<ZBEE_SEC_CONST_KEYSIZE; i++) hash_out[i] = key[i] ^ ipad;
    /* Append the input byte to form: (Key XOR ipad) || text. */
    hash_out[ZBEE_SEC_CONST_BLOCKSIZE] = input;
    /* Hash the contents of hash_out and append the contents to hash_in to
     * form: (Key XOR opad) || H((Key XOR ipad) || text).
     */
    zbee_sec_hash(hash_out, ZBEE_SEC_CONST_BLOCKSIZE+1, hash_in+ZBEE_SEC_CONST_BLOCKSIZE);
    /* Hash the contents of hash_in to get the final result. */
    zbee_sec_hash(hash_in, 2*ZBEE_SEC_CONST_BLOCKSIZE, hash_out);
} /* zbee_sec_key_hash */

/**
 *Add NWK or APS key into NWK keyring
 *
 *@param pinfo pointer to packet information fields
 *@param key APS or NWK key
 */
void zbee_sec_add_key_to_keyring(packet_info *pinfo, const guint8 *key)
{
    GSList            **nwk_keyring;
    key_record_t        key_record;
    zbee_nwk_hints_t   *nwk_hints;

    /* Update the key ring for this pan */
    if ( !pinfo->fd->visited && (nwk_hints = (zbee_nwk_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo,
                    proto_get_id_by_filter_name(ZBEE_PROTOABBREV_NWK), 0))) {
        nwk_keyring = (GSList **)g_hash_table_lookup(zbee_table_nwk_keyring, &nwk_hints->src_pan);
        if ( !nwk_keyring ) {
            nwk_keyring = (GSList **)g_malloc0(sizeof(GSList*));
            g_hash_table_insert(zbee_table_nwk_keyring,
                g_memdup2(&nwk_hints->src_pan, sizeof(nwk_hints->src_pan)), nwk_keyring);
        }

        if ( nwk_keyring ) {
            if ( !*nwk_keyring ||
                    memcmp( ((key_record_t *)((GSList *)(*nwk_keyring))->data)->key, key,
                        ZBEE_APS_CMD_KEY_LENGTH) ) {
                /* Store a new or different key in the key ring */
                key_record.frame_num = pinfo->num;
                key_record.label = NULL;
                memcpy(&key_record.key, key, ZBEE_APS_CMD_KEY_LENGTH);
                *nwk_keyring = g_slist_prepend(*nwk_keyring, g_memdup2(&key_record, sizeof(key_record_t)));
            }
        }
    }
} /* nwk_add_key_to_keyring */

/*
 * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
 *
 * Local variables:
 * c-basic-offset: 4
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * vi: set shiftwidth=4 tabstop=8 expandtab:
 * :indentSize=4:tabSize=8:noTabs=true:
 */