summaryrefslogtreecommitdiffstats
path: root/epan/reedsolomon.c
blob: 67eda403f57bd9e0b052e4dca338664fe6307d63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/* reedsolomon.c
 *
 * Reed-Solomon encoding and decoding,
 * by Phil Karn (karn@ka9q.ampr.org) September 1996
 * Copyright 1999 Phil Karn, KA9Q
 * Separate CCSDS version create Dec 1998, merged into this version May 1999
 *
 * This file is derived from my generic RS encoder/decoder, which is
 * in turn based on the program "new_rs_erasures.c" by Robert
 * Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari Thirumoorthy
 * (harit@spectra.eng.hawaii.edu), Aug 1995
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "config.h"

#define WS_LOG_DOMAIN LOG_DOMAIN_EPAN

#include <stdio.h>
#include "reedsolomon.h"
#include <wsutil/wslog.h>

#ifdef CCSDS
/* CCSDS field generator polynomial: 1+x+x^2+x^7+x^8 */
int Pp[MM+1] = { 1, 1, 1, 0, 0, 0, 0, 1, 1 };

#else /* not CCSDS */
/* MM, KK, B0, PRIM are user-defined in rs.h */

/* Primitive polynomials - see Lin & Costello, Appendix A,
 * and  Lee & Messerschmitt, p. 453.
 */
#if(MM == 2)/* Admittedly silly */
int Pp[MM+1] = { 1, 1, 1 };

#elif(MM == 3)
/* 1 + x + x^3 */
int Pp[MM+1] = { 1, 1, 0, 1 };

#elif(MM == 4)
/* 1 + x + x^4 */
int Pp[MM+1] = { 1, 1, 0, 0, 1 };

#elif(MM == 5)
/* 1 + x^2 + x^5 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 1 };

#elif(MM == 6)
/* 1 + x + x^6 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1 };

#elif(MM == 7)
/* 1 + x^3 + x^7 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 1 };

#elif(MM == 8)
/* 1+x^2+x^3+x^4+x^8 */
int Pp[MM+1] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 };

#elif(MM == 9)
/* 1+x^4+x^9 */
int Pp[MM+1] = { 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 };

#elif(MM == 10)
/* 1+x^3+x^10 */
int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 11)
/* 1+x^2+x^11 */
int Pp[MM+1] = { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 12)
/* 1+x+x^4+x^6+x^12 */
int Pp[MM+1] = { 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1 };

#elif(MM == 13)
/* 1+x+x^3+x^4+x^13 */
int Pp[MM+1] = { 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 14)
/* 1+x+x^6+x^10+x^14 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 };

#elif(MM == 15)
/* 1+x+x^15 */
int Pp[MM+1] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };

#elif(MM == 16)
/* 1+x+x^3+x^12+x^16 */
int Pp[MM+1] = { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 };

#else
#error "Either CCSDS must be defined, or MM must be set in range 2-16"
#endif

#endif

#ifdef STANDARD_ORDER /* first byte transmitted is index of x**(KK-1) in message poly*/
        /* definitions used in the encode routine*/
        #define MESSAGE(i) data[KK-(i)-1]
        #define REMAINDER(i) bb[NN-KK-(i)-1]
        /* definitions used in the decode routine*/
        #define RECEIVED(i) data[NN-1-(i)]
        #define ERAS_INDEX(i) (NN-1-eras_pos[i])
        #define INDEX_TO_POS(i) (NN-1-(i))
#else /* first byte transmitted is index of x**0 in message polynomial*/
        /* definitions used in the encode routine*/
        #define MESSAGE(i) data[i]
        #define REMAINDER(i) bb[i]
        /* definitions used in the decode routine*/
        #define RECEIVED(i) data[i]
        #define ERAS_INDEX(i) eras_pos[i]
        #define INDEX_TO_POS(i) i
#endif


/* This defines the type used to store an element of the Galois Field
 * used by the code. Make sure this is something larger than a char if
 * if anything larger than GF(256) is used.
 *
 * Note: unsigned char will work up to GF(256) but int seems to run
 * faster on the Pentium.
 */
typedef int gf;

/* index->polynomial form conversion table */
static gf Alpha_to[NN + 1];

/* Polynomial->index form conversion table */
static gf Index_of[NN + 1];

/* No legal value in index form represents zero, so
 * we need a special value for this purpose
 */
#define A0      (NN)

/* Generator polynomial g(x) in index form */
static gf Gg[NN - KK + 1];

static int RS_init; /* Initialization flag */

/* Compute x % NN, where NN is 2**MM - 1,
 * without a slow divide
 */
/* static inline gf*/
static gf
modnn(int x)
{
  while (x >= NN) {
    x -= NN;
    x = (x >> MM) + (x & NN);
  }
  return x;
}

#define min_(a,b)       ((a) < (b) ? (a) : (b))

#define CLEAR(a,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = 0;\
}

#define COPY(a,b,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = (b)[ci];\
}

#define COPYDOWN(a,b,n) {\
int ci;\
for(ci=(n)-1;ci >=0;ci--)\
(a)[ci] = (b)[ci];\
}

static void init_rs(void);

#ifdef CCSDS
/* Conversion lookup tables from conventional alpha to Berlekamp's
 * dual-basis representation. Used in the CCSDS version only.
 * taltab[] -- convert conventional to dual basis
 * tal1tab[] -- convert dual basis to conventional

 * Note: the actual RS encoder/decoder works with the conventional basis.
 * So data is converted from dual to conventional basis before either
 * encoding or decoding and then converted back.
 */
static unsigned char taltab[NN+1],tal1tab[NN+1];

static unsigned char tal[] = { 0x8d, 0xef, 0xec, 0x86, 0xfa, 0x99, 0xaf, 0x7b };

/* Generate conversion lookup tables between conventional alpha representation
 * (@**7, @**6, ...@**0)
 *  and Berlekamp's dual basis representation
 * (l0, l1, ...l7)
 */
static void
gen_ltab(void)
{
  int i,j,k;

  for(i=0;i<256;i++){/* For each value of input */
    taltab[i] = 0;
    for(j=0;j<8;j++) /* for each column of matrix */
      for(k=0;k<8;k++){ /* for each row of matrix */
        if(i & (1<<k))
          taltab[i] ^= tal[7-k] & (1<<j);
      }
    tal1tab[taltab[i]] = i;
  }
}
#endif /* CCSDS */

#if PRIM != 1
static int Ldec;/* Decrement for aux location variable in Chien search */

static void
gen_ldec(void)
{
  for(Ldec=1;(Ldec % PRIM) != 0;Ldec+= NN)
    ;
  Ldec /= PRIM;
}
#else
#define Ldec 1
#endif

/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i;
                   polynomial form -> index form  index_of[j=alpha**i] = i
   alpha=2 is the primitive element of GF(2**m)
   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
        Let @ represent the primitive element commonly called "alpha" that
   is the root of the primitive polynomial p(x). Then in GF(2^m), for any
   0 <= i <= 2^m-2,
        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
   example the polynomial representation of @^5 would be given by the binary
   representation of the integer "alpha_to[5]".
                   Similarly, index_of[] can be used as follows:
        As above, let @ represent the primitive element of GF(2^m) that is
   the root of the primitive polynomial p(x). In order to find the power
   of @ (alpha) that has the polynomial representation
        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
   we consider the integer "i" whose binary representation with a(0) being LSB
   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
   "index_of[i]". Now, @^index_of[i] is that element whose polynomial
    representation is (a(0),a(1),a(2),...,a(m-1)).
   NOTE:
        The element alpha_to[2^m-1] = 0 always signifying that the
   representation of "@^infinity" = 0 is (0,0,0,...,0).
        Similarly, the element index_of[0] = A0 always signifying
   that the power of alpha which has the polynomial representation
   (0,0,...,0) is "infinity".

*/

static void
generate_gf(void)
{
  register int i, mask;

  mask = 1;
  Alpha_to[MM] = 0;
  for (i = 0; i < MM; i++) {
    Alpha_to[i] = mask;
    Index_of[Alpha_to[i]] = i;
    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
    if (Pp[i] != 0)
      Alpha_to[MM] ^= mask;     /* Bit-wise EXOR operation */
    mask <<= 1; /* single left-shift */
  }
  Index_of[Alpha_to[MM]] = MM;
  /*
   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
   * poly-repr of @^i shifted left one-bit and accounting for any @^MM
   * term that may occur when poly-repr of @^i is shifted.
   */
  mask >>= 1;
  for (i = MM + 1; i < NN; i++) {
    if (Alpha_to[i - 1] >= mask)
      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
    else
      Alpha_to[i] = Alpha_to[i - 1] << 1;
    Index_of[Alpha_to[i]] = i;
  }
  Index_of[0] = A0;
  Alpha_to[NN] = 0;
}

/*
 * Obtain the generator polynomial of the TT-error correcting, length
 * NN=(2**MM -1) Reed Solomon code from the product of (X+@**(B0+i)), i = 0,
 * ... ,(2*TT-1)
 *
 * Examples:
 *
 * If B0 = 1, TT = 1. deg(g(x)) = 2*TT = 2.
 * g(x) = (x+@) (x+@**2)
 *
 * If B0 = 0, TT = 2. deg(g(x)) = 2*TT = 4.
 * g(x) = (x+1) (x+@) (x+@**2) (x+@**3)
 */
static void
gen_poly(void)
{
  register int i, j;

  Gg[0] = 1;
  for (i = 0; i < NN - KK; i++) {
    Gg[i+1] = 1;
    /*
     * Below multiply (Gg[0]+Gg[1]*x + ... +Gg[i]x^i) by
     * (@**(B0+i)*PRIM + x)
     */
    for (j = i; j > 0; j--)
      if (Gg[j] != 0)
        Gg[j] = Gg[j - 1] ^ Alpha_to[modnn((Index_of[Gg[j]]) + (B0 + i) *PRIM)];
      else
        Gg[j] = Gg[j - 1];
    /* Gg[0] can never be zero */
    Gg[0] = Alpha_to[modnn(Index_of[Gg[0]] + (B0 + i) * PRIM)];
  }
  /* convert Gg[] to index form for quicker encoding */
  for (i = 0; i <= NN - KK; i++)
    Gg[i] = Index_of[Gg[i]];
}


/*
 * take the string of symbols in data[i], i=0..(k-1) and encode
 * systematically to produce NN-KK parity symbols in bb[0]..bb[NN-KK-1] data[]
 * is input and bb[] is output in polynomial form. Encoding is done by using
 * a feedback shift register with appropriate connections specified by the
 * elements of Gg[], which was generated above. Codeword is   c(X) =
 * data(X)*X**(NN-KK)+ b(X)
 */

int
encode_rs(dtype data[], dtype bb[])
{
  register int i, j;
  gf feedback;

#if DEBUG >= 1 && MM != 8
  /* Check for illegal input values */
  for(i=0;i<KK;i++)
    if(MESSAGE(i) > NN)
      return -1;
#endif

  if(!RS_init)
    init_rs();

  CLEAR(bb,NN-KK);

#ifdef CCSDS
  /* Convert to conventional basis */
  for(i=0;i<KK;i++)
    MESSAGE(i) = tal1tab[MESSAGE(i)];
#endif

  for(i = KK - 1; i >= 0; i--) {
    feedback = Index_of[MESSAGE(i) ^ REMAINDER(NN - KK - 1)];
    if (feedback != A0) {       /* feedback term is non-zero */
      for (j = NN - KK - 1; j > 0; j--)
        if (Gg[j] != A0)
          REMAINDER(j) = REMAINDER(j - 1) ^ Alpha_to[modnn(Gg[j] + feedback)];
        else
          REMAINDER(j) = REMAINDER(j - 1);
      REMAINDER(0) = Alpha_to[modnn(Gg[0] + feedback)];
    } else {    /* feedback term is zero. encoder becomes a
                 * single-byte shifter */
      for (j = NN - KK - 1; j > 0; j--)
        REMAINDER(j) = REMAINDER(j - 1);
      REMAINDER(0) = 0;
    }
  }
#ifdef CCSDS
  /* Convert to l-basis */
  for(i=0;i<NN;i++)
    MESSAGE(i) = taltab[MESSAGE(i)];
#endif

  return 0;
}

/*
 * Performs ERRORS+ERASURES decoding of RS codes. If decoding is successful,
 * writes the codeword into data[] itself. Otherwise data[] is unaltered.
 *
 * Return number of symbols corrected, or -1 if codeword is illegal
 * or uncorrectable. If eras_pos is non-null, the detected error locations
 * are written back. NOTE! This array must be at least NN-KK elements long.
 *
 * First "no_eras" erasures are declared by the calling program. Then, the
 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
 * If the number of channel errors is not greater than "t_after_eras" the
 * transmitted codeword will be recovered. Details of algorithm can be found
 * in R. Blahut's "Theory ... of Error-Correcting Codes".

 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
 * will result. The decoder *could* check for this condition, but it would involve
 * extra time on every decoding operation.
 */

int
eras_dec_rs(dtype data[], int eras_pos[], int no_eras)
{
  int deg_lambda, el, deg_omega;
  int i, j, r,k;
  gf u,q,tmp,num1,num2,den,discr_r;
  gf lambda[NN-KK + 1], s[NN-KK + 1];   /* Err+Eras Locator poly
                                         * and syndrome poly */
  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
  int syn_error, count;

  if(!RS_init)
    init_rs();

#ifdef CCSDS
  /* Convert to conventional basis */
  for(i=0;i<NN;i++)
    RECEIVED(i) = tal1tab[RECEIVED(i)];
#endif

#if DEBUG >= 1 && MM != 8
  /* Check for illegal input values */
  for(i=0;i<NN;i++)
    if(RECEIVED(i) > NN)
      return -1;
#endif
  /* form the syndromes; i.e., evaluate data(x) at roots of g(x)
   * namely @**(B0+i)*PRIM, i = 0, ... ,(NN-KK-1)
   */
  for(i=1;i<=NN-KK;i++){
    s[i] = RECEIVED(0);
  }
  for(j=1;j<NN;j++){
    if(RECEIVED(j) == 0)
      continue;
    tmp = Index_of[RECEIVED(j)];

    /*  s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*j)]; */
    for(i=1;i<=NN-KK;i++)
      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
  }
  /* Convert syndromes to index form, checking for nonzero condition */
  syn_error = 0;
  for(i=1;i<=NN-KK;i++){
    syn_error |= s[i];
        /*ws_debug("syndrome %d = %x\n",i,s[i]);*/
    s[i] = Index_of[s[i]];
  }

  if (!syn_error) {
    /* if syndrome is zero, data[] is a codeword and there are no
     * errors to correct. So return data[] unmodified
     */
    count = 0;
    goto finish;
  }
  CLEAR(&lambda[1],NN-KK);
  lambda[0] = 1;

  if (no_eras > 0) {
    /* Init lambda to be the erasure locator polynomial */
    lambda[1] = Alpha_to[modnn(PRIM * ERAS_INDEX(0))];
    for (i = 1; i < no_eras; i++) {
      u = modnn(PRIM*ERAS_INDEX(i));
      for (j = i+1; j > 0; j--) {
        tmp = Index_of[lambda[j - 1]];
        if(tmp != A0)
          lambda[j] ^= Alpha_to[modnn(u + tmp)];
      }
    }
#if DEBUG >= 1
    /* Test code that verifies the erasure locator polynomial just constructed
       Needed only for decoder debugging. */

    /* find roots of the erasure location polynomial */
    for(i=1;i<=no_eras;i++)
      reg[i] = Index_of[lambda[i]];
    count = 0;
    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
      q = 1;
      for (j = 1; j <= no_eras; j++)
        if (reg[j] != A0) {
          reg[j] = modnn(reg[j] + j);
          q ^= Alpha_to[reg[j]];
        }
      if (q != 0)
        continue;
      /* store root and error location number indices */
      root[count] = i;
      loc[count] = k;
      count++;
    }
    if (count != no_eras) {
      ws_debug("\n lambda(x) is WRONG\n");
      count = -1;
      goto finish;
    }
#if DEBUG >= 2
    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
    for (i = 0; i < count; i++)
      printf("%d ", loc[i]);
    printf("\n");
#endif
#endif
  }
  for(i=0;i<NN-KK+1;i++)
    b[i] = Index_of[lambda[i]];

  /*
   * Begin Berlekamp-Massey algorithm to determine error+erasure
   * locator polynomial
   */
  r = no_eras;
  el = no_eras;
  while (++r <= NN-KK) {        /* r is the step number */
    /* Compute discrepancy at the r-th step in poly-form */
    discr_r = 0;
    for (i = 0; i < r; i++){
      if ((lambda[i] != 0) && (s[r - i] != A0)) {
        discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
      }
    }
    discr_r = Index_of[discr_r];        /* Index form */
    if (discr_r == A0) {
      /* 2 lines below: B(x) <-- x*B(x) */
      COPYDOWN(&b[1],b,NN-KK);
      b[0] = A0;
    } else {
      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
      t[0] = lambda[0];
      for (i = 0 ; i < NN-KK; i++) {
        if(b[i] != A0)
          t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
        else
          t[i+1] = lambda[i+1];
      }
      if (2 * el <= r + no_eras - 1) {
        el = r + no_eras - el;
        /*
         * 2 lines below: B(x) <-- inv(discr_r) *
         * lambda(x)
         */
        for (i = 0; i <= NN-KK; i++)
          b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
      } else {
        /* 2 lines below: B(x) <-- x*B(x) */
        COPYDOWN(&b[1],b,NN-KK);
        b[0] = A0;
      }
      COPY(lambda,t,NN-KK+1);
    }
  }

  /* Convert lambda to index form and compute deg(lambda(x)) */
  deg_lambda = 0;
  for(i=0;i<NN-KK+1;i++){
    lambda[i] = Index_of[lambda[i]];
    if(lambda[i] != A0)
      deg_lambda = i;
  }
  /*
   * Find roots of the error+erasure locator polynomial by Chien
   * Search
   */
  COPY(&reg[1],&lambda[1],NN-KK);
  count = 0;            /* Number of roots of lambda(x) */
  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
    q = 1;
    for (j = deg_lambda; j > 0; j--){
      if (reg[j] != A0) {
        reg[j] = modnn(reg[j] + j);
        q ^= Alpha_to[reg[j]];
      }
    }
    if (q != 0)
      continue;
    /* store root (index-form) and error location number */
    root[count] = i;
    loc[count] = k;
    /* If we've already found max possible roots,
     * abort the search to save time
     */
    if(++count == deg_lambda)
      break;
  }
  if (deg_lambda != count) {
    /*
     * deg(lambda) unequal to number of roots => uncorrectable
     * error detected
     */
    count = -1;
    goto finish;
  }
  /*
   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
   * x**(NN-KK)). in index form. Also find deg(omega).
   */
  deg_omega = 0;
  for (i = 0; i < NN-KK;i++){
    tmp = 0;
    j = (deg_lambda < i) ? deg_lambda : i;
    for(;j >= 0; j--){
      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
        tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
    }
    if(tmp != 0)
      deg_omega = i;
    omega[i] = Index_of[tmp];
  }
  omega[NN-KK] = A0;

  /*
   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
   */
  for (j = count-1; j >=0; j--) {
    num1 = 0;
    for (i = deg_omega; i >= 0; i--) {
      if (omega[i] != A0)
        num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];
    }
    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
    den = 0;

    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
    for (i = min_(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
      if(lambda[i+1] != A0)
        den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
    }
    if (den == 0) {
#if DEBUG >= 1
      ws_debug("\n ERROR: denominator = 0\n");
#endif
      /* Convert to dual- basis */
      count = -1;
      goto finish;
    }
    /* Apply error to data */
    if (num1 != 0) {
      RECEIVED(loc[j]) ^= Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
    }
  }
 finish:
#ifdef CCSDS
  /* Convert to dual- basis */
  for(i=0;i<NN;i++)
    RECEIVED(i) = taltab[RECEIVED(i)];
#endif
  if(eras_pos != NULL){
    for(i=0;i<count;i++){
      if(eras_pos!= NULL)
        eras_pos[i] = INDEX_TO_POS(loc[i]);
    }
  }
  return count;
}
/* Encoder/decoder initialization - call this first! */
static void
init_rs(void)
{
  generate_gf();
  gen_poly();
#ifdef CCSDS
  gen_ltab();
#endif
#if PRIM != 1
  gen_ldec();
#endif
  RS_init = 1;
}

/*
 * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
 *
 * Local Variables:
 * c-basic-offset: 2
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * ex: set shiftwidth=2 tabstop=8 expandtab:
 * :indentSize=2:tabSize=8:noTabs=true:
 */