summaryrefslogtreecommitdiffstats
path: root/src/liblzma/api/lzma/base.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/liblzma/api/lzma/base.h')
-rw-r--r--src/liblzma/api/lzma/base.h748
1 files changed, 748 insertions, 0 deletions
diff --git a/src/liblzma/api/lzma/base.h b/src/liblzma/api/lzma/base.h
new file mode 100644
index 0000000..75cdd72
--- /dev/null
+++ b/src/liblzma/api/lzma/base.h
@@ -0,0 +1,748 @@
+/**
+ * \file lzma/base.h
+ * \brief Data types and functions used in many places in liblzma API
+ * \note Never include this file directly. Use <lzma.h> instead.
+ */
+
+/*
+ * Author: Lasse Collin
+ *
+ * This file has been put into the public domain.
+ * You can do whatever you want with this file.
+ */
+
+#ifndef LZMA_H_INTERNAL
+# error Never include this file directly. Use <lzma.h> instead.
+#endif
+
+
+/**
+ * \brief Boolean
+ *
+ * This is here because C89 doesn't have stdbool.h. To set a value for
+ * variables having type lzma_bool, you can use
+ * - C99's `true' and `false' from stdbool.h;
+ * - C++'s internal `true' and `false'; or
+ * - integers one (true) and zero (false).
+ */
+typedef unsigned char lzma_bool;
+
+
+/**
+ * \brief Type of reserved enumeration variable in structures
+ *
+ * To avoid breaking library ABI when new features are added, several
+ * structures contain extra variables that may be used in future. Since
+ * sizeof(enum) can be different than sizeof(int), and sizeof(enum) may
+ * even vary depending on the range of enumeration constants, we specify
+ * a separate type to be used for reserved enumeration variables. All
+ * enumeration constants in liblzma API will be non-negative and less
+ * than 128, which should guarantee that the ABI won't break even when
+ * new constants are added to existing enumerations.
+ */
+typedef enum {
+ LZMA_RESERVED_ENUM = 0
+} lzma_reserved_enum;
+
+
+/**
+ * \brief Return values used by several functions in liblzma
+ *
+ * Check the descriptions of specific functions to find out which return
+ * values they can return. With some functions the return values may have
+ * more specific meanings than described here; those differences are
+ * described per-function basis.
+ */
+typedef enum {
+ LZMA_OK = 0,
+ /**<
+ * \brief Operation completed successfully
+ */
+
+ LZMA_STREAM_END = 1,
+ /**<
+ * \brief End of stream was reached
+ *
+ * In encoder, LZMA_SYNC_FLUSH, LZMA_FULL_FLUSH, or
+ * LZMA_FINISH was finished. In decoder, this indicates
+ * that all the data was successfully decoded.
+ *
+ * In all cases, when LZMA_STREAM_END is returned, the last
+ * output bytes should be picked from strm->next_out.
+ */
+
+ LZMA_NO_CHECK = 2,
+ /**<
+ * \brief Input stream has no integrity check
+ *
+ * This return value can be returned only if the
+ * LZMA_TELL_NO_CHECK flag was used when initializing
+ * the decoder. LZMA_NO_CHECK is just a warning, and
+ * the decoding can be continued normally.
+ *
+ * It is possible to call lzma_get_check() immediately after
+ * lzma_code has returned LZMA_NO_CHECK. The result will
+ * naturally be LZMA_CHECK_NONE, but the possibility to call
+ * lzma_get_check() may be convenient in some applications.
+ */
+
+ LZMA_UNSUPPORTED_CHECK = 3,
+ /**<
+ * \brief Cannot calculate the integrity check
+ *
+ * The usage of this return value is different in encoders
+ * and decoders.
+ *
+ * Encoders can return this value only from the initialization
+ * function. If initialization fails with this value, the
+ * encoding cannot be done, because there's no way to produce
+ * output with the correct integrity check.
+ *
+ * Decoders can return this value only from lzma_code() and
+ * only if the LZMA_TELL_UNSUPPORTED_CHECK flag was used when
+ * initializing the decoder. The decoding can still be
+ * continued normally even if the check type is unsupported,
+ * but naturally the check will not be validated, and possible
+ * errors may go undetected.
+ *
+ * With decoder, it is possible to call lzma_get_check()
+ * immediately after lzma_code() has returned
+ * LZMA_UNSUPPORTED_CHECK. This way it is possible to find
+ * out what the unsupported Check ID was.
+ */
+
+ LZMA_GET_CHECK = 4,
+ /**<
+ * \brief Integrity check type is now available
+ *
+ * This value can be returned only by the lzma_code() function
+ * and only if the decoder was initialized with the
+ * LZMA_TELL_ANY_CHECK flag. LZMA_GET_CHECK tells the
+ * application that it may now call lzma_get_check() to find
+ * out the Check ID. This can be used, for example, to
+ * implement a decoder that accepts only files that have
+ * strong enough integrity check.
+ */
+
+ LZMA_MEM_ERROR = 5,
+ /**<
+ * \brief Cannot allocate memory
+ *
+ * Memory allocation failed, or the size of the allocation
+ * would be greater than SIZE_MAX.
+ *
+ * Due to internal implementation reasons, the coding cannot
+ * be continued even if more memory were made available after
+ * LZMA_MEM_ERROR.
+ */
+
+ LZMA_MEMLIMIT_ERROR = 6,
+ /**<
+ * \brief Memory usage limit was reached
+ *
+ * Decoder would need more memory than allowed by the
+ * specified memory usage limit. To continue decoding,
+ * the memory usage limit has to be increased with
+ * lzma_memlimit_set().
+ *
+ * liblzma 5.2.6 and earlier had a bug in single-threaded .xz
+ * decoder (lzma_stream_decoder()) which made it impossible
+ * to continue decoding after LZMA_MEMLIMIT_ERROR even if
+ * the limit was increased using lzma_memlimit_set().
+ * Other decoders worked correctly.
+ */
+
+ LZMA_FORMAT_ERROR = 7,
+ /**<
+ * \brief File format not recognized
+ *
+ * The decoder did not recognize the input as supported file
+ * format. This error can occur, for example, when trying to
+ * decode .lzma format file with lzma_stream_decoder,
+ * because lzma_stream_decoder accepts only the .xz format.
+ */
+
+ LZMA_OPTIONS_ERROR = 8,
+ /**<
+ * \brief Invalid or unsupported options
+ *
+ * Invalid or unsupported options, for example
+ * - unsupported filter(s) or filter options; or
+ * - reserved bits set in headers (decoder only).
+ *
+ * Rebuilding liblzma with more features enabled, or
+ * upgrading to a newer version of liblzma may help.
+ */
+
+ LZMA_DATA_ERROR = 9,
+ /**<
+ * \brief Data is corrupt
+ *
+ * The usage of this return value is different in encoders
+ * and decoders. In both encoder and decoder, the coding
+ * cannot continue after this error.
+ *
+ * Encoders return this if size limits of the target file
+ * format would be exceeded. These limits are huge, thus
+ * getting this error from an encoder is mostly theoretical.
+ * For example, the maximum compressed and uncompressed
+ * size of a .xz Stream is roughly 8 EiB (2^63 bytes).
+ *
+ * Decoders return this error if the input data is corrupt.
+ * This can mean, for example, invalid CRC32 in headers
+ * or invalid check of uncompressed data.
+ */
+
+ LZMA_BUF_ERROR = 10,
+ /**<
+ * \brief No progress is possible
+ *
+ * This error code is returned when the coder cannot consume
+ * any new input and produce any new output. The most common
+ * reason for this error is that the input stream being
+ * decoded is truncated or corrupt.
+ *
+ * This error is not fatal. Coding can be continued normally
+ * by providing more input and/or more output space, if
+ * possible.
+ *
+ * Typically the first call to lzma_code() that can do no
+ * progress returns LZMA_OK instead of LZMA_BUF_ERROR. Only
+ * the second consecutive call doing no progress will return
+ * LZMA_BUF_ERROR. This is intentional.
+ *
+ * With zlib, Z_BUF_ERROR may be returned even if the
+ * application is doing nothing wrong, so apps will need
+ * to handle Z_BUF_ERROR specially. The above hack
+ * guarantees that liblzma never returns LZMA_BUF_ERROR
+ * to properly written applications unless the input file
+ * is truncated or corrupt. This should simplify the
+ * applications a little.
+ */
+
+ LZMA_PROG_ERROR = 11,
+ /**<
+ * \brief Programming error
+ *
+ * This indicates that the arguments given to the function are
+ * invalid or the internal state of the decoder is corrupt.
+ * - Function arguments are invalid or the structures
+ * pointed by the argument pointers are invalid
+ * e.g. if strm->next_out has been set to NULL and
+ * strm->avail_out > 0 when calling lzma_code().
+ * - lzma_* functions have been called in wrong order
+ * e.g. lzma_code() was called right after lzma_end().
+ * - If errors occur randomly, the reason might be flaky
+ * hardware.
+ *
+ * If you think that your code is correct, this error code
+ * can be a sign of a bug in liblzma. See the documentation
+ * how to report bugs.
+ */
+
+ LZMA_SEEK_NEEDED = 12,
+ /**<
+ * \brief Request to change the input file position
+ *
+ * Some coders can do random access in the input file. The
+ * initialization functions of these coders take the file size
+ * as an argument. No other coders can return LZMA_SEEK_NEEDED.
+ *
+ * When this value is returned, the application must seek to
+ * the file position given in lzma_stream.seek_pos. This value
+ * is guaranteed to never exceed the file size that was
+ * specified at the coder initialization.
+ *
+ * After seeking the application should read new input and
+ * pass it normally via lzma_stream.next_in and .avail_in.
+ */
+
+ /*
+ * These eumerations may be used internally by liblzma
+ * but they will never be returned to applications.
+ */
+ LZMA_RET_INTERNAL1 = 101,
+ LZMA_RET_INTERNAL2 = 102,
+ LZMA_RET_INTERNAL3 = 103,
+ LZMA_RET_INTERNAL4 = 104,
+ LZMA_RET_INTERNAL5 = 105,
+ LZMA_RET_INTERNAL6 = 106,
+ LZMA_RET_INTERNAL7 = 107,
+ LZMA_RET_INTERNAL8 = 108
+} lzma_ret;
+
+
+/**
+ * \brief The `action' argument for lzma_code()
+ *
+ * After the first use of LZMA_SYNC_FLUSH, LZMA_FULL_FLUSH, LZMA_FULL_BARRIER,
+ * or LZMA_FINISH, the same `action' must be used until lzma_code() returns
+ * LZMA_STREAM_END. Also, the amount of input (that is, strm->avail_in) must
+ * not be modified by the application until lzma_code() returns
+ * LZMA_STREAM_END. Changing the `action' or modifying the amount of input
+ * will make lzma_code() return LZMA_PROG_ERROR.
+ */
+typedef enum {
+ LZMA_RUN = 0,
+ /**<
+ * \brief Continue coding
+ *
+ * Encoder: Encode as much input as possible. Some internal
+ * buffering will probably be done (depends on the filter
+ * chain in use), which causes latency: the input used won't
+ * usually be decodeable from the output of the same
+ * lzma_code() call.
+ *
+ * Decoder: Decode as much input as possible and produce as
+ * much output as possible.
+ */
+
+ LZMA_SYNC_FLUSH = 1,
+ /**<
+ * \brief Make all the input available at output
+ *
+ * Normally the encoder introduces some latency.
+ * LZMA_SYNC_FLUSH forces all the buffered data to be
+ * available at output without resetting the internal
+ * state of the encoder. This way it is possible to use
+ * compressed stream for example for communication over
+ * network.
+ *
+ * Only some filters support LZMA_SYNC_FLUSH. Trying to use
+ * LZMA_SYNC_FLUSH with filters that don't support it will
+ * make lzma_code() return LZMA_OPTIONS_ERROR. For example,
+ * LZMA1 doesn't support LZMA_SYNC_FLUSH but LZMA2 does.
+ *
+ * Using LZMA_SYNC_FLUSH very often can dramatically reduce
+ * the compression ratio. With some filters (for example,
+ * LZMA2), fine-tuning the compression options may help
+ * mitigate this problem significantly (for example,
+ * match finder with LZMA2).
+ *
+ * Decoders don't support LZMA_SYNC_FLUSH.
+ */
+
+ LZMA_FULL_FLUSH = 2,
+ /**<
+ * \brief Finish encoding of the current Block
+ *
+ * All the input data going to the current Block must have
+ * been given to the encoder (the last bytes can still be
+ * pending in *next_in). Call lzma_code() with LZMA_FULL_FLUSH
+ * until it returns LZMA_STREAM_END. Then continue normally
+ * with LZMA_RUN or finish the Stream with LZMA_FINISH.
+ *
+ * This action is currently supported only by Stream encoder
+ * and easy encoder (which uses Stream encoder). If there is
+ * no unfinished Block, no empty Block is created.
+ */
+
+ LZMA_FULL_BARRIER = 4,
+ /**<
+ * \brief Finish encoding of the current Block
+ *
+ * This is like LZMA_FULL_FLUSH except that this doesn't
+ * necessarily wait until all the input has been made
+ * available via the output buffer. That is, lzma_code()
+ * might return LZMA_STREAM_END as soon as all the input
+ * has been consumed (avail_in == 0).
+ *
+ * LZMA_FULL_BARRIER is useful with a threaded encoder if
+ * one wants to split the .xz Stream into Blocks at specific
+ * offsets but doesn't care if the output isn't flushed
+ * immediately. Using LZMA_FULL_BARRIER allows keeping
+ * the threads busy while LZMA_FULL_FLUSH would make
+ * lzma_code() wait until all the threads have finished
+ * until more data could be passed to the encoder.
+ *
+ * With a lzma_stream initialized with the single-threaded
+ * lzma_stream_encoder() or lzma_easy_encoder(),
+ * LZMA_FULL_BARRIER is an alias for LZMA_FULL_FLUSH.
+ */
+
+ LZMA_FINISH = 3
+ /**<
+ * \brief Finish the coding operation
+ *
+ * All the input data must have been given to the encoder
+ * (the last bytes can still be pending in next_in).
+ * Call lzma_code() with LZMA_FINISH until it returns
+ * LZMA_STREAM_END. Once LZMA_FINISH has been used,
+ * the amount of input must no longer be changed by
+ * the application.
+ *
+ * When decoding, using LZMA_FINISH is optional unless the
+ * LZMA_CONCATENATED flag was used when the decoder was
+ * initialized. When LZMA_CONCATENATED was not used, the only
+ * effect of LZMA_FINISH is that the amount of input must not
+ * be changed just like in the encoder.
+ */
+} lzma_action;
+
+
+/**
+ * \brief Custom functions for memory handling
+ *
+ * A pointer to lzma_allocator may be passed via lzma_stream structure
+ * to liblzma, and some advanced functions take a pointer to lzma_allocator
+ * as a separate function argument. The library will use the functions
+ * specified in lzma_allocator for memory handling instead of the default
+ * malloc() and free(). C++ users should note that the custom memory
+ * handling functions must not throw exceptions.
+ *
+ * Single-threaded mode only: liblzma doesn't make an internal copy of
+ * lzma_allocator. Thus, it is OK to change these function pointers in
+ * the middle of the coding process, but obviously it must be done
+ * carefully to make sure that the replacement `free' can deallocate
+ * memory allocated by the earlier `alloc' function(s).
+ *
+ * Multithreaded mode: liblzma might internally store pointers to the
+ * lzma_allocator given via the lzma_stream structure. The application
+ * must not change the allocator pointer in lzma_stream or the contents
+ * of the pointed lzma_allocator structure until lzma_end() has been used
+ * to free the memory associated with that lzma_stream. The allocation
+ * functions might be called simultaneously from multiple threads, and
+ * thus they must be thread safe.
+ */
+typedef struct {
+ /**
+ * \brief Pointer to a custom memory allocation function
+ *
+ * If you don't want a custom allocator, but still want
+ * custom free(), set this to NULL and liblzma will use
+ * the standard malloc().
+ *
+ * \param opaque lzma_allocator.opaque (see below)
+ * \param nmemb Number of elements like in calloc(). liblzma
+ * will always set nmemb to 1, so it is safe to
+ * ignore nmemb in a custom allocator if you like.
+ * The nmemb argument exists only for
+ * compatibility with zlib and libbzip2.
+ * \param size Size of an element in bytes.
+ * liblzma never sets this to zero.
+ *
+ * \return Pointer to the beginning of a memory block of
+ * `size' bytes, or NULL if allocation fails
+ * for some reason. When allocation fails, functions
+ * of liblzma return LZMA_MEM_ERROR.
+ *
+ * The allocator should not waste time zeroing the allocated buffers.
+ * This is not only about speed, but also memory usage, since the
+ * operating system kernel doesn't necessarily allocate the requested
+ * memory in physical memory until it is actually used. With small
+ * input files, liblzma may actually need only a fraction of the
+ * memory that it requested for allocation.
+ *
+ * \note LZMA_MEM_ERROR is also used when the size of the
+ * allocation would be greater than SIZE_MAX. Thus,
+ * don't assume that the custom allocator must have
+ * returned NULL if some function from liblzma
+ * returns LZMA_MEM_ERROR.
+ */
+ void *(LZMA_API_CALL *alloc)(void *opaque, size_t nmemb, size_t size);
+
+ /**
+ * \brief Pointer to a custom memory freeing function
+ *
+ * If you don't want a custom freeing function, but still
+ * want a custom allocator, set this to NULL and liblzma
+ * will use the standard free().
+ *
+ * \param opaque lzma_allocator.opaque (see below)
+ * \param ptr Pointer returned by lzma_allocator.alloc(),
+ * or when it is set to NULL, a pointer returned
+ * by the standard malloc().
+ */
+ void (LZMA_API_CALL *free)(void *opaque, void *ptr);
+
+ /**
+ * \brief Pointer passed to .alloc() and .free()
+ *
+ * opaque is passed as the first argument to lzma_allocator.alloc()
+ * and lzma_allocator.free(). This intended to ease implementing
+ * custom memory allocation functions for use with liblzma.
+ *
+ * If you don't need this, you should set this to NULL.
+ */
+ void *opaque;
+
+} lzma_allocator;
+
+
+/**
+ * \brief Internal data structure
+ *
+ * The contents of this structure is not visible outside the library.
+ */
+typedef struct lzma_internal_s lzma_internal;
+
+
+/**
+ * \brief Passing data to and from liblzma
+ *
+ * The lzma_stream structure is used for
+ * - passing pointers to input and output buffers to liblzma;
+ * - defining custom memory handler functions; and
+ * - holding a pointer to coder-specific internal data structures.
+ *
+ * Typical usage:
+ *
+ * - After allocating lzma_stream (on stack or with malloc()), it must be
+ * initialized to LZMA_STREAM_INIT (see LZMA_STREAM_INIT for details).
+ *
+ * - Initialize a coder to the lzma_stream, for example by using
+ * lzma_easy_encoder() or lzma_auto_decoder(). Some notes:
+ * - In contrast to zlib, strm->next_in and strm->next_out are
+ * ignored by all initialization functions, thus it is safe
+ * to not initialize them yet.
+ * - The initialization functions always set strm->total_in and
+ * strm->total_out to zero.
+ * - If the initialization function fails, no memory is left allocated
+ * that would require freeing with lzma_end() even if some memory was
+ * associated with the lzma_stream structure when the initialization
+ * function was called.
+ *
+ * - Use lzma_code() to do the actual work.
+ *
+ * - Once the coding has been finished, the existing lzma_stream can be
+ * reused. It is OK to reuse lzma_stream with different initialization
+ * function without calling lzma_end() first. Old allocations are
+ * automatically freed.
+ *
+ * - Finally, use lzma_end() to free the allocated memory. lzma_end() never
+ * frees the lzma_stream structure itself.
+ *
+ * Application may modify the values of total_in and total_out as it wants.
+ * They are updated by liblzma to match the amount of data read and
+ * written but aren't used for anything else except as a possible return
+ * values from lzma_get_progress().
+ */
+typedef struct {
+ const uint8_t *next_in; /**< Pointer to the next input byte. */
+ size_t avail_in; /**< Number of available input bytes in next_in. */
+ uint64_t total_in; /**< Total number of bytes read by liblzma. */
+
+ uint8_t *next_out; /**< Pointer to the next output position. */
+ size_t avail_out; /**< Amount of free space in next_out. */
+ uint64_t total_out; /**< Total number of bytes written by liblzma. */
+
+ /**
+ * \brief Custom memory allocation functions
+ *
+ * In most cases this is NULL which makes liblzma use
+ * the standard malloc() and free().
+ *
+ * \note In 5.0.x this is not a const pointer.
+ */
+ const lzma_allocator *allocator;
+
+ /** Internal state is not visible to applications. */
+ lzma_internal *internal;
+
+ /*
+ * Reserved space to allow possible future extensions without
+ * breaking the ABI. Excluding the initialization of this structure,
+ * you should not touch these, because the names of these variables
+ * may change.
+ */
+
+ /** \private Reserved member. */
+ void *reserved_ptr1;
+
+ /** \private Reserved member. */
+ void *reserved_ptr2;
+
+ /** \private Reserved member. */
+ void *reserved_ptr3;
+
+ /** \private Reserved member. */
+ void *reserved_ptr4;
+
+ /**
+ * \brief New seek input position for LZMA_SEEK_NEEDED
+ *
+ * When lzma_code() returns LZMA_SEEK_NEEDED, the new input position
+ * needed by liblzma will be available seek_pos. The value is
+ * guaranteed to not exceed the file size that was specified when
+ * this lzma_stream was initialized.
+ *
+ * In all other situations the value of this variable is undefined.
+ */
+ uint64_t seek_pos;
+
+ /** \private Reserved member. */
+ uint64_t reserved_int2;
+
+ /** \private Reserved member. */
+ size_t reserved_int3;
+
+ /** \private Reserved member. */
+ size_t reserved_int4;
+
+ /** \private Reserved member. */
+ lzma_reserved_enum reserved_enum1;
+
+ /** \private Reserved member. */
+ lzma_reserved_enum reserved_enum2;
+
+} lzma_stream;
+
+
+/**
+ * \brief Initialization for lzma_stream
+ *
+ * When you declare an instance of lzma_stream, you can immediately
+ * initialize it so that initialization functions know that no memory
+ * has been allocated yet:
+ *
+ * lzma_stream strm = LZMA_STREAM_INIT;
+ *
+ * If you need to initialize a dynamically allocated lzma_stream, you can use
+ * memset(strm_pointer, 0, sizeof(lzma_stream)). Strictly speaking, this
+ * violates the C standard since NULL may have different internal
+ * representation than zero, but it should be portable enough in practice.
+ * Anyway, for maximum portability, you can use something like this:
+ *
+ * lzma_stream tmp = LZMA_STREAM_INIT;
+ * *strm = tmp;
+ */
+#define LZMA_STREAM_INIT \
+ { NULL, 0, 0, NULL, 0, 0, NULL, NULL, \
+ NULL, NULL, NULL, NULL, 0, 0, 0, 0, \
+ LZMA_RESERVED_ENUM, LZMA_RESERVED_ENUM }
+
+
+/**
+ * \brief Encode or decode data
+ *
+ * Once the lzma_stream has been successfully initialized (e.g. with
+ * lzma_stream_encoder()), the actual encoding or decoding is done
+ * using this function. The application has to update strm->next_in,
+ * strm->avail_in, strm->next_out, and strm->avail_out to pass input
+ * to and get output from liblzma.
+ *
+ * See the description of the coder-specific initialization function to find
+ * out what `action' values are supported by the coder.
+ *
+ * \param strm Pointer to lzma_stream that is at least initialized
+ * with LZMA_STREAM_INIT.
+ * \param action Action for this function to take. Must be a valid
+ * lzma_action enum value.
+ *
+ * \return Any valid lzma_ret. See the lzma_ret enum description for more
+ * information.
+ */
+extern LZMA_API(lzma_ret) lzma_code(lzma_stream *strm, lzma_action action)
+ lzma_nothrow lzma_attr_warn_unused_result;
+
+
+/**
+ * \brief Free memory allocated for the coder data structures
+ *
+ * After lzma_end(strm), strm->internal is guaranteed to be NULL. No other
+ * members of the lzma_stream structure are touched.
+ *
+ * \note zlib indicates an error if application end()s unfinished
+ * stream structure. liblzma doesn't do this, and assumes that
+ * application knows what it is doing.
+ *
+ * \param strm Pointer to lzma_stream that is at least initialized
+ * with LZMA_STREAM_INIT.
+ */
+extern LZMA_API(void) lzma_end(lzma_stream *strm) lzma_nothrow;
+
+
+/**
+ * \brief Get progress information
+ *
+ * In single-threaded mode, applications can get progress information from
+ * strm->total_in and strm->total_out. In multi-threaded mode this is less
+ * useful because a significant amount of both input and output data gets
+ * buffered internally by liblzma. This makes total_in and total_out give
+ * misleading information and also makes the progress indicator updates
+ * non-smooth.
+ *
+ * This function gives realistic progress information also in multi-threaded
+ * mode by taking into account the progress made by each thread. In
+ * single-threaded mode *progress_in and *progress_out are set to
+ * strm->total_in and strm->total_out, respectively.
+ *
+ * \param strm Pointer to lzma_stream that is at least
+ * initialized with LZMA_STREAM_INIT.
+ * \param[out] progress_in Pointer to the number of input bytes processed.
+ * \param[out] progress_out Pointer to the number of output bytes processed.
+ */
+extern LZMA_API(void) lzma_get_progress(lzma_stream *strm,
+ uint64_t *progress_in, uint64_t *progress_out) lzma_nothrow;
+
+
+/**
+ * \brief Get the memory usage of decoder filter chain
+ *
+ * This function is currently supported only when *strm has been initialized
+ * with a function that takes a memlimit argument. With other functions, you
+ * should use e.g. lzma_raw_encoder_memusage() or lzma_raw_decoder_memusage()
+ * to estimate the memory requirements.
+ *
+ * This function is useful e.g. after LZMA_MEMLIMIT_ERROR to find out how big
+ * the memory usage limit should have been to decode the input. Note that
+ * this may give misleading information if decoding .xz Streams that have
+ * multiple Blocks, because each Block can have different memory requirements.
+ *
+ * \param strm Pointer to lzma_stream that is at least initialized
+ * with LZMA_STREAM_INIT.
+ *
+ * \return How much memory is currently allocated for the filter
+ * decoders. If no filter chain is currently allocated,
+ * some non-zero value is still returned, which is less than
+ * or equal to what any filter chain would indicate as its
+ * memory requirement.
+ *
+ * If this function isn't supported by *strm or some other error
+ * occurs, zero is returned.
+ */
+extern LZMA_API(uint64_t) lzma_memusage(const lzma_stream *strm)
+ lzma_nothrow lzma_attr_pure;
+
+
+/**
+ * \brief Get the current memory usage limit
+ *
+ * This function is supported only when *strm has been initialized with
+ * a function that takes a memlimit argument.
+ *
+ * \param strm Pointer to lzma_stream that is at least initialized
+ * with LZMA_STREAM_INIT.
+ *
+ * \return On success, the current memory usage limit is returned
+ * (always non-zero). On error, zero is returned.
+ */
+extern LZMA_API(uint64_t) lzma_memlimit_get(const lzma_stream *strm)
+ lzma_nothrow lzma_attr_pure;
+
+
+/**
+ * \brief Set the memory usage limit
+ *
+ * This function is supported only when *strm has been initialized with
+ * a function that takes a memlimit argument.
+ *
+ * liblzma 5.2.3 and earlier has a bug where memlimit value of 0 causes
+ * this function to do nothing (leaving the limit unchanged) and still
+ * return LZMA_OK. Later versions treat 0 as if 1 had been specified (so
+ * lzma_memlimit_get() will return 1 even if you specify 0 here).
+ *
+ * liblzma 5.2.6 and earlier had a bug in single-threaded .xz decoder
+ * (lzma_stream_decoder()) which made it impossible to continue decoding
+ * after LZMA_MEMLIMIT_ERROR even if the limit was increased using
+ * lzma_memlimit_set(). Other decoders worked correctly.
+ *
+ * \return Possible lzma_ret values:
+ * - LZMA_OK: New memory usage limit successfully set.
+ * - LZMA_MEMLIMIT_ERROR: The new limit is too small.
+ * The limit was not changed.
+ * - LZMA_PROG_ERROR: Invalid arguments, e.g. *strm doesn't
+ * support memory usage limit.
+ */
+extern LZMA_API(lzma_ret) lzma_memlimit_set(
+ lzma_stream *strm, uint64_t memlimit) lzma_nothrow;