summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/jdcoefct.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /media/libjpeg/jdcoefct.c
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'media/libjpeg/jdcoefct.c')
-rw-r--r--media/libjpeg/jdcoefct.c878
1 files changed, 878 insertions, 0 deletions
diff --git a/media/libjpeg/jdcoefct.c b/media/libjpeg/jdcoefct.c
new file mode 100644
index 0000000000..88e10c08cb
--- /dev/null
+++ b/media/libjpeg/jdcoefct.c
@@ -0,0 +1,878 @@
+/*
+ * jdcoefct.c
+ *
+ * This file was part of the Independent JPEG Group's software:
+ * Copyright (C) 1994-1997, Thomas G. Lane.
+ * libjpeg-turbo Modifications:
+ * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
+ * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander.
+ * Copyright (C) 2015, 2020, Google, Inc.
+ * For conditions of distribution and use, see the accompanying README.ijg
+ * file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#include "jinclude.h"
+#include "jdcoefct.h"
+#include "jpegcomp.h"
+
+
+/* Forward declarations */
+METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf);
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo);
+METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf);
+#endif
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF(void)
+start_input_pass(j_decompress_ptr cinfo)
+{
+ cinfo->input_iMCU_row = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF(void)
+start_output_pass(j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+
+ /* If multipass, check to see whether to use block smoothing on this pass */
+ if (coef->pub.coef_arrays != NULL) {
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+ coef->pub.decompress_data = decompress_smooth_data;
+ else
+ coef->pub.decompress_data = decompress_data;
+ }
+#endif
+ cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image,
+ * which we index according to the component's SOF position.
+ */
+
+METHODDEF(int)
+decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, useful_width;
+ JSAMPARRAY output_ptr;
+ JDIMENSION start_col, output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Loop to process as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
+ jzero_far((void *)coef->MCU_buffer[0],
+ (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK)));
+ if (!cinfo->entropy->insufficient_data)
+ cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
+ if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+
+ /* Only perform the IDCT on blocks that are contained within the desired
+ * cropping region.
+ */
+ if (MCU_col_num >= cinfo->master->first_iMCU_col &&
+ MCU_col_num <= cinfo->master->last_iMCU_col) {
+ /* Determine where data should go in output_buf and do the IDCT thing.
+ * We skip dummy blocks at the right and bottom edges (but blkn gets
+ * incremented past them!). Note the inner loop relies on having
+ * allocated the MCU_buffer[] blocks sequentially.
+ */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed) {
+ blkn += compptr->MCU_blocks;
+ continue;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+ useful_width = (MCU_col_num < last_MCU_col) ?
+ compptr->MCU_width : compptr->last_col_width;
+ output_ptr = output_buf[compptr->component_index] +
+ yoffset * compptr->_DCT_scaled_size;
+ start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
+ compptr->MCU_sample_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (cinfo->input_iMCU_row < last_iMCU_row ||
+ yoffset + yindex < compptr->last_row_height) {
+ output_col = start_col;
+ for (xindex = 0; xindex < useful_width; xindex++) {
+ (*inverse_DCT) (cinfo, compptr,
+ (JCOEFPTR)coef->MCU_buffer[blkn + xindex],
+ output_ptr, output_col);
+ output_col += compptr->_DCT_scaled_size;
+ }
+ }
+ blkn += compptr->MCU_width;
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ cinfo->output_iMCU_row++;
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF(int)
+dummy_consume_data(j_decompress_ptr cinfo)
+{
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF(int)
+consume_data(j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index],
+ cinfo->input_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION)compptr->v_samp_factor, TRUE);
+ /* Note: entropy decoder expects buffer to be zeroed,
+ * but this is handled automatically by the memory manager
+ * because we requested a pre-zeroed array.
+ */
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex + yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ if (!cinfo->entropy->insufficient_data)
+ cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row;
+ /* Try to fetch the MCU. */
+ if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF(int)
+decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num;
+ int ci, block_row, block_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number < cinfo->output_scan_number ||
+ (cinfo->input_scan_number == cinfo->output_scan_number &&
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed)
+ continue;
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ cinfo->output_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION)compptr->v_samp_factor, FALSE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
+ output_col = 0;
+ for (block_num = cinfo->master->first_MCU_col[ci];
+ block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr,
+ output_col);
+ buffer_ptr++;
+ output_col += compptr->_DCT_scaled_size;
+ }
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing; the first 9 AC coefficients are
+ * estimated from the DC values of a DCT block and its 24 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/* Natural-order array positions of the first 9 zigzag-order coefficients */
+#define Q01_POS 1
+#define Q10_POS 8
+#define Q20_POS 16
+#define Q11_POS 9
+#define Q02_POS 2
+#define Q03_POS 3
+#define Q12_POS 10
+#define Q21_POS 17
+#define Q30_POS 24
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL(boolean)
+smoothing_ok(j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ boolean smoothing_useful = FALSE;
+ int ci, coefi;
+ jpeg_component_info *compptr;
+ JQUANT_TBL *qtable;
+ int *coef_bits, *prev_coef_bits;
+ int *coef_bits_latch, *prev_coef_bits_latch;
+
+ if (!cinfo->progressive_mode || cinfo->coef_bits == NULL)
+ return FALSE;
+
+ /* Allocate latch area if not already done */
+ if (coef->coef_bits_latch == NULL)
+ coef->coef_bits_latch = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ cinfo->num_components * 2 *
+ (SAVED_COEFS * sizeof(int)));
+ coef_bits_latch = coef->coef_bits_latch;
+ prev_coef_bits_latch =
+ &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS];
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* All components' quantization values must already be latched. */
+ if ((qtable = compptr->quant_table) == NULL)
+ return FALSE;
+ /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */
+ if (qtable->quantval[0] == 0 ||
+ qtable->quantval[Q01_POS] == 0 ||
+ qtable->quantval[Q10_POS] == 0 ||
+ qtable->quantval[Q20_POS] == 0 ||
+ qtable->quantval[Q11_POS] == 0 ||
+ qtable->quantval[Q02_POS] == 0 ||
+ qtable->quantval[Q03_POS] == 0 ||
+ qtable->quantval[Q12_POS] == 0 ||
+ qtable->quantval[Q21_POS] == 0 ||
+ qtable->quantval[Q30_POS] == 0)
+ return FALSE;
+ /* DC values must be at least partly known for all components. */
+ coef_bits = cinfo->coef_bits[ci];
+ prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components];
+ if (coef_bits[0] < 0)
+ return FALSE;
+ coef_bits_latch[0] = coef_bits[0];
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+ for (coefi = 1; coefi < SAVED_COEFS; coefi++) {
+ if (cinfo->input_scan_number > 1)
+ prev_coef_bits_latch[coefi] = prev_coef_bits[coefi];
+ else
+ prev_coef_bits_latch[coefi] = -1;
+ coef_bits_latch[coefi] = coef_bits[coefi];
+ if (coef_bits[coefi] != 0)
+ smoothing_useful = TRUE;
+ }
+ coef_bits_latch += SAVED_COEFS;
+ prev_coef_bits_latch += SAVED_COEFS;
+ }
+
+ return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF(int)
+decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num, last_block_column;
+ int ci, block_row, block_rows, access_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row;
+ JBLOCKROW next_block_row, next_next_block_row;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+ boolean change_dc;
+ JCOEF *workspace;
+ int *coef_bits;
+ JQUANT_TBL *quanttbl;
+ JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num;
+ int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12,
+ DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24,
+ DC25;
+ int Al, pred;
+
+ /* Keep a local variable to avoid looking it up more than once */
+ workspace = coef->workspace;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ !cinfo->inputctl->eoi_reached) {
+ if (cinfo->input_scan_number == cinfo->output_scan_number) {
+ /* If input is working on current scan, we ordinarily want it to
+ * have completed the current row. But if input scan is DC,
+ * we want it to keep two rows ahead so that next two block rows' DC
+ * values are up to date.
+ */
+ JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0;
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta)
+ break;
+ }
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (!compptr->component_needed)
+ continue;
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row + 1 < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 3; /* this and next two iMCU rows */
+ } else if (cinfo->output_iMCU_row < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 2; /* this and next iMCU row */
+ } else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ access_rows = block_rows; /* this iMCU row only */
+ }
+ /* Align the virtual buffer for this component. */
+ if (cinfo->output_iMCU_row > 1) {
+ access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor,
+ (JDIMENSION)access_rows, FALSE);
+ buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */
+ } else if (cinfo->output_iMCU_row > 0) {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+ (JDIMENSION)access_rows, FALSE);
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */
+ } else {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr)cinfo, coef->whole_image[ci],
+ (JDIMENSION)0, (JDIMENSION)access_rows, FALSE);
+ }
+ /* Fetch component-dependent info.
+ * If the current scan is incomplete, then we use the component-dependent
+ * info from the previous scan.
+ */
+ if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row)
+ coef_bits =
+ coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS);
+ else
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+
+ /* We only do DC interpolation if no AC coefficient data is available. */
+ change_dc =
+ coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 &&
+ coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 &&
+ coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1;
+
+ quanttbl = compptr->quant_table;
+ Q00 = quanttbl->quantval[0];
+ Q01 = quanttbl->quantval[Q01_POS];
+ Q10 = quanttbl->quantval[Q10_POS];
+ Q20 = quanttbl->quantval[Q20_POS];
+ Q11 = quanttbl->quantval[Q11_POS];
+ Q02 = quanttbl->quantval[Q02_POS];
+ if (change_dc) {
+ Q03 = quanttbl->quantval[Q03_POS];
+ Q12 = quanttbl->quantval[Q12_POS];
+ Q21 = quanttbl->quantval[Q21_POS];
+ Q30 = quanttbl->quantval[Q30_POS];
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
+
+ if (block_row > 0 || cinfo->output_iMCU_row > 0)
+ prev_block_row =
+ buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
+ else
+ prev_block_row = buffer_ptr;
+
+ if (block_row > 1 || cinfo->output_iMCU_row > 1)
+ prev_prev_block_row =
+ buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
+ else
+ prev_prev_block_row = prev_block_row;
+
+ if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row)
+ next_block_row =
+ buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
+ else
+ next_block_row = buffer_ptr;
+
+ if (block_row < block_rows - 2 ||
+ cinfo->output_iMCU_row + 1 < last_iMCU_row)
+ next_next_block_row =
+ buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
+ else
+ next_next_block_row = next_block_row;
+
+ /* We fetch the surrounding DC values using a sliding-register approach.
+ * Initialize all 25 here so as to do the right thing on narrow pics.
+ */
+ DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0];
+ DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0];
+ DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0];
+ DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0];
+ DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0];
+ output_col = 0;
+ last_block_column = compptr->width_in_blocks - 1;
+ for (block_num = cinfo->master->first_MCU_col[ci];
+ block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
+ /* Fetch current DCT block into workspace so we can modify it. */
+ jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1);
+ /* Update DC values */
+ if (block_num == cinfo->master->first_MCU_col[ci] &&
+ block_num < last_block_column) {
+ DC04 = (int)prev_prev_block_row[1][0];
+ DC09 = (int)prev_block_row[1][0];
+ DC14 = (int)buffer_ptr[1][0];
+ DC19 = (int)next_block_row[1][0];
+ DC24 = (int)next_next_block_row[1][0];
+ }
+ if (block_num + 1 < last_block_column) {
+ DC05 = (int)prev_prev_block_row[2][0];
+ DC10 = (int)prev_block_row[2][0];
+ DC15 = (int)buffer_ptr[2][0];
+ DC20 = (int)next_block_row[2][0];
+ DC25 = (int)next_next_block_row[2][0];
+ }
+ /* If DC interpolation is enabled, compute coefficient estimates using
+ * a Gaussian-like kernel, keeping the averages of the DC values.
+ *
+ * If DC interpolation is disabled, compute coefficient estimates using
+ * an algorithm similar to the one described in Section K.8 of the JPEG
+ * standard, except applied to a 5x5 window rather than a 3x3 window.
+ *
+ * An estimate is applied only if the coefficient is still zero and is
+ * not known to be fully accurate.
+ */
+ /* AC01 */
+ if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) {
+ num = Q00 * (change_dc ?
+ (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 -
+ 13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 +
+ 3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 -
+ DC21 - DC22 + DC24 + DC25) :
+ (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15));
+ if (num >= 0) {
+ pred = (int)(((Q01 << 7) + num) / (Q01 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q01 << 7) - num) / (Q01 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[1] = (JCOEF)pred;
+ }
+ /* AC10 */
+ if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) {
+ num = Q00 * (change_dc ?
+ (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 +
+ 13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 -
+ 13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 +
+ 3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) :
+ (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23));
+ if (num >= 0) {
+ pred = (int)(((Q10 << 7) + num) / (Q10 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q10 << 7) - num) / (Q10 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[8] = (JCOEF)pred;
+ }
+ /* AC20 */
+ if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) {
+ num = Q00 * (change_dc ?
+ (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 -
+ 5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) :
+ (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23));
+ if (num >= 0) {
+ pred = (int)(((Q20 << 7) + num) / (Q20 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q20 << 7) - num) / (Q20 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[16] = (JCOEF)pred;
+ }
+ /* AC11 */
+ if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) {
+ num = Q00 * (change_dc ?
+ (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 +
+ 9 * DC19 + DC21 - DC25) :
+ (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 -
+ DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09));
+ if (num >= 0) {
+ pred = (int)(((Q11 << 7) + num) / (Q11 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q11 << 7) - num) / (Q11 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[9] = (JCOEF)pred;
+ }
+ /* AC02 */
+ if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) {
+ num = Q00 * (change_dc ?
+ (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 +
+ 7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) :
+ (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15));
+ if (num >= 0) {
+ pred = (int)(((Q02 << 7) + num) / (Q02 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q02 << 7) - num) / (Q02 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[2] = (JCOEF)pred;
+ }
+ if (change_dc) {
+ /* AC03 */
+ if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) {
+ num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19);
+ if (num >= 0) {
+ pred = (int)(((Q03 << 7) + num) / (Q03 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q03 << 7) - num) / (Q03 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[3] = (JCOEF)pred;
+ }
+ /* AC12 */
+ if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) {
+ num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19);
+ if (num >= 0) {
+ pred = (int)(((Q12 << 7) + num) / (Q12 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q12 << 7) - num) / (Q12 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[10] = (JCOEF)pred;
+ }
+ /* AC21 */
+ if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) {
+ num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19);
+ if (num >= 0) {
+ pred = (int)(((Q21 << 7) + num) / (Q21 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q21 << 7) - num) / (Q21 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[17] = (JCOEF)pred;
+ }
+ /* AC30 */
+ if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) {
+ num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19);
+ if (num >= 0) {
+ pred = (int)(((Q30 << 7) + num) / (Q30 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ } else {
+ pred = (int)(((Q30 << 7) - num) / (Q30 << 8));
+ if (Al > 0 && pred >= (1 << Al))
+ pred = (1 << Al) - 1;
+ pred = -pred;
+ }
+ workspace[24] = (JCOEF)pred;
+ }
+ /* coef_bits[0] is non-negative. Otherwise this function would not
+ * be called.
+ */
+ num = Q00 *
+ (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 -
+ 6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 -
+ 8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 -
+ 6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 -
+ 2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25);
+ if (num >= 0) {
+ pred = (int)(((Q00 << 7) + num) / (Q00 << 8));
+ } else {
+ pred = (int)(((Q00 << 7) - num) / (Q00 << 8));
+ pred = -pred;
+ }
+ workspace[0] = (JCOEF)pred;
+ } /* change_dc */
+
+ /* OK, do the IDCT */
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr,
+ output_col);
+ /* Advance for next column */
+ DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05;
+ DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10;
+ DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15;
+ DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20;
+ DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25;
+ buffer_ptr++, prev_block_row++, next_block_row++,
+ prev_prev_block_row++, next_next_block_row++;
+ output_col += compptr->_DCT_scaled_size;
+ }
+ output_ptr += compptr->_DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL(void)
+jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ sizeof(my_coef_controller));
+ cinfo->coef = (struct jpeg_d_coef_controller *)coef;
+ coef->pub.start_input_pass = start_input_pass;
+ coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ coef->coef_bits_latch = NULL;
+#endif
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ /* Note we ask for a pre-zeroed array. */
+ int ci, access_rows;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* If block smoothing could be used, need a bigger window */
+ if (cinfo->progressive_mode)
+ access_rows *= 5;
+#endif
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE,
+ (JDIMENSION)jround_up((long)compptr->width_in_blocks,
+ (long)compptr->h_samp_factor),
+ (JDIMENSION)jround_up((long)compptr->height_in_blocks,
+ (long)compptr->v_samp_factor),
+ (JDIMENSION)access_rows);
+ }
+ coef->pub.consume_data = consume_data;
+ coef->pub.decompress_data = decompress_data;
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->pub.consume_data = dummy_consume_data;
+ coef->pub.decompress_data = decompress_onepass;
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+ }
+
+ /* Allocate the workspace buffer */
+ coef->workspace = (JCOEF *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
+ sizeof(JCOEF) * DCTSIZE2);
+}