diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc')
-rw-r--r-- | security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc | 1183 |
1 files changed, 1183 insertions, 0 deletions
diff --git a/security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc b/security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc new file mode 100644 index 0000000000..51ec9d3ee5 --- /dev/null +++ b/security/nss/gtests/ssl_gtest/ssl_0rtt_unittest.cc @@ -0,0 +1,1183 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this file, + * You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "secerr.h" +#include "ssl.h" +#include "sslerr.h" +#include "sslexp.h" +#include "sslproto.h" + +extern "C" { +// This is not something that should make you happy. +#include "libssl_internals.h" +} + +#include "cpputil.h" +#include "gtest_utils.h" +#include "nss_scoped_ptrs.h" +#include "tls_connect.h" +#include "tls_filter.h" +#include "tls_parser.h" + +namespace nss_test { + +TEST_P(TlsConnectTls13, ZeroRtt) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true); + Handshake(); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ZeroRttServerRejectByOption) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false); + Handshake(); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ZeroRttApplicationReject) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + + auto reject_0rtt = [](PRBool firstHello, const PRUint8* clientToken, + unsigned int clientTokenLen, PRUint8* appToken, + unsigned int* appTokenLen, unsigned int appTokenMax, + void* arg) { + auto* called = reinterpret_cast<bool*>(arg); + *called = true; + + EXPECT_TRUE(firstHello); + EXPECT_EQ(0U, clientTokenLen); + return ssl_hello_retry_reject_0rtt; + }; + + bool cb_run = false; + EXPECT_EQ(SECSuccess, SSL_HelloRetryRequestCallback(server_->ssl_fd(), + reject_0rtt, &cb_run)); + ZeroRttSendReceive(true, false); + Handshake(); + EXPECT_TRUE(cb_run); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ZeroRttApparentReplayAfterRestart) { + // The test fixtures enable anti-replay in SetUp(). This results in 0-RTT + // being rejected until at least one window passes. SetupFor0Rtt() forces a + // rollover of the anti-replay filters, which clears that state and allows + // 0-RTT to work. Make the first connection manually to avoid that rollover + // and cause 0-RTT to be rejected. + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3); + server_->Set0RttEnabled(true); // So we signal that we allow 0-RTT. + Connect(); + SendReceive(); // Need to read so that we absorb the session ticket. + CheckKeys(); + + Reset(); + StartConnect(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false); + Handshake(); + CheckConnected(); + SendReceive(); +} + +class TlsZeroRttReplayTest : public TlsConnectTls13 { + private: + class SaveFirstPacket : public PacketFilter { + public: + PacketFilter::Action Filter(const DataBuffer& input, + DataBuffer* output) override { + if (!packet_.len() && input.len()) { + packet_ = input; + } + return KEEP; + } + + const DataBuffer& packet() const { return packet_; } + + private: + DataBuffer packet_; + }; + + protected: + void RunTest(bool rollover, const ScopedPK11SymKey& epsk) { + // Now run a true 0-RTT handshake, but capture the first packet. + auto first_packet = std::make_shared<SaveFirstPacket>(); + client_->SetFilter(first_packet); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ZeroRttSendReceive(true, true); + Handshake(); + EXPECT_LT(0U, first_packet->packet().len()); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); + + if (rollover) { + RolloverAntiReplay(); + } + + // Now replay that packet against the server. + Reset(); + server_->StartConnect(); + server_->Set0RttEnabled(true); + server_->SetAntiReplayContext(anti_replay_); + if (epsk) { + AddPsk(epsk, std::string("foo"), ssl_hash_sha256, + TLS_CHACHA20_POLY1305_SHA256); + } + + // Capture the early_data extension, which should not appear. + auto early_data_ext = + MakeTlsFilter<TlsExtensionCapture>(server_, ssl_tls13_early_data_xtn); + + // Finally, replay the ClientHello and force the server to consume it. Stop + // after the server sends its first flight; the client will not be able to + // complete this handshake. + server_->adapter()->PacketReceived(first_packet->packet()); + server_->Handshake(); + EXPECT_FALSE(early_data_ext->captured()); + } + + void RunResPskTest(bool rollover) { + // Run the initial handshake + SetupForZeroRtt(); + ExpectResumption(RESUME_TICKET); + RunTest(rollover, ScopedPK11SymKey(nullptr)); + } + + void RunExtPskTest(bool rollover) { + ScopedPK11SlotInfo slot(PK11_GetInternalSlot()); + ASSERT_NE(nullptr, slot); + + const std::vector<uint8_t> kPskDummyVal(16, 0xFF); + SECItem psk_item = {siBuffer, toUcharPtr(kPskDummyVal.data()), + static_cast<unsigned int>(kPskDummyVal.size())}; + PK11SymKey* key = + PK11_ImportSymKey(slot.get(), CKM_HKDF_KEY_GEN, PK11_OriginUnwrap, + CKA_DERIVE, &psk_item, NULL); + ASSERT_NE(nullptr, key); + ScopedPK11SymKey scoped_psk(key); + RolloverAntiReplay(); + AddPsk(scoped_psk, std::string("foo"), ssl_hash_sha256, + TLS_CHACHA20_POLY1305_SHA256); + StartConnect(); + RunTest(rollover, scoped_psk); + } +}; + +TEST_P(TlsZeroRttReplayTest, ResPskZeroRttReplay) { RunResPskTest(false); } + +TEST_P(TlsZeroRttReplayTest, ExtPskZeroRttReplay) { RunExtPskTest(false); } + +TEST_P(TlsZeroRttReplayTest, ZeroRttReplayAfterRollover) { + RunResPskTest(true); +} + +// Test that we don't try to send 0-RTT data when the server sent +// us a ticket without the 0-RTT flags. +TEST_P(TlsConnectTls13, ZeroRttOptionsSetLate) { + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + Connect(); + SendReceive(); // Need to read so that we absorb the session ticket. + CheckKeys(ssl_kea_ecdh, ssl_auth_rsa_sign); + Reset(); + StartConnect(); + // Now turn on 0-RTT but too late for the ticket. + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(false, false); + Handshake(); + CheckConnected(); + SendReceive(); +} + +// Make sure that a session ticket sent well after the original handshake +// can be used for 0-RTT. +// Stream because DTLS doesn't support SSL_SendSessionTicket. +TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicket) { + // Use a small-ish anti-replay window. + ResetAntiReplay(100 * PR_USEC_PER_MSEC); + RolloverAntiReplay(); + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + server_->Set0RttEnabled(true); + Connect(); + CheckKeys(); + + // Now move time forward 30s and send a ticket. + AdvanceTime(30 * PR_USEC_PER_SEC); + EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0)); + SendReceive(); + Reset(); + StartConnect(); + + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true); + Handshake(); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); +} + +// Check that post-handshake authentication with a long RTT doesn't +// make things worse. +TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicketPha) { + // Use a small-ish anti-replay window. + ResetAntiReplay(100 * PR_USEC_PER_MSEC); + RolloverAntiReplay(); + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + server_->Set0RttEnabled(true); + client_->SetupClientAuth(); + client_->SetOption(SSL_ENABLE_POST_HANDSHAKE_AUTH, PR_TRUE); + Connect(); + CheckKeys(); + + // Add post-handshake authentication, with some added delays. + AdvanceTime(10 * PR_USEC_PER_SEC); + EXPECT_EQ(SECSuccess, SSL_SendCertificateRequest(server_->ssl_fd())); + AdvanceTime(10 * PR_USEC_PER_SEC); + server_->SendData(50); + client_->ReadBytes(50); + client_->SendData(50); + server_->ReadBytes(50); + + AdvanceTime(10 * PR_USEC_PER_SEC); + EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0)); + server_->SendData(100); + client_->ReadBytes(100); + Reset(); + StartConnect(); + + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true); + Handshake(); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); +} + +// Same, but with client authentication on the first connection. +TEST_F(TlsConnectStreamTls13, ZeroRttUsingLateTicketClientAuth) { + // Use a small-ish anti-replay window. + ResetAntiReplay(100 * PR_USEC_PER_MSEC); + RolloverAntiReplay(); + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + client_->SetupClientAuth(); + server_->RequestClientAuth(true); + server_->Set0RttEnabled(true); + Connect(); + CheckKeys(); + + // Now move time forward 30s and send a ticket. + AdvanceTime(30 * PR_USEC_PER_SEC); + EXPECT_EQ(SECSuccess, SSL_SendSessionTicket(server_->ssl_fd(), NULL, 0)); + SendReceive(); + Reset(); + StartConnect(); + + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true); + Handshake(); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ZeroRttServerForgetTicket) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ClearServerCache(); + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + ExpectResumption(RESUME_NONE); + ZeroRttSendReceive(true, false); + Handshake(); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ZeroRttServerOnly) { + ExpectResumption(RESUME_NONE); + server_->Set0RttEnabled(true); + StartConnect(); + + // Client sends ordinary ClientHello. + client_->Handshake(); + + // Verify that the server doesn't get data. + uint8_t buf[100]; + PRInt32 rv = PR_Read(server_->ssl_fd(), buf, sizeof(buf)); + EXPECT_EQ(SECFailure, rv); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); + + // Now make sure that things complete. + Handshake(); + CheckConnected(); + SendReceive(); + CheckKeys(); +} + +// Advancing time after sending the ClientHello means that the ticket age that +// arrives at the server is too low. The server then rejects early data if this +// delay exceeds half the anti-replay window. +TEST_P(TlsConnectTls13, ZeroRttRejectOldTicket) { + static const PRTime kWindow = 10 * PR_USEC_PER_SEC; + ResetAntiReplay(kWindow); + SetupForZeroRtt(); + + Reset(); + StartConnect(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false, [this]() { + AdvanceTime(1 + kWindow / 2); + return true; + }); + Handshake(); + ExpectEarlyDataAccepted(false); + CheckConnected(); + SendReceive(); +} + +// In this test, we falsely inflate the estimate of the RTT by delaying the +// ServerHello on the first handshake. This results in the server estimating a +// higher value of the ticket age than the client ultimately provides. Add a +// small tolerance for variation in ticket age and the ticket will appear to +// arrive prematurely, causing the server to reject early data. +TEST_P(TlsConnectTls13, ZeroRttRejectPrematureTicket) { + static const PRTime kWindow = 10 * PR_USEC_PER_SEC; + ResetAntiReplay(kWindow); + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3); + server_->Set0RttEnabled(true); + StartConnect(); + client_->Handshake(); // ClientHello + server_->Handshake(); // ServerHello + AdvanceTime(1 + kWindow / 2); + Handshake(); // Remainder of handshake + CheckConnected(); + SendReceive(); + CheckKeys(); + + Reset(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ExpectEarlyDataAccepted(false); + StartConnect(); + ZeroRttSendReceive(true, false); + Handshake(); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpn) { + EnableAlpn(); + SetupForZeroRtt(); + EnableAlpn(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ExpectEarlyDataAccepted(true); + ZeroRttSendReceive(true, true, [this]() { + client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a"); + return true; + }); + Handshake(); + CheckConnected(); + SendReceive(); + CheckAlpn("a"); +} + +// NOTE: In this test and those below, the client always sends +// post-ServerHello alerts with the handshake keys, even if the server +// has accepted 0-RTT. In some cases, as with errors in +// EncryptedExtensions, the client can't know the server's behavior, +// and in others it's just simpler. What the server is expecting +// depends on whether it accepted 0-RTT or not. Eventually, we may +// make the server trial decrypt. +// +// Have the server negotiate a different ALPN value, and therefore +// reject 0-RTT. +TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpnChangeServer) { + EnableAlpn(); + SetupForZeroRtt(); + static const uint8_t client_alpn[] = {0x01, 0x61, 0x01, 0x62}; // "a", "b" + static const uint8_t server_alpn[] = {0x01, 0x62}; // "b" + client_->EnableAlpn(client_alpn, sizeof(client_alpn)); + server_->EnableAlpn(server_alpn, sizeof(server_alpn)); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false, [this]() { + client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a"); + return true; + }); + Handshake(); + CheckConnected(); + SendReceive(); + CheckAlpn("b"); +} + +// Check that the client validates the ALPN selection of the server. +// Stomp the ALPN on the client after sending the ClientHello so +// that the server selection appears to be incorrect. The client +// should then fail the connection. +TEST_P(TlsConnectTls13, TestTls13ZeroRttNoAlpnServer) { + EnableAlpn(); + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + EnableAlpn(); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true, [this]() { + PRUint8 b[] = {'b'}; + client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "a"); + EXPECT_EQ(SECSuccess, SSLInt_Set0RttAlpn(client_->ssl_fd(), b, sizeof(b))); + client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "b"); + client_->ExpectSendAlert(kTlsAlertIllegalParameter); + return true; + }); + if (variant_ == ssl_variant_stream) { + server_->ExpectSendAlert(kTlsAlertBadRecordMac); + Handshake(); + server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ); + } else { + client_->Handshake(); + } + client_->CheckErrorCode(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); +} + +// Set up with no ALPN and then set the client so it thinks it has ALPN. +// The server responds without the extension and the client returns an +// error. +TEST_P(TlsConnectTls13, TestTls13ZeroRttNoAlpnClient) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true, [this]() { + PRUint8 b[] = {'b'}; + EXPECT_EQ(SECSuccess, SSLInt_Set0RttAlpn(client_->ssl_fd(), b, 1)); + client_->CheckAlpn(SSL_NEXT_PROTO_EARLY_VALUE, "b"); + client_->ExpectSendAlert(kTlsAlertIllegalParameter); + return true; + }); + if (variant_ == ssl_variant_stream) { + server_->ExpectSendAlert(kTlsAlertBadRecordMac); + Handshake(); + server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ); + } else { + client_->Handshake(); + } + client_->CheckErrorCode(SSL_ERROR_NEXT_PROTOCOL_DATA_INVALID); +} + +// Remove the old ALPN value and so the client will not offer early data. +TEST_P(TlsConnectTls13, TestTls13ZeroRttAlpnChangeBoth) { + EnableAlpn(); + SetupForZeroRtt(); + static const std::vector<uint8_t> alpn({0x01, 0x62}); // "b" + EnableAlpn(alpn); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false, [this]() { + client_->CheckAlpn(SSL_NEXT_PROTO_NO_SUPPORT); + return false; + }); + Handshake(); + CheckConnected(); + SendReceive(); + CheckAlpn("b"); +} + +// The client should abort the connection when sending a 0-rtt handshake but +// the servers responds with a TLS 1.2 ServerHello. (no app data sent) +TEST_P(TlsConnectTls13, TestTls13ZeroRttDowngrade) { + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + server_->Set0RttEnabled(true); // set ticket_allow_early_data + Connect(); + + SendReceive(); // Need to read so that we absorb the session tickets. + CheckKeys(); + + Reset(); + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + client_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2, + SSL_LIBRARY_VERSION_TLS_1_3); + server_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2, + SSL_LIBRARY_VERSION_TLS_1_2); + StartConnect(); + // We will send the early data xtn without sending actual early data. Thus + // a 1.2 server shouldn't fail until the client sends an alert because the + // client sends end_of_early_data only after reading the server's flight. + client_->Set0RttEnabled(true); + + client_->ExpectSendAlert(kTlsAlertIllegalParameter); + if (variant_ == ssl_variant_stream) { + server_->ExpectSendAlert(kTlsAlertUnexpectedMessage); + } + client_->Handshake(); + server_->Handshake(); + ASSERT_TRUE_WAIT( + (client_->error_code() == SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA), 2000); + + // DTLS will timeout as we bump the epoch when installing the early app data + // cipher suite. Thus the encrypted alert will be ignored. + if (variant_ == ssl_variant_stream) { + // The client sends an encrypted alert message. + ASSERT_TRUE_WAIT( + (server_->error_code() == SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA), + 2000); + } +} + +// The client should abort the connection when sending a 0-rtt handshake but +// the servers responds with a TLS 1.2 ServerHello. (with app data) +TEST_P(TlsConnectTls13, TestTls13ZeroRttDowngradeEarlyData) { + const char* k0RttData = "ABCDEF"; + const PRInt32 k0RttDataLen = static_cast<PRInt32>(strlen(k0RttData)); + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + server_->Set0RttEnabled(true); // set ticket_allow_early_data + Connect(); + + SendReceive(); // Need to read so that we absorb the session tickets. + CheckKeys(); + + Reset(); + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + client_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2, + SSL_LIBRARY_VERSION_TLS_1_3); + server_->SetVersionRange(SSL_LIBRARY_VERSION_TLS_1_2, + SSL_LIBRARY_VERSION_TLS_1_2); + StartConnect(); + // Send the early data xtn in the CH, followed by early app data. The server + // will fail right after sending its flight, when receiving the early data. + client_->Set0RttEnabled(true); + client_->Handshake(); // Send ClientHello. + PRInt32 rv = + PR_Write(client_->ssl_fd(), k0RttData, k0RttDataLen); // 0-RTT write. + EXPECT_EQ(k0RttDataLen, rv); + + if (variant_ == ssl_variant_stream) { + // When the server receives the early data, it will fail. + server_->ExpectSendAlert(kTlsAlertUnexpectedMessage); + server_->Handshake(); // Consume ClientHello + EXPECT_EQ(TlsAgent::STATE_ERROR, server_->state()); + server_->CheckErrorCode(SSL_ERROR_RX_UNEXPECTED_APPLICATION_DATA); + } else { + // If it's datagram, we just discard the early data. + server_->Handshake(); // Consume ClientHello + EXPECT_EQ(TlsAgent::STATE_CONNECTING, server_->state()); + } + + // The client now reads the ServerHello and fails. + ASSERT_EQ(TlsAgent::STATE_CONNECTING, client_->state()); + client_->ExpectSendAlert(kTlsAlertIllegalParameter); + client_->Handshake(); + client_->CheckErrorCode(SSL_ERROR_DOWNGRADE_WITH_EARLY_DATA); +} + +TEST_P(TlsConnectTls13, SendTooMuchEarlyData) { + EnsureTlsSetup(); + const char* big_message = "0123456789abcdef"; + const size_t short_size = strlen(big_message) - 1; + const PRInt32 short_length = static_cast<PRInt32>(short_size); + EXPECT_EQ(SECSuccess, + SSL_SetMaxEarlyDataSize(server_->ssl_fd(), + static_cast<PRUint32>(short_size))); + SetupForZeroRtt(); + + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + + client_->Handshake(); + CheckEarlyDataLimit(client_, short_size); + + PRInt32 sent; + // Writing more than the limit will succeed in TLS, but fail in DTLS. + if (variant_ == ssl_variant_stream) { + sent = PR_Write(client_->ssl_fd(), big_message, + static_cast<PRInt32>(strlen(big_message))); + } else { + sent = PR_Write(client_->ssl_fd(), big_message, + static_cast<PRInt32>(strlen(big_message))); + EXPECT_GE(0, sent); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); + + // Try an exact-sized write now. + sent = PR_Write(client_->ssl_fd(), big_message, short_length); + } + EXPECT_EQ(short_length, sent); + + // Even a single octet write should now fail. + sent = PR_Write(client_->ssl_fd(), big_message, 1); + EXPECT_GE(0, sent); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); + + // Process the ClientHello and read 0-RTT. + server_->Handshake(); + CheckEarlyDataLimit(server_, short_size); + + std::vector<uint8_t> buf(short_size + 1); + PRInt32 read = PR_Read(server_->ssl_fd(), buf.data(), buf.capacity()); + EXPECT_EQ(short_length, read); + EXPECT_EQ(0, memcmp(big_message, buf.data(), short_size)); + + // Second read fails. + read = PR_Read(server_->ssl_fd(), buf.data(), buf.capacity()); + EXPECT_EQ(SECFailure, read); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); + + Handshake(); + ExpectEarlyDataAccepted(true); + CheckConnected(); + SendReceive(); +} + +TEST_P(TlsConnectTls13, ReceiveTooMuchEarlyData) { + EnsureTlsSetup(); + + const size_t limit = 5; + EXPECT_EQ(SECSuccess, SSL_SetMaxEarlyDataSize(server_->ssl_fd(), limit)); + SetupForZeroRtt(); + + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + + client_->Handshake(); // Send ClientHello + CheckEarlyDataLimit(client_, limit); + + server_->Handshake(); // Process ClientHello, send server flight. + + // Lift the limit on the client. + EXPECT_EQ(SECSuccess, + SSLInt_SetSocketMaxEarlyDataSize(client_->ssl_fd(), 1000)); + + // Send message + const char* message = "0123456789abcdef"; + const PRInt32 message_len = static_cast<PRInt32>(strlen(message)); + EXPECT_EQ(message_len, PR_Write(client_->ssl_fd(), message, message_len)); + + if (variant_ == ssl_variant_stream) { + // This error isn't fatal for DTLS. + ExpectAlert(server_, kTlsAlertUnexpectedMessage); + } + + server_->Handshake(); // This reads the early data and maybe throws an error. + if (variant_ == ssl_variant_stream) { + server_->CheckErrorCode(SSL_ERROR_TOO_MUCH_EARLY_DATA); + } else { + EXPECT_EQ(TlsAgent::STATE_CONNECTING, server_->state()); + } + CheckEarlyDataLimit(server_, limit); + + // Attempt to read early data. This will get an error. + std::vector<uint8_t> buf(strlen(message) + 1); + EXPECT_GT(0, PR_Read(server_->ssl_fd(), buf.data(), buf.capacity())); + if (variant_ == ssl_variant_stream) { + EXPECT_EQ(SSL_ERROR_HANDSHAKE_FAILED, PORT_GetError()); + } else { + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); + } + + client_->Handshake(); // Process the server's first flight. + if (variant_ == ssl_variant_stream) { + client_->Handshake(); // Process the alert. + client_->CheckErrorCode(SSL_ERROR_HANDSHAKE_UNEXPECTED_ALERT); + } else { + server_->Handshake(); // Finish connecting. + EXPECT_EQ(TlsAgent::STATE_CONNECTED, server_->state()); + } +} + +class PacketCoalesceFilter : public PacketFilter { + public: + PacketCoalesceFilter() : packet_data_() {} + + void SendCoalesced(std::shared_ptr<TlsAgent> agent) { + agent->SendDirect(packet_data_); + } + + protected: + PacketFilter::Action Filter(const DataBuffer& input, + DataBuffer* output) override { + packet_data_.Write(packet_data_.len(), input); + return DROP; + } + + private: + DataBuffer packet_data_; +}; + +TEST_P(TlsConnectTls13, ZeroRttOrdering) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + + // Send out the ClientHello. + client_->Handshake(); + + // Now, coalesce the next three things from the client: early data, second + // flight and 1-RTT data. + auto coalesce = std::make_shared<PacketCoalesceFilter>(); + client_->SetFilter(coalesce); + + // Send (and hold) early data. + static const std::vector<uint8_t> early_data = {3, 2, 1}; + EXPECT_EQ(static_cast<PRInt32>(early_data.size()), + PR_Write(client_->ssl_fd(), early_data.data(), early_data.size())); + + // Send (and hold) the second client handshake flight. + // The client sends EndOfEarlyData after seeing the server Finished. + server_->Handshake(); + client_->Handshake(); + + // Send (and hold) 1-RTT data. + static const std::vector<uint8_t> late_data = {7, 8, 9, 10}; + EXPECT_EQ(static_cast<PRInt32>(late_data.size()), + PR_Write(client_->ssl_fd(), late_data.data(), late_data.size())); + + // Now release them all at once. + coalesce->SendCoalesced(client_); + + // Now ensure that the three steps are exposed in the right order on the + // server: delivery of early data, handshake callback, delivery of 1-RTT. + size_t step = 0; + server_->SetHandshakeCallback([&step](TlsAgent*) { + EXPECT_EQ(1U, step); + ++step; + }); + + std::vector<uint8_t> buf(10); + PRInt32 read = PR_Read(server_->ssl_fd(), buf.data(), buf.size()); + ASSERT_EQ(static_cast<PRInt32>(early_data.size()), read); + buf.resize(read); + EXPECT_EQ(early_data, buf); + EXPECT_EQ(0U, step); + ++step; + + // The third read should be after the handshake callback and should return the + // data that was sent after the handshake completed. + buf.resize(10); + read = PR_Read(server_->ssl_fd(), buf.data(), buf.size()); + ASSERT_EQ(static_cast<PRInt32>(late_data.size()), read); + buf.resize(read); + EXPECT_EQ(late_data, buf); + EXPECT_EQ(2U, step); +} + +// Early data remains available after the handshake completes for TLS. +TEST_F(TlsConnectStreamTls13, ZeroRttLateReadTls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. + const uint8_t data[] = {1, 2, 3, 4, 5, 6, 7, 8}; + PRInt32 rv = PR_Write(client_->ssl_fd(), data, sizeof(data)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), rv); + + // Consume the ClientHello and generate ServerHello..Finished. + server_->Handshake(); + + // Read some of the data. + std::vector<uint8_t> small_buffer(1 + sizeof(data) / 2); + rv = PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size()); + EXPECT_EQ(static_cast<PRInt32>(small_buffer.size()), rv); + EXPECT_EQ(0, memcmp(data, small_buffer.data(), small_buffer.size())); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); + + // After the handshake, it should be possible to read the remainder. + uint8_t big_buf[100]; + rv = PR_Read(server_->ssl_fd(), big_buf, sizeof(big_buf)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - small_buffer.size()), rv); + EXPECT_EQ(0, memcmp(&data[small_buffer.size()], big_buf, + sizeof(data) - small_buffer.size())); + + // And that's all there is to read. + rv = PR_Read(server_->ssl_fd(), big_buf, sizeof(big_buf)); + EXPECT_GT(0, rv); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); +} + +// Early data that arrives before the handshake can be read after the handshake +// is complete. +TEST_F(TlsConnectDatagram13, ZeroRttLateReadDtls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. + const uint8_t data[] = {1, 2, 3}; + PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); + + // Reading at the server should return the early data, which was buffered. + uint8_t buf[sizeof(data) + 1] = {0}; + PRInt32 read = PR_Read(server_->ssl_fd(), buf, sizeof(buf)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read); + EXPECT_EQ(0, memcmp(data, buf, sizeof(data))); +} + +class PacketHolder : public PacketFilter { + public: + PacketHolder() = default; + + virtual Action Filter(const DataBuffer& input, DataBuffer* output) { + packet_ = input; + Disable(); + return DROP; + } + + const DataBuffer& packet() const { return packet_; } + + private: + DataBuffer packet_; +}; + +// Early data that arrives late is discarded for DTLS. +TEST_F(TlsConnectDatagram13, ZeroRttLateArrivalDtls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. Twice, so that we can read bits of it. + const uint8_t data[] = {1, 2, 3}; + PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written); + + // Block and capture the next packet. + auto holder = std::make_shared<PacketHolder>(); + client_->SetFilter(holder); + written = PR_Write(client_->ssl_fd(), data, sizeof(data)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written); + EXPECT_FALSE(holder->enabled()) << "the filter should disable itself"; + + // Consume the ClientHello and generate ServerHello..Finished. + server_->Handshake(); + + // Read some of the data. + std::vector<uint8_t> small_buffer(sizeof(data)); + PRInt32 read = + PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size()); + + EXPECT_EQ(static_cast<PRInt32>(small_buffer.size()), read); + EXPECT_EQ(0, memcmp(data, small_buffer.data(), small_buffer.size())); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); + + server_->SendDirect(holder->packet()); + + // Reading now should return nothing, even though a valid packet was + // delivered. + read = PR_Read(server_->ssl_fd(), small_buffer.data(), small_buffer.size()); + EXPECT_GT(0, read); + EXPECT_EQ(PR_WOULD_BLOCK_ERROR, PORT_GetError()); +} + +// Early data reads in TLS should be coalesced. +TEST_F(TlsConnectStreamTls13, ZeroRttCoalesceReadTls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. In two writes. + const uint8_t data[] = {1, 2, 3, 4, 5, 6}; + PRInt32 written = PR_Write(client_->ssl_fd(), data, 1); + EXPECT_EQ(1, written); + + written = PR_Write(client_->ssl_fd(), data + 1, sizeof(data) - 1); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), written); + + // Consume the ClientHello and generate ServerHello..Finished. + server_->Handshake(); + + // Read all of the data. + std::vector<uint8_t> buffer(sizeof(data)); + PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size()); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read); + EXPECT_EQ(0, memcmp(data, buffer.data(), sizeof(data))); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); +} + +// Early data reads in DTLS should not be coalesced. +TEST_F(TlsConnectDatagram13, ZeroRttNoCoalesceReadDtls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. In two writes. + const uint8_t data[] = {1, 2, 3, 4, 5, 6}; + PRInt32 written = PR_Write(client_->ssl_fd(), data, 1); + EXPECT_EQ(1, written); + + written = PR_Write(client_->ssl_fd(), data + 1, sizeof(data) - 1); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), written); + + // Consume the ClientHello and generate ServerHello..Finished. + server_->Handshake(); + + // Try to read all of the data. + std::vector<uint8_t> buffer(sizeof(data)); + PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size()); + EXPECT_EQ(1, read); + EXPECT_EQ(0, memcmp(data, buffer.data(), 1)); + + // Read the remainder. + read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size()); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data) - 1), read); + EXPECT_EQ(0, memcmp(data + 1, buffer.data(), sizeof(data) - 1)); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); +} + +// Early data reads in DTLS should fail if the buffer is too small. +TEST_F(TlsConnectDatagram13, ZeroRttShortReadDtls) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + client_->Handshake(); // ClientHello + + // Write some early data. In two writes. + const uint8_t data[] = {1, 2, 3, 4, 5, 6}; + PRInt32 written = PR_Write(client_->ssl_fd(), data, sizeof(data)); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), written); + + // Consume the ClientHello and generate ServerHello..Finished. + server_->Handshake(); + + // Try to read all of the data into a small buffer. + std::vector<uint8_t> buffer(sizeof(data)); + PRInt32 read = PR_Read(server_->ssl_fd(), buffer.data(), 1); + EXPECT_GT(0, read); + EXPECT_EQ(SSL_ERROR_RX_SHORT_DTLS_READ, PORT_GetError()); + + // Read again with more space. + read = PR_Read(server_->ssl_fd(), buffer.data(), buffer.size()); + EXPECT_EQ(static_cast<PRInt32>(sizeof(data)), read); + EXPECT_EQ(0, memcmp(data, buffer.data(), sizeof(data))); + + Handshake(); // Complete the handshake. + ExpectEarlyDataAccepted(true); + CheckConnected(); +} + +// There are few ways in which TLS uses the clock and most of those operate on +// timescales that would be ridiculous to wait for in a test. This is the one +// test we have that uses the real clock. It tests that time passes by checking +// that a small sleep results in rejection of early data. 0-RTT has a +// configurable timer, which makes it ideal for this. +TEST_F(TlsConnectStreamTls13, TimePassesByDefault) { + // Calling EnsureTlsSetup() replaces the time function on client and server, + // and sets up anti-replay, which we don't want, so initialize each directly. + client_->EnsureTlsSetup(); + server_->EnsureTlsSetup(); + // StartConnect() calls EnsureTlsSetup(), so avoid that too. + client_->StartConnect(); + server_->StartConnect(); + + // Set a tiny anti-replay window. This has to be at least 2 milliseconds to + // have any chance of being relevant as that is the smallest window that we + // can detect. Anything smaller rounds to zero. + static const unsigned int kTinyWindowMs = 5; + ResetAntiReplay(static_cast<PRTime>(kTinyWindowMs * PR_USEC_PER_MSEC)); + server_->SetAntiReplayContext(anti_replay_); + + ConfigureSessionCache(RESUME_BOTH, RESUME_TICKET); + ConfigureVersion(SSL_LIBRARY_VERSION_TLS_1_3); + server_->Set0RttEnabled(true); + Handshake(); + CheckConnected(); + SendReceive(); // Absorb a session ticket. + CheckKeys(); + + // Clear the first window. + PR_Sleep(PR_MillisecondsToInterval(kTinyWindowMs)); + + Reset(); + client_->EnsureTlsSetup(); + server_->EnsureTlsSetup(); + client_->StartConnect(); + server_->StartConnect(); + + // Early data is rejected by the server only if time passes for it as well. + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, false, []() { + // Sleep long enough that we minimize the risk of our RTT estimation being + // duped by stutters in test execution. This is very long to allow for + // flaky and low-end hardware, especially what our CI runs on. + PR_Sleep(PR_MillisecondsToInterval(1000)); + return true; + }); + Handshake(); + ExpectEarlyDataAccepted(false); + CheckConnected(); +} + +// Test that SSL_CreateAntiReplayContext doesn't pass bad inputs. +TEST_F(TlsConnectStreamTls13, BadAntiReplayArgs) { + SSLAntiReplayContext* p; + // Zero or negative window. + EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, -1, 1, 1, &p)); + EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError()); + EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 0, 1, 1, &p)); + EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError()); + // Zero k. + EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 0, 1, &p)); + EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError()); + // Zero bits. + EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 1, 0, &p)); + EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError()); + EXPECT_EQ(SECFailure, SSL_CreateAntiReplayContext(0, 1, 1, 1, nullptr)); + EXPECT_EQ(SEC_ERROR_INVALID_ARGS, PORT_GetError()); + + // Prove that these parameters do work, even if they are useless.. + EXPECT_EQ(SECSuccess, SSL_CreateAntiReplayContext(0, 1, 1, 1, &p)); + ASSERT_NE(nullptr, p); + ScopedSSLAntiReplayContext ctx(p); + + // The socket isn't a client or server until later, so configuring a client + // should work OK. + client_->EnsureTlsSetup(); + EXPECT_EQ(SECSuccess, SSL_SetAntiReplayContext(client_->ssl_fd(), ctx.get())); + EXPECT_EQ(SECSuccess, SSL_SetAntiReplayContext(client_->ssl_fd(), nullptr)); +} + +// See also TlsConnectGenericResumption.ResumeServerIncompatibleCipher +TEST_P(TlsConnectTls13, ZeroRttDifferentCompatibleCipher) { + EnsureTlsSetup(); + server_->EnableSingleCipher(TLS_AES_128_GCM_SHA256); + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + // Change the ciphersuite. Resumption is OK because the hash is the same, but + // early data will be rejected. + server_->EnableSingleCipher(TLS_CHACHA20_POLY1305_SHA256); + ExpectResumption(RESUME_TICKET); + + StartConnect(); + ZeroRttSendReceive(true, false); + + Handshake(); + ExpectEarlyDataAccepted(false); + CheckConnected(); + SendReceive(); +} + +// See also TlsConnectGenericResumption.ResumeServerIncompatibleCipher +TEST_P(TlsConnectTls13, ZeroRttDifferentIncompatibleCipher) { + EnsureTlsSetup(); + server_->EnableSingleCipher(TLS_AES_256_GCM_SHA384); + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + // Resumption is rejected because the hash is different. + server_->EnableSingleCipher(TLS_CHACHA20_POLY1305_SHA256); + ExpectResumption(RESUME_NONE); + + StartConnect(); + ZeroRttSendReceive(true, false); + + Handshake(); + ExpectEarlyDataAccepted(false); + CheckConnected(); + SendReceive(); +} + +// The client failing to provide EndOfEarlyData results in failure. +// After 0-RTT working perfectly, things fall apart later. +// The server is unable to detect the change in keys, so it fails decryption. +// The client thinks everything has worked until it gets the alert. +TEST_F(TlsConnectStreamTls13, SuppressEndOfEarlyDataClientOnly) { + SetupForZeroRtt(); + client_->Set0RttEnabled(true); + server_->Set0RttEnabled(true); + client_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true); + ExpectResumption(RESUME_TICKET); + ZeroRttSendReceive(true, true); + ExpectAlert(server_, kTlsAlertBadRecordMac); + Handshake(); + EXPECT_EQ(TlsAgent::STATE_CONNECTED, client_->state()); + EXPECT_EQ(TlsAgent::STATE_ERROR, server_->state()); + server_->CheckErrorCode(SSL_ERROR_BAD_MAC_READ); + client_->Handshake(); + EXPECT_EQ(TlsAgent::STATE_ERROR, client_->state()); + client_->CheckErrorCode(SSL_ERROR_BAD_MAC_ALERT); +} + +TEST_P(TlsConnectGeneric, SuppressEndOfEarlyDataNoZeroRtt) { + EnsureTlsSetup(); + client_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true); + server_->SetOption(SSL_SUPPRESS_END_OF_EARLY_DATA, true); + Connect(); + SendReceive(); +} + +#ifndef NSS_DISABLE_TLS_1_3 +INSTANTIATE_TEST_SUITE_P(Tls13ZeroRttReplayTest, TlsZeroRttReplayTest, + TlsConnectTestBase::kTlsVariantsAll); +#endif + +} // namespace nss_test |