diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/nss/lib/freebl/arcfour.c | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/lib/freebl/arcfour.c')
-rw-r--r-- | security/nss/lib/freebl/arcfour.c | 594 |
1 files changed, 594 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/arcfour.c b/security/nss/lib/freebl/arcfour.c new file mode 100644 index 0000000000..72e696e523 --- /dev/null +++ b/security/nss/lib/freebl/arcfour.c @@ -0,0 +1,594 @@ +/* arcfour.c - the arc four algorithm. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifdef FREEBL_NO_DEPEND +#include "stubs.h" +#endif + +#include "prerr.h" +#include "secerr.h" + +#include "prtypes.h" +#include "blapi.h" + +/* Architecture-dependent defines */ + +#if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \ + defined(_WIN64) +/* Convert the byte-stream to a word-stream */ +#define CONVERT_TO_WORDS +#endif + +#if defined(AIX) || defined(NSS_BEVAND_ARCFOUR) +/* Treat array variables as words, not bytes, on CPUs that take + * much longer to write bytes than to write words, or when using + * assembler code that required it. + */ +#define USE_WORD +#endif + +#if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR) +typedef PRUint64 WORD; +#else +typedef PRUint32 WORD; +#endif +#define WORDSIZE sizeof(WORD) + +#if defined(USE_WORD) +typedef WORD Stype; +#else +typedef PRUint8 Stype; +#endif + +#define ARCFOUR_STATE_SIZE 256 + +#define MASK1BYTE (WORD)(0xff) + +#define SWAP(a, b) \ + tmp = a; \ + a = b; \ + b = tmp; + +/* + * State information for stream cipher. + */ +struct RC4ContextStr { +#if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR) + Stype i; + Stype j; + Stype S[ARCFOUR_STATE_SIZE]; +#else + Stype S[ARCFOUR_STATE_SIZE]; + Stype i; + Stype j; +#endif +}; + +/* + * array indices [0..255] to initialize cx->S array (faster than loop). + */ +static const Stype Kinit[256] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, + 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, + 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, + 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, + 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, + 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, + 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, + 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, + 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, + 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, + 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, + 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, + 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, + 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, + 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, + 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, + 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, + 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, + 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, + 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, + 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, + 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, + 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, + 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, + 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, + 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, + 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, + 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, + 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff +}; + +RC4Context * +RC4_AllocateContext(void) +{ + return PORT_ZNew(RC4Context); +} + +SECStatus +RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len, + const unsigned char *unused1, int unused2, + unsigned int unused3, unsigned int unused4) +{ + unsigned int i; + PRUint8 j, tmp; + PRUint8 K[256]; + PRUint8 *L; + + /* verify the key length. */ + PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE); + if (len == 0 || len >= ARCFOUR_STATE_SIZE) { + PORT_SetError(SEC_ERROR_BAD_KEY); + return SECFailure; + } + if (cx == NULL) { + PORT_SetError(SEC_ERROR_INVALID_ARGS); + return SECFailure; + } + /* Initialize the state using array indices. */ + memcpy(cx->S, Kinit, sizeof cx->S); + /* Fill in K repeatedly with values from key. */ + L = K; + for (i = sizeof K; i > len; i -= len) { + memcpy(L, key, len); + L += len; + } + memcpy(L, key, i); + /* Stir the state of the generator. At this point it is assumed + * that the key is the size of the state buffer. If this is not + * the case, the key bytes are repeated to fill the buffer. + */ + j = 0; +#define ARCFOUR_STATE_STIR(ii) \ + j = j + cx->S[ii] + K[ii]; \ + SWAP(cx->S[ii], cx->S[j]); + for (i = 0; i < ARCFOUR_STATE_SIZE; i++) { + ARCFOUR_STATE_STIR(i); + } + cx->i = 0; + cx->j = 0; + return SECSuccess; +} + +/* + * Initialize a new generator. + */ +RC4Context * +RC4_CreateContext(const unsigned char *key, int len) +{ + RC4Context *cx = RC4_AllocateContext(); + if (cx) { + SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0); + if (rv != SECSuccess) { + PORT_ZFree(cx, sizeof(*cx)); + cx = NULL; + } + } + return cx; +} + +void +RC4_DestroyContext(RC4Context *cx, PRBool freeit) +{ + if (freeit) + PORT_ZFree(cx, sizeof(*cx)); +} + +#if defined(NSS_BEVAND_ARCFOUR) +extern void ARCFOUR(RC4Context *cx, WORD inputLen, + const unsigned char *input, unsigned char *output); +#else +/* + * Generate the next byte in the stream. + */ +#define ARCFOUR_NEXT_BYTE() \ + tmpSi = cx->S[++tmpi]; \ + tmpj += tmpSi; \ + tmpSj = cx->S[tmpj]; \ + cx->S[tmpi] = tmpSj; \ + cx->S[tmpj] = tmpSi; \ + t = tmpSi + tmpSj; + +#ifdef CONVERT_TO_WORDS +/* + * Straight ARCFOUR op. No optimization. + */ +static SECStatus +rc4_no_opt(RC4Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + PRUint8 t; + Stype tmpSi, tmpSj; + register PRUint8 tmpi = cx->i; + register PRUint8 tmpj = cx->j; + unsigned int index; + PORT_Assert(maxOutputLen >= inputLen); + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } + for (index = 0; index < inputLen; index++) { + /* Generate next byte from stream. */ + ARCFOUR_NEXT_BYTE(); + /* output = next stream byte XOR next input byte */ + output[index] = cx->S[t] ^ input[index]; + } + *outputLen = inputLen; + cx->i = tmpi; + cx->j = tmpj; + return SECSuccess; +} + +#else +/* !CONVERT_TO_WORDS */ + +/* + * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces. + */ +static SECStatus +rc4_unrolled(RC4Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + PRUint8 t; + Stype tmpSi, tmpSj; + register PRUint8 tmpi = cx->i; + register PRUint8 tmpj = cx->j; + int index; + PORT_Assert(maxOutputLen >= inputLen); + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } + for (index = inputLen / 8; index-- > 0; input += 8, output += 8) { + ARCFOUR_NEXT_BYTE(); + output[0] = cx->S[t] ^ input[0]; + ARCFOUR_NEXT_BYTE(); + output[1] = cx->S[t] ^ input[1]; + ARCFOUR_NEXT_BYTE(); + output[2] = cx->S[t] ^ input[2]; + ARCFOUR_NEXT_BYTE(); + output[3] = cx->S[t] ^ input[3]; + ARCFOUR_NEXT_BYTE(); + output[4] = cx->S[t] ^ input[4]; + ARCFOUR_NEXT_BYTE(); + output[5] = cx->S[t] ^ input[5]; + ARCFOUR_NEXT_BYTE(); + output[6] = cx->S[t] ^ input[6]; + ARCFOUR_NEXT_BYTE(); + output[7] = cx->S[t] ^ input[7]; + } + index = inputLen % 8; + if (index) { + input += index; + output += index; + switch (index) { + case 7: + ARCFOUR_NEXT_BYTE(); + output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */ + case 6: + ARCFOUR_NEXT_BYTE(); + output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */ + case 5: + ARCFOUR_NEXT_BYTE(); + output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */ + case 4: + ARCFOUR_NEXT_BYTE(); + output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */ + case 3: + ARCFOUR_NEXT_BYTE(); + output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */ + case 2: + ARCFOUR_NEXT_BYTE(); + output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */ + case 1: + ARCFOUR_NEXT_BYTE(); + output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */ + default: + /* FALLTHRU */ + ; /* hp-ux build breaks without this */ + } + } + cx->i = tmpi; + cx->j = tmpj; + *outputLen = inputLen; + return SECSuccess; +} +#endif + +#ifdef IS_LITTLE_ENDIAN +#define ARCFOUR_NEXT4BYTES_L(n) \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 8); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 16); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 24); +#else +#define ARCFOUR_NEXT4BYTES_B(n) \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 24); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 16); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n + 8); \ + ARCFOUR_NEXT_BYTE(); \ + streamWord |= (WORD)cx->S[t] << (n); +#endif + +#if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64) +/* 64-bit wordsize */ +#ifdef IS_LITTLE_ENDIAN +#define ARCFOUR_NEXT_WORD() \ + { \ + streamWord = 0; \ + ARCFOUR_NEXT4BYTES_L(0); \ + ARCFOUR_NEXT4BYTES_L(32); \ + } +#else +#define ARCFOUR_NEXT_WORD() \ + { \ + streamWord = 0; \ + ARCFOUR_NEXT4BYTES_B(32); \ + ARCFOUR_NEXT4BYTES_B(0); \ + } +#endif +#else +/* 32-bit wordsize */ +#ifdef IS_LITTLE_ENDIAN +#define ARCFOUR_NEXT_WORD() \ + { \ + streamWord = 0; \ + ARCFOUR_NEXT4BYTES_L(0); \ + } +#else +#define ARCFOUR_NEXT_WORD() \ + { \ + streamWord = 0; \ + ARCFOUR_NEXT4BYTES_B(0); \ + } +#endif +#endif + +#ifdef IS_LITTLE_ENDIAN +#define RSH << +#define LSH >> +#else +#define RSH >> +#define LSH << +#endif + +#ifdef IS_LITTLE_ENDIAN +#define LEFTMOST_BYTE_SHIFT 0 +#define NEXT_BYTE_SHIFT(shift) shift + 8 +#else +#define LEFTMOST_BYTE_SHIFT 8 * (WORDSIZE - 1) +#define NEXT_BYTE_SHIFT(shift) shift - 8 +#endif + +#ifdef CONVERT_TO_WORDS +static SECStatus +rc4_wordconv(RC4Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t)); + unsigned int inOffset = (PRUword)input % WORDSIZE; + unsigned int outOffset = (PRUword)output % WORDSIZE; + register WORD streamWord; + register const WORD *pInWord; + register WORD *pOutWord; + register WORD inWord, nextInWord; + PRUint8 t; + register Stype tmpSi, tmpSj; + register PRUint8 tmpi = cx->i; + register PRUint8 tmpj = cx->j; + unsigned int bufShift, invBufShift; + unsigned int i; + const unsigned char *finalIn; + unsigned char *finalOut; + + PORT_Assert(maxOutputLen >= inputLen); + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } + if (inputLen < 2 * WORDSIZE) { + /* Ignore word conversion, do byte-at-a-time */ + return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen); + } + *outputLen = inputLen; + pInWord = (const WORD *)(input - inOffset); + pOutWord = (WORD *)(output - outOffset); + if (inOffset <= outOffset) { + bufShift = 8 * (outOffset - inOffset); + invBufShift = 8 * WORDSIZE - bufShift; + } else { + invBufShift = 8 * (inOffset - outOffset); + bufShift = 8 * WORDSIZE - invBufShift; + } + /*****************************************************************/ + /* Step 1: */ + /* If the first output word is partial, consume the bytes in the */ + /* first partial output word by loading one or two words of */ + /* input and shifting them accordingly. Otherwise, just load */ + /* in the first word of input. At the end of this block, at */ + /* least one partial word of input should ALWAYS be loaded. */ + /*****************************************************************/ + if (outOffset) { + unsigned int byteCount = WORDSIZE - outOffset; + for (i = 0; i < byteCount; i++) { + ARCFOUR_NEXT_BYTE(); + output[i] = cx->S[t] ^ input[i]; + } + /* Consumed byteCount bytes of input */ + inputLen -= byteCount; + pInWord++; + + /* move to next word of output */ + pOutWord++; + + /* If buffers are relatively misaligned, shift the bytes in inWord + * to be aligned to the output buffer. + */ + if (inOffset < outOffset) { + /* The first input word (which may be partial) has more bytes + * than needed. Copy the remainder to inWord. + */ + unsigned int shift = LEFTMOST_BYTE_SHIFT; + inWord = 0; + for (i = 0; i < outOffset - inOffset; i++) { + inWord |= (WORD)input[byteCount + i] << shift; + shift = NEXT_BYTE_SHIFT(shift); + } + } else if (inOffset > outOffset) { + /* Consumed some bytes in the second input word. Copy the + * remainder to inWord. + */ + inWord = *pInWord++; + inWord = inWord LSH invBufShift; + } else { + inWord = 0; + } + } else { + /* output is word-aligned */ + if (inOffset) { + /* Input is not word-aligned. The first word load of input + * will not produce a full word of input bytes, so one word + * must be pre-loaded. The main loop below will load in the + * next input word and shift some of its bytes into inWord + * in order to create a full input word. Note that the main + * loop must execute at least once because the input must + * be at least two words. + */ + unsigned int shift = LEFTMOST_BYTE_SHIFT; + inWord = 0; + for (i = 0; i < WORDSIZE - inOffset; i++) { + inWord |= (WORD)input[i] << shift; + shift = NEXT_BYTE_SHIFT(shift); + } + pInWord++; + } else { + /* Input is word-aligned. The first word load of input + * will produce a full word of input bytes, so nothing + * needs to be loaded here. + */ + inWord = 0; + } + } + /*****************************************************************/ + /* Step 2: main loop */ + /* At this point the output buffer is word-aligned. Any unused */ + /* bytes from above will be in inWord (shifted correctly). If */ + /* the input buffer is unaligned relative to the output buffer, */ + /* shifting has to be done. */ + /*****************************************************************/ + if (bufShift) { + /* preloadedByteCount is the number of input bytes pre-loaded + * in inWord. + */ + unsigned int preloadedByteCount = bufShift / 8; + for (; inputLen >= preloadedByteCount + WORDSIZE; + inputLen -= WORDSIZE) { + nextInWord = *pInWord++; + inWord |= nextInWord RSH bufShift; + nextInWord = nextInWord LSH invBufShift; + ARCFOUR_NEXT_WORD(); + *pOutWord++ = inWord ^ streamWord; + inWord = nextInWord; + } + if (inputLen == 0) { + /* Nothing left to do. */ + cx->i = tmpi; + cx->j = tmpj; + return SECSuccess; + } + finalIn = (const unsigned char *)pInWord - preloadedByteCount; + } else { + for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) { + inWord = *pInWord++; + ARCFOUR_NEXT_WORD(); + *pOutWord++ = inWord ^ streamWord; + } + if (inputLen == 0) { + /* Nothing left to do. */ + cx->i = tmpi; + cx->j = tmpj; + return SECSuccess; + } + finalIn = (const unsigned char *)pInWord; + } + /*****************************************************************/ + /* Step 3: */ + /* Do the remaining partial word of input one byte at a time. */ + /*****************************************************************/ + finalOut = (unsigned char *)pOutWord; + for (i = 0; i < inputLen; i++) { + ARCFOUR_NEXT_BYTE(); + finalOut[i] = cx->S[t] ^ finalIn[i]; + } + cx->i = tmpi; + cx->j = tmpj; + return SECSuccess; +} +#endif +#endif /* NSS_BEVAND_ARCFOUR */ + +SECStatus +RC4_Encrypt(RC4Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + PORT_Assert(maxOutputLen >= inputLen); + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } +#if defined(NSS_BEVAND_ARCFOUR) + ARCFOUR(cx, inputLen, input, output); + *outputLen = inputLen; + return SECSuccess; +#elif defined(CONVERT_TO_WORDS) + /* Convert the byte-stream to a word-stream */ + return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); +#else + /* Operate on bytes, but unroll the main loop */ + return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); +#endif +} + +SECStatus +RC4_Decrypt(RC4Context *cx, unsigned char *output, + unsigned int *outputLen, unsigned int maxOutputLen, + const unsigned char *input, unsigned int inputLen) +{ + PORT_Assert(maxOutputLen >= inputLen); + if (maxOutputLen < inputLen) { + PORT_SetError(SEC_ERROR_OUTPUT_LEN); + return SECFailure; + } +/* decrypt and encrypt are same operation. */ +#if defined(NSS_BEVAND_ARCFOUR) + ARCFOUR(cx, inputLen, input, output); + *outputLen = inputLen; + return SECSuccess; +#elif defined(CONVERT_TO_WORDS) + /* Convert the byte-stream to a word-stream */ + return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen); +#else + /* Operate on bytes, but unroll the main loop */ + return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen); +#endif +} + +#undef CONVERT_TO_WORDS +#undef USE_WORD |