summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/arcfour.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/nss/lib/freebl/arcfour.c
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/lib/freebl/arcfour.c')
-rw-r--r--security/nss/lib/freebl/arcfour.c594
1 files changed, 594 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/arcfour.c b/security/nss/lib/freebl/arcfour.c
new file mode 100644
index 0000000000..72e696e523
--- /dev/null
+++ b/security/nss/lib/freebl/arcfour.c
@@ -0,0 +1,594 @@
+/* arcfour.c - the arc four algorithm.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifdef FREEBL_NO_DEPEND
+#include "stubs.h"
+#endif
+
+#include "prerr.h"
+#include "secerr.h"
+
+#include "prtypes.h"
+#include "blapi.h"
+
+/* Architecture-dependent defines */
+
+#if defined(SOLARIS) || defined(HPUX) || defined(NSS_X86) || \
+ defined(_WIN64)
+/* Convert the byte-stream to a word-stream */
+#define CONVERT_TO_WORDS
+#endif
+
+#if defined(AIX) || defined(NSS_BEVAND_ARCFOUR)
+/* Treat array variables as words, not bytes, on CPUs that take
+ * much longer to write bytes than to write words, or when using
+ * assembler code that required it.
+ */
+#define USE_WORD
+#endif
+
+#if defined(IS_64) || defined(NSS_BEVAND_ARCFOUR)
+typedef PRUint64 WORD;
+#else
+typedef PRUint32 WORD;
+#endif
+#define WORDSIZE sizeof(WORD)
+
+#if defined(USE_WORD)
+typedef WORD Stype;
+#else
+typedef PRUint8 Stype;
+#endif
+
+#define ARCFOUR_STATE_SIZE 256
+
+#define MASK1BYTE (WORD)(0xff)
+
+#define SWAP(a, b) \
+ tmp = a; \
+ a = b; \
+ b = tmp;
+
+/*
+ * State information for stream cipher.
+ */
+struct RC4ContextStr {
+#if defined(NSS_ARCFOUR_IJ_B4_S) || defined(NSS_BEVAND_ARCFOUR)
+ Stype i;
+ Stype j;
+ Stype S[ARCFOUR_STATE_SIZE];
+#else
+ Stype S[ARCFOUR_STATE_SIZE];
+ Stype i;
+ Stype j;
+#endif
+};
+
+/*
+ * array indices [0..255] to initialize cx->S array (faster than loop).
+ */
+static const Stype Kinit[256] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+ 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+ 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+ 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+ 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+ 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+RC4Context *
+RC4_AllocateContext(void)
+{
+ return PORT_ZNew(RC4Context);
+}
+
+SECStatus
+RC4_InitContext(RC4Context *cx, const unsigned char *key, unsigned int len,
+ const unsigned char *unused1, int unused2,
+ unsigned int unused3, unsigned int unused4)
+{
+ unsigned int i;
+ PRUint8 j, tmp;
+ PRUint8 K[256];
+ PRUint8 *L;
+
+ /* verify the key length. */
+ PORT_Assert(len > 0 && len < ARCFOUR_STATE_SIZE);
+ if (len == 0 || len >= ARCFOUR_STATE_SIZE) {
+ PORT_SetError(SEC_ERROR_BAD_KEY);
+ return SECFailure;
+ }
+ if (cx == NULL) {
+ PORT_SetError(SEC_ERROR_INVALID_ARGS);
+ return SECFailure;
+ }
+ /* Initialize the state using array indices. */
+ memcpy(cx->S, Kinit, sizeof cx->S);
+ /* Fill in K repeatedly with values from key. */
+ L = K;
+ for (i = sizeof K; i > len; i -= len) {
+ memcpy(L, key, len);
+ L += len;
+ }
+ memcpy(L, key, i);
+ /* Stir the state of the generator. At this point it is assumed
+ * that the key is the size of the state buffer. If this is not
+ * the case, the key bytes are repeated to fill the buffer.
+ */
+ j = 0;
+#define ARCFOUR_STATE_STIR(ii) \
+ j = j + cx->S[ii] + K[ii]; \
+ SWAP(cx->S[ii], cx->S[j]);
+ for (i = 0; i < ARCFOUR_STATE_SIZE; i++) {
+ ARCFOUR_STATE_STIR(i);
+ }
+ cx->i = 0;
+ cx->j = 0;
+ return SECSuccess;
+}
+
+/*
+ * Initialize a new generator.
+ */
+RC4Context *
+RC4_CreateContext(const unsigned char *key, int len)
+{
+ RC4Context *cx = RC4_AllocateContext();
+ if (cx) {
+ SECStatus rv = RC4_InitContext(cx, key, len, NULL, 0, 0, 0);
+ if (rv != SECSuccess) {
+ PORT_ZFree(cx, sizeof(*cx));
+ cx = NULL;
+ }
+ }
+ return cx;
+}
+
+void
+RC4_DestroyContext(RC4Context *cx, PRBool freeit)
+{
+ if (freeit)
+ PORT_ZFree(cx, sizeof(*cx));
+}
+
+#if defined(NSS_BEVAND_ARCFOUR)
+extern void ARCFOUR(RC4Context *cx, WORD inputLen,
+ const unsigned char *input, unsigned char *output);
+#else
+/*
+ * Generate the next byte in the stream.
+ */
+#define ARCFOUR_NEXT_BYTE() \
+ tmpSi = cx->S[++tmpi]; \
+ tmpj += tmpSi; \
+ tmpSj = cx->S[tmpj]; \
+ cx->S[tmpi] = tmpSj; \
+ cx->S[tmpj] = tmpSi; \
+ t = tmpSi + tmpSj;
+
+#ifdef CONVERT_TO_WORDS
+/*
+ * Straight ARCFOUR op. No optimization.
+ */
+static SECStatus
+rc4_no_opt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PRUint8 t;
+ Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ unsigned int index;
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+ for (index = 0; index < inputLen; index++) {
+ /* Generate next byte from stream. */
+ ARCFOUR_NEXT_BYTE();
+ /* output = next stream byte XOR next input byte */
+ output[index] = cx->S[t] ^ input[index];
+ }
+ *outputLen = inputLen;
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+}
+
+#else
+/* !CONVERT_TO_WORDS */
+
+/*
+ * Byte-at-a-time ARCFOUR, unrolling the loop into 8 pieces.
+ */
+static SECStatus
+rc4_unrolled(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PRUint8 t;
+ Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ int index;
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+ for (index = inputLen / 8; index-- > 0; input += 8, output += 8) {
+ ARCFOUR_NEXT_BYTE();
+ output[0] = cx->S[t] ^ input[0];
+ ARCFOUR_NEXT_BYTE();
+ output[1] = cx->S[t] ^ input[1];
+ ARCFOUR_NEXT_BYTE();
+ output[2] = cx->S[t] ^ input[2];
+ ARCFOUR_NEXT_BYTE();
+ output[3] = cx->S[t] ^ input[3];
+ ARCFOUR_NEXT_BYTE();
+ output[4] = cx->S[t] ^ input[4];
+ ARCFOUR_NEXT_BYTE();
+ output[5] = cx->S[t] ^ input[5];
+ ARCFOUR_NEXT_BYTE();
+ output[6] = cx->S[t] ^ input[6];
+ ARCFOUR_NEXT_BYTE();
+ output[7] = cx->S[t] ^ input[7];
+ }
+ index = inputLen % 8;
+ if (index) {
+ input += index;
+ output += index;
+ switch (index) {
+ case 7:
+ ARCFOUR_NEXT_BYTE();
+ output[-7] = cx->S[t] ^ input[-7]; /* FALLTHRU */
+ case 6:
+ ARCFOUR_NEXT_BYTE();
+ output[-6] = cx->S[t] ^ input[-6]; /* FALLTHRU */
+ case 5:
+ ARCFOUR_NEXT_BYTE();
+ output[-5] = cx->S[t] ^ input[-5]; /* FALLTHRU */
+ case 4:
+ ARCFOUR_NEXT_BYTE();
+ output[-4] = cx->S[t] ^ input[-4]; /* FALLTHRU */
+ case 3:
+ ARCFOUR_NEXT_BYTE();
+ output[-3] = cx->S[t] ^ input[-3]; /* FALLTHRU */
+ case 2:
+ ARCFOUR_NEXT_BYTE();
+ output[-2] = cx->S[t] ^ input[-2]; /* FALLTHRU */
+ case 1:
+ ARCFOUR_NEXT_BYTE();
+ output[-1] = cx->S[t] ^ input[-1]; /* FALLTHRU */
+ default:
+ /* FALLTHRU */
+ ; /* hp-ux build breaks without this */
+ }
+ }
+ cx->i = tmpi;
+ cx->j = tmpj;
+ *outputLen = inputLen;
+ return SECSuccess;
+}
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT4BYTES_L(n) \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 8); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 16); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 24);
+#else
+#define ARCFOUR_NEXT4BYTES_B(n) \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 24); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 16); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n + 8); \
+ ARCFOUR_NEXT_BYTE(); \
+ streamWord |= (WORD)cx->S[t] << (n);
+#endif
+
+#if (defined(IS_64) && !defined(__sparc)) || defined(NSS_USE_64)
+/* 64-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+ { \
+ streamWord = 0; \
+ ARCFOUR_NEXT4BYTES_L(0); \
+ ARCFOUR_NEXT4BYTES_L(32); \
+ }
+#else
+#define ARCFOUR_NEXT_WORD() \
+ { \
+ streamWord = 0; \
+ ARCFOUR_NEXT4BYTES_B(32); \
+ ARCFOUR_NEXT4BYTES_B(0); \
+ }
+#endif
+#else
+/* 32-bit wordsize */
+#ifdef IS_LITTLE_ENDIAN
+#define ARCFOUR_NEXT_WORD() \
+ { \
+ streamWord = 0; \
+ ARCFOUR_NEXT4BYTES_L(0); \
+ }
+#else
+#define ARCFOUR_NEXT_WORD() \
+ { \
+ streamWord = 0; \
+ ARCFOUR_NEXT4BYTES_B(0); \
+ }
+#endif
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define RSH <<
+#define LSH >>
+#else
+#define RSH >>
+#define LSH <<
+#endif
+
+#ifdef IS_LITTLE_ENDIAN
+#define LEFTMOST_BYTE_SHIFT 0
+#define NEXT_BYTE_SHIFT(shift) shift + 8
+#else
+#define LEFTMOST_BYTE_SHIFT 8 * (WORDSIZE - 1)
+#define NEXT_BYTE_SHIFT(shift) shift - 8
+#endif
+
+#ifdef CONVERT_TO_WORDS
+static SECStatus
+rc4_wordconv(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PR_STATIC_ASSERT(sizeof(PRUword) == sizeof(ptrdiff_t));
+ unsigned int inOffset = (PRUword)input % WORDSIZE;
+ unsigned int outOffset = (PRUword)output % WORDSIZE;
+ register WORD streamWord;
+ register const WORD *pInWord;
+ register WORD *pOutWord;
+ register WORD inWord, nextInWord;
+ PRUint8 t;
+ register Stype tmpSi, tmpSj;
+ register PRUint8 tmpi = cx->i;
+ register PRUint8 tmpj = cx->j;
+ unsigned int bufShift, invBufShift;
+ unsigned int i;
+ const unsigned char *finalIn;
+ unsigned char *finalOut;
+
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+ if (inputLen < 2 * WORDSIZE) {
+ /* Ignore word conversion, do byte-at-a-time */
+ return rc4_no_opt(cx, output, outputLen, maxOutputLen, input, inputLen);
+ }
+ *outputLen = inputLen;
+ pInWord = (const WORD *)(input - inOffset);
+ pOutWord = (WORD *)(output - outOffset);
+ if (inOffset <= outOffset) {
+ bufShift = 8 * (outOffset - inOffset);
+ invBufShift = 8 * WORDSIZE - bufShift;
+ } else {
+ invBufShift = 8 * (inOffset - outOffset);
+ bufShift = 8 * WORDSIZE - invBufShift;
+ }
+ /*****************************************************************/
+ /* Step 1: */
+ /* If the first output word is partial, consume the bytes in the */
+ /* first partial output word by loading one or two words of */
+ /* input and shifting them accordingly. Otherwise, just load */
+ /* in the first word of input. At the end of this block, at */
+ /* least one partial word of input should ALWAYS be loaded. */
+ /*****************************************************************/
+ if (outOffset) {
+ unsigned int byteCount = WORDSIZE - outOffset;
+ for (i = 0; i < byteCount; i++) {
+ ARCFOUR_NEXT_BYTE();
+ output[i] = cx->S[t] ^ input[i];
+ }
+ /* Consumed byteCount bytes of input */
+ inputLen -= byteCount;
+ pInWord++;
+
+ /* move to next word of output */
+ pOutWord++;
+
+ /* If buffers are relatively misaligned, shift the bytes in inWord
+ * to be aligned to the output buffer.
+ */
+ if (inOffset < outOffset) {
+ /* The first input word (which may be partial) has more bytes
+ * than needed. Copy the remainder to inWord.
+ */
+ unsigned int shift = LEFTMOST_BYTE_SHIFT;
+ inWord = 0;
+ for (i = 0; i < outOffset - inOffset; i++) {
+ inWord |= (WORD)input[byteCount + i] << shift;
+ shift = NEXT_BYTE_SHIFT(shift);
+ }
+ } else if (inOffset > outOffset) {
+ /* Consumed some bytes in the second input word. Copy the
+ * remainder to inWord.
+ */
+ inWord = *pInWord++;
+ inWord = inWord LSH invBufShift;
+ } else {
+ inWord = 0;
+ }
+ } else {
+ /* output is word-aligned */
+ if (inOffset) {
+ /* Input is not word-aligned. The first word load of input
+ * will not produce a full word of input bytes, so one word
+ * must be pre-loaded. The main loop below will load in the
+ * next input word and shift some of its bytes into inWord
+ * in order to create a full input word. Note that the main
+ * loop must execute at least once because the input must
+ * be at least two words.
+ */
+ unsigned int shift = LEFTMOST_BYTE_SHIFT;
+ inWord = 0;
+ for (i = 0; i < WORDSIZE - inOffset; i++) {
+ inWord |= (WORD)input[i] << shift;
+ shift = NEXT_BYTE_SHIFT(shift);
+ }
+ pInWord++;
+ } else {
+ /* Input is word-aligned. The first word load of input
+ * will produce a full word of input bytes, so nothing
+ * needs to be loaded here.
+ */
+ inWord = 0;
+ }
+ }
+ /*****************************************************************/
+ /* Step 2: main loop */
+ /* At this point the output buffer is word-aligned. Any unused */
+ /* bytes from above will be in inWord (shifted correctly). If */
+ /* the input buffer is unaligned relative to the output buffer, */
+ /* shifting has to be done. */
+ /*****************************************************************/
+ if (bufShift) {
+ /* preloadedByteCount is the number of input bytes pre-loaded
+ * in inWord.
+ */
+ unsigned int preloadedByteCount = bufShift / 8;
+ for (; inputLen >= preloadedByteCount + WORDSIZE;
+ inputLen -= WORDSIZE) {
+ nextInWord = *pInWord++;
+ inWord |= nextInWord RSH bufShift;
+ nextInWord = nextInWord LSH invBufShift;
+ ARCFOUR_NEXT_WORD();
+ *pOutWord++ = inWord ^ streamWord;
+ inWord = nextInWord;
+ }
+ if (inputLen == 0) {
+ /* Nothing left to do. */
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+ }
+ finalIn = (const unsigned char *)pInWord - preloadedByteCount;
+ } else {
+ for (; inputLen >= WORDSIZE; inputLen -= WORDSIZE) {
+ inWord = *pInWord++;
+ ARCFOUR_NEXT_WORD();
+ *pOutWord++ = inWord ^ streamWord;
+ }
+ if (inputLen == 0) {
+ /* Nothing left to do. */
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+ }
+ finalIn = (const unsigned char *)pInWord;
+ }
+ /*****************************************************************/
+ /* Step 3: */
+ /* Do the remaining partial word of input one byte at a time. */
+ /*****************************************************************/
+ finalOut = (unsigned char *)pOutWord;
+ for (i = 0; i < inputLen; i++) {
+ ARCFOUR_NEXT_BYTE();
+ finalOut[i] = cx->S[t] ^ finalIn[i];
+ }
+ cx->i = tmpi;
+ cx->j = tmpj;
+ return SECSuccess;
+}
+#endif
+#endif /* NSS_BEVAND_ARCFOUR */
+
+SECStatus
+RC4_Encrypt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+#if defined(NSS_BEVAND_ARCFOUR)
+ ARCFOUR(cx, inputLen, input, output);
+ *outputLen = inputLen;
+ return SECSuccess;
+#elif defined(CONVERT_TO_WORDS)
+ /* Convert the byte-stream to a word-stream */
+ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+ /* Operate on bytes, but unroll the main loop */
+ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+SECStatus
+RC4_Decrypt(RC4Context *cx, unsigned char *output,
+ unsigned int *outputLen, unsigned int maxOutputLen,
+ const unsigned char *input, unsigned int inputLen)
+{
+ PORT_Assert(maxOutputLen >= inputLen);
+ if (maxOutputLen < inputLen) {
+ PORT_SetError(SEC_ERROR_OUTPUT_LEN);
+ return SECFailure;
+ }
+/* decrypt and encrypt are same operation. */
+#if defined(NSS_BEVAND_ARCFOUR)
+ ARCFOUR(cx, inputLen, input, output);
+ *outputLen = inputLen;
+ return SECSuccess;
+#elif defined(CONVERT_TO_WORDS)
+ /* Convert the byte-stream to a word-stream */
+ return rc4_wordconv(cx, output, outputLen, maxOutputLen, input, inputLen);
+#else
+ /* Operate on bytes, but unroll the main loop */
+ return rc4_unrolled(cx, output, outputLen, maxOutputLen, input, inputLen);
+#endif
+}
+
+#undef CONVERT_TO_WORDS
+#undef USE_WORD