summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/mpi/doc/pi.txt
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /security/nss/lib/freebl/mpi/doc/pi.txt
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/lib/freebl/mpi/doc/pi.txt')
-rw-r--r--security/nss/lib/freebl/mpi/doc/pi.txt53
1 files changed, 53 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/mpi/doc/pi.txt b/security/nss/lib/freebl/mpi/doc/pi.txt
new file mode 100644
index 0000000000..a6ef91137f
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/pi.txt
@@ -0,0 +1,53 @@
+This file describes how pi is computed by the program in 'pi.c' (see
+the utils subdirectory).
+
+Basically, we use Machin's formula, which is what everyone in the
+world uses as a simple method for computing approximations to pi.
+This works for up to a few thousand digits without too much effort.
+Beyond that, though, it gets too slow.
+
+Machin's formula states:
+
+ pi := 16 * arctan(1/5) - 4 * arctan(1/239)
+
+We compute this in integer arithmetic by first multiplying everything
+through by 10^d, where 'd' is the number of digits of pi we wanted to
+compute. It turns out, the last few digits will be wrong, but the
+number that are wrong is usually very small (ordinarly only 2-3).
+Having done this, we compute the arctan() function using the formula:
+
+ 1 1 1 1 1
+ arctan(1/x) := --- - ----- + ----- - ----- + ----- - ...
+ x 3 x^3 5 x^5 7 x^7 9 x^9
+
+This is done iteratively by computing the first term manually, and
+then iteratively dividing x^2 and k, where k = 3, 5, 7, ... out of the
+current figure. This is then added to (or subtracted from) a running
+sum, as appropriate. The iteration continues until we overflow our
+available precision and the current figure goes to zero under integer
+division. At that point, we're finished.
+
+Actually, we get a couple extra bits of precision out of the fact that
+we know we're computing y * arctan(1/x), by setting up the multiplier
+as:
+
+ y * 10^d
+
+... instead of just 10^d. There is also a bit of cleverness in how
+the loop is constructed, to avoid special-casing the first term.
+Check out the code for arctan() in 'pi.c', if you are interested in
+seeing how it is set up.
+
+Thanks to Jason P. for this algorithm, which I assembled from notes
+and programs found on his cool "Pile of Pi Programs" page, at:
+
+ http://www.isr.umd.edu/~jasonp/pipage.html
+
+Thanks also to Henrik Johansson <Henrik.Johansson@Nexus.Comm.SE>, from
+whose pi program I borrowed the clever idea of pre-multiplying by x in
+order to avoid a special case on the loop iteration.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.