summaryrefslogtreecommitdiffstats
path: root/third_party/libwebrtc/rtc_base/timestamp_aligner.cc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/rtc_base/timestamp_aligner.cc
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/timestamp_aligner.cc')
-rw-r--r--third_party/libwebrtc/rtc_base/timestamp_aligner.cc144
1 files changed, 144 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/timestamp_aligner.cc b/third_party/libwebrtc/rtc_base/timestamp_aligner.cc
new file mode 100644
index 0000000000..34b68bf39e
--- /dev/null
+++ b/third_party/libwebrtc/rtc_base/timestamp_aligner.cc
@@ -0,0 +1,144 @@
+/*
+ * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "rtc_base/timestamp_aligner.h"
+
+#include <cstdlib>
+#include <limits>
+
+#include "rtc_base/checks.h"
+#include "rtc_base/logging.h"
+#include "rtc_base/time_utils.h"
+
+namespace rtc {
+
+TimestampAligner::TimestampAligner()
+ : frames_seen_(0),
+ offset_us_(0),
+ clip_bias_us_(0),
+ prev_translated_time_us_(std::numeric_limits<int64_t>::min()),
+ prev_time_offset_us_(0) {}
+
+TimestampAligner::~TimestampAligner() {}
+
+int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us,
+ int64_t system_time_us) {
+ const int64_t translated_timestamp = ClipTimestamp(
+ capturer_time_us + UpdateOffset(capturer_time_us, system_time_us),
+ system_time_us);
+ prev_time_offset_us_ = translated_timestamp - capturer_time_us;
+ return translated_timestamp;
+}
+
+int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us) const {
+ return capturer_time_us + prev_time_offset_us_;
+}
+
+int64_t TimestampAligner::UpdateOffset(int64_t capturer_time_us,
+ int64_t system_time_us) {
+ // Estimate the offset between system monotonic time and the capturer's
+ // time. The capturer is assumed to provide more
+ // accurate timestamps than we get from the system time. But the
+ // capturer may use its own free-running clock with a large offset and
+ // a small drift compared to the system clock. So the model is
+ // basically
+ //
+ // y_k = c_0 + c_1 * x_k + v_k
+ //
+ // where x_k is the capturer's timestamp, believed to be accurate in its
+ // own scale. y_k is our reading of the system clock. v_k is the
+ // measurement noise, i.e., the delay from frame capture until the
+ // system clock was read.
+ //
+ // It's possible to do (weighted) least-squares estimation of both
+ // c_0 and c_1. Then we get the constants as c_1 = Cov(x,y) /
+ // Var(x), and c_0 = mean(y) - c_1 * mean(x). Substituting this c_0,
+ // we can rearrange the model as
+ //
+ // y_k = mean(y) + (x_k - mean(x)) + (c_1 - 1) * (x_k - mean(x)) + v_k
+ //
+ // Now if we use a weighted average which gradually forgets old
+ // values, x_k - mean(x) is bounded, of the same order as the time
+ // constant (and close to constant for a steady frame rate). In
+ // addition, the frequency error |c_1 - 1| should be small. Cameras
+ // with a frequency error up to 3000 ppm (3 ms drift per second)
+ // have been observed, but frequency errors below 100 ppm could be
+ // expected of any cheap crystal.
+ //
+ // Bottom line is that we ignore the c_1 term, and use only the estimator
+ //
+ // x_k + mean(y-x)
+ //
+ // where mean is plain averaging for initial samples, followed by
+ // exponential averaging.
+
+ // The input for averaging, y_k - x_k in the above notation.
+ int64_t diff_us = system_time_us - capturer_time_us;
+ // The deviation from the current average.
+ int64_t error_us = diff_us - offset_us_;
+
+ // If the current difference is far from the currently estimated
+ // offset, the filter is reset. This could happen, e.g., if the
+ // capturer's clock is reset, cameras are plugged in and out, or
+ // the application process is temporarily suspended. Expected to
+ // happen for the very first timestamp (`frames_seen_` = 0). The
+ // threshold of 300 ms should make this unlikely in normal
+ // operation, and at the same time, converging gradually rather than
+ // resetting the filter should be tolerable for jumps in capturer's time
+ // below this threshold.
+ static const int64_t kResetThresholdUs = 300000;
+ if (std::abs(error_us) > kResetThresholdUs) {
+ RTC_LOG(LS_INFO) << "Resetting timestamp translation after averaging "
+ << frames_seen_ << " frames. Old offset: " << offset_us_
+ << ", new offset: " << diff_us;
+ frames_seen_ = 0;
+ clip_bias_us_ = 0;
+ }
+
+ static const int kWindowSize = 100;
+ if (frames_seen_ < kWindowSize) {
+ ++frames_seen_;
+ }
+ offset_us_ += error_us / frames_seen_;
+ return offset_us_;
+}
+
+int64_t TimestampAligner::ClipTimestamp(int64_t filtered_time_us,
+ int64_t system_time_us) {
+ const int64_t kMinFrameIntervalUs = rtc::kNumMicrosecsPerMillisec;
+ // Clip to make sure we don't produce timestamps in the future.
+ int64_t time_us = filtered_time_us - clip_bias_us_;
+ if (time_us > system_time_us) {
+ clip_bias_us_ += time_us - system_time_us;
+ time_us = system_time_us;
+ }
+ // Make timestamps monotonic, with a minimum inter-frame interval of 1 ms.
+ else if (time_us < prev_translated_time_us_ + kMinFrameIntervalUs) {
+ time_us = prev_translated_time_us_ + kMinFrameIntervalUs;
+ if (time_us > system_time_us) {
+ // In the anomalous case that this function is called with values of
+ // `system_time_us` less than `kMinFrameIntervalUs` apart, we may output
+ // timestamps with with too short inter-frame interval. We may even return
+ // duplicate timestamps in case this function is called several times with
+ // exactly the same `system_time_us`.
+ RTC_LOG(LS_WARNING) << "too short translated timestamp interval: "
+ "system time (us) = "
+ << system_time_us << ", interval (us) = "
+ << system_time_us - prev_translated_time_us_;
+ time_us = system_time_us;
+ }
+ }
+ RTC_DCHECK_GE(time_us, prev_translated_time_us_);
+ RTC_DCHECK_LE(time_us, system_time_us);
+ prev_translated_time_us_ = time_us;
+ return time_us;
+}
+
+} // namespace rtc