diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/libwebrtc/rtc_base/timestamp_aligner.cc | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/libwebrtc/rtc_base/timestamp_aligner.cc')
-rw-r--r-- | third_party/libwebrtc/rtc_base/timestamp_aligner.cc | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/third_party/libwebrtc/rtc_base/timestamp_aligner.cc b/third_party/libwebrtc/rtc_base/timestamp_aligner.cc new file mode 100644 index 0000000000..34b68bf39e --- /dev/null +++ b/third_party/libwebrtc/rtc_base/timestamp_aligner.cc @@ -0,0 +1,144 @@ +/* + * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. + * + * Use of this source code is governed by a BSD-style license + * that can be found in the LICENSE file in the root of the source + * tree. An additional intellectual property rights grant can be found + * in the file PATENTS. All contributing project authors may + * be found in the AUTHORS file in the root of the source tree. + */ + +#include "rtc_base/timestamp_aligner.h" + +#include <cstdlib> +#include <limits> + +#include "rtc_base/checks.h" +#include "rtc_base/logging.h" +#include "rtc_base/time_utils.h" + +namespace rtc { + +TimestampAligner::TimestampAligner() + : frames_seen_(0), + offset_us_(0), + clip_bias_us_(0), + prev_translated_time_us_(std::numeric_limits<int64_t>::min()), + prev_time_offset_us_(0) {} + +TimestampAligner::~TimestampAligner() {} + +int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us, + int64_t system_time_us) { + const int64_t translated_timestamp = ClipTimestamp( + capturer_time_us + UpdateOffset(capturer_time_us, system_time_us), + system_time_us); + prev_time_offset_us_ = translated_timestamp - capturer_time_us; + return translated_timestamp; +} + +int64_t TimestampAligner::TranslateTimestamp(int64_t capturer_time_us) const { + return capturer_time_us + prev_time_offset_us_; +} + +int64_t TimestampAligner::UpdateOffset(int64_t capturer_time_us, + int64_t system_time_us) { + // Estimate the offset between system monotonic time and the capturer's + // time. The capturer is assumed to provide more + // accurate timestamps than we get from the system time. But the + // capturer may use its own free-running clock with a large offset and + // a small drift compared to the system clock. So the model is + // basically + // + // y_k = c_0 + c_1 * x_k + v_k + // + // where x_k is the capturer's timestamp, believed to be accurate in its + // own scale. y_k is our reading of the system clock. v_k is the + // measurement noise, i.e., the delay from frame capture until the + // system clock was read. + // + // It's possible to do (weighted) least-squares estimation of both + // c_0 and c_1. Then we get the constants as c_1 = Cov(x,y) / + // Var(x), and c_0 = mean(y) - c_1 * mean(x). Substituting this c_0, + // we can rearrange the model as + // + // y_k = mean(y) + (x_k - mean(x)) + (c_1 - 1) * (x_k - mean(x)) + v_k + // + // Now if we use a weighted average which gradually forgets old + // values, x_k - mean(x) is bounded, of the same order as the time + // constant (and close to constant for a steady frame rate). In + // addition, the frequency error |c_1 - 1| should be small. Cameras + // with a frequency error up to 3000 ppm (3 ms drift per second) + // have been observed, but frequency errors below 100 ppm could be + // expected of any cheap crystal. + // + // Bottom line is that we ignore the c_1 term, and use only the estimator + // + // x_k + mean(y-x) + // + // where mean is plain averaging for initial samples, followed by + // exponential averaging. + + // The input for averaging, y_k - x_k in the above notation. + int64_t diff_us = system_time_us - capturer_time_us; + // The deviation from the current average. + int64_t error_us = diff_us - offset_us_; + + // If the current difference is far from the currently estimated + // offset, the filter is reset. This could happen, e.g., if the + // capturer's clock is reset, cameras are plugged in and out, or + // the application process is temporarily suspended. Expected to + // happen for the very first timestamp (`frames_seen_` = 0). The + // threshold of 300 ms should make this unlikely in normal + // operation, and at the same time, converging gradually rather than + // resetting the filter should be tolerable for jumps in capturer's time + // below this threshold. + static const int64_t kResetThresholdUs = 300000; + if (std::abs(error_us) > kResetThresholdUs) { + RTC_LOG(LS_INFO) << "Resetting timestamp translation after averaging " + << frames_seen_ << " frames. Old offset: " << offset_us_ + << ", new offset: " << diff_us; + frames_seen_ = 0; + clip_bias_us_ = 0; + } + + static const int kWindowSize = 100; + if (frames_seen_ < kWindowSize) { + ++frames_seen_; + } + offset_us_ += error_us / frames_seen_; + return offset_us_; +} + +int64_t TimestampAligner::ClipTimestamp(int64_t filtered_time_us, + int64_t system_time_us) { + const int64_t kMinFrameIntervalUs = rtc::kNumMicrosecsPerMillisec; + // Clip to make sure we don't produce timestamps in the future. + int64_t time_us = filtered_time_us - clip_bias_us_; + if (time_us > system_time_us) { + clip_bias_us_ += time_us - system_time_us; + time_us = system_time_us; + } + // Make timestamps monotonic, with a minimum inter-frame interval of 1 ms. + else if (time_us < prev_translated_time_us_ + kMinFrameIntervalUs) { + time_us = prev_translated_time_us_ + kMinFrameIntervalUs; + if (time_us > system_time_us) { + // In the anomalous case that this function is called with values of + // `system_time_us` less than `kMinFrameIntervalUs` apart, we may output + // timestamps with with too short inter-frame interval. We may even return + // duplicate timestamps in case this function is called several times with + // exactly the same `system_time_us`. + RTC_LOG(LS_WARNING) << "too short translated timestamp interval: " + "system time (us) = " + << system_time_us << ", interval (us) = " + << system_time_us - prev_translated_time_us_; + time_us = system_time_us; + } + } + RTC_DCHECK_GE(time_us, prev_translated_time_us_); + RTC_DCHECK_LE(time_us, system_time_us); + prev_translated_time_us_ = time_us; + return time_us; +} + +} // namespace rtc |